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“The key to growth is the introduction of higher dimensions of consciousness into our 

awareness.” 

– Lao Tzu 

 

 

 

 

“For a research worker the unforgotten moments of his life are those rare ones 

which come after years of plodding work, when the veil over natures secret seems 

suddenly to lift & when what was dark & chaotic appears in a clear & beautiful 

light & pattern.”  

– Gerty Cori (1896-1957) 
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Zusammenfassung 
In dieser Dissertation werden Methoden zur Feststellung des Bewusstseins bei 

Patienten mit vollständigem Locked-in-Syndrom (CLIS) vorgestellt. CLIS-Patienten können 

nicht sprechen und haben jegliche Muskelbewegung verloren. Äußerlich ist die innere 

Hirnaktivität solcher Patienten nicht leicht wahrzunehmen, aber CLIS-Patienten gelten als 

noch bei Bewusstsein und kognitiv aktiv. Die Feststellung des aktuellen 

Bewusstseinszustandes von CLIS-Patienten ist nicht trivial, und es ist schwierig 

festzustellen, ob CLIS-Patienten bei Bewusstsein sind oder nicht. Daher ist es von 

entscheidender Bedeutung, alternative Wege zu entwickeln, um die Kommunikation mit 

diesen Patienten während der Bewusstseinsperioden wiederherzustellen, und eine mögliche 

Plattform sind Gehirn-Computer-Schnittstellen (BCI). 

Da für den korrekten Einsatz von BCI das Bewusstsein erforderlich ist, schlägt diese 

Studie einen Modus Operandi vor, um nicht nur Signale der intrakranielle 

Elektrokortikographie (ECoG) mit größerem Signal-Rausch-Verhältnis (SRV) und höherer 

Signalamplitude, sondern auch Signale der nicht-invasive Elektroenzephalographie (EEG) 

zu analysieren. Durch die Anwendung von drei verschiedenen Zeitbereich-Analyse-Ansätze, 

der Sample-Entropie, der Permutation Entropie und dem Poincaré-Plot als Feature-

Extraktion soll vermieden werden, dass krankheitsbedingte Reduktionen der 

Frequenzbänder in den Gehirnwellen der CLIS-Patienten auftreten. Ebenfalls wird Cross-

validiert, um zur Verbesserung der Wahrscheinlichkeit der korrekten Erkennung der 

bewussten Zuständen von CLIS-Patienten zu kommen. Aufgrund des Fehlens einer 

"Grundwahrheit", die als Lehreingabe zur Korrektur der Ergebnisse verwendet werden 

könnte, wurden k-Means und DBSCAN als unüberwachte Lernmethoden verwendet, um das 

Vorhandensein verschiedener Bewusstseinsstufen für die individuelle Teilnahme am 

Experiment zunächst bei Locked-in-State (LIS) Patienten mit einem ALSFRS-R-Score von 

0 aufzudecken. 

Die Ergebnisse dieser verschiedenen Methoden stimmen in Bezug auf die spezifischen 

Bewusstseinsperioden von CLIS/LIS-Patienten überein, die mit dem Zeitraum 

übereinstimmen, in dem CLIS/LIS-Patienten die Kommunikation mit einem Experimentator 

aufgezeichnet haben. Um die methodische Durchführbarkeit zu prüfen, wurden die 

Methoden auch bei Patienten mit Bewusstseinsstörungen angewandt. Die Ergebnisse deuten 

darauf hin, dass die Verwendung der Sample-Entropie hilfreich sein könnte, um Bewusstsein 

nicht nur bei CLIS/LIS-Patienten, sondern auch bei Patienten mit dem minimal bewussten 
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Zustand (MCS) und dem Syndrom reaktionsloser Wachheit (SRW) zu erkennen, und zeigten 

eine gute Auflösung sowohl für ECoG-Signale bis zu 24 Stunden am Tag als auch für EEG-

Signale, die zum Zeitpunkt des Experiments auf eine oder zwei Stunden beschränkt waren. 

Diese Arbeit konzentriert sich auf konsistente Ergebnisse über mehrere Kanäle, um 

kompensatorische Effekte von Hirnverletzungen zu vermeiden. 

Im Gegensatz zu den meisten Techniken, welche den Klinikern helfen sollen, den 

langfristigen Krankheitsverlauf von Patienten zu diagnostizieren und zu verstehen oder 

zwischen verschiedenen Krankheitstypen auf der klinischen Skala des Bewusstseins zu 

unterscheiden. Das Ziel dieser Untersuchung ist die Entwicklung einer zuverlässigen, auf 

einer Gehirn-Computer-Schnittstelle basierenden Kommunikationshilfe, um letztendlich 

den Familienmitgliedern eine Methode für die kurzfristige Kommunikation mit CLIS-

Patienten im Alltag an die Hand zu geben und gleichzeitig soll dadurch das Gehirn der 

Patienten aktiv gehalten werden, um die Lebensbereitschaft der Patienten zu erhöhen und 

ihre Lebensqualität zu verbessern. 
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Abstract 
This thesis presents methods for detecting consciousness in patients with complete 

locked-in syndrome (CLIS). CLIS patients are unable to speak and have lost all muscle 

movement. Externally, the internal brain activity of such patients cannot be easily perceived, 

but CLIS patients are considered to be still conscious and cognitively active. Detecting the 

current state of consciousness of CLIS patients is non-trivial, and it is difficult to ascertain 

whether CLIS patients are conscious or not. Thus, it is vital to develop alternative ways to 

re-establish communication with these patients during periods of awareness, and a possible 

platform is through brain–computer interface (BCI). 

Since consciousness is required to use BCI correctly, this study proposes a modus 

operandi to analyze not only in intracranial electrocorticography (ECoG) signals with greater 

signal-to-noise ratio (SNR) and higher signal amplitude, but also in non-invasive 

electroencephalography (EEG) signals. By applying three different time-domain analysis 

approaches sample entropy, permutation entropy, and Poincaré plot as feature extraction to 

prevent disease-related reductions of brainwave frequency bands in CLIS patients, and 

cross-validated to improve the probability of correctly detecting the conscious states of CLIS 

patients. Due to the lack a of "ground truth" that could be used as teaching input to correct 

the outcomes, k-Means and DBSCAN these unsupervised learning methods were used to 

reveal the presence of different levels of consciousness for individual participation in the 

experiment first in locked-in state (LIS) patients with ALSFRS-R score of 0.  

The results of these different methods converge on the specific periods of 

consciousness of CLIS/LIS patients, coinciding with the period during which CLIS/LIS 

patients recorded communication with an experimenter. To determine methodological 

feasibility, the methods were also applied to patients with disorders of consciousness (DOC). 

The results indicate that the use of sample entropy might be helpful to detect awareness not 

only in CLIS/LIS patients but also in minimally conscious state (MCS)/unresponsive 

wakefulness syndrome (UWS) patients, and showed good resolution for both ECoG signals 

up to 24 hours a day and EEG signals focused on one or two hours at the time of the 

experiment. This thesis focus on consistent results across multiple channels to avoid 

compensatory effects of brain injury. 

Unlike most techniques designed to help clinicians diagnose and understand patients' 

long-term disease progression or distinguish between different disease types on the clinical 

scales of consciousness. The aim of this investigation is to develop a reliable brain-computer 
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interface-based communication aid eventually to provide family members with a method for 

short-term communication with CLIS patients in daily life, and at the same time, this will 

keep patients' brains active to increase patients' willingness to live and improve their quality 

of life (QOL). 
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Chapter 1 
Introduction and Overview  

 

 

 

 
 

 

 

1.1 Motivation of Current Work 
Amyotrophic Lateral Sclerosis (ALS) is the most common type of motor neuron 

disease (MND) and the third most common neurodegenerative disease after Alzheimer's 

disease and Parkinson's disease (Renton et al. 2014). The renowned British theoretical 

physicist and astrophysicist Stephen Hawking, who passed away in 2018, was diagnosed 

with ALS in 1963, suffered from this disease and shared his thoughts through augmentative 

and alternative communication (AAC) (Beukelman and Light 2020) and wrote the widely 

known book A Brief History of Time, which also gives us the opportunity to glimpse into 

the secrets of his brain. The "Ice Bucket Challenge" was launched by the ALS Association 

(ALSA) in 2014. In this challenge, those who accept the challenge can either film themselves 

pouring a bucket of ice water over their head and upload the video to the Internet, donate to 

research and the fight against ALS, or do both. The campaign has promoted worldwide 

public attention to the disease due to the response of many celebrities. 

Amyotrophic Lateral Sclerosis (ALS) is considered a rare disease, although it occurs 

worldwide. The annual incidence is 1.9 per 100,000 and the prevalence (the number of 

people with the disease at any given time) is 4.5 per 100,000 (Chiò et al. 2013). The number 

of new cases per year is about 2.6 people per 100,000 in Europe (Hardiman, Al-Chalabi, 

 
"The Human being lives according to its capacity to communicate, losing 

communication means losing life." 

– Ludwig Hohl (1904-1980) 
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Brayne et al. 2017), and about 0.8 people per 100,000 in east Asia (Hardiman, Al-Chalabi, 

Chio et al. 2017). ALS occurs in a gender ratio of approximately 1.5:1 and is more common 

in men than in women. ALS is a well-known disease that may cause locked-in state (LIS) 

and then could be lead to completely locked-in syndrome (CLIS).  

The typical characteristic of locked-in state (LIS) patients is nearly complete paralysis 

while retaining full cognition. Some traumatic, systemic or progressive neurological diseases 

with different neuropathological and etiological features, such as Traumatic brain injury 

(TBI), pontine stroke, amyotrophic lateral sclerosis (ALS), end-stage Parkinson disease, are 

some examples of conditions that could lead to a LIS state. Patients in a LIS state are often 

misdiagnosed as suffering from a disorder of consciousness. One such example is a patient 

who was regarded as being in an unresponsive wakefulness syndrome (UWS) state until 20 

years later, when the patient woke up (Vanhaudenhuyse et al. 2018). LIS patients can 

communicate with the outside world by moving their eye muscles or eyebrows. However, 

when the patients slip into the completely locked-in syndrome (CLIS), they eventually lose 

control of these last few remaining muscles, such as the anal sphincter and eye movements 

or eyebrows (Hayashi and Oppenheimer 2003; Ramos-Murguialday et al. 2011), but their 

cognition is assumed to remain intact. 

Despite constantly evolving technology, the ground truth of the level of consciousness 

of CLIS patients is still missing (Kübler and Birbaumer 2008). Some researchers attempted 

to communicate with CLIS patients using near-infrared spectroscopy (NIRS) (Gallegos-

Ayala et al. 2014; Chaudhary et al. 2017), leading to many controversies (Spüler 2019) and 

finally to the retraction of (The PLOS Biology Editors 2019) by the editors (due to doubts 

on the selection within the used data sets and not the applied algorithms; the authors are 

currently contesting this decision). The main problem is to objectively identify the existence 

of a consciousness level in CLIS patients, who cannot themselves make this known to the 

outside world through self-expression. In contrast to other studies that attempt to seek 

methods of classifying between different clinically defined states of consciousness, such as 

LIS, minimally conscious state (MCS) and vegetative state (VS) (Owen et al. 2006; Casali 

et al. 2013), our aim is to identify patterns that are most likely indicative of a minimum level 

of consciousness that will allow successful communication with ALS patients in CLIS. 

This thesis proposes to apply sample entropy, permutation entropy and Poincaré plots 

as feature extraction to analyze continuously recorded intracranial electrocorticography 

(ECoG) and non-invasive electroencephalography (EEG) signals from the patients of 

different clinical scales of consciousness in an attempt to uncover whether the patient is 
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experiencing periods of consciousness. Such "ground truth" was first obtained from one 

CLIS patient who successfully communicated and answered patient-specific questions asked 

by an investigator using a brain-computer interface system. To the best of my knowledge, 

there is no other such dataset in existence. The sample entropy and Poincaré plots methods 

were then extended to other CLIS and LIS patients and cross-validated to improve the 

probability of correctly detecting the conscious states of CLIS patients. Finally, k-Means 

and DBSCAN were used as unsupervised learning methods to estimate the threshold of 

consciousness for individual participation in the experiment in locked-in state (LIS) patients 

with ALSFRS-R score of 0. The results of these different methods converge on the specific 

periods of consciousness of CLIS patients, coinciding with the period during which CLIS 

patients recorded communication with the experimenter. To determine methodological 

feasibility, the methods were also applied to patients with disorders of consciousness (DOC). 

The results indicate that the use of sample entropy might be helpful to detect awareness not 

only in CLIS/LIS patients but also in minimally conscious state (MCS)/unresponsive 

wakefulness syndrome (UWS) patients.  

Final aim of the investigation is to develop a reliable brain-computer interface-based 

communication tool that will eventually provide family members with a method of 

communicating with CLIS patients and further enhance their brain stimulation in order to 

increase patients' willingness to live and significantly improve their quality of life (QOL) 

(Kögel et al. 2020). Relatively speaking, while the patient is stuck immobile in his or her 

body, he or she is still unable to communicate and interact with the social environment 

through our modus operandi. This modus operandi can help physicians estimate the patient's 

cognitive status, which is of great help to the treating physicians in deciding whether to turn 

off life-sustaining equipment and can also reduce the patient's suffering and the burden on 

the family. 

 

1.2 Aim and Organization of Thesis 
The chapters of this thesis are organized as follows: Chapter 2 first describes the 

clinical scale of consciousness to understand the brainstem and cortico-thalamic network in 

CLIS patients. Then, the brain- computer interface is introduced to know how to extract EEG 

and ECoG signals from the human brain. Methodologies such as sample entropy, 

permutation entropy, Poincaré plots, multiscale approach, k-Means and DBSCAN are then 

presented, which are all applicable to many different fields, but in the case of microvolts in 

the brainwave range, all parameters must be changed to fit into this time scale. In Chapter 3, 
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a demonstration of the current state of the art in this field is given. In order to understand the 

entire concept of system architecture, information about the modus operandi is presented in 

Chapter 4. The details about the data set of EEG and ECoG signals are presented in Chapter 

5. In addition to using the data set with "ground truth", sleep data sets from the other 

researchers (Blume et al. 2015; Wielek et al. 2018) are also included to demonstrate the 

feasibility of the methods. Chapter 6 presents the results and discusses the possible 

influencing factors. Finally, future developments are considered. 
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2.1 Clinical scales of consciousness 
Until now, there are only few researches on detecting the consciousness of the CLIS 

patients with non-invasive EEG and intracranial ECoG signals. Therefore other 

consciousness-related fields such as anesthesia, Minimally-Conscious-State (MCS), 

unresponsive wakefulness syndrome (UWS) were referenced to detect consciousness, so 

Disorders of consciousness (DOC) patients datasets are also included in this thesis to cross-

validate whether the approaches are useful for CLIS patients.  

After Plum and Posner (Plum and Posner 1982) defined consciousness in neurology. 

Luaute´ et al. (Laureys et al. 2004; Laureys 2005; Luauté et al. 2015) proposed that 

consciousness consists primarily of two aspects: the level of consciousness and the content 

of consciousness. The level of consciousness (y-axis in Figure 2.1) is controlled by the 

brainstem and describes low-level sensory stimuli such as wakefulness, arousal, and 

vigilance. The content of consciousness (x-axis in Figure 2.1) is controlled by cortico-

thalamic network and describes high-level abstract representations of awareness, experience, 

etc.. Awareness can be divided into internal awareness, which is related to inner thoughts, 

and external awareness, which refers to external environmental stimuli. It may not be 

possible to detect self-awareness with current technology, but experimental auditory stimuli 

 
“The increase of disorder or entropy is what distinguishes the past from the future, 

giving a direction to time.” 
– Stephen Hawking (1942-2018) 
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can at least be used to determine whether a patient has an awareness of the environment by 

responding to the patient's reactions. This concept was also used in the design of the Glasgow 

coma scale (GCS) (Teasdale and Jennett 1974) and the Coma Recovery Scale-Revised 

(CRS-R) (Giacino et al. 2004), where the diagnosis is established by identifying the level of 

functional impairment.  

 

 
Figure 2.1: Clinical scales of consciousness. The x-axis represents awareness, the y-axis represents 

wakefulness, which are the two major components of consciousness. Healthy consciousness states are 

indicated in green, patients who are unconscious and unable to wake up are indicated in orange, primary 

subjects including DOC patients are indicated in blue. Figure is made after the illustrations from (Laureys 

2005; Arsiwalla et al. 2017).  

 

The clinical scales of consciousness in Figure 2.1 indicates that in healthy 

consciousness states, indicated in green, the level of wakefulness and the level of awareness 

are almost linearly correlated, i.e., when the person is awake (high wakefulness and high 

awareness), when the person is sleep (low wakefulness and low awareness). An exception 

are dreams during rapid eye movement (REM) periods, which also present high 

consciousness (Cologan et al. 2013; Zeman and Coebergh 2013), so the transitions from 

sleep to REM phases is one dimension. Patients indicated in orange for pharmacological 

reasons (general anesthesia) or pathological conditions (coma) are unconscious and unable 

to awaken. The primary subjects of this thesis indicated in blue, which included Disorders 

of consciousness (DOC) patients. These pathological conditions are the result of brain 
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damage caused by external factors (e.g. traumatic brain injury (TBI)) or internal factors (e.g. 

anoxia) and these patients maintain high arousal, but awareness is also one dimensional 

between these pathological states. 

 

DOC is the degree of loss of consciousness, which is usually preceded by a period of 

unconsciousness in the patient. The DOC dataset used in this thesis contains patients with 

the following two different pathological states of consciousness: 

 

Unresponsive Wakefulness Syndrome/Vegetative State (UWS/VS):  

The vegetative state (VS) is defined as a state of wakefulness without awareness 

(Laureys et al. 2004), this term was first coined by Jennet and Plum in 1972 (Jennett and 

Plum 1972), but due to its negative connotation as a long-term and almost irreversible state 

that can easily be confused with the persistent vegetative state (PVS, UWS/VS due to non-

traumatic brain injury for more than three months in the USA and six months in the UK, or 

due to traumatic brain injury after one year) (Working Party of the Royal College of 

Physicians. 2003; Giacino et al. 2018). Therefore, Laureys et al. in 2010 suggested to rename 

it as unresponsive wakefulness syndrome (UWS), implying that this state is not always a 

long-term chronic state, but may also be a temporary state in the recovery process (Laureys 

et al. 2010).  

Based on the clinical definition, recovery from coma after severe brain injury to 

unresponsive wakefulness syndrome (UWS) is characterized by opening of the eyes in 

response to stimulation or spontaneously, which is explained as a symbol of regained arousal. 

However, eye opening does not mean the restoration of the sleep-wake cycle, and such 

patients retain autonomic functions such as thermoregulation and cardiovascular regulation, 

but have no self- or environmental awareness and cannot obey commands, exhibiting only 

reflexive behavior (The Multi-Society Task Force on PVS 1994). Landsness et al. also 

reported that that UWS patients had no electroencephalographic (EEG) changes during 

prolonged eye closure and the absence of common sleep stages such as rapid eye movement 

(REM) and slow-wave sleep (Landsness et al. 2011). 

 

Minimally Conscious State (MCS): 

Reproducible evidence of self- or environmental awareness is a marker of the minimal 

conscious state (MCS) (Giacino et al. 2002). Patients are able to exhibit non-reflexive and 

purposeful behaviors that are not associated with language signs of consciousness, such as 
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visually following and obeying commands, as well as emotional behaviors, such as laughing 

or crying. Just like UWS, MCS can be a temporary transition to another state of 

consciousness or it may be permanent. 

 

The targeted pathological states of consciousness for the patients in the dataset used 

in this thesis are described below: 

 

Locked-In Syndrome (LIS):  

Locked-In Syndrome (LIS) patients are characterized by a dissociation of motor and 

cognitive functions, where cognitive functions such as self-awareness and external 

awareness are preserved, but motor functions such as aphasia, quadriparesis, or tetraplegia 

are absent and they can only communicate through eye movements, eye blinking, or lip 

twitching. This is similar to the behavioral manifestations of unresponsive wakefulness 

syndrome/ vegetative state (UWS/VS) patients and is often misdiagnosed as persistent 

vegetative state (PVS) due to the similarity of clinical evaluation results with UWS/VS, but 

this syndrome is not a disorder of consciousness. 

 

Complete Locked-In Syndrome (CLIS):  

Completely locked-in syndrome (CLIS), also known as totally locked-in state (TLS), 

is a state in which LIS patients slip into, where the patient gradually loses control of these 

last few remaining muscles, such as the anal sphincter and eye movements or eyebrows 

(Hayashi and Oppenheimer 2003; Ramos-Murguialday et al. 2011), which is defined as a 

state in which all motor control is lost but cognition is considered to remain intact, similar 

to the highly undesirable anesthesia awareness state during anesthesia. The complete 

inability of CLIS patients to communicate with external environment, as all possible means 

of communication rely on voluntary motor control of some body muscles, which prevents 

patients from expressing their thoughts and needs and leaves researchers without a "ground 

truth" to verify the presence of consciousness in CLIS patients, which is one of the major 

challenges in this thesis. 

 

2.2 Brain-Computer Interface 
Like Jean-Dominique Bauby, the author of “The Diving Bell and the Butterfly” 

(Bauby 1995), who entered LIS after a massive brainstem stroke, he spells out his feelings 

after his illness one letter at a time by blinking through the listener-assisted scanning method 
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(Horki et al. 2015), using the diving bell as a metaphor for his body, which cannot move 

freely, and the butterfly as a metaphor for his spirit and soul, to tell the world that his 

imprisoned soul is still alive.  

Healthy people communicate their thoughts, feelings and intentions to each other 

through verbal or non-verbal means. For patients with motor neuron disorders, it is still 

possible to express their thoughts and feelings through listener-assisted scanning or 

augmentative and alternative communication (AAC), but when the patient slips from LIS to 

CLIS, these assistive devices do not work and the patient is thus isolated in his or her body. 

This is where brain-computer interfaces (BCIs) play an important role for CLIS patients. 

 

 
Figure 2.2: Schematic of a brain–computer interface (BCI) system, with the red block working on the human 

brain side and the blue block on the computer side. 

 

Brain–computer interface (BCI) or brain–machine interface (BMI) is a technology that 

is able to preprocess brain activity and extract relevant features from people's intentions, 

emotions and mental states, and translate them into control signals or commands to 

communicate with the external environment, and even control external devices without any 

kinesthetic movement to replace, supplement, enhance, improve, or restore neuromuscular 

function from the central nervous system (McFarland and Wolpaw 2017). The final feedback 

is transmitted to the person through an auditory, tactile, or visual interface. In order to 

establish communication patterns that elicit specific brain responses, people are often 

stimulated or tasked, or taught to generate certain features of the signal through exogenous 

and endogenous paradigms (Kübler and Kotchoubey 2007). A schematic representation of a 

brain-computer interface (BCI) system is shown in Figure 2.2. 
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The acquisition devices of BCI systems include invasive or non-invasive techniques 

to record brain activity. Invasive techniques include electrodes implanted on the surface of 

the cerebral cortex, electrocorticography (ECoG) (Leuthardt et al. 2004; Schalk and 

Leuthardt 2011), electrodes implanted in cortical tissue, local field potential (LFP) 

(Hochberg et al. 2006). Non-invasive techniques include electroencephalography (EEG) 

(Birbaumer et al. 1999; Kübler and Birbaumer 2008), magnetoencephalography (MEG) 

(Babiloni et al. 2009), functional near infrared spectroscopy (fNIRS) (Coyle et al. 2004; 

Coyle et al. 2007), and functional magnetic resonance imaging (fMRI) (Weiskopf et al. 

2004). The advantages and disadvantages of signal acquisition for different BCI/BMI 

modalities in terms of the type of signal, spatial and temporal resolutions, invasiveness, and 

portability are elucidated in Table 2.1. 
 

