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Selbständigkeitserklärung xliii

IV



Abstract

Chemical exposures affect the environment and may lead to adverse outcomes in its organ-

isms. Omics-based approaches, like standardised microarray experiments, have expanded the

toolbox to monitor the distribution of chemicals and assess the risk to organisms in the en-

vironment. The resulting complex data have extended the scope of toxicological knowledge

bases and published literature. A plethora of computational approaches has been applied

in environmental toxicology considering systems biology and data integration. Still, the

complexity of environmental and biological systems given in data challenge investigations

of exposure-related effects. This thesis aimed at computationally linking chemical exposure

to biological effects on the molecular level considering sources of complex environmental data.

The first study employed data of an omics-based exposure study considering mixture effects

in a freshwater environment. We compared three data-driven analyses in their suitability

to disentangle mixture effects of chemical exposures to biological effects and their reliability

in attributing potentially adverse outcomes to chemical drivers with toxicological databases

on gene and pathway levels. Differential gene expression analysis and a network inference

approach resulted in toxicologically meaningful outcomes and uncovered individual chemical

effects — stand-alone and in combination. We developed an integrative computational strat-

egy to harvest exposure-related gene associations from environmental samples considering

mixtures of lowly concentrated compounds. The applied approaches allowed assessing the

hazard of chemicals more systematically with correlation-based compound groups.

This dissertation presents another achievement towards a data-driven hypothesis generation

for molecular exposure effects. The approach combined text-mining and deep learning. The

study was entirely data-driven and involved state-of-the-art computational methods of ar-

tificial intelligence. We employed literature-based relational data and curated toxicological

knowledge to predict chemical-biomolecule interactions. A word embedding neural network

with a subsequent feed-forward network was implemented. Data augmentation and recurrent

neural networks were beneficial for training with curated toxicological knowledge. The trained

models reached accuracies of up to 94% for unseen test data of the employed knowledge base.

However, we could not reliably confirm known chemical-gene interactions across selected data

sources. Still, the predictive models might derive unknown information from toxicological

knowledge sources, like literature, databases or omics-based exposure studies. Thus, the deep

learning models might allow predicting hypotheses of exposure-related molecular effects.

Both achievements of this dissertation might support the prioritisation of chemicals for testing

and an intelligent selection of chemicals for monitoring in future exposure studies.
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Prelude: Research scope

Organisms are exposed to exogenous chemicals that lead to endogenous processes altering or

producing biochemicals (see figure 1) [Escher et al. 2017]. Exposure to exogenous and endoge-

nous chemicals lead to molecular alterations potentially inducing cellular toxicity pathways

or effects on higher levels of biological organisation. In a human health context, the expo-

some encompasses the entire environmental exposure in an individual’s lifetime [Wild 2012,

Miller and Jones 2014]. Identifying chemical effects on the cellular level may help integrate

toxicity pathways to adverse health outcomes and ecosystem-level effects. The PhD-colleg

Proxies of the eco-exposome aimed to investigate external and internal exposures and link

them to molecular biological effects in aquatic species to bridge the concept to environmental

health issues. Thus, the exposome narrative was transformed to environmental toxicological

questions considering the eco-exposome [Escher et al. 2017, Lioy and Smith 2013, Scholz et al.

2021] focusing on the aquatic environment and chosen proxies of aquatic model organisms.

Integrating data of exposure and molecular response is at the core of the eco-exposome con-

cept. However, computational methods and integration approaches with available knowledge

were lacking or had not been sufficiently evaluated for this purpose so far. In this thesis, we ∗

presented the project’s bioinformatics and data scientific investigations to associate chemical

exposure to biological effects computationally.

Chapter 1 described the essential concepts and toxicological approaches to understand the

scientific background encompassing multiple domains in (environmental and computational)

toxicology. The chapter resulted in the motivation of this dissertation.

In Chapter 2, we comprised the applied methods with a more general technical introduction

and implementation and described the selected data sets.

In Chapter 3, we described the evaluation of methods for linking environmental relevant

chemical exposures to transcriptional effects with respect to comparing them based on their

applicability and biological reliability. The identified chemical-gene interactions were com-

pared to external references to validate the biological meaning and chemical representation

on gene and pathway levels. The two strategies of differential gene expression analysis and

network inference resulted in biologically meaningful results. As stand-alone and in an in-

tegrative strategy, they disentangled chemical stressors with reliable endocrine disruptive

effects, especially when considering an exposure scenario of correlated compound groups.

∗ Research projects are performed in teams with multiple experts and heads with various ideas, suggestions

and questions. This also influenced and formed my work during the last three years, which built the base of

my dissertation. Therefore, it seemed inappropriate to present the processes, results and opinions in this work

with ’I’. Consequently, here and in the following the personal pronoun ’we’ was used.
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Figure 1. Transfer of the exposome definition to environmental toxicology. An

exogenous chemical exposure affects cellular processes and lead to adverse health outcomes

on higher levels of biological organisation like the organism, population or even eco-system.

Figure taken from Escher et al. [2017].

In Chapter 4, knowledge bases were considered sources to predict exposure-associated links

to biomolecules. The presented study was focused on input preparation, deep learning model

selection and model evaluation. With deep learning and data integration, the presented strat-

egy was a preliminary step towards generating potentially new toxicological hypotheses of

unknown molecular key events. We showed that text-based data and toxicological databases

could be employed to train a deep learning model to predict chemical-biomolecule interactions

with 70% and 94% test accuracy when considering a unifying biomedical terminology.

Chapter 5 discussed the dissertation’s achievements in the context of recent environmental

and computational toxicology and concluded this thesis. It set the achievements of both here

presented studies in a broader context of exposure studies and presented future perspectives to

hazard assessment and biomonitoring, which could be also helpful when investigating Proxies

of the Eco-exposome.
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Chapter 1

Introduction

This chapter presents fundamental concepts and approaches in environmental toxicology. In

this thesis, we focus on the investigation of exposure-related biological effects and toxicoge-

nomics. First, we introduce environmental toxicology and its general aim of investigating

chemicals in the environment. Furthermore, we present helpful systems biological concepts

for environmental toxicology. This leads directly towards the next section of omics-based

approaches transitioning towards toxicogenomics. We elaborate on recent work which links

chemical exposure to transcriptional effects. Furthermore, we present data integration in the

context of environmental toxicology, which leads directly to an elaboration of recent develop-

ments of adverse outcome pathways and how mechanistic knowledge can be used for predictive

computational approaches. In this respect, we shed light on literature-based discovery and

deep learning approaches in toxicology related areas. Finally, the chapter motivates the

presented research of this dissertation and presents objective and applied approaches of the

thesis.
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1. Introduction

1.1 An overview of environmental toxicology

A plethora of anthropogenic sources from industry, agriculture, and households release chem-

icals into the environment. Such pollutions in air, soil, or water may lead to toxic effects and

adversely affect the environment on different levels of biological organisation. Moreover, the

toxic exposures of exogenous chemical compounds burden the individual beings and poten-

tially induce an exposure with endogenous chemicals based on molecular responses [Escher

et al. 2017]. Thus, chemical interaction with biomolecules affects different biochemical pro-

cesses and may affect a toxic effect on a cellular level. Consequently, cascades of biological

processes on different levels of biological organisation lead to sub-lethal or even lethal ad-

verse effects. For a general understanding of the research domain, the field of environmental

toxicology is introduced in the following.

1.1.1 Environmental toxicology

The multidisciplinary research field of environmental toxicology (ET) has materialised in the

mid 20th century due to an upcoming awareness of chemical emissions to the environment

and their effects on organisms, including humans [Carson 2002]. Thus, whereas ecotoxicology

is restricted to ecological endpoints, ET includes human health as an endpoint [Ragas, Ad

2021]. In ET, potentially hazardous chemicals in the environment are investigated due to

their fate (environmental chemistry), their effects on living organisms (toxicology), and their

impact on higher levels of biological organisation (ecology) (see figure 1.1).

The field of environmental chemistry assesses environmental exposures using two main

approaches - chemical analytics and mathematical modelling. Chemical analytics discovers

exposure patterns by measuring emissions, concentrations and behaviour of processes like

biodegradation of chemicals of concern (see section 1.1.2). Moreover, environmental chemists

may detect spatio-temporal or distributional exposure patterns and investigate them with

the help of mathematical modelling and prediction approaches useful for environmental risk

assessment.

The field of toxicology focuses on the chemical interaction with an organism to under-

stand the toxicity mechanisms of specific chemical exposures in an organism and identify

the exposures leading to (sub-)lethal effects. Toxicological research relies on the dose concept

of Paracelsus [1965], defining that everything can be toxic and lead to adverse effects, but that

it is dependent on the chemical concentration. Toxicologists investigate effects on individuals

for exposures with single compounds, artificial mixtures, or environmental samples of soil,

water or sediments collected from sites of interest. The field of toxicology considers two main

2



1.1. An overview of environmental toxicology

Figure 1.1. The triangle of environmental toxicology highlights the interplay of

chemicals, the environment and organisms. Environmental toxicology investigates

the environmental responses of chemical emissions. The chemical fate and potentially

hazardous effects are studied by their interactions with other chemicals, the environment

and the organisms. The figure is taken from [Ragas, Ad 2021].

perspectives. The toxicokinetic approaches study the effects of internal doses at the site of

toxic actions and thus the fate of hazardous compounds in an organism. The toxicodynamic

approaches focus on the system biological chains of events from biomolecular interaction of a

chemical stressor up to an adverse outcome.

In toxicological laboratory experiments, researchers study model organisms under fixed con-

ditions. The application of in-vitro measurements and in-silico predictions is an alternative

to reduce animal testing and expand the investigation of natural environmental systems. In

the effect-driven chemical analytics (see section 1.1.2), in-vitro test batteries of bioanalytical

assays are developed to identify the risk or hazard of exposures with a small set of molecular

targets for specific modes of toxic actions or adverse outcomes (see section 1.1.3). Compu-

tational and in-silico approaches have become important in ET with the advent of omics

techniques in genetic research generating high-throughput and high-content data for systems

biological investigations of biological effects on a molecular level (see section 1.2.1). In that

respect, computational toxicologists curate toxicological databases [e.g. Mattingly et al. 2003,

Kuhn et al. 2008] and develop data and method integrative approaches (see section 1.2.3).

Ecology focuses on interactions within the environment on organism and population levels.

Especially for environmental hazard assessment, such knowledge is necessary to transfer ex-

posure effects from individuals to the ecosystem, but it is not elaborated in this thesis in more

detail. Nevertheless, sub-lethal effects on the molecular up to the individual level are relevant

and can induce fatal perturbations at the ecosystem level [e.g. Kidd et al. 2007].

3



1. Introduction

This thesis concentrates on the molecular interactions of chemical exposures. Therefore, vari-

ous computational approaches are applied. The following section motivates why to investigate

chemicals in the environment, some recent challenges, and how environmental toxicologists

recently investigated toxic effects on the environment.

1.1.2 Chemicals in the environment

Frequently studied contaminants in ET are metals, organic chemicals, radioactive elements

and increased nutrient concentrations, e.g., nitrates and nitrites. Environmental toxicologists

classify pollutions based on release traces, chemical properties, effects on a biological entity

or their use by humankind (see figure 1.2).

Classifiying Pollution 
due to chemicals 
in the environment

Sources of pollution
Natural sources (e.g. phytotoxins, volcano erruption)
Anthropogenic application

Industry (e.g. plasticizer, surfactants, flame retardants)
Agriculture (e.g. biocides, fertilizer)
Pharmaceuticals (e.g. antibiotics, analgesics, cancer treatments)
Personal care products (e.g. cosmetics, drugs of abuse) 

Release routes
Air

Water
Soil

Ground water
Surface water 
Rain/Run-off
Waste water

Chemical classification
Chemical structure
Molecular properties

Molecular size
Polarity
Solubility
Lipophilicity
Acidity

Volatility
Persistency
Bioaccumulation

Biochemical properties

Specific chemical structures

Nutrients
Organic chemicals
Metals

Radioactive elements

Eco-system (e.g. loss in biodiversity)

Effect classification

Adverse outcome

Molecular interaction, e.g.

Toxicodynamics, e.g.

Individual (e.g. cancer, death)
Population (e.g. feminization)

Receptor interaction
Protein inactivation
Transcriptional regulation

Genotoxicity
Oxidative stress
Endocrine disruption
Neurotoxicity

Entrance routes

Digestion
Respiration

Phagocytosis
passive Transport

into cell, e.g.

into organism, e.g.

Figure 1.2. Classifying chemical pollution in the environment. Based on the research

context, chemical exposure and chemicals in the environment are grouped variously.

For example, the sources of pollution are divided into natural — e.g. heavy metal hotspots

in the earth crust, or bacterial and fungal toxins — and human-caused (anthropogenic) —

e.g. wastewater from households or industrial sites. The majority of ET research focuses on

anthropogenic pollutions. Humankind uses synthetically produced organic chemicals in the

economic areas of industry, agriculture, infrastructure and households. Distinct anthropogenic

origins of an environment perturbing exposure are the waste disposals and emissions into the

air, the water and the soil. This dissertation was part of the PhD-colleg Proxies of the eco-

4



1.1. An overview of environmental toxicology

exposome, which focused on the adverse effects of anthropogenic pollution on the aquatic

environment.

Mixture toxicity. Under environmental conditions, an organism is in general exposed to

mixtures of toxicants. Chemical compounds in an environmental sample may interact through

(physico-)chemical or physiological interactions. A primary challenge in ET is understanding

the toxic effects of chemical mixtures in the environment [Cedergreen 2014, Kortenkamp and

Faust 2018]. For example, one compound can also affect the internal xenobiotic metabolism

of other compounds, or indirect interactions at the target site are possible. Interactions affect

the bioavailability, the toxicokinetics, or the toxicodynamics of compounds within the mixture

and thus the toxic potency (see section 2.1.2).

The components of a mixture perform either with a similar or dissimilar toxic effect. A

distinction is made between concentration addition(CA) and independent action (IA). CA

occurs if compounds share the same mode of action. Thus, they affect a biological endpoint

on the same biological pathway by interacting with the same molecular target. The assump-

tion for IA is that multiple compounds contribute jointly to the same biological endpoint.

However, compounds act on different targets or modes of action ∗. One compound can not

interact with the same biological entity as another. Thus, each chemical acts independently.

Based on the mathematical formulations of IA and CA (see section 2.1.2), environmental

toxicologists determine interaction types. In general, one compound may reduce the activity

of another compound — antagonism — or may enhance it — synergism. The empirically

measured mixture effect can be different from the estimated effect with single compounds for

the concentrations in the mixture. For example, an empirically measured mixture toxicity

can be underestimated due to antagonism.

CA is relevant, especially in the context of environmental mixtures. For example, narcotic

compounds join their toxic potency to the mixture effect, albeit the single compound concen-

tration levels may not induce toxic effects [Abernethy et al. 1988]. Comprehensive monitoring

studies detect thousands of anthropogenic compounds in water bodies, mostly on shallow con-

centration levels [e.g. Bradley et al. 2019, Lǐska et al. 2015]. Subsets of hundreds to thousands

of compounds in environmentally relevant mixtures share modes of action. Assuming that

those compounds may not physically interact and have a similar action, this mixture may

lead to toxic effects on the target organism, albeit not toxic in the concentration of a single

chemical.

Chemical assessment of environmental sites. Environmental samples from ecological

∗ In case, the concept of modes and mechanisms of toxic actions is unfamiliar, have a look at subsec-

tion 1.1.3) and supplemental section S1.2 first.
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1. Introduction

sites of interest are collected to evaluate an organism’s hazard of exposure to specific xeno-

biotics. For the selected site, samples of water, sediment, soil or biota are investigated. The

sample consists of a mixture of up to thousands of chemical compounds. Some of them may

be well known and already of emerging concern for environmental risk.

The traditional approach to monitoring the quality of the environment is a quantified anal-

ysis of chemicals of interest. A targeted chemical analysis measures the concentrations of a

pre-selected set of compounds, expected to be an ecologically relevant set known to affect

human or environmental health. However, alternatives to chemicals of emerging concern are

developed, synthesised in industry, and released into the environment. These may also lead

to adverse environmental outcomes, but the targeted chemical analysis is limited to the tra-

ditional compounds. Targeted chemical analysis potentially ignores derivatives, metabolites

or degradation products of the chemicals of concern. Furthermore, chemicals can also be not

detected, albeit present, but below an analytical detection level. An alternative is to identify

all chemical compounds in a non-targeted chemical analysis applying mass spectrometry and

chromatographic fractionation of samples. However, the non-targeted approach is more re-

source extensive and also the respective data analysis needs more effort than the targeted one.

Thus, environmental monitoring still aims to investigate intelligent selections of chemicals of

concern.

Furthermore, the assessment of biological effects is relevant and measured on selected bio-

chemical mechanisms and environmental endpoints upon chemical exposure. Therefore, tox-

icologists have developed various diagnostic approaches and tools for hazard assessment and

monitoring to assess environmental quality in bioanalytical assays. A so-called bioassay is

a biological test system that measures the performance of a biological endpoint upon xeno-

biotic exposure. Such a tool is based on biological entities from different levels of biological

organisation and thus is investigated either in-vivo or in-vitro.

The in-vivo bioassays determine the ecological relevance and assess the toxic potency on an

organism or population level. However, for frequent and regular measurements in a regulatory

and monitoring context, animal-free or -reduced alternatives are necessary, especially from a

bioethical point of view. Furthermore, the approaches are resource-intensive concerning time

and money.

The in-vitro assays investigate effects in tissues, cell(line)s or proteins and detect mechanism-

specific responses. These bioassays need a small test volume, can be tested in a short time

and are easier to interpret high-throughput.

One of the first highlighted environmental matters has been endocrine disruption [Carson

2002], which affects hormone regulation and induces oxidative stress [van Duursen, Majorie

2021]. For example, xenobiotically induced estrogen activity can feminise a species population

6



1.1. An overview of environmental toxicology

which affects reproduction. In the worst case, this lead to a collapse of a population [Kidd

et al. 2007]. Nowadays, a set of in-vitro assays can assess endocrine disruption. Supplemental

figure S1-1 presents such a cell-based bioassay detecting estrogen activity. Equivalent activity

levels of natural or synthetic estrogens define measures of estrogen activity. Standardised

estrogen references are 17-β-estradiol (E2) or 17-α-Ethinyl-estradiol (EE2). The approach

allows estimating the degree of adversity without animal testing based on an equivalent value

to a well-investigated estrogen. Comparing the equivalent estrogen concentration to a previ-

ously defined threshold determines the ecological risk. Other (in-vitro) bioassays can measure

other endocrine disruptive mechanisms like anti-estrogenity, androgenity or oxidative stress.

Currently, standardised batteries of bioassays build the framework of effect-based risk assess-

ment and monitoring. For example, a battery may represent the mechanistic knowledge from

a molecular interaction with a toxic compound up to the adverse biological outcome and is

based on the systems biological concept of adverse outcome pathways (see section 1.1.3).

Another practical framework is the effect-directed analysis, which combines chemical analyt-

ics and bioassays to identify new compounds that show any activity in biological analysis ∗.

Although such sophisticated approaches are available, the chosen set of endpoints and bioas-

says leads to a bias in the biological analysis of an ecological site towards a specific nature of

toxicity. Next to the plethora of bioassay tools considering a small set of biological targets,

high-content-screening approaches emerge in ET. Omics-based exposure experiments generate

Big Data, e.g. on the transcriptomic, proteomic and metabolomic levels. The systems biolog-

ical considerations (see section 1.1.3) and omics-based approaches (see section 1.2.1) expand

the toolbox in ET.

1.1.3 Systems biological perspectives in environmental toxicology

Systems biology defines the integrated study of a biological entity, its properties, and its

components’ interactions [Yosim and Fry 2015]. The biological entities might be on differ-

ent levels of biological organisation. This conceptual framework is often studied on cellular

to organism levels but also on population or ecosystem levels. Iterations of assessing and

enumerating all sub-entities and their interactions and predicting how the biological entity

may respond to perturbations define the systems biology approach. In this respect, system

∗ After a liquid or solid phase extraction compounds of interest are concentrated in samples. The sample

analysis is based on a chosen set of bioassays. Applying chromatographic approaches the compounds in a

sample are separated in to simpler mixtures and are tested in the battery of bioassays again. For the bioactive

fractions, a chemical analysis helps identify the compounds. The identified xenobiotics are confirmed, when

chemical analysis and biological analysis support each other.
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biologists aim to understand and predict properties by inference approaches [Garcia-Reyero

and Perkins 2011], e.g. for a specific cell type, a network of interacting genes, proteins, and

biochemical reactions can be integrated. Networks help characterise or understand complex

biological processes. A systems biology strategy allows environmental risk and hazard as-

sessment and the discovery of a more varied amount of biomarkers tied to environmental

exposures [Yosim and Fry 2015]. This section presents a selection of such strategies useful for

model generation and problem formulation in ET.

Eco-exposome. The concept of the exposome originates from human health and comple-

ments the concept of the genome [Miller and Jones 2014]. It defines an individual’s lifelong and

cumulative measure of environmental exposures and biological responses to its environment,

diet, behaviour, and endogenous processes [Wild 2005, Miller and Jones 2014]. The joint

investigation of genome and exposome helps understand mechanisms of toxic actions [Yosim

and Fry 2015].

The National Research National Research Council [2012] has proposed the eco-exposome

concept expanding the exposome concept to generalise exposure studies to environmental

problems. However, the concept is somewhat idealistic regarding ethical and scientific limita-

tions [Discussed in Wild 2012]. Scholz et al. [2021] defined a narrower eco-exposome concept

concerning the lifelong internal exposure to individuals of a selected species and described

current challenges and potential solutions in eco-exposome assessment. For example, to inves-

tigate the total (eco-)exposome of an organism or an ecosystem, respectively, is not achievable

by the recent means of exposure studies. Exposure assessments investigate only a snapshot

of the eco-exposome. A comprehensive study design combining various chemical analyses,

bioassays and omics-based approaches may help investigate a broader spectrum of chemicals

in the environment [Scholz et al. 2021]. To overcome the technical restrictions of investigat-

ing a lifelong exposure, a partial (eco-)exposome can be considered, e.g. in model organisms

under fixed conditions or in human cohorts [Wild 2012]. Besides, each organism undergoes

a transition through different developmental stages, and external exposures may differently

affect organisms across various stages. Therefore, trans-sectional sampling is proposed as a

potential solution [Scholz et al. 2021].

The eco-exposome assessment is advantageous to the exposome assessment as it allows exam-

ining entire organisms and target tissues and investigating populations and not only individ-

uals [Scholz et al. 2021]. This has led to interdisciplinary projects for environmental health

questions, e.g. the aim to investigate proxies of the aquatic eco-exposome [Escher et al. 2017].
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1.1. An overview of environmental toxicology

Description of molecular interactions. The concepts of the mode of action (MOA) and

mechanism of action (MeOA) describe specific and unspecific molecular interactions and the

induced effect cascades in biological entities. The concepts are hardly distinguished and used

ambiguously. Escher et al. [2011] has defined MOA as a

“ common set of physiological and behavioural signs that characterise a type of adverse

biological response

”

and MeOA as a

“ crucial biochemical process or xenobiotic-biological interaction, or both underlying a given

mode of action.

”

After the intake of a compound in a biological entity, it may interact with a protein as a bind-

ing ligand. It may be a receptor, enzyme or other target protein. Under normal conditions,

the receptors respond to specific endogenous signalling ligands, e.g. hormones or neurotrans-

mitters, and lead to a regulating response by, e.g. interfering with ion channels G-protein

coupled receptors or nuclear receptors. However, exogenous compounds may be a chemical

with a similar active group as the endogenous ligand leading to a concurrency for the recep-

tor binding sites with the natural ligand. Consequently, xenobiotic ligands may activate the

receptor protein as an agonist or inactivate the receptor as an antagonist ∗. Thus, the overall

receptor activity level in a biological entity may be up- or downregulated by the xenobiotic

influences. For example, the interactions with nuclear receptors affecting hormone regulation

may induce endocrine disruption, or the affection of neurotransmitter interactions infer with

ion channels and may induce neurotoxicity.

Adverse outcome pathways. Over the last decades of ET research, cost-effective and high-

throughput assessments on adverse outcomes replaced traditional tests and allowed predicting

xenobiotic toxicity. In current hazard assessment, frameworks allow linking in-vitro and in-

vivo approaches to endpoints in human or environmental health. Ankley et al. [2010] has

defined the adverse outcome pathway (AOP) to tackle this challenge. The AOP is a conceptual

framework to describe the mechanistic knowledge of toxicology (see figure 1.3).

∗ Various molecular interactions and cellular processes induce toxic effects and affect the cellular system

negatively. However, this would exhaust the scope of this introduction. Instead, the curious reader finds a

descriptive overview of the main types of MOA in the supplement section S1.2.
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Figure 1.3. The adverse outcome pathway is a chain of key events across different levels

of biological organisation linked by key event relationships. This mechanistic knowledge

representation is linear, modularised, often not species-specific, chemical-agnostic and, in

the ideal case, evidence-based.

Each key event (KE) represents a module or structural entity, which states a measurable

change in a biological process. An AOP starts with a molecular initiating event (MIE), which

an external stressor may trigger. An MIE interaction with an external stressor may be a

chemical interaction with a biological receptor activating a cascade of different biological pro-

cesses across different levels of biological organisation (LOBO) - the chain of KEs linked by

key event relationships (KER). The modularised sequence may end with an adverse outcome

(AO) on the population or the individual level. In a simplified manner, the AOP describes

the link of molecular responses to the impacts on ecological or health endpoints [Villeneuve

et al. 2014].

The assessment of evidence relies on different approaches. Initially, in-vitro or in-vivo expo-

sure experiments assess the adverse outcome of chemical exposure. Then, high-throughput

screening approaches can be used to investigate the early KEs on molecular and cellular LOBO

with in-vitro assays or omics-based approaches. The in-vivo approaches are still necessary to

bridge the evidence-based approaches for intermediate and late KEs regarding tissues, organs,

organisms or even whole populations.

The AOP has been considered the most suitable framework for data integration approaches

when linking the molecular effects to the adverse outcome in hazard assessment [Roelofs,

Dick 2021]. The organisation for Economic Cooperation and Development (OECD) provides

the most recent collection of postulated and proven AOPs. It is presented in an open-access

database named AOPwiki and is widely used in data integration approaches.

In sum and alone, exposures in varying doses and complexities have chronic and acute effects

on an organism over a lifetime. Generalised to ET, molecular interactions of an ecosystem

can be aggregated and investigated due to their exposure-specific adverse outcomes over an

extended period of time - the eco-exposome. In that respect, strategies have become necessary
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to link chemical exposure to molecular effects. The linkage of complex chemical exposure to

biological effect can be established by joint consideration of the eco-exposome concept with

knowledge of chemical exposure, the MOA concept and the AOP framework [Scholz et al.

2021].

Furthermore, independent of investigating single compounds, artificial mixtures or environ-

mental relevant samples, influences on higher levels of biological organisation are considerable

and are apically measurable as adverse outcomes. The above-presented concepts in systems

biology help describe mechanistic knowledge and build a foundation for computational ap-

proaches to link chemical exposure to biological effects. For example, whole bioassays and

gene sets have been developed for MOA and MeOA specific molecular targets. Furthermore,

an entire research field concentrating on AOP development has arisen. Stored in the AOP-

wiki, a mechanistic knowledge representation has been developed.

Consequently, various data and knowledge bases are available and integrated with each other

or empirically measured data. In this respect, methods (1) to investigate and link chemical

analytical data with biological effect data and (2) to predict further knowledge are central for

computational toxicology and the focus of this dissertation.

1.2 Computational toxicology

Initially, researchers have been interested in studying individual components, like nuclear

receptors, to better understand, e.g. cellular biology or diseases. However, the biology-related

sciences aim to more and more integrate the components to understand the interactions of

the biological systems. The previously presented systems biological concepts have formed

the basis for the computational achievements during recent decades to investigate biological

effects after environmental perturbations across different levels of biological organisation.

Next to the plethora of bioassay tools considering a small set of biological targets, high-content

screening approaches have emerged in ET. This section presents omics-based approaches,

in particular transcriptomics, in ET (section 1.2.1) and how to link chemical exposure to

transcriptional effects (section 1.2.2). Based on such inference approaches with empirical

data, we shed light on the data integration approaches and systems biological perspectives

upwards to higher levels of biological organisation (section 1.2.3). Furthermore, we elaborate

on already used toxicological knowledge-driven approaches and how a transfer from related

scientific areas are helpful in predictive computational toxicology (section 1.2.3).
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1.2.1 Omics-based approaches

In recent considerations of ET, the exposome, but also the genome concept, have been re-

garded when aiming for understanding the interplay between environmental perturbations

and biological effects. After describing the first concept in the previous section, the genome

goes back to the advent of genetics in the last century (see supplemental section S1.3).

As already highlighted in section 1.1, exposures to toxicants, even mildly concentrated, may

induce biochemical changes in biological entities. Such changes can affect the homeostasis

of the cell-internal environment. Furthermore, the cellular responses to perturbation serve

to minimise the xenobiotically induced damage. Such responses can induce a significantly

measurable change in gene regulation activity and are partly also specific to toxicants (see

section 1.1.3). Thus, the observation of specific stress responses may be associated with a

specific exposure. The molecular biology principles (described in more detail in supplement

section S1.3) are applied to assess the cellular status quo and understand cellular responses

after perturbations. Biologists quantify and analyse the amount of a group of biomolecules

in cells, tissues, organs or whole organisms at a specific time point. In an omics-based ET

study, organisms or smaller biological entities are exposed to a (mixture of) environmental

toxicant(s). Depending on the experiment’s objectives, pools are investigated through differ-

ences in exposure due to concentrations, time-points, durations or sites. Various omics-based

approaches have been developed, such as transcriptomics, proteomics, and metabolomics. All

have some relevance in ET [van Straalen, Nico M. 2021b] ∗. This thesis concentrated on

transcriptomics.

A cell’s transcriptome consists of all transcripts from one experimental condition. Accord-

ingly, it is assumed that the amount of mRNA transcript copies of one gene depends on the

cell-environmental conditions. Transcriptomics allows determining up- or downregulation of

genes and comparing different treatment groups or time points. Consequently, a transcrip-

tomic analysis quantifies differences in gene expression between the sample pools. ET-based

transcriptomics aims to gain a complete overview of all changes in mRNA abundance in a

biological entity as a function of exposure to environmental chemicals [van Straalen, Nico M.

2021b].

In general, two types of transcriptomic approaches are used frequently in ET (see supplement

section S1.4) — hybridisation- and sequence-based. A hybridisation-based analysis quantifies

∗ In the last decades, omics-integrative approaches and tools have emerged to computationally link and

understand the cellular responses on different molecular levels [Koh and Hwang 2019, Martins et al. 2019] - the

era of multi-omics approaches. Through the joint use of omics approaches and the applied systems biological

considerations, the insights gain strength. However, these developments go beyond the presented research.
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the amount of a specific set of mRNA transcript copies on microarrays — small glass plates

with fixed labelled cDNAs. Per exposure condition, the normalised intensity of gene expres-

sion per probe is detected. A gene’s response is expressed relative to the measured intensity

of transcripts to a control condition. Experiments and study designs applying microarray

analysis have been established to indicate gene regulation activity for diagnostic purposes in

MOA studies identifying exposure-specific effects [e.g. Zare et al. 2018, Lichtensteiger et al.

2015, Snell et al. 2003]. Furthermore, high-throughput microarrays can be customised to con-

sider a selected set of biomarker genes as a form of bioassay [van Straalen, Nico M. 2021b].

Microarrays have the advantages of being high-throughput and cost-efficient [Martins et al.

2019]. However, there are also limitations. For example, the outcome is biased to the chosen

space of cDNA-labels, which may also affect the sensitivity for lowly-abundant species [e.g.

Shendure 2008]. Furthermore, cross hybridisation induce noisy background levels in measure-

ments [Wu et al. 2005], leading to problems in reproducibility, e.g. across laboratories [Feswick

et al. 2017].

The sequence-based methods infer a cDNA sequence directly and thus are not reduced to a

predefined set of RNA sequences. Therefore, the so-called RNA-seq is considered a more sys-

tematic analysis of gene expression patterns [Qian et al. 2014]. The advantages of RNA-seq

are the ability to quantify a broad coverage of RNA transcripts, including unknown variants

(e.g. splice variants), and its better applicability for experiments in non-model organisms.

However, this may also be the main limitation, as computational analysis becomes more

cumbersome [Martins et al. 2019, Qian et al. 2014]. Still, microarrays are frequently used in

ET due to ostensible cost-efficiency, standardised computational and bioinformatics analysis,

and prioritisation of the assessed genes [Martins et al. 2019].

Transcriptional gene expression analysis has occupied a niche in ET [van Straalen, Nico M.

2021b]. Transcriptomics contribute to hazard assessment in MOA studies by monitoring and

transcriptional fingerprint imaging and is an alternative to biomarkers. In this respect, three

primary advantages have to be highlighted:

First, the gene expression analysis is rapid, and respective analyses can go on in magnitudes

of hours and days. Thus, they can be helpful for quick decision-making ∗.

Second, the gene expression is specific. A transcription profile comprises hundreds to thou-

sands of genes — a vast space of genetic information. When comparing such profiles under

different exposure conditions, distinctive patterns may be identified. Profiles have been proven

to be exposure specific [e.g. Schüttler et al. 2019, Subramanian et al. 2017] and effect spe-

cific [e.g. Zare et al. 2018, Lichtensteiger et al. 2015], which is a significant advantage in

∗ However, it is in the same magnitudes as traditional toxicity tests with chemical analytics and bioas-

says [van Straalen, Nico M. 2021b].
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hazard assessment. Thus, exposure-dependent profiles have been developed, which are used

for toxicogenomic fingerprint imaging [e.g. Subramanian et al. 2017, Sutherland et al. 2018,

Krämer et al. 2020] or to develop toxicokinetic-toxicodynamic models [e.g. Schüttler et al.

2019].

Third, the gene expression is sensitive. As gene regulation is an early biochemical response in

a biological entity, xenobiotic effects and responses are expected for lower no-observed effect

concentrations already. Such effects can be sub- or non-lethal and can be detected much ear-

lier than biological endpoints like survival, growth and reproduction. However, this advantage

has its limits when considering the complexity of chemical mixtures [van Straalen, Nico M.

2021b].

There are also disadvantages associated with transcriptomics in ET. Many gene expression

analyses, especially with microarrays, are biased in their interpretability towards the genomic

resources, like a well-annotated genome assembly. The gene expression analysis requires a

knowledge-intensive infrastructure, including a high level of expertise for analysis and follow-

up investigations. A plethora of computational strategies has been established dealing with

the disadvantages and profiting from the advantages of transcriptomics. In the following, we

describe a relevant selection of such strategies.

1.2.2 Linking chemical exposure to transcriptional effects

Researchers, who work with omics data, aim to identify gene regulation alterations associated

with a treatment condition, a phenotype, or an induced perturbation. The field of toxicoge-

nomics comprises the investigation with omics-based approaches and, e.g., investigates gene

expression changes due to chemical exposure.

As shown in figure 1.4, scientists measure transcriptional responses applying real-time quan-

titative poly chain reaction, microarray or RNA-seq analysis. Based on the exact research

question, various statistical analyses are considerable. However, the shown analyses are only

a selection of practical approaches to understanding xenobiotic effects on the molecular level.

Over the last decades of omics-based research, many gene expression analysis strategies have

been developed that achieved meaningful biological outcomes.

Such approaches allow identifying single gene markers for perturbation and applying down-

stream analysis considering co-expressed gene sets [e.g. Schüttler et al. 2019, AbdulHameed

et al. 2016]. Consequently, researchers have generated toxicogenomic fingerprints [e.g. Krämer

et al. 2020, Subramanian et al. 2017, Wang et al. 2016] or have determined gene co-expression

networks [e.g. Maertens et al. 2018, Ewald et al. 2020] and exposure-related classification

systems [Ornostay et al. 2013, Nagata et al. 2014].
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Figure 1.4. Overview of common computational strategies applying transcrip-

tomics in environmental toxicology. After applying a chemical exposure experiment

on a biological system, the gene expression is measured with transcriptomic approaches

(see section 1.2.1). Regarding differences in exposure conditions, the differences in gene

expression are examined with, e.g. differential gene expression analysis or network infer-

ence. The respective outcomes help to better understand toxicity or to develop toxicity

prediction tools. Taken from [Alexander-Dann et al. 2018].
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(Multivariate) Linear models of gene expression are frequently applied to describe such

exposure-dependent gene expressions mathematically. The most conventional method sta-

tistically studies each gene independently. It determines whether a gene is differentially

expressed under a perturbed condition compared to a control condition - the differential

gene expression analysis [Shi and Walker 2008]. The model designs vary from simple two-

group comparisons to complex models with multiple experimental factors [Ritchie et al. 2015].