Table 2.1: Advantages and disadvantages of signal acquisition for different BCI/BMI modalities, the 

resolution values are references from (Babiloni et al. 2009; Hill et al. 2012; Al-Shargie 2019). 

Method Type of signal 
Resolution 

Invasive Portability 
temporal spatial 

Electroencephalography 
(EEG) neuroelectric High 

(<1 ms) 
Low 

(1–9 cm3) no yes 

Electrocorticography 
(ECoG) neuroelectric High 

(<1 ms) 
Higher 

(<1 cm3) yes yes 

Magnetoencephalography 
(MEG) electromagnetic High 

(<1 ms) 

better than 
EEG 

(0.5–2 cm3) 
no no 

functional Near-Infrared 
Spectroscopy 

(fNIRS) 

hemodynamic/ 
metabolic 

Medium 
(hundreds 

of ms) 

Low 
(1 cm3) no yes 

functional Magnetic 
Resonance Imaging 

(fMRI) 

hemodynamic/ 
metabolic 

Low 
(>1 s) 

High  
(1–5 mm3) no no 

 

For patients who suffer from paralysis, non-invasive methods have been more widely 

utilized than invasive methods (Birbaumer et al. 2008; van Gerven et al. 2009). Among non-

invasive systems, one of the prevalent methods is EEG (Hwang et al. 2013), which is an 

electrophysiological technique for recording brain electrical activity through electrodes 

placed on the scalp and was first recorded by German psychiatrist Hans Berger in 1924 

(Berger 1929). In this thesis, all EEG datasets were recorded using the International 10-20 

system, in which electrodes were placed on the surface of the scalp (Oostenveld and 

Praamstra 2001; Jurcak et al. 2007). 
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EEG is mainly used to diagnose and investigate sleep disorders, depth of anesthesia, 

stroke, epilepsy, coma, and brain death. EEG and recently developed fNIRS have the 

advantage over other noninvasive methods for monitoring brain activity, such as 

magnetoencephalography (MEG) or functional magnetic resonance imaging (fMRI), that 

they are relatively portable, easy to set up and in comparison inexpensive, which are ideal 

characteristics for such systems. However, the relative distance of the electrodes from the 

signal source leads to noise and attenuation problems.  

The invasive technique of electrocorticography (ECoG) is the technique by which the 

best signal quality can be obtained and is more precise and sensitive than EEG (Schalk and 

Leuthardt 2011). However, it requires the surgical implantation of microelectrodes above 

the cerebral cortex of the brain, which may involve the risk of signal degradation due to the 

formation of scar tissue around the electrodes as a result of the body's reaction to the foreign 

object. Its main advantages are high temporal and spatial resolution, high signal fidelity, and 

less vulnerability to noise and artifacts such as EOG (Ball et al. 2009). As neurosurgical 

interventions can be risky and expensive, invasive BCI is mainly targeted at paralyzed 

patients. 

Many types of brain imaging can be used in BCI, including measurement of brain 

electrical activity (EEG and ECoG), measurement of brain magnetic activity (MEG), and 

measurement of hemodynamic responses (fMRI, and fNIRS). Although fMRI has the 

highest spatial resolution, it has the worst temporal resolution limited by hemodynamic delay. 

fNIRS is in between, with better temporal resolution than fMRI and better spatial resolution 

than EEG, but requires hair to be pushed aside during instrument setup to avoid severely 

compromising signal quality due to hair obstruction (Coyle et al. 2007); MEG has high 

temporal and spatial resolution, but requires dedicated electromagnetic interference (EMI) 

shielding to ensure signal quality; and EEG has high temporal resolution suitable for real-

time BCI, but relatively low spatial resolution that can be improved by increasing the number 

of electrodes. Due to the excessive and bulky equipment of fMRI and MEG, it is limited to 

clinical applications. Therefore, among the non-invasive techniques, the EEG approach is 

the most commonly used, except for fNIRS.  

The advent of BCI not only gives paralyzed patients hope of being able to control their 

prosthesis, but also gives patients with late stage ALS the opportunity to communicate with 

the surrounding people. Similarly, CLIS and LIS patients have inspired researchers to 

investigate the field of brain-computer interfaces, but due to the lack of ground truth about 

consciousness, there are few successful cases and many controversies (Chaudhary et al. 2017; 
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Spüler 2019; The PLOS Biology Editors 2019). In this Thesis due to the limitation of data 

sources, mainly ECoG and EEG signals are used to compare the different methods of 

consciousness analysis in CLIS patients. 

 

2.3 Sample Entropy 
Entropy is a physical concept, which is related to the total amount of disorder within 

a system. It can be used for nonlinear dynamic analysis in both the time and frequency 

domain to quantify the regularity (predictability) of a time series. The family of entropy-

based methods is frequently used in neuroscience applications (Diambra et al. 1999; 

Yeragani et al. 2003; Courtiol et al. 2016). 

Sample Entropy (SampEn) is a modification of Approximate Entropy (AppEn) 

proposed by Richman and Moorman (Richman and Moorman 2000) to eliminate some 

disadvantages of AppEn (Pincus 1991; Yeragani et al. 2003). 

Specifically, the advantages of SampEn over AppEn are data length independence and 

non-inclusion of self-matches in the estimation. Sample entropy is widely applied in 

neuroscience and has previously been used to determine the level of consciousness, such as 

during surgical operations (Wu et al. 2014) and in some real-time applications (Wei et al. 

2014; Wu et al. 2015). To calculate the sample entropy, a time series X = [x(1),x(2),…,x(N)] 

is constructed in which N is the data length, which is divided into several subsequences 

𝑢𝑢𝑚𝑚(𝑖𝑖), and m is the dimension: 

        𝑢𝑢𝑚𝑚(𝑖𝑖) = [𝑥𝑥(𝑖𝑖), 𝑥𝑥(𝑖𝑖 + 1), … , 𝑥𝑥(𝑖𝑖 + 𝑚𝑚 − 1)], 𝑖𝑖 = 1 …𝑁𝑁 −𝑚𝑚 + 1                      (1) 

This must meet the following condition: 

𝑑𝑑[𝑢𝑢𝑚𝑚(𝑖𝑖),𝑢𝑢𝑚𝑚(𝑗𝑗)] = 𝑚𝑚𝑚𝑚𝑥𝑥{|𝑥𝑥(𝑖𝑖 + 𝑘𝑘) − 𝑥𝑥(𝑗𝑗 + 𝑘𝑘)|} < 𝑟𝑟 × 𝑆𝑆𝑆𝑆 (2) 

where SD is the standard deviation of the time series X and r is the tolerance coefficient. The 

value of r was set to 0.2, and the tolerance would be 0.2 × SD (i.e., x(j) was considered to be 

consistent with x(i) if x(j) met x(i) in this tolerance). 𝐵𝐵𝑚𝑚(𝑟𝑟) is the summation of the number 

that x(j) matches the condition of x(i): 

𝐵𝐵𝑚𝑚(𝑟𝑟) = (𝑁𝑁 −𝑚𝑚)−1 � 𝐵𝐵𝑖𝑖𝑚𝑚(𝑟𝑟)
𝑁𝑁−𝑚𝑚

𝑖𝑖=1

 (3) 

Similarly, we set m = m + 1 and repeated Equations (1–3). 𝐴𝐴𝑚𝑚(𝑟𝑟) is defined as 

follows:  

𝐴𝐴𝑚𝑚(𝑟𝑟) = (𝑁𝑁 −𝑚𝑚 − 1)−1 � 𝐴𝐴𝑖𝑖𝑚𝑚(𝑟𝑟)
𝑁𝑁−𝑚𝑚

𝑖𝑖=1

 (4) 
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SampEn is then defined as 

𝑆𝑆𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆(𝑁𝑁,𝑚𝑚, 𝑟𝑟) = log
𝐴𝐴𝑚𝑚(𝑟𝑟)
𝐵𝐵𝑚𝑚(𝑟𝑟)                                                  (5) 

 

Figure 2.3 shows a time series X = x[1], …, x[i], …, x[N]. The color band around the 

data point x[1], x[2], and x[3] represents point x[1] ± r, x[2] ± r, and x[3] ± r, respectively. 

All data points in the red band match the data point x[1], and similarly, all the data points in 

the orange and yellow bands match the data points x[2] and x[3]. 

 

 

Figure 2.3: A diagram where each point represents one data point in time domain to explain the 
operation of sample entropy depending on the row of occurrence over time 

 

Consider the three components red-orange-yellow as consecutive sequence pattern 

(x[1], x[2], x[3]) and the four components red-orange-yellow-green as consecutive sequence 

pattern (x[1], x[2], x[3], x[4]). In this example, there are four red-orange-yellow sequences, 

(x[12], x[13], x[14]), (x[19], x[20], x[21]), (x[30], x[31], x[32]), and (x[37], x[38], x[39]), 

they match x[1], x[2], x[3] on the same color bands, but only two red-orange-yellow-green 

sequences that match x[1], x[2], x[3], x[4]. Continuing that way with the next three-

component sequence (orange-yellow-green) and the four-component sequence pattern 

(orange-yellow-green-blue), in this case, the number of matches of three-component pattern 

matches is two, and only one match for a four-component pattern. These numbers of matches 

are added to the previous numbers, the total number of three-component matches is six, and 

the total number of four-component matches is three. Now, repeat all possible sequence 

patterns, (x[3], x[4], x[5], x[6]), …, (x[N − 3], x[N − 2], x[N − 1], x[N]) to determine the 

ratio of all three-component pattern matches and four-component pattern matches.  
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The more complex the series, the higher the value of sample entropy. On the contrary, 

the more self-similarity in the series, the lower the value of sample entropy. The number of 

N was suggested as the average sum of a minimum 10𝑚𝑚 and a maximum 30𝑚𝑚 by Richman 

and Moorman (Richman and Moorman 2000) and Pincus and Goldberger (Pincus and 

Goldberger 1994). Thus, the parameters m=3 is selected according to meet the relationship 

between N and m.  

 

2.4 Permutation Entropy 
Sample entropy is computationally expensive (Hayashi et al. 2015), and this is 

important for the future development of a medical device. Therefore, we also investigated 

the less computationally expensive method of Permutation entropy and compared the results 

with those from sample entropy. 

 

 

 

 
 

Figure 2.4: Example of Permutation Entropy estimation. (a) Time series X = (12, 9, 7, 6, 10, 5, 13). 
(b) The six possible permutation patterns for m=3. (c) The relative frequency of all possible ordinal 
patterns for n = 3 for this time series, P (2,1,3) = 0.4, P (2,3,1) = 0.2 and P (3,2,1) = 0.4. 
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Mathematically, permutation entropy (PE) does not consider the exact values of a time 

series, but instead considers the ordering of the time series, thus reducing the complexity of 

its computation (Bandt and Pompe 2002; Kuntzelman et al. 2018). The time series is divided 

into several non-overlapping subsequences with a length of m epochs, and each sample is 

converted into a series of rankings (patterns). An example of PE computation is shown in 

Figure 2.4. In C(a,b) the time series X was divided into the values (12,9,7), (9,7,6), …, 

(10,5,13), and converted to the patterns (3,2,1), (1,2,3), …, (2,1,3). Figure 2.4(b) indicates 

the principle templates of the data sequences and then sums up the number of permutation 

pattern appearances of each observed sequence. It is different to SampEn since SampEn uses 

tolerance to ensure whether two time series have similar patterns, whereas PE has a fixed 

number of m! ordinal patterns. The complexity of PE is defined by m, with the possible 

permutation patterns estimated as m!. Figure 2.4(c) shows the relative frequency of 

occurrence of all possible ordinal patterns for this example. 

Riedl et al. (Riedl et al. 2013) suggested that a value of m between 3 and 7 was more 

appropriate for electroencephalogram (EEG) applications. In order to save computation time, 

we used a relatively low value of m = 3, although it may have reduced the sensitivity of the 

result. 

 

2.5 Poincaré plot 
The Poincaré plot is a non-linear geometrical representation of successive 

measurements providing a visual representation of time series variability. A common 

application of Poincaré plots is the detection of the short-term and long-term variability of a 

heart rate (Golińska 2013; Henriques et al. 2015), but in recent years, Poincaré plots have 

also been used in neuroscience applications, such as to detect the depth of anesthesia 

(Hayashi et al. 2014; Hayashi et al. 2015; Bolaños et al. 2016). For our data set, we used 

pairs of scatterplots of each ECoG voltage x(n) versus the next ECoG voltage after a time 

delay ∆x(n + ∆) for the generation of each Poincaré plot. To quantify the distribution of the 

ECoG signals in the Poincaré plot, the standard deviation (SD) perpendicular to the diagonal 

line (SD1) and the SD along the diagonal line (SD2) were measured, as shown in Figure 2.5. 

Its mathematical expression is as follows: SDX is the standard deviation of time series, and 

SDSD is the standard deviation of the succeeding difference of time series. 
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Figure 2.5: The Poincaré plot (time delay = 1), standard deviation perpendicular to the diagonal line 
(SD1) and standard deviation along the diagonal line (SD2) describing the fitted ellipse of the ECoG 
voltage dispersion along the minor and major axis. 

𝑆𝑆𝑆𝑆12 = 1
2
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2 = 𝛾𝛾𝑋𝑋(0) − 𝛾𝛾𝑋𝑋(1)                                      (6) 

𝑆𝑆𝑆𝑆22 = 2𝑆𝑆𝑆𝑆𝑆𝑆2 − 1
2
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2 = 𝛾𝛾𝑋𝑋(0) + 𝛾𝛾𝑋𝑋(1) − 2𝑆𝑆�2                      (7) 

where 𝛾𝛾𝑋𝑋(0) and 𝛾𝛾𝑋𝑋(1) are the autocorrelation function for lag-0 and lag-1 ECoG time 

series, and 𝑆𝑆� shows the mean of the ECoG time series. 

In this study, the Poincaré plots from 30 s epochs of the ECoG signal (the sampling 

rate was 125 Hz) were plotted. The time delay was thus set to 1/125 s, which must be around 

one-fifth to one-fourth of the dominant cycle period or a multiple of the signal sampling 

interval. The choice of the optimum time delay could exactly reconstruct the underlying 

characteristics of the system (Hayashi et al. 2015). 

 

2.6 Multiscacle Approach 
Costa et al. (Costa et al. 2002, 2005) reported that multiscale approach was used for 

analysis based on SampEn estimates of heart rate, and this approach coarse-grained the data 

by averaging in the range of a given scale. Before using the multiscale approach, white noise 

was assigned to a higher entropy value than pink noise. However, when the scale size 

increased, the entropy value of the coarse-grained white noise decreased. Despite this, the 

change of the scale size had no influence on the entropy value of the coarse-grained pink 

noise, which was almost constant. If the scale size was more than 4, the entropy value of the 

white noise was lower than the corresponding value of pink noise. Therefore, in our study, 

we chose the scale size equal to 4. Figure 2.6 shows the schematic diagram in which the time 
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series b1, b2, …, bi was created by separating the original time series a1, a2, …, ai+3 into non-

overlapping windows of scale 4 and then averaging the time series in each window. 

 

 
Figure 2.6: The coarse-graining procedure for scale 4. 

 

 

2.7 k-Means 
Among unsupervised learning algorithms, k-Means is a popular clustering algorithm 

that divides a given n points into k clusters by specifying a fixed number (k) of clusters in 

advance, so that each point belongs to the cluster corresponding to its nearest mean, which 

is the cluster center (Pham et al. 2005; Kodinariya and Makwana 2013). 

 

The algorithm consists of the following steps: 

1. Select k points (as the black crosses in Figure 2.7) that are initial group centroids 

in the space represented by the data points to be clustered. Since the different 

location of the centroids leads to different results, it is better to place them as far 

away from each other as possible.  

2. The next step is to assign each data point to the nearest clusters. The black dashed 

lines in Figure 2.7 indicate three decision boundaries that divide the data space 

into three regions which are indicated by blue, green and red circles respectively. 

3. When all data point have been assigned, recalculate the locations of the k new 

centroids, the black arrows in Figure 2.7 indicate the movements of cluster 

centroids. 

4. Repeat Step 2 and 3 until convergence is achieved and the centroids no longer 

change. 
 

In this work, multiple runs are executed with random initial group centroids aiming to 

minimize costs. The cost function is defined in section 2.8. 
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Figure 2.7: The schematic illustration of the k-Means algorithm cluster model (k = 3). Top left: three clusters 

are initialized with their initial cluster centroids indicated by black crosses. Top right: the updating of the 

cluster labels and their cluster centroids after intermediate iterations. Below: the final cluster assignments by 

K-means algorithm at convergence. The figures were generated with practice materials from the online 

machine learning course by Andrew Ng on Coursera. https://www.coursera.org/learn/machine-learning? 

 

There are two requirements to be considered when using the k-Means method. One is 

that this algorithm always partitions the dataset at the midpoint between two cluster centers, 

so the clusters in the dataset must be approximately equal in size. The second is that if the 

dataset contains a lot of noise or many outliers, then such problematic data objects often 

cause a significant shift in the calculated cluster centers, and the k-Means algorithm has no 

precautions against this effect, so the DBSCAN method is added later to analyze the data 

because it explicitly provides the "noisy" objects. 
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2.8 Elbow method 
The oldest method for estimating the number of clusters is intuitively named as elbow 

method (Kodinariya and Makwana 2013). The elbow method is commonly used to determine 

the number of clusters in the disease clustering process (Azar et al. 2013). 

 

 
Figure 2.8: The elbow method for determining number of clusters, where the x-axis represents the number of 

clusters and the y-axis represents the cost. The elbow point is indicated by a red vertical dashed line.  

 

In this visual method, as shown in Figure 2.8, which is drawn with the number of 

clusters on the x-axis and the cost on the y-axis. This method has to calculate the cost for all 

possible numbers of clusters. In this work, the cost is the average sum of squares within the 

cluster of distances between each data point and the centroid of each cluster to which it is 

assigned. The cost function is defined as follows: 

J = 1
𝑛𝑛
∑ ∑ �𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖�

2𝑛𝑛𝑖𝑖
𝑖𝑖=1

𝑘𝑘
𝑖𝑖=1                                              (8) 

where k is the number of clusters and n is the number of data. 

The elbow method, as the name implies, is about finding some k-value below which 

the costs decreases sharply (upper arm) and reaches a plateau after being greater than this k 

value (lower arm), which is the k value appropriate for this data set. 
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2.9 DBSCAN 
DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a density-

based unsupervised learning algorithm original described by Ester et al. (Ester et al. 1996) 

that classifies objects according to their density so that a number of objects with similar 

density distributions are assigned to the same cluster. In this analysis, an object is a segment 

of the sample entropy value (EEG signal). The two input parameters of DBSCAN are as 

follows: 

 

MinPts: Density threshold, which defines the minimum number of points required to form 

a dense region. 

Eps: Radius, which defines the maximum distance between a pair of points (Euclidean 

distance). These two points are considered to be part of the same cluster only if the distance 

between them is less than or equal to ε. 

 

Starting from an arbitrary data object (initialized object), DBSCAN estimates the 

density around each data point by counting the number of objects within the pre-specified 

radius eps (ε) and applying a specified minPts threshold to identify three groups: core, border 

and noise points, as shown in Figure 2.9 (Ware and Bharathi 2013; Rehman et al. 2014; 

Pioreckýa et al. 2019). For the selection of DBSCAN parameters see the description in 

section 2.10.  

 
Figure 2.9: An illustration of the DBSCAN for minPts parameter is 4, and the radius ε is indicated by the 

circles. Point C and the other red points are core points which have at least 4 points inside a circle of radius ε 

(Eps) including the point itself. Points B are border points that have at least one core point inside a circle of 

radius ε (Eps) of this example are indicated in green. Point N is a noise point which is neither a core point nor 

a border point is indicated in blue. Images are adapted from (Schubert et al. 2017). 
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Based on the above two parameters, the three groups are described in detail as follows: 

 

Core point: This is a point that has at least minimum number of points (MinPts) inside a 

circle of radius epsilon (ε) including itself. It means that it is a dense region if there is a core 

point in this region.  

Border point: This is a point that has at least one Core point inside a circle of radius epsilon 

(ε), but cannot itself be a core point. It means that the point is near or on the border of dense 

region. 

Noise point: This is a point that is neither a core point nor a border point. It means that these 

points are outliers unrelated to any dense cluster. 

 

The advantage of DBSCAN is that it can find clusters with nonlinear shape or even a 

cluster that is completely surrounded by other clusters but not connected to them. This 

algorithm includes only two parameters, and due to the presence of the MinPts parameter 

reduces the situation of a single-link effect, where different clusters are connected by a thin 

line. DBSCAN is insensitive to the order of points in the database. If the order of points is 

changed, points located at the edges of two different clusters may exchange cluster labels, 

and cluster assignments are unique only if they are isomorphic. Together with the fact that 

DBSCAN has a cluster of noise, which makes it robust to outliers. DBSCAN does not need 

to specify the number of clusters in the data in advance, moreover, it uses density as the basis 

for clustering of categories, which are different from K-means, so DBSCAN is chosen for 

cross-validation with K-means in this thesis. 

 

2.10 K-distance graph 
Two parameters, minPts and epsilon (ε), need to be adjusted when applying DBSCAN 

for cluster analysis. The minPts must be chosen to be at least 3. When minPts=1, it is 

meaningless because each point is already a cluster itself. When minPts≤2, the result is the 

same as the single link hierarchical clustering, in which the dendrogram is cut at height ε. 

As a rule of thumb, the smallest minPts value can be obtained from the dimensionality D of 

the dataset, i.e., minPts ≥ D + 1. Sander et al. suggested minPts=2×D (Sander et al. 1998), 

but for datasets with noise or with many duplicates or for larger datasets, it is necessary to 

choose a larger minPts value. 
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Figure 2.10: Plot of the k-distance graph, where the x-axis represents the points sorted by distance and the y-

axis represents the epsilon (ε) value. 

 

In this study, the k-distance graph is used to find the best epsilon (ε) values for 

different minPts in the data for each patient per day, by plotting the distance to the k=minPts-

1 nearest neighbors, sorted from the minimum to the maximum value. As shown in Figure 

2.10, where the x-axis represents the points sorted by distance and the y-axis represents the 

epsilon (ε) value. The optimal epsilon (ε) parameter is located at the elbow of this k-distance 

graph (Sander et al. 1998; Schubert et al. 2017). If epsilon (ε) is chosen too small, a large 

part of the data will be clustered as noise; conversely, if the epsilon (ε) value is chosen too 

high, the clusters will merge, causing most of the data points to be clustered in the same 

cluster.  
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State of the art 
 

 

 

 
 

 

 

In this chapter, based on the schematic diagram of the brain-computer interface (BCI) 

system presented in section 2.2, section 3.1 describes the state of the art techniques applied 

to the detection of consciousness in CLIS patients with different instruments and different 

types of signals. It explains as well why most of the channels show similar results that are 

used as the final result in this thesis. Section 3.2 illustrates the reason for using time-domain 

algorithms for feature extraction in signal processing instead of frequency-domain 

algorithms. Finally, in section 3.3, exogenous and endogenous BCI paradigms are presented 

and the most appropriate one for CLIS patients is proposed based on the literature 

 

3.1 CLIS 
In the past, CLIS patients were often misdiagnosed as suffering from a disorder of 

consciousness because it was not possible to verify the presence of cognitive function in 

CLIS patients without any visible reactions, but by definition they are aware and awake with 

a level of consciousness comparable to that of healthy individuals (Laureys et al. 2004; 

Schnakers et al. 2008). Kotchoubey et al. also verified the presence of cognitive function in 

completely paralyzed patients with ALS through the measurement of event-related potential 

(ERP) (Kotchoubey et al. 2003). This also inspired the interest of researchers in this area of 

 

“Can the brain understand the brain? Can it understand the mind? Is it a giant 

computer, or some other kind of giant machine, or something more?” 

– David Hubel (1926-2013) 
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consciousness in patients with advanced ALS. Until today, there are only a few papers 

discussing the issue of consciousness in ALS patients crossing over into CLIS, since there 

is no ground truth to validate the results. In identifying the consciousness of patients with 

CLIS, LIS in addition to EEG, ECoG signals, most studies have used the results measured 

by large medical instruments such as fMRI, PET, and so on.  

For example, functional magnetic resonance imaging (fMRI) has been used to 

overcome the limitations of behavioral assessment (Owen et al. 2009; Monti et al. 2010; 

Bruno et al. 2011; Cruse et al. 2011). Some findings suggest that some DOC patients retain 

cognitive function and awareness (Laureys 2005; Schiff et al. 2005; Owen et al. 2006; Owen 

et al. 2007; Owen and Coleman 2007, 2008). Stender et al. calculated the diagnosis accuracy 

of both PED and fMRI imaging methods with reference to the Coma Recovery Scale-

Revised (CRS-R) to help diagnose the long-term recovery in DOC patients (Stender et al. 

2014). Zeman et al. reported the use of positron emission tomography (PET) to measure 

cerebral metabolism in patients to distinguish between patients with CLIS/LIS and patients 

in persistent vegetative state (Zeman 2003), and Casali et al. also found different levels of 

consciousness in LIS, MCS, and VS patients by transcranial magnetic stimulation (TMS) 

(Casali et al. 2013).  

They provide cross-sectional images of the brain, and these brain images are suitable 

for identifying the location of injuries, tumors, or areas of corresponding motor or language 

neuronal activity in the brain, but these large instruments are not suitable for daily 

communication with patients because of their high set-up and maintenance costs. In contrast, 

the recently developed near-infrared spectroscopy (NIRS) method is a non-invasive optical 

imaging technique that allows simultaneous measurement of hemodynamic changes in 

multiple regions. Some researchers attempted to communicate with CLIS patients using 

NIRS (Gallegos-Ayala et al. 2014; Chaudhary et al. 2017), but controversy persists due to 

the lack of ground truth about the consciousness of CLIS patients (Spüler 2019; The PLOS 

Biology Editors 2019).  

EEG would be an affordability and ambulatory alternative that could serve as a bridge 

between patients with advanced ALS and their families and the environment surrounding 

them in their daily lives. In contrast to other studies that attempt to seek methods of 

classifying between different clinically defined states of consciousness, such as using event-

related synchronization (ERS) and event-related desynchronization (ERD) to distinguish 

between CLIS/LIS and coma (Markand 1976), the goal of this thesis is to identify patterns 

that are most likely indicative of a minimum conscious state that will allow successful 
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communication with ALS patients in CLIS. The research results of EEG and ECoG in this 

thesis has been peer-reviewed and published in (Wu et al. 2020; Wu and Bogdan 2020; 

Adama et al. 2022).  

In healthy people, the body mapping of the motor cortex follows the cortical 

homunculus (Penfield and Boldrey 1937; Grodd et al. 2001), but when the brain lesions of 

CLIS patients are caused by car accidents or strokes, the patients' motor cortex may change. 

We know from the literature that after amputation of the middle finger in an adult monkey, 

the neurons innervating the middle finger in the brain were lost by magnetoencephalography 

(MEG), while the range of neurons innervating the index and ring fingers increased two 

months later (Lee and van Donkelaar 1995). In the 1960s, the famous American actress 

Patricia Neal, who was at the peak of her career, suffered a massive stroke that damaged the 

left side of her brain and paralyzed the entire right side of her body, leaving her unable to 

speak. But she had a strong will to return to the stage after three years of arduous 

rehabilitation. Scientists used fMRI to discover that her language area (Broca's area) and 

motor neurons of the right hand, which were supposed to be dominated by the right 

hemisphere, were instead dominated by the left hemisphere (Azari and Seitz 2000). 

From the above cases, the brain has the capacity for neuroplasticity, which means that 

the brain has the ability to compensate for damaged areas and reorganize neurons. Just like 

through magnetoencephalography (MEG) we learned that a professional violinist has a 

higher number of neuronal cells in the motor neuron cortex area corresponding to the index 

finger to the little finger of the left hand (Altenmüller 2003). Since fMRI or MEG is required 

to identify the area of compensatory effect after brain injury, this thesis shows the similar 

results in most channels as more reliable results. 

The choice of methods was guided by the existing literature on the detection of 

consciousness in other related physiological and clinical states (Laureys 2005; Luauté et al. 

2015), such as anesthesia, minimally conscious state and vegetative state (Owen et al. 2006; 

Casali et al. 2013). Anesthesia in particular provides a useful means of identifying objective 

patterns that reflect periods of awareness and unconsciousness, as outlined in the literature. 

One of the methods that has been used in anesthesia for discriminating between awareness 

and unconsciousness is sample entropy, focusing mainly on calculating the level of brain 

wave disorder. It is, thus, reasonable to expect that similar patterns reflecting awareness and 

unconsciousness will also be observed in a CLIS patient. Based on these expected patterns, 

we were also able to verify our findings using sample entropy (Richman and Moorman 2000; 

Wei et al. 2014), permutation entropy (Riedl et al. 2013; Kreuzer et al. 2014) and the 
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Poincaré plot (Hayashi et al. 2014; Hayashi et al. 2015), which were found to have relatively 

high values during the experiment, indicating a status comparable to the awake period of 

patients in surgery. Since all of these methods have been applied in the field of anesthesia in 

real time, and the selection of methods avoids methods with long computation times that are 

difficult to achieve real-time effects, which greatly increases the possibility of implementing 

these methods as real-time systems in CLIS and LIS patients, it is expected that the 

application will gain popularity in the future to help patients' families communicate with 

patients and further increase the stimulation of patients' brains, with the aim of prolonging 

patients' lives and improving their quality of life (QOL) (Kögel et al. 2020). 

 

3.2 Time Domain vs. Frequency Domain Analyses 
In healthy adult individuals, brainwave amplitude typically ranges from 0.5 to 100 µV 

and bandwidth ranges from 0 Hz to half the sampling frequency (Teplan 2002). This 

bandwidth can be categorized into five basic groups: delta (δ), theta (θ), alpha (α), beta (β), 

and gamma (γ) waves corresponding to different frequency spectra. These typical frequency 

bands of brain waves and their characteristics are listed in Table 3.1. 

 
Table 3.1: Typical frequency bands of brain waves in healthy adult individuals. 

Band Frequency range Corresponding Brain Activity 

Delta(δ) 0.5-4 Hz Deep sleep 

Theta(θ) 4-8 Hz Drowsiness, dreaming 

Alpha(α) 8-13 Hz Relaxation, closed-eyes, meditation 

Beta(β) 13-30 Hz Psychical activity, thinking, focus, tension 

Gamma(γ) >30 Hz Combination of sensory processing 

 

Whether the frequency range of consciousness of CLIS patients is the same as that of 

healthy individuals? For brain wave research, there are numbers of studies in frequency 

domain, such as alpha peak frequency (APF) of 8-13 Hz suggested by Grandy et al. (Grandy 

et al. 2013) as a stable neurophysiological trait marker of healthy adults, even though it 

regularly declines with age (Klimesch 1999), Alzheimer’s disease (Cantero et al. 2009), 

schizophrenia (Angelakis et al. 2004), still follow this frequency range, but Hohmann et al. 

showed that alpha band is not suitable for the CLIS patients with shifts to lower frequency 

ranges (Hohmann et al. 2018). Babiloni et al. reported that resting-state eyes-closed alpha 

and delta EEG rhythms were abnormal in LIS patients compared with age-matched healthy 
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subjects (Babiloni et al. 2010). Birbaumer and colleagues also reported a shift of the EEG 

spectrum to the low frequency band in LIS and CLIS patients and hypothesized that with 

underlying neurological function and loss of normal EEG power spectrum may be a long 

term criterion for determining whether communication ability is still present (Secco et al. 

2020; Maruyama et al. 2021). As the available characteristics of the brainwave spectrum in 

Table 3.1 for healthy individuals is not applicable, frequency domain analysis may be less 

useful for short time periods of communication in experiments or in the daily lives of CLIS 

patients.  

Similarly, DOC patients have altered Polysomnographic (PSG) signal topography, 

frequency, and power due to severe brain injury, with the most prominent change in many 

DOC patients being the general slowing of the EEG. Previous studies have also shown that 

DOC patients have lower spectral peaks compared to healthy individuals (Fellinger et al. 

2011; Lechinger et al. 2013), and UWS patients have lower relative power in alpha band and 

higher relative power in delta band compared to MCS patients (Sitt et al. 2014; Piarulli et al. 

2016).  

For both CLIS patients and DOC patients, there are concerns about band shifts to 

lower frequencies, often without alpha peaks, which may indicate the amount of residual 

cognitive processing, but are easily recognized as deep sleep states in healthy individuals. 

Currently, there is no EEG frequency band definition for CLIS/LIS or MCS/UWS patients, 

and the criteria established based on the EEG frequency band of healthy subjects would 

misjudge the patient's state of consciousness. Therefore, the sample entropy, permutation 

entropy, and Poincaré plot are uses as the complexity for time-domain signal analysis in this 

thesis, which avoids the reduction of EEG frequency bands associated with diseases in 

patients, rendering them more suitable for analysis of CLIS patients and DOC patients 

compared to features based on the frequency spectrum. 

 

3.3 Auditory vs. Motor imagery vs. Visual paradigms 
For paralyzed patients, brain-computer interfaces (BCIs) provide a non-muscular 

method of communication via brain signals that can be broadly classified into two main BCI 

paradigms: exogenous and endogenous. The exogenous BCI paradigm uses external stimuli, 

such as flashing LEDs or auditory cues, to evoke specific brain patterns to respond 

accordingly; P300 (Cipresso et al. 2012; Guy et al. 2018) and steady-state visually evoked 

potential (SSVEP) (Lim et al. 2017) both fall into this category. Endogenous BCI requires 

patients to perform designated mental tasks, and motor imagery (MI) (Müller-Putz et al. 
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2010) falls into this category. Most EEG-based endogenous BCI systems have been tested 

on healthy individuals over the past two decades (Blankertz et al. 2006). More recently, Han 

et al. reported successful online communication with a CLIS patient using an EEG-based 

endogenous BCI system (Han et al. 2019). One of these verbal feedbacks to a specific brain 

response (e.g., "yes" or "no") is also known as the reflexive semantic classical conditioning 

(based on Pavlovian theory) paradigm. The main goal of this paradigm is to deal with 

communication problems in patients with severe motor disorders, such as CLIS (Birbaumer 

et al. 2012; Furdea et al. 2012; Ruf et al. 2013; Gallegos-Ayala et al. 2014; Chaudhary et al. 

2016). 

Feedback at the auditory (Nijboer et al. 2008), tactile, or visual (Caria et al. 2007) 

interface in BCI, thus enabling the user to modulate their brain activity, is a very important 

part of BCI to be able to successfully control external devices. The Glasgow coma scale 

(GCS) (Teasdale and Jennett 1974) and the Coma Recovery Scale-Revised (CRS-R) 

(Giacino et al. 2004) were also developed to diagnose the degree of dysfunction through 

auditory and motor as well as visual stimuli, and are commonly used in experiments to test 

the presence or absence of external consciousness.  

CLIS and LIS patients with ALS have reduced or absent voluntary motor capacity and 

are more likely to exhibit sleep-wake disturbances than healthy individuals in the later stages 

of ALS (Lo Coco et al. 2011). They may experience periods of fluctuating consciousness 

that are not easily identified, which, combined with the impaired vision of such patients due 

to dry eyeballs and subsequent corneal necrosis, may limit the use of eye-tracking devices 

or other AAC devices that require a healthy visual system (Okahara et al. 2018; Beukelman 

and Light 2020; Chaudhary et al. 2020). Therefore, CLIS and LIS patients should avoid 

using visual BCI feedback systems. However, motor imagery this type of BCI paradigm 

typically requires lengthy training sessions for training classifiers prior to each use of the 

system, which leads to patient fatigue before they even begin using the system (Nicolas-

Alonso and Gomez-Gil 2012). In addition, many individuals have difficulty performing 

motor imagery tasks and are unable to have a specific sense of motor imagery, preferring 

instead to imagine images of moving hands or legs (Hwang et al. 2009). Vidaurre and 

Blankertz et al. also reported that 15-30% of BCI users have "motor imagery illiteracy" 

(Vidaurre and Blankertz 2010). For CLIS and LIS patients with ALS, auditory BCIs are 

most important and seem to be the only way to prevent extinction of thought. Loss of 

communication can negatively impact their quality of life (Felgoise et al. 2016), and such 

28 



 
State of the art 

patients would benefit from a BCI system that would allow them to live more independently 

with a view to a relatively high recovery of their social life. 

 

3.4 Summary 
To determine whether CLIS and LIS patients retain cognitive function and 

consciousness, most studies use results from large medical instruments such as fMRI and 

PET in addition to EEG and ECoG signals. These large instruments are mainly used to 

identify the location of damage or the corresponding areas of motor or speech neuron activity 

in the patient's brain. Most of the state of the art techniques have been used to help physicians 

diagnose and understand the long-term course of patients' disease or to differentiate between 

different disease types on the clinical scales of consciousness. However, there is a lack of a 

brain-computer interface-based communication method that is easy and inexpensive to set 

up and maintain, and suitable for reliable daily communication with CLIS patients. Despite 

the breakthrough in near-infrared spectroscopy (NIRS), it is still quite controversial. 

The approaches in this thesis mainly utilize EEG, a relatively affordable and mobile 

option, and the database of both CLIS and LIS patients in this thesis uses an auditory 

paradigm that bypasses the effects of visual impairment and "motor imagery illiteracy". Due 

to the shift of the EEG spectrum to lower frequency bands in LIS and CLIS patients, 

frequency domain analysis may be a long-term criterion to assess whether the 

communication ability is still present, but may be less useful for experimental or short-term 

communication in the daily life of CLIS patients. According to section 2.1, the span of 

consciousness during anesthesia includes the CLIS/LIS and DOC patient consciousness, 

which provides an objective model to distinguish between presence and absence of 

consciousness in conjunction with the large number of cases in the field of anesthesia and 

real-time demand. This thesis mainly refers to the algorithms of sample entropy, permutation 

entropy and Poincaré plot time-domain analysis in this related field of anesthesia as 

indicators to possibility of implementation in CLIS and LIS patients as a bridge between 

patients and their families and the environment surrounding them in daily life, in order to 

increase patients' willingness to live with a view to a relatively high recovery of their social 

life.  
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Modus Operandi 
 

 

 

 
 

 

 

In this thesis, the state of consciousness in CLIS patients should be detected by 

continuously recorded electroencephalography (EEG) or electrocorticography (ECoG) with 

a priori knowledge of the “ground truth”. The five key advantages of this work are as follows:  

i. The all-important “ground truth” is accessible and can provide objective means 

of detecting the presence of consciousness in such patients. It was able to obtain 

such a “ground truth” from one CLIS patient, who successfully communicated 

and answered patient-specific questions asked by an investigator using a brain-

computer interface system. To the best of my knowledge, there is no other such 

dataset in existence.  

ii. The analysis of time domain signals using sample entropy, permutation entropy, 

and Poincaré plot can avoid the disease-related reduction of EEG frequency 

bands in CLIS/LIS or MCS/UWS patients, which would misjudge the patient's 

consciousness state if judged based on the EEG frequency bands of healthy 

persons, and there is currently no definition of EEG frequency bands for patients 

with these diseases.  

 

“The brain is a complex biological organ of great computational capability that 

constructs our sensory experiences, regulates our thoughts and emotions, and 

control our actions.” 

– Eric Kandel 
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iii. In this thesis sample entropy, permutation entropy, and Poincaré plot are 

implemented not only in ECoG signals, but also sample entropy and Poincaré 

plot in EEG signals to successfully identify the difference in consciousness status 

of CLIS/LIS and DOC patients. Compared with large instruments such as fMRI, 

the portability of EEG signals and the feasibility of implementing sample entropy, 

permutation entropy, and Poincaré plot into a real-time system can be expected 

to become a communication bridge between patients and their family members 

in the future.   

iv. Sample entropy can be used as a reference indicator for communication with 

patients to avoid making experimental results dependent on patient willingness, 

who may have a psychological-emotional problem (e.g., depression) or a 

physiological problem (e.g., pain) during the experimental period. It also can help 

researchers understand the patient's physical and psychological state. 

v. All the methods mentioned currently in the feature extraction section have 

different parameter choices and individual patient differences, it is difficult to 

establish a threshold as a universal criterion for the presence or absence of 

consciousness in patients. In this thesis unsupervised learning methods (k-Means 

and DBSCAN) are used to provide a threshold of consciousness for individual 

participation in the experiment from the feature extraction results for each patient, 

so that in the future families and researchers will have a more objective reference 

indicator for communicating with patients. 

 

 
Figure 4.1: The data processing flow chart of Modus Operandi. 

 

The data processing flow chart of modus operandi of the presented approach in the 

thesis is shown in Figure 4.1. First, a the Butterworth bandpass filter is used in the pre-

processing to reduce the 50Hz power-line noise, and then different feature extraction 

methodologies (sample entropy, permutation entropy, and Poincaré plot) are used to obtain 

a value representing the conscious state. Third, unsupervised learning (k-Means and 

EEG/ECoG Machine Learning ConsciousnessFeatures Extraction Pre-Processing

Sample Entropy

Permutation Entropy

Poincaré plot

K-Means

DBSCAN

Butterworth Filter
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DBSCAN) was used to find the individual threshold values of the patient's state of 

consciousness during the experimental and during the resting period. The ultimate goal is to 

develop a method in order to detect consciousness in CLIS patients to re-establish 

communication during the time they are conscious. 

 

4.1 Pre-Processing 
Medical equipment as well as daily care activities are known to introduce a lot of noise, 

especially when recording brainwave signals for long periods of time.  Among others, PSG 

recordings in DOC patients can be affected by dysregulation of the vegetative nervous 

system, resulting in abnormal sweating, spasms that can cause huge muscle artifacts, etc. 

(Wislowska et al. 2017). 

In this section, considering the reduction of the computational load, first, down-

sampling was carried out to 100/125 Hz, while the original sampling rate was 200/500 Hz 

depending on the data set at our disposal. Second, to avoid interference at 50 Hz power-line 

frequency and to focus on the beta band (13-30 Hz), which frequency band are closely related 

to consciousness for thoughtfulness and awareness (Schwender et al. 1996), a sixth-order 

Butterworth filter (1–45 Hz) was used to bandpass filter the down-sampled signals.  

 

4.2 Feature Extraction 
For the feature extraction part, there are some slight differences in the algorithms used 

in the thesis for ECoG and EEG signals, so the detailed flowcharts are shown in Figure 4.2-

Figure 4.3 respectively. 

 

Electrocorticography
(ECoG) Consciousness

Sample Entropy

Permutation Entropy Multiscale EntropyButterworth Filter

Poincaré plot

Features Extraction Pre-Processing

 
Figure 4.2: The data processing flow chart of ECoG signals. 

 
 

Figure 4.2 shows the ECoG signal processing flowchart for the multiscale-based 

method analysis for the CLIS patient GR dataset, which will be presented in details in section 
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5.1. The original ECoG signals were down-sampled to 125 Hz to reduce the processing time, 

and a sixth-order Butterworth bandpass filter from 1 to 45 Hz was used to remove the power 

line noise of 50Hz and retain the beta band (13-30 Hz), which is considered to be closely 

associated with consciousness for thoughtfulness and awareness (Schwender et al. 1996), to 

obtain the filtered signal. Then, sample entropy, permutation entropy and Poincaré plot were 

applied on the filtered data. Finally, multiscale entropy (Costa et al. 2002, 2005) was utilized 

to reduce the white noise and estimate the consciousness levels.  

 

Electroencephalography
(EEG) Consciousness

Sample Entropy

Butterworth Filter
Poincaré plot

Features Extraction Pre-Processing

 
Figure 4.3: The data processing flow chart of EEG signals. 

 

Figure 4.3 shows the EEG signal processing flowchart for the analysis of sample 

entropy and Poincaré plot methods of the CLIS/LIS and DOC patient datasets from section 

5.2-5.4. Again, in order to reduce the computational load, down-sampling was carried out to 

100/125 Hz, while the original sampling rate was 200/500 Hz. Second, the down-sampled 

signals were band pass filtered by a sixth-order 1–45 Hz Butterworth filter, since 

thoughtfulness and awareness, which is closely related with consciousness, are considered 

to be in the beta band (13–30 Hz) (Schwender et al. 1996) and interference of the 50 Hz 

power-line frequency is avoided, as already mentioned above. Finally, the sample entropy 

and Poincaré plot algorithm was applied to obtain an individual level of consciousness. All 

analyses were conducted using MATLAB R2018b (The Mathworks, Inc.). 

 

4.3 Machine Learning 
Currently, many brain disorders are identified by machine learning, such as epilepsy 

(Pioreckýa et al. 2019), Alzheimer/Parkinson, and schizophrenia (Dvey-Aharon et al. 2015), 

etc. It is also used to distinguish sleep stages (Güneş et al. 2010). It follows that both 

unsupervised learning methods (k-Means and DBSCAN) and supervised learning methods 

(random forest and support vector machine (SVM)) can be used to estimate whether a patient 
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is stimulated during certain time periods or whether a participants suffers from a certain 

disease, etc.  

As mentioned earlier, CLIS patients are supposed to be fully conscious but cannot 

perform any muscle movements or produce any speech to make a clear statement. There is 

no "ground truth" that can be used as teaching input to correct outcomes in supervised 

learning methods. Although researchers were able to obtain such from a CLIS patient when 

the patient successfully communicated and answered patient-specific questions asked by the 

researchers using the brain-computer interface system, this was sometimes influenced by 

whether the patient fully participated in the experiment. Since unsupervised learning 

methods that do not require any user input are appropriate for this condition and they are 

more time efficient and objective compared to supervised learning methods. 

In addition, all the methods mentioned in the feature extraction section so far have 

different parameter choices and individual patient differences, so it is difficult to establish a 

threshold as a criterion for the presence or absence of consciousness in all patients. However, 

it is possible to obtain a threshold of consciousness for individual participation in the 

experiment from the feature extraction results for each patient using unsupervised learning 

methods (k-Means and DBSCAN), so that in the future families and researchers will have a 

more objective reference indicator for communicating with patients. 
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Datasets 
 

 

 

 
 

 

 

5.1 ECoG recordings of a CLIS patient 
 

The dataset was recorded by electrocorticography (ECoG) from a 40-year-old male in 

a completely locked-in state (CLIS) over 24 h at a sampling rate of 500 Hz with a 64-channel 

brain amplifier (Brainproducts GmbH, Munich, Germany). He was diagnosed with ALS in 

1997 and entered CLIS in 2008. Based on studies by Bierbaumer and colleagues (Ramos-

Murguialday et al. 2011; Soekadar et al. 2013; Bensch et al. 2014; Adama et al. 2019; Wu 

et al. 2020), we know that this CLIS patient learned to use this brain–computer interface in 

an attempt to communicate with the external environment through muscle twitching. The 

patient had a strong will to live before entering CLIS, but after falling into CLIS, there was 

only one successful communication out of several attempts. As Soekadar et al. (Soekadar et 

al. 2013) reported that the circadian rhythm in CLIS patients is unpredictable, it can lead to 

a higher frequency of dozing during the day than in healthy individuals. One hypothesis was 

that this lack of communication was due to a result of the experimenter arriving at the wrong 

time (i.e., when the patient was not in a consciousness state) and, thus, the patient was unable 

or unwilling to communicate. As described in the introductions, the goal was to identify, if 

 

“If the human brain were so simple that we could understand it, we would be so 

simple that we couldn’t.” 

– Emerson M. Pugh 
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possible, when the patient was in a conscious state and hence most likely to be able to 

communicate successfully. 