Nowadays, well-established tools for microarray analysis and RNA-seq experiments are avail-

able [Ritchie et al. 2015, Love et al. 2014, Leek et al. 2006] and are frequently used also in

environmental toxicogenomics research [e.g. Schüttler et al. 2017, Simões et al. 2018, Wang

et al. 2016, Nair et al. 2020, Asselman et al. 2018, Limonta et al. 2019, Ewald et al. 2020].

Furthermore, other multivariate modelling approaches are relevant in ET. For example, reg-

ularisation of high-dimensional models helps retrieve comprehensive descriptors from various

biological and environmental factors [e.g. Su et al. 2019, Li 2015]. Also, the partial-least-

square-discriminant-analysis has been applied in omics-based ET. For example, its applica-

tion has reduced high-dimensional exposures to a sparse set of exposures affecting a set of

molecular markers [e.g. Skelton et al. 2014, Gandar et al. 2017, Jain et al. 2018].

Also, non-linear modelling approaches are critical in the context of ET and have found var-

ious ways to be insightful for exposure studies. Machine learning is applied to cluster or

classify the profiles of exposures [e.g. Luechtefeld et al. 2018, Kapraun et al. 2017], gene ex-

pression [e.g. Ewald et al. 2020, Schüttler et al. 2019] or biological functionality [Ewald et al.

2020]. Thus, it is helpful in toxicity profiling or prediction. In general, the approaches can

be split into supervised and unsupervised learning approaches. The supervised approaches

group gene expression patterns with the help of pre-trained classifiers. They are often based

on support vector machines [e.g. Tawa et al. 2014] or random forest [e.g. Antczak et al. 2013,

Luechtefeld et al. 2018, Hou et al. 2020]. For example, Hou et al. [2020] have compared

different non-linear machine learning approaches in their ability to estimate ecotoxicological

characterisation factors and have highlighted random forest as suitable based on CompTox

data ∗.

Unsupervised approaches are applied to cluster groups based on their expression profile with-

out prior knowledge, using, e.g., k-means or hierarchical clustering. In (eco-)toxicogenomics,

unsupervised machine learning has been already applied for, e.g. biological effects surveil-

lance [e.g. Schroeder et al. 2016; 2017] or prediction of toxic or morphological effects [e.g.

Hermsen et al. 2012, Antczak et al. 2013]. For example, the self-organizing map approach has

profiled (eco-)toxicogenomic fingerprints [Wirth et al. 2011, Schüttler et al. 2019, Krämer et al.

∗CompTox Dashboard: https://comptox.epa.gov
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2020]. This relatively sophisticated machine learning strategy uses gene expression network

representations and groups co-expressed genes based on k-means or hierarchical clustering.

The unsupervised machine learning approach of association rule mining (AR) has been ap-

plied in recent exposure studies for different purposes. The approach determines the rules

which describe co-occurrences of frequent item sets in the data ∗. Initially, the approach has

been used in market basket analysis. The approach has been recently considered for the asso-

ciation of exposures [Barrera-Gómez et al. 2017, Kapraun et al. 2017, Santos et al. 2020] and

gene expression to diseases and exposures [e.g. Toti et al. 2016, Lakshmi and Vadivu 2019]

and in multi-omics investigations [Mallik and Zhao 2017]. Furthermore, AR is applicable in a

supervised manner as a toxicity prediction tool by constructing a classification system of asso-

ciation rules. For example, Nagata et al. [2014] predicted relative changes in liver weight with

an association rule mining approach called classification based on association. This prediction

task outperformed the application of linear discriminant analysis and identified meaningful

biological results and allowed the authors develop interpretable prediction models. Although

AR can help link chemical exposure to molecular effects, it has not been yet considered for

eco-toxicogenomic purposes.

Network inference determines or predicts relations from toxicological knowledge networks.

Consequently, network inference is a well-established method in biomedical research like

single-cell omics [reviewed in Fiers et al. 2018] or cancer research [e.g. Niemira et al. 2020,

Tian et al. 2020]. In (eco-)toxicogenomics, network inference approaches are also increas-

ingly used [reviewed in Barel and Herwig 2018, Alexander-Dann et al. 2018]. Therefore, the

gene expression is compared in a pairwise manner based on empirically measured data —

conveniently from a transcriptomic analysis — considering at least two different treatment

conditions. A gene co-expression network can be generated based on a gene-similarity ma-

trix, e.g. an adjacency matrix based on Pearson correlation. Correlation-based networks have

been widely used to understand gene regulation and infer knowledge [e.g. Ewald et al. 2020,

Maertens et al. 2018, Sutherland et al. 2018, Orsini et al. 2018, Degli Esposti et al. 2019,

Asselman et al. 2018]. Furthermore, other approaches have been applied like Boolean net-

works [e.g. Rodŕıguez-Jorquera et al. 2019, Kauffman et al. 2004, Akutsu et al. 2000, Jimenez

et al. 2015], or reverse engineering networks [e.g. Perkins et al. 2011; 2017, Catlett et al. 2013].

The weighted gene co-expression network analysis (WGCNA) [Langfelder and Horvath 2008]

is a state-of-the-art network inference approach Zhao et al. [2010]. WGCNA generates a net-

work based on the pairwise correlation of the gene expression patterns across transcriptomic

samples †. The constructed network consists of genes as nodes and the pairwise similar-

∗ A more technical introduction follows in section 2.1.4.
† A more technical introduction follows in section 2.1.5.
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ity of genes as edge. Approaches, like k-means or hierarchical clustering, help cluster the

constructed gene correlation network. The clusters (modules) are assumed to consist of co-

expressed genes. Further investigations of the gene-expression (sub-)networks allow the infer-

ence of biological meaning (see figure 1.5). For example, with the help of enrichment analyses,

a modular set of genes can be enriched to a previously curated gene set, which may represent

biological functions, biological compartments, diseases, or (chemical) perturbations [applied

in, e.g. Sutherland et al. 2018, Ewald et al. 2020]. Furthermore, the approach determines the

biological meaning of genes with unknown functions, prioritises gene markers for biological

entities and phenotypical endpoints. In the context of toxicogenomics, WGCNA has been

applied to understand drug toxicity [Sutherland et al. 2018] or to associate gene markers to

adverse outcomes in humans [AbdulHameed et al. 2014]. There are also examples of exposure

studies applying WGCNA [Maertens et al. 2018, Degli Esposti et al. 2019, Ewald et al. 2020,

Asselman et al. 2018].

Figure 1.5. Overview of network inference analysis with individual tasks. The

pairwise correlation is calculated to determine gene co-expression in transcriptomic data.

After adaption to interconnectedness measures, a gene network is generated. Groups of

densely connected genes - modules - are determined. Following downstream tasks help to

prove the biological reliability of exposure-related effects or to select toxicogenomic relevant

targets. Taken from [van Dam et al. 2018].

To sum up, the three introduced and frequently used methodologies link chemical exposure to

transcriptional effects and are relevant for environmental toxicogenomics. Linear modelling

of gene expression analysis is one of the most frequently applied omics-based approaches.

In toxicogenomic analysis, researchers compare different (environmentally relevant) exposure
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conditions based on differential gene expression. In that respect, transcriptomics-based ap-

proaches in environmental hazard assessment and monitoring already aim to handle complex

mixtures of often mildly concentrated compounds.

However, also non-linear toxicogenomic approaches have been established in (environmen-

tal) toxicology. They are often considered in combination with differential gene expression

analysis. Especially for systems biology purposes, network inference and machine learning

approaches have investigated exposure-related transcriptional effects.

However, whether the strategies are similarly well-applicable stand-alone to computationally

link complex mixtures of environmental samples to transcriptional expression effects has not

yet been evaluated. Such an examination is uncommonly challenging when investigating en-

vironmental mixtures of lowly concentrated chemicals. In that respect, a consistent gene

expression is not expected for the plethora of considered transcripts. Thus, a coarser reso-

lution level of biological information can help, e.g. achieved by an up-scaling towards higher

biological organisation levels. The following section presents such up-scaling and systems

biological approaches used in the ET context.

1.2.3 Up-scaling from the gene level to higher biological organisation levels

Although the identification of endpoint- or exposure-related genes are helpful for the determi-

nation of molecular targets, these approaches are limited to individual genes with significant

effects and a slight variance due to perturbation condition. However, most cell biological re-

sponses involve more subtle changes due to perturbations, especially when considering chem-

ical exposures in the environment. For example, few or no single genes may be significant

in a DEA after multiple testing corrections. The genes with minor comparative differences

and high variance are not covered. In consequence, lists of significantly affected genes overlap

marginally across experiments with similar study designs or even across samples of one study.

Individual genes in a regulated biological pathway may not be consistent but cumulatively

statistically significant across different (biological) samples. It is more challenging to identify

such responses with single-gene approaches robustly. Thus, a lack of reproducibility may

occur on the transcriptional level. Not only in the environmental toxicology context, an un-

derstanding of higher biological levels by associating the biochemical or metabolic pathways

is crucial to diagnose or prevent adverse outcomes. In that respect, descriptive data from

molecular biology or biomedicine and toxicity- and chemistry-related data are publicly ac-

cessible. These data help link levels of biological organisation in a systems biology and data

integration manner.
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Functional enrichment approaches overcome the limitations of conventional single-gene

approaches. It is assumed a complementary and crucial analysis in omics-based studies to

associate biological functions with measured gene expression and inferred co-expressed gene

clusters. Therefore, a list of determined genes is annotated or statistically associated with

curated or predefined gene sets like biological pathways, biological entities, diseases, adverse

outcomes or perturbations.

In general, two primary approaches of functional enrichment are used to statistically deter-

mine if a predefined set of genes is associated with the gene expression analysis results. First,

the overrepresentation analysis (ORA) determines whether a list of genes is enriched for a

curated gene set using a cumulative hypergeometric statistic. In an ET context, the approach

is often based on differential analysis results comparing different conditions of phenotypes,

treatment or perturbation.

The geneset enrichment analysis (GSEA) [Shi and Walker 2008, Mootha et al. 2003] consid-

ers all genes in an experiment and not only those above a significance threshold by using the

Kolmogorov-Smirnov statistic for the enrichment score. Therefore, a gene expression analysis

help determine ranked gene lists. If a gene set is related to an investigated perturbation, the

gene expressions may have high association scores to the related biological pathways [Shi and

Walker 2008] and the gene set is enriched to higher ranks in the list [Shi and Walker 2008] ∗.

Functional enrichment is an integral and state-of-the-art approach to gain more systems bi-

ological insights in omics-based analysis outcomes on higher levels of biological organisation

from exposure-related gene expression results. Frequently used resources for gene sets related

to cell biological pathways, biological compartments, or xenobiotic responses are available

in, e.g. Gene Ontology (GO) [Carbon et al. 2019], KEGG [Kanehisa and Goto 2000, Kane-

hisa et al. 2004], WikiPathways [Pico et al. 2008], Reactome [Jassal et al. 2020, Fabregat

et al. 2018], knowledge within Ingenuity Pathway Analysis Tool [Krämer et al. 2014] and

MsigDB [Orešič et al. 2020, Subramanian et al. 2005]. Environmental toxicologists have ap-

plied GO-annotation [e.g. Vidal-Dorsch et al. 2013, Rodŕıguez-Jorquera et al. 2019], ORA [e.g.

Martinović-Weigelt et al. 2014, Ewald et al. 2020, Krämer et al. 2020], GSEA [e.g. Thomas

et al. 2011, Schroeder et al. 2017, Zare et al. 2018, Perkins et al. 2017, Martinović-Weigelt

et al. 2014] or the Ingenuity pathway analysis [e.g. Loughery et al. 2019, Feswick et al. 2016,

Perkins et al. 2017] to associate transcriptional responses after xenobiotic exposures to fresh-

water or wastewater samples. Functional enrichment can be performed with established web

interfaces, R-packages and commercial software [e.g. Krämer et al. 2014, Sergushichev 2016,

Wang and Liao 2020, Huang et al. 2009].

∗ A more technical introduction to gene set enrichment analysis follows in section 2.1.6.

20



1.2. Computational toxicology

Data integration in environmental toxicogenomics. Over the decades, many ET-

related data have been produced, curated and stored systematically in publicly available

databases. Whole research program initiatives have generated publicly available databases [e.g.

Dix et al. 2007, Pallocca and Leist 2021, U.S. Environmental Protection Agency 2021, Barron

et al. 2015] used for environmental monitoring and hazard assessment.

With high-throughput chemical effect databases, prior knowledge predictions of single chem-

ical molecular effects are available. Resources like ToxCast [Dix et al. 2007] allow associating

biological endpoints to single compounds directly. One way of applying this prior knowledge

to assess the environmental risk is based on site-specific measurements of chemicals when only

chemistry data are available [Schroeder et al. 2016]. However, when investigating environmen-

tal sites and their samples, compound do not occur alone. Furthermore, mixtures of chemical

compounds have to be investigated, which still is a significant challenge in ET. The public

availability of knowledge bases curating chemical interacting genes, protein, and pathways

from literature and high-throughput or high-content biological assessments allows the current

ET research to address complex mixture uncertainties [Schroeder et al. 2016]. As a result,

the biological effects of mixtures have to be understood from a systems toxicological perspec-

tive, which requires integrating in-vitro and in-vivo data with descriptive statistical models.

Furthermore, computational network approaches are needed for knowledge representation to

link chemical exposure effect data with particular phenotypes or adverse outcomes [Hartung

et al. 2017].

Recent data integration approaches also imply applications to validate the biological meaning

and reliability of empirically measured toxicogenomic data across different levels of biologi-

cal organisation [Martins et al. 2019]. The available resources cover a plethora of chemicals

and biological endpoints and allow assessing chemical exposures in their chance to inter-

act with molecular targets with strong weight-of-evidence. For example, knowledge-inferred

interaction networks for proteins [e.g. Kuhn et al. 2008, Szklarczyk et al. 2016], genes and dis-

eases [Mattingly et al. 2003, Davis et al. 2019, Krämer et al. 2014] or AOPs [Aguayo-Orozco

et al. 2019, Jornod et al. 2021, Pittman et al. 2018, Martens et al. 2021, Pollesch et al. 2019]

are used to, e.g. identify the effect-driven chemical compounds of exposed sites [e.g. Berninger

et al. 2014, Garcia-Reyero et al. 2009, Schroeder et al. 2017, Perkins et al. 2017]. Schroeder

et al. [2016] lists a variety of in-vitro and in-vivo chemical interaction databases. In the ET

context, these have been considered for predictive toxicology and computational approaches

for hypothesis generation [e.g. Schroeder et al. 2016, Luechtefeld et al. 2018, Schroeder et al.

2017]. A plethora of databases contains exposure-related toxicity data from empirical stud-

ies. Schroeder et al. [2016] highlighted the importance of chemical exposure associated with

toxicogenomic relations from resources like ToxCast, CTD or STITCH for environmental
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surveillance, hazard assessment and monitoring. Such databases may help understand the

molecular mechanisms of toxicity in respect of various environmental toxicology problems.

The search tool for interacting chemicals (STITCH) [Szklarczyk et al. 2016, Kuhn et al. 2008]

integrates disparate data sources for 430 000 chemicals linked to genes/proteins across various

species. The STRING database [Szklarczyk et al. 2019; 2021] comprises interactions used for

STITCH. These interactions contain information from metabolic pathways, crystal structures,

binding experiments and drug-target relationships. For each listed species, STITCH offers

an inferred interaction network. Based on the inferred knowledge, STITCH also gathers

predictions of relations between chemicals or associated binding proteins [Kuhn et al. 2008].

The value of the resources for ecotoxicogenomics is already acknowledged [Martins et al. 2019,

Perkins et al. 2017, Kongsbak et al. 2014] — however, only a few ET-related studies integrated

STITCH in practice. For example, Taboureau et al. [2020] predicted human biological systems

affected by endocrine disruptive perturbations. Therefore, xenobiotically perturbed systems

have been determined by integrating STITCH with the Human Protein Atlas ∗ and the

Registry of Toxic Effects of Chemical Substances [Thul et al. 2017].

The publicly available Comparative toxicogenomic database (CTD) [Mattingly et al. 2003]

helps understand how environmental exposures affect biological systems. The database has

a focus on human health, and provides manually curated information from exposure studies

and literature for different types of exposure-related interactions. Furthermore, CTD pro-

vides literature-based and manually curated interactions, allowing harmonising cross-species

heterogeneous data for exposures and associated biological responses. In this respect, it also

comprises environmental toxicology studies, e.g. on relevant aquatic vertebrate model organ-

isms like zebrafish or fathead minnow.

Perkins et al. [2017] have linked specific chemicals to biological effects applying a combina-

tion of a knowledge-based approach and a gene expression analysis based on covariance with

measured surface water chemistry. The chemical exposure has been associated with transcrip-

tional changes in a workflow comprising DEA, correlation approaches, and Context Likelihood

of Relatedness. Estrogenic effects on gene expression in caged fathead minnows have been

detected and linked to the presence of bisphenol A by integrating CTD information.

Schroeder et al. [2017] have performed an integrated analysis of transcriptomic data consider-

ing site-specific knowledge assembly models. They have evaluated the chance of contribution

of detected chemical compounds to the observed biological effect. These hypothesis models of

chemically associated biological effects to compounds have been detected in the investigated

sites based on CTD knowledge.

∗ http://accelrys.com/products/ collaborative-science/databases/bioactivity-databases/rtecs.html
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Gu et al. [2019] have automatically extracted chemical-induced disease relation with an

attention-based distant supervision paradigm capturing local and global attention features

simultaneously. Based on CTD, training relations from biomedical literature have been col-

lected indirectly.

ToxCast [Dix et al. 2007] is frequently used in combination with the curated knowledge in

CTD for purposes of AOP development. The database gathers the high-throughput measures

of single compound exposures in in-vitro and in-vivo assessments of thousands of chemicals.

For example, Nymark et al. [2018] has developed a six-step workflow for integrating of toxico-

logical knowledge and databases to develop an AOP scheme. As an example of an AOP-linked

molecular pathway, they have identified a network of 64 CTD-derived and pulmonary fibrosis-

associated genes. The possibility of CTD to link associations to literature and gene expression

studies has strengthened the direct evidence of the resulted pathway. Furthermore, Doktorova

et al. [2020] has proposed a workflow for AOP development integrating gene-pathway-disease

relation data from ToxCast and CTD. Relations retrieved from TG-Gates [Igarashi et al.

2015] have filled the knowledge gaps within the generated linear AOP-sequences. As another

example, Oki and Edwards [2016] applied frequent itemset mining to identify frequently oc-

curring gene-disease pairs from ToxCast endpoints on the gene level or gene expression and

disease information from CTD. This work has resulted in a computationally predicted AOP

network with 18 283 assay-disease interactions and 110 253 gene-disease associations. The

authors have shown that multiple data source integrations are beneficial to identify compu-

tationally predicted AOPs based on high throughput data.

Data integration approaches, e.g. with ToxCast, present a research focus in ET. The AOP

concept (see section 1.1.3) has been considered the most suitable framework for data integra-

tion approaches when linking the molecular effects to the ecological endpoints in hazard and

risk assessment [Roelofs, Dick 2021].

AOP-related computational toxicology. The AOPwiki [SAAOP 2021] contains the

most recently contributed AOP knowledge provided by the scientific community. Further-

more, this open-source information base includes many AOPs on a hypothetical or theoretical

level. The AOPwiki is frequently considered for data integration. For example, the resource

allows comparative approaches across different species and thus the expansion of possible eval-

uation systems for KE measurements [Lalone et al. 2018]. Moreover, thousands of chemical

stressors gathered in ToxCast have been linked to the current AOP knowledge Aguayo-Orozco

et al. [2019].

The AOP-DB [Pittman et al. 2018] is related to the AOPwiki and is an exploratory database

for hypothesis-generation purposes and associates the AOP framework with existing toxico-
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logical databases like the CTD or STITCH allowing to generate association networks across

the biological entities. In addition, various research initiatives develop sophisticated data

integrative frameworks and tools [e.g. Martens et al. 2021, Mortensen et al. 2021, Nymark

et al. 2018]. Such data integration approaches mine the toxicological knowledge from publicly

available annotation databases to the already available knowledge in the AOPwiki.

Furthermore, in AOP development research, the intersections of different AOPs are investi-

gated, as those may reveal new insights into biological interactions in AOP networks [Knapen

et al. 2018, Villeneuve et al. 2018, Pollesch et al. 2019]. These networks are functional units

and allow predicting endpoints based on measurements on a molecular and cellular level [e.g.

Moe et al. 2021].

1.2.4 Biomedical literature-based discovery

Natural language processing (NLP) is an interdisciplinary research field between computer

science and linguistics and concerns the interactions of computer and natural ∗ languages [Ku-

mar 2011]. For example, a natural language understanding system converts human language

samples, like text, into a more formal representation that is easier to manipulate or process

in a computer program. Such text analyses may comprise multiple tasks, like information

retrieval, pattern recognition, tagging, data mining or literature-based discovery (LBD). In

biomedical research, LBD has been a common approach for automated hypothesis genera-

tion [Zhao et al. 2021]. The task is to uncover previously unknown relations retrieved from

existing knowledge. The LBD method originates from Swanson [1986], who assumed that

knowledge in one scientific domain is related to another non-intersecting domain, albeit not

known so far. The review of Zhao et al. [2021] about recent developments in biomedical liter-

ature mining highlights the challenges, purposes and limitations of LBD and related tasks. In

the biomedical research context, available frameworks for knowledge representation are word

embedding inference networks [e.g. Mao and Fung 2020, Choi and Lee 2019], or predictive

models [e.g. Dollah and Aono 2011, Polavarapu et al. 2005, Peng et al. 2016]. As shown in

figure 1.6, biomedical NLP approaches have shown a hierarchy in their tasks [Zhao et al.

2021]. Thus, to extract a hypothesis from current text-based toxicological knowledge, one of

two preliminary requirements needs to be fulfilled: (1) NLP tools for named entity recogni-

tion and normalisation †, text classification and relation extraction are available, which can

∗ Languages that are human-made and naturally evolved [Kumar 2011]
† Both tasks are sequence labeling problems [Zhao et al. 2021]. Named entity recognition seeks for the

location and classifies named entities in text into pre-defined categories such as person names or organisations

or semantic concepts from the UMLS. The normalization maps obtained named entities into a controlled

vocabulary.
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be applied for the own text data, or (2) text mined relation data sets are available.

Named entity recognition 
and normalization

Text classification

Relation extraction

Hypothesis generation Pathway extraction

Figure 1.6. Natural language processing tasks are relevant in biomedical research. The

transfer of tasks towards environmental toxicology might help discover new exposure-related

interactions (Hypothesis generation) or generate adverse outcome pathways (Pathway ex-

traction). Adapted version of a figure in the review of Zhao et al. [2021].

For exposure-specific AOP development, data integration has also been successfully imple-

mented with text mining approaches [e.g. Jornod et al. 2021, Zgheib et al. 2021]. In con-

sequence, the published literature knowledge have also become available for computational

toxicology. Still, NLP approaches that consider the recent (toxicological) knowledge at once

have been rare, and the respective AOP research is in its infancy. However, the current knowl-

edge and achievements in biomedical LBD (see figure 1.6) may allow a knowledge transfer

methodologically and toxicologically.

The National Library of Medicine and the National Institute of Health have generated fruit-

ful text-based data and developed NLP tools in the human health context of toxicological

research. The biomedical data infrastructure has been expanded with the Unified Medical

Language System (UMLS) [Humphreys et al. 1998, Bodenreider 2004] and SemMedDB [Kil-

icoglu et al. 2012].

The UMLS contains three main knowledge entities of health and biomedicine, which combine

vocabularies and standards to enable interoperability between computer systems: (1) The

UMLS Metathesaurus contains the terms and the codes from many vocabularies with hi-

erarchical links, definitions, and semantic relationships. (2) The UMLS Semantic Network

contains broad categories, called semantic types and their relationships. (3) The UMLS SPE-

CIALIST Lexicon is a large syntactic lexicon of biomedical and general English and comprises

natural language processing tools ∗.

The UMLS has already been applied in different data integrative approaches or tools [e.g.

∗ More information follow in section 2.2.1.
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Kilicoglu et al. 2012, Martens et al. 2021]. Furthermore, a comparative study applying em-

bedding approaches [Mao and Fung 2020] has shown the ontological strengths of the UMLS.

Consequently, the UMLS and their within contained NLP tools make biomedical researchers

and researchers of related scientific fields an LBD approach easily accessible.

Text mining approaches may allow expanding the toxicological knowledge databases. In the

NLP context, SemRep [Rindflesch and Fiszman 2003, Rindflesch et al. 2005] is a rather im-

portant tool, which semantically analyses biomedical texts based on UMLS resources. The

tool identifies semantic predications sentence by sentence. First, the UMLS Metathesaurus

assigns terms to a semantic concept using MetaMap [Aronson 2006]. Then, SemRep determines

propositional assertions under consideration of the semantic and the syntactic constraints. It

is a frequently used tool to extract semantic relations in a biomedical context and is known

as a trustworthy and diverse interpreting baseline system [Kilicoglu et al. 2012; 2020].

Kilicoglu et al. [2012] generated a large-scale knowledge resource called SemMedDB — an

expansion of the MEDLINE initiative [Ahlers et al. 2007]. The SemMedDB contains tables of

semantic predications extracted from the titles and abstracts of all PubMed citations. Thus,

the most current version of the SemMedDB contains the current biomedical knowledge from

all PubMed citations. SemMedDB allows LBD in the biomedical context.

All these UMLS related resources have been a base for current developments in biomedical

LBD and toxicology-related research. Named entity recognition and relation extraction can be

performed with the UMLS tools MetaMap [Aronson 2006] or SemRep [Rindflesch et al. 2005].

According to Kilicoglu et al. [2012], SemMedDB has been proposed as applicable for advanced

data-mining and to hypothesise novel relationships in the biomedical context and beyond.

The UMLS is a biomedical ontology and thus biased towards the human health domain.

Ambitions have already been made to expand the UMLS ontology to further domains such

as pharmacogenomics or medical informatics [e.g. Ahlers et al. 2007, Rosemblat et al. 2013b],

but not ET.

The already mined and extracted relations in SemMedDB are also considerable for LBD.

The data set has a unified ontology - the UMLS terminology - and is also based on current

biomedical knowledge within PubMed. Recent studies have applied the SemMedDB data

in the context of biomedical LBD, for example, to develop a graph of interacting semantic

predications [Hristovski et al. 2015, Cong et al. 2019] or to identify causal drug-side-effect

relations [Mower et al. 2017].
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1.2.5 Deep learning with knowledge representation

Knowledge representation approaches lean on data integration approaches, for example, con-

sidering network inference, but also on deep-learning frameworks. Either way, knowledge

representation helps rearrange, connect and predict information. Furthermore, databases

and also text-based information bases contain toxicological knowledge. For example, Choi

and Lee [2019] integrated the knowledge from three biomedical and toxicological databases

and compared five knowledge representation models. The authors showed that the best per-

forming model has been more accurate in inferring chemical-disease relations than the most

recent approach in CTD. In consequence, data integration has been proven helpful to retrieve

biologically more precise models. However, with the emergence of NLP, especially in biomed-

ical research, knowledge represented in text format may also be relevant. Most frequently,

deep learning knowledge representation approaches are utilised with word embedding models.

Word embedding approaches are used to learn a dense and low-dimensional representation

from large and unlabeled corpora of text-based information and shall efficiently capture the

semantics of words. In consequence, such an embedding transforms words, phrases or sub-

strings into vectors of real numbers ∗. Densely distributed and low-dimensional vector rep-

resentations of words are more suitable than one-hot encoded representations. Hence, the

most common implementations consider the theory of distributional semantics † , such as the

neural-network-based word2vec algorithm [Mikolov et al. 2013] and GloVe [Pennington et al.

2014]. In the context of human and environmental health, knowledge bases from different text-

based corpora are available. There are successful implementations with word embedding and

related knowledge representation approaches in recent deep learning applications for various

literature mining tasks [reviewed in Zhao et al. 2021]. It has become clear that integrating do-

main knowledge helps improve semantic representations in a biomedical context [Zhang et al.

2019b]. The identified dependence of the representation from the corpus trained on has been

one initial achievement [Wang et al. 2018]. Besides, word vector representations has been de-

termined based on similarity and co-occurrence frequency of words [Smalheiser and Bonifield

2018]. Additionally, subword embedding models allow interpreting word-internal structures

using character n-grams with implementations like fastText [Bojanowski et al. 2017]. Conse-

quently, a recent study [Zhang et al. 2019b] has generated a biological word embedding based

on the PubMed text corpus and the MESH term graph, enabling an out-of-vocabulary word

consideration.

Furthermore, contextual word embeddings like ELMO [Peters et al. 2018] and BERT [Devlin

∗ A technical introduction follows in section 2.2.3.
† The distribution of surrounding words estimates the meaning of a target word.
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et al. 2019] consider bidirectional language models with multiple attention-based transformer

layers [Vaswani et al. 2017]. Such techniques allow generating multiple word embeddings for

one word depending on its context. For example, BERT is trained on general English corpora

and then contextualised by adding biomedical texts in a second training step. Various con-

textualised pre-trained biomedical-related word-embeddings have been generated, presented

and made publicly available [e.g. Lee et al. 2019, Alsentzer et al. 2019, Michalopoulos et al.

2021, Peng et al. 2019]. For example, the UMLSBERT has learned semantic similarity of lex-

ical words with the help of the UMLS semantic concepts and semantic types [Michalopoulos

et al. 2021]. In this model, the word embedding vectors of words sharing the same semantic

concept and the same semantic type have been adapted in training to become more similar.

The model is publicly available, and it can recognise subwords and thus out-of-vocabulary

words. However, considering a ’biomedical contextualised’ embedding may increase the bias.

Thus, recent pre-trained word embeddings may have their limitations when aiming for a tox-

icological hypothesis generation approach.

Recent approaches have applied mainly two ways to improve the model performance of word

embeddings: Retro-fitting of pre-trained word embeddings [e.g. Zhang et al. 2019b] or com-

bining different word embeddings [e.g. Mao and Fung 2020]. For example, Mao and Fung

[2020] has combined word embeddings based on the retro-fitted BioWordVec [Zhang et al.

2019b] model and BERT-models. The combined model has performed better than single

applications in selected biomedical NLP tasks. In the context of cancer pathology reports,

Alawad et al. [2019] have developed a retro-fitted word embedding with UMLS-vocabularies,

which has been focused on human health. However, considering a broad research scope like

ET is limited by a word embedding model, that specialises in human toxicology.

Some text-based deep learning models in a biomedical context base on recurrent neural net-

works (RNN) [Elman 1990]. This network type enables the modelling of temporal or sequential

data ∗. RNN has been applied to various computational tasks, e.g. handwriting recognition,

activity recognition, or NLP. Long-short-term memory (LSTM) [Hochreiter and Schmidhu-

ber 1997] is one kind of RNN and uses feedback loops of a previous step in the timeline or

sequence t − 1 for the output of the recent step t (see figure 2.3). Thus, a new cell in the

recurrent network is considered for each word of a sentence sequence. For longer sequences,

regular recurrent neural networks may be limited to model the dependencies between sequen-

tial steps separated by numerous others. The so-called vanishing gradient problem describes

how small weights got eliminated due to multiple multiplications across time steps. Con-

sequently, the weights of earlier layers have no significant changes, and the network forgets

long-term dependencies. LSTM networks allow solving the vanishing gradient problem.

∗ A technical introduction follows in section 2.2.3.
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In biomedical research, the deep learning approach of LSTM has been applied frequently [e.g.

Chen et al. 2017, Zhao et al. 2019, Gu et al. 2019, Jimeno Yepes 2017]. For example, Jimeno

Yepes [2017] have investigated biomedical word sense disambiguation in UMLS and have been

shown that word embeddings improve the performance of more traditional features and allow

using recurrent neural network classifiers based on LSTM nodes.

Admittedly, computational scientists widely utilise word embedding approaches. The vari-

ety of model architectures has helped contextualise information, handle long sequences, or

use previous knowledge representative achievements. However, studies are very likely bi-

ased considering approaches on biomedical data as focusing on human health. Nonetheless,

biomedical information also presents partly toxicological knowledge. For example, pharma-

cogenomics and cancer research also relies on transcriptomics studies. In addition, it may

be related to at least common anthropogenic compounds such as pharmaceutical drugs, in-

dustrial or urban emissions and xenobiotics in food products. Thus, text-based biomedical

data may contain at least some information relevant for exposure-related toxicology. Conse-

quently, an exposure-related predictive task, such as determining hypotheses of links between

chemical exposures and molecular biological effects, can be performed through knowledge

representation applications considering deep learning or data integration approaches.

1.3 Research question and approaches

As stressed in the introduction, chemicals are released into the environment anthropogeni-

cally and may adversely affect organisms. The field of ecotoxicology monitors the chemical

exposures in selected environmental sites and assesses the hazard and risk for therein living

organisms. Omics-based approaches, especially microarray-based gene expression analyses,

have become essential for purposes of toxicogenomic profiling and the assessment of exposure-

related adverse effects. Regarding environmental sites of interest, scientists have to deal with

complex mixtures and sometimes such with low chemical concentrations, although biological

effects of concern may be measured. An exposure study, which investigates such conditions,

deals with complex chemical analytical data and may concern high-content data of an omics-

based approach. In the past, computational approaches have been applied to link chemical

exposure to biological effects, such as multilinear modelling, machine learning and network

inference. The plethora of computational approaches has also resulted in various combined

strategies frequently considering data integration approaches to determine exposure-related

molecular interactions and associate adverse effects. However, a strategy is missing to prove

the stand-alone reliability of computational approaches to link chemical exposure to biological
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effects, especially regarding such complex, empirically measured data. The first question in

this dissertation stresses this knowledge gap: To what extent are state-of-the-art computa-

tional approaches – stand-alone and in combination – suitable to link chemical exposure to

biological effects when considering environmental data concerning complex mixtures of lowly

concentrated chemicals?

Moreover, a plethora of toxicologically relevant knowledge has been produced in exposure

studies and is available from a variety of databases, information systems and literature.

Knowledge representation approaches have been identified as a fruitful way to infer new

information or connections from databases and text. Regarding data integration, also deep

learning approaches become relevant, especially to harvest unknown information from the cur-

rent toxicological knowledge. Inspired by the recent approaches in biomedical LBD, we believe

there is a potential for a knowledge-driven prediction of exposure-related biological effects,

which lead to the question: To what extent is the current and information-rich knowledge

from literature and databases suitable to learn meaningful exposure-related interactions?

This dissertation stresses two issues, which are both relevant for knowledge retrieval in the

context of environmental computational toxicology: (1) the assessment of the environmental

status concerning exposures with complex mixtures and (2) knowledge-driven prediction from

databases and literature. In concordance to developments mentioned earlier, this thesis deals

with approaches to computationally link chemical exposure to biological effects employing

data, which are complex structured and, thus, potentially rich in information but challeng-

ing in retrieving this information. Consequently, this thesis deals with the overall research

question, whether such complex data can be applied to link chemical exposure to biological

effects, and whether such associations are also biologically meaningful and to some extent

reliable.

The study in chapter 3 linked complex chemical exposure of selected environmental systems

to transcriptional effects and tackled the first question. We investigated three singularly ap-

plied computational approaches in their suitability to determine exposure-related effects on

molecular and pathway levels, which might highlight a biologically meaningful and reliable

attribution to adverse effects. Therefore, we examined empirical environmental data from

an exposure study and assessed the xenobiotic effects of complex chemical exposures in ten

streams in Minnesota. The challenges within this study were the retrieval of chemical-gene

interactions when exposure patterns were not independent, and transcriptional effects were

weak due to subtle toxic effects by chemicals. Applying different conceptual scenarios of ex-

posure, we investigated the disentangling of chemical drivers in complex and environmental

mixtures from a novel perspective of correlation-based compound groups. Finally, we deter-
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mined whether the outcomes were somewhat trustworthy through a data integration approach

with CTD and STITCH, and tested the biological and toxicological plausibility on gene level

and on the higher resolution level of biological pathways.