Figure 5.1 (right) shows the position of the ECoG grid electrodes on the left side of 

the patient’s frontal and parietal lobes (Graimann et al. 2010). The functional channel 

locations of the ECoG electrode array are shown in yellow (Figure 5.1, left panel). The 

ground channel was S032, and the reference channel was G102 (orange channels, Figure 5.1, 

left panel). The implantable electrode was made of material that was difficult to bend; thus, 

the curvature of the brain could not be fully matched. This probably led to a recording hole 

in the middle of the electrode array (white channels in Figure 5.1, left panel) due to channel 

losses or high impedances. The reference and ground channels were not part of the recording 

hole. 

 

 

Figure 5.1: Channel locations of the electrocorticography (ECoG) electrode array in a CLIS patient. 
Left: channel names, the functional channels shown in yellow, and ground channel (S032) and 
reference channel (G102) in orange. Right: the position of implanted ECoG grid electrodes. Photo 
courtesy of the Institute for Medical Psychology and Behavioural Neurobiology, University of 
Tübingen.  

 

During the day of recording, an auditory experiment as described in (Adama et al. 

2019) was performed from 14:50 to 17:00. This was the period in which the experimenter 

was present, and includes both experimental setup and communication with the patient. 

During the experiment, the patient was expected to answer some paired yes or no open 

personal questions, such as “You feel good today?” or ”You feel bad today?” Personal 

questions with known answers such as “Are you German?” or ”Are you Dutch?” were also 

asked in order to control the correctness of detection. The patient in question was previously 

trained to use the brain–computer interface (BCI) while he was in LIS status and was thus 
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aware of how to use the BCI correctly. The patient not only answered the paired questions 

correctly, but also through questions like “Are you positive regarding the future?” and ”Are 

you negative for the future?” These kinds of questions showed a positive attitude to life 

during the time of the experiment. The experimental protocol as supplemental material in 

section Appendix A that shows the list of questions and answers during the experiment, in 

which a + sign means yes and a − sign means no. In order to present the original situation of 

the experiment, we did not correct the accuracy of the English grammar and the 

representation of the answers, but excluded the patient’s personal data. We summarized the 

proportion of correct answers through semantic and contextual judgments, and even if the 

experimenter asked a paired yes or no question that was not the direction he wanted to go, 

he expressed his will strongly, and he let the experimenter know the third idea he was trying 

to express after answering the two opposite meanings. The patient answered 18 yes or no 

questions during the experiment. One answer was incorrect, and one was unclear, so the 

CLIS patient had an 88% accuracy rate in the experiment. In the experimental protocol, we 

indicated the questions with correct answers in green, those with incorrect answers in red 

and those with unclear answers in black. 

 

5.2 EEG recordings of CLIS patients 
The dataset in question comprises the signals of electroencephalography (EEG) and 

electrooculography (EOG). The dataset provider published the analysis results from four 

CLIS patients (Chaudhary et al. 2017). The same codename is used to facilitate comparison 

for readers. All these patients completed more than 250 sessions over several weeks: patient 

B completed 56 sessions, patient F completed 80 sessions, patient G completed 51 sessions, 

and patient W completed 74 sessions. 

The EEG data was recorded with an EEG amplifier (Brain Amp DC, Brain Products, 

Germany). Figure 5.2 shows the channel positions which were used to acquire EEG signals 

and four electrodes which were used to acquire the vertical and horizontal EOGs. Since this 

data set does not standardize the channels and sampling rates used for all patients and for 

each visit, the same channels and sampling rates are usually used only at the same visit 

(usually a visit contains several experiments within a week), Table 5.1 shows the electrodes 

and sampling rates used to record the EEG signals for different CLIS patients on different 

days.  
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Figure 5.2: Channel positions of CLIS patients. Left: the channel positions of electrooculographic 
(EOG), courtesy of the Institute for Medical Psychology and Behavioural Neurobiology, University 
of Tübingen. Right: the channel positions of electroencephalography (EEG).  

 

Table 5.1: Electrodes and sampling rates recording the EEG signals of the four CLIS patients on different 
days. 

Codename Day EEG channels Sampling rates 

Patient B 
Day1 FC5, FC1, FC6, CP5, CP1, CP6, AF3, AF4 200 

Day2 FC5, FC1, FC6, CP5, CP1, CP6, AF3, AF4 200 

Patient F 
Day1 FC5, FC1, FC6, CP5, CP1, CP6 200 

Day2 FC5, FC1, FC6, CP5 200 

Patient G 
Day1 FC4,FC5,FC3,FC6,Cz 500 

Day2 FC4,FC5,FC3,FC6,Cz 500 

Patient W 
Day1 FC5, FC1, FC6, CP5, CP1, CP6 500 

Day2 FC5, FC1, FC6, CP5, CP1, CP6 500 

 

Beside the effect that in LIS the EOG signals that are measured to reject its influence 

in the recorded EEG data, during the course of disease in ALS toward CLIS, the patients 

gradually lose the ability to control muscles and even eye movements, and thus, the EOG 

disappears. Therefore, in this dataset, we focus only on the analysis of the source of brain 

waves, EEG signals.  
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Patient B is a 61 year old CLIS patient. He was diagnosed with ALS in May 2011. 

From April 2012 to December 2013, he was able to communicate with the MyTobii eye-

tracking device. His family members attempted to train him to move his eyes to different 

sides to express “yes” and “no,” but the response was unstable. Since August 2014, a 

communication was no longer possible.  

Patient F is a 68-year-old completely locked-in state patient. She was diagnosed with 

ALS in May 2007, locked-in syndrome (LIS) in 2009, and CLIS in May 2010. No 

communication channel was realized since 2010. Gallegos-Ayala et al. (Gallegos-Ayala et 

al. 2014) described the details of this patient.  

Patient G is a 76-year-old completely locked-in state patient. She was diagnosed with 

ALS in 2010 and in the same year lost the capability to walk and talk. In February 2013, she 

started using one finger to communicate through an augmentative communication device. 

Unfortunately, seven months later, communication via the finger communication device 

failed as she was diagnosed with a corneal defect that caused her vision to deteriorate. She 

switched to using eye tracking for communication in early 2014, but since August 2014, 

before BCI was implemented, her husband and caregivers lost communication with her. 

Patient W a 24 year old LIS patient, who is on the verge of CLIS. She was diagnosed 

with ALS in December 2012, and six months later she was completely paralyzed. From early 

2013 to August 2014, she was able to communicate with eye tracking. After that, she 

attempted to turn her eyes to different directions to answer yes and no questions by training 

until December 2014. She completely lost control of her eyes in January 2015 and attempted 

to twitch the right corner of her mouth to answer yes, but the response was variable, so her 

parents lost reliable communication contact with her. 

In total, over 45 h (250 sessions) of auditory experiments like (Ramos-Murguialday 

et al. 2011) were recorded including trigger marks, the states of baseline, presentation, last 

word, and response. Beforehand of the study, the investigators discussed with family 

members in order to compile 200 personal questions known by the patients for sure and 40 

open questions. 

First, the investigators trained the patients ahead the experiments by asking the known 

questions, for example: “Berlin is the capital of Germany?”/“Berlin is the capital of France?,” 

in which the patient was expected to answer these paired “yes” or “no” questions. 

During the experiments, the investigators asked the patients personal questions as well, 

such as “Is your husband’s name Joachim?” and also open questions the like “You feel good 
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today?”/“You feel bad today?” related to the topic around the quality of life and compare the 

answers with the actual physiological status reported by the caretakers. 

All the known questions and personal questions included 10 questions with answers 

of "yes" and 10 questions with answers of "no". The order in which these 20 questions are 

presented is random. The entire process of EEG data recording was continuously monitored 

by the investigators to avoid long periods of slow wave sleep (SWS) during the experimental 

period.  

Two days were selected for each of CLIS patients B, F, G, and W, in addition to the 

fact that the experimenter reserved rest periods between experiments on these two days and 

that the patients were more conscious on these two days than on the other days, as the 

analysis results responded accordingly to whether the experiment was performed or not. 

 

5.3 EEG recordings of LIS patients 
In this dataset there are EEG recordings from four LIS patients P11, P13, P15 and P16 

at a sampling rate of 500 Hz with a 16 channel EEG amplifier (V-Amp DC, Brain Products, 

Germany). We kept the denomination as in (Tonin et al. 2020; Jaramillo-Gonzalez et al. 

2021). Most file formats of P11 and P13 are .vhdr/.vmrk files, but almost all file formats of 

P15 and P16 are .ahdr/.amrk encrypted files locked by encryption keys.  

The experimenter later converted all files in .ahdr/.amrk format to .vhdr/.vmrk format 

and provided them in the supplementary material of the published article (Jaramillo-

Gonzalez et al. 2021). Unfortunately, rest periods were not reserved in most experimental 

sessions for P15 and P16, and on the few days when rest periods were reserved, patients did 

not complete the correct copy spelling as requested by the experimenter, so it was not 

possible to compare the differences between experimental and rest periods. 

Considering we are interesting on the days with spelling session records, so in this 

dataset the focus is on description of P11 and P13. Figure 5.3 shows the channel positions 

where EEG signals were acquired according to the international 10-20 standard electrode 

system (Oostenveld and Praamstra 2001; Jurcak et al. 2007) and the four electrodes which 

were used to acquire vertical and horizontal EOGs. Table 5.2 shows the electrodes used to 

record the EEG signals for different LIS patients on different days. The C1, Cz and C2 

channels of patient 13 did not work properly on day one, so these data will not be included 

in the analysis. 
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Figure 5.3: Channel positions of LIS patients. Left: the channel positions of electrooculographic 
(EOG), courtesy of the Institute for Medical Psychology and Behavioural Neurobiology, University 

of Tübingen. Right: the channel positions of electroencephalography (EEG).  

 

Table 5.2: Electrodes recording the EEG signals of the two LIS patients on different days. 

Codename Day EEG channels 

Patient 11 
Day1 F2, F4, FC2, FC4, C2, Cz, C1, FC1, FC3, F1, F3 

Day2 F4, FC2, FC4, C2, Cz, C1, FC1, FC3, F3 

Patient 13 
Day1 AF3, F3, AF4, F4 

Day2 AF3, F3, C1, Cz, C2, AF4, F4 

 

In the paper (Tonin et al. 2020), the authors have used the EOG signal amplitude to 

determine whether the patient answered "yes" or "no". Based on this, in this dataset, we 

focused on the analysis of the EEG signal, the source of the brain waves, as a cross-validation 

of the EOG results. 

P11 and P13 are native German speakers. Patient 11 is a 33-year-old locked-in state 

patient who was diagnosed with ALS in August 2015. He was able to communicate with 

Augmentative and Alternative Communication (AAC) until August 2017. Patient 13 is a 58 

year old LIS patient. He was diagnosed with ALS in January 2011, AAC was possible until 

January 2018. Both were at the verge of CLIS with ALS Functional Rating Scale-Revised 

(ALSFSR-R) (Cedarbaum et al. 1999) score of 0. They were no longer able to use a 
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commercial eye-tracking device, but they could still communicate by selecting groups of 

letters to organize sentences through eye movements.  

The auditory experiment procedure in one day included four different sessions of 

training, feedback, copy spelling and free spelling, which check step by step whether the 

patients were willing to communicate, and the free spelling session was implemented only 

when the cross-validation accuracy of each session of training, feedback and copy spelling 

exceeds 75%. 

In preparation for the study, the patient's family or caregiver formulated and recorded 

more than 100 questions with known "yes" and "no" answers in their own voice , and this 

salient stimulus in the familiar voice of a relative could enhance patient responses and 

increased the probability that investigators would observe meaningful behaviors in these 

patients (Del Giudice et al. 2016). 

Patients were asked to answer 10 questions with known answers of "yes" and 10 

questions with known answers of "no" at each training and feedback session. The order of 

presentation of these 20 questions was randomized. Instead of containing pre-recorded 

personal questions, in the copy and free spelling sessions, patients are asked to select a group 

of letters or a specific letter to further spell a complete word or an entire sentence based on 

the answers to a series of yes/no questions. Whereas the difference between the two sessions 

is that the patient is asked to spell a predetermined phrase in the copy session, in the free 

spelling session, the patient can spell any sentence he/she wants. The details of the auditory 

experimental procedure are described in (Tonin et al. 2020; Jaramillo-Gonzalez et al. 2021). 

Three supplementary videos also provided in (Tonin et al. 2020) show the process of spelling 

a sentence for three patients. 

Despite the fact that spelling communication is very slow for healthy people, the 

average spelling speed mentioned in the article was 0.57 ± 0.29 (chat/min) for P11 and 0.48 

± 0.24 (chat/min) for P13, indicating that it is a long spelling process for LIS patients to 

express a sentence, but when patients were asked "Would you like to continue?" the patients 

spelled out sentences such as "I am happy to see my grandchildren grow up," "I am looking 

forward to the holidays," and "I am happy" to show their willingness to communicate. From 

these formed sentences we can see that the patient did not show frustration because of this 

slow speed, from which we speculate that perhaps being able to communicate with someone 

is more exciting than the isolated experience of lying alone in an immobile body? 
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5.4 EEG recordings of DOC patients 
To ensure a broader application of the methods, this thesis includes a dataset from 

Salzburg, Austria and Liege, Belgium (Wielek et al. 2018), which contains EEG signals from 

patients with disorders of consciousness (DOC) and diagnosed patients by behavioral 

assessments of auditory, visual, motor, verbal, communication and arousal functions 

according to the Coma Recovery Scale Revised (CRS-R) (Giacino et al. 2002; Giacino et al. 

2004). The main application of this dataset is sleep analysis, but there are also some event 

notes that can be used as evidence of the patient's response to environmental stimuli. This 

dataset included seven MCS patients and eleven UWS patients. We selected cases with long-

period events, such as nursing actions (e.g., repositioning, cleaning, feeding) and Coma 

Recovery Scale-Revised (CRS-R) score tests, to ensure that the events in the environment 

had some degree of influence on the patient's consciousness, and excluded cases with only 

multiple single-point-in-time events, such as check electrodes. Therefore, this thesis mainly 

presented the results of two MCS and four UWS patients. 

 

 

Figure 5.4: The channel positions of electroencephalography (EEG) for DOC patients. 

 

In this dataset there are Polysomnographic (PSG) recordings from DOC patients at a 

sampling rate of 500 Hz with Brain Products amplifiers (Brain Products, Gilching, Germany). 

EEG signals were recorded from 18 electrodes at locations F3, F4, FC5, FC6, C3, C4, P3, 

P4, T3, T4, F7, F8, PO7, PO8, Fz, Cz, Pz, Oz, based on the international 10-20 electrode 
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system. Note that the new electrode naming system Modified Combinatorial Nomenclature 

(MCN) system renames the four electrodes of the 10-20 system. T3 is now T7 and T4 is now 

T8 (Sharbrough et al. 1991; Acharya et al. 2016). Besides EEG, electrooculography (EOG), 

electromyogram (EMG), electrocardiogram (ECG), and respiratory signals were also 

recorded for all DOC patients. Figure 5.4 shows the channel positions where EEG signals 

are located based on international 10-20 electrode system. Table 5.3 shows the Demographic 

information of all DOC patients. 

 
Table 5.3: Demographic information of all DOC patients. The analyzed patient sample consisted of two 

MCS and four UWS patients. Abbreviations: Etiology: CVA-Cerebrovascular Accident; Diagnosis: UWS = 

Unresponsive Wakefulness Syndrome, MCS = Minimally Conscious State; CRC-R = Coma Recovery Scale-

Revised. 

Patient 
ID Gender Age Diagnosis 

CRS-R  
Total score 

Period since injury 
(months) Etiology 

MCS1 male 57 MCS 12 135 Anoxia 
MCS2 male 73 MCS 17 8 CVA 
UWS1 female 65 UWS 4 4 Anoxia 
UWS2 female 58 UWS 4 28 CVA 
UWS3 male 61 UWS 4 32 Anoxia 
UWS4 female 50 UWS 4 45 CVA 

 

5.5 Discussion of datasets 
In order to expand the field of application of the methods and also to verify the 

effectiveness of each method, these methods were applied in four different datasets. These 

four datasets include not only different types of brain waves, intracranial ECoG signals and 

non-invasive EEG signals, but also patients with different diseases of CLIS, LIS, MCS and 

UWS.  

Although the invasive ECoG signal has several advantages over noninvasive EEG 

signal, such as  greater Signal-to-noise ratio (SNR), higher signal amplitude, higher spatial 

resolution, broader frequency bandwidth, and less vulnerability to artifacts such as EMG 

(Leuthardt et al. 2009; Bensch et al. 2014; Martens et al. 2014), there are surgical risks, i.e. 

relative fewer cases than EEG signals. Because of the convenience of EEG signals, EEG 

signals are widely used in brainwave research. 

Both patients in the CLIS and LIS datasets suffered from ALS and it was more feasible 

to investigate the function of the various topographies (Brodmann area), whereas patients in 

the MCS and UWS datasets had etiologies due to anoxia, traumatic brain injury (TBI), 
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cerebrovascular accident (CVA), and not ALS. Without the aid of fMRI, there is concern 

that the neural distribution of the brain in patients with causes such as stroke and cerebral 

ischemia does not follow the traditional Brodmann area (Azari and Seitz 2000). Therefore, 

we will focus on consistent results across multiple channels in the DOC patient dataset to 

avoid compensatory effects of brain injury. 

All of the databases, based on the provider's investigations, show evidence of the 

existence of certain consciousness activities in patients, based on this as a cross-validation 

of the results of the method applied in this thesis. 
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In this chapter, the results of feature extraction and machine learning are presented 

separately, based on the data processing flowchart of Modus Operandi introduced in Chapter 

4. In the feature extraction part, multiscale-based methods (multiscale sample entropy, 

multiscale permutation entropy and multiscale Poincaré plots) were first applied to analyze 

ECoG signals from a completely locked-in state (CLIS) patient, then the application of 

sample entropy and Poincaré plot were extended to the EEG signal.  

The permutation entropy was not used here because the method transfers the time 

series to the m! patterns, and even with higher m parameters, the method still ignores too 

much detail of the time series, but relatively, permutation entropy is an appropriate method 

to reflect circadian rhythms in healthy subjects and minimally conscious state (MCS) 

patients as reported by Wislowska et al. (Wislowska et al. 2017). 

All four datasets only the ECoG recordings of the CLIS patient and the disorders of 

consciousness (DOC) dataset contain night periods. Section 6.1.3 presents the permutation 

entropy results of the ECoG recordings, while the DOC dataset, as already analyzed by 

Wislowska et al. using this method (Wislowska et al. 2017), the analysis is not repeated here. 

To confirm the usability of the sample entropy, the method was applied to CLIS, LIS 

and DOC datasets to detect potential stages of consciousness. Since the results of sample 

entropy and Poincaré plot in sections 6.1.6-6.1.7 are similar, but Poincaré plot directly uses 

the voltage amplitude of the time series and is more sensitive due to the need to remove some 

 

“Anyone who has never made a mistake has never tried anything new.” 

– Albert Einstein (1879-1955) 
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peaks to see the consciousness results, future extensions to LIS, MCS and unresponsive 

wakefulness syndrome (UWS) patients will be based on the results of sample entropy in this 

work. 

Finally, the clinical scales of consciousness introduced in section 2.1 shows that LIS 

patients have the closest level of consciousness to healthy individuals, and with residual eye 

movements as the "ground truth" of consciousness, LIS patients thus have the highest 

probability of being conscious among all patients. Therefore, in the machine learning part, 

the k-means and density-based spatial clustering of applications with noise (DBSCAN) 

methods were applied to cluster the sample entropy results of LIS patients in order to cluster 

the difference between the patient's consciousness during the rest and experimental periods 

as a manifestation of the patient's response to external stimuli. 

 

6.1 Feature Extraction part 
In sections 6.1.1-6.1.4, the ECoG signal of the CLIS patient GR was analyzed using 

multiscale-based methods for the dataset in section 5.1. In section 6.1.6-6.1.7, the EEG 

signals of four CLIS patients B, F, G, and W were analyzed using the sample entropy and 

Poincaré plot methods for the data set in section 5.2. In section 6.1.8, the data set from section 

5.3 was added to perform sample entropy analysis of the EEG signals from LIS patients 11 

and 13. Finally, the DOC dataset from section 5.4 was extended in section 6.1.9 to perform 

sample entropy analysis of the EEG signals from 2 MCS patients and 4 UWS patients. 

 

6.1.1 Multiscale Approach result 
For the ECoG signal of a CLIS patient GR dataset from section 5.1, Figure 6.1 is the 

result of sample entropy without the multiscale approach, which is very noisy. As proposed 

in section 6.1.2, Figure 6.2 shows the results with the multiscale approach for 24 h. In order 

to obtain the main trend and reduce the effect of white noise, we utilized the multiscale 

approach after sample entropy, permutation entropy and Poincaré plot to extract a cleaner 

result from all approaches. 
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Figure 6.1: The result of Sample Entropy for 24 h. 

 

6.1.2 Multiscale Sample Entropy result 
As proposed in section 2.3 and 2.6 (Barnett et al. 2009; Adama et al. 2019; Wu and 

Bogdan 2020), the results of the sample entropy were utilized to analyze consciousness. A 

higher value of multiscale sample entropy (MSE) indicated increased complexity within the 

ECoG signals, which was more indicative of periods of consciousness. The average MSE 

from all 59 usable channels over the 24 h recording period is shown in Figure 6.2. There are 

5 channels that are considered to be operating incorrectly due to too high voltage amplitude. 

As we know from the experiment performed the day of recording, the patient answered the 

questions correctly during the auditory experiment, which took place from 14:50 to 17:00. 

The average value of MSE during the experiment was 1.5242. Using this information as the 

ground truth, and thus setting the consciousness threshold value at 1.52, above which a 

period of consciousness was presumed, shown in red blocks. The periods between 15:18–

15:56, 16:04–16:22 and 16:52–17:02 could be labelled as periods of consciousness. Under 

this premise, we could label the periods between 08:28–08:36, 11:12–11:42, 11:50–12:02, 

23:40–01:34, 01:46–02:32 and 03:06–03:16 as periods of consciousness as well, shown in 

red blocks. 
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Figure 6.2: The results of multiscale sample entropy (MSE) (scale = 4) for 24 h. The period of the 
experiment is indicated by the grey block. The threshold value is indicated by a red horizontal line. 
The periods of presumed consciousness are indicated by the high values of MSE, shown in red 
blocks. To avoid the plot being too crowded, we marked the predicted conscious periods, which are 
predicted conscious periods of more than 6 min for every 10 min overlapping time window. 

 

6.1.3 Multiscale Permutation Entropy result 
In order to reduce the computation time, we also applied multiscale permutation 

entropy (MPE) in this approach to investigate this option and analyze the consciousness state 

in the time domain. Smaller MPE values imply increased pattern similarity in the time series 

and, hence, less complex brain activity. Figure 6.3 shows the average MPE from all 59 usable 

channels over 24 h. The average value of MSE during the experiment was 2.388. Using this 

MPE value as a consciousness threshold, we could identify the periods between 15:46–16:10 

and 16:26–16:50, but also between 09:06–09:42, 09:58–10:10, 10:46–11:02 and 12:26–

12:58, as periods of consciousness. 
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Figure 6.3: The results of multiscale permutation entropy (MPE) (scale = 4) for 24 h. The period of 
the experiment is indicated by the grey block. The threshold value is shown by a red horizontal line. 
The periods of consciousness as presumed by the high values of MPE are indicated in the yellow 
blocks. To avoid the plot being too crowded, we marked the predicted conscious periods, which are 
predicted conscious periods of more than 8 min in every 12 min overlapping time window. 