The study in chapter 4 dealt with the second question. We employed semantic predications

from the text-based biomedical knowledge of SemMedDB and aimed to predict the toxicoge-

nomic relationships of chemical-biomolecule interactions by applying a deep learning model.

We evaluated the model in its use to predict not-represented chemical-biomolecule interactions

considering the current knowledge in CTD. An automated way of using the literature consid-

ering a knowledge representation had not yet been considered in exposure-related toxicology.

The prediction of chemical-biomolecule relations considering natural language processed data

and subsequent deep learning was a novel approach in ET.
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Chapter 2

Methods and Data

This section describes the employed data and applied computational methodologies of sec-

tions 3 and 4, respectively.

It starts with reporting the selected data from an environmental and omics-based exposure

study for the first investigation. Then, the three chosen bioinformatics approaches and the

strategies to compare their outcomes are described. Furthermore, method comparative and

systems biological approaches, considering functional enrichment and data integration, are

reported.

The second part describes the selected biomedical resources of UMLS, SemRep, SemMedDB

and toxicological reference data from CTD and how these data have been preprocessed. Then

the applied deep learning prediction models for a knowledge-based discovery of chemical-

biomolecule relations are presented. Lastly, the model evaluation strategies are described,

including a considered toxicological application case.
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2.1 Linking environmental relevant mixture exposures to tran-

scriptional effects

Three data sets were provided by Dalma Martinović-Weigelt — a collaboration partner in

Minnesota, US. Ferrey et al. [2017] ∗ measured for ten small streams in Minnesota, (I) quanti-

tative chemical exposure data of 146 pharmaceuticals and chemicals of concern in the US, (II)

two in-vitro cell assay measurements for endocrine activity, and (III) gene expression data in

liver tissue of fathead minnows after acute exposure to stream water (nSamples,treated = 64;

nSamples,control = 7). Here, one transformed the chemical concentrations into toxic units and

preprocessed the raw microarray data.

Applying three computational methods (Differential gene expression (DEA), Association rule

mining (AR), and Network inference), exposure-related gene interaction sets were generated

based on the given exposure and gene expression data. In addition, the exposure-associated

gene results were validated with functional enrichment to biological pathways and chemical

reference sets from external databases for each method.

2.1.1 Exposure and microarray data

Chemical compounds. Endogenous steroids had been indicated in previous surveys of

waterbodies in Minnesota, but often at low concentration levels [e.g. Lee et al. 2010]. Ferrey

et al. [2017] had measured 146 chemical compounds of emerging concern in the US (see supple-

mental table S2-1) with targeted chemical analysis in fifty streams in Minnesota. The list of

compounds had comprised pharmaceuticals primarily The sites had been based on an ’inter-

nationally random selection’ [Ferrey et al. 2017] to represent a variety of streams in Minnesota,

including ones that contaminants had not heavily impacted. A biological effect analysis had

examined a collection of water samples from ten stream sites in Minnesota (see supplemental

table S2-2) and a control sample of exposure-free water (ultraviolet-radiation-filtered Lake

Superior water). The present investigation considered only the chemical measurements of

these sites. If the compounds had been not detected, then the exposure concentrations were

set to 0ng/L †. The compounds were not detected in any of the ten stream sites and were not

considered as selected compounds.

∗ see report for detailed description on data sampling, microarray experiments and report of initial results.
† Not detected compounds were those where compound reports had been not above the respective detec-

tion limit and where compounds had been identified in samples and associated laboratory tanks. See Data

Chapter3 (TenStreams)/FlaggedChemicalInput.xlsx PW: PhD SKraemer) under consideration of sup-

plemental table S2-3.
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2.1. Linking environmental relevant mixture exposures to transcriptional effects

Bioanalytical data. To the chemical exposure data, in-vitro estrogen activity bio-assays ∗

and in-vitro bio-assays for the activity of nitrates and nitrites † had been included to assess

the exposure of selected stream waters. However, before providing the chemical exposure and

bioanalytical data, Dalma Martinović-Weigelt had transformed the in-vitro activity levels to

chemical concentrations of EE2 and inorganic nitrate.

Fathead minnow microarrays. Mature fathead minnows had been exposed for 48h to

either a control reference or a surface water reference collected from the ten selected sites. Five

to seven fish per stream had been sacrificed, and the gene expression of respective liver tissue

has been measured using a custom 60K-feature FHM DNA microarray (Agilent, GPL17 098).

The provided data set contained 70 microarray samples.

In summary, the database for this study comprised ten stream locations, 146 measured com-

pounds, EE2 and nitrate concentration equivalents of in-vitro activities, and 70 microarray

samples.

2.1.2 Preprocessing

Transformation of chemical concentrations in toxic units. The toxic unit (TU) ex-

presses the toxicity potency of a sample. In most cases, TU describes the ratio of the detected

concentration c and a standardised chemical concentration for an environmental or toxic effect

ECx:

TU =
c

ECx
(2.1)

For selected chemical compounds from section 2.1.1, toxic units were calculated by divid-

ing the measured concentration with an effect concentration for toxicity in fish. The effect

concentrations in terms of LC50 values vary between (i) acute and chronic exposures, (ii)

different fish species and (iii) QSAR-based prediction models. Therefore, for each selected

compound, different available values (from ECOTOX and ECOSAR) were compared, and the

effect concentration was estimated more roughly as an order of magnitude instead of taking

∗ The in-vitro estrogen activity bioassay has been chosen to capture relative levels of binding to target sites

of the hormone estrogen and has been measured across the selected stream sites (see supplemental table S2-5).

An androgenic in-vitro assessment has been performed as well (see supplemental table S2-5), but has not been

quantified by any equivalent concentration and was not considered in the present study.
† Nitrates are a very good generic marker for pollution and land use in Minnesota and their activity. For

sites impacted by agriculture, nitrate is a good marker for presence of a variety of contaminants that may have

not been captured by the chemical analyses. Furthermore, recent work has been indicated, that nitrates may

interact with endocrine function in gene expression and circulating hormones [Kellock et al. 2018, Bjerregaard

et al. 2018, Pottinger 2017] and may be useful identifying transcriptional changes of chemical drivers.
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an individual value (supplemental table S2-4).

An exposure pattern of one compound was viewed as the root-mean-square-scaled vector of

values of its toxic unit transformed concentrations across the ten streams.

A pairwise Pearson correlation analysis (cor(method=’pairwise.complete.obs’)) was per-

formed, and the compound wise exposure patterns were clustered in groups with similar

exposure patterns - compound groups (CG) with pheatmap [version: 1.0.12 Kolde 2019].

The compound group exposure patterns were generated as the root-mean-square-scaled sum of

the compound wise exposure patterns. Consequently, the mixture toxicity concept of concen-

tration addition was applied ∗ as low concentrated chemical concentrations may cumulatively

affect one mode of action such as baseline toxicity, xenobiotic metabolism or oxidative stress

(see supplemental section S1.2).

The groups were merged if the pairwise Pearson correlation of compound group exposure

patterns was cor > 0.5.

Microarray analysis. The R-package limma [version 3.42.2 Ritchie et al. 2015] was applied

to preprocess the microarray data. The microarray samples were loaded (read.maimages()),

then background corrected (backgroundCorrect()) and normalised by a log-2 transforma-

tion. A confidence interval of mean± 3× sd was used for sample wise interquartile ranges of

log-2 expression to remove samples that were considered as outliers. The duplicated probes

were summarised using the median of the respective expression values. Lowly expressed

genes were identified relative to the average expression value of the negative control probe

(< mean+ 2× sd) and removed. The probe names were assigned to 11 518 gene names using

the microarray platform and to 9887 unique Ensembl gene-IDs of zebrafish using Bioconduc-

tor’s R package biomaRt [Durinck et al. 2005, version 2.42 .1] †.

∗ In concentration addition the mixture toxic potency is estimated by the sum of toxic potencies of all

mixture compounds:

TUCA =
∑
i

TUi (2.2)

In the case of independent action, a correction of the additive effect is necessary, leading to the following

mathematical formulation:

EIA = 1−
∏
i

(1− Ei) (2.3)

,where Ei is the toxicity probability of the i-th compound when affecting a target singularly.
† see enrichment outcome: Data Chapter3 (TenStreams)/annotation microarray.csv PW:

PhD SKraemer
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2.1. Linking environmental relevant mixture exposures to transcriptional effects

2.1.3 Differential gene expression

Linear models of gene expression can mathematically describe exposure-dependent gene ex-

pressions. So, one can investigate each gene independently and determine whether it is

differentially expressed under a perturbed condition compared to a control condition. There-

fore, differential gene expression analysis (DEA) [Shi and Walker 2008] is conventional. DEA

linear models gene expression across different pools of samples for each gene, respectively.

The model designs vary from simple two-group comparisons to complex models with multiple

experimental factors [Ritchie et al. 2015].

The differential gene expression analysis (DEA) was applied to the microarray samples to

determine genes, which were significantly altered in their expression behaviour in sample

groups under exposure-specific conditions, using the R-package limma [Ritchie et al. 2015,

version: 3.42.2]. Four exposure scenarios reflected different xenobiotic assumptions (see fig-

ure 3.5). For the first three scenarios, stream site dummy covariates formed an initial linear

design model, and the preprocessed log-2 transformed gene expression data fit those covariates

(lmFit()). Then, the linear design models were refit (contrasts.fit()) based on the models

of exposure scenarios with partition weights w. In the fourth scenario, the preprocessed ex-

pression data were control-normed, and the model was fit across all 69 samples (lmFit()) to

the scaled but not normed compound group exposure patterns. Consequently, the following

differential gene expression models were formulated:

1. General treatment exposure scenario: All stream groups (w = 0.1) vs. control groups

(w = −1);

2. Stream-wise exposure scenario: Each stream group (w = 1) vs. control group (w = −1);

3. Single compound exposure scenario: Each single compound exposure pattern (
∑10

i=1wi =

1) vs. control group (w = −1). ∗

4. Chemical group exposure scenario: Each compound group exposure pattern (
∑10

i=1wi >

1) (control: w = 0)†.

∗ Single detected chemical compounds were considered indirectly with the respective (2.) stream-wise

contrasts and not in (3.) single compound exposure scenarios.
† The given control information was compared to the treatment without considering the control group di-

rectly in the exposure pattern by control-normalisation of expression values (log2 FCnormalised = log2Esample−
mean(log2Econtrol)). The initial idea was to consider single compound exposure scenarios without stream-

wise pre-fit of gene expression. Therefore, each treated sample was weighted by a compound group exposure

pattern in a gene-wise linear regression model. The highly correlated covariates and the restricted possibilities
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A simple empirical Bayes model (eBayes()) moderated the standard errors for each of the

four fit design models. The false discovery rate (FDR) was adjusted according to the method

of Benjamini & Hochberg, and a significance threshold of FDR ≤ 0.05 was used to identify

significantly differentially expressed (DE) genes. The log-2 fold change of expression (logFC )

and FDR were considered for follow-up analyses within the lists of exposure-related sets of

DE genes.

2.1.4 Association rule mining

The unsupervised machine learning approach of association rule mining (AR) determines the

rules, which describe co-occurrences of frequently combined items or item sets given the data.

The approach originates from the market basket analysis.

In the following, X → Y is defined as a rule for the antecedent itemset X and the con-

sequent itemset Y considering a transaction set T = {t1, t2, . . . , tn}. Each transaction ti

contained a unique subset of items of one sample. The rule describes ’if itemset X is present

in ti, then the presence of itemset Y is likely.’ Different frequency and co-occurrence mea-

sures may be used to filter possible association rules but the support and the confidence are

utilised primarily. The support of a rule defines the frequency of the concatenated itemset of

antecedent X and consequent Y in the transaction set T :

support(X → Y ) = support(X ∪ Y ) =
|t ∈ T ;X ∪ Y ⊆ t|

|T |
(2.4)

The confidence defines the conditional probability of consequent Y in T given the presence

of antecedent X in T :

confidence(X → Y ) =
support(X ∪ Y )

support(X)
(2.5)

Further measures might be employed to rank and prioritize association rules, such as the

lift or the support ratio. The lift defines the ratio of the observed support to the expected

support when X and Y were independent:

lift(X → Y ) =
support(X ∪ Y )

support(X)× support(Y )
(2.6)

The support ratio is calculated as the relation between the supports of antecedent X and

consequent Y :

support ratio(X → Y ) =
supp(X)

supp(Y )
(2.7)

of a linear combination of covariates made the grouping of compounds necessary.
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2.1. Linking environmental relevant mixture exposures to transcriptional effects

The R-packages aRules [Hahsler et al. 2005, version 1.6-6], and aRulesViz [Hahsler 2017,

version 1 .3-3], were used to perform association rule mining (AR). The itemset I comprised

all expressed genes, detected compounds, compound groups, and stream sites (+ control).

The microarray samples defined the transaction set T = {t1, t2, . . . , tn}. To identify the

transaction subsets, the data were binarised first:

1. Genes were assigned to 1 if samplewise |log2FCnormalised| ≥ 1 ∗, else to 0;

2. The stream of which the respective water sample originated was assigned to 1, all others

to 0;

3. Compounds were assigned to 1 if detected in the respective stream of a water sample,

else to 0;

4. A compound group was assigned to 1 if all its compounds have been measured in the

respective stream water sample, else to 0.

In this study, only pairwise association rules were computed. Thus, the antecedent repre-

sents an exposure-specific item and is either a compound, a compound group or a stream. The

consequent represents a gene item, which might be exposure-related up- or down-regulated.

The apriori algorithm was developed to effectively and time-efficiently identify frequent item-

sets, which contain multiple items. Albeit the association rules had antecedent and con-

sequent itemsets of length one, the aRules-package allows considering the threshold settings

for support and confidence. Furthermore, the antecedent and consequent structure can

be specified explicitly. As a result, calling the aRules-function apriori() determined as-

sociation rules for co-occurring item pairs. To identify frequent rules, different measures of

interestingness [Piatetsky-Shapiro 1991] — support, confidence and lift— were considered

with respective filtering thresholds when applying the apriori algorithm. Frequent rules were

grouped by exposure-specific antecedents. The respective consequent items comprise

the set of genes related to this exposure. The measures of support, support ratio, confidence

and lift were taken into account for follow-up analyses.

2.1.5 Weighted gene correlation network analysis

Network inference approaches are increasingly used in ecotoxicogenomics [Barel and Herwig

2018, Alexander-Dann et al. 2018]. Therefore, the gene expression from a transcriptomic

∗ control-normed expression data: log2FCnormalised = log2Esample −mean(log2Econtrol))
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analysis is compared pairwise, considering different treatment conditions.

In weighted gene correlation network analysis (WGCNA) [Langfelder and Horvath 2008], one

generates a network based on the pairwise correlation of the gene expression patterns across

transcriptomic samples. One assumes a scale-free topology for the network, which is given

when the connectivity distribution of nodes follows a power-law - the majority of nodes has

a small sum of edge weights, but a small set of nodes has vast sums of edge weights. For

calculation, we chose Pearson’s correlation. However, the biweight mid-correlation is known

to retrieve more robust results than a Pearson correlation regarding outliers [Wilcox 2016,

Langfelder and Horvath 2012]. In WGCNA, the preferred similarity measure for network

generation is the topological overlap measure (TOM). A measure of adjacency considers gene

pair by gene pair, whereas the TOM considers them concerning the other genes in the net-

work. TOM counters the effects of spurious or missing edges [Yip and Horvath 2007] and is

high if a gene pair shares the same neighbourhood of genes in a network.

The constructed network consists of genes as nodes and the pairwise similarity of genes as

edge. Finally, a (i) fully connected, (ii) signed or unsigned, (iii) weighted or unweighted

network is generated. Fully connected means that each node of the network is joint on all

other edges in the neural network. The correlation value ranges between −1 and 1 in signed

networks, where the negative values represent an anti-correlation, the positive values a posi-

tive correlation, and zero represents no correlation. In the case of an unsigned network, the

correlation ranges between 0 and 1, and 0.5 represents no correlation. Each edge of a gene

pair can be either binary-valued (existent or not) — unweighted — or continuously valued as

the strength of correlation — weighted.

The constructed gene correlation network is grouped into modules based on k-means or hi-

erarchical clustering. The module eigengene represents the modular gene expression pattern

— the first principal component of gene expression across all genes. The correlation between

a gene expression pattern and a module eigengene defines the module membership (MM). It

describes the degree of intra-modular connectivity of a gene. A high value may indicate a

hub gene that is strongly correlated to many other genes within the module.

No prior knowledge about the grouping of samples is considered for the network generation,

which allows determining modules of co-expressed genes independent of a-priori knowledge

of treatment or perturbations in the study design. Therefore, guilt-by-association correla-

tions to gene expression determine external factors such as a chemical perturbation. One

may prioritise modules via the correlation of a module eigengene and the pattern of such an

external trait - the module-trait-correlation (MTC). On the other hand, the gene significance

(GS) helps prioritise genes of interest for the studied perturbation, which correlates a gene

expression pattern and an external trait pattern. The relevance of a gene of interest might be
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2.1. Linking environmental relevant mixture exposures to transcriptional effects

exceptionally high in terms of perturbation if it is a hub gene and the module is associated

with a biological functionality.

The weighted gene correlation network analysis (WGCNA) was conducted with the R-package

WGCNA [Langfelder and Horvath 2008, version: 1.69]. A matrix of the preprocessed expression

data set considered 69 columns of samples and 11 518 rows of genes. A soft threshold factor

β was chosen to assume a scale-free topology in the generated network. To assume a scale-

free topology, a soft threshold factor was chosen with the help of the transcriptional data

set. The WGCNA-function pickSoftThreshold() calculated scale independence and mean

connectivity for various soft-thresholding powers from 1 to 20. According to Zhang and

Horvath [2005], an R2-value for a power-law degree distribution should be above 0.8. The

mean(connectivity) ≥ 100 was chosen for soft threshold β. The constructed network was

fully connected, signed, and weighted. The gene adjacency was calculated from expression

data (adjacency()) using the biweight mid-correlation and the exponent β:

aij =

(
bicor(i, j) + 1

2

)β
(2.8)

A setting of corOptions = list(maxPOutliers = 0.05) was chosen as recommended in the

WGCNA-tutorial. With the WGCNA-function TOMsimilarity(), the TOM was calculated:

TOMij =

∑
aiu ∗ auj ∗ aij

min
∑
aiu,

∑
auj + 1− aij

(2.9)

Based on TOM, distinct groups of co-correlated genes — modules — were determined by

applying hierarchical clustering (hclust()) and the R-package dynamicTreeCut [Langfelder

et al. 2007, version 1.63-3] (cutreeDynamic(method=’tree’,distM=1-TOM) considering a

minimal cluster size of n = 30 and a height cut-off of c = 0.98). Modules with highly

correlated module eigengenes (moduleEigengenes()) were merged (mergeCloseModules()).

The different exposure scenarios of DEA (see section 2.1.3) were considered in WGCNA as

external traits. The MTC was calculated with exposure patterns and the module eigengenes.

The correlation was significant if |corMTC | ≥ 0.3 and pMTC ≤ 0.05. For individual exposure

traits, the genes of a module with a significant MTC were considered as exposure-associated.

Significant MTCs were investigated genewise with MM and GS. Both were determined based

on biweight mid-correlation and were meaningful for visualisation and functional enrichment.

2.1.6 Method comparison

Functional enrichment analysis. Functional enrichment approaches are complementary

follow-up analyses in omics-based studies to associate biological functions with measured gene
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expression and inferred co-expressed gene clusters. Lists of detected genes are statistically

associated with predefined gene sets like biological pathways or even chemical perturbations.

Often, researchers choose overrepresentation analysis (ORA) and gene set enrichment analysis

(GSEA) as functional enrichment approaches. GSEA [Shi and Walker 2008, Mootha et al.

2003] has the advantage of considering all genes in an experiment and not only those above

a significance threshold.

Therefore, a ranked gene list S is retrieved from a gene expression analysis. If S is related

to an investigated perturbation, the gene expressions should have high association scores to

the geneset P of a related biological pathway [Shi and Walker 2008]. First, GSEA determines

whether a more significant proportion of highly ranked genes in S to P occur than other genes.

The enrichment score (ES) represents the extent P is overrepresented at the top or bottom

of S. It is a running-sum statistic when walking down the list S Subramanian et al. [2005],

increasing when a gene is in P and decreasing when not. Thus, the ES is based on a weighted

Kolmogorov-Smirnov-like statistic Subramanian et al. [2005]. The maximum absolute value

of ES is chosen.

Second, GSEA assesses the significance by permuting the class labels, which preserves gene-

gene correlations and, thus, provides a more accurate null distribution [Subramanian et al.

2005]. If ES for S is greater than the enrichment scores for more than 95% of the randomly-

permuted data sets, then the probability p ≤ 0.05, and S is significantly enriched for P and

S might occur not only by chance.

The biological meaning of the exposure-related gene sets was evaluated by conducting GSEA

with the R-package WebGestaltR [version: 0.4.3 Liao et al. 2019, Wang et al. 2020] on

KEGG [Release 88.2, Kanehisa and Goto 2000], Reactome [Version66, September 2018 Jassal

et al. 2020] and Wikipathways [Release 02/10/2020 Pico et al. 2008] gene sets. The gene sets

were annotated to zebrafish by the R-package org.Dr.eg.db [version 3.10.0 Carlson 2019]

based on Ensembl gene-IDs. Previously, the log2FC- and adjusted p-values of DEA were

used as the ranking measures in GSEA. In the present study, the genes were ranked by the

measures of the respective approaches (DEA: sign(log (FC))×− log10 (FDR); AR: lift; and

WGCNA: |MM | × sign(GS) × log10 (pGS)). A GSEA with all reference gene sets that con-

tain at least ten genes was performed on the exposure-related gene sets for the respective

exposure scenarios for all three approaches. An enriched gene set was viewed as significant if

FDR ≥ 0.05.

Data integration To investigate whether identified chemical-gene interactions were already

known, respective data from the toxicological databases of CTD [version March 2019 Mat-
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2.1. Linking environmental relevant mixture exposures to transcriptional effects

tingly et al. 2003, Davis et al. 2019] and STITCH [version5.0 Kuhn et al. 2008, Szklarczyk

et al. 2016] were extracted (see table 2.1).

Table 2.1. List of toxicological reference data sets (including URL). The following

data were applied to evaluate the biological reasonability of retrieved chemical-gene inter-

actions. Data were downloaded from CTD in CSV format on 2019-02-18. The chemical-

protein data from STITCH for species Danio rerio had been downloaded in TSV format

on 2019-04-17. (N: Number of samples per data set)

Database Relationship N Link

CTD Chemical-Gene 2 127 796 ctdbase.org/downloads/CTD chem gene ixns.csv.gz

Chemical-Pathway 1 369 059 ctdbase.org/downloads/CTD chem pathways enriched.csv.gz

STITCH Chemical-Gene 74 619 879 stitch.embl.de/download/protein chemical.links.v5.0/

7955.protein chemical.links.v5.0.tsv.gz

For each combination of a reference and a detected compound (mapped via MESH-ID), a

list of exposure-associated genes was generated with all available zebrafish annotated genes.

The R-package biomaRt [version: 2.42.1 Durinck et al. 2005] was used for annotation via

ID mapping. The overlap of the reference gene sets was determined with the results of all

three approaches for respective compound-dependent exposure scenarios (single compound or

compound group) ∗.

Lists of enriched pathways per chemical from external sources.

Chemical-pathway interactions were extracted from CTD (see table 2.1) and reduced to the

selected set of compounds by MESH-IDs. For each detected compound, a list of pathway-

chemical interactions was prepared. The pathway-annotation was changed manually by

replacing ’R-HSA-’ to ’R-DRE-’ for Reactome pathway-IDs and ’hsa’ to ’dre’ for KEGG

pathway-IDs. A term was considered, if it contained at least one of the annotated genes on

the microarray. A χ2-test (FDR ≥ 0.05) was applied to investigate statistical significance of

the overlap to exposure-related results.

∗ From CTD 13 102 zebrafish-annotated chemical-gene interactions remained after mapping to microarray

set and filtering to selected compounds. From STITCH 29 076 zebrafish-annotated chemical-gene interactions

remained after protein-to-gene-reannotation, mapping and filtering.
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2. Methods and Data

2.2 Predicting exposure-related effects on molecular level

The second investigation is based on the knowledge represented in relations from pre-parsed

PubMed abstracts stored in SemMedDB. The considered UMLS terminology is a standard

ontology in biomedicine. In this thesis, the UMLS helped assign toxicological terms to lev-

els of biological organisation and filter chemical-biomolecule interactions from SemMedDB.

In this study, a deep learning model was trained to predict the relationship of a chemical-

biomolecule pair based on current toxicological knowledge. The model was trained and val-

idated in python using the deep learning packages keras [version:2.4.3 Chollet et al. 2015],

tensorflow [version:2.5.0 Abadi et al. 2016], scikit-learn [version:0.0 Pedregosa et al.

2011], and kerastuner [version:1.0.3 O’Malley et al. 2019]. Model architectures for knowl-

edge representation are considered, including layers of word embedding, and long-short-term

memory, time-distributed layers and dense layers. The comparative toxicogenomic database

was variously applied for data augmentation, linking chemical-gene interactions to higher

biological levels and evaluating prediction results.

2.2.1 Input

The National Library of Medicine provides the Unified medical language System (UMLS),

which consists of three interconnected Knowledge Sources.

The SPECIALIST Lexicon is a syntactic and general English lexicon including many

biomedical terms from a plethora of reference data and knowledge bases. The lexicon captures

their syntactic, morphological, and orthographical information. These pieces of information

are necessary for the SPECIALIST natural language processing tools, e.g. SemRep, which

are also provided with the SPECIALIST Lexicon. Such Lexical Tools can be used, e.g., to

generate the word indexes to the Metathesaurus.

The Metathesaurus is a huge vocabulary database applicable for multiple purposes and

across multiple languages. Biomedical and health-related semantic concepts define the organ-

isational structure of the Metathesaurus, and these are assigned to unique and permanent

concept identifiers (CUI). Furthermore, the Metathesaurus contains the concept’s various

(synonym) names from many vocabularies ∗. A knowledge representation of the source vo-

cabulary hierarchies is provided in MRHIER.RRF. The Metathesaurus contains non-synonymous

relationships between concepts within the same source vocabulary and across different source

∗ The Metathesaurus is built from the electronic versions of various ”source vocabularies” related to

biomedicine, clinics, and health services.
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2.2. Predicting exposure-related effects on molecular level

vocabularies. These relations are stored in the file MRREL.RRF. The first-level hierarchical re-

lations of MRHIER.RRF are also represented in MRREL.RRF as ISA relationships. Lexical terms

in concept names appear in the SPECIALIST Lexicon, and the entire concept structure is

represented in the file MRCONSO.RRF.

The Semantic Network contains broad subject categories — so-called semantic types —

which categorize Metathesaurus concepts consistently. Furthermore, semantic relationships

between types are provided by the Semantic Network. Therefore, all concepts in the Metathe-

saurus are assigned to at least one Semantic Type from the Semantic Network. This knowledge

source provides a consistent concept categorisation in the Metathesaurus at a more general

level. The file MRSTY.RRF links semantic types from the Semantic Network to the semantic

concepts in the Metathesaurus.

The previously named rich release format (RRF) files were downloaded (on 2021 − 05 − 27)

from the UMLS download page ∗ and used for UMLS annotation of lexical terms and semantic

concept annotation to levels of biological organisation (LOBO) (see figure 2.1).

Lexical 
words

Semantic 
concept

Semantic 
type

Level of 
biological 
organization

Chemical

Molecular
Estradiol
receptor C0034803 T192

T131Diethyl-
toluamide C0011134

Figure 2.1. UMLS-Annotation of lexical words to levels of biological organisa-

tion. In the UMLS Metathesaurus, biomedical words are assigned to semantic concepts.

Furthermore, semantic concepts are classified and grouped into semantic types in the Se-

mantic Network. In this study, the UMLS semantic concepts were assigned to levels

of biological organisation based on their unique identifier (CUI), which structure lexical

words to systems biological levels. In consequence, text-based relations can be assigned to

toxicology-related terminologies.

Kilicoglu et al. [2012] generated a large-scale knowledge resource called SemMedDB. It

contained tables of semantic predications that were extracted from the titles and abstracts

of all PubMed citations. SemMedDB contained the biomedical knowledge from all PubMed

citations and was the here considered input. The predication data table was downloaded (on

∗ See also detailed data descriptions at webpage
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2. Methods and Data

2021−06−23) from the most recent version of the SemMedDB webpage [Kilicoglu et al. 2012].

A UMLS Terminology Services account was necessary for the download. The data set con-

tained 112 796 186 semantic predications from 32 708 196 PubMed titles and abstracts, which

had been parsed with the UMLS tool SemRep. Each predication in SemMedDB presented an

UMLS-annotated triplet of the form <Subject,Predicate, Object>. The subject and the

object were ontologically unified as concept unique identifiers (CUI). The predicate presents

a relation type from the extended version of the UMLS semantic network. Predicates have a

suffix ’NEG ’ if SemRep recognizes a negation within the sentence.

The comparative toxicogenomic database (CTD) is frequently used in data integrative

approaches in AOP-development and to extract chemical-gene or chemical-disease relations.

This resource contains chemical interaction on different levels of biological organisation cu-

rated from empirical findings of omics-based exposure studies in an environmental health

context and biological knowledge bases. The database consists of multiple relational data

sets. The list of downloaded and selected data are shown in table 2.2.

Table 2.2. List of downloaded data from CTD (including URL). This thesis con-

sidered relations with genes, chemicals, pathways and diseases (see top table) for input

evaluation, model evaluation and data integrative analyses of prediction results. We used

the downloaded vocabularies (see bottom table) to map gene and chemical names to UMLS

concepts and levels of biological organisation. The following data were downloaded from

the comparative toxicogenomic database (CTD) web page in CSV format on 2021-04-14.

(N: Number of samples per data set)

Relationship N Link

TC2G Chemical-Gene 2 127 796 ctdbase.org/downloads/CTD chem gene ixns.csv.gz

TC2P Chemical-Pathway 1 369 059 ctdbase.org/downloads/CTD chem pathways enriched.csv.gz

TC2D Chemical-Disease 7 362 942 ctdbase.org/downloads/CTD chemicals diseases.csv.gz

TG2P Gene-Pathway 135 814 ctdbase.org/downloads/CTD genes pathways.csv.gz

TG2D Gene-Disease 84 780 962 ctdbase.org/downloads/CTD genes diseases.csv.gz

Vocabularies N Link

TC Chemicals 174 328 ctdbase.org/downloads/CTD chemicals.csv.gz

TG Genes 544 909 ctdbase.org/downloads/CTD genes.csv.gz
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2.2. Predicting exposure-related effects on molecular level

2.2.2 Input preparation

Reduction to toxicogenomic chemical-biomolecule-relations. The input data were

prepared from SemMedDB predications and were reduced to the unique and not negated

triplets first.

The predication data set was reduced to relations, where the object concept represented a

chemical and the subject concept a biomolecule. The UMLS Semantic Network links semantic

types to all semantic concepts. For this investigation, the semantic types were additionally

assigned to LOBOs manually. The file MRSTY.RRF contained all semantic types and was

expanded by a column assigning a LOBO-like term of either chemical or biomolecule ∗ and

merged with the file MRCONSO.RRF. Thus, the semantic concepts of subjects and objects were

assigned as chemical, biomolecule or another LOBO entity (see figure 2.1). According to

the LOBO assignment, The predication data set was shrunk to predications with a chemical

object and a biomolecule subject.

Furthermore, only two predicates were considered (STIMULATES and INHIBITS ). Both

relationships are representatives of substance interactions †. Finally, a relation was removed

when contradicting — meaning that subject-object-pairs occurred with both relationship

types in the given data. In the following, the abbreviation I designates the input data.

Input data split. The input I was split into training (IT ) and test data set (IE). IE

comprised 10 000 relations of each predicate. Furthermore, all subjects and objects in the

validation set occurred at least once in IT . To perform 5-fold cross-validation, IT was split

into five equally sized and distinct subsets IT i{i ∈ N|1 ≤ i ≤ 5}.

Data augmentation. The hierarchical structures of the UMLS Metathesaurus were em-

ployed to determine parental terms of chemicals and biomolecules of the relationships in I.

∗ The terminology LOBO might be misleading when considering chemicals and biomolecules only. However,

terms like cell, tissue, organism and disease were also assigned and are relevant, when considering UMLS

terminology for future AOP tasks. Furthermore, some semantic types are more clinical-related and no LOBO

term was assigned at all.
† The both relationship types were defined in [Kilicoglu et al. 2011]:

INHIBITS: Decreases, limits, or blocks the action or function of (substance interaction). (Example: In recent

studies, the BDNF expression was reduced by typical neuroleptics; Antipsychotic Agents [Pharmacologic

Substance],INHIBITS,Brain-Derived Neurotrophic Factor[Biologically Active Substance])

STIMULATES: Increases or facilitates the action or function of (substance interaction). (Example: Candesartan ther-

apy significantly reduced inflammation and increased adiponectin levels; ¡candesartan[Pharmacologic

Substance],STIMULATES,Adiponectin[Amino Acid,Peptide, or Protein]¿)
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A ISA relation in MRREL.RRF is a directed relation edge in the hierarchical structure of se-

mantic concepts. Such a relation A →ISA B associate a semantic concept A to a superior

semantic concept B — the direct parental semantic concept. For example, the Metathesaurus

relation Diclofenac→ISA NSAID shows that the chemical Diclofenac belongs to the phar-

maceutical group of non-steroidal anti-inflammatory agents (NSAID). Thus, all (biomolecule)

semantic concepts in I, associated with Diclofenac, were also associated with NSAID. In the

Metathesaurus, semantic concepts may have multiple or also no direct parental term.

The parental semantic concepts for subjects and objects augmented information in I. Two

versions of data augmentation were applied (see figure 2.2).

[CUIS1, CUIO1]
[CUIS2, CUIO1]
[CUIS3, CUIO3]

I

[CUIS1, CUIO1]
[CUIP1S1, CUIO1]
[CUIS1, CUIP1O1]
[CUIS2, CUIO1]
[CUIP1S2, CUIO1]
[CUIP2S2, CUIO1]
[CUIS2, CUIP1O1]
[CUIS3, CUIO3]
[CUIP1S3, CUIO3]

IV
[CUIS1,CUIP1S1,CUIG1S1, CUIO1, CUIP1O1, CUIG1O1]
[CUIS2, CUIP1S2, NA, CUIO1, CUIP1O1, CUIG1O1]
[CUIS2, CUIP2S2, CUIG1S2, CUIO1, CUIP1O1, CUIG1O1]
[CUIS3, CUIP1S3, CUIG1S1, CUIO3, NA, NA]

IHUMLS 
Metathesaurus

hierarchies 

biomolecular 
object 
subnetwork

chemical
subject 

subnetwork

S1 S3

P1S1 P1S3

G1S1 G1S2

O1 O3

P1O1

G1O1

P2S2

A B

S2

P1S2 

Figure 2.2. Input data augmentation for chemical biomolecule relations. The input

of UMLS-annotated chemical-biomolecule relations were expanded. A: The knowledge of

the UMLS Metathesaurus was retrieved to determine hierarchical relations ( ISA-relations

in MRREL.RRF) between chemical (ocher) or biomolecular concepts (blue). Based on the

respective hierarchical ordered networks, parental and grandparental terms of a concept can

be determined. B: Considering the (grand-)parental terms allow increasing the number of

relation samples (vertical augmentation) and to elongate the sequence length of samples

(horizontal augmentation).

For a vertical augmentation, all recombinations, with one direct parental concept of either

the subject’s or the object’s semantic concept instead of the subject or object itself, were

added to I. Thus, one chemical-biomolecule-relation in I might result in multiple relations

with parental terms, e.g. one relation might occur with subject’s parental term and another

with object’s parental term. Furthermore, due to the various sources in the Metathesaurus,

each subject or object semantic concept might have multiple parental terms. After vertical

augmentation, contradicting relations might occur as I might already contain some parental

concepts. These contradicting relations were removed. IV designates the vertical augmented

version in the following.
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The training-test-validation-split of I remained in IV . In order to completely separate IVE

from IVT , the training relations were removed if X ∈ IVT & X ∈ IVE . As in I, separate subset

splits of IVT i{i ∈ N|1 ≤ i ≤ 5} were considered. If identical relations were determined across

subsets, all but one randomly chosen duplicate were removed.

The horizontal augmentation of a chemical-biomolecule relation increased the term lengths

of subject and object from 1 to 3. For the semantic concepts of a chemical Ci and a biomolecule

Bi, the direct parent PCi or PBi and the second-order parent GCi or GBi (grandparent) were

determined. Each recombination < Ci, PCi, GCi →RELA Bi, PBi, GBi > was considered a

horizontally augmented relation of Ci →RELA Bi. Each semantic concept might have none

or multiple parents and thus also grandparents. If a concept had no parent or grandparent,

a masked token NA was used respectively to keep the length of all relations equal.

IH designates the horizontal augmented version of I in the following. The training-test-

validation-split of I was transmitted to IH .

2.2.3 Deep learning models

Word embedding approaches are used to learn a dense and low-dimensional representation

from a large and unlabeled corpus of text-based information and shall efficiently capture the

semantics of words. Therefore, words, phrases or substrings of words are transformed into vec-

tors of real numbers. It is assumed that a word embedding allows a generalization of semantic

meanings of interest given the input data. The words that are semantically used in similar

ways have similar representations, which capture their meaning. Usually, the word embedding

vector length is much smaller than the size of the vocabulary. From a computational point of

view, the dense and low-dimensional vector space is superior to the dimensions required for a

sparse word representation (e.g. one-hot-encoding) of vocabularies with thousands or millions

of words. Densely distributed and low-dimensional vector representations of words are more

suitable than one-hot encoded representations. Word embedding model architectures may be

expanded with further neural network layers, e.g. feed-forward networks, recurrent neural

networks or convolutional neural networks.

A feed-forward network or multilayer perceptron may be considered as the base of many

state-of-the-art neural networks (see figure 2.3 A). It contains an input, a hidden and an

output layer. Each hidden and output neuron employs a non-linear activation function. The

information flows through the layers and is transformed by the functions without any feedback

connection – feed-forward. In this process, the non-linear activation functions have weighting

parameters, which get optimised over training epochs through the supervised learning process
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of backpropagation ∗. In Keras and the following of this thesis, those networks are regarded

as dense neural networks or fully connected networks.

Recurrent neural networks (RNN) are frequently used in deep learning models in the

biomedical context. The networks contain feedback loops allowing information to remain

within the network. Thus, such models have a ’memory’ and can handle sequential data.

Within an input sequence, the information from prior positions influences the current po-

sition and even the output. Thus, the network uses information of the recent position and

the internal state from the previous position(s) as input. RNN can be considered in two

main architectures — either with circular connections or as a deep feed-forward network (see

figure 2.3 B). In the unrolled case, a new cell (see figure 2.3 B) in the recurrent network for

each word of a sequence is considered. The weights are identical across RNN cells. According

to Keras, unrolling may decrease running time for the price of higher memory usage. Further-

more, bidirectional RNNs can consider the future — posterior positions influence the current

position — during output estimation.

For longer sequences, regular RNNs may be limited to model the dependencies between se-

quential steps separated by numerous others — they have a limited memory. The so-called

vanishing gradient problem describes how small weights got eliminated due to manifold mul-

tiplications across time steps. In consequence, the weights of earlier layers have no significant

changes, and the network forgets long-term dependencies.

Long-short-term memory (LSTM) is a kind of RNN that uses feedback loops of a previous

step in the timeline or sequence t − 1 for the output of the recent step t (see figure 2.3 C).

LSTM networks allow solving the vanishing gradient problem.

In this thesis, we implemented two model architectures (see figure 2.4) with an initial word

embedding layer (tensorflow.python.keras.layers.embedding()). The here applied sam-

ple wise output of the embedding layer was a sequence of two word embedded vectors. Then,

a flatten layer (tensorflow.python.keras.layers.flatten()) followed to transform the

sequential word embedding output into a one-dimensional vector. Next, the flattened output

was reduced by a sequence of dense layers (tensorflow.python.keras.layers.Dense())

with a rectified linear unifier (ReLU) [Agarap 2018] activation function. The final dense layer

(Nneurons=1) had a sigmoid activation layer (tensorflow.python.keras.layers.Dense(1,

activation=’sigmoid’)) and classified the selected target — the type of relationship be-

tween a chemical and a biomolecule — in a binarised manner.

∗ The backpropagation is based on the least-mean-square errors between estimated and expected output.

The weight parameters of the non-linear functions get changed in dependence of the error and the learning

rate.
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Figure 2.3. Selected architectures of neural networks. In principle, a neural network

consists of an input (green), a hidden (blue) and an output layer (red). A: In the feed-

forward neural network, all input neurons are connected to all hidden neurons, and all

hidden neurons are connected to all output neurons. During training, the weights per

connection are adapted through backpropagation. B: A recurrent neural network contains

feedback loops allowing information to remain within the network. The information of

the previous part of the sequence can be used in the current parts. An unrolled archi-

tecture removes circular connections and structures them as a deep feed-forward neural

network C: A long-short-term memory is one type of recurrent neural network. The new

sequential value xt is concatenated first to the previous output from the cell ht−1, and

the combined input is tanh-transformed. The forget gate (Ft) regulates the loop and helps

the network learn which state to remove. The same input is sigmoid-activated through an

input gate (It) and multiplied with the tanh-transformed input. Thus, It removes unneces-

sary elements of the combined input vector. In the following, an internal state of previous

information ct−1 is added to the input data to create an effective recurrent layer and to

reduce the risk of vanishing gradients. The final tanh-function of the output gate (Ot)

determines which values to consider as output ht. (Figure is a concatenation of adapted

versions of artificial neural network (wikimedia), Recurrent neural network unfold (wiki-

media), Long-short-term memory (wikimedia))
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Before the flatten layer, the second model architecture contains an additional LSTM layer

(tensorflow.python.keras.layers.LSTM()). Furthermore, adding a time distributed dense

layer (tensorflow.python.keras.layers.TimeDistributed()) after the RNN is recom-

mended for Keras applications with LSTM. This wrapping layer allows applying the identical

fully connected layer to the separate sequential output vectors. In this study, the LSTM layer

and the following time distributed dense layer had the same number of neurons.

The simpler architecture with word embedding and dense layers is designated as A, whereas

the one with LSTM is designated as B in the following. Different parameter settings were

compared for both model architectures to determine a suitable setup for the study-specific

learning task.
⋃5
i=2 IT i were chosen as training data and IT1 as validation data to determine

the two suitable model architectures.

INHIBITS
STIMULATES

Word 
embedding

L flatten

S
T
M

Subject
Object

Figure 2.4. Deep learning model architecture with word embedding and long-short-

term memory. Both model architectures use subject-object-pairs of predication triplets as

input and contain an initial word embedding layer. In model architecture B only (light grey

area) a long-short-term memory (LSTM) and a time distributed dense layer is considered

additionally. In both model architectures a flatten layer follows, before vector size gets

reduced in a subsequent feed-forward series. The output gets sigmoid-transformed to finally

predict the predicate target.

The preprocessed predications in IT were used as input (subject and object) and as targets

(predicate) for training and validation. All models considered input sequences consisting of

two positive integers by applying the function sklearn.preprocessing.OneHotEncoder() ∗.

The predicates of the triplets were binarised with sklearn.preprocessing.LabelEncoder()

and used as targets (INHIBITS : 0; STIMULATES : 1).

The learning objective was to minimise the loss (binary cross-entropy) and was examined

∗ Such sequences of indices represented a memory saving representation of a sequence of one-hot-encoded

word vectors. The integers ranged from 0 to len(vocabulary)−1 and represented the position in the vocabulary

hash, which was generated applying one-hot-encoding.
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using the validation set. The binary cross-entropy was defined as:

Binary cross entropy = − 1

len(validation)

len(validation)∑
i=1

(yi ∗ log ˆ(yi) + (1− yi) ∗ log(1− ŷi))

(2.10)

The value yi equals the label of the i-th sample in the considered validation data and ŷi the

predicted probability for the valid label. Next to the loss function ∗, we tracked the binary

accuracy for validation data.

Before each epoch, the input data were shuffled to circumvent training of the sample or-

der. Each model was trained for a maximum of 1000 epochs. The Keras callback-function

EarlyStopping() was implemented to train models no longer as necessary. It allowed stop-

ping training if the validation loss decreased less than 0.01 across a duration of 20 epochs. A

batch size of 1000 was chosen.

For model architecture A, we compared different word embedding vector sizes. The sparse

word representation with more than 40 000 words was reduced by word embedding to sizes of

5000, 2500, 1000, 500 and 100.

Model architecture B has an additional LSTM layer after the word embedding. We compared

various parameter settings for the number of neurons equal to 100, 50, 25 and 10.

After selecting a word embedding size for model architecture A and a number for LSTM-

neurons in B, a hyperparameter tuning (kerastuner.RandomSearch()) was applied, respec-

tively. The model architecture of A was tuned first, and respective parameters were not tuned

again in B. Various hyperparameters were tuned, e.g. L2-regularization in layers, dropouts,

types of activation, number of dense layers and modifications in the LSTM layer. Though

not all layer parameters were tuned or taken into further consideration, hundreds of recombi-

nations were still considered per model architecture. A time-efficient hyperparameter tuning

was performed by randomly selecting one hundred parameter recombinations. The recombi-

nation with the lowest loss value was considered as selected model architecture for A or B,

respectively.

A model evaluation was applied with the test data IE to compare trained models with

different architectures or parameter settings. For each predication in IE , it was determined

whether they were falsely predicted with STIMULATES (FS), truly predicted with STIMU-

LATES (TS), falsely predicted with INHIBITS (FI) or correctly predicted with INHIBITS

(TI). The considered performance measures were accuracy, precision, recall and F1-score and

were calculated with sklearn.metrics.classification report(). The following formulas

∗ Note, that the default for binary cross-entropy tracking in Keras was applied calculating the sum of

averages of the per-sample losses.
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describe the measures’ calculation:

Accuracy =
nTI + nTS

nTI + nTS + nFI + nFS
(2.11)

PrecisionR =
nTR

nTR + nFR
(2.12)

RecallR =
nTR

nTR + nFR̄
(2.13)

F1R = 2 ∗ PrecisionR ∗RecallR
PrecisionR +RecallR

(2.14)

The index R represents one relationship type (STIMULATES or INHIBITS ), whereas R̄

represents the contrary relationship type.

Model comparison. The selected model architectures A and B were employed for a 5-

fold cross-validation training and were performed with IT , IVT and IHT . For the i-th fold the

training data comprised of
⋃5
j=1 ITj , where j 6= i and validation data IT i. For a validation

across folds and across architectures, the performance measures of binary cross-entropy and

binary accuracy were calculated per epoch for the respective validation set. From each 5-fold

cross-validation, the model with the lowest loss and ideally with the highest accuracy was

chosen.

All six training outcomes were comparatively validated with the unseen data of IE , IVE or IHE .

The evaluation was performed with the identical performance measures as described in model

selection before. Based on the calculated measures, the performances of model architectures

A and B were compared.

2.2.4 Toxicogenomic application

In contrast to the chemical-gene interactions TC2G from CTD, the input I considered not

only genes but all biomolecules listed in literature and annotated by the UMLS. Therefore,

the coverage of chemical-gene relations from I in CTD was determined first. Two other

exposure-related levels were considered (see figure 4.3). Next to the chemical interactions

with genes, those with pathways and diseases were compared to adapted versions of I. For

a comparison on higher LOBO, respective CTD data sets had to be preprocessed, and the

chemical-biomolecule interactions in I prepared as chemical relations on higher levels.

Furthermore, the prepared and UMLS-annotated data set of chemical-gene interactions from
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CTD was considered to evaluate the models based on curated toxicogenomic knowledge next

to literature-retrieved predications in the test sets IE , IVE and IHE .

The from CTD downloaded chemical-gene interactions were preprocessed to become com-

parable to SemMedDB predications. All relationships with the suffix increased were assigned

as STIMULATES and with decreased as INHIBITS. Relations with the suffix affects were

removed. After reducing the 134 relationship types in CTD to two, some chemical-gene inter-

actions with multiple relationships resulted in contradictions. Contradictory chemical-gene

pairs were removed. Then, the chemicals and genes were annotated to semantic concepts.

Therefore, the chemical and gene annotations from CTD were fitted to semantic concepts

with the help of the UMLS lexical data set. With this, a chemical was annotated to a con-

cept and assigned to its CUI, not only when the gene symbol or chemical name directly

matched to listed lexical terms, but also for the entries in columns description or synonym

in the annotation files of CTD. With the help of the LOBO assignment, it was ensured, that

a chemical concept is also annotated as chemical and a gene as biomolecule. TC2G desig-

nates the preprocessed set of UMLS-annotated chemical-gene interactions in the following of

this thesis.

To achieve also a possible comparison for models trained with either IVT or IHT , we also aug-

mented TC2G in the same manner as described in section 2.2.2.

To prepare chemical-pathway interactions for the SemMedDB data, we merged the

gene-pathway relations (TG2P ) from CTD with the chemical-biomolecule relations in I. There-

fore, the UMLS-annotated gene annotation assigned genes to UMLS CUIs, which allowed

linking I. Consequently, the merge assigned to each object CUI the respectively associated

pathways. The joined data set was reduced to unique pairs of chemical CUIs and pathways

and is declared as IP .

Furthermore, chemical-pathway relations from CTD (TC2P ) were considered as a refer-

ence to determine the toxicogenomic coverage in IP . The chemicals were UMLS-annotated to

CUIs with the CTD chemical annotation to make TC2P comparable to IP . The unique set of

chemical-pathway interactions in TC2P was furthermore reduced to relations, which contain a

chemical CUI and a pathway term, that both were present at least once in IP . Consequently,

IP was reduced vice versa.

The chemical-disease interactions for the SemMedDB data were prepared with I and

CTD resources similar to chemical-pathway interactions before. The chemical-biomolecule

relations in I were expanded with gene-disease relations (TG2D) from CTD. Similar to TG2P ,

the gene names were annotated to UMLS CUIs and merged with the UMLS-annotated version

of TG2D. Thus, the output assigns to each object CUI the respectively associated diseases.
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The combined data set, designated as ID, was reduced to unique pairings of chemical CUIs

with diseases.

The chemical-disease relations from CTD (TC2D) with UMLS-annotated chemical CUIs

was considered as a reference to determine a toxicogenomic coverage in ID. Both, TC2P and

ID, were reduced to relations, which contain a chemical CUI and a disease term, that both

were present at least once in the respectively other data set.

After generating comparable data sets from CTD and SemMedDB, the overlaps of IP to TC2P

and ID to TC2D were determined (see figure 4.3).

A toxicological evaluation of the models trained with I was applied to compare their ability

to predict recent toxicogenomic knowledge. Therefore, for all chemical-gene pairs in TC2G,

each trained model was applied to predict the toxicogenomic relationship type. FS, TS, FI

and TI were determined and compared across models based on predictions and relationship

types known in CTD. For each model, the measures of binary accuracy, precision, recall and

F1-score were calculated.

We performed an overrepresentation analysis (ORA) to determine enriched pathways

applying the R-package WebGestaltR [Version:0.4.3 Wang and Liao 2020]. The input and

references in ORA had a unified CUI annotation. The pathway-based genesets were retrieved

from the reference data TC2P . A set of biomolecule concepts was significantly enriched to

a CTD reference when FDR ≤ 0.05. The enriched pathways were compared to known

associations to the chemical concept in TC2P by determining the coverage. In consequence, the

functional enrichment allows considering predictions of chemical-gene interactions on pathway

level and evaluating their coverage in recent toxicogenomic and exposure-related knowledge.
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Chapter 3

Method comparison to link complex

stream water exposures to effects

on the transcriptional level

Researchers used omics-based approaches to understand adverse effects induced by mixtures

of contaminants. In the study of this chapter, we examined transcriptomic data of hepatic

tissue from fathead minnows acutely exposed to mildly polluted Minnesotan stream waters.

We applied differential gene expression analysis (DEA), association rule mining, and weighted

gene correlation network analysis (WGCNA) and identified potential driving (mixtures of)

contaminants. In addition, we identified biologically meaningful and reliable attributions

of compounds to xenobiotic effects with functional enrichment and integration of external

reference bases.

The concentrations of detected contaminants inferred the expectation of mild acute toxicity

in selected stream waters. Co-correlations of compounds and mixture effects occurred, and

we had to deal with them — the numerical exposure data allowed us to investigate exposure

from different perspectives. In particular, compound groups were determined to reduce the

co-correlation of exposure patterns.

Limitations of exposure data were the size, a low toxic ratio and the small set of considered

compounds. They disabled us to disentangle specific chemical effects and assignment of

biological effects to particular contaminants. Nevertheless, in DEA and WGCNA, functional

enrichment ranked by application-specific metrics identified biologically meaningful terms to

xenobiotic stress and immune response for compound groups. These enriched sets overlapped

significantly with compound-pathway associations in CTD.
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3. Method comparison to link complex stream water exposures to effects on the
transcriptional level

3.1 Background and motivation

Thousands of chemicals from various anthropogenic origins are released into the environment

and pollute all sources of influx to surface water. Thus, contaminants remain detectable

in surface waters [Bradley et al. 2019] and affect the aquatic ecosystem [Blackwell et al.

2019]. Organisms in surface water bodies are affected by mixtures of often lowly concentrated

contaminants. Next to more specific effects due to toxic modes of action, perturbation due

to environmental relevant mixtures may induce adverse stress responses. There is a need

to understand better the combined effects of chemicals in the environment Kortenkamp and

Faust [2018].

Studies have investigated the chemical exposure to original surface water samples to under-

stand sublethal effects in the aquatic environment [e.g. Perkins et al. 2017, Schroeder et al.

2017]. Effect-based examinations conducting bioanalytical in-vitro experiments have been

used to identify biological interactions for a pre-selected but small set of biomarkers [McGo-

varin et al. 2018, Pérez et al. 2018, Dale et al. 2019, Calderón-Delgado et al. 2019, Perkins

et al. 2017]. On the other hand, omics-based approaches help investigate many molecular

endpoints on a high-throughput level and elucidate effects in complex mixtures and environ-

mental samples. One well established environmental model organism is the fathead minnow

(FHM) [Ankley and Villeneuve 2006]. For example, transcriptomic investigation of biological

effects after disruptive endocrine exposures and environmental relevant mixtures have used

this fish frequently [e.g. Rodŕıguez-Jorquera et al. 2019, Feswick et al. 2017, Zare et al. 2018,

Garcia-Reyero et al. 2011]. For example, recent ecotoxicological studies have measured tran-

scriptional changes in gene expression after an exposure treatment [Li et al. 2020, Ewald et al.

2020, Perkins et al. 2017, Martinović-Weigelt et al. 2014, Schroeder et al. 2017]. Some studies

have investigated low anthropogenic exposures and have detected molecular effects before an

adverse effect occurred [e.g. Perkins et al. 2017, Schroeder et al. 2017, Wiseman et al. 2013].

In transcriptomic studies, sources of background noise have to be considered, e.g. uncertain-

ties due to low chemical perturbations below detection levels. Thus, transcriptomics helps

examine surface water samples to elucidate the complex mixtures.

Different computational methodologies have been successfully applied to identify and priori-

tise biological effects in omics data. Identifying chemical drivers of adverse biological effects

in environmental mixtures is a central challenge in ecotoxicogenomic research [Miracle et al.

2003]. One meaningful computational approach is differential gene expression analysis (DEA),

comparing treated groups to control groups. A differential biological effect can be determined

for a present environmental mixture perturbation in site-specific comparisons. DEA has been
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frequently used in adult male FHM omics studies to investigate xenobiotic effects on hepatic

tissue after exposure to surface water samples influenced by wastewater [e.g. Sellin Jeffries

et al. 2012, Martinović-Weigelt et al. 2014, Rodriguez-Jorquera et al. 2015, Schroeder et al.

2017]. For example, the determination of the transcriptional changes in liver tissue has helped

identify sources of environmental stress. As a result of this, studies have assessed the effec-

tiveness of cleanup [e.g. Costigan et al. 2012, Martinović-Weigelt et al. 2014, Arstikaitis et al.

2014], and the best management practices (in treatment plants) [e.g. Rodriguez-Jorquera

et al. 2015, Vidal-Dorsch et al. 2013, Berninger et al. 2014] or the remediation methodolo-

gies [Wiseman et al. 2013]. In addition, some studies applied frameworks to differentiate

chemical and site-specific variations in transcriptional effects [Berninger et al. 2014] and to

distinct biological effects of one stressor from another [Schroeder et al. 2017, Perkins et al.

2017]. However, DEA is only one approach to examine transcriptional expression due to

chemical perturbation in environmental mixtures.

Furthermore, toxicologists applied network inference [e.g. Ewald et al. 2020] and machine

learning [e.g. Krämer et al. 2020] to group genes impacted by exposure to environmental con-

taminants unsupervised. Other studies combined DEA with network inference [Degli Esposti

et al. 2019, Sutherland et al. 2018, Barel and Herwig 2018] or machine learning [Acharjee

et al. 2016, Ornostay et al. 2013]. For example, the network inference approach of weighted

gene correlation network analysis [Langfelder and Horvath 2008] (WGCNA) is helpful for

omics data sets to identify groups of highly correlated genes. Moreover, it correlates external

information [Langfelder and Horvath 2008] like chemical exposure to modules. Toxicologists

have already applied WGCNA [Sutherland et al. 2018, Orsini et al. 2018, Maertens et al.

2018, Ewald et al. 2020]. For example, Ewald et al. [2020] identified ecologically relevant

co-expressed gene modules using transcriptional data of liver from adult FHM considering 38

single compounds and complex environmental mixture exposures.

Recent studies have investigated exposures [Barrera-Gómez et al. 2017, Kapraun et al. 2017,

Santos et al. 2020] and determined alterations in gene expression [Creighton and Hanash

2003, Mallik and Zhao 2017, Karel and Klema 2007] with the application of association rule

mining (AR). This unsupervised machine learning approach determines rules describing co-

occurrences of frequently combined items in given data. Furthermore, biomedical researchers

analysed omics data applying AR [e.g. Chen et al. 2019, Toti et al. 2016, Mallik and Zhao

2017, Lakshmi and Vadivu 2019]. However, researchers in ecotoxicological omics research

have not yet considered AR.

When causally linking chemical exposure to biological effects with omics-based approaches,

environmental toxicologists are challenged by distinguishing direct exposure effects from in-
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direct xenobiotic responses Scholz et al. [2021]. Functional enrichment methodologies help

associate treatments — such as exposures — to molecular effects. In eco-toxicogenomic stud-

ies, functional annotation to Gene Ontology terms [e.g. Wiseman et al. 2013], overrepresenta-

tion analysis [e.g. Rodriguez-Jorquera et al. 2015], gene set enrichment analysis [e.g. Perkins

et al. 2017, Schroeder et al. 2017] or subnetwork enrichment analysis [e.g . Feswick et al.

2016, Rodŕıguez-Jorquera et al. 2019] were conducted alone or in combination. Also, curated

gene set databases help project ontologies of biological functions, for example, gene ontol-

ogy [Gene Ontology Consortium 2004, Carbon et al. 2019] or signalling pathway references

like KEGG [Kanehisa et al. 2004]. Some studies integrated knowledge from toxicogenomic

databases to identify known chemical-gene interactions [Holth et al. 2008, Perkins et al. 2017,

Schroeder et al. 2017] or compounds as potential upstream regulators [e.g. Zare et al. 2018,

Martinović-Weigelt et al. 2014]. One frequently used source is the comparative toxicogenomic

database (CTD) [Mattingly et al. 2003, Davis et al. 2017], also providing toxicogenomic knowl-

edge for aquatic model species. For example, Perkins et al. [2017] presented one way to link

exposure to adverse outcomes and envision a practical approach to investigate chemical mix-

ture interactions at low concentrations. They identified estrogen activity in Lake Superior

Bay waters of Duluth by differential gene expression in exposed fish associated with CTD-

references for the upstream regulator estradiol.

The present study identified links between complex chemical exposures and molecular ef-

fects on the gene and the pathway level by applying three computational approaches. The

research objective was to investigate whether DEA, AR or WGCNA were suitable to uncover

the individual chemical effects of complex mixture exposures and whether the approaches

could determine reliable attributions of potentially adverse effects to chemical drivers.

The Minnesota Pollution Control Agency (MPCA) had contributed environmental data of

chemical exposure in ten streams and biological effects with an in-vitro assessment and DNA

microarrays [Ferrey et al. 2017]. Although the detected low chemical concentrations might not

affect any direct acute biological adverse outcome, it might induce xenobiotic stress measur-

able on the transcriptional level. The present study investigated the xenobiotic effects in liver

tissue of FHM after acute toxicity in mildly polluted streams. It was examined whether the

three applied computational approaches were applicable in ecotoxicology and whether they

allowed disentangling chemical exposure to biological effects. The application of functional

enrichment validated the toxicological role of identified chemical-gene interactions on the path-

way level. The trustworthiness of the selected approaches was proven by the exposure-related

representation of genes and the coverage of biological terms regarding current toxicological

knowledge. We examined four different exposure scenarios in the chosen approaches. Conse-
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quently, this study highlighted limitations and abilities of mining, analysing and integrating

omics and exposure data when considering complex mixtures of lowly concentrated chemicals.

3.1.1 Workflow

Figure 3.1 presents the workflow ∗ performed in the R statistical programming language [ver-

sion 3.6.1 R Core Team 2020].

Dalma Martinović-Weigelt, a collaboration partner in Minnesota, United States, had provided

three data sets 2.1.1. For ten small streams in Minnesota, (1) quantitative chemical exposure

data of 146 pharmaceuticals and chemicals of concern in the US, (2) two in-vitro cell assay

measurements for endocrine activity, and (3) gene expression data in liver tissue of fathead

minnows after acute exposure to stream water (nSamples,treated = 64; nSamples,control = 7) had

been measured. Detailed information on data sampling, microarray experiments and reports

of initial results had been described by Ferrey et al. [2017].

We transformed the measured chemical concentrations into toxic units, and preprocessed the

raw microarray data (see 2.1.2). Exposure-related gene interaction sets were generated using

three computational methods based on the given exposure and gene expression data (Dif-

ferential gene expression: see 2.1.3; Association rule mining: see 2.1.4; Network inference:

see 2.1.5). We validated the exposure-associated gene results with functional enrichment to

biological pathways and chemical reference sets from external databases for each method,

respectively (see 2.1.6).

Data preprocessing

Methods

Method validation

Toxic unit transformation

Microarray preprocessing

Differential Gene Expression

Network Inference

Association rule mining

Biological functional enrichment

Chemical reference enrichment

Gene set enrichment to KEGG, 
Reactome and Wikipathways

Gene set enrichment to
chemical reference sets 

(CTD, Stitch, Binding-DB)

Changes in gene expression in 
comparison to control

Correlation of coexpressed 
genes and streams/compounds

Samplewise transactions
lead to frequent associations 

of genes and stream/compounds
Are detected compound 

concentrations toxic to fish?

Background correction
Array and probe normalization
Probe filtering and annotation

Data
Detected
chemical

compounds

Fathead 
minnow 

microarrays

Method comparison
Overlap of results across

data integration approaches 
on gene or pathway level

Figure 3.1. Project workflow. The quantitative chemical exposure data and the gene ex-

pression data were preprocessed. Data were linked by applying three different bioinformatic

methods. Afterwards results were functionally analysed and compared.

∗ Data and code are available here: https://nc.ufz.de/s/emqxbigeWYPSnKp (’Data Chapter3 (Ten-

Streams)’ and ’Code Chapter3 (TenStreams)’ ) with the following password PhD SKraemer
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3.2 Results

3.2.1 Data preprocessing

The detected concentrations of stream water contaminants might induce mildly acute

toxicity in fish. The selected stream sites were a subset of randomly selected sites represent-

ing multiple ecological relevant regions and the diverse exposure scenarios in Minnesota. The

selected compounds (see supplemental table S2-1) were common contaminants in investigated

sites based on prior occurrence studies and might be present. Out of 146 screened contami-

nants, 27 were detected in at least one of the ten selected streams in Minnesota (see 3.2) ∗.

Table 3.1 lists the compounds that were detected only once. Additionally, two compounds

were detected via in-vitro assessment as described in the methods section. The chemical ex-

posure by the number of detected compounds, and the sum of toxic units varied substantially

across streams (see figure 3.2 A and B). Per stream, 1 to 18 compounds had concentrations

above the compound wise detection limit. Three streams contained more than ten compounds.

The stream-wise sum of toxic units was not directly related to the number of detected com-

pounds. Consequently, the streams with many detected compounds had not necessarily high

toxic effects. However, the measured and toxic unit transformed concentrations were at least

four magnitudes below TU = 1 (see figure 3.2 D). Thus, the chemical concentrations were

clearly below known toxic effect levels (based on LC50, see supplemental table S2-4) and were

supposed to affect fish only on a sublethal level. The exposure in the selected streams was

different in the number of detected compounds and the degree of toxic effects across streams,

albeit all were on a low effect level (see figure 3.2 top). This mild chemical exposure might

be limiting when investigating biological effects, even when considering alterations on the

transcriptional level.

The compound-wise exposure patterns were clustered into compound groups (see 3.3)

to overcome potential limitations due to low chemical effect levels. By the pairwise Pearson

correlation analysis of compound wise exposure patterns, eight compound groups (CG) were

identified. The compound wise correlation values ranged between −0.4 and 1. Each com-

pound group had the highest sum of toxic units in another stream (see figure 3.3). When

aiming at linking biological effects to exposure, it had to be considered that high correlations

of exposure patterns might identify transcriptional effects due to the co-correlation of com-

pounds. The mean pairwise correlation decreased substantially considering compound groups

∗ In [Ferrey et al. 2017], the number of detected chemical compounds has been 24. Considering the

analytical data tables in appendix D of [Ferrey et al. 2017], for 27 compounds at least one entry without a

flag, and thus considered as detected considering the ten selected streams.
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Table 3.1. Selected single detected compounds from chemical analytical data. Out

of the 29 selected chemical compounds in this study, 9 were detected only once. These

are listed below with their respective stream assignment. It has to be noted, that single

detected compound exposure patterns are identical to the respective stream-wise exposure

patterns.

Stream Compound

1 Carbamazepine

Meprobamate

7 Trimethoprim

Benzothiazole

2-Amino-Benzothiazole

2-Hydroxy-Benzothiazole

8 Triclosan

Diazepam

10 Ciprofloxacin

instead of single compounds (see figure 3.3 C and D), but three compound groups contained

one compound only (CG5: Amitriptyline, CG6: Sertraline, CG7: Iopamidol).

Although overall exposure suggested mild acute toxicity in fish, an endocrine activity signal

had been measured, which had also been detected on the gene level (see supplemental fig-

ure S2-5) [Ferrey et al. 2017]. Thus, the mixture consideration of lowly concentrated chemicals

as compound groups might be useful to detect chemical drivers for xenobiotic effects such as

endocrine disruption.

Out of the seventy microarray samples of FHM hepatic tissue after 48h acute exposure to

stream water, one was removed in the preprocessing of microarray data (see figure 3.4).

The reduced set contained 11 518 unique genes after the removal of lowly expressed genes.

As shown in figure 3.4C, the expression patterns of all sixty-nine microarray samples were

not clustered by any exposure or location. Overall, the biological variance on the gene level

seemed to be mainly driven by biological variance rather than differences in stream waters.

Four different exposure scenarios were used as an assumption to link exposure to bio-

logical effects (see figure 3.5). With the general treatment exposure scenario (Exposed water

vs control), any xenobiotic treatment was assumed, which induced biological effects. Next

to that, ten fully independent stream-wise exposures represented site-wise examination. Fur-
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log10(concentration[ng/L])

Figure 3.2. A mild toxic exposure by 29 detected chemicals in the selected streams

in Minnesota (2 compound equivalents identified via chemical in-vitro assessment; and

27 compounds by targeted chemical analysis of stream water samples). A) The number of

detected compounds per stream. B) Sum of toxic units (TU) of detected compounds per

stream. C) log10-transformed concentrations (ng/L) per detected compound and stream.

D) log10-transformed TU per detected compound and stream. TU is defined as ratio of

measured concentration to known concentration ranges based on LC50 (ECOSAR, ECO-

TOX and baseline) for fish. Rows and columns of both heatmaps are ordered by TU.
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0

row wise scaled 
concentrations
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Pearson correlation
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Figure 3.3. The exposure patterns of compound groups (CG) are less pairwise

correlated, than for single compounds. The heatmaps present the exposure patterns

and correlation matrices of single compound and compound group exposure patterns. A)

The dendrogram of the 29 detected compounds based on exposure pattern similarity in 8

CGs. B) The row wise vectors of root-mean-square scaled exposure patterns of detected

single compounds grouped by correlation(see C). C) The pairwise Pearson-correlation ma-

trix of compound wise exposure patterns clustered in CGs according to output of pheatmap

R-function. D) The root-mean-square scaled exposure patterns of CGs. E) The pairwise

Pearson-correlation of CG exposure patterns.
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Figure 3.4. The preprocessed expression patterns of selected microarray sam-

ples did not cluster site-specific. A) The sample wise log2Expression-distribution

(#samples: 70, #probes: 49 905) as boxplots with 95%-interquantile range. Red col-

ored boxes were removed based on the interquartile-range (IQR). B) The sample wise

log2Expression-distribution (# samples: 69, # probes: 20 055) as boxplot with 95%-IQR

after preprocessing and filtering of lowly expressed probes. C) Multidimensional scaling

plot of distances between gene expression profiles. Red colored labels present the control

samples, which are not distinct from the treated samples.
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thermore, twenty single compound exposure scenarios (exposure patterns of detected and not

single detected compounds) and eight compound group exposure scenarios (exposure patterns

of compound groups) were investigated as continuous models. The direct comparison allowed

assessing the advantages of reducing the resolution of chemical exposure without waiving

numeric values.

1 2 3 4 5 6 7 8 9 10 C

Treated

Stream1
Stream2
Stream3
Stream4
Stream5
Stream6
Stream7
Stream8
Stream9

Stream10

Bisphenol
Caffeine

Erythromycin
Sulfamethoxazole

Naproxen
Cotinine

Metformin
Triamterene
Amitriptyline

DEET
Sertraline
Iopamidol

4−Methyl−Benzotriazole
5,6−Dimethyl−Benzotriazole

5−Methyl−Benzotriazole
Benzotriazole

Nitrate
EE2

Compound Group 1
Compound Group 2
Compound Group 3
Compound Group 4
Compound Group 5
Compound Group 6
Compound Group 7
Compound Group 8

Stream
1 2 3 4 5 6 7 8 9 10 C

Stream
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Weights
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Figure 3.5. The four exposure scenario types in differential gene expression models

across stream sites. A) The general treatment model and B) the stream wise model

are binarised exposure scenarios based on treatment-control-comparisons. Note that the

stream sites of the general treatment exposure are equally weighted, and their sum is equally

weighted to the control site. C) The single compound model and D) the compound group

model are numeric exposure scenarios based on scaled toxic units (C) or stream-wise sum

of toxic units (D).

3.2.2 Differential gene expression analysis

Only mild acute toxicity was measured by chemical analytics and effect-based analysis. Nev-

ertheless, the determined endocrine activities in in-vitro assessment led to the expectation

that exposed fish should have significant transcriptional alterations due to xenobiotic effects.

Based on the given exposure information, alterations of expression in FHM liver tissue for
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different exposure conditions were compared to an unexposed condition. The differential

gene expression analysis (DEA) was applied to model the different exposure scenarios (see

figure 3.5).

General treatment exposure scenario. Although acute toxic effects were rather unex-

pected for an overall low TU, a significant adverse impact on pathway level was determined.

For a general treatment contrast, 531 differentially expressed (DE) genes (see 3.6 A) and 75

significantly enriched biological terms were determined (see figure 3.6 B and table 3.2), which

highlighted alterations of metabolism and immune responses (e.g . Interleukin 3 signaling

pathway, endogenous sterols, transport of small molecules).

Highly exposure-correlated single compounds limited identification of chemi-

cal-specific induced effects. An assumption in DEA is that multi-linear contrast models

consist of independent covariates. As shown in figure 3.3, the single compound and the stream

covariates were highly correlated. For example, the exposure patterns of the single detected

compounds were identical to respective stream-wise contrast. Therefore, the nine single de-

tected compounds were considered only within the respective stream-wise exposure scenario.

For single compound and stream-wise exposure scenarios, 97 to 694 DE genes were deter-

mined (see figure 3.6). For five of the streams, no significantly enriched term was identified.