 

6.1.4 Multiscale Poincaré plot result 
Golińska (Golińska 2013) reported that the Poincaré plot showed a fluffy (Hayashi et 

al. 2014) pattern during light anesthesia and an elongated pattern during deep anesthesia. We 

used this interpretation in our application, i.e. if the CLIS patient was conscious and 

participated in the experiment, a fluffy pattern was displayed in the results of the Poincaré 

plot, as shown in Figure 6.4 (left). In contrast, if the CLIS patient was unconscious and only 

the ECoG signals were recorded through the BCI interface without the researcher stimulating 

the patient, the results of the Poincaré plot displayed an ellipse pattern, as shown in Figure 

6.4 (right). To distinguish the difference, SD1 represents the instantaneous variability, and 

SD2 shows the ECoG voltage variability of the 30 s recoding time window. We show the 24 

h results of SD1 and SD2 in Figure 6.5 and Figure 6.6. 
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Figure 6.4: The Poincaré plot. Left: 30 seconds during experiment. Right: other 30 seconds during 
non-experiment.  

 

Figure 6.5: The SD1 of the multiscale Poincaré (MSP) plots (scale = 4) for 24 h. The period of the 
experiment is indicated by the grey block. The threshold value is indicated by a red horizontal line. 
The presumed periods of consciousness, as indicated by high values of SD1, are shown in blue 
blocks. To avoid the plot being too crowded, we marked the predicted conscious periods which were 
more than 6 min for every 10 min overlapping time window. 

To reduce white noise in the result of the Poincaré plot, we utilized the multiscale 

approach, which is an approach also described by Henriques for heart rate variability 

(Henriques et al. 2015). The SD1 and SD2 of the MSP plots for 24 h are shown in Figure 

6.5 and Figure 6.6. The result of SD1 was the average of all 59 usable channels. For SD2, 

there were seven channels where the whole trend was not visible due to the presence of some 

peaks, so only the average of 52 usable channels was used for SD2. The trend of SD1 and 

SD2 was similar to MSE. The distributions of MSP plots during the experiment had the high-

peaked and heavy-tailed characteristics, which are different from the flat-topped 

characteristic of MSE and MPE. The kurtosis of MSE distribution was leptokurtic, and the 
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MSE and MPE distributions were platykurtic. Considering the preparation during the 

experiment, we raised the threshold to the average of the upper half of the sorted data during 

the experiment. With a threshold value of SD1 at 4.36, the ground truth periods at 16:04–

16:22 and 16:56–17:04 exceeded the threshold. Using this consciousness level threshold, the 

periods between 10:22–10:44, 11:24–12:14, 01:08–02:46, 03:10–03:44 and 04:46–05:04 

could be labelled as periods of consciousness. Both SD1 and SD2 showed similar trends, but 

the results of SD2 have more peaks and it is not easy to observe the whole trend, so we will 

use the results of SD1 to compare with other methods. 

 

 
Figure 6.6: The SD2 of multiscale Poincaré (MSP) plots (Scale=4) for 24 h. 

 

6.1.5 Discussion of ECoG signal results 
The results of the three different approaches of MSE, MPE, and MSP plot applied to 

the ECoG signals suggest that this CLIS patient was conscious between approximately 

16:04–16:10. This time window corresponds to the period during the experiment in which 

the CLIS patient correctly answers the pairwise yes or no questions via a BCI (Ramos-

Murguialday et al. 2011; Adama et al. 2019). 

The results of the MSE and MSP plots indicate that this patient was probably awake 

during the night, supporting the result of (Soekadar et al. 2013), which reported that sleep 

fragmentation of slow wave sleep (SWS) increases during the process of ALS patients 

slipping into CLIS. 
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The trend of the results was similar for the MSE and MSP plots, but different from 

MPE. Permutation entropy represents the time series in m! possible ordinal patterns, 

attenuating the information from voltage variation and thus reducing the sensitivity of the 

result. In (Wislowska et al. 2017), it was reported that the permutation entropy results 

showed that the complexity of EEG signals decreased in both healthy subjects and MCS 

patients from day to night, reflecting the circadian rhythm of arousal. Therefore, it is possible 

that the CLIS patient dreams during the night. The voltage amplitude variations are large, 

but the ordinal patterns are similar because there are fewer environmental stimuli to induce 

brain activity when the patient sleeps at night. It should also be noted that during dreaming, 

one can state there is consciousness (Cologan et al. 2013; Zeman and Coebergh 2013). 

 

 

Figure 6.7: The result of the majority decision of three methods is indicated by the dark red block. 
The period of the experiment is shown in the grey block. The state of consciousness over 24 h 
identified by the different methods is enclosed by magenta (MSE), yellow (multiscale permutation 
entropy (MPE)), and blue (multiscale Poincaré (MSP)) blocks. 

 

Figure 6.7 shows the result of the majority decision of the three methods over a period 

of 24 h. From 16:04 to 16:10, the MSE, MPE, and MSP plots show that this CLIS patient 

was in a conscious state. Even though all methods indicated more or less precisely the 

reported time of consciousness of the patient by the experimenter that day, the exact times 

differed from one method to another. In addition, other time periods of detected 

consciousness were not consistent over all methods. Thus, the level of sensitivity of the 

applied methods can be interpreted as being different and thus more or less responsive to the 
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change of consciousness. This indicates that a single method may not be an appropriate 

approach to identify exactly the levels of consciousness in CLIS patients. Currently the 

definition of the threshold is based only on the value of each method in the time window of 

the experiment that the patient communicated with the investigators. In the future, when 

there are more cases of this type of disease with a proofed moment of consciousness, we 

hopefully can define the threshold for consciousness and unconsciousness in CLIS patients 

in a more general way. 

Because the experimental period was 14:50–17:00 and there was an 88% accuracy 

response rate, we used the 15:00–17:00 experimental period to compare the distribution of 

values with all other 2 h non-experimental slots, these research results are published in (Wu 

et al. 2020). We used the Z-test, and since the value ranges of the individual methods were 

different, we normalized the value of the individual methods to (0,1). The result for MSE is 

shown in Figure 6.8(a). The Z-test revealed that the multiscale sample entropy (MSE) value 

was significantly different in all non-experimental periods compared with the experimental 

period, except for the nighttime period, and the higher MSE values could probably be 

attributed to the rapid eye movement (REM) during dream sleep, which indicates 

consciousness (Cologan et al. 2013; Zeman and Coebergh 2013). 

Figure 6.8(b) shows the statistical results for multiscale permutation entropy (MPE), 

illustrating that there is no significant difference in the 09:00–11:00 time period. Since the 

multiscale Poincaré (MSP) plots also showed the same results, and the majority decision of 

all three methods (Figure 6.7) had higher values, the patient may have been conscious in the 

morning. 

Although the statistical results of the multiscale Poincaré (MSP) plots in Figure 6.8(c) 

showed higher values at night, the Z-test showed significant differences at these time periods 

compared with the experimental period. As proposed in section 2.3-2.5, the Poincaré plot 

equations were calculated by the voltage amplitude, but the sample entropy equations have 

a tolerant coefficient, and the permutation entropy method transfers the time series to the m! 

patterns. Therefore, the Poincaré plot equations were not tolerant compared with the sample 

entropy and permutation entropy methods, so the rapid eye movement (REM) during the 

sleep phase may have led to higher values of the multiscale Poincaré (MSP) plots, as shown 

by the values. Please note that during the probable REM phase, the values were significantly 

higher than during the experimental phase, which is in accordance to the relation between 

consciousness and dreaming. Therefore, combining the results from a number of methods, 

as we have done in this work, leads to a higher likelihood of correctness. 
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Figure 6.8: The statistical results (Z-test) for (a) MSE, (b) MPE, and (c) MSP over 24 h. The period 
of the experiment is shown in green. Significant differences are identified by * p < 0.05 and ** p < 
0.01 in respect to the values from the proven communication time. 
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6.1.6 Poincaré plot results from CLIS patients 
For the CLIS dataset from section 5.2, the top diagram of Figure 6.9-Figure 6.12 

shows the result of the Poincaré plot: We assume that the higher the value, the higher the 

relative consciousness of the patient. The figure below shows the trigger marks, those with 

numbers represent experimental state and those without numbers represent resting state. 

Between two red vertical lines indicate sessions, each session lasts around 10 minutes. To 

more clearly distinguish the difference between experimental and rest time, in these datasets 

all sessions in a day are combined in chronological order in the same figure. 

As proposed in section 2.5, we have applied Poincaré plot to the dataset as shown in 

Figure 2.5. We interpret therefore a higher value of Poincaré plot as higher brain activity and 

thus hypothetically more consciousness. This interpretation is based on the results shown in 

(Chaudhary et al. 2017) where during the corresponding time slots (see Figure 6.9-Figure 

6.16 trigger marks), the experimenter received a good number of correct answers, thus 

indicating the consciousness of the patient.   

Figure 6.9-Figure 6.12 are showing the results for CLIS patients B & F over two days 

for each patient. These data were selected, in addition to the fact that the experimenter 

reserved rest periods between experiments on these two days and that the patients were more 

conscious on these two days than on the other days, as the analysis results responded 

accordingly to whether the experiment was performed or not. 

 

CLIS patient B on day 1 

In Figure 6.9, we combined seven consecutive sessions over 69 min for patient B 

during day one. The Figure 6.9 below shows the time window between 10 and 60 min in 

which the investigators asked the questions. The time windows from 0 to 10 min and 60–69 

min are the rest states. The top diagram shows the result of the Poincaré plot: We assume 

that the higher the value, the higher the relative consciousness of the patient. After 9th min, 

the value rises obviously, clearly showing the difference between resting and experimental 

state as at that point the questions were started. The Poincaré plot value was higher at the 

beginning, probably due to lunch, and the first session was recorded from 12:22 to 12:32. 

This Poincaré plot result shows a high similarity to the sample entropy result in Figure B.1. 
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Figure 6.9: The SD1 result of Poincaré plot for CLIS patient B on day 1. Top: the channel CP5 result of the 

Poincaré plot. Bottom: The trigger marks for patient B on day 1. The sessions are indicated between two red 

vertical lines. The periods with numbers are experimental state, and those without numbers are rest state.   

 
 
CLIS patient B on day 2 

In Figure 6.10, we combined seven consecutive sessions for patient B during day two 

all in all over 64 min. The Figure 6.10 below shows the time window between 10 and 59 

min in which the investigator asked the questions. The periods from 0 to 10 min and 59–64 

min are the rest states. After 10th min, the value of Poincaré plot rises obviously as well, 

what we would interpret again as a higher level of consciousness. There is a slow decline 

after the 59th min. The results of patient B in these two days are consistent with the time 

window of trigger marks. The results for patient B in all other channels (FC5, FC1, FC6, 

CP5, CP1, CP6, AF3, AF4) have a similar trend. This Poincaré plot result shows a high 

similarity to the sample entropy result in Figure B.2. 
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Figure 6.10: The SD1 result of Poincaré plot for CLIS patient B on day 2. Top: the channel CP6 result of the 

Poincaré plot. Bottom: The trigger marks for patient B on day 2. The sessions are indicated between two red 

vertical lines. The periods with numbers are experimental state, and those without numbers are rest state.  

 
CLIS patient F on day 1 

In Figure 6.11, a combination of six consecutive sessions during day one over 90 min 

is shown for patient F, who performed less good as patient B in general. The Figure 6.11 

below shows the time windows between 0 and 39 min and 68–90 min in which the 

investigator asked the questions. The period of 39–68 min is a rest state. After the 38th min, 

the value of Poincaré plot rises slowly. After the 74th min, the value declines slowly. It 

presents the opposite result to patient B, but compared to the sample entropy results in Figure 

B.3, although there are some peaks in the Poincaré plot results. These two different methods 

still present consistent results. The trend of symmetrically positioned electrodes (CP5 vs. 

CP6, FC5 vs. FC6) is similar, whereas not symmetrical positioned electrodes differ. So, 

depending on the area over which the electrode is placed (e.g., over the Broca area or the 

Wernicke area), the task-related signal must be different and thus will indicate different 

corresponding aspects and show different trends on the related electrodes. We speculate that 

the level of consciousness depends on how difficult the questions were. Perhaps the 

questions asked by the investigators can promote the patients’ thinking? 
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Figure 6.11: The SD1 result of Poincaré plot for CLIS patient F on day 1. Top: the channel CP6 result of the 

Poincaré plot. Bottom: The trigger marks for patient F on day 1. The sessions are indicated between two red 

vertical lines. The periods with numbers are experimental state, and those without numbers are rest state.  

 
CLIS patient F on day 2 

In Figure 6.12, we show the consecutive combination of seven sessions during another 

day over all in all 70 min during day two. The Figure 6.12 below shows the time windows 

between 10 and 35 min and 37–60 min in which the investigator asked the questions. The 

time windows of 0–10 min and 60–70 min are the rest states. After the 36th min, the value 

of Poincaré plot rises slowly. The value declines slowly after the 48th minute. The correct 

response rate is around 70% by functional near-infrared spectroscopy (fNIRS) and support 

vector machine (SVM) to ensure that patients are awake (Chaudhary et al. 2017). There is a 

similar result between channel CP5 and the other channels (FC5, FC1, FC6) for patient F on 

day two, and compared to the sample entropy results in Figure B.4, these two different 

methods show consistent results. In the future, we will correlate the different types of 

questions and related feedback in order to refer to the value of Poincaré plot and to obtain 

further results. 
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Figure 6.12: The SD1 result of Poincaré plot for CLIS patient F on day 2. Top: the channel CP5 result of the 

Poincaré plot. Bottom: The trigger marks for patient F on day 2. The sessions are indicated between two red 

vertical lines. The periods with numbers are experimental state, and those without numbers are rest state.  

 

It is speculated that patient F allowed her mind to wander when she was not in the 

experimental time period, resulting in more brain activity during the rest time period than 

during the experimental time period. This patient showed the same phenomenon as the LIS 

patient during the spelling experiment, and the sample entropy results of the LIS patient 

during the spelling experiment are presented later in section 6.1.8. 

 

6.1.7 Sample Entropy results from CLIS patients 
Since the results of the Poincaré plot are similar to those of the sample entropy, the 

Poincaré plot results for the other CLIS patients G and W over two days are presented in 

section Appendix C. Correspondingly, the sample entropy results for the other CLIS patients 

B and F over two days are presented in section Appendix B.  

For the CLIS dataset from section 5.2, the top diagram of Figure 6.13-Figure 6.16 

shows the result of the sample entropy. The figure below shows the trigger marks, those with 

numbers represent experimental state and those without numbers represent rest state. 

Between two red vertical lines indicate sessions, each session lasts around 10 minutes. In 

order to distinguish more clearly the difference between experimental and rest time, in these 

datasets all sessions in a day are combined in chronological order in the same figure. 
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As proposed in section 2.3, we have applied sample entropy to the dataset as shown 

in Figure 2.3. We interpret therefore a higher value of sample entropy as higher brain activity 

and thus hypothetically more consciousness. This interpretation is based on the results shown 

in (Chaudhary et al. 2017) where during the corresponding time slots (see Figure 6.13 -

Figure 6.16 trigger marks), the experimenter received a good number of correct answers, 

thus indicating the consciousness of the patient.  

Figure 6.13-Figure 6.16 are showing the results for CLIS patients G & W over two 

days for each patient. These data were selected, in addition to the fact that the experimenter 

reserved rest periods between experiments on these two days and that the patients were more 

conscious on these two days than on the other days, as the analysis results responded 

accordingly to whether the experiment was performed or not. 

 
CLIS patient G on day1 

 
Figure 6.13: The sample entropy result for CLIS patient G on day 1. Top: the channel FC5 result of the 

sample entropy. Bottom: The trigger marks for patient G on day 1. The sessions are indicated between two 

red vertical lines. The periods with numbers are experimental state, and those without numbers are rest state.  

 

For patient G, five consecutive sessions over 74 min were combined on the day one, 

as shown in Figure 6.13. In the second session, the value of sample entropy increased 

accordingly as the experimenter continued with the auditory experiment. However, in the 
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third, fourth, and fifth sessions, the value of sample entropy increased when the experimenter 

stopped the auditory experiment. Patient G was presumed to be more focused at the 

beginning of the experiment on this day, and gradually decreased as he became more skilled. 

Biederman et al. (Biederman and Vessel 2006) describe why people like new stimuli and 

that repeated stimuli weaken the brain's response. It may help us to explain this phenomenon. 

This sample entropy result shows a high similarity to the Poincaré plot result in Figure C.1. 

Consequently, patient G was able to let her mind wander when she was not in the 

experimental time period, resulting in higher brain activity during the rest period after the 

second session. This patient showed the same phenomena as the LIS patients during the 

spelling experiment, the sample entropy results of LIS patients during the spelling 

experiment are presented later in section 6.1.8. 

In this thesis, we focus on all cases in which significant index changes occurred at the 

beginning and at the end of the experiment, and overall, the patients responded accordingly 

to the external stimuli. 

 

CLIS patient G on day 2 

 
Figure 6.14: The sample entropy result for CLIS patient G on day 2. Top: the channel FC5 result of the 

sample entropy. Bottom: The trigger marks for patient G on day 2. The sessions are indicated between two 

red vertical lines. The periods with numbers are experimental state, and those without numbers are rest state.  
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For patient G, five consecutive sessions over 56 min were combined on the day two, 

as shown in Figure 6.14. Session 1-4 are the experimental periods where the sample entropy 

values undergo a slow increase and then decrease. In the rest period (fifth session), there was 

a peak at about 48th minute, and usually the investigators would keep quiet during the rest 

period. We asked the experimenters and they replied that there was no record of possible 

effects causing this peak. Of course, it is not excluded that this patient does some thinking 

in her own mind. The results for patient G in all other channels (FC4, FC5, FC3, FC6, Cz) 

have a similar trend. This sample entropy result shows a high similarity to the Poincaré plot 

result in Figure C.2. 

 
CLIS patient W on day 1 

 
Figure 6.15: The sample entropy result for CLIS patient W on day 1. Top: the channel FC5 result of the 

sample entropy. Bottom: The trigger marks for patient W on day 1. The sessions are indicated between two 

red vertical lines. The periods with numbers are experimental state, and those without numbers are rest state. 

Remark: the data before 27th minute was recorded in the morning and the other part in the afternoon. 

 
Five consecutive sessions over 55 min were combined on the day one for patient W, 

as shown in Figure 6.15, who performed better as patient G in general. The Figure 6.15 

below shows the time windows between 2-10, 14-22, 35-42, and 47-54 min in which the 

investigators asked the questions. The time windows from 0 to 2 min, 10-14 min, 27–35 min, 
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and 42-47 min are the rest states. Remark that in most cases the time difference between 

each session is short, but in this case the data before 27th minute was recorded in the morning 

and the other part in the afternoon. So the baseline is different, but we can still see the 

difference between experimental and resting period clearly.  

The values increase significantly at the 2nd, 14th, 35th, and 47th minutes. Conversely, 

the values decreased significantly at the 12th, 22nd, and 42nd minutes, showing more clearly 

the difference between the resting state and the experimental state at the beginning and the 

end of the questions compared to the Poincaré plot results in Figure C.3. In the third session, 

although slight differences between the experimental and the resting period could still be 

seen, the number of questions in this session was not 20 as usual. Perhaps the experiment 

was stopped because of some necessary nursing actions. As described by (Jaramillo-

Gonzalez et al. 2021), they put the patients’ care and health in the first priority.  

 

CLIS patient W on day 2 

 
Figure 6.16: The sample entropy result for CLIS patient W on day 2. Top: the channel FC5 result of the 

sample entropy. Bottom: The trigger marks for patient W on day 2. The sessions are indicated between two 

red vertical lines. The periods with numbers are experimental state, and those without numbers are rest state.  

 
Three consecutive sessions over 42 min were combined on the day two for patient W, 

as shown in Figure 6.16. The Figure 6.16 below shows the time windows between 12-20, 

23-31, and 34-42 min in which the investigators asked the questions. The time windows 
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from 0 to 12 min, 20-23 min, and 31-34 min are the rest states. The values increase 

significantly at the 14th, 24th, and 34th minutes. Conversely, the values decreased 

significantly at the 20th and 31st minutes, which clearly shows the difference between the 

resting state and the experimental state at the beginning and the end of the questions. The 

results of patient W in these two days are consistent with the time window of trigger marks. 

There is a similar result between channel FC5 and the other channels (FC1, CP1, CP5) 

for patient W, all these channels are located in the left hemisphere. Through the medical 

records we learned that in January 2015, when she completely lost control of her eyes, she 

tries to twitch the right corner of her mouth to answer yes. As we know, the muscles on the 

right side of the body are controlled by the left hemisphere, while the muscles on the left 

side are controlled by the right hemisphere. From the fact that her remaining controllable 

body muscles are on the right side, we can infer that her left hemisphere is more active. 

Although the results of sample entropy and Poincaré plot are similar, Poincaré plot is 

more sensitive one needs to remove some peaks in order to see the consciousness results, so 

the results of later extensions to LIS, MCS, and UWS patients will be dominated by the 

results of sample entropy in this work. 

 

6.1.8 Sample Entropy results from LIS patients 
For the LIS dataset from section 5.3, the top diagram of Figure 6.17-Figure 6.20 shows 

the result of the sample entropy. The figure below shows the trigger marks, those with 

numbers represent experimental state and those without numbers represent rest state. 

Between two red vertical lines indicate sessions. In order to distinguish more clearly the 

difference between experimental and rest time, in these datasets all sessions in a day are 

combined in chronological order in the same figure. The free spelling experiment lasted 

longer, but the experimenter tried to keep the experiment to about 2 hours a day to avoid 

patients' fatigue affecting the experiment results. 

As the results shown in  (Tonin et al. 2020), the LIS patients spelled logical sentences 

during free spelling experiments. The experimenter also received a good number of correct 

answers during training and feedback sessions, thus indicating the consciousness of the P11 

and P13. Figure 6.17-Figure 6.20 are showing the results for two LIS patients over two days 

for each patient. These dates were chosen because there are free spelling sessions on the two 

days and also because consciousness was reported to be better than on the other experimental 

days, and therefore suitable to reliable check for the plausibility of the results.  
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Since the period of spelling sessions indicates more consciousness compared to the 

yes and no questions, since free spelling is a more active action than passively answering 

yes and no questions (Lesenfants et al. 2018), the results of LIS patients focus on the spelling 

sessions and the rest period around them. 

 

LIS patient 11 on day 1 

 
Figure 6.17: The sample entropy result for LIS patient 11 (ALSFRS-R=0) on day 1. Top: the channel F4 

result of the sample entropy. Bottom: The trigger marks for patient 11 on day 1. The sessions are indicated 

between two red vertical lines. The periods with numbers are experimental state, and those without numbers 

are rest state. 

 

Ten consecutive sessions over 110 min were combined on the day one for patient 11, 

as shown in Figure 6.17. The first two sessions are training sessions, the third and fourth 

sessions are feedback sessions, and the other six sessions are spelling sessions. The Figure 

6.17 below shows the time windows between 33-38, 46-49, 57-64, 69-83, and 87-110 min 

in which the patient spelling sentences. The time windows from 22 to 33 min, 38-46, 49-57, 

64-69, and 83-87 min are the rest states. Most of the rest periods before spelling showed 

higher sample entropy values, presumably caused by patients using rest periods to organize 

sentences. When the three experiments of train, feedback and spelling were conducted on 
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the same day, the sample entropy values for most of the rest periods before spelling were 

also higher than those for the train and feedback sessions, which is consistent with active 

action being more conscious than passive action. 

 

LIS patient 11 on day 2 

Twelve consecutive sessions over 130 min were combined on the day two for patient 

11, as shown in Figure 6.18. The first six sessions and the second last session are training 

sessions, the seventh, eighth, and the last sessions are feedback sessions, and the ninth and 

tenth sessions are spelling sessions.  

 
Figure 6.18: The sample entropy result for LIS patient 11 (ALSFRS-R=0) on day 2. Top: the channel F4 

result of the sample entropy. Bottom: The trigger marks for patient 11 on day 2. The sessions are indicated 

between two red vertical lines. The periods with numbers are experimental state, and those without numbers 

are rest state.  