Especially these streams with a higher amount of DEs resulted in no biologically meaningful

result. Also, the amount of significantly enriched terms was independent of the amount of

DEs per single compound. However, 40 enriched terms were determined at a minimum for

compounds detected in at least two streams.

It can be expected that co-correlated covariates are associated with a similar set of DE

genes. However, only one might be responsible for the alterations in expression. In the

present investigation, the DE gene sets for single compounds were similar to the general

treatment (see figure 3.7, and each single compound contrast overlapped more than 50% with

the DE gene set of the general treatment. The top-ranked genes of single compound exposure

scenarios were also similar to those of the general treatment. For example, eight out of the

ten top-ranked DE genes for the EE2 single compound exposure scenario overlapped to the

top ten in general treatment.

Furthermore, the pairwise comparison of the DEA results for multiple detected compounds

showed overlaps on the gene and the pathway level (see supplemental figure S2-1). Higher

overlaps were mostly identified in subgroups, similar to groups of correlated single compound

exposure patterns. Thus, it is likely, that the overlaps were induced by the determined co-

68



3.2. Results

Table 3.2. Top 20 significantly functionally enriched results for the differen-

tial gene expression analysis to general treatment exposure scenario. Based

on the exposure scenario shown in figure 3.5 A, a limma model for differential expres-

sion was applied. Significantly differentially expressed genes were considered in a gene

set enrichment analysis applying webGestaltR (FDR ≤ 0.05). The significant enrich-

ment results with lowest FDR are shown. The enrichment outcome is available on UFZ-

cloud (Path: Data Chapter3 (TenStreams)/master enrichment DEA.csv PW:

PhD SKraemer). (N(tot): Size of gene set (based on given data), N(enr): Number of

genes in the enriched set, N(DEG): Number of significantly differentially expressed genes).

Description FDR N(tot) N(enr) N(DEG)

IL-3 Signaling Pathway < 0.0001 40 18 3

Endogenous sterols 0.0045 15 9 5

EGFR1 Signaling Pathway 0.0089 74 28 5

Metabolism of polyamines 0.0101 43 19 5

Regulation of ornithine decarboxylase (ODC) 0.0116 36 17 4

Hedgehog ’off’ state 0.0141 48 17 4

CDT1 association with the CDC6:ORC:origin complex 0.0141 32 14 3

Ubiquitin-dependent degradation of Cyclin D1 0.0141 32 14 3

Ubiquitin-dependent degradation of Cyclin D 0.0141 32 14 3

Transport of small molecules 0.0142 184 58 12

GLI3 is processed to GLI3R by the proteasome 0.0147 37 14 3

Asymmetric localization of PCP proteins 0.0147 36 15 3

The role of GTSE1 in G2/M progression after G2 check-

point

0.0153 34 14 3

FBXL7 down-regulates AURKA during mitotic entry

and in early mitosis

0.0153 35 14 3

RUNX1 regulates transcription of genes involved in dif-

ferentiation of HSCs

0.0157 41 18 4

Biosynthesis of amino acids 0.0160 51 15 3

Cross-presentation of soluble exogenous antigens (endo-

somes)

0.0160 31 14 3

Degradation of DVL 0.0161 35 15 3

Orc1 removal from chromatin 0.0163 36 14 3

Assembly of the pre-replicative complex 0.0165 33 14 3
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dependencies of exposure patterns. This investigation highlights that the single compound

exposure scenario has its limitations in the interpretability of DEA results.

# DE genes

Figure 3.6. Identification of biologically meaningful results on pathway level ap-

plying differential gene expression analysis with geneset enrichment analy-

sis. The functional enrichment considered the total set of genes investigated in DEA

with biological reference terms from KEGG, Reactome and WikiPathways applying the

R-package webGestaltR. A) Number of significantly differentially expressed (DE) genes

per exposure scenario (# samples: 69; total # genes: 11 518; FDR ≥ 0.05). The con-

trasts are grouped in 4 exposure scenarios (general treatment; stream; single compound;

compound group) and are decreasingly ordered by number of DE genes. B) Number of sig-

nificantly enriched terms in gene set enrichment analysis (FDR ≥ 0.05) with at least one

DE gene. The enrichment outcome is available on UFZ-cloud (Path: Data Chapter3

(TenStreams)/master enrichment DEA.csv PW: PhD SKraemer).
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Considering compound groups in DEA helped to assign biological effects to sin-

gle compounds. In contrast to the single compound exposure scenario, a smaller set of

covariates and weaker pairwise co-correlations were considered with the compound groups

(CG). Per CG, 7 to 800 DE genes and 3 to 105 significantly enriched terms with at least

one DE gene were determined (see examples in table 3.3). Similar to the stream-wise case,

some compound groups had no significantly enriched biological term. Top enriched terms

were associated with innate immune responses (e.g. toll-like receptor cascades, T cell receptor

signaling pathway, or neutrophil degranulation) and regulation due to stress (e.g. peroxisomal

protein import, proteasome or endogenous sterols).

The CG results differed in number and overlap to the general treatment. Overall, the sets of

DE genes for CGs were less similar than those of a single compound scenario to the general

treatment (see figure 3.7). As examples, CGs containing one compound are presented in detail

(CG5 vs Amitriptyline; CG6 vs Sertraline; CG7 vs Iopamidol). Although exposure patterns

were identical to single compound patterns, the covariates were less correlated in the multi-

linear model. In all three cases, the total and relative overlap of DE genes to general treatment

was higher for a single compound scenario, although fewer DE genes were determined (see

figure 3.7). The DEA outcome also had influences on the functional enrichment. In all three

cases, fewer terms overlapped totally and relatively with the general treatment in the case

of CGs. Thus, some advantages of a linear combination of co-dependent exposure patterns

in DEA were highlighted for the examples of CGs with one compound. The disentangling of

exposure-related specific effects was better feasible considering CGs, although the chemical

resolution of xenobiotic effect was reduced by clustering of chemical wise exposure.

3.2.3 Association rule mining

The approach of association rule mining (AR) allows the identification of frequent associa-

tions and relationships in large data sets. It derives rules that can predict the likelihood of

occurrence of one item set based on another item set’s occurrence. Here, exposure patterns

(streams, single compounds and compound groups) and genes were treated as items and fre-

quently occurred exposure-gene relations were identified as rules (see figure 3.8). Compound

groups are based on the clustering of exposure patterns (see figure 3.3). The itemset consisted

of 11 518 genes, 11 stream sites, 29 compounds and 8 compound groups. The transaction set

had a binarised format and consisted of the input information of the itemset.

A low-support (supportX→Y ≥
3

69
) and a high-confidence threshold (confidenceX→Y ≥ 0.8)

were chosen. In addition, a threshold of liftX→Y ≥ 1 was considered, meaning that a rule is

more likely to be better than a random expectation. With a selected low-support threshold,
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Table 3.3. Top significantly functionally enriched terms for the differen-

tial gene expression results of the compound group exposure scenarios

Based on the exposure patterns shown in figure 3.5 D, limma models were applied

for a differential gene expression analysis Significantly differentially expressed genes

were considered in a gene set enrichment analysis applying webGestaltR (FDR ≤
0.05). For five compound groups (CG), significant enrichment results with lowest FDR

are shown. Not represented compound groups had no significant enrichment result.

The enrichment outcome is available on UFZ-cloud (Path: Data Chapter3 (Ten-

Streams)/master enrichment DEA.csv PW: PhD SKraemer). (N(tot): Size of

gene set (based on given data), N(enr): Amount of genes in the enriched set, N(DEG):

Amount of genes, significantly differentially expressed to respective exposure scenario).

Description FDR N(tot) N(enr) N(DEG)

CG1 Cholesterol Biosynthesis 0.0272 10 8 1

Toll-like Receptor Cascades 0.0279 45 9 2

N-Glycan biosynthesis 0.0283 35 11 2

Toll Like Receptor 4 (TLR4) Cascade 0.0288 36 8 2

Toll Like Receptor 7/8 (TLR7/8) Cascade 0.0288 36 8 2

CG4 Lysosome 0.0021 84 43 7

Endogenous sterols 0.0165 15 9 5

Regulation of RUNX3 expression and activity 0.0206 34 15 3

Regulation of RUNX2 expression and activity 0.0208 34 15 3

T Cell Receptor Signaling Pathway 0.0215 42 12 4

CG5 Endogenous sterols 0.0158 15 9 4

C-type lectin receptor signaling pathway 0.0261 56 17 6

SUMOylation of intracellular receptors 0.0272 15 4 1

IL-4 signaling Pathway 0.0277 24 10 2

MyD88:MAL(TIRAP) cascade initiated on plasma

membrane

0.0277 35 13 4

CG6 Peroxisomal protein import 0.0040 28 13 1

Protein localization 0.0196 31 13 1

Neutrophil degranulation 0.0393 160 47 1

CG7 Cyclin A:Cdk2-associated events at S phase entry 0.0012 37 21 3

Cross-presentation of soluble exogenous antigens (en-

dosomes)

0.0014 31 18 3

SCF(Skp2)-mediated degradation of p27/p21 0.0015 34 19 3

Proteasome 0.0015 35 19 3

Regulation of RUNX2 expression and activity 0.0016 34 19 3
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3.2. Results

Figure 3.7. The sets of differentially expressed genes and enriched biological terms

to the general treatment exposure scenario are highly similar to single com-

pound exposure scenarios, but less similar to compound group exposure sce-

nario. Comparison of differential gene expression contrasts to general treatment on gene

and biological pathway level. A) Total number of overlapping differentially expressed

genes (FDR ≥ 0.05) (value in tile) and Jaccard similarity (color code) to general treat-

ment exposure scenario calculated with R-package GeneOverlap. B) Number of over-

lapping significantly enriched biological terms (FDR ≥ 0.05) (value in tile) and Jaccard

similarity (color code) to general treatment exposure scenario calculated with R-package

GeneOverlap. The labels present the respective exposure scenario and the total number of

significant differentially expressed genes (A) or significantly enriched terms (B) in brack-

ets.
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Figure 3.8. The binarised transaction set consisted of the input information of

genes, compounds and streams (see also method section 2.1.4). The total set of

possible pairwise exposure-gene rules was generated from the transaction set of 69 mi-

croarray samples (ngenes = 11518) with samplewise regulated genes (absolute and control-

normed log2(Expression) ≥ 1) as possible consequent and assigned streams, single

compounds or compound groups as exposure scenario antecedent of the rule. Frequent

pairwise association rules were determined applying apriori() of the R-package aRules.

Only pairwise association rules were considered, which allows generating directly exposure-

associated consequent sets of genes from rules with identical antecedent.
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Figure 3.9. Distribution of AR-metrics across pairwise exposure-gene rules ap-

plying aRules (top: All possible pairwise rules of an unique binarised exposure pattern

and a regulated gene (n = 195 806), middle: Pairwise rules determined with filter setting

of apriori algorithm (n = 5420), bottom: Pairwise rules determined with filter setting of

apriori algorithm and with differentially expressed gene (n = 1948)). A) Rulewise sup-

port with filtering threshold at sup ≥ 3/69 (red dashed line). B) Rulewise confidence with

filtering threshold at conf ≥ 0.8 (red dashed line). C) Rulewise lift with filtering threshold

at lift > 1 (red dashed line). D) Rulewise log10 (supportratio).
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the support ratio was also taken into account. This measure was not used as a threshold but

as an interpretable tool to validate the set of frequent rules. Based on the filter thresholds

for support, confidence and lift frequent pairwise rules were identified (see figure 3.9).

In total, 5420 unique pairwise association rules were determined with 17 unique binarised

exposure patterns — approximately 2% of the number of possible pairwise rules. The results

were summarised to sets of exposure-associated genes per antecedent (see 3.10). In the

present study, the generated pairwise rules had the characteristic of a gene consequent.

Thus, each exposure-related rule set has an identical antecedent but different conse-

quents.

Genes associated to exposure scenario Differentially expressed genes associated to exposure scenario 

An
te

ce
de

nt

Figure 3.10. Identification of small to mediate overlaps of exposure-associated

gene sets from association rule mining to these of differential gene expres-

sion. Number of exposure-related genes grouped by antecedent in decreasing order.

(left: Single chemicals, top right: Streams, bottom right: Compound groups). The dark

grey highlighted bars present differentially expressed genes per exposure scenario. Single

detected compounds (see table 3.1) are represented by the respective stream-wise exposure

scenario.

The consideration of unique exposure patterns reduced the set of 48 binarised occurrence

patterns to 17. The single detected compounds had the identical set of associated genes as
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the respective stream. Also, the compounds detected in the identical streams had identical

sets of associated genes (see figure 3.10). No CG had a unique binarised exposure pattern.

The associated genes to a CG were identical to the most extensive set of associated genes

for respective single compounds (see 3.10). Thus, the CG occurrence pattern was defined by

the common compound occurrence across the ten streams. The occurrences of the least often

detected compound restricted the maximum occurrence pattern of a CG. In this investigation,

all compounds of one CG were commonly detected in at least one stream, and with that,

exposure patterns of CGs were identical to either one stream or at least one compound.

Consequently, the binarisation of continuous data lead to a reduction of unique exposure

patterns, and thus, to a loss of information potentially.

All selected rules had a lift ≥ 1 and a high confidence. It was expected that a frequently

occurring antecedent item dramatically increase the chance of a consequent item, which

makes rules reliable from a machine learning point of view. The support ratio helps describe

some consequent characteristics when considering a low-support threshold as in the present

study (support > 0.05). The antecedent support was below consequent support in all

rules, except four (see figure 3.11). On average, the consequent was six times more frequent

than the antecedent, as the median support ratio valued 0.162. Each antecedent item

had at least a support of 5/69, implying consequent support of 30/69 on average. Thus,

identified genes were affected frequently in the investigated microarray samples.

Applying either overrepresentation analysis or gene set enrichment analysis on exposure-

related gene sets gained no significantly enriched terms for any exposure scenario. The pre-

sented AR approach with chosen filters identified an altered gene expression but supported

neither xenobiotic stress nor exposure-specific effects on pathway level.

Furthermore, the exposure-associated genes in AR overlap partly with significant exposure-

associated DE genes (see figure 3.10). Ciprofloxacin/Stream10 ∗ had the highest number

of associated genes (n=400) and the highest number of associated DE genes. Although the

overlap to DEA results was, in general, smaller for compound groups, CG4 overlapped in parts

to the DEA results. As assessed by the support ratio, AR identified mostly the frequently

regulated genes. Consequently, the overlap to DEA might highlight genes representing an

overall stress response instead of specific exposure-related responses. In parts, AR underlined

the observation in DEA for exposure scenarios, which might primarily represent overall stress.

∗ Ciprofloxacin has an identical exposure pattern as CG4
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Figure 3.11. Antecedent items had more occurrences than consequent items in

determined association rules. Boxplots present the distribution of support ratio per

antecedent item grouped by exposure scenarios (top: Single chemicals, middle: Com-

pound groups, bottom: Streams). Single detected compounds (see table 3.1) are represented

by the respective stream-wise exposure scenario. The support ratios were all below or equal

1 and thus, the consequent support was greater than antecedent support in the de-

termined rule set.
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3.2.4 Network inference

The weighted gene correlation network analysis (WGCNA) allows inferring a network based

on the gene-wise expression patterns across all microarray samples. The preprocessed mi-

croarrays were investigated, and its 11 518 annotated genes were considered as nodes. A

weighted and signed biweight mid-correlated gene network was generated with topological

overlap measure (TOM) weighted edges. A soft thresholding power β = 8 was selected to

give highly correlated node pairs a higher relative weight than lowly correlated node pairs.

In this case, the scale-free topology model fit was above 0.8, and the mean connectivity was

above 100 for the given gene expression data (see figure 3.12).

Twenty modules were determined in the generated gene dendrogram with the chosen β-

parameter and after merging modules with highly correlated module eigengenes (see fig-

ure 3.13). The modules consisted of 33 to 2222 genes. The remaining set of 3150 genes was

uncorrelated and was assigned to the grey module.

A B

Figure 3.12. Scale free topology estimation for weighted gene correlation network

analysis. For biological networks a scale free topology characteristic is assumed. In the

case of a weighted gene correlation network, a soft threshold — the power of the pairwise

correlation to calculate gene-adjacency — can be estimated. For the considered expression

data a soft threshold of β = 8 was chosen. A) Scatterplot of model fits by |R2| for power

law describing scale free topology for soft thresholds from 1 to 20. According to [Zhang

and Horvath 2005], R2 ≥ 0.8 is recommended (see black labels). B) Scatterplot of mean

connectivity for soft thresholds from 1 to 20. A threshold of mean(connectivity) ≥ 100

was chosen (see black labels).

The exposure patterns from DEA models (see figure 3.5) were the external (exposure) traits
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to identify exposure-associated groups of co-correlated genes and calculate module-trait-

correlations (MTC). The general treatment, three streams, twelve single compounds and four

compound groups were significantly associated with at least one module (see figure 3.14).

The entire MTC-matrix is shown in supplemental figure S2-2.

Similar to DEA, exposure traits with identical exposure patterns lead to an identical set of

MTCs. For example, Stream9, Lincomycin, Sulfamerazine and CG8 had an identical exposure

pattern with a singular peak in one stream and were significantly correlated to lightcyan (see

figure 3.14 A).

Figure 3.13. The gene dendrogram was clustered in 21 modules. The signed and

weighted gene correlation network was generated with a gene expression data set containing

11 518 genes and 69 microarray samples. Due to an improved robustness, biweight mid-

correlation was chosen.

The gene significance (GS) and module membership (MM) prioritized and ranked genes in

GSEA. For each gene, we calculated the correlations to each module eigengene or each expo-

sure pattern. Thus, non-module-member genes remained in ranking lists and became relevant

in enriched gene sets. At least one gene of the enriched gene set had to be in the selected

module to provide an interpretability for the specific module.
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A rather unspecific xenobiotic response was expected when investigating acute exposure to

lowly concentrated mixtures. In the scope of our investigation, the application of GSEA with

WGCNA-metrics for gene ranking was partly meaningful. It could be valuable to interpret

exposure in stream waters on the pathway level, albeit effects represented a rather unspecific

xenobiotic response ∗.

Table 3.4. Significantly enriched terms for purple module with EE2 or compound

group 4. The purple module of the signed gene correlation network (see figure 3.13)

was significantly correlated (pMTC ≤ 0.05 and |MTC| ≥ 0.3) to the exposure patterns of

EE2 and CG4 (see figure 3.14 A). The R-package webGestaltR determined functionally

enriched terms (FDR ≤ 0.05) with a gene list ranked by MM×−(log10pGS). Enrichment

results had to have at least one gene assigned to the purple module. CG4 had no further

significantly enriched terms with other modules. (FDR: False discovery rate - adjusted

p-value, N(tot): Size of gene set, N(enr): Number of genes in enriched set, N(mod):

Number of genes in enriched set and assigned to module.

Exposure Description FDR N(tot) N(enr) N(mod)

EE2 Insulin signaling pathway 0.0087 80 15 9

Regulation of actin cytoskeleton 0.0262 78 21 12

Adipogenesis 0.0273 48 7 5

Focal adhesion 0.0349 77 14 10

CG4 Regulation of actin cytoskeleton 0.0116 78 24 11

Insulin signaling pathway 0.0154 80 22 9

Vascular smooth muscle contraction 0.0185 42 9 5

Significantly enriched gene sets (FDR ≥ 0.05) with at least one gene within the investigated

module were considered biologically meaningful. The number of enriched terms varied across

all MTCs with 0 to 122 biologically meaningful terms. Nine-teen MTCs contained at least

one significantly enriched term applying GSEA with gene ranking by MM and GS. It was

more likely to have a significant enrichment or multiple significant enrichments the greater

the module was.

For example, the exposure to 5,6-Dimethyl-Benzotriazole had the identical set of significant

MTCs as exposure to CG4. Both scenarios were associated with modules at nearly identical

correlation values (see supplemental figure S2-2) and had significantly enriched terms (see

∗ see enrichment outcome: Data Chapter3 (TenStreams)/master enrichment WGCNA.csv PW:

PhD SKraemer

80

https://nc.ufz.de/s/emqxbigeWYPSnKp


3.2. Results

figure 3.14 and table 3.4). GSEA associated insulin signaling pathway to CG4, which might

highlight a xenobiotic response due to endocrine disruption. The regulation of the actin

cytoskeleton is known to be affected by oxidative stress in cells. Such xenobiotic responses

might be associated with endocrine disruption. CG4 contains EE2. Out of 998 purple genes,

421 EE2-gene-associations (known in STITCH and CTD) were identified (see figure 3.16).

Both enriched terms were also significantly enriched for the exposure scenario of EE2, but in

the case of CG4, the enriched sets contained more genes. Although the number of enriched

terms to CG4 was small, the biological meaning highlights cellular responses in the liver to

xenobiotic stress. For the significant correlation to lightcyan, no significantly enriched terms

were identified. However, the xenobiotic stress response in FHM might also be supported by

the high coverage of EE2-associated gene interactions (352/1086). Xenobiotic responses on

pathway level might genuinely be associated with a (mixture) exposure of EE2-equivalents,

Ciprofloxacin, Naproxen and 5,6-Dimethyl-Benzotriazole when considering CG4.

Figure 3.14. Significant module-trait-correlations (with number of enriched biolog-

ical terms) and module sizes. A) Heatmap of significant biweight mid-correlations

of modules to exposure scenarios (|MTC| ≥ 0.3 and pcor ≤ 0.05). The color of tiles

represent the direction and strength of correlation. Text in tiles represent the number of

significantly enriched terms ranked by module membership and gene significance of the re-

spective module-trait-correlation with at least one gene within the module. B) Barplot of

number of genes per module in decreasing order. The color represents the assigned name

of a module.

As highlighted above, known EE2 interactions were well covered in the purple and the light-

cyan modules. Therefore, these modules might represent the known endocrine disruptive
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perturbation by the exposure to the compounds in CG4. CG4 had the highest amount of

exposure-related genes (see figure 3.15).

Figure 3.15. The number of exposure trait correlated genes, which were also differ-

entially expressed, was the greatest for CG4. Number of exposure-associated genes

identified in weighted gene correlation network analysis grouped by exposure scenarios

and decreasingly ordered. Filled partitions of barplot and number in brackets present the

number of exposure-associated genes, which are also significantly differentially expressed.

In this study, genes with |GS| ≥ 0.3 and |MM | ≥ 0.3 were considered relevant for an exposure
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3.2. Results

trait ∗. In both modules — lightcyan and purple –, the relation of MM and gene GS resulted

for CG4 in many top-right genes that were, in parts, supported by the DEA and AR results

(see figure 3.16 for the purple module).
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Figure 3.16. Many purple genes were known as EE2-interacting and other ap-

proaches supported them as CG4-associated. Relation of module membership and

gene significance for the example of the module-trait-correlation purple-compound group

4 (CG4). The data points represent the genes of the lightcyan module. The color assigns

associations to EE2 in external reference bases. The colored halos present overlapping

exposure-gene interactions in differential gene expression (DEA) or association rule min-

ing (AR). Genes in the top-right corner of such a scatterplot are expected to be hubgene-like

and their expression pattern represent the respective exposure pattern well.

Thus, higher connected genes in the modular subnetworks projected these exposure patterns

well across approaches. However, the top-right exposure-related genes were not supported by

other approaches in every significant MTC.

The consideration of a method integration was essential to increase credibility on individual

WGCNA results. On the other hand, a method-integrative pre-filtering of genes would reduce

∗ GS showed, whether a genes expression might describe the exposure pattern properly (|GS| ≥ 0.3).

GS was the biweight mid-correlation of exposure pattern and gene-wise expression pattern. MM was the

biweight mid-correlation of module eigengene and gene-wise expression pattern. A high MM value presents an

intra-modular hub-gene-like gene, which is highly connected to a large set of genes within the same module.
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the number of genes extremely, and thus a determination of significantly enriched terms might

become negatively influenced.

3.2.5 Method comparison

As omics studies have been already well established in (eco-)toxicological investigations, the

current knowledge has been documented in external reference bases like the comparative

toxicogenomic database (CTD) as chemical-gene interactions or STITCH as chemical-protein

interactions. Such references were beneficial for the validation of the determined results. Some

overlap between determined exposure-related associations and known compound-specific ef-

fects was expected and was considered on the gene and the pathway levels.

The overlap to chemical-gene interactions known in CTD and STITCH for selected compounds

was determined for each represented chemical compound ∗ (see tables S2-6, S2-7, S2-8, S2-9

and S2-10). No chemical-gene interactions were given for rarely studied compounds, like 5,6-

Dimethyl-Benzotriazole. In contrast, thousands of chemical-gene interactions were known for

frequently studied compounds like EE2 or Bisphenol A. Both compounds have been known

as endocrine disruptors. On the one hand, it may highlight the main limitation of a study

bias in human-curated toxicological databases. On the other hand, the top-ranked chemical

compounds also supported the expectation to identify transcriptional responses typical for

cellular stress and endocrine disruption. The total overlap to these compounds was the

largest.

To proof, whether biologically meaningful results were also reliable, the overlap of enriched

terms to chemical-pathway interactions listed in CTD was identified per exposure scenario

and method.

In the case of DEA, compound wise CTD pathway associations significantly overlapped with

exposure-associated enriched terms in cases of single compound and compound group consid-

eration (see figure 3.17). DEA resulted in significantly enriched terms for 18 single compound

exposure scenarios, and 15 contained at least one known interaction in CTD. The compounds

Nitrate, Metformin, Bisphenol A, Caffeine, EE2 and Sertraline significantly overlapped to en-

riched terms (see figure 3.17). Thirteen compounds had any overlap of respective compound

group exposure-associated enrichment results to CTD pathway associations (see figure 3.17).

For Nitrate, Metformin and EE2 a significant overlap to CTD’s pathway association was

also determined in compound group exposure scenarios. These compound-related exposures

were associated with cellular stress and xenobiotic responses. A general perturbation and

∗ It has to be noted, that not every compound is represented in the toxicological references.
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potentially endocrine disruptive effects were expected due to in-vitro responses of EE2- and

nitrate-equivalents.

CG4 contained EE2, and more than a third of the DE genes to CG4 was listed in either

CTD or STITCH as known compound-gene interaction to EE2 (see figure 3.17 A). As EE2

was not directly measured in streams but represented the estrogen activity within stream

waters, the three other compounds in CG4 might be the drivers for the associated xenobiotic

perturbation. The enriched terms for the DE genes hinted at cellular stress and endocrine

disruption (see table 3.5).

In the case of DEA, a chemical group exposure scenario might reduce the projection of molec-

ular effects on the transcriptional level, which a ’hidden chemical background’ might drive.

The in-vitro measured endocrine effect associated with nitrate and EE2 was supported when

comparing exposure scenario related DE genes and significantly enriched terms to reference

sets from CTD. With this, the biological effect for Metformin was correlated to nitrate and

for both significant on the pathway level(see enrichment results table 3.6). It may highlight

Metformin as a potential chemical driver of stress-responsive transcriptional effects for the in-

vitro measured nitrate effect. Consequently, compound groups instead of single compounds,

as exposure scenarios, were partly necessary to disentangle chemical driven xenobiotic effects

from the overall stress response.

In the case of WGCNA, at least one significantly enriched term overlapped to CTD consider-

ing enrichment results for EE2 and Iopamidol. No pathway interaction overlap was significant

when performing a χ2-test, neither for a single compound nor for compound group exposure

scenarios. More than 1000 enriched terms were associated with EE2 in CTD. However, the

few identified enriched terms were not considered independent, although overlap to enriched

results was high. Three out of four EE2-associated enriched terms in the single compound

scenario and three out of three in the compound group scenario overlapped. On the contrary,

Iopamidol (single compound and the only representative of CG7) had the most extensive set

of significantly enriched terms (n = 295) considering WGCNA enrichment results. Out of

53 Iopamidol-pathway interactions known from CTD, six were identified in WGCNA (see

table 3.7).

These terms were related to stress responses inducing inflammatory reactions like signaling

by interleukins or Fc epsilon receptor I signaling. Although the overlap was not significant

according to the χ2 − test, the result was meaningful for a xenobiotic Iopamidol exposure.

Both computational approaches - DEA and WGCNA - were able to identify pathway

attributions, which were exposure-related and biologically meaningful. Xenobiotic stress-

related terms were identified. However, only some DEA and no WGCNA results were reliable
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Figure 3.17. Identification of 3 significant overlaps of enriched terms consid-

ering differential gene expression in single compound and compound group

exposure scenarios. Method comparison with external reference bases. A) Overlap of

EE2-gene interactions to known EE2-reference sets in CTD or STITCH per method (top)

and overlap of significantly enriched terms to EE2 to known EE2-associated pathways in

CTD per method (below). B) Number of significantly enriched terms (FDR ≥ 0.05) in

single compound or chemical group exposure scenario. Color present degree of overlap be-

tween compound wise enriched terms and known compound-pathway interactions from the

comparative toxicogenomic database (CTD) (Black: Significant overlap, if χ2-Test with

p ≥ 0.05, Grey: At least one known interaction in CTD, White: No overlap to interactions

in CTD).
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considering statistical significance in a χ2-test.

Table 3.5. Most significantly enriched terms for DEA results to EE2 and CG4

which are also known in CTD. Based on the exposure patterns of EE2 and CG4

(see figure 3.5 C and D), limma models for differential expression were applied. A gene

set enrichment analysis was performed applying webGestaltR (FDR ≤ 0.05) (see Data

Chapter3 (TenStreams) /master enrichment DEA.csv PW: PhD SKraemer). A

significant overlap to CTD was determined for EE2 (single: 68/87 terms in CTD, CG4:

52/64) with χ2-test. Table shows ten most significantly enriched terms.

Exposure Description

EE2 GnRH signaling pathway

EE2 RET signaling

EE2 Endogenous sterols

EE2 Insulin receptor signalling cascade

EE2 PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling

EE2 Signaling by FGFR3

EE2 Signaling by FGFR4

EE2 Negative regulation of the PI3K/AKT network

EE2 Nonsense Mediated Decay independent of the Exon Junction Complex

EE2 Regulation of actin cytoskeleton

CG4 Lysosome

CG4 Endogenous sterols

CG4 Hedgehog ’on’ state

CG4 Cyclin A:Cdk2-associated events at S phase entry

CG4 SCF(Skp2)-mediated degradation of p27/p21

CG4 GLI3 is processed to GLI3R by the proteasome

CG4 Visual phototransduction

CG4 CDT1 association with the CDC6:ORC:origin complex

CG4 Ubiquitin-dependent degradation of Cyclin D

CG4 Degradation of DVL

3.2.6 Application case of method integration

We performed GSEA combining the results of WGCNA and DEA. For each significant MTC,

the modular gene set was considered as the reduced background of genes. The genes were
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ranked by signum(logFC) × −log10(FDR) for the DEA outcome of the respective expo-

sure scenario. In total, eight significantly enriched terms were identified across five different

significant MTCs (see table 3.8).

Table 3.6. Significantly enriched terms for DEA results of metformin and nitrate

which are also known in CTD. Differential gene expression analysis was applied with

limma models for exposure patterns of nitrate, metformin and CG1 (see figure 3.5 C

and D). A gene set enrichment analysis was performed applying webGestaltR (FDR ≤
0.05) (see Data Chapter3 (TenStreams) /master enrichment DEA.csv (PW:

PhD SKraemer)). Significant overlaps to CTD were determined in cases of metformin

(single: 21/45 terms in CTD, CG: 14/20) and nitrate (single: 17/57 terms in CTD,

CG:13/20) according to χ2-test. Table shows five most significantly enriched terms.

Compound Scenario Description

Metformin Single compound Toll Like Receptor 10 Cascade

Toll Like Receptor 5 Cascade

Toll Like Receptor TLR1:TLR2 Cascade

Toll Like Receptor TLR6:TLR2 Cascade

Toll Like Receptor 2 Cascade

nitrate Single compound Biosynthesis of amino acids

Metabolism of amino acids and derivatives

Toll Like Receptor 4 Cascade

Toll Like Receptor 7/8 Cascade

MyD88 dependent cascade initiated on endosome

Metformin/Nitrate Compound group Toll Like Receptor 4 Cascade

Toll Like Receptor 7/8 Cascade

MyD88 dependent cascade initiated on endosome

Toll Like Receptor 9 Cascade

Toll Like Receptor 10 Cascade

In the case of the MTC purple-CG4, toxicological reasonable enriched terms were identified

with more than two module-member genes. A GSEA with DEA-ranked genes determined an

endocrine-related and a stress-responsive effect. The cytokine signaling in immune system

was also a highly ranked chemical-pathway interaction for three of the four compounds in

CG4 (EE2: Rank 19 of 1337, Ciprofloxacin: Rank 1 of 173, Naproxen Rank 2 of 190). The

enriched gene set for the androgen receptor signaling pathway contained genes that encode pro-
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Table 3.7. Significantly functionally enriched terms for weighted gene network

analysis to Iopamidol which are known in the comparative toxicogenomic

database. In the case of Iopamidol, the exposure pattern was identical for compound

group and single compound. A gene set enrichment analysis was performed for all modules,

which were significantly associated with Iopamidol (see figure 3.14) applying webGestaltR

(FDR ≤ 0.05). (see enrichment outcome: Data Chapter3 (TenStreams) /mas-

ter enrichment WGCNA.csv PW: PhD SKraemer). The significant enrichment re-

sults, which were covered in CTD, are shown with their rank in CTD significant enrich-

ment results.

Rank Description

5/53 Cytokine Signaling in Immune system

28/53 Toll Like Receptor 9 Cascade

30/53 Cellular responses to stress

35/53 Signaling by Interleukins

36/53 Protein processing in endoplasmic reticulum

40/53 Fc epsilon receptor I signaling

teins relevant to direct molecular interactions with the androgen receptor (ctdp1, ncoa2 and

nr3c1 ). The enrichment of this term was associated with steroid binding and glucocorticoid

receptor activity in general, which hinted at lipid metabolism and was a reasonable xenobiotic

and metabolic response due to endocrine disruption. These identified terms highlighted the

endocrine-related effect, which was recognized by a mixture of endocrine activity and mea-

sured concentrations of Ciprofloxacin, 5,6-Dimethyl-Benzotriazole and Naproxen. None of

the enriched terms per MTC was identified with the GSEA approach considering WGCNA-

metrics. However, both applied gene rankings identified meaningful results with WGCNA

outcomes.
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Table 3.8. Significantly enriched terms for method integration of WGCNA and

DEA. Based on various exposure patterns (see figure 3.5), limma models for differential

expression were applied. The network inferred grouping of genes applying the WGCNA-

package in R was used to filter the considered set of DEA results for significant module-

exposure trait correlations (MTC) (see figure 3.14). The filtered results were considered in

a gene set enrichment analysis applying webGestaltR (FDR ≤ 0.05) (see enrichment out-

come: Data Chapter3 (TenStreams)/master enrichment WGCNAwDEA.csv

PW: PhD SKraemer). The significantly enriched results per significant MTC are shown.

(nER: normalised enrichment score, FDR: false discovery rate)

MTC Geneset Description nER FDR Size

purple-S10∗ WP1367 TGF-β-Receptor Signaling Path-

way
1.625 0.0199 10/10

purple-CG4 WP1348 Androgen Receptor Signaling

Pathway
-1.830 0.0184 3/10

purple-CG4 R-DRE-1280215 Cytokine Signaling in Immune

system
1.757 0.0457 14/14

lightcyan-CG7 WP467 mRNA processing -1.736 0.0273 4/13

orange-CG7 dre00190 Oxidative phosphorylation -2.325 < 0.0001 9/19

orange-CG7 WP1339 Electron transport chain -2.325 0.0016 5/11

orange-CG7 R-DRE-1428517 Citric acid cycle -1.918 0.0020 4/10

& respiratory electron transport

lightcyan-CG8 dre04210 Apoptosis -1.998 < 0.0001 13/13
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3.3 Discussion

The present study linked chemical exposure in ten streams in Minnesota to biological effects

measured on the transcriptional level in liver tissue of adult fathead minnows. The mildly

toxic acute exposures from selected surface waters were associated with xenobiotic effects

with in-vitro bioassays and two out of three applied computational approaches. In addition,

we showed that external references of biological genesets and toxicological databases helped

validate the applied methods. In parts, we disentangled chemical responses from the chemical

background in overall mildly toxic but existent perturbations in freshwater environments.

Responses due to xenobiotic stress and endocrine disruption as proof of concept

for in-vitro activities. Nitrate and EE2 are markers of general pollution and endocrine

disruption. Both were added to the chemical exposure data set based on their streamwise

in-vitro assessments. The compound distribution alone did not help determine the driving

(mixtures of) compounds leading to a xenobiotic adverse outcome. The occurrence pattern

of EE2 and Nitrate could not be generated as a linear combination of occurrence patterns

of detected compounds (see figure 3.2). If concentration addition would be assumed for

mixture exposures, more compounds had to be relevant, which were not detected in the

present investigation. Thus, the chemical analysis identified only a snapshot of potentially

occurring chemicals. Nevertheless, by considering compound group exposure scenarios, it was

possible to reliably attribute biologically meaningful effects to detected compounds concerning

xenobiotic stress and endocrine disruption.

The biggest compound group (CG1) comprise ten compounds, and two — inorganic Nitrate

and Metformin — are known for similar toxicological effects [Cordero-Herrera et al. 2020],

such as inducing xenobiotic stress and affecting the endocrine system [Lin et al. 2020, Kellock

et al. 2018, Bjerregaard et al. 2018, Pottinger 2017]. Straub et al. [2019] verified the formation

of metformin (C4H11N5) to nitrate in the aqueous environment, albeit bioaccumulation of

Metformin in fish has not been proven. Considering both - single compound and compound

group exposure scenario - Metformin and Nitrate hint to chemical-specific effects detected on

the pathway level (see figure 3.17). Although not the top FDR-ranked terms to CG1, but a

significant amount of enriched terms significantly overlapped to known pathway interactions

in CTD to both named compounds (see table 3.6).

Toll-like receptor cascades were significant and highly ranked chemical-gene interactions to

Metformin and nitrate in CTD for both exposure scenarios. Furthermore, the top-ranked

enriched term for CG1 — Cholesterol biosynthesis — suits to exposure of Metformin, as
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the compound has been used to treat diabetes mellitus type II affecting insulin sensitivity,

although not listed in CTD for the respective compound. For DEA, the biological response

was less influenced by chemical background noise when considering compound groups. For

example, the top-ranked enriched terms for single compound Metformin (e.g. Ribosomal

proteins and Nonsense-mediated decay) might be rather general and potentially driven by

xenobiotic perturbation and did not overlap to known interactions from CTD. The overlapping

terms to CTD were relatively similar for both exposure scenarios. However, the effects driven

by Metformin and Nitrate were biologically and toxicologically meaningful considering the

exposure of CG1, but also the transcriptional effect on a gene level was less similar to the

general treatment exposure scenario. Therefore, a more specific response was determined

when considering a group of compounds that might support a xenobiotic effect induced by

Metformin as one potential and reliable main driver.

Furthermore, the exposures to the single compound EE2 and CG4 were biologically mean-

ingful in DEA and WGCNA. For example, 87 significantly enriched terms were identified

in functional enrichment of DEA results with at least one significantly DE gene to EE2

(see figure 3.6). In adddition, some biologically meaningful terms represented known EE2

interactions (see figure 3.17 and table 3.5). The terms were related to the endocrine ac-

tivity (e.g. Insulin signaling, gonadotropin-releasing hormone signaling), immune responses

(e.g. interleukin-3 signaling, T-cell receptor signaling) or potential tumorous processes (e.g. Epi-

dermal Growth Factor Receptor1 signaling, PI3K/AKT signaling) ∗.

In WGCNA, the same three modules were significantly correlated to EE2, 5,6-Dimethyl-

Benzotriazole and CG4 (see figure 3.14). The functional enrichment with the purple module

to EE2 resulted in four and for CG4 in three significantly enriched terms (see table 3.4).

Purple genes were significantly enriched to the Insulin signaling pathway in both cases, which

has a central role in vertebrate endocrine regulation. Around half of the enriched genes were

assigned to the purple module.

CG4 was associated with the compound group consisting of EE2, Ciprofloxacin, Naproxen

and 5,6-Dimethyl-Benzotriazole. Considering this compound group allowed interpreting the

detected compounds as potential chemical drivers of in-vitro measured endocrine activity in

stream waters. However, the set of known EE2-pathway interactions in CTD lists a broad

palette of cellular stress responses, not only endocrine disruption. Thus, the overlaps of

∗ As we consider highly correlated compounds, different interpretations might be possible. For example,

the result could be a proof of concept, that DEA can be used to identify in-vitro measured endocrine effects

of stream waters also with transcriptional omics data. Or that an EE2 exposure pattern covered streams with

the highest toxic effects, leading to cellular stress due to xenobiotic perturbation and metabolic alterations

partly hinting to endocrine disruptive processes.
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enriched terms to known EE2-pathway-associations were high (single compound: 3/4, com-

pound group: 3/4), but these terms might also fit a rather generic xenobiotic stress response.

Another compound of CG4 - Ciprofloxacin - is an antibiotic known to be hepatotoxic but

was not recently studied as an endocrine disruptor. According to CTD, the compound might

induce liver injuries and stress induced by xenobiotic perturbation, leading to inflammatory

processes. As Ciprofloxacin was detected only in one selected stream, the mixture of non-

detected compounds or other detected compounds might induce a cumulative effect. The given

data did not allow distinguishing mixture effects in more detail. Few Naproxen-associated

pathways in CTD overlapped with CG4-enriched terms, but Naproxen is known for endocrine

activity in fish [Kwak et al. 2018]. Of all detected compounds, 5,6-Dimethyl-Benzotriazole

is the least investigated in (omics) exposure studies. This compound was not represented in

CTD. A PubMed search identified two papers in total considering this compound in exposure

or ecotoxicological context. Nevertheless, Benzotriazoles as a chemical group became more

studied in the last years, and sublethal chronic effects leading to carcinogenicity and endocrine

disruption were reported [Shi et al. 2019, Feng et al. 2020, Liang et al. 2014].

To summarise the effect, potentially driven by exposure to CG4: The biologically meaningful

enrichment results were partly supported by literature and the external database CTD. Nev-

ertheless, it remained unclear if all or even more compounds were essential to this (mixture)

effect.

Different rankings for GSEA were shown as biologically meaningful for WGCNA

results. Network inference approaches became popular to investigate data on the gene level

in different areas of ecotoxicology [e.g. Williams et al. 2011, Perkins et al. 2011, Orsini et al.

2018, Barel and Herwig 2018]. For example, mutual-information-based modules were identi-

fied with ARACNE [Williams et al. 2011], or protein-protein interaction networks were investi-

gated in exposure studies [Barel and Herwig 2018], or reverse-engineering networks helped to

identify AOPs [Perkins et al. 2011]. In this study, the exposure to chemical compounds were

linked to transcriptional effects applying WGCNA as generating a gene correlation network

is a frequently used approach in omics analysis [e.g. Sutherland et al. 2018, Maertens et al.

2018, Degli Esposti et al. 2019]. A plethora of human-driven decisions is necessary concerning

parameter settings in WGCNA. The setting decisions might be made differently by others,

which would potentially lead to different results. In the present study, the biweight mid-

correlation was calculated as it is more robust than the Pearson correlation [Langfelder and

Horvath 2017] ∗. Also, the soft threshold might be chosen differently to fulfil the scale-free-

∗ In cases of chemical vectors, many zeros due to rare detection occurred, which would influence the

calculation of biweight mid-correlations. Note that in such cases, the calculation is performed with Pearson
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topology-criterion by other researchers. Here, the recommendations by WGCNA-developers

were followed [Zhang and Horvath 2005].

The MTC values were generally low in this study. Therefore, the correlation threshold was

set lower to consider a more extensive set of significant MTCs. In statistics, an absolute cor-

relation value equal to or above 0.5 is usually considered a strong correlation, and cor ≥ 0.5

is often used as meaningful filter for correlation analysis. However, this threshold might also

limit the yield of potentially meaningful results. None to only a few relations would be consid-

ered in studies with overall lower correlation values. In the applied WGCNA approach, only

one MTC was above 0.5 (bicor = 0.53 lightcyan module and 5,6-Dimethyl-Benzotriazole).

However, no biologically meaningful result was identified for this MTC, which contained at

least one gene of the lightcyan module. In such cases, it might be helpful to consider mediate

correlations, which are commonly considered in the range of 0.3 ≥ cor ≥ 0.5 in statistics. The

results should be interpreted with more caution but might represent biologically meaningful.

A subtle transcriptional effect was expected when measuring mild acute toxic effects in se-

lected streams. However, the low correlation threshold helped identify weakly but present

transcriptional effects.

In the case of WGCNA, the application of GSEA seemed meaningful. Gene significance and

module membership prioritised and ranked genes in GSEA. For some significant enrichment

results, the number of module-member genes was greater than 10 (e.g. for significant cor-

relation to CG4-purple in table 3.4). This study was the first to consider ranking metrics

of WGCNA to identify biological enrichments and with that exposure-pathway-associations.

A rather unspecific xenobiotic response was expected when investigating acute exposure to

lowly concentrated mixtures. The application of GSEA with WGCNA-metrics for gene rank-

ing was partly meaningful and helped interpret exposure in stream waters on pathway level,

albeit effects represented a rather unspecific xenobiotic response ∗.

Regarding method integration concepts for functional enrichment, we also performed a GSEA

combining the results of WGCNA and DEA. The combination of DEA and WGCNA resulted

in biologically meaningful results and highlighted the importance of method integration to

gain biologically meaningful and reliable results. In the case of the MTC CG4-purple, the

enriched terms were related to endocrine disruption suiting to the selected compound subset

EE2 Ciprofloxacin, 5,6-Dimethyl-Benzotriazole and Naproxen.

In summary, both enrichment approaches for WGCNA were meaningful, and both are rec-

correlation instead automatically in the WGCNA-package.
∗ see enrichment outcome: Data Chapter3 (TenStreams)/master enrichment WGCNA.csv PW:

PhD SKraemer
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ommendable for functional analysis.

AR was not proper to disentangle chemical exposure and biological effects. Re-

cent toxicological and biological studies presented AR as a meaningful approach [Creighton

and Hanash 2003, Chen et al. 2019, Nagata et al. 2014]. On the one hand, exposure analyses

were performed considering AR [Toti et al. 2016, Kapraun et al. 2017]. On the other hand,

R-packages were developed to not only investigate any transaction set [Hahsler et al. 2005,

Pinyaga et al. 2002] but specifically for omics data [Chen et al. 2019].

It might have different reasons that AR results under chosen filter settings were toxicologically

uninformative and performed worse than DEA and WGCNA. In this study, 69 transactions

were considered, which was quite large for an omics data set in an ecotoxicological scope to

investigate stream water samples, but small in contrast to the scope of other AR studies [e.g.

Kapraun et al. 2017, Bell et al. 2016]. At the same time, the large itemsets of biological and

chemical entities in ranges of tens of thousands and greater when considering omics data lead

to an immense need for memory and consumption of time. The smaller number of transac-

tions reduced the chance to identify meaningful and non-trivial association rules, which made

the transfer of AR to ecotoxicology challenging.

Furthermore, AR is generally based on arbitrary human-decided filtering thresholds, poten-

tially influencing the number of frequent associations. Low support, high confidence and an

additional lift filter reduced the set to a few frequent rules. Furthermore, only one-item-to-

one-item rules were determined, which reduced the computational efforts for AR immensely

— applying such a version of the apriori algorithm reduced the set of possible rules and

equalised the limitation of high-dimensional itemsets.

Identical exposure patterns in stream-wise, single compound and compound group exposure

scenarios also affected AR. The exposure data with too few sites for the number of compounds

were limiting in the context of AR. To overcome such a limitation, the number of compounds

would have to be smaller than the number of stream sites, and each compound should be

measured at least two times. Furthermore, AR needed binarised input data, which reduced

the information richness of numerical exposure patterns. The compounds with numerical con-

centrations across the identical set of streams had identical binarised exposure patterns. The

exposure-associated genes became associated with multiple compounds, although only one

might be truly relevant. Recent studies aimed to overcome such restrictions of binarised data

and used a classified or weighted AR instead [Nagata et al. 2014, Lakshmi and Vadivu 2019].

The here chosen parameter setting identified rules with majorly frequently occurring genes.

Nevertheless, neither cellular stress responses nor immune system-related terms were signif-
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icantly enriched. In AR, support, lift and confidence were tested for functional enrichment,

but none significant functionally enriched term was identified.

Further measures are applicable to validate frequent or strong rules [Piatetsky-Shapiro 1991].

As the present study applied a low support threshold, the measure of support ratio was used to

interpret determined frequent rules. This measure helped to understand the determined rules.

The exposure-associated genes tend to be regulated across the majority of microarray samples,

independent of the specific exposure scenario. Furthermore, the more often a compound was

detected, the higher the average support ratio was. Thus, most rules represented interactions

with genes, which were affected across many samples, and a frequently occurred antecedent

had an increased overlap with consequent occurrences. Consequently, a rule did not neces-

sarily describe the likeliness of an altered gene expression due to a specific exposure scenario.

The exposure-associated genes might be rather general xenobiotic stress-regulated genes, less

specific for an exposure scenario, e.g. single compound exposures. Overall stress responses

instead of compound-specific biological effects might be expected to be measurable on path-

way level. This outcome supports the stream-wise and single compound DEA results, where

co-dependencies of exposure patterns led to high similarities to the general perturbation ex-

posure scenario. Although AR alone might be limited in its outcomes in this ecotoxicological

study, the approach might be helpful as a support system for the other approaches. It can be

expected to extract potentially reliable results when identifying exposure-related gene asso-

ciations with multiple approaches. In other investigations [e.g. Liu et al. 2013], a combined

consideration of AR and DEA was shown as useful and identified meaningful results. How-

ever, significant results were identified neither for ORA nor for GSEA. In the present study,

support, confidence and lift were all contemplated as potential ranking metrics for GSEA,

but none suited for a meaningful application of GSEA. Other metrics in AR might be helpful

to rank genes for GSEA. For example, Chen et al. [Chen et al. 2019] developed an R-package

to investigate multi-omics data (considered as gene transaction sets) and retrieved biological

meaning with a new measure. Transcriptional data alone would also be applicable in such

investigations, but considering exposure would be still challenging. However, this was out of

the scope of the present study to investigate this further. Although chosen parameter settings

resulted in no biologically meaningful outcome, we encourage to apply AR as it was proven

to be meaningful in a toxicological context by others [Barrera-Gómez et al. 2017, Kapraun

et al. 2017, Santos et al. 2020, Creighton and Hanash 2003, Mallik and Zhao 2017, Karel and

Klema 2007]. However, another strategy or research question might be needed.

Disentangling exposure effects with different exposure scenarios. The transcrip-

tional effects represented alterations partly due to stress and immune responses on the tran-
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scriptional level. The applied general treatment exposure scenario assumed any xeno-

biotic response in stream waters, but did not identify compound-specific effects within com-

plex mixtures. This exposure scenario helped to understand the overall picture of chemical

exposure and might describe a widespread background of non-detected but ubiquitously dis-

tributed compounds responsible for most transcriptional effects. In the case of DEA and

WGCNA, xenobiotic responses like stress (e.g. interleukin3-signaling pathway), metabolic

changes (e.g. metabolism of poly amines) or also endocrine effects (e.g. Insulin signaling

pathway, gonadotropin-releasing hormone-signaling pathway) were identified. These findings

emphasise the activities measured in the in-vitro bioassays on a transcriptional level with the

expected biological meaning. With that, the biological effects supported the finding of mildly

acute mixture toxicity induced by a smaller set of detected compounds and an unknown

chemical background of lowly-concentrated compounds.

Freshwater bodies are burdened by hundreds to thousands of contaminants [Bradley et al.

2019, Busch et al. 2016]. In natural environmental settings, site-wise exposure scenarios seem

to be unable to disentangle compound induced biological effects. Considering stream-wise

and single compound exposure scenarios, the high overlaps to the general treatment

were induced by the co-correlations of exposure patterns. The stream-wise exposure sce-

nario investigated mixtures of occurred compounds per site, whether detected or not. Some

compounds were detected in only one stream. For example, the exposure to Ciprofloxacin

(measured in stream10 only) resulted in a large set of associated and DE genes but no sig-

nificantly enriched terms. This unspecific differential expression is more likely to relate to

the overall mixture response within this stream than to one detected compound. Thus, a

site-wise exposure scenario did not allow differing between a single compound and a mixture

exposure effect. Interferences with other compounds, detected or not, might amplify or nullify

chemical-specific effects. The unknown chemical background might induce noise in the tran-

scriptional data. A potentially increased error rate in single compound exposure scenarios led

to high amounts of false positive results (see figure 3.7). Consequently, each compound sce-

nario contained indirectly other compounds and unknown chemical background, which might

induce a similar DEA outcome to the general treatment. The present study showed that

the assumption of independent chemical variables in single chemical exposure scenarios was a

strict simplification. Thus, a single compound scenario hardly disentangled exposure-related

transcriptional effects.

Different ideas were already reviewed for exposome studies assessing correlations of exposure

and biological effect [Santos et al. 2020]. The applied variation of a variable selection re-

sulted in a consideration of compound groups. The chemical groups of highly correlated
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and dependent compounds were set as exposure scenarios to overcome the weakness of the

single compound scenario and to consider a smaller set of covariates with weaker pairwise

correlations on average. We expected to model the ”everywhere hidden chemicals” primarily

as an intercept in such a differential expression context, wiping out the effects associated with

a general treatment.

To determine chemical compound groups, no structural similarities of chemical compounds

were considered but pairwise correlation of exposure patterns across streams. The clustering

to exposure-related compound groups was based partly on human decisions. For example, as-

signing 5,6-Dimethyl-Benzotriazole to CG4 might be grouped differently by other researchers.

Furthermore, the selected set of streams was small for an exposure pattern comparison ∗. In

the case of the detected compounds, two might be highly correlated but only one compound

might be toxic for fish. The overall mild exposure might justify the investigation of effects

due to concentration patterns instead of similarities due to chemical structure. However, the

chosen grouping improved the ability to investigate chemical exposure on the transcriptional

level and resulted in meaningful and reliable outcomes.

The unspecific xenobiotic effects were potentially reasoned by lowly exposed mixtures [Yux-

uan et al. 2019, Gandar et al. 2017] as non-detected compounds, which are unequal zero, add

up to a mixture effect [Escher et al. 2013]. Hundreds to thousands of chemicals might be con-

tained in the stream waters [Lǐska et al. 2015, Bradley et al. 2017, Kolpin et al. 2002]. Based

on the chemical analysis, a significant chemical background remained unknown, which led to

a vaguely estimated chemical exposure. The compound group exposure scenarios were more

meaningful than a single compound approach as a linear combination of single compound

exposure patterns led to reduced dependencies between chemical covariates. With that, also

a part of chemical mixture effects was investigated under the assumption of concentration

addition. However, the generation of those chemical groups was still artificial and based on a

small set of compounds and stream sites. Technically, compound groups with only one com-

pound could directly disentangle the chemical-specific biological effects of single compounds.

For example, the compound group exposure scenario to CG7 was directly interpretable as ex-

posure to Iopamidol and resulted in cellular stress responses on pathway level (see table 3.3).

However, also multi-compound groups were biologically meaningful. For example, CG4 was

reliably associated to biologically meaningful effects on gene and pathway levels.

∗ The fewer sites, the coarser grained are exposure patterns.
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3.4 Conclusion

Stream water samples might contain thousands of compounds, and the majority is lowly

concentrated or even not detectable, albeit present. Such mixture perturbations may induce

rather unspecific but stress-responsive effects. This study was focused on acute effects in

fathead minnow liver tissue induced by ecological mixtures of freshwater samples. The in-

vestigated mixtures comprised lowly affecting chemical compounds, and, according to the

in-vitro bioassay activities of nitrate and EE2, some induced xenobiotic stress and were en-

docrine active. Using omics data and measured chemical concentrations, we applied three

different computational strategies to link chemical exposure to acute xenobiotic effects in

fish. The objective was to identify whether the applied approaches were suitable to identify

chemical-specific exposure effects from mixtures of lowly concentrated chemical compounds.

Moreover, we were interested in determining biologically meaningful and reliable attributions

of exposure-related effects to chemical drivers.

As a stand-alone approach, AR was not able to identify biologically meaningful outcomes and

did not allow disentangling chemical exposure in respect to the given data and the applied

settings. Still, AR might be useful for environmental toxicology to link chemical exposure to

biological effects but to answer other research questions and consider not only one-exposure-

to-one-gene association rules. Furthermore, it could be beneficial to consider data with more

samples and more chemical compounds to facilitate the mining process.

DEA has been applied already successfully to distinct biological effects of drivers in mixtures.

This study confirmed the importance of DEA to determine exposure-related biological effects

but also highlighted its limitations when considering not independent and lowly concentrated

chemical exposures.

In single compound exposure scenarios, the dependencies of exposure patterns and the sub-

tle transcriptional responses limited the DEA outcome and affected the biological and tox-

icological interpretability negatively. In a compound group exposure scenario, the present

study overcame the limitations of mild concentrations and not independent contaminants

with exposure-correlated mixtures. Compound groups modelled reality better than single

compound assumptions, especially when aiming at disentangling the biological response re-

garding chemical exposure.

The functional enrichment approach and the consideration of external toxicological knowl-

edge from CTD and STITCH helped make sense of determined chemical-gene interactions

on a higher biological level and inferred a biological meaning to exposure-associated tran-
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scriptional effects. Transcriptional effects were, in part, significantly associated with known

chemical-pathway associations in CTD when applying DEA.

The network inference approach WGCNA also resulted in biologically meaningful outcomes

and supported the in-vitro bioassay results with effects of xenobiotic stress and endocrine

disruption. Moreover, a method integrative functional enrichment, with DEA and WGCNA

outcomes, associated in-vitro activities with subsets of the potential driving compounds.

Consequently, the functional enrichment and method integration helped determine and dis-

entangle the xenobiotic effects of exposure groups. The applied strategies allowed a more

systematic risk assessment when concerning exposure scenarios and method integration.

This study investigated complex environmental data considering chemical exposure in fresh-

water and measured transcriptional effects. Although chemical analytics resulted in a some-

what small amount of detected compounds, the data became complex through the exposure

co-dependencies. Furthermore, the transcriptomic effect data are high-content data compris-

ing measurements of thousands of transcripts and, thus, complex. Thus, we investigated acute

and mildly toxic exposures of the freshwater environment and somewhat unspecific xenobiotic

responses. Nevertheless, this investigation allowed associating measured chemicals to in-vitro

bioassay effects and determine a fitting response, including hints towards an endocrine disrup-

tion in fathead minnow liver tissue. Additionally, the presented limitations and the workflows

to evaluate biological meaning and reliability are advantageous methodological knowledge for

future studies, which may aim to disentangle chemical exposure effects with omics data.
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Chapter 4

Deep learning prediction of

chemical-biomolecule interactions

This chapter presents a novel approach combining text-mining and deep learning to generate

novel hypotheses of stressor induced effects on the molecular level from the toxicological knowl-

edge hidden in the literature and databases. We employed text-based data from SemMedDB

and curated toxicogenomic knowledge from the comparative toxicogenomic database (CTD).

The aim was to classify the relationship type as either stimulating or inhibiting, considering

a particular chemical linked to a specific biomolecule for each relation. We implemented the

task with a word embedding neural network and a subsequent feed-forward network. Fur-

thermore, the Unified medical language system was employed to augment input data using

ontology hierarchies.

We developed a deep learning approach that derived hidden knowledge in text-based resources

from toxicological literature. The model trained with SemMedDB data reached an accuracy

of up to 70% for independent test data. Furthermore, data augmentation and implementation

with recurrent neural networks were beneficial for training with CTD data and resulted in an

accuracy of 94%. Finally, we used data integrative application cases to evaluate the prediction

models based on biomedical literature and curated toxicogenomic knowledge. However, the

SemMedDB model was not able to reliably confirm the chemical-gene interactions in CTD

data and vice versa.

Still, the predictive tool allowed identifying hidden knowledge from PubMed literature re-

sources and transcriptomics-based exposure studies concerning the input data, respectively.

The study was entirely data-driven and involved state-of-the-art computational methods of

artificial intelligence.
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4.1 Motivation

Thousands of chemical compounds and their degradation products are released into the en-

vironment on different traces due to their use in agriculture, industry, and households. Such

anthropogenic exposures may lead to adverse effects on organisms in the environment. There-

fore, a chemical perturbation on the biochemical/molecular level may provoke an adverse

outcome (AO) on the organism or the population level. It is necessary to determine the

exposure-related molecular interactions to understand the reasons for an AO and investi-

gate it in a systems biology context. The previous study stressed such an investigation

concerning detected complex mixtures and omics-based exposure studies. Next to empirical

measurements, the entire current toxicological knowledge may help link chemical exposure to

biological effects comprehensively.

The adverse outcome pathway (AOP) describes the toxicological knowledge in a sequential

and modularised manner as a chain of key events (KE), leading from a molecular initiating

event (MIE) up to an AO across the different levels of biological organisation (LOBO) [Ankley

et al. 2010]. Still, further relevant toxicological knowledge would help describe and quanti-

tatively prove KEs or even an AOP potentially. For example, AOP networks have led to

new recombinations of existent KEs by merging or concatenating recent AOPs [Knapen et al.

2018, Villeneuve et al. 2018, Pollesch et al. 2019] and, thus, not yet investigated hypothe-

ses have been computationally retrieved. The toxicological knowledge out of scope of recent

AOP knowledge curation contains further potential unconsidered information and has been

extended through data integration approaches [e.g. Nymark et al. 2018, Martens et al. 2021,

Aguayo-Orozco et al. 2019, Jornod et al. 2020]. For example, Aguayo-Orozco et al. [2019] has

linked activity measures of the ToxCast program [Dix et al. 2007] with the AOPwiki and sum-

marised their efforts on the sAOP-webpage — a network representation of the AOP-knowledge

with stressor-interactions for 6000+ chemical compounds and 200+ AOPs. Further external

data resources have successfully retrieved new toxicological knowledge [Bell et al. 2016, Ny-

mark et al. 2018, Wang et al. 2019, Watford et al. 2018]. For example, the Comparative

toxicogenomic database (CTD) [Mattingly et al. 2003, Davis et al. 2021] has been frequently

used [e.g. Oki and Edwards 2016, Rugard et al. 2020, Perkins et al. 2017] in environmental

toxicology (ET). Furthermore, a plethora of literature is publicly available, and literature

mining approaches have also emerged in ET [e.g. Carvaillo et al. 2019, Zgheib et al. 2021,

Jornod et al. 2020; 2021]. Still, literature-based computational approaches have rarely been

employed to comprehensively link chemical compounds to biomolecular effects, considering
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entire knowledge bases. Thus, although chemical interactions have been well-investigated in

toxicology, novel knowledge integration strategies are crucial to gain further information from

current knowledge to a greater extent.

The National Library of Medicine and the National Institute of Health have provided essential

tools for human health-centred toxicological research, which resulted in a broad biomedical

data infrastructure, e.g. with MEDLINE [Ahlers et al. 2007], SemMedDB [Kilicoglu et al.

2012] and the Unified Medical Language System (UMLS) [Humphreys et al. 1998, Bodenrei-

der 2004]. The UMLS comprises three main biomedical knowledge entities, which combine

vocabularies and standards to enable interoperability between computer systems. Different

data integration approaches or tools have employed the UMLS already [e.g. Kilicoglu et al.

2012, Martens et al. 2021]. Also, a comparative study has shown the ontological strengths

of the UMLS by applying embedding approaches [Mao and Fung 2020]. However, the UMLS

is a biomedical ontology and thus biased towards the human health domain. Researchers

have already expanded the UMLS ontology to further domains such as pharmacogenomics or

medical informatics [e.g. Ahlers et al. 2007, Rosemblat et al. 2013b], but not ET.

SemRep is a semantic analysis tool based on the UMLS resources [Rindflesch and Fiszman

2003, Rindflesch et al. 2005]. It has frequently been used to extract semantic relations in a

biomedical context. Kilicoglu et al. [2012] have generated a large-scale knowledge resource

called SemMedDB based on SemRep. The SemMedDB contains semantic predications re-

trieved from the titles and abstracts in PubMed. The predications have been ontologically

unified with the UMLS terminology. SemMedDB has been an essential resource for literature-

based discovery in a biomedical context [Kilicoglu et al. 2020, Kastrin et al. 2018, Cameron

et al. 2013, Gao et al. 2021]. Still, SemMedDB may also be an important data source for

the related scientific domain of environmental toxicology. Recent studies have applied the

SemMedDB data, e.g. to develop a graph of interacting semantic predications [Hristovski

et al. 2015, Cong et al. 2019] or identify causal drug-side-effect-relations [Mower et al. 2017].

In this context, (semi-)supervised machine learning approaches have been used to predict

drug-disease relations [Rastegar-Mojarad et al. 2016, Bakal et al. 2018] or drug-side effect

relationships [Mower et al. 2018]. For example, Bakal et al. [Bakal et al. 2018] have pre-

dicted causative relations between drugs and diseases. They have reached F1-scores of at

least 90% for their test data. The pharmacovigilance prediction of Mower et al. [2018] has

also used word embedding and composite feature vectors and has resulted in F1-scores of

90% and 84% for applied evaluations. Thus, the relational knowledge from SemMedDB has

been suitable for predictive machine learning tasks, also with considerations of knowledge

representation via word embedding. Deep learning technologies have been frequently used
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in current literature- and knowledge-based discovery, in particular for biomedical tasks, with

recurrent neural networks — e.g. the long-short-term-memory (LSTM) [e.g. Lee et al. 2019,

Lai et al. 2021] — convolutional neural networks [e.g. Peng et al. 2018], or attention-based

transformers — e.g. Bidirectional Encoder Representations from Transformers (BERT) [e.g.

Peng et al. 2019, Michalopoulos et al. 2021]. However, literature-based knowledge has rarely

been employed in ET research to link chemical effects to molecular effects [e.g. Zgheib et al.

2021, Jornod et al. 2020].

To increase the robustness of trained models, data integration has been applied for the pre-

processing of input data [e.g. Lai et al. 2021, Choi and Lee 2019] or the retro-fitting of the

prediction model [e.g. Zhang et al. 2019b]. Data integration can be considered data aug-

mentation when input size increases by adding slightly modified samples or synthetic data.

As a recent example, Lai et al. [2021] have used SemMedDB data augmented with synthetic

negative samples to train a subsequent model with word embedding and LSTM. As a result,

the models accurately predicted key event like hypotheses. However, negative sampling has

a limitation for knowledge-based input data, as not yet investigated relations are considered

false but might be proven true in the future. Still, such studies have highlighted the appli-

cability of SemMedDB in deep learning prediction tasks also concerning toxicology-relevant

research fields as AOP development.

This study applied a knowledge-based discovery approach for toxicological purposes. The

study concentrated on chemical-biomolecule interactions — as an essential link of chemical

exposure with molecular effects — and might direct towards MIE prediction in the future.

We were interested in whether deep learning models with semantic representation could learn

from knowledge-based input and whether the prediction of relations helped retrieve toxico-

logically meaningful outcomes.

The aim of the investigation was (1) the development of deep learning models that utilise

public available text-parsed biomedical or curated toxicological knowledge to predict rela-

tionship types of chemical-biomolecule pairs, and (2) the evaluation of these models based on

their ability to predict current knowledge from PubMed and a toxicogenomic source.

Architectures of word embedding models with and without LSTM neural networks were

trained, tested and evaluated with chemical-biomolecule relations from SemMedDB and CTD.

Furthermore, we examined the effect of data augmentation — exploiting the UMLS termi-

nology — for literature-based input on the selected deep learning models.
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4.1.1 Workflow

The presented workflow in figure 4.1 presents the general workflow ∗ of this study for the ex-

ample of SemMedDB input data. The literature-based knowledge from SemMedDB [semmed-

VER43 R, through June-23-2020 Kilicoglu et al. 2012] was downloaded (see section 2.2.1) and

prepared as UMLS-annotated chemical-biomolecule relations with two gene regulatory rela-

tionship types (see section 2.2.2). The considered UMLS terminology is a standard ontology in

biomedicine. It helped assign toxicological terms to levels of biological organisation and filter

chemical-biomolecule interactions from SemMedDB. The relation data were split in train-

ing and validation set and augmented vertically and horizontally (see section 2.2.2). Deep

learning models were trained to predict the relationship of a chemical-biomolecule pair based

on current toxicological knowledge. The models included layers of word embedding, long-

short-term memory, time-distributed layers and dense layers. Two model architectures were

determined and adapted via hyperparameter tuning (see section 2.2.3). The architectures

were tested in a 5-fold cross-validation approach with the three types of input, respectively.

The CTD was variously applied for data augmentation, linking chemical-gene interactions to

higher biological levels and evaluating prediction results (see section 2.2.4).

Additionally, we (1) investigated chemical-biomolecule interactions from SemMedDB with

four instead of two relationship types and (2) with UMLS-annotated chemical-gene interac-

tions given in CTD. In both cases, unseen test data were considered for model evaluation.

Moreover, the CTD trained models were evaluated with SemMedDB chemical-biomolecule

relations.

The work was primarily performed in python [version:3.6 Van Rossum and Drake 2009] using

the deep learning packages Keras [version:2.4.3 Chollet et al. 2015], TensorFlow [version:2.5.0

Abadi et al. 2016], scikit-learn [version:0.0 Pedregosa et al. 2011], and KerasTuner [ver-

sion:1.0 .3 O’Malley et al. 2019]. In addition, some figures were prepared in the R statistical

programming language [version 3.6 R Core Team 2020].

∗ Data and code are available here: https://nc.ufz.de/s/emqxbigeWYPSnKp (’Data Chapter4 (KEpredict)’

and ’Code Chapter4 (KEpredict)’ ) with the following password PhD SKraemer
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Figure 4.1. Workflow of the deep learning approach to predict chemical-

biomolecule relationship types. After the download of literature-based knowledge from

SemMedDB [semmedVER43 R, through June-23-2020 Kilicoglu et al. 2012], data were

reduced to chemical-biomolecule relations. The relation data were split in training and

validations set and additionally augmented in vertical and horizontal direction. By com-

paring the word embedding size or the numbers of LSTM-neurons, two architectures of

machine learning models were determined and adapted via hyperparameter tuning. The

architectures were tested in a 5-fold cross-validation approach with the three types of input

respectively. The model performance was evaluated with unseen data from SemMedDB

and the comparative toxicogenomic database (CTD).

106



4.2. Results

4.2 Results

4.2.1 Input preparation

Chemical-biomolecule relations. In total, the predication data set from SemMedDB

consisted of 112 796 186 triplets of biomedical knowledge (see figure 4.2). The unique set

of 20 918 831 triplets was considered, and subjects and objects were listed with the UMLS

concept unique identifiers (CUI). After removing negated relations, where the predicate had

the suffix ’NEG ’, 19 486 620 triplets remained. By filtering CUIs for levels of biological or-

ganisation (LOBO), 1 659 209 chemical-biomolecule relations were determined. This subset

comprised 46 831 chemical concepts and 40 683 biomolecule concepts, where 9734 concepts

had both annotations as a chemical and a biomolecule concept. The predicate of the triplet

was chosen as the classification target. Therefore, to consider a balanced data set and keep the

variability small, the predicates were filtered to STIMULATES (n = 215 934) and INHIBITS

(n = 250 468). With these predicates, the chosen chemical-biomolecule relations could be

semantically interpreted as (bio-)molecular interactions. Some subject-object-pairs were rep-

resented in the data set with both relationship types and were removed. The finally filtered

and UMLS-annotated input data set consisted 373 904 chemical-biomolecule predications and

is designated as I in this thesis (see figure 4.2).
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Figure 4.2. Preprocessing of chemical-biomolecule interactions from SemMedDB

SemMedDB contains pre-parsed and UMLS-annotated predications retrieved from PubMed

abstracts and titles with the UMLS-tool SemRep . The downloaded predication data set was

stepwise preprocessed to non-contradicting, non-negated and unique chemical-biomolecule

relations with STIMULATES and INHIBITS as relationship type. The data set was split

in a training (with five equally sized folds) and a test set.

In summary, the prepared selection of predications comprised unique, non-negated, and non-

contradicting chemical-biomolecule-predications with relations of stimulating or inhibiting

interactions between chemical compounds and biomolecules. A test set IE with 10 000 re-

lations for each relationship type was randomly selected from I. It was ensured that each
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chemical and each gene concept was represented at least once in the remaining data set – the

training data IT – which was split into five equally sized subsets (IT i, i ∈ [1, 5]) with the same

ratios of relationship types (see figure 4.2). If a 5-fold cross-validation approach was applied,

then for the i-th training fold, IT i was used as validation and
⋃5
j=1 ITj , j ∈ [1, 5]&j 6= i as

training set. Else, IT1 was considered as validation set and
⋃5
i=2 ITi for training.