 

The Figure 6.18 below shows the time windows between 68-74 and 76-78 min in 

which the patient spelling sentences. The time windows from 63 to 68 min and 74-76 min 

are rest periods before spelling sessions, and 78-120 min is the rest period after spelling 

session. All rest periods showed high sample entropy values, and patient 11 had similar 

trends in results for all other channels (FC2, FC4, C2, Cz, C1, FC1, FC3, F3) over these two 
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days. This case is the visit 10 in (Tonin et al. 2020), where they reported that during this visit 

the eye-movement amplitude of patient 11 was lower than the other nine visits previously, 

although the accuracy rate for training sessions was 80%, but they defined that no success 

was achieved in feedback and spelling sessions.  

All LIS patients in this dataset are affected by motor neuron disease of ALS, which is 

a neurodegenerative neuromuscular disease that patients in the progressive loss of muscle 

control.  When we followed the investigator (Tonin et al. 2020) to visit this patient in early 

2020, patient 11 can still spell logical sentences at this visit, indicating that although the 

result showed that this patient was more conscious during the rest periods, he was not willing 

to communicate at this time. Secco et al. also report that P11 maintains a consistent EEG 

spectral distribution between May 2018 and September 2019 (Secco et al. 2020), a period 

that spans data from both experiments for P11. 

Due to the absence of a voluntary response at this time in this patient, we presume that 

this patient didn’t want to participate in the experiment at this time due to some 

psychological-emotional problem, such as depression, or some physiological problem, such 

as pain.  

Depending on these kind of observation and in accordance with the presented results, 

it can be argued that sample entropy can be used as a reference indicator for communication 

with patients to let the investigators know the real situation of patients. In order to avoid 

making the experimental results depend on patients' willingness, and also to help the 

investigators to understand and respect the patients' willingness.  

 

LIS patient 13 on day 1 
For patient 13, eight consecutive sessions over 125 min were combined on the day 

one, as shown in Figure 6.19. The first three sessions are training sessions, the fourth session 

is feedback session, and the other four sessions are spelling sessions. The Figure 6.19 below 

shows the time windows between 25-37, 41-71, 85-98, and 103-126 min in which the patient 

spells sentences. The time windows from 19 to 25 min, 37-41, 71-85, 98-103, and 126-129 

min are the rest states. Most of the rest periods before spelling showed higher sample entropy 

values, presumably caused by patients using rest periods to organize sentences. When the 

three experiments of train, feedback and spelling were conducted on the same day, the 

sample entropy values for most of the rest periods before spelling were also higher than those 

for the train and feedback sessions, which is consistent with active action being more 

conscious than passive action. 
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Figure 6.19: The sample entropy result for LIS patient 13 (ALSFRS-R=0) on day 1. Top: the channel F4 

result of the sample entropy. Bottom: The trigger marks for patient 13 on day 1. The sessions are indicated 

between two red vertical lines. The periods with numbers are experimental state, and those without numbers 

are rest state.  

 

LIS patient 13 on day 2 
For patient 13, six consecutive sessions over 100 min were combined on the day two, 

as shown in Figure 6.20. The first two sessions are training sessions, the third session is a 

feedback session, and the other three sessions are spelling sessions. The Figure 6.20 below 

shows the time windows between 17-38, 45-61, and 62-102 min in which the patient spelling 

sentences. The time windows from 12 to 17 min, 38-45, 61-62, and 102-103 min are the rest 

states. We observed that if the rest time between two spelling sessions is too short, for 

example the rest time in 61-62 min, then the value of sample entropy will not increase too 

high, just like the result 74-76 min on the day two for patient 11. The other rest periods 

before and after spelling showed higher values for sample entropy, which were also higher 

than the training and feedback sessions, consistent with active actions being more conscious 

then passive actions. In the last session, the patient freely spelled out "I look forward to a 

vacation", demonstrating a strong will to live. The results for patient 13 in all other channels 

(AF3, F3, C1, Cz, C2, AF4) have a similar trend. 
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Figure 6.20: The sample entropy result for LIS patient 13 (ALSFRS-R=0) on day 2. Top: the channel F4 

result of the sample entropy. Bottom: The trigger marks for patient 13 on day 2. The sessions are indicated 

between two red vertical lines. The periods with numbers are experimental state, and those without numbers 

are rest state. 

 

6.1.9 Sample Entropy results from DOC patients 
In this disorders of consciousness (DOC) dataset, MCS and UWS patients had 

etiologies due to anoxia, traumatic brain injury (TBI) and cerebrovascular accident (CVA). 

To avoid compensatory effects of brain damage such as stroke and cerebral ischemia, the 

resulting distribution of brain functions does not follow the standard Brodmann area (Azari 

and Seitz 2000). Therefore, the consistent results for multiple channels are shown in the 

following sections with the aim of finding an appropriate approach for all patients. 

This DOC dataset from section 5.4, the results of the sample entropy are shown in 

Figure 6.23-Figure 6.29 for a total of 9 segments of polysomnogram (PSG) recordings from 

two minimally conscious state (MCS) patients and four unresponsive wakefulness syndrome 

(UWS) patients. It is assumed that the higher the value, the higher the relative consciousness 

of the patient. The red line indicates that an event occurred near that time point. The magenta 

block indicates events that persist over a period of time to be defined by the relationship of 
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two successive events or the description of the event itself, referred to here as a continuous 

event. 

Cologan et al. suggested that if UWS patients have REM sleep stages or facial 

expressions consistent with stimuli, it is recommended to perform MCS testing first, which 

has a better chance of recovery than patients without REM sleep stages. Based on this dataset 

providers Wielek et al. used unsupervised learning in their paper (Wielek et al. 2018) to 

reveal the presence of different sleep stages in MCS patients, so we will build on this and 

compare whether the sample entropy results are event-related. These data were selected 

because, in addition to the more significant effect of continuous event recording on results, 

consciousness was reported to be better than in the other patients. Therefore, results should 

be more reliable in the context otherwise here presented work. 

 
MCS patient 1  

Figure 6.21 shows 213 minutes PSG recording of patient MCS1. At around the 156th 

minute, the sample entropy value began to increase, and the 186th minute event showed that 

the patient started lunch half an hour ago, so the sample entropy values are consistent with 

this event. Another event (the 204th minute) was that the investigator re-glued the EMG 

channel, but this was a single point event to which the patient did not respond, so it did not 

affect the sample entropy results. The results for patient MCS1 in all other channels (F4, 

FC5, FC6, C3, C4, P3, P4, T3, T4, F7, F8, PO7, PO8, Fz, Cz, Pz, Oz) have a similar trend.  

 
Figure 6.21: The channel F3 result of sample entropy for Patient MCS1. The time points with events are 

indicated in red vertical lines. Continuous event is indicated in magenta block. 
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MCS patient 2 
Figure 6.22 shows 260 minutes PSG recording of patient MCS2. This recording was 

made from 11:23 to 15:43, so we presume that the higher value of the sample entropy at the 

beginning was caused by lunch. After lunch the patient slept for a while and at around the 

156th minute the patient was woken up for the CRS-R (Giacino et al. 2004) test, which took 

20-30 minutes according to the event notes of other patients, which is consistent with the 

relatively high value of sample entropy before the 180th minute. The results for patient MCS2 

in all other 17 channels have a similar trend. 

 
Figure 6.22: The channel P4 result of sample entropy for Patient MCS2. The time point with events are 

indicated in red vertical lines. 

 

 

UWS patient 1 
Figure 6.23 shows over 12 hours PSG recording of patient UWS1. The gray block 

shows the night time period according to the internet to check the sunrise 06:28 and sunset 

19:51 on the day of the location where the experiment was implemented. The nursing staff 

turned off the lights at 185 min and turned them on at 707 min, but it seems that the sunlight 

outside had a greater effect on patient UWS1. No event occurred at sunrise, but the sample 

entropy increased significantly. This is consistent with (Wislowska et al. 2017) indicating 

that light gives “Zeitgebers” to humans, which in turn changes the dynamics of the brain 

between day and night.  
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Figure 6.23: The channel C4 result of sample entropy for Patient UWS1. The night period is shown in gray 

block. The time points with events are indicated in red vertical lines. 

 

Several care actions were performed by nursing staff at 282, 614 and 718 minutes, and 

at 718 min the care action started 5 min ago. All of these actions had an effect on the patient 

also reflected in the rapid rise in sample entropy values. At minute 14, the investigators left 

the room and at 71 minutes and 289 minutes they checked the electrodes. These effects were 

also reflected in a slight increase in the sample entropy values. Channels F3 and F4 lost 

signals after 70 minutes and thus not included, perhaps because the two electrodes were 

disconnected when the EMG electrodes were reconnected at the 71st minute. Similar trends 

to Figure 6.23 were observed in the results of UWS1 for the other 15 channels. 

 
Table 6.1: The event notes for Patient UWS1. 

min event min event 
14 AG leaving room after talking 289 eleks adjust 
71 fixed upper EMG 614 Patient is repositioned 

185 lights off 707 light on 
282 care 718 care start 5min ago 
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UWS patient 2 

 
Figure 6.24: The channel F8 result of sample entropy for Patient UWS2. Continuous events are indicated in 

magenta blocks. 

 

Figure 6.24 shows 115 minutes PSG recording of patient UWS2. From 26th to 46th 

min and from 98 min to 99 min the nursing staff did some care actions. 20 min of care actions 

had a greater effect on this patient effect than 1 min of care actions. The sample entropy 

showed higher values during the care actions despite a 2-3 minute delay during the 20 minute 

care actions. The results for patient UWS2 in all other channels (F3, F4, FC5, FC6, C3, C4, 

P3, P4, T3, T4, F7, PO7, PO8, Fz, Cz, Pz, Oz) have a similar trend. 
 

Table 6.2: The event notes for Patient UWS2. 

min event min event 
26 care start 98 care start 
46 care end 99 care end 

 

UWS patient 3 (PSG1) 
The results of patient UWS3 for a total of 21 hours in a single day are shown in Figure 

6.25-Figure 6.27. Figure 6.25 shows the PSG recordings of the patient's UWS3 overnight 

for over 12 hours. From 297th min to 311th min and from 564th min to 590th min the nursing 

staff did some care actions. The sample entropy showed higher values in the care actions, 

and there is a time point of care action at 90 min, we also see a peak of sample entropy before 

90 min. The nursing staff did insulin administration at 666 min, started the medication at 

702 min, and changed the patient's position at 732 min, so we saw three continuous peaks in 
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the morning. The remaining event was at 153min when the investigator re-glued the 

electrode, but it didn’t have a significant effect on the sample entropy results.  

 

 
Figure 6.25: The channel C4 result of sample entropy for Patient UWS3 (PSG1). The night period is shown 

in gray block. The time points with events are indicated in red vertical lines. Continuous events are indicated 

in magenta blocks. 

 
Table 6.3: The event notes for Patient UWS3 (PSG1). 

min event min event 
90 care 564 care start 

153 reglue chin elecrode 590 care end 
297 care start 666 07:30 Insulin administration 
311 care end 702 medication start   732 positioning 

 

 

UWS patient 3 (PSG2) 
The second PSG recording of the patient UWS3 over seven and a half hours is shown 

in Figure 6.26. At 60 and 360 minutes, several care actions were performed by nursing staff.  

Both impacted the patient and are also reflected in the rapid increase in sample entropy 

values. At 267th and 329th minutes, the investigators checked the electrodes. These impacts 

caused the sample entropy values to increase relatively slightly. 
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Figure 6.26: The channel C4 result of sample entropy for Patient UWS3 (PSG2). The time points with 

events are indicated in red vertical lines. 

 
Table 6.4: The event notes for Patient UWS3 (PSG2). 

min event min event 
60 care action 329 check electrodes 

267 check electrodes 360 start of care action 
 

UWS patient 3 (PSG3) 

 
Figure 6.27: The channel C4 result of sample entropy for Patient UWS3 (PSG3). The time point with events 

are indicated in red vertical lines. 

 

The third PSG recording of the patient UWS3 over 65 minutes is shown in Figure 6.27. 

The only event is that the nurse performed a medication administration at the 30th minute, 
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which obviously caused 5 minutes of relatively higher sample entropy values. The three PSG 

recordings for patient UWS3 in other 17 channels have a similar trend. 

 

UWS patient 4 

 
Figure 6.28: The channel C4 result of sample entropy for Patient UWS4. The time points with events are 

indicated in red vertical lines. 

 

Figure 6.28 shows over seven and a half hours PSG recording of patient UWS4. This 

recording was made from 6:43 to 14:10, so the meal events around 74th and 308th minutes 

were breakfast and lunch times, respectively, and the effect of lunch reflected in sample 

entropy values was more significant than breakfast. Nursing staff performed some care 

actions at 166 and 390 minutes. The impact of these two events on the patients is also 

reflected in the rapid increase in the sample entropy values. The effect of these two events 

on the patient is also reflected in the rapid increase in the sample entropy value. The event 

at 180th min was nutritional intake, which showed a relatively higher sample entropy value. 

Although for this patient there was no record of how long the events lasted, we still found 

relatively high values around the events. The results for patient UWS4 in all other 17 

channels have a similar trend. 

 
Table 6.5: The event notes for Patient UWS4. 

min event min event 
74 eat 308 eat 

166 care action 390 care action 
180 nutrition   

77 



Chapter 6 

6.1.10 Discussion of EEG signal results 
In section 6.1.6-6.1.9, the sample entropy and Poincaré plot methods were applied to 

EEG signals of different patients with different diseases. In the CLIS dataset, most results 

from four patients for a total of eight days showed relatively higher sample entropy values, 

during the time windows where consistent with the communication period. However, the 

results for patient F on day one and part of results for patient G on day one are not in line 

with this trend. Perhaps the patients were able to let their minds wander during the time they 

were not in the experimental period, resulting in higher brain activity during the resting 

period than experimental period. The same phenomena as in the LIS patients occurred during 

the rest periods, when they presumably organized the sentences. Nevertheless, globally, the 

obtained results are correlating with the observations in (Chaudhary et al. 2017). Even 

though this does not prove the correctness of the approach in terms of levels as used in 

medicine, but it indicates that the approach might be correct. Therefore, in this thesis, we 

focus on all cases in which significant changes occurred at the beginning and at the end of 

the experiment, and overall, the patients responded accordingly to the external stimuli. 

We obtained similar results for the sample entropy and Poincaré plot methods, but the 

application of Poincaré plots to the EEG signal requires modification. Since the Poincaré 

plot equation has no tolerance, it directly uses the voltage amplitude of the EEG signal, 

unlike the sample entropy equations have a tolerant coefficient. If some peaks of the Poincaré 

plot exceed one standard deviation of the entire time series of the day, one standard deviation 

needs to be subtracted to obtain a result similar to the sample entropy method. Therefore, we 

focus on the sample entropy method, which can be applied not only to CLIS/LIS patients 

but also to patients with disorders of consciousness (DOC). 

A total of four patients with CLIS and two patients with LIS were analyzed for non-

invasive brain waves, EEG signals, and the following three patterns were observed: 

1. The sample entropy value changed due to the stimulation of the auditory 

experiment. 

2. Patients were presumed to be more focused at the beginning of the experiment, 

and gradually decreased as they became more skilled. As Biederman et al. 

(Biederman and Vessel 2006) describe why people prefer new stimuli and that 

repeated stimuli weaken the brain's response.  

3. Patients were still organizing sentences or thinking before spelling session, 

resulting in higher sample entropy values before the experiment than during the 

experiment. 
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For the Patient 11 on day two, Tonin et al, reported that the patient did not perform 

well in this experiment, the sample entropy results showed that the patient performed more 

brain activity during the resting period than the spelling experiment, as shown in Figure 6.18. 

These two contrasting results indicated that this patient was not ready for communication at 

this time. Moreover, the patient was still able to spell logical sentences when we visited him 

in 2020. Thus, sample entropy can be used as a reference indicator for communication with 

patients to avoid making experimental results dependent on patient willingness and also to 

help investigators understand and respect patient willingness. 

After the experiment of visiting P11, as mentioned in the paper (Tonin et al. 2020) in 

a supplementary video, P11 spelled "Ich brauchen andere Stimme" ("I need another voice") 

in the first free spelling. It took him about 38 minutes and answered 206 questions to spell 

this sentence, which, combined with the fact that the average spelling speed of the patients 

in the experiment mentioned in the article was about 0.5 (chat/minute), indicated that the 

expression of a sentence is a long spelling process for them. I hypothesized that BCI users 

in general need to organize the sentences in their minds during the rest time and try to 

streamline the words as much as possible to achieve the best spelling efficiency. 

We also tried to use permutation entropy in EEG signals, since the method transfers 

the time series to m! patterns, even with higher m parameters, this method still ignores too 

much detail of the time series, so permutation entropy does not perform well compared to 

poincaré plots and sample entropy, but as the result of Figure 6.3 and the report of 

(Wislowska et al. 2017) show, permutation entropy could be a suitable method to reflect the 

circadian regulation of arousal in healthy subjects, CLIS and MCS patients.  

In the disorders of consciousness dataset in section 6.1.9, in total 7 MCS patients and 

11 UWS patients, for the MCS patients who reported to have the REM sleep stage, we choose 

two cases, whereas for the UWS patients, four patients also show the results in the same 

section. Of the experimenters each investigator has a different habit of recording events. 

Nevertheless, if there is only one time point of event notes, we still have some relatively 

high sample entropy values around the event notes. We may not be able to explain every 

peak, but at least for each recorded event in Figure 6.21-Figure 6.28, the sample entropy 

showed an increase in the patient's brain activity for reported events during the experiment.  

As Cologan et al. suggested, if UWS patients have REM sleep stages, it is 

recommended to do MCS testing first. Sample entropy could be a reference index indicating 

that patients' brain activity matches the stimuli, giving them a better chance of recovery than 

patients without this phenomenon. As Wielek et al. have indicated the existence of different 
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sleep stages in MCS patients, not only MCS patients show the expected event response, but 

also unexpected results were seen in UWS patients. Therefore, we hypothesized that in 

addition to measuring sleep stage integrity in UWS patients, perhaps sample entropy could 

be the basis for measuring whether UWS patients are responsive to environmental stimuli. 

In (Wislowska et al. 2017) also revealed that in single-subject analyses, some UWS patients 

may also exhibit circadian differences of brain activity in entropy.  

The main problem with CLIS patients in general is the lack of ground truth. Although 

at night they had healthy sleep and normal circadian rhythms, they often dozed off during 

the day (Lo Coco et al. 2011), so we cannot be certain that the patients answered all questions 

correctly. This is because in order to obtain the baseline from patients, they have to answer 

many questions with known answers and copy spelling of words, caused sometimes they 

were distracted, fatigued, bored, or habituated, which may have resulted in patients 

answering in a way that did not meet the investigator's expectations. In the CLIS and LIS 

datasets, the experimenter controlled the duration of the experiment to about 2 hours per day 

to try to ensure that patient fatigue would not affect the results of the experiment. 

The LIS patients are closest to the state of healthy subjects in the clinical scales of 

consciousness, and with the residual eye movements as the “ground truth” of consciousness, 

in addition to the fact that LIS patients can freely spell out meaningful sentences.  These data 

might have more brain activity than the other datasets, so we select them as the dataset for 

machine learning. 

 

6.2 Machine learning part 
Machine learning is commonly used in the field of brain waves to identify whether a 

patient has a disease such as epilepsy (Pioreckýa et al. 2019), schizophrenia (Dvey-Aharon 

et al. 2015), or to distinguish sleep stages (Güneş et al. 2010), etc. Since all the methods 

mentioned in the feature extraction section currently have different parameter choices and 

individual patient differences, it is difficult to establish a threshold as a general criterion for 

the presence or absence of consciousness in patients. Therefore, in this section, the LIS data 

with the most active brain activity in all datasets are selected and unsupervised learning 

methods are applied to find an individual threshold for each patient 

Many clustering algorithms use distance measures to calculate the similarity between 

observations, such as K-Means or DBSCAN. For this reason, these methods perform better 

in the case of continuous attributes, so here the sample entropy results are subdivided into 

several consecutive 1-minute time series instead of being based on data features. As 
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described in section 6.1.10, the LIS patients are closest to the state of healthy subjects in the 

clinical scales of consciousness, and they can freely spell out meaningful sentences using 

residual eye movements as the "ground truth" of consciousness. These data might have more 

brain activity than the other datasets, which is why we select the LIS patient dataset in section 

5.3 as the dataset for machine learning. In this section, the k-means and density-based spatial 

clustering of applications with noise (DBSCAN) methods were applied to the sample 

entropy results of the EEG signal datasets from LIS patients 11 and 13. To cluster the 

differences in consciousness between the rest and spelling experimental periods of the 2 LIS 

patients, the performance of the patients in response to external stimuli was analyzed. This 

section also presents the cost calculation results of the Elbow method (Kodinariya and 

Makwana 2013) for different k values of k-means and the k-distance graph results for the 

parameter selection of DBSCAN. 

 

6.2.1 k-Means results 
As proposed in section 2.7, this section presents the application of k-Means method to 

the sample entropy results in section 6.1.8, focusing on the clustering analysis during the 

spelling experimental period and the resting period before and after the experiment. The k-

Means results are shown in the odd numbered figures in Figure 6.29-Figure 6.37, where the 

x-axis and y-axis show the values of sample entropy after mean normalization and feature 

scaling. The black cross is the center of the cluster at each iteration. 

To increase the amount of data, the 1-minute time series were overlapped with a 10-

second moving window, and the overlap also made the data features (maximum, minimum, 

median, mean, standard deviation, median, and variance) more similar to improve the 

homogeneity of the input data and reduce outliers. Since the data characteristics are similar 

for each series (t=1,2,3,4,5,6), only the t=1 vs. t=2 figures are shown here. 

Since an algorithm like k-Means always partitions the dataset at the midpoint between 

the centers of two clusters, and the original two periods vary in size, the period with less data 

is used as the basis in this approach to make the two periods approximately equal in size. In 

addition, if the sample entropy values after mean normalization and feature scaling of the 

two periods overlap, these overlapping values may come from either the experimental period 

or the resting period , which will cause instability in the clustering results (Pham et al. 2005). 

The elbow method is used to show the cost of k-Means with different numbers of 

clusters, as shown in the even numbered figures in Figure 6.30-Figure 6.38, where the x-axis 
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represents the number of clusters and the y-axis represents the cost. The costs are calculated 

with reference to section 2.8. For all k-Means results, we already know that there are at least 

two clusters for the spelling experimental and resting periods. As the results of elbow method 

shows that k=3 is the appropriate cluster size, the results for k=2 and k=3 will be presented 

in the odd numbered figures in Figure 6.29-Figure 6.37. 

 

LIS patient 11 on day 1 
Figure 6.29 shows the k-Means results for patient 11 on day one, including 914 1-

minute time series, half of which are from the spelling experimental period and the other 

half from the rest period. If the sample entropy values after mean normalization and feature 

scaling of the two periods still overlap, leading to unstable clustering results, the data 

analysis here is based on the data volume on another day of the same patient in the less 

spelling experimental period. 

 

 

Figure 6.29: The k-Means results for LIS patient 11 (ALSFRS-R=0) on day 1, where the x-axis and y-axis 

show the sample entropy values after mean normalization and feature scaling at different time points (t=1 vs. 

t=2). The black crosses are the centers of the clusters at each iteration, both figures show the results after 20 

iterations. Left: k=2. Right: k=3. 

 

For all k-Means results, we already know that there are at least two clusters for the 

spelling experimental and resting periods. The elbow method in Figure 6.30 shows the cost 

of k-Means for patient 11 on the day one in different clusters. Although it is less obvious 

compared to Figure 6.32, it can still be seen that the cost decreases rapidly as k increases 

from 1 to 3, and then reaches an elbow where the cost equals 0.3051, after which the 
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deviation decreases slowly. Since the cost at this point is at the elbow of this curve, k equals 

3 is the appropriate number of clusters. 

 

 
Figure 6.30: Cost of k-Means for LIS patient 11 on day 1, where the x-axis represents the number of clusters 

and the y-axis represents the cost. 