Data augmentation. One vertically augmented (IV ) and one horizontally augmented (IH)

version of I was generated (see section 2.2.2). Whereas IV remained identical in the rela-

tional sequence length (n=2), IH was prolonged (n=6). Due to the multiple hierarchically

structured sources of UMLS Metathesaurus, both augmented inputs were expanded in their

number of relations.

For a vertical augmentation of one chemical-biomolecule relation in I, either chemical or

biomolecule was replaced by a direct parental concept given in the Metathesaurus. Due to

the various sources in the Metathesaurus, each subject or object semantic concept might have

multiple parental terms. Thus, one chemical-biomolecule-relation in I might result in multi-

ple relations with parental terms. After vertical augmentation, contradicting relations might

occur as I might already contain some parental concepts. These contradicting relations were

removed. I was expanded by 774 014 chemical-biomolecule relations with parental terms. IV

consisted of 991 688 relations, and 42 759 were considered as test subset IVV . Consequently,

IV is nearly three times the size of I.

All the applied deep learning models contained a word embedding layer. Thus, the rela-

tions in I were read as a sequence of two related terms. However, a length of two might be

not enough to learn semantic relationships and recent approaches using a word embedding

consider text sequences, like sentences, directly or in at least longer padded sequences. The

horizontal augmentation elongated the input sequences of I to lengths of six by adding

(grand-)parental terms to chemical and biomolecule term (see figure 2.2). As already men-

tioned in the paragraph before, semantic terms might have multiple parental terms. The

elongated data of IH contained 3 605 625 not contradicting and unique sequences. As all

parental terms were considered, the horizontal augmentation also led to an indirect vertical

augmentation (see figure 2.2). IH had nearly ten times more relations than I. The reasons

for a more extensive vertical augmentation were the consideration of all recombinations of a

two-sided elongation with parental terms with potential multiple parental terminologies and

considered two levels of parental terms. Furthermore, some semantic concepts did not have a

parental term in the UMLS semantic network, and respective parental terms were set to NA.

Such sequences were also considered with lengths of six in IH and were available input for

the models, where the sequences were tail-padded with values equal to zero.
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Coverage of input in recent toxicogenomic knowledge. The comparative toxicoge-

nomic database (CTD) has been frequently used to extract chemical-gene or chemical-disease

relations. This resource comprised exposure-related knowledge across different LOBOs and

was applied to determine the coverage of SemMedDB known chemical-gene interactions in

toxicogenomic knowledge (see figure 4.3).
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Figure 4.3. Coverage of SemMedDB in the comparative toxicogenomic database

(CTD) was determined on gene, pathway and disease level. The overlap of I to

CTD’s chemical-gene interactions (TC2G) was determined. Furthermore, I was expanded

with CTD gene-pathway- (TG2P ) and gene-disease associations (TG2D) and compared to

CTDs chemical-pathway- (TC2P ) and chemical-disease associations (TC2D), respectively

(see methods 2.2.4).

Initially, chemical-gene interactions were downloaded and preprocessed for their use as predic-

tion input (see table 2.2). In CTD, 134 relationship types had been considered for chemical-

gene interactions. These were reduced to the UMLS relationship types STIMULATES and

INHIBITS. Furthermore, the chemical names and genes in CTD were annotated to the UMLS

terminology of CUIs. In total, the filtered set TC2G contained 8 365 638 relations. The prepro-

cessed input data considered genes and all biomolecules listed in the literature and included in

the UMLS (n = 19189). On the other hand, CTD contained 37 253 unique UMLS-annotated

genes and thus more objects than I. The overlap between I and TC2G was determined as a

reference of the coverage of recent toxicogenomic knowledge within input data I. Only those

relations were considered, where the Subject-CUI and the Object-CUI were represented in

I and TC2G. Thus, 57 488 and 48 192 relations in I and 314 462 and 402 747 interactions in
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TC2G were considerable for the respective relationship types INHIBITS and STIMULATES

comprising 6305 chemical subjects and 6016 biomolecular objects.

A matrix of all subjects times all objects represented the space of all possible combinations of

chemical-gene-interactions in a data set and the given ratio of occurring relations the level of

sparsity. Considering the space of subjects and objects, which were present in both data sets,

we determined a sparsity level of 1.89% for TC2G and 0.28% for I ∗. The level of sparsity in

the matrix is considered here as a measure of information density, as it represents the amount

of information in a given space. Thus, the information density of TC2G is approximately ten

times greater than for I.

Next to the comparison to TC2G, the overlap to I on the pathway and disease level were de-

termined to the toxicogenomic knowledge represented in TC2P and TC2D, containing 2 750 080

and 7 872 780 interactions, respectively (see figure 4.3). Therefore, I was expanded with the

CTD gene associations either to pathways (IP ) or diseases (ID). On these biological levels,

the relationship types were not considered in CTD. In total, IP comprised 3 771 710 unique

chemical-pathway interactions and ID 46 200 665 unique chemical-disease interactions.

On the molecular level, 8.5% and 6.35% input relations overlapped for the relationship types

STIMULATES and INHIBITS, respectively (see figure 4.4 A). Thus, the coverage of toxi-

cogenomic knowledge in I was relatively small.

Furthermore, 12.8% of IP and 4.0% of ID were covered in CTD (see figure 4.4 B and C).

In summary, the prepared input I covered the known toxicogenomic chemical-biomolecule

interactions in CTD only by a small amount. Nevertheless, the increased coverage on the

pathway level and the large set of millions of overlapping chemical-disease associations high-

lighted the importance of considering lower biological resolution levels. Consequently, we had

to be cautious when considering biomedical information for a toxicological prediction task,

but could expect to some extent that the toxicological information was also represented when

learning a model.

4.2.2 Model selection

The predication triplets in I contained the model input — the subject-object-pair —, and the

labelled target — the relationship type (INHIBITS or STIMULATES ). Model architectures

with an initial word embedding layer were trained with the input I to predict a relationship

∗ We also considered the sparsity level for the respectively full set of subjects and objects. In case of I,

373 904 relations with 25 761 subject concepts and 19 189 object concepts resulted in a sparsity of 0.076%. In

case of TC2G, 8 365 638 relations with 25 495 subject concepts and 37 253 object concepts resulted in a sparsity

of 0.881%.

110



4.2. Results

4 118

43 914

INHIBITS

STIMULATES

3 649

53 839

398 629

310 813

A Gene level

TC2G
I 0.5M

3.3M

B Pathway level

2.3M

1.9M

44.3M

C Disease level

6.0M

8.5%

6.4%

12.8%

4.0%
I

ID

IP

TC2G

TC2D

TC2P

Figure 4.4. Determined coverage of SemMedDB in CTD on molecular, pathway

and disease level. A) UMLS-annotated chemical-biomolecule relations in I vs chemical-

gene interactions from CTD (TC2G). Each chemical and biomolecular concept in I is

represented at least once in the UMLS annotated TC2G. B) UMLS-annotated chemical-

pathway relations from IP vs chemical-pathway interactions in CTD (TC2P ). C) UMLS-

annotated chemical-disease relations from IP vs chemical-disease interactions in CTD

(TC2D).

type for chemical-biomolecule pairs. Based on a selection of model architectures and hyper-

parameter tunings, the best performing was determined based on the minimal loss measured

with binary cross-entropy and binary accuracy.

Word embedding model with dense layers. Initially, a deep learning architecture with

an initial word embedding layer and a subsequent feed-forward network was implemented to

determine the toxicogenomic relationships between chemical-biomolecule pairs. In a trained

word embedding layer, each word was represented by a vector of the same length, and words

with similar semantic meaning had a small Euclidean distance to each other. However, based

on the complexity of the input semantics and richness in information, the word embedding

size N should be chosen carefully. Five models with different word embedding sizes N were

trained, evaluated and tested to assess the influence of N with the same data, IT , IE and IV .

The UMLS-annotated chemical-biomolecule pairs in I were transformed to sequences of in-

teger pairs ∗. The sequential model architecture consisted of an initial word embedding

∗ Each word of the vocabulary corresponded to another unique integer. Thus, in a one-hot-encoded vector

matrix of the vocabulary, each integer i represented the row, where the i-th value was 1. The input represen-

tation in form of integers instead of one-hot-encoded vectors saved memory during training and application of

a model.
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layer and following dense layers with decreasing number of neurons. The sequences were

first projected to a sequence of vectors of length N with the word embedding. The vectors

reflected the semantic relationship of words within the trained vocabulary given the context

of chemical-biomolecule relationships in the training data. A layer to flatten the sequence

of vectors of length N to one vector of length 2 ×N was applied to adapt the hidden input

for the following subsequent feed-forward network. In fully-connected neural networks, the

vector lengths were stepwise reduced by a factor of 2 to 2.5 down to a size of 25. Each

fully-connected neural network had a final ReLU-activation except the last using the sigmoid

activation function to predict the probability p for the relationship type INHIBITS. If p ≥ 0.5,

the subject-object-pair was predicted as inhibited else as stimulated.

Five models with different word embedding sizes of N = [100, 500, 1000, 2500, 5000]

were trained. The models were compared based on their loss and accuracy performance

validation curves and the ratio of correct predictions within the test set (see figure 4.5). The

maximal number of training epochs was set to 1000 for a batch size of 1000. The left plot

in figure 4.5 A shows the validation loss curve (binary cross-entropy) in a range from 0 to

3. In all five models, the loss decreased steadily. Thus, the model learned to predict targets

more correctly. The loss converged around 0.6 for all models. The validation accuracy during

training (right plot in figure 4.5 A) increased in all five models to 0.70.

The confusion matrices in figure 4.5 B presents the prediction outcomes for unseen data IE .

Out of 20 000 relations, the five models predicted 13 768 to 13 937 relationships correctly,

and thus, reached accuracies of approximately 0.70 (see table 4.1). The models predicted

relationships with INHIBITS more accurate, potentially induced by the slight off-balance of

relationship types in IT . Consequently, the precision in predicting INHIBITS was higher in

all models, whereas recall was higher for STIMULATES (see table 4.1).

No trained model seemed clearly better than another based on all performance measures and

learning curves over epochs. Thus, the most straightforward model architecture with the least

number of parameters was chosen, which was, in this case, the model with the smallest word

embedding vector size. Consequently, the output vector sizes of the word embedding layer

were set to 100 in the following.

An additional training was performed for n = 5000 a learning rate of α = 1e − 6 to test

whether large word embedding sizes might benefit from training with a lower learning rate

and, thus, a longer training duration. All five models stopped training after 40 to 108 epochs

early, as the decrease in loss was less than 0.01 in a period of 20 epochs. The number of

training steps increased, the smaller the vector size was. The choice of the learning rate did

influence the training duration in terms of epochs as expected (see supplemental section S3.3).
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Figure 4.5. Comparison of the model performances with different word embed-

ding vector sizes. Deep learning models were trained with UMLS-annotated chemical-

biomolecule-pairs retrieved from SemMedDB to predict their toxicogenomic relationship.

The models have an initial word embedding layer followed by multiple dense layers, which

decrease in size. The word embedding vector sizes were set to 100 (purple), 500 (blue),

1000 (orange), 2500 (red), and 500 (brown). A: The keras model performance across

epochs was determined with validation set IT1 (n≈71T) and binary accuracy(dashed line)

and binary cross-entropy (solid line) were tracked during training. The models trained for

different numbers of epochs as early stopping occurred, when loss decreased less than 0.01

in a period of twenty epochs. The loss converged around 0.6 for all models. All accura-

cies reached similar values of 0.70. B: Confusion matrices for prediction results to the

test set IE (n=20T) for all five trained models. The true positive rate valued in all cases

approximately 0.7 and supports the trainings performances in A.
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4. Deep learning prediction of chemical-biomolecule interactions

Table 4.1. Evaluation of deep learning models with different sizes of word em-

bedding vectors. Keras models with word embedding and subsequent feed forward layers

were trained with chemical-biomolecule relations. Five word embedding model sizes were

tested. Based on the relations in IE (n=20 000) – equally balanced with INHIBITS and

STIMULATES relationships – the performance measures of binary accuracy (Acc), pre-

cision (Prec), recall (Rec) and the F1-score (F1) were calculated. Model with n = 100

performed the best. The minimal loss in hyperparameter tuning (see chosen settings ta-

ble S3-1) resulted in a slightly better performance considering test data IE.

Model Target Acc Prec Rec F1

n=100 INHIBITS 0.70 0.76 0.64 0.71

STIMULATES 0.64 0.72 0.68

n=500 INHIBITS 0.70 0.74 0.68 0.71

STIMULATES 0.65 0.72 0.68

n=1000 INHIBITS 0.70 0.73 0.69 0.71

STIMULATES 0.67 0.71 0.69

n = 2500 INHIBITS 0.69 0.72 0.68 0.70

STIMULATES 0.66 0.70 0.68

n=5000 INHIBITS 0.69 0.74 0.68 0.71

STIMULATES 0.65 0.71 0.68

Best model INHIBITS 0.70 0.76 0.68 0.71

STIMULATES 0.64 0.72 0.68
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However, the model performance was neither improved during training, nor in evaluation with

test data. The accuracy (0.685) for the unseen test data was smaller than for the models with

higher learning rates (see table 4.1).

To further optimize the parameter setting, a hyperparameter tuning was performed by ap-

plying the kerastuner-function RandomSearch(). The overall model architecture remained

identical for the case of word embedding vector size equal to 100. Five hundred sixty parame-

ter recombinations varied in the activation functions, the number of dense layers, the severity

of dropout and the degree of L2-regularization in the word embedding layer(see supplemental

table S3-1).

All parameters might have a crucial influence on the model, but the number of recombinations

was relatively high. Thus, only one hundred randomly selected parameter recombinations

were examined. The recombination with minimal loss (see last column table S3-1) reached a

binary cross-entropy of 0.5820 and a test accuracy of 0.70, which was a marginal improvement

to the initial training. The performance measures were also improved considering test data

IE (see the last row of table 4.1 and supplemental figure S3-1).

Word embedding model with LSTM and dense layers. In text-based discovery ap-

proaches based on deep learning, recurrent neural networks have been applied frequently. As

a potential improvement in model architecture, LSTM was added to the determined word em-

bedding model. A recurrent neural network might improve the performance in the prediction

task, and an additional LSTM layer was chosen.

The model architecture was very similar to the previous one, and the word embedding

vector length was set to 100. A time distributed dense layer was added between word embed-

ding and flattening an LSTM layer. The hidden output from the word embedding layer was

given as input to another neuron of the LSTM layer. Thus, the hidden neuronal output of a

word vector influenced the hidden output of the next word vector in the sequence in LSTM.

The output of the LSTM layer was a sequence with equal length to its input and was the

input for the following time-distributed dense layer. This layer transformed each sequence

entity with the same fully-connected neural network, and the number of vector units was not

reduced. The following flatten layer transformed the sequence of vectors with N units to a

one-dimensional vector with len(sequence)×N units. The number of following dense layers

varied in considered models with LSTM and depended on the length of the flattened vector.

However, the settings for dense layers and the subsequent activation remained identical to

the architecture described above.

Five models with varying numbers of LSTM-neurons (N = [2, 10, 25, 50, 100]) were
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4. Deep learning prediction of chemical-biomolecule interactions

trained with I. The number of output neurons in the following time-distributed layer was

also set to N . Dependent on the size, the respective models contained 2, 2, 3, 4 and 5 dense

layers after flattening.

Independent of the number of LSTM units N , the trained models resulted in similar per-

formance outcomes (see figure 4.6). The models trained for 86 to 152 epochs, whereby the

number increased, the smaller N was chosen. All five models resulted in a final validation

loss between 0.578 and 0.606 (see figure 4.6 A).
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Figure 4.6. Comparison of the training performances for different number of

neurons in LSTM layer. Deep learning models were trained with UMLS-annotated

chemical-biomolecule-pairs retrieved from SemMedDB to predict their toxicogenomic rela-

tionship. The sequential model consisted of an initial word embedding layer (len(vector) =

100), a long-short-term-memory (LSTM), a time-distributed dense neural network, a flat-

ten layer and multiple dense layers, which decrease in size. The model was trained for a

binary classification task. In the five models, the number of neurons for LSTM and the

time-distributed dense layer varied (2 (purple), 10 (blue),25(turquoise),50 (lightgreen),

and 100 (mossgreen) neurons). Early stopping occurred in training, when loss decreased

less than 0.01 in a period of twenty epochs. A: The keras model performance across

epochs was determined with validation set IT1 (n≈71T). The binary accuracy (right) and

binary cross-entropy (left) were tracked during training. The loss converged around 0.6

for all models. All accuracies reached similar values of 0.70. B: Confusion matrices for

prediction results to the test set IE (n=20T) for all five trained models. The true-positive

rate supports the trainings performances in A.

The model evaluation with IE (see figure 4.6 B and 4.2) also showed similar ranges of correctly
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predicted relations across both relationship types. The predictions with INHIBITS were more

accurate than with STIMULATES. The loss was slightly minimized compared to the best

word embedding model (see figure S3-1), and the accuracy was nearly equal, ranging from

0.69 to 0.70. Thus, all five trained models resulted in similar performances as the best word

embedding model.

To consider a more or less similar architecture with and without LSTM, we decided to choose

N = 100. Consequently, the number of dense layers and the length of vectors after flattening

became identical in both architectures.

Table 4.2. Evaluation of deep learning models with varying numbers of LSTM neu-

rons. A keras deep learning prediction model for chemical-biomolecule relationships was

developed based on word embedding and long-short-term memory (LSTM) and subsequent

feed forward layers. Various numbers of neurons in the LSTM layer and the following

time-distributed dense layer were tested. Based on the relations in IE (n=20 000), which

were equally balanced with INHIBITS and STIMULATES relationships, the performance

measures of binary accuracy (Acc), precision (Prec), recall (Rec) and the F1-score (F1)

were calculated. The model with n = 100 performed the best. The minimal loss in hyper-

parameter tuning (see chosen settings table S3-2) resulted in slightly lower performances

than initial setting considering test data IE.

Model Target Acc Prec Rec F1

n=2 INHIBITS 0.68 0.77 0.65 0.71

STIMULATES 0.59 0.72 0.65

n=10 INHIBITS 0.70 0.74 0.68 0.71

STIMULATES 0.66 0.71 0.68

n=25 INHIBITS 0.69 0.74 0.68 0.71

STIMULATES 0.65 0.71 0.68

n =50 INHIBITS 0.69 0.74 0.68 0.71

STIMULATES 0.65 0.71 0.68

n=100 INHIBITS 0.70 0.75 0.68 0.71

STIMULATES 0.64 0.72 0.68

Best model INHIBITS 0.69 0.74 0.68 0.71

STIMULATES 0.64 0.71 0.68

Again, a hyperparameter tuning was performed. Already tuned parameters of the word

embedding layer and the dense layers were not changed, except the dropout. The dropout
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4. Deep learning prediction of chemical-biomolecule interactions

parameters in LSTM and after the flattening were included in tuning but with identical

values. Further parameters relevant to the LSTM layer were tested in a hyperparameter

tuning approach (see supplemental table S3-2).

Like the word embedding layer, the activity regulariser was set to L2 = 0.001, whereas the

kernel L2-regulariser was tuned with three different factors. The bidirectional LSTM-layer

examined a sequence from both directions and thrown out its concatenated vector with 2×N
units. Unrolling might increase the memory usage. However, it allowed considering an LSTM

architecture without feedback-loops but learning from the sequence with memory. Very short

sequences were considered, and thus, unrolling was applicable without exploding the memory

usage. The last column in table S3-2 showed the recombination of parameters with the lowest

loss in hyperparameter tuning.

A run for the selected model architecture was trained for 78 epochs and reached a final

validation loss of 0.598 (see figure S3-2 A). The confusion matrix shows that 13 846 relations

in IE were correctly predicted (see supplemental figure S3-2 B), which values an accuracy of

0.69. Thus, the performance of the selected LSTM model seems not superior in performance

in comparison to the selected word embedding model, when IT1 was considered as the test

set and
⋃5
i=2 IT i as the training set.

4.2.3 Model comparison

This study trained deep-learning models with an initial word embedding layer with chemical-

biomolecule pairs to predict the relationship type. The two selected model architectures —

one without (A) and one with LSTM layer (B) — were compared in a 5-fold cross-validation

approach to evaluate whether input and its split influenced model performance. The models

were trained with the chosen architectures in a 5-fold cross-validation approach with the

inputs I,IV and IH , respectively (see annotation models table 4.3). The six trained models

were compared in their ability to predict known relations, which were not seen in training.

The model with minimal validation binary cross-entropy across all folds was chosen for each

combination of architecture and input. Per fold, the i-th set of I
(V |T )
T =

⋃5
i=1 I

(V |T )
T i was

considered as a validation set.

The performance curves in figure 4.7 A present the learning loss and accuracy for model

architecture A regarding the validation data. In all three cases, the validation curves were

very similar across folds, and none of them was visually distinctive to the other folds. Thus, in

the case of models A?, AV and AH , the training-validation split did not influence the learning

behaviour.
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Table 4.3. Used symbols for model comparison. Two model architectures were imple-

mented and tuned in section 4.2.2 (A and B). The models were trained afterwards in

a 5-fold cross-validation (see annotation rows 3 and 4) either with original SemMedDB

input, the vertically augmented or the horizontally augmented version (see row Input, T:

Training, V: Validation, E: Testing).

Original

vertical Aug-

mentation

horizontal

Augmentation

Input IT,V,E IVT,V,E IHT,V,E

A: WE+dense A? AV AH

B: WE+LSTM+dense B? BV BH

Comparing the differences in respect to input data, the trained models varied in their duration

of training. Whereas IH was ten times and IV three times greater than I , the epochs was

approximately 2 and 2.5 times less in the respective training. The loss curves for training

with IVT and IHT converged rather quickly and the implemented early stopping forced to quit

training after, on average, 42 and 35 epochs. For training with IT , the mean duration was 91

epochs. For each training, the validation loss curves decreased steadily in the early training

epochs and reached a plateau with minimal values of binary cross-entropy at 0.641 ± 0.003,

0.690 ± 0.003 and 0.701 ± 0.007. The mean maximum binary accuracy across folds valued

0.704 ± 0.002, 0.650 ± 0.003, and 0.666 ± 0.004. Considering both, loss and accuracy, the

model A? performed best concerning the validation results.

Figure 4.7 B presents the loss and accuracy curves for model architecture B regarding their

performance in the validation data across epochs. Similar to model architecture A, the dif-

ferences across folds for respective training with IT , IVT or IHT resulted in marginal differences

for loss and accuracy. The training durations were 95, 43, 32 epochs on average, and all

validation loss curves decreased over time in similar behaviour as with model architecture

A. Thus, all trained word embedding models made use of the implemented early stopping as

training for 300 epochs would be exhausting when a plateau in the loss was already reached

early. The validation loss was slightly decreased when using model architecture B. Again,

especially in training with augmented data, the loss plateau was reached after a few epochs.

Per input set, IT , IVT and IHT , the differences in the minimal validation loss (0.628 ± 0.003,

0.674±0.002, and 0.683±0.004) were marginal across folds. The accuracy was the highest for

training with I (0.701± 0.003). The augmented input resulted in slightly lower accuracy but

was also similar across folds (vertically augmented: 0.646 ± 0.004; horizontally augmented:
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Figure 4.7. Model performance and validation. A) Validation curves (dashed: Binary

accuracy, solid: Binary cross-entropy) of 5-fold cross-validation of the word embedding

model trained either with original input (black), vertically augmented (blue) or horizon-

tally augmented (orange) versions. B) Validation curves (dashed: Binary accuracy, solid:

Binary cross-entropy) of 5-fold cross-validation of the word embedding model with LSTM

trained eiter with original input (black), vertically augmented (blue) or horizontally aug-

mented (orange) versions. C) Confusion matrices of models with lowest loss for all six

recombinations of model architecture and input data. Unseen chemical-biomolecule rela-

tions of input data (IE, IVE or IHE ) were used for evaluation of the model performance. D)

Confusion matrices of models with lowest loss for all six recombinations of model archi-

tecture and input data. Knowledge from the comparative toxicogenomic database (CTD)

was prepared as UMLS-annotated set of chemical-gene relations (TC2G, T VC2G or THC2G)

were used as application to evaluate the model performance in toxicogenomic context.
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0.665± 0.003). Thus, the training without augmented input performed best considering the

validation results for loss and accuracy.

Furthermore, the six selected models were evaluated with predictions for the respective test

set IE , IVE or IHE and the performance measures of binary accuracy, precision, recall, and F1-

score. Per 5-fold cross-validation, the fold with the lowest binary cross-entropy was chosen

for the comparison across model architectures. The relationship type was predicted for the

samples in IE , IVE or IHE (see figure 4.7 C). The true-positive rate ranged from 0.6366 to 0.6968

across all six models. Furthermore, the INHIBITS relationship was predicted more accurate

in all six models, potentially as the ratio of training relations was slightly unbalanced towards

relations with INHIBITS.

The observations of the performance curves already showed that the models trained with I

outperformed those with augmented inputs, which was also the case in the evaluation with

the in training unseen chemical-biomolecule relations (see table 4.4). Based on the validation

and evaluation performances, the best performing model was A?.

Table 4.4. Test performances of best folds of 5-fold cross-validated models. Based

on the relations in the test sets (IE, IVE and IHE ) the performance measures were calculated.

Next to binary accuracy (Acc), the other measures (precision (Prec), recall (Rec) and the

F1-score (F1)) were considered per relationship type. The word embedding model A?

trained with I performed the best (bold text).

Relationship A Acc Prec Rec F1 B Acc Prec Rec F1

INHIBITS A? 0.70 0.75 0.68 0.71 B? 0.69 0.74 0.68 0.71

STIMULATES 0.65 0.72 0.68 0.65 0.71 0.68

INHIBITS AV 0.64 0.71 0.61 0.66 BV 0.64 0.70 0.61 0.65

STIMULATES 0.57 0.67 0.62 0.58 0.67 0.62

INHIBITS AH 0.66 0.73 0.64 0.68 BH 0.66 0.71 0.64 0.67

STIMULATES 0.58 0.68 0.63 0.60 0.68 0.63

4.2.4 Toxicogenomic application

Additionally, the selected models were applied to predict relationships for the known toxi-

cogenomic reference sets from CTD (TC2G, T VG , THG ). The beforehand trained models were

evaluated on how well they predicted toxicologically meaningful results (see table 4.5).

Figure 4.7 D presents the confusion matrices for the toxicogenomic application case. In
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4. Deep learning prediction of chemical-biomolecule interactions

Table 4.5. SemMedDB trained models evaluated with chemical-gene interactions

from CTD. Based on the relationships in the CTD reference sets (TG,E, T VG,E and THG,E),

the performance measures of binary accuracy (Acc), precision (Prec), recall (Rec) and the

F1-score (F1) were calculated. The word embedding model B trained with I performed the

best (bold text), albeit the performance measures valued in similar ranges.

Relationship A Acc Prec Rec F1 B Acc Prec Rec F1

INHIBITS A? 0.52 0.58 0.47 0.52 B? 0 .52 0.59 0.47 0.52

STIMULATES 0.48 0.58 0.52 0.48 0.59 0.52

INHIBITS AV 0.52 0.57 0.47 0.51 BV 0.52 0.58 0.47 0.52

STIMULATES 0.48 0.58 0.53 0.48 0.59 0.53

INHIBITS AH 0.52 0.55 0.48 0.51 BH 0.52 0.55 0.48 0.51

STIMULATES 0.49 0.57 0.53 0.50 0.57 0.53

contrast to the evaluation before, the ratio of correctly predicted knowledge was reduced

clearly in all six cases of models — the accuracies were at 0.52. Thus, the models did

not perform better than a prediction of relationships by random guesses. Consequently,

the selected models could not reliably retrieve biologically meaningful results from an other

toxicogenomic resource. Furthermore, the training with augmented input did not improve the

accuracy. As neither sequence elongation nor increased in the number of samples improved

the performance or coverage of biologically meaningful results, training with input data I

might be more relevant for further investigations.

Comparing the performances for predicting toxicogenomic knowledge, B? was marginally

better in predicting toxicogenomic knowledge than A? (see figure 4.5). On the contrary, the

evaluation with IE resulted in a better performance for A? (see table 4.4). Regarding the

somewhat similar evaluation results, we chose the more straightforward model architecture A

for a chemical wise toxicogenomic application across different LOBOs.

Functional enrichment of predictions with genesets from CTD. The coverage of

current knowledge could be investigated on the gene, pathway and disease level (see figure S3-

4). Thus, exposure effects were considered on three different levels of biological organisation

(molecules, cells and individuals). When considering a prediction model that reliably retrieves

biologically meaningful toxicogenomic chemical-biomolecule relationships, the functional en-

richment approach would benefit hypothesis generation in the AOP development. However,

this was not the case with an accuracy of 0.52 for applied CTD data, even for the best per-
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forming model. The enrichment workflow and results are shown in supplemental section S3.2

to help understand the conceptual framework but not generate a toxicogenomic hypothesis

in this study’s scope.

4.2.5 Horizontal augmentation without tail-padding

In the previous comparison, one possible adaption of the input was its elongation with parental

and grandparental semantic concepts to a length of six instead of two. However, not every

subject and object concept had a parental term. Therefore, sequences were tail-padded with

zero-masked tokens to prevent their shortening. Thus, all sequences had an equal length of

six. The position of words might also imply a specific semantic meaning, but the tail-padding

destroyed the order of the input sequence —an essential anchor in the machine learning train-

ing process. Therefore, training with horizontally augmented input was performed with zero-

masked tokens but without tail-padding conserving the semantically identical order across all

samples and, thus, investigating the influence of the sequence order.

The input preparation remained identical as before for horizontally augmented inputs, except

that sequences were not tail-padded where parental or grandparental terms were missing.

Consequently, when samples were integer encoded, the zero-values were not at the end but on

its semantically specified position (<Subject, Subject Parent, Subject Grandparent,

Object, Object Parent, Object Grandparent>). A 5-fold cross-validation training

was performed with model architecture A and B, respectively. The supplemental figure S3-6

shows the training curves with both model architectures and the confusion matrices consid-

ering the unseen test data set.

Similar to the previous case (see figure 4.7 A and B (yellow graphs)), the training duration

was relatively short, with 29 to 35 epochs. The five folds had somewhat similar training

and validation curves, and thus splitting of input data seemed not to affect the training

performance. In addition, the validation loss decreased rather quickly within the first five

epochs and converged to a value at minimally 0.69. The binary accuracy curve for validation

data increased within the first five epochs and converged to 0.65.

The evaluation with unseen test data resulted in true-positive rates of 65% for both model

architectures. In addition, the values of relationship type-specific performance measures were

similar across models (see table S3-5) compared to the previous experiments with tail-padded

sequences (see table 4.4 AH and BH). Consequently, preserving the semantically meaningful

order of the horizontally augmented input did not significantly affect the model performance.
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4.2.6 Four-class problem formulation

The previous examinations employed the input data set I with relationship types STIMU-

LATES or INHIBITS. The following presents the model training with an extended input I4

considering four relationship types. In total. twenty-five predicates were considerable in the

partly preprocessed SemMedDB input set of chemical-biomolecule relations (see supplemental

table S3-6).

Next to the relationship types mentioned above, AUGMENTS and DISRUPTS were included.

According to Kilicoglu et al. [2012], these relationship types were related to pharmacogenomics

and, thus, might also be suitable to represent toxicogenomic chemical-gene interactions. Con-

sequently, it was investigated whether an increase with additional predications improved the

model performance. The input I4 consisted of 632 864 unique chemical-biomolecule pairs,

which all were assigned to one predicate only. After removing contradictions, the predicate

ratios were 38.5% for INHIBITS, 27.7% for STIMULATES, 16.1% for AUGMENTS, and

17.7% for DISRUPTS ∗ (see total numbers in supplemental table S3-6). A tenth of I4 was

considered as evaluating test set. The remaining was split into five equally sized subsets for

5-fold cross-validation training. In all subsets, the ratios of predicates remained identical to

the overall set. Two types of learning tasks were applied with the input data containing four

relationship types.

In the first experiment, the prediction task was considered as a categorical classification task

considering four predicate classes. The selected model architectures A and B were applied

identical, except that the last dense layer contained four neurons and a softmax activation

layer.

In a second experiment, the relationship types were assigned to NEGATIVE regulations (IN-

HIBITS and DISRUPTS ) and POSITIVE regulations (STIMULATES and AUGMENTS ).

Again, an input with two contradicting predicates was employed in a binary classification

task, as it was initially implemented with the selected model architectures.

The results of respective 5-fold cross-validation are shown in supplemental figure S3-7. In

summary, the expanded input I4 improved the overall performance neither in a categorical

classification nor a binary classification.

Independent of the classification task and the model architecture, the five folds of a cross-

∗ The ratios of predicates for the previous consideration were 53.7% INHIBITS to 46.3% STIMULATES

and were considered as mildly unbalanced. Adding two further predicates increased the imbalance, but was

still expected as acceptable to test, whether the expansion of relationships might help improve training and

evaluation performance of the model.
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validation training behaved similarly and were visually not distinct (see supplemental fig-

ure S3-7 A-D). The validation loss decreased relatively fast in the first twenty epochs and

converged to approximately 0.67 after 60 to 120 epochs. The validation accuracies reached

maximal values of 0.68.

True-positive rates of 0.683, 0.664, 0.683 and 0.680 were measured for the categorical case

(with model architecture A and B) and binary case (A and B) considering the test set I4,E

with 63 287 relations (see supplemental figure S3-7). Consequently, the previous experiments

resulted in marginally better performances when considering input I and two predicates.

However, the categorical consideration revealed an impressive characteristic in confusion ma-

trices. Although overall classification performed nearly identical, the model could distinguish

pharmacogenomic relationship types (AUGMENTS and DISRUPTS ) from substance inter-

actions (STIMULATES and INHIBITS ), with a true-positive rate of 99.4% with both model

architectures. Thus, the models recognised the general semantic meanings of the relationship

types and respective suitable chemical and biomolecular semantic concepts. The applied bi-

nary classification task presented that the models could distinguish negative regulations from

positive relations by 0.68% accuracy. Albeit not that accurate as for the interaction types,

still the model was able to predict positive or negative directions of chemical-biomolecule

interactions.

Most likely, the input data itself allowed the very accurate relationship discrimination of

pharmacogenomic activities and substance interactions. Whereas subject concepts overlapped

by 30% across predicate types, STIMULATES and INHIBITS shared less than 2% of object

concepts with DISRUPTS and AUGMENTS (see supplemental figure S3-8) but 37.78% and

13.12% within the predicate groups. Consequently, the models learned to differ between

relationship types potentially through the object concept.

4.2.7 Training with CTD data

The trained models differed marginally in their performances when considering the SemMedDB

input data. Furthermore, the models were accurate to maximally 70% for unseen SemMedDB

relations. In the case of input I, neither vertical nor horizontal augmentation improved the

model performances. The chemical-biomolecule interactions from CTD were used as training

input to examine how the model architectures and data augmentation might affect another

input data set.

The data set TC2G was prepared similarly to I for training in 5-fold cross-validation. TC2G

was also vertically (T VC2G) and horizontally augmented (THC2G) (similar to augmentation of I

described in section 2.2.2). A test set for evaluation was split off from all three inputs. The
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4. Deep learning prediction of chemical-biomolecule interactions

remainder was taken into account for training and validation and was divided into five equal

subsets
⋃5
i=1 TC2G,i.

For all three kinds of inputs, a 5-fold cross-validated training was performed with model

architecture A and B. Per 5-fold cross-validation, the performance curves of loss (binary

cross-entropy) and binary accuracy did not differ visually (see figure 4.8). Thus, the five folds

of training performed equal and had similar training durations in all six cases. Consequently,

the training-validation split did not affect the performance of models trained with CTD input.
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Original CTD input (model architecture B)

0 20 40 60
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
in

a
ry

 a
cc

u
ra

cy
 

0 20 40 60
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Bi
na

ry
 c

ro
ss

en
tro

py
 

Horizontally augmented CTD input (model architecture A)
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Horizontally augmented CTD input (model architecture B)
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Vertically augmented CTD input (model architecture A)

0 20 40 60
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
in

a
ry

 a
cc

u
ra

cy
 

0 10 20 30 40
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

B
in

a
ry

 c
ro

ss
e
n
tr

o
p

y
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Figure 4.8. Performance of models trained with CTD input.