 

The third cluster, based on the original sample entropy results in Figure 6.17, is 

presumed to be caused by the different rest periods, where patients may have less need to 

think about new sentences in the later period because they have already organized the 

sentences in the previous period. Even in the result with the lower cost of k=4, the clusters 

of the spelling experimental period (red) were not separated into two clusters, but the resting 

period was divided into three clusters, which shows that the brain activity of the patients was 

quite consistent when the spelling experiment was performed. 

For the spelling experimental periods of patient 11 on day one, the sample entropy 

value after mean normalization and feature scaling was approximately below 0. This is the 

same as the clustering result for this patient on another day, but different from patient 13, 

probably due to individual differences between patients. The clustering number of 3 is 

generally consistent with the DBSCAN results in Figure 6.40. 

 

LIS patient 11 on day 2 
Figure 6.31 shows the k-Means results for patient 11 on day two. On this day, the data 

amount of the spelling experimental period with less data was used as the basis, and the same 

data amount was taken during the rest period, so that the data amounts of the two periods 
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were equal, including a total of 908 1-minute time series, half of which are from the spelling 

experimental period and the other half from the rest period. 

 

 
Figure 6.31: The k-Means results for LIS patient 11 (ALSFRS-R=0) on day 2, where the x-axis and y-axis 

show the sample entropy values after mean normalization and feature scaling at different time points (t=1 vs. 

t=2). The black crosses are the centers of the clusters at each iteration, both figures show the results after 20 

iterations. Left: k=2. Right: k=3. 

 

 
Figure 6.32: Cost of k-Means for LIS patient 11 on day 2, where the x-axis represents the number of clusters 

and the y-axis represents the cost. 
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The elbow method in Figure 6.32 shows the cost of k-Means for patient 11 on the day 

two in different clusters. It is clear to see that the cost decreases rapidly as k increases from 

1 to 3, and then reaches an elbow where the cost equals 0.3025, after which the distortion 

decreases very slowly. Since the cost at this point is at the elbow of this curve, k equals 3 is 

the correct number of clusters. 

Except for the two clusters of spelling experimental periods and rest periods that we 

already know. The third cluster, based on the original sample entropy results in Figure 6.18, 

presumed that the rest period was distinguished into several clusters due to the process of 

slowly increasing and then decreasing sample entropy values during the rest period of the 

two experimental periods. Even in the result with the lower cost of k=4, the clusters of the 

spelling experimental period (red) were not separated into two clusters, but the resting period 

was divided into three clusters, which shows that the brain activity of the patients was quite 

consistent when the spelling experiment was performed. 

The sample entropy value after mean normalization and feature scaling was 

approximately less than 0 for the spelling experimental periods of patient 11 on day two, 

consistent with the clustering result for this patient on another day, but different from patient 

13, probably due to individual differences between patients. The clustering number of 3 is 

generally consistent with the DBSCAN results in Figure 6.42. 

 
LIS patient 13 on day 1 

Figure 6.33 shows the k-Means results for patient 13 on day one, including 1070 1-

minute time series, half of which are from the spelling experimental period and the other 

half from the rest period. The data from this day, even with the data from the rest period on 

another day with less data from the same patient as the basis for data analysis, the sample 

entropy values after mean normalization and feature scaling from the two periods still 

overlap, leading to unstable clustering results. 

For all k-Means results, we already know that there are at least two clusters for the 

spelling experimental and resting periods. The elbow method in Figure 6.34 shows the cost 

of k-Means for patient 13 on the day one in different clusters. Although it is less obvious 

compared to Figure 6.36, it can still be seen that the cost decreases rapidly as k increases 

from 1 to 3, and then reaches an elbow where the cost equals 0.3986, after which the 

distortion decreases slowly. Since the cost at this point is at the bend of this curve, k equals 

3 is the appropriate number of clusters. 
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Figure 6.33: The k-Means results for LIS patient 13 (ALSFRS-R=0) on day 1, where the x-axis and y-axis 

show the sample entropy values after mean normalization and feature scaling at different time points (t=1 vs. 

t=2). The black crosses are the centers of the clusters at each iteration, both figures show the results after 20 

iterations. Left: k=2. Right: k=3. 

 

 
Figure 6.34: Cost of k-Means for LIS patient 13 on day 1, where the x-axis represents the number of clusters 

and the y-axis represents the cost. 

 

The third cluster, based on the original sample entropy results in Figure 6.19, 

presumed that the rest period was distinguished into several clusters due to the process of 

slowly increasing and then decreasing sample entropy values during the rest period of the 

two experimental periods.  
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The sample entropy values of the two periods after mean normalization and feature 

scaling still overlap after data reduction, the distinction of the clusters for patient 13 on the 

day one is not clear, but compared with the clustering results for this patient on another day, 

it can be seen that the sample entropy values after mean normalization and feature scaling 

for the spelling experimental period of this patient are approximately below 0.25. This is 

different from patient 11 and may be due to individual differences between patients. 

Compared to the DBSCAN results in Figure 6.44, although the red clusters in both figures 

are similar for the spelling experimental period in Patient 13 on the day one, the green 

clusters for K-means are much wider than the blue clusters for rest period of DBSCAN. 

 
LIS patient 13 on day 2 

Figure 6.35 shows the k-Means results for patient 13 on day two. On this day, the data 

amount of the rest period with less data was used as the basis, and the same data amount was 

taken during the spelling experimental period, so that the data amounts of the two periods 

were equal, including a total of 1068 1-minute time series, half of which are from the spelling 

experimental period and the other half from the rest period. 
 

 

Figure 6.35: The k-Means results for LIS patient 13 (ALSFRS-R=0) on day 2, where the x-axis and y-axis 

show the sample entropy values after mean normalization and feature scaling at different time points (t=1 vs. 

t=2). The black crosses are the centers of the clusters at each iteration, both figures show the results after 20 

iterations. Left: k=2. Right: k=3. 
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The elbow method in Figure 6.36 shows the cost of k-Means for patient 13 on the day 

two in different clusters. It is clear to see that the cost decreases rapidly as k increases from 

1 to 3, and then reaches an elbow where the cost equals 0.3524, after which the distortion 

decreases very slowly. Since the cost at this point is at the bend of this curve, k equals 3 is 

the correct number of clusters. 

 

 
Figure 6.36: Cost of k-Means for LIS patient 13 on day 2, where the x-axis represents the number of clusters 

and the y-axis represents the cost. 

 

Except for the two clusters of spelling experimental periods and rest periods that we 

already know. The third cluster, based on the original sample entropy results in Figure 6.20, 

presumed that the rest period was distinguished into several clusters due to the process of 

slowly decreasing sample entropy values in the first rest period. Even in the result with the 

lower cost of k=4, the clusters of the spelling experimental period (red) were not separated 

into two clusters, but the resting period was divided into three clusters, which shows that the 

brain activity of the patients was quite consistent when the spelling experiment was 

performed. 

The sample entropy value after mean normalization and feature scaling was 

approximately less than 0.25 for the spelling experimental periods of patient 13 on day two, 

consistent with the clustering result for this patient on another day, but different from patient 

11, probably due to individual differences between patients. The clustering number of 3 is 

generally consistent with the DBSCAN results in Figure 6.46. 
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LIS patient 11&13 on day 2 
Figure 6.37 shows the results of combining the data from patients 11 and 13 on the 

day two as input data for k-Means analysis, which included a total of 1976 1-minute time 

series, half of which were from the spelling experimental period and the other half from the 

rest period. The reason for choosing these two days was to take one day for each of the two 

patients to see if the inclusion of individual differences would still present consistent results 

with those of a single patient. On the other hand, the amount of data in both days depends 

on the period with less data, rather than reducing the amount of data, because there is a large 

overlap between the two periods, so that the sample entropy values after the mean 

normalization and feature scaling in the experimental and rest periods overlap less, and the 

problem of unstable clustering results can be avoided as much as possible. 

 

 

Figure 6.37: The k-Means results for LIS patient 11 &13 (ALSFRS-R=0) on day 2, where the x-axis and y-

axis show the sample entropy values after mean normalization and feature scaling at different time points 

(t=1 vs. t=2). The black crosses are the centers of the clusters at each iteration, both figures show the results 

after 20 iterations. Left: k=2. Right: k=3. 

 

As we know, the input data included spelling experiments and rest periods for both 

patients. The elbow method in Figure 6.38 shows the cost of k-Means for patient 11 & 13 

on the day two in different clusters. When k increases from 1 to 3, the cost decreases rapidly 

and then reaches an elbow where the cost equals 0.3727, after which the distortion decreases 

slowly. Since the cost at this point is at the elbow of this curve, k equals 3 is the correct 

number of clusters.  
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Figure 6.38: Cost of k-Means for LIS patient 11 & 13 on day 2, where the x-axis represents the number of 

clusters and the y-axis represents the cost. 

 

The third cluster, based on the original sample entropy results in Figure 6.18 and 

Figure 6.20, presumed that the rest period was distinguished into several clusters due to the 

process of slowly increasing and then decreasing sample entropy values during the rest 

period of the two experimental periods.  

The difference with the single-patient results is that the clustering of the spelling 

experimental period (red) for the result with the lower cost of k=4 is separated into two 

clusters, which shows the individual difference between the two patients. This is because in 

the k-Means analysis for a single patient, the sample entropy value after mean normalization 

and feature scaling for the spelling experimental period was approximately below 0 for 

patient 11 and below 0.25 for patient 13. But overall, however, the results of the analysis 

with a cluster number of 3 are generally consistent with the DBSCAN results in Figure 6.48. 

 

6.2.2 DBSCAN results 
As proposed in section 2.9, this section presents the application of DBSCAN method 

to the sample entropy results in section 6.1.8, focusing on the clustering analysis during the 

spelling experimental period and the rest period before and after the experiment. The 

DBSCAN results are shown in the even numbered figures in Figure 6.40-Figure 6.48, where 

the x-axis and y-axis show the values of sample entropy after mean normalization and feature 

scaling.  
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To increase the amount of data, the 1-minute time series were overlapped with a 10-

second moving window, and the overlap also made the data features (maximum, minimum, 

median, mean, standard deviation, median, and variance) more similar to improve the 

homogeneity of the input data and reduce outliers. Since the data characteristics are similar 

for each series (t=1,2,3,4,5,6), only the t=1 vs. t=2 figure is shown here.  

In the DBSCAN method, the smaller cluster can be considered as noise if the number 

of the two clusters is significantly different. Due to the different sizes of the two original 

periods, this work uses the period with the least data as the base, so that the spelling 

experimental period and the rest period are approximately the same size (Pham et al. 2005). 

The k-distance graph is used as the basis for parameter selection, as shown in the odd 

numbered figures in Figure 6.39- Figure 6.47, where the x-axis represents the points sorted 

by distance and the y-axis represents the epsilon (ε) values. The parameter selection is 

described with reference to section 2.10. 

 
LIS patient 11 on day 1 

Figure 6.39 shows the k-distance graph for the patient 11 on day one. According to 

the rule of thumb density threshold minPts≥D+1, and Sander et al. suggested minPts=2×D 

(Sander et al. 1998), here the dimension is 6, so the minPts parameter of DBSCAN is set to 

7, 10, 12 and 15. Since the clustering is more robust when minPts is set to a larger value, and 

the optimal k-th nearest distance is located at the elbow of this k-distance graph. Therefore, 

for the resting period and spelling experimental period of patient 11 on day one, minPts was 

set to 15 and ε was chosen equal to 0.55. 

Figure 6.40 shows the DBSCAN results for patient 11 on the day one, including 914 

1-minute time series, half of which are from the spelling experimental period and the other 

half are from the rest period. Here the input data is the same as k-Means, which facilitates 

the comparison of the subsequent results and also avoids significant differences in the 

number of the two periods, causing the smaller period to be considered as noise. 

According to the parameter selection of k-distance in Figure 6.39, the results of 

DBSCAN show a total of three clusters, besides the already known spelling experimental 

period (red crosses) and the rest period (blue crosses), there are also noise (black circles), 

and the noise is mainly distributed in the part where the two clusters overlap, and in some 

places far from the center of the rest cluster. 
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Figure 6.39: The k-distance graph for LIS patient 11 on day 1, where the x-axis represents the points sorted 

by distance and the y-axis represents the epsilon (ε) values. Four cluster levels are displayed in blue, red, 

yellow, and purple when the minPts parameter of DBSCAN is set to 7, 10, 12 and 15, respectively. 

 
Figure 6.40: The DBSCAN results for LIS patient 11 (ALSFRS-R=0) on day 1, where the x-axis and y-axis 

show the sample entropy values after mean normalization and feature scaling at different time points (t=1 vs. 

t=2). All time series are divided into two clusters (red and blue crosses) and noise (black circles). 

 

It can easily be seen in the Figure 6.29 that the DBSCAN cluster distribution is 

essentially the same as the k-means result (k=2). It was found that the sample entropy value 
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after mean normalization and feature scaling was approximately less than 0 for the spelling 

experimental period of patient 11 on the day one, which is in agreement with the clustering 

result of this patient on another day, but unlike the clustering result of patient 13, which is 

probably caused by the individual differences between the patients, and this result is also 

consistent with the clustering in the period of spelling experiment of k-means. 

 

LIS patient 11 on day 2 
The k-distance graph for the patient 11 on day two is shown in Figure 6.41. By the 

rule of thumb density threshold minPts≥D+1, and minPts=2×D proposed by Sander et al. 

(Sander et al. 1998), the dimension here is 6, thus the minPts parameter of DBSCAN is set 

to 7, 10, 12 and 15. When minPts is set to a larger value, the clustering is more robust, and 

the optimal k-th nearest distance is located at the elbow of this k-distance graph. This is why 

minPts was set to 15 and ε was made equal to 0.52 for the resting period and spelling 

experimental period of patient 11 on day two. 

 
Figure 6.41: The k-distance graph for LIS patient 11 on day 2, where the x-axis represents the points sorted 

by distance and the y-axis represents the epsilon (ε) values. Four cluster levels are displayed in blue, red, 

yellow, and purple when the minPts parameter of DBSCAN is set to 7, 10, 12 and 15, respectively. 

 

The DBSCAN results for patient 11 on the day two are shown in Figure 6.42. The 

input data here is the same as k-Means and consist of 908 1-minute time series, half of which 

are from the spelling experimental period and the other half are from the rest period, which 
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facilitates the comparison of the subsequent results and also avoids significant differences 

in the number of the two periods, resulting the smaller period to be considered as noise.  

Based on the parameter selection of k-distance in Figure 6.41, the results of DBSCAN 

indicate a total of three clusters, except for the already known spelling experimental period 

(red crosses) and the rest period (blue crosses), there are also noise (black circles). The noise 

is mainly distributed in the part where the two clusters overlap and most of the places are far 

from the center of the rest clusters. 

 
Figure 6.42: The DBSCAN results for LIS patient 11 (ALSFRS-R=0) on day 2, where the x-axis and y-axis 

show the sample entropy values after mean normalization and feature scaling at different time points (t=1 vs. 

t=2). All time series are divided into two clusters (red and blue crosses) and noise (black circles). 

 

In Figure 6.31, it is easy to see that the DBSCAN cluster distribution essentially 

matches the k-means result (k=2). The red clusters in both figures are the spelling experiment 

of patient 11 on the day two, whose sample entropy values after mean normalization and 

feature scaling are approximately below 0. The sample entropy values between 0 and 1.2 are 

the rest periods, and the noise distribution further away from the center of rest cluster. 

Overall, the density of DBSACN was high in the experimental period for patient 11, and 

there were few noises near the experimental period, which is consistent with the results of 

k-means (k=4), which still did not divide the spelling experimental clusters into two clusters, 

showing the consistency of brain wave activity when patients participated in the experiment.  
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LIS patient 13 on day 1 
Figure 6.43 shows the k-distance graph for the patient 13 on day one. According to 

the rule of thumb minPts≥D+1, and Sander et al. suggested minPts=2×D (Sander et al. 1998), 

here the dimension is 6, so the minPts parameter of DBSCAN is set to 7, 10, 12 and 15. 

Since the clustering is more robust when minPts is set to a larger value, and the optimal 

epsilon (ε) parameter is located at the elbow of this k-distance graph. Therefore, for the 

resting period and spelling experimental period of patient 13 on day one, minPts was set to 

15 and ε was chosen equal to 0.37. 

 
Figure 6.43: The k-distance graph for LIS patient 13 on day 1, where the x-axis represents the points sorted 

by distance and the y-axis represents the epsilon (ε) values. Four cluster levels are displayed in blue, red, 

yellow, and purple when the minPts parameter of DBSCAN is set to 7, 10, 12 and 15, respectively. 

 

Figure 6.44 shows the DBSCAN results for patient 13 on the day one, including 1070 

1-minute time series, half of which are from the spelling experimental period and the other 

half are from the rest period. Here the input data is the same as k-Means, which facilitates 

the comparison of the subsequent results and also avoids significant differences in the 

number of the two periods, causing the smaller period to be considered as noise. 

According to the parameter selection of k-distance in Figure 6.43, the results of 

DBSCAN show a total of three clusters, besides the already known spelling experimental 

period (red crosses) and the rest period (blue crosses), there are also noise (black circles).  
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Figure 6.44: The DBSCAN results for LIS patient 13 (ALSFRS-R=0) on day 1, where the x-axis and y-axis 

show the sample entropy values after mean normalization and feature scaling at different time points (t=1 vs. 

t=2). All time series are divided into two clusters (red and blue crosses) and noise (black circles). 

 

It is easily seen in Figure 6.33 that the DBSCAN cluster distribution does not match 

the k-mean results. The density difference between the spelling experimental period, rest 

period and noise for patient 13 on the day one was not significant, so the results of the 

DBSCAN clustering distribution considered the sample entropy values after mean 

normalization and feature scaling between about 0.25-0.55 as the rest period, while the range 

of rest periods was larger on other days. As described in section 6.1.8, patient 13 was able 

to freely spell "I look forward to a vacation" on day two, but the sentences were spelled 

without meaning on the day one. Based on the original sample entropy results in Figure 6.19, 

it is presumed that Patient 13 was unable to concentrate due to the process of slowly 

increasing sample entropy values in the latter part of the experimental periods on this day. 

 
LIS patient 13 on day 2 

The k-distance graph for the patient 13 on day two is shown in Figure 6.45. By the 

rule of thumb minPts≥D+1, and minPts=2×D proposed by Sander et al. (Sander et al. 1998), 

the dimension here is 6, thus the minPts parameter of DBSCAN is set to 7, 10, 12 and 15. 

When minPts is set to a larger value, the clustering is more robust, and the optimal epsilon 

(ε) parameter is located at the elbow of this k-distance graph. This is why minPts was set to 
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15 and ε was made equal to 0.48 for the resting period and spelling experimental period of 

patient 13 on day two. 

 
Figure 6.45: The k-distance graph for LIS patient 13 on day 2, where the x-axis represents the points sorted 

by distance and the y-axis represents the epsilon (ε) values. Four cluster levels are displayed in blue, red, 

yellow, and purple when the minPts parameter of DBSCAN is set to 7, 10, 12 and 15, respectively. 

 
Figure 6.46: The DBSCAN results for LIS patient 13 (ALSFRS-R=0) on day 2, where the x-axis and y-axis 

show the sample entropy values after mean normalization and feature scaling at different time points (t=1 vs. 

t=2). All time series are divided into two clusters (red and blue crosses) and noise (black circles). 
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The DBSCAN results for patient 13 on the day two are shown in Figure 6.46. The 

input data here is the same as k-Means and consist of 1068 1-minute time series, half of 

which are from the spelling experimental period and the other half are from the rest period, 

which facilitates the comparison of the subsequent results and also avoids significant 

differences in the number of the two periods, resulting the smaller period to be considered 

as noise.  

Based on the parameter selection of k-distance in Figure 6.45, the results of DBSCAN 

indicate a total of three clusters, except for the already known spelling experimental period 

(red crosses) and the rest period (blue crosses), there are also noise (black circles). The noise 

is mainly distributed in the part where the two clusters overlap and most of the places are far 

from the center of the rest clusters. 

It can be easily seen in Figure 6.35 that the DBSCAN cluster distribution results are 

similar to the k-mean results (k=3). The red clusters in both figures are the spelling 

experiment of patient 13 on the day two, whose sample entropy values after mean 

normalization and feature scaling are approximately below 0.25. The sample entropy values 

between 0.25 and 1 are the rest periods similar to the green clusters with k-means, and the 

noise distribution further away from the center of rest cluster resembles the blue clusters for 

k-means. Overall, the density of DBSACN was high in the experimental period, and there 

were few noises were near the experimental period, which is consistent with the results of k-

means (k=4), which still did not divide the spelling experimental clusters into two clusters, 

showing the consistency of brain wave activity when patients participated in the experiment. 

 

LIS patient 11&13 on day 2 
Figure 6.47 shows the k-distance graph for the patient 11 and 13 on day two. In 

accordance with the rule of thumb minPts≥D+1, and Sander et al. suggested minPts=2×D 

(Sander et al. 1998), here the dimension is 6, so the minPts parameter of DBSCAN is set to 

7, 10, 12 and 15. Since the clustering is more robust when minPts is set to a larger value, and 

the optimal epsilon (ε) parameter is located at the elbow of this k-distance graph. 

Consequently, minPts was set to 15 and ε was chosen equal to 0.4 for the resting period and 

spelling experimental period of patient 11 and 13 on day two,. 

98 



 
Results 

 

 
Figure 6.47: The k-distance graph for LIS patient 11 & 13 on day 2, where the x-axis represents the points 

sorted by distance and the y-axis represents the epsilon (ε) values. Four cluster levels are displayed in blue, 

red, yellow, and purple when the minPts parameter of DBSCAN is set to 7, 10, 12 and 15, respectively. 

 
Figure 6.48: The DBSCAN results for LIS patient 11 & 13 (ALSFRS-R=0) on day 2, where the x-axis and 

y-axis show the sample entropy values after mean normalization and feature scaling at different time points 

(t=1 vs. t=2). All time series are divided into two clusters (red and blue crosses) and noise (black circles). 
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Figure 6.48 shows the DBSCAN results for patient 11 and 13 on the day two, including 

1976 1-minute time series, half of which are from the spelling experimental period and the 

other half are from the rest period. Here the input data is the same as k-Means, which 

facilitates the comparison of the subsequent results and also avoids significant differences 

in the number of the two periods, causing the smaller period to be considered as noise. 

According to the parameter selection of k-distance in Figure 6.47, the results of 

DBSCAN show a total of three clusters, besides the already known spelling experimental 

period (red crosses) and the rest period (blue crosses), there are also noise (black circles), 

and the noise is mainly distributed in the part where the two clusters overlap, and in some 

places far from the center of the rest cluster. 

There is an easy observation in Figure 6.37 that the DBSCAN cluster distribution 

results are similar to the k-mean results (k=3). The red clusters in both figures are the spelling 

experiment of patient 11 and 13 on the day two, whose sample entropy values after mean 

normalization and feature scaling are approximately below 0.25. The sample entropy values 

between 0.25 and 1 are the rest periods similar to the blue clusters with k-means, and the 

noise distribution further away from the center of rest cluster resembles the green clusters 

for k-means. Overall, the density of DBSACN was high in the experimental period, and there 

were few noises near the experimental period. 

 

6.2.3 Discussion of machine learning results 
In section 6.2, the k-means and DBSCAN methods were applied to the sample entropy 

results for two days each of two LIS patients, and both clusters of resting and spelling 

experimental periods were clearly observed for three of these four days. 

The data set for each period was selected on the basis of the smallest period of two 

days' data for the same patient. Patient 11 had more than 450 1-minute time series per period 

and patient 13 had less than 550 1-minute time series, so that the data for both patients could 

be combined later with 500 ± 50 1-minute time series per period. First, one is to try to avoid 

the overlap of sample entropy values after mean normalization and feature scaling in the two 

periods, which leads to unstable clustering results. Second, it avoids significant differences 

in the number of the two periods, which leads to the smaller period being considered as noise. 

The results of two patients for each of two days were analyzed separately. In the k-

means analysis for a single patient, the sample entropy values after mean normalization and 

feature scaling for the spelling experimental period were approximately below 0 for patient 

11 and below 0.25 for patient 13. The DBSCAN results were similar to k-Means results, 

100 



 
Results 

 

except that the density of the resting period on day one for patient 13 could not be 

distinguished from that of the experimental period. 

Regarding the number of clusters for a single day of a patient, in addition to the two 

known clusters of spelling experimental period and resting period, the most suitable number 

of clusters for k-means according to the results of the elbow method is three, which is 

probably due to the fact that the sample entropy value of the rest period has a slowly 

increasing and then decreasing process between the two experimental periods, which 

separates the rest period into several clusters. The DBSCAN results also showed 3 clusters, 

besides the already known spelling experimental period and the resting period, there was 

also noise, the noise was mainly distributed in the part where the two clusters overlapped, 

and except for patient 13 on the day one, far from the center of the rest period in most places. 

However, there was almost no noise near the experimental period, which is consistent with 

the results of k-means, even if the number of clusters was set to four, it still did not divide 

the spelling experiment cluster into two clusters, indicating the consistency of brainwave 

activity when patients participated in the experiment. 

Finally, in order to see if individual differences had an effect, both k-Means and 

DBSCAN showed results for 3 clusters when combining two patients for one day each, and 

the results were consistent with those of a single patient. The sample entropy value after 

mean normalization and feature scaling of the spelling experimental period was below 0.25 

due to the merging of data from patients 11 and 13. And individual differences are also 

reflected in k-means results, and the spelling experiment clusters were divided into two 

clusters when the number of clusters was set to 4. 

In my opinion, DBSCAN can better find the appropriate number of clusters because 

an algorithm like k-Means splits the data set at the midpoint of two clusters, so when using 

the k-Means algorithm, it is important to keep the input data equal for both periods. However, 

in the case for a single day of a patient with k=4 set in k-Means, the consistency of the 

patient's consciousness during participation in the experiment is verified, so the k- Means 

algorithm can be used as a confirmation of the DBSCAN algorithm. 
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7.1 Discussion 
The human brain is the most complex organ in the world. As technology becomes 

more advanced, people understand more and more about every organ of the body, the human 

brain is still the most unknown part of the human body. Although people have tried to 

explore and unravel the mystery of the human brain for centuries, our understanding of it is 

still limited.  

CLIS is like being in a prolonged state of muscle relaxant without anesthetic during 

surgery, or it is like experiencing one in a thousand chance of anesthetic awareness during 

anesthesia. Both CLIS patients and DOC patients have concerns of band shifts to lower 

frequencies that are easily recognized as deep sleep states in healthy individuals, as 

explained in section 3.2. Therefore, in this thesis sample entropy, permutation entropy, and 

Poincaré plots are used as feature extraction to analyze consciousness from continuously 

recorded brainwave signals from patients with different clinical states of consciousness. 

Not only the time domain methods avoid the problem of lower frequency bands in 

CLIS and DOC patients, but also these methods have been proposed for monitoring brain 

waves of patients in surgery (Hayashi et al. 2014; Kreuzer et al. 2014; Wei et al. 2014; 

Hayashi et al. 2015). An anesthetic procedure can map the entire process from loss of 

 

“The brain is the organ of destiny. It holds within its humming mechanism secrets 

that will determine the future of the human race.” 

– Wilder Penfield (1891-1976) 
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consciousness to recovery (see Figure 2.1), and there are more anesthesia cases than CLIS 

patients or DOC patients, so these methods has been well validated in the field of anesthesia, 

which greatly improves their applicability to CLIS patients. Of course, general anesthesia 

here refers to healthy people without brain damage. The following lists the patient types and 

brain signal types applied in this thesis. 

 One CLIS patient with invasive ECoG signals  

 Four CLIS patients with non-invasive EEG signals  

 Two LIS patients (ALSFRS-R=0) with non-invasive EEG signals 

 Two MCS patients with non-invasive EEG signals  

 Four UWS patients with non-invasive EEG signals 

The CLIS patient GR with the invasive ECoG signal is the only CLIS patient dataset 

I know of with such "ground truth" and it has an 88% accuracy response rate (Wu et al. 

2020). Four CLIS patients B, F, G, and W show similar results not only by sample entropy 

but also by Poincaré plots analysis, which are consistent with the observations in (Chaudhary 

et al. 2017). It indicates that the results of both analytical methods could be correct. Two LIS 

patients11 and 13 with the remaining eye movements as the “ground truth” of consciousness 

were again able to demonstrate the feasibility of the sample entropy method for LIS patients 

based on the logical sentences they could spell. In six DOC patients, sample entropy showed 

an increase in patient brain activity for reported events during the experiment. 

These above results applied to various types of patients, different types of brain signals 

and across different time scales (including sleep), demonstrate the feasibility of these 

methods in CLIS patient, where sample entropy showed good resolution for both ECoG 

signals up to 24 hours a day and EEG signals focused on one or two hours at the time of the 

experiment. It is also found that permutation entropy can be a reference indicator to monitor 

whether the patient is in sleep state. In addition, not all patients are responsive to external 

environmental stimuli, both CLIS and DOC patients have the problem that the more severe 

the disease, the more fragmented the sleep state (Cologan et al. 2013; Soekadar et al. 2013). 

If the patient can still measure the complete sleep stages, it means that the patient still has 

internal brain activity. Finally, k-Means and DBSCAN as the unsupervised learning methods 

were used for two LIS patients with ALSFRS-R score of 0 to estimate the consciousness 

threshold for individual participation in the experiment. 

All the results in this thesis are multiple channels that presented a consistent tendency, 

first, it indicates that the patient was fully involved in the experiment, and second, to avoid 

the compensatory effect of brain damage/brain lesions caused by car accidents or strokes 
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resulting in the patient's Brodmann area to be different from the general healthy subjects. 

Although detection of consciousness with these methods may involve only a small number 

of patients with CLIS and DOC, as Tonin et al. (Tonin et al. 2020) reported that slow spelling 

speed (ca. 0.5 char/min) is preferred by patients compared to experienced social isolation, 

these methods have the potential to identify features of the conscious state, which provides 

rehabilitation or improved communication possibilities for these patients. 

Like the Salzburg (Austria) dataset, there is another one that also did sleep analysis 

from Liège (Belgium). Since the dataset did not contain event notes, the sample entropy 

results could not be checked against the event notes, so the results were not included in the 

results chapter, although I found that the value of sample entropy seems to be related to the 

number of months between the time of data collection and death. Unfortunately, this data set 

does not record this number of months for all patients who died. Therefore, the following 

figure shows the analysis for the 6 patients with such records. 

 

 
Figure 7.1: The average value of sample entropy for 24 h at the time of experiment for 6 patients versus the 

number of months between experiment and death. 

 

There are five patients from the dataset from Liege, Belgium and one from the dataset 

from Salzburg, Austria. All these 6 patients are diagnosed as Unresponsive Wakefulness 

Syndrome (UWS). In Figure 7.1 shows the average value of sample entropy for 24 h, three 

of the patients had higher sample entropy values when they were more than 6 years and less 

than 1 year before death, and the other three had lower sample entropy values when they 

were about 2 years before death. 
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It seems that the value of sample entropy decreases as the patients get closer to the 

moment of passing away, but increases steeply within a year before the time of death. I hope 

that by observing the value of the sample entropy can help doctors to predict the current 

status of patients. However, due to individual differences and the course of each disease, 

more information needs to be collected to confirm this claim. For example, the same 

experiment should be performed with the same patient every month in order to follow the 

variation of the sample entropy values, etc. Perhaps in the future it can serve as a reference 

index for physicians when evaluating whether to turn off a patient's life-sustaining 

equipment. 

 

7.2 Conclusions & Future work 
In this thesis, three approaches for detecting the state of consciousness in complete 

locked-in patients are presented: sample entropy, permutation entropy, and Poincaré plot, 

implemented not only in intracranial ECoG signals with greater signal-to-noise ratio (SNR) 

and higher signal amplitude, but also in non-invasive EEG signals widely used in brainwave 

studies. The portability of EEG signals is a major advantage compared to large instruments 

such as fMRI. The analysis of time domain signals prevents disease-related reduction of 

EEG frequency bands in CLIS/LIS or MCS/UWS patients. Different approaches exhibited 

different healthy interpretations of consciousness. Although each method suggested different 

time periods for consciousness, all of them were able to identify the time period around the 

time window of the experiment where consciousness was confirmed by experimenters 

receiving correct feedback from the CLIS patient during that period. It was also successfully 

identified that DOC patients were able to recognize stimuli in their surrounding environment 

and assessed whether the patients experienced periods of consciousness.  

During the investigation of consciousness in CLIS patients, my collaborator and I had 

tried Granger Causality (Hesse et al. 2003; Wang et al. 2007), but when I tried to incorporate 

it into my processes, I found that Granger Causality was too sensitive to the filter, and the 

results of consciousness varied greatly when I changed to a different type of filter  (Florin et 

al. 2010). However, Granger Causality is used in EEG signals to find the loss of 

consciousness (LOC) and recovery of consciousness (ROC) in anesthesia during surgery 

(Nicolaou et al. 2012; Nicolaou and Georgiou 2014), so it may be an option for future 

research. 
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It is worth mentioning that with respect to CLIS/LIS patients, the response rate and 

the type of questions asked by the experiment answering yes and no questions may be 

important factors in explaining these results. Therefore, different types of questions and 

associated feedback can be correlated with each other to obtain further results in the future 

with reference to the value of sample entropy, where the results based on the sample entropy 

can be known to serve as an objective reference indicator to avoid making the experimental 

results dependent on the patient's willingness. Although the results presented in this thesis 

are currently computed offline, these methods have not yet been implemented in real time. 

However, due to the short computation time, real-time applications are readily available and 

several papers have been published on real-time applications of sample entropy, permutation 

entropy, and Poincaré plots in the field of anesthesia (Hayashi et al. 2014; Kreuzer et al. 

2014; Wei et al. 2014; Hayashi et al. 2015). 

The final part of this thesis uses unsupervised learning methods k-Means and 

DBSCAN to obtain a threshold of consciousness for individual participation in the 

experiment from the feature extraction results for each patient, avoiding different parameter 

choices in each method and individual patient differences. These methods can be combined 

with competing methods in the future, as proposed in (Adama et al. 2019; Adama et al. 2022). 

Moreover, such a hybrid method approach can even be ameliorated by introducing further 

methods, such as the other unsupervised learning method hierarchical clustering to enhance 

the analysis of consciousness threshold, or the Silhouette method to distinguish how many 

clusters of the k-means method. It may significantly advance the solution of the 

consciousness detection problem in CLIS patients. Once this can also be demonstrated for 

other CLIS patients with verified periods of consciousness, it can be considered as a step 

towards reliable consciousness detection and thus a preferred communication option for 

CLIS patients through a brain–computer interface (BCI). Therefore, we conclude that for the 

detection of consciousness in CLIS patients, in order to find appropriate communication 

times, the combination of the presented approaches in a brain–computer interface system 

increases the probability of correctly detecting the state of consciousness in CLIS patients. 

Ultimately, the methods and results provided in this thesis can provide an objective reference 

indicator for family members to communicate with CLIS patients and further enhance the 

brain stimulation of patients to prolong their lives and improve their quality of life (QOL). 
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Appendix B Sample entropy results 
 For the CLIS dataset from section 5.2, the top diagram of Figure B.1-Figure B.4 

shows the sample entropy results for CLIS patients B and F over two days, the results for 

the other CLIS patients G and W over two days are presented in section 6.1.7. The figure 

below shows the trigger marks, those with numbers represent experimental state and those 

without numbers represent rest state. Between two red vertical lines indicate sessions, each 

session lasts around 10 minutes. In order to distinguish more clearly the difference between 

experimental and rest time, in these datasets all sessions in a day are combined in 

chronological order in the same figure. We assume that the higher the sample entropy value, 

the higher the relative consciousness of the patient. This interpretation is based on the results 

shown in (Chaudhary et al. 2017) where during the corresponding time slots (see Figure B.1-

Figure B.4 trigger marks), the experimenter received a good number of correct answers, thus 

indicating the consciousness of the patient.  

 

CLIS patients B on day 1 

  
Figure B.1: The sample entropy result for CLIS patient B on day 1. Top: the channel CP5 result of the sample 

entropy. Bottom: The trigger marks for patient B on day 1. The sessions are indicated between two red vertical 

lines. The periods with numbers are experimental state, and those without numbers are rest state.  
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For patient B, seven consecutive sessions over 69 min were combined on the day one, 

as shown in top diagram of Figure B.1. The Figure B.1 below shows that from the second to 

the sixth sessions are the experimental states, while the first and seventh sessions are resting 

states. When the experimenter started the auditory experiment in the second session, the 

value of sample entropy increased accordingly, and at the end of the sixth session, the 

experimenter stopped the auditory experiment and the value of sample entropy decreased 

slowly, which clearly shows the difference between experimental and resting state. The 

sample entropy value was higher at the beginning, probably due to lunch, and the first session 

was recorded from 12:22 to 12:32. This sample entropy result shows a high similarity to the 

Poincaré plot result in Figure 6.9. 

 

CLIS patients B on day 2 

 
Figure B.2: The sample entropy result for CLIS patient B on day 2. Top: the channel CP6 result of the sample 

entropy. Bottom: The trigger marks for patient B on day 2. The sessions are indicated between two red vertical 

lines. The periods with numbers are experimental state, and those without numbers are rest state.  

 

Seven consecutive sessions over 64 min were combined on the day two for patient B, 

as shown in Figure B.2. The Figure B.2 below shows that from the second to the sixth 

sessions are the experimental states, while the first and seventh sessions are resting states. In 

the second session, when the experimenter started the auditory experiment, the value of 

sample entropy rises significantly accordingly, which could be interpret as a higher level of 
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consciousness. At the end of the sixth session, the experimenter stopped the auditory 

experiment and the value of sample entropy slowly declines, which clearly shows the 

difference between experimental and resting state. Similar trends were observed in the 

results for patient B in all other channels (FC5, FC1, FC6, CP5, CP1, CP6, AF3, AF4). This 

sample entropy result also shows a high similarity to the Poincaré plot result in Figure 6.10. 

 

CLIS patients F on day 1 

 
Figure B.3: The sample entropy result for CLIS patient F on day 1. Top: the channel CP6 result of the sample 

entropy. Bottom: The trigger marks for patient F on day 1. The sessions are indicated between two red vertical 

lines. The periods with numbers are experimental state, and those without numbers are rest state.  

 

Six consecutive sessions over 90 minutes were combined on the day one for Patient F, 

as shown in the top diagram of Figure B.3, who generally performed less well than Patient 

B. The Figure B.3 below shows that that only the fourth section is a resting state, while all 

other sections are experimental states. Before the beginning of the fourth session, when the 

experimenter stopped the auditory experiment, the sample entropy value increased slowly 

accordingly, and when the experimenter restarted the auditory experiment towards the end 

of this session, the sample entropy value decreased slowly again, which still clearly showed 

the difference between the experimental and resting states. It presents the contrary result to 

patient B, but compared to the Poincaré plot results in Figure 6.11, these two different 

methods present consistent results. The trend of symmetrically positioned electrodes (CP5 
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vs. CP6, FC5 vs. FC6) is similar, whereas not symmetrical positioned electrodes differ. So, 

depending on the area over which the electrode is placed (e.g., over the Broca area or the 

Wernicke area), the task-related signal must be different and thus will indicate different 

corresponding aspects and show different trends on the related electrodes. We speculate that 

the level of consciousness depends on how difficult the questions were. Perhaps the 

questions asked by the investigators can promote the patients’ thinking? 

 

CLIS patients F on day 2 

 
Figure B.4: The sample entropy result for CLIS patient F on day 2. Top: the channel CP5 result of the sample 

entropy. Bottom: The trigger marks for patient F on day 2. The sessions are indicated between two red vertical 

lines. The periods with numbers are experimental state, and those without numbers are rest state.  

 

For patient F, seven consecutive sessions over 70 min were combined on the day two, 

as shown in top diagram of Figure B.4. The Figure B.4 below shows that the second, third, 

fifth, and sixth sessions are the experimental states, while the first, fourth, and seventh 

sessions are resting states. When the experimenter started the auditory experiment in the 

second session, the value of sample entropy slowly increased accordingly, and at the end of 

the sixth session, the experimenter stopped the auditory experiment and the value of sample 

entropy slowly decreased. The fourth session seemed to be too short that the brain activity 

of patient F remained active for around the experimental periods. The correct response rate 

is around 70% by functional near-infrared spectroscopy (fNIRS) and support vector machine 

112 



  Sample entropy results  

(SVM) to ensure that patients are awake (Chaudhary et al. 2017). There is a similar result 

between channel CP5 and the other channels (FC5, FC1, FC6) for patient F on day two, and 

compared to the Poincaré plot results in Figure 6.12, these two different methods show 

consistent results. 

It is speculated that patient F allowed her mind to wander when she was not in the 

experimental time period, resulting in more brain activity during the rest time period than 

during the experimental time period. This patient showed the same phenomenon as the LIS 

patient during the spelling experiment, and the sample entropy results of the LIS patient 

during the spelling experiment are presented later in section 6.1.8. 
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For the CLIS dataset from section 5.2, the top diagram of Figure C.1-Figure C.4 shows 

the Poincaré plot results for CLIS patients G and W over two days, the results for the other 

CLIS patients B and F over two days are presented in section 6.1.6. The figure below shows 

the trigger marks, those with numbers represent experimental state and those without 

numbers represent rest state. Between two red vertical lines indicate sessions, each session 

lasts around 10 minutes. To more clearly distinguish the difference between experimental 

and rest time, in these datasets all sessions in a day are combined in chronological order in 

the same figure. We assume that the higher the Poincaré plot value, the higher the relative 

consciousness of the patient. This interpretation is based on the results shown in (Chaudhary 

et al. 2017) where during the corresponding time slots (see Figure C.1-Figure C.4 trigger 

marks), the experimenter received a good number of correct answers, thus indicating the 

consciousness of the patient.  

 

CLIS patients G on day 1 
In Figure C.1, five consecutive sessions over 74 minutes were combined for Patient G 

on the day one. In the second session, the value of Poincaré plot increased accordingly as 

the experimenter continued with the auditory experiment. However, in the third, fourth, and 

fifth sessions, the value of Poincaré plot increased when the experimenter stopped the 

auditory experiment. Patient G was presumed to be more focused at the beginning of the 

experiment on this day, and gradually decreased as he became more skilled. Biederman et 

al. (Biederman and Vessel 2006) describe why people like new stimuli and that repeated 

stimuli weaken the brain's response. It may help us to explain this phenomenon. This 

Poincaré plot result shows a high similarity to the sample entropy result in Figure 6.13. 

Consequently, patient G was able to let her mind wander when she was not in the 

experimental time period, resulting in higher brain activity during the rest period after the 

second session. This patient showed the same phenomena as the LIS patients during the 

spelling experiment, the Poincaré plot results of LIS patients during the spelling experiment 

are presented later in section 6.1.8. 
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Figure C.1: The SD1 result of Poincaré plot for CLIS patient G on day 1. Top: the channel FC6 result of the 

Poincaré plot. Bottom: The trigger marks for patient G on day 1. The sessions are indicated between two red 

vertical lines. The periods with numbers are experimental state, and those without numbers are rest state.  

 

Remember, in this thesis we focus on all cases in which significant index changes 

occurred at the beginning and at the end of the experiment, and overall, the patients 

responded accordingly to the external stimuli. 

 

CLIS patients G on day 2 
Five consecutive sessions over 56 minutes were combined on the day one for Patient 

G, as shown in the top diagram of Figure C.2. The Figure C.2 below shows the time window 

between 0 and 45 min are the experimental states. The period after 45th min is the resting 

state. During the experimental state, where the Poincaré plot values undergo a slow increase 

and then decrease. In the rest period, there was a peak at about 48th minute, and usually the 

investigators would keep quiet during the rest period. We asked the experimenters and they 

replied that there was no record of possible effects causing this peak. Of course, it is not 

excluded that this patient does some thinking in her own mind after answering the questions 

asked by the investigators. Similar trends were observed in the results for patient G in all 

other channels (FC4, FC5, FC3, FC6, Cz). This Poincaré plot result also shows a high 

similarity to the sample entropy result in Figure 6.14. 
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Figure C.2: The SD1 result of Poincaré plot for CLIS patient G on day 2. Top: the channel FC6 result of the 

Poincaré plot. Bottom: The trigger marks for patient G on day 2. The sessions are indicated between two red 

vertical lines. The periods with numbers are experimental state, and those without numbers are rest state. 

 
CLIS patients W on day 1 

 
Figure C.3: The SD1 result of Poincaré plot for CLIS patient W on day 1. Top: the channel FC5 result of the 

Poincaré plot. Bottom: The trigger marks for patient W on day 1. The sessions are indicated between two red 

vertical lines. The periods with numbers are experimental state, and those without numbers are rest state.  
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Five consecutive sessions over 55 min were combined on the day one for patient W, 

as shown in Figure C.3, who performed better as patient G in general. The Figure C.3 below 

shows the time windows between 2-10, 14-22, 35-42, and 47-54 min in which the 

investigators asked the questions. The time windows from 0 to 2 min, 10-14 min, 27–35 min, 

and 42-47 min are the rest states. Remark that in most cases the time difference between 

each session is short, but in this case the data before 27th minute was recorded in the morning 

and the other part in the afternoon. So the baseline is different, but we can still see the 

difference between experimental and resting period clearly.  

The values increase relatively at the 14th, 35th, and 47th minutes. On the contrary, the 

values decreased relatively at the 12th, 22nd, and 42nd minutes, which is less significant 

compared to the sample entropy results in Figure 6.15, but still shows the difference between 

the resting state and the experimental state at the beginning and the end of the questions. In 

the third session, the number of questions in this session was not 20 as usual. Perhaps the 

experiment was stopped because of some necessary nursing actions. As described by 

(Jaramillo-Gonzalez et al. 2021), they put the patients’ care and health in the first priority.  

 
CLIS patients W on day 2 

 
Figure C.4: The SD1 result of Poincaré plot for CLIS patient W on day 2. Top: the channel FC5 result of the 

Poincaré plot. Bottom: The trigger marks for patient W on day 2. The sessions are indicated between two red 

vertical lines. The periods with numbers are experimental state, and those without numbers are rest state.  
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For patient W, three consecutive sessions over 42 min were combined on the day two, 

as shown in Figure C.4. The Figure C.4 below shows the time windows between 12-20, 23-

31, and 34-42 min are the experimental states. The time windows from 0 to 12 min, 20-23 

min, and 31-34 min are the rest states. The values rise significantly at the 14th, 24th, and 34th 

minutes. In contrast, the values decline significantly at the 20th and 31st minutes, which 

clearly shows the difference between the resting state and the experimental state at the 

beginning and the end of the questions. Although there are some peaks in the Poincaré plot 

results, the Poincaré plot results still present similar results to the sample entropy.  

There is a similar result between channel FC5 and the other channels (FC1, CP1, CP5) 

for patient W, all these channels are located in the left hemisphere. Through the medical 

records we learned that in January 2015, when she completely lost control of her eyes, she 

tries to twitch the right corner of her mouth to answer yes. As we know, the muscles on the 

right side of the body are controlled by the left hemisphere, while the muscles on the left 

side are controlled by the right hemisphere. From the fact that her remaining controllable 

body muscles are on the right side, we can infer that her left hemisphere is more active. 

Although the results of Poincaré plot and sample entropy are similar, Poincaré plot is 

more sensitive one needs to remove some peaks in order to see the consciousness results. 

Therefore, the extension results to LIS, MCS, and UWS patients in section 6.1.8 and 6.1.9 

are dominated by the sample entropy results in this thesis. 
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