The training with TC2G and T VC2G had similar validation curves and evaluation performances

as the models trained with SemMedDB data. The loss curves decreased relatively fast within

twenty epochs and converged to a value of approximately 0.65. The binary accuracy increased

within the first twenty epochs and converged at values of around 0.665.
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4.2. Results

For trained models with original and vertically augmented inputs (see table 4.6 and figure 4.8

G), the test accuracies ranged between 0.66 and 0.67. However, the F1-scores were higher

for predicting STIMULATES with CTD input and, on the contrary, higher for INHIBITS

with SemMedDB input (see table 4.4). The most likely reason was the difference in the

predicate balance in the two kinds of input. Albeit detecting only slight imbalances between

INHIBITS and STIMULATES for both inputs, STIMULATES was overrepresented in TC2G

(I: 3 671 698, S: 4 413 646) but underrepresented in I (I: 204 219, S: 169 685), which probably

resulted in converse prediction measures per relationship type. Furthermore, due to the larger

imbalance in TC2G, the difference in the F1-score between relationship types was higher in

training with CTD input.

Table 4.6. Comparison of selected model architectures with different training in-

puts from CTD. Based on the relationships in the CTD reference sets (TC2G,E, T VC2G,E

and THC2G,E), the performance measures of binary accuracy (Acc), precision (Prec), recall

(Rec) and the F1-score (F1) were calculated for models that were trained with CTD input

TC2G, T VC2G, THC2G. The word embedding model BH performed much better (bold text)

than remaining models.

Relationship A Acc Prec Rec F1 B Acc Prec Rec F1

INHIBITS A?
CTD 0.66 0.56 0.64 0.60 B?

CTD 0.66 0.55 0.64 0.59

STIMULATES 0.74 0.68 0.71 0.75 0.67 0.71

INHIBITS AV
CTD 0.67 0.55 0.65 0.60 BV

CTD 0.67 0.56 0.65 0.60

STIMULATES 0.76 0.68 0.72 0.76 0.68 0.72

INHIBITS AH
CTD 0.68 0.59 0.67 0.63 BH

CTD 0.94 0 .92 0.94 0.93

STIMULATES 0.76 0.69 0.72 0.94 0.94 0.94

However, the most crucial difference was the outcome of the training with model architecture

B and horizontally augmented CTD input THC2G (see table 4.8 F). The loss curve dropped

relatively fast in the first ten epochs and slowly decreased over more than 300 epochs from

binary cross-entropy values of 0.65 down to 0.17. Thus, the validation loss differed clearly

from all other validation curves considering SemMedDB and CTD input and reached lower

loss values. Consequently, the horizontal augmentation and the use of an LSTM layer helped

minimize the loss. Thus, the binary accuracies of validation data were much higher than

those of other trained models.

For the unseen chemical-gene relations in THC2G,E , the true-positive rate was valued at 93.61%

(see figure 4.8 G). The performance measures of model BV
CTD outperformed all others when

127



4. Deep learning prediction of chemical-biomolecule interactions

evaluating with unseen CTD data (see table 4.5 and compared to table 4.4). No apparent

difference in performance measures was observable between the two relationship types in

the horizontally augmented case. In consequence, horizontal augmentation and applying a

deep learning model with LSTM layer allowed to train a highly accurate model which also

convinced through high specificity (precision values) and high sensitivity (recall values).

An evaluation of the CTD trained model BH
CTD was also performed with SemMedDB input

IH . Similar to the toxicogenomic application, the evaluation crossing inputs for relational

data resulted in relatively small performance values (see table 4.7). With an accuracy of 0.53,

again, the model performance was slightly better than random guessing.

The preprocessed inputs I and TC2G (and their augmented versions) considered chemical-

biomolecule interactions, but noticeable differences had to be pointed out. As mentioned

above, both data were slightly imbalanced but in converse directions for the two considered

predicates leading potentially to bad performances with data from other resources. However,

the primary difference between both inputs was the set of biomolecules. Whereas SemMedDB

input contains all types of biomolecules, CTD was based only on (UMLS-transformed) gene

names. Thus, the context was more specified to one type of biomolecule. It was very likely

that such differences provoked poor performance for relation samples from other references.

Table 4.7. Application case of SemMedDB data to CTD trained model with hor-

izontal augmentation. The selected model architecture B was applied to train with

horizontally augmented input THC2G in a 5-fold-cross-validation. With UMLS-annotated

chemical-biomolecule relations from an independent data set IH , the performance was

measured calculating accuracy, precision, recall and F1-score.

Relationship Acc Prec Rec F1

BH
CTD INHIBITS 0.53 0.50 0.58 0.54

STIMULATES 0.57 0.49 0.52
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4.3. Discussion

4.3 Discussion

This study employed a relevant data set covering literature knowledge of exposure-related

biomolecular interactions from SemMedDB. We applied this data set for the deep learning

model prediction of chemical-biomolecule relationships. The best performing model resulted

in a 70% test accuracy. However, the trained model predicted the current knowledge badly in

a toxicogenomic application. We determined lower accuracy (52%) when predicting chemical-

gene interactions from CTD in this SemMedDB trained model — marginally better than a

random guess.

Additionally, we employed chemical-gene interactions from CTD to train similar deep learn-

ing models. In such a case, the advantages of a model architecture with the LSTM layer

and horizontal input augmentation were exploited. This CTD trained model reached 94%

accuracy. However, it was not applicable to predict SemMedDB relations accurately (54%).

Consequently, the generated deep learning models were not consistent beyond resources used

for training. Thus, the approach was not yet ready for toxicological knowledge discovery

regarding the link between chemical exposure and molecular biological effects. Still, the

CTD application showed that artificial intelligence models based on knowledge representations

predicted accurately within a resource’s scope. The study’s achievements might be a start

towards a hypothesis generation tool for AOP development. We presented conceptual ideas

and new data integration strategies for toxicological knowledge.

4.3.1 Transferring biomedical knowledge towards toxicology.

Callahan et al. [2017] highlighted different tasks within knowledge-based biomedical data

science. For example, biomedical researchers generated knowledge representation [e.g. Hris-

tovski et al. 2015, Cong et al. 2019] and have applied such to predict relations with the help

of embedding models and NLP applications [e.g. Bakal et al. 2018, Kastrin et al. 2018].

This study considered a toxicology-related subset of the NLP-based knowledge representa-

tion of SemMedDB in a deep learning prediction model initialised with a word embedding

layer. The generated input data set I was the reduced subset of SemMedDB, which represents

UMLS-annotated chemical-biomolecule interactions, and thus, a toxicological knowledge rep-

resentation on a molecular level. The literature-based discovery tasks of named entity recog-

nition and relation extraction were performed already in the applied input. In respect to the

hierarchical LBD workflow, according to [Zhao et al. 2021] (see figure 1.6), SemMedDB would

allow aiming for hypothesis generation tasks or pathway generation tasks directly.
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4. Deep learning prediction of chemical-biomolecule interactions

Interoperability of data through UMLS. The SemMedDB predications had a UMLS-

annotated triplet structure. Subjects and objects were represented as semantic concepts,

whereas the predicates were based partly on the relationship tree from the UMLS semantic

network. The reduction to chemical-biomolecule relations led to a selection of the SemMedDB

subset of interest. Also, other researchers reduced in an expert-driven manner SemMedDB [e.g.

Rastegar-Mojarad et al. 2016, Bakal et al. 2018]. The conceptual novelty of this study was the

grouping of semantic concepts in different LOBOs. Consequently, the adaption of the UMLS-

standardised annotation made the biomedical knowledge available for a systems biological

perspective and potential applications in AOP development. Toxicologists could easily apply

the annotation of lexical names to UMLS concepts and thus to a LOBO group with the given

UMLS resources. Furthermore, the available assignment of LOBOs to UMLS semantic types

were contextual and semantic groupings of concepts, which helped prepare a FAIR (findable,

accessible, interoperable and reproducible) input.

Semantic concepts with multiple assignments. The toxicological scope was relatively

broad considering the variety of biomolecules, e.g. genes, enzymes, protein complexes, or

metabolites. Moreover, some external chemicals considered in SemMedDB, such as hormones

for birth control, could also be biologically synthesised in cellular systems. In the UMLS

Metathesaurus, concepts with multiple assignments to semantic types were present. Conse-

quently, some semantic concepts in I were chemicals and biomolecules as well. For example,

the semantic concept ’estradiol’ (C0014912) belonged to semantic types of ’organic chemical’

(T109), ’pharmacological substance’ (T121) and ’hormone’ (T125). However, the first two

belonged to the chemical LOBO, and the latter belonged to the biomolecular LOBO. Thus,

’estradiol’ might occur in I as a chemical subject as well as a biomolecular object. Such

concepts could limit learning semantic representations in word embedding, especially, when

considering directed relations. For example, chemical concepts had only chemical parental

terms, and biomolecular concepts had only biomolecular parental terms in data augmentation

to reduce the negative effects of multiple concept assignments within this study. Moreover,

the augmented data were free from indirect duplicated relations ∗.

In summary, we must be cautious when interpreting the biological meaning as semantic con-

cepts might have multiple semantic types and multiple LOBOs.

Contradictions in SemMedDB. The triplets in SemMedDB had a plethora of predicates.

In the context of chemical-biomolecule relationships, the number of relations per predicate

was highly unbalanced (see table S3-6). The chosen predicates should also comprise the in-

∗ A subject-object relation occurred again, when considering the subject parental term or object parental

term.

130



4.3. Discussion

teractions between an external chemical and a biomolecule. Therefore, a balanced subset

was selected to train prediction models in a toxicological context with frequent predicates

STIMULATES and INHIBITS. Kilicoglu et al. [2012] mentioned that the chosen predicates

were related to substance interactions in SemRep. Furthermore, the contradictory semantic

meaning was beneficial for the predictive classification task and thus biological interpretation

of the predicates.

Cong et al. [2019] already described and discussed the occurrence of contradictory relations in

SemMedDB. The database projected the nearly complete current PubMed knowledge across,

e.g. different species, study designs, scientific domains, types of exposures and types of adverse

outcomes. Thus, the contradictions were induced, in parts, through the comprehensiveness of

SemMedDB. Contradictions would negatively influence the training performance, especially

when considering a binary classification task. There were some chemical-biomolecule relations

in I, which occurred with both relationship types. Therefore, we removed the ambiguities of

information to gain a model, which could perform the learning task.

The hierarchical structure of semantic concepts in the UMLS Metathesaurus was

helpful to augment the number of samples and the length of relational sequences in the

selected set of chemical-biomolecule relations from SemMedDB. In the UMLS, broader se-

mantic concepts were superior to narrower ones and considered as parental terms. However,

the different resources in the UMLS might comprise multiple broader concepts to a narrower

one. For example, the resource MESH might associate multiple broader concepts with one

narrower concept due to its mesh-like hierarchical architecture. For example, Diclofenac —

a non-steroidal anti-inflammatory agent — was represented by the semantic concept of Di-

clofenac (C0012091) in UMLS. The respective parental term Analgesics, Anti-Inflammatory

(C0002773) was superior, but twelve further parental terms were given in the Metathesaurus,

and four were based on knowledge retrieved from MESH.

The horizontal augmentation resulted in sequences of different lengths and sample-wise in-

formation richness. As the number of parents (and grandparents) was partly greater than

one, one original subject-object pair might result in multiple horizontally augmented subject-

object relations. Thus, when considering UMLS knowledge, the horizontal augmentation also

induced a vertical augmentation.

The ambiguities in the UMLS mentioned above affects both kinds of data augmentation. The

semantic concepts have either none, one or multiple parental terms. Thus, the vertical aug-

mentation did not result in equal amounts of expanded samples across all original relations.

As a result, the input data had potentially an increased study bias induced by UMLS. Thus,

rarely occurring and not so well-studied semantic concepts might become underrepresented in
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augmented data. However, rare semantic concepts which shared a parental term with many

concepts might become easier associated with a relationship type. For example, if subject

semantic concepts with an identical parent had the same object semantic concept, a rarely

represented subject might become easier predicted regarding the relation similarities of the

subject terms with the same parental term.

In this study, we augmented the input data with the hierarchical knowledge of the UMLS

Metathesaurus. The knowledge representation was expected to become denser when adding

further semantic, not-causal knowledge. However, the input became noisier as the various

UMLS sources had different structures, various depths and were partly ambiguous when not

considered in their original scientific context.

Zhang et al. [2019a] highlighted the importance of curation and preprocessing noisy knowl-

edge base data. Dependent on the research field, it could be suitable to reduce the exten-

sions to domain-specific resources and, thus, contextualise UMLS or SemMedDB differently.

The combined use of multiple biomedical knowledge bases in the UMLS resources gener-

ated reliable biomedical results, e.g. retrieving accurate medication information [Bejan and

Denny 2014, Wei et al. 2013]. Within the present study, the preprocessing and curation

of SemMedDB data allowed generating a prediction model for chemical-biomolecule relation

with an accuracy of 70%. However, the model was not applicable to reliably predict toxi-

cogenomic knowledge stored in another database. Furthermore, the data augmentation did

not improve predictability when transferring biomedical knowledge towards toxicogenomic

knowledge given the considered data.

To circumvent the shown limitation of SemMedDB, a toxicology-specific research question

might reduce considerable input data. In recent AOP development, text mining approaches

were successfully applied [e.g. Rugard et al. 2020, Jornod et al. 2020], focusing on specific

chemical exposures or adverse outcomes. However, these approaches also relied on manual

and human interpretable curation and were applied without any deep learning approach. The

here presented work aimed to train a deep learning model, which learns in an automated way

of a broader current knowledge in biomedicine and toxicology. This study was based on an

entirely data-driven approach which could be meaningful for such AOP-relevant text mining

tasks in the future.

In the present study, we removed the contradictory relations in SemMedDB entirely. A focus

on chemical-biomolecule relations helped contemplate toxicological instead of biomedicine

knowledge. The data augmentation increased number of samples and the length of sequence

samples in I, which might increase the information richness by reflecting the hierarchical
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and not-causal relations for chemicals and biomolecules. A pre-choice of domain-specific

hierarchies from the UMLS could improve the predictability of toxicological relations. For

example, compound-specific relations could be considered for data augmentation, e.g. the

UMLS resource drugbank. This resource selection would set more focus on pharmacology-

related semantic hierarchies.

4.3.2 Deep learning with biomedical knowledge representation

A straightforward model for training with SemMedDB.

There were various possibilities to apply a knowledge representation. For example, the

representation learning with the TransE -model or its derivatives retrieved knowledge from

multi-relational databases, also for chemical-gene interactions as shown by Choi and Lee

[2019]. Furthermore, text-based knowledge [e.g. Rotmensch et al. 2017, Zhang et al. 2019b,

Lee et al. 2019] was considered and was mined and contextualised with the help of vector rep-

resentations catching the semantic meaning of a text corpus. We chose a straightforward, but

state-of-the-art deep learning architecture. The finally selected word embedding model archi-

tecture A trained with input data I reached a maximal accuracy of 70%. Our deep learning

model architecture with a word embedding layer captured the semantic meaning of chemical-

biomolecule relations from the text-based and biomedical-centred data set of SemMedDB.

The comparison of different embedding vector sizes N led to more or less identical test perfor-

mances. Expanding N was connected to a larger number of fully-connected layers. Moreover,

the size of fully-connected layers was decreased by factors in the range of 2 to 2.5. Conse-

quently, greater values of N induced a larger number of word embedding weight parameters

and more weight parameters in fully-connected layers. The maximal word embedding size

had a slightly better minimal loss (see figure 4.5). However, increasing the model complexity

decreased the test accuracy slightly. In this investigation, we chose an initial word embedding

layer with the smallest number of tunable parameters leading to n = 100. The word embed-

ding itself and following layers had already many parameters. Considering representations in

larger vectors seemed irrelevant when smaller ones covered the semantic information equally.

A recurrent neural network, like LSTM, allows to learn from sequential data and considers

the knowledge of the previous items in a sequence. In this investigation, the recurrent neural

network architecture of LSTM did not improve the performance of the SemMedDB prediction

model. Initially, there were some reasons to expect an improved performance — also for short

sequences. By applying LSTM, a recurrent neural network layer was added to the model,

which was not considered in the simpler model architecture A. Thus, an improvement was
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not directly expected due to the ability to overcome the vanishing gradient problem but by

learning from sequential data of a recurrent neural network in general. Furthermore, with

adding an LSTM layer, also a time-distributed dense layer was added. The LSTM output was

a sequence, as we considered a many-to-many LSTM architecture. The time-distributed layer

applied a fully-connected network with the exact same weights on each vector of the sequence,

which was somewhat a normalisation across the LSTM output sequence. Thus, another layer

with additional parameters influenced the training performance. Expanding the sequential

model architecture with a recurrent neural network and a time-distributed network increased

the model complexity. Potentially, it could help recognise learning task-specific patterns.

However, the model architecture B with LSTM did not improve the validation and test

performance considering data of SemMedDB.

In the cases with horizontally augmented input, longer sequences were considered. It

was expected that this might influence the model performance in at least the architecture

with LSTM. Although not every semantic concept had a parental term, considering equally

sized sequences was possible by masking empty spots in a sequence with a zero value. The

zero-masking and padding to the same length can be performed differently. One possibility

was to keep the sequence order ∗ with zero values in the centre of the sequence and, thus,

potentially had longer distances between meaningful entities. Another possibility was tail-

padding which re-arranged zero masked words to the tail of the sequence to overcome this

limitation. Assuming that each position was associated with a specific semantic role in the

horizontally augmented sequences, the training of a model might be more challenged with

tail-padded sequences, e.g. when sometimes a subject parent and sometimes an object was

on position two during training. In the presented results, both input versions were examined

as horizontally augmented data. Considering the respective evaluation data, the performance

of the trained model AH and AHordered were slightly weaker than for A?, which might be asso-

ciated with the more complex input due to sequence elongation.

For the model architecture B with LSTM layer, BH or BH
ordered showed worse test perfor-

mances in comparison to B?. Thus, considering a more complex LSTM architecture with

horizontally augmented sequences was not beneficial.

In the present investigation, a word embedding model with subsequent feed-forward neural

networks performed the best when considering SemMedDB input. Although different ar-

chitectures, tunings and input settings were considered, the test accuracies were limited at

a maximum of 70%. This study was the first of its kind, which developed a deep learn-

ing model with knowledge representation to predict chemical-biomolecule interactions based

∗< Subject, Subject parent, Subject grandparent,Object, Object parent,Object grandparent >
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on relationships, which were retrieved from texts. Two different model architectures were

considered, but a plethora of others and even more advanced deep learning approaches for

knowledge representation might be applicable. The already investigated potentials of con-

volutional neural networks [e.g. Alawad et al. 2019, Peng et al. 2018, Zhao et al. 2019] or

a concatenation of multiple model architectures [Zhao et al. 2019] or the use of model en-

sembles [e.g. Peng et al. 2018] might be essential alternatives when investigating biomedical

knowledge representations. The list of potential alternatives of deep learning models had not

been fully elaborated. However, a further discussion would exhaust the scope of this thesis.

LSTM model for training with horizontally augmented CTD input

The implemented deep learning workflow predicted the relationship type of a relational se-

quence. In consequence, it was not crucial whether the input originates from text-based or

curated knowledge. The chemical-gene interactions from CTD were also applicable as input.

It resulted in similar test performances as determined for SemMedDB when considering not

augmented input data. As a result, models A?CTD and B?
CTD were trained with originally

formatted input and were 66% accurate for unseen CTD relations.

However, the most promising outcome was determined when training a model architecture

with LSTM and horizontally augmented input. A significant increase in accuracy, precision,

and recall (for both relationship types) was detected. Thus, for not literature-based but

empirically measured and human-curated data: (i) A very accurate model (94%) was deter-

mined. (ii) Input augmentation and data integration have been shown beneficial. (iii) The

use of a recurrent neural network for longer sequences became highlighted.

The CTD trained model considered only subjects and objects represented in the selected

SemMedDB subset ∗. One observation was the relatively small ratio of overlapping subject

and object concepts. We compared the recombinations with subject and object concepts

occurring in CTD and SemMedDB. Most semantic concepts in the SemMedDB were missing

in the CTD training input (Subjects: 18393 out of 25761, Objects: 13182 out of 19189). We

calculated the information density as sparsity of the subject-object-occurrence matrices for

both not-augmented inputs. Albeit both data sets covered only a small ratio of the possible

recombinations of chemical-biomolecule relations, the density for CTD input (2.19%) was

∗ The integer encoding and word embedding matrices were adapted to fit every SemMedDB semantic

concept in the CTD model. The trained model applied initialised word vectors without training adaption

for samples with semantic concepts not represented in CTD. Thus, these word embedding vectors did not

learn any semantic representation, and a semantically meaningful prediction is not likely. Consequently, the

unification with UMLS annotation helps only in parts and trained models are not applicable for data of other

toxicological knowledge bases when the overlap of semantic concepts is small.
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approximately ten times greater than for SemMedDB input (0.275%) ∗. Still, the models

trained with CTD performed best with horizontal augmented input and a model architecture

with LSTM. The results led to the recommendation to horizontally augment the input for

model training and apply the word embedding model architecture with LSTM. It should

be clarified why augmentation and LSTM helped for training with CTD input but not for

SemMedDB. The greater information density of CTD input might be one potential reason.

Input data have to overcome a specific sparsity value in their subject-object occurrence matrix

to benefit from data augmentation with the UMLS knowledge.

As the subject-occurrence matrix in CTD was denser than for SemMedDB, more relations

were available per concept. Thus, the chance of co-correlated genes in CTD was greater than

for SemMedDB. Thus, we expected a better performance to some extent. If one chemical-gene

interaction was removed from training data and used for test data, closely correlated genes

were still available for one specific chemical compound during training. Thus, the test relation

was more likely to be predicted correctly. However, the information density for relationships

separately was not considered yet. In consequence, we must also investigate whether the ratio

of positive and negative correlations might influence the training outcome.

In the future, we will prove the effectiveness of a greater information density on SemMedDB.

Therefore, we will add not contained subject-object-relations considering sibling information †

from the UMLS file MRREL.RRF (see section 2.2.1). The expanded input will be used in a similar

model comparison as shown with I and TC2G. If the training of a model with LSTM layer

will perform better with horizontally augmented input, we will generate proof that a minimal

information density would be needed to gain from the strengths of horizontal augmentation

and recurrent neural networks.

4.3.3 Data integration

Integrating data from different sources allows generating a knowledge graph through joining,

merging or concatenating. Such knowledge-based data integrations were used in computa-

tional toxicology, as shown by a various application cases [e.g. Mower et al. 2018, Pittman

et al. 2018, Nair et al. 2020, Taboureau et al. 2020, Aguayo-Orozco et al. 2019]. For example,

the CTD was frequently considered for data integration with exposure-associated effects [e.g.

Gu et al. 2019, Davis et al. 2018, Oki and Edwards 2016]. The present study applied CTD also

as a toxicogenomic reference. Chemicals and genes in CTD were annotated to the UMLS ter-

∗ The information density was also ten times greater, when considering also concepts not represented in

the other database (SemMedDB: 0.076%, CTD: 0.785%)
† MRREL.RRF contains more than 900 predicates for two UMLS-concepts, some of them present sibling

relations of concepts, e.g. same as, alias of or common name of.
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minology. By reducing relationship types in the CTD database to the considered ones from

SemMedDB, it was possible to retrieve similarly structured chemical-biomolecule-triplets,

which were toxicologically relevant and had empirical support. Consequently, knowledge

from CTD was helpful as training input itself, as mentioned before, and applicable as an

evaluation data set for the SemMedDB trained prediction models.

The CTD also contained chemical interactions on different LOBOs. Gene sets of bi-

ological pathways included knowledge on the cell or tissue level, whereas disease gene sets

were relevant on the organism level. The expansion of chemical-biomolecule relations to sets

of chemical-pathway and chemical-disease relations allowed to check the overall coverage of

exposure-related toxicological knowledge within the chosen subset of SemMedDB. The cover-

age was relatively small on the molecular level, which was expected as CTD considered genes

and not all types of biomolecules as opposed to text that include, e.g., enzymes, proteins

and metabolites. Furthermore, the binarisation of relations in preparation might affect the

resulting CTD set TC2G through additional ambiguous relations or information loss. Thus,

we already expected a limited coverage of the chemical-biomolecule interactions. However, a

higher exposure-related toxicological coverage was determined on the pathway level. More-

over, the absolute number of overlapping relationships on the pathway and disease level

showed a much larger subset of SemMedDB information (see figure 4.4). Thus, the chosen

input data were representative of at least some toxicogenomic knowledge. In consequence,

the data integration of SemMedDB knowledge with CTD input might be relevant for future

applications aiming to predict toxicological interactions on higher biological levels.

The reader and potential applicant should know that merging UMLS terminology and CTD

annotation came with some drawbacks ∗. This study did not stress further analysis regard-

ing species coverage, study bias or further potentially occurring stratifying or performance

disruptive effects, but it should be considered in future investigations.

In the context of toxicological information retrieval from biomedical knowledge, Choi

and Lee [2019] applied a comparison of various knowledge representation approaches based

on input from MalaCards [Rapaport et al. 2013], CTD and BioGRID [Oughtred et al. 2019].

They determined the best performances for the knowledge representation with a TransE-

model when rank-based predicting gene-gene, gene-disease, chemical-gene, chemical-disease

∗ The UMLS is a biomedical ontological system and focuses on human health. Albeit ecotoxicogenomic

considerations were contained in chemical biomolecular level, the CTD gene annotations were human anno-

tated. Although, this helps in terms of interoperability of both data sets, it induces also a curation bias.

Furthermore, the overlapping gene annotations (and chemical annotations) did hardly overlap and only a

UMLS-centred subset of CTD knowledge was considered. This might increase an already existing study bias

in the database.
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and disease-symptom relations. The study also presented the model’s superiority to the

implemented inference approach in CTD. When considering one subject, the TransE model

calculated inference scores for each rank-specific object and such gene inference rankings were

reasonable for functional enrichment.

In the present study, models trained with UMLS-annotated CTD chemical-gene interactions

predicted relationship types with a 94% test accuracy. The learning task was the main con-

ceptual difference from Choi and Lee [2019] to our approach. Whereas Choi and Lee [2019]

predicted the subject or object of a triplet, we predicted the relationship type.

Both studies applied the CTD for the toxicogenomic evaluation of the trained models and

showed practical strategies to determine toxicologically meaningful exposure-related links in

future applications. The present study determined the relationship based on the prediction

probability without considering other triplets with the identical subject (or object). Nev-

ertheless, we conceptually elaborated a functional enrichment approach strategy on how to

apply CTD knowledge and the UMLS terminology (see supplemental section S3.2). The

geneset generation was, in general, possible on different LOBOs. Consequently, sequences of

toxicological knowledge across different LOBOs could be generated with the help of relation

predictions and functional enrichment.

In the context of AOP development and ET, integrating data from alternative data sources,

like STITCH [e.g. Taboureau et al. 2013; 2020, Perkins et al. 2017, Schroeder et al. 2016], Tox-

Cast [e.g. Jeong and Choi 2020, Oki and Edwards 2016, Doktorova et al. 2020, Aguayo-Orozco

et al. 2019] or the AOPwiki [Martens et al. 2021, Pittman et al. 2018, Aguayo-Orozco et al.

2019] had to be mentioned as additional possibilities for data integration and evaluation for

future studies. The recent toxicology-related data integration approaches relied on network

inference or merging data but less on machine learning or even deep learning approaches. The

present study showed novel data integration strategies considering SemMedDB, UMLS and

CTD.

Pre-trained word embeddings for biomedical purposes. Computer scientists em-

ployed biomedical knowledge representations in deep learning tasks [e.g. Bojanowski et al.

2017, Devlin et al. 2019, Zhang et al. 2019b, Jimeno Yepes 2017]. Publicly available trained

word embedding models and knowledge representations were generated [e.g. Zhang et al.

2019b, Michalopoulos et al. 2021, Alsentzer et al. 2019]. In the recent approaches, the

attention-based deep learning models [Vaswani et al. 2017] gained trust [e.g. Zhang et al.

2019b, Lee et al. 2019, Gu et al. 2019]. For example, the BERT model was developed to

contextualise word embeddings [Devlin et al. 2019, Chen 2021]. Various training of BERT

models focused on knowledge from the biomedical literature [e.g . Michalopoulos et al. 2021,
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Alsentzer et al. 2019, Lee et al. 2020]. For example, the UMLSBERT allowed a contextualisa-

tion for clinical domain knowledge ∗. The authors highlighted the superior model performance

of the UMLSBERT in comparison to other biomedical BERT models. This model could be

applied and task-specifically re-trained. However, it could be disadvantageous that UMLS-

BERT was considered within clinical research and not in ET. As the present study aimed

to shift towards toxicological applications, the UMLSBERT might be misleading due to its

context. Moreover, UMLSBERT was trained to identify similar vectors for lexical words be-

longing to one semantic concept. In the present study, semantic concepts were considered

only. Thus, the primary benefit of the re-trained BERT model would not be practical for our

prediction purpose. Consequently, a re-training of the UMLSBERT might have its limitations

for predicting chemical-biomolecule relationships as it was already re-contextualised.

Zhang et al. [2019b] re-trained a PubMed-based word embedding model with random paths

retrieved from MESH to contextualise biomedically the embedding. This knowledge rep-

resentation — BioWordVec — also recognised subword information with the help of the

fastText algorithm [Bojanowski et al. 2017]. The subword embedding was especially helpful

for biological and clinical terms with shared suffixes containing essential semantic knowledge.

Consequently, out-of-vocabulary words became also vector represented. BioWordVec could

embed UMLS semantic concepts into vectors for our applied toxicological task, used as word

embedding initialisation. The approach and the model could be helpful also for our prediction

task. For example, we could use the hierarchical information or the non-synonymous rela-

tionships between concepts from UMLS (see section 2.2.1) similar to the contextualisation

through random paths retrieved from MESH. Such contextualisation might be beneficial to

improve models trained with SemMedDB.

Negative sampling. In the present study, chemical-biomolecule interactions presented the

input sequences for a deep learning prediction model. Also, a change in the prediction task

might allow successful learning. In collaboration with Chih Lai and his colleagues, we devel-

oped a similar deep learning model using SemMedDB data as input [Lai et al. 2021]. However,

we employed the triplet <Subject,Predicate,Object> instead of <Subject,Object>

pairs for training. Furthermore, we applied no LOBO assignment but pre-selected a broader

group of semantic concepts to learn. Consequently, the learning task considered relations

beyond exposure-related molecular interactions. However, we trained a similar model archi-

tecture with word embedding, LSTM and a subsequent feed-forward neural network. The

∗ Michalopoulos et al. [2021] re-trained the biomedical BERT model with UMLS terminology resources.

The word embedding model was trained to recognise similar meanings for lexical words with the same UMLS

semantic concept and capture the meaning of UMLS semantic types.
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model predicted whether a random UMLS-annotated triplet should be known in the litera-

ture or not.

The input samples were triplets instead of pairs, but the sample information was still some-

what small. To increase the task-specific information of the input, negative samples — ran-

domly chosen triplets that were unknown in SemMedDB — were added to the input. Negative

sampling was necessary to have samples representative for both prediction outcomes. Similar

to data augmentation, it increased the number of samples. As a result, the prediction model

trained with negative samples was highly accurate [Lai et al. 2021].

However, such a learning task comes also with a conceptual limitation. Negative samples

were unknown interactions but were expected to be falsified knowledge. Thus, they could

also be verified in future and should be considered as a positive sample instead. Conse-

quently, a trained model was highly dependent on the current knowledge status represented

in SemMedDB.

The presented approach within this dissertation considered a horizontal and vertical aug-

mentation with hierarchical UMLS knowledge instead of negative sampling. Still, for future

investigations, the alternative of negative sampling might be taken into account when adapt-

ing the deep learning strategy to another learning task.
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4.4 Conclusion

The current toxicological knowledge might link chemical exposure to biological effects on

a comprehensive level. We were interested in whether deep learning models with semantic

representation could learn from current knowledge and whether the prediction of relations

helped retrieve toxicologically meaningful outcomes. In this study, we applied a deep learning

task to predict the toxicological relation between a chemical and a biomolecule from literature

and a toxicological database.

Published literature knowledge from PubMed was available via SemMedDB and was filtered

to chemical-biomolecule interactions. The problem was formulated as a binary classification

task, where chemical-biomolecule relations were described as either inhibited or stimulated.

We used a biomedical knowledge representation for a toxicological learning task. The selected

model predicted 70% of unseen text-based chemical-biomolecule relationships correctly. Thus,

the trained deep learning model with a hidden knowledge representation architecture could

learn from an input of literature-based relations.

An additional recurrent neural network improved the model performance when considering the

empirically-based knowledge from CTD instead of literature-based input from SemMedDB.

In such a case, an elongation of the input sequences helped. Finally, we trained the model

with CTD relations and reached an accuracy of 94% in predicting unseen chemical-gene

interactions from the same source. Again, deep learning with knowledge representation could

learn from toxicologically relevant relations.

The deep learning strategy with knowledge representation worked in general. The models

were able to predict relationship types in their database scope. However, both models failed

to predict known relations of the other data set reliably. In both cases, evaluated prediction

models performed slightly better than random guessing. Thus, it was not possible to retrieve

toxicologically or biologically meaningful predictions of relationship types regarding multiple

data sources. Furthermore, only a part of the SemMedDB data set was covered in the

toxicogenomic knowledge of the CTD on gene, pathway and disease level. Consequently, the

chosen data sets were potentially limited to accurately predict the knowledge in the scope

of the other database. We assume that the stated toxicological coverage was insufficient to

retrieve a reliable tool across the knowledge bases.

Nevertheless, we determined a suitable data set and prepared it for toxicological knowledge-

based discovery covering the current biomedical literature knowledge of biomolecule interac-

tions with chemical compounds. The chosen SemMedDB data represented already an output

of the biomedical NLP-task of named entity recognition and normalisation and was already
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used in medical contexts for further NLP or prediction tasks.

With the help of the UMLS, we employed a unified and harmonised biomedical language.

The knowledge-based discovery with UMLS was potentially not restricted to biomedicine

only. Related domains, e.g. ET, might also benefit from the publicly available tools from the

National Library of Medicine. The UMLS terminology and its available tools were shown as

a powerful resource for achieving interoperable knowledge and databases. This might help

for knowledge-based discovery in ET and AOP research potentially.

The here presented study might not yet enable toxicologists to use deep learning for a

chemical-biomolecule interaction prediction which was biologically meaningful and empiri-

cally reliably supported across multiple data sources. However, the annotation with the

UMLS terminology could be interesting for future computational toxicology studies. This

study encourages considering a predictive computational approach with a harmonised and

not entirely ET unfamiliar language — the UMLS.

From a future perspective, the merged knowledge should be applied to train a deep learning

model. We expect that the merged data scope might allow training a model predicting unseen

knowledge from the merged database better than by random guess. Consequently, the model

might also be more open for knowledge of other independent toxicological knowledge bases.

Integrating further toxicology knowledge would allow predicting relations on a molecular level

and higher levels of biological organisation. Thus, the recent toxicological knowledge repre-

sentation based on text and empirical data could be merged systematically and efficiently.

This might generate new hypotheses of toxicological effects across different entities of bio-

logical systems. We should consider these new possibilities as potential strategies for AOP

development to generate key event hypotheses, fill knowledge gaps, and discover not yet con-

sidered AOPs.

Thousands of chemicals are in the environment, and all have an adverse effect on organisms

potentially. Although the entire spectrum of chemicals in the environment has not yet been

considered in the recently published knowledge, the information mass is immense and hardly

digestible by human-made curations. Therefore, machine learning and text-based discovery

approaches might reveal the hidden knowledge and toxicological information about chemicals

and their links to biological systems. Thus, a combination of natural language processing, ma-

chine learning approaches and data integration has to be considered to link chemical exposure

to biological effects on a comprehensive level. This study presents one initial achievement for

such strategies in ET research considering the complex data structures of current knowledge.
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Conclusion and Future perspectives

Data for environmental toxicology can be complex and originate from chemical analytical,

bioanalytical or omics-based measurements, literature and databases. Factors like the im-

mense size or contradicting relations challenge the investigation of exposure-related biological

effects with such data. Besides, their data integration have to deal with, e.g. different vocab-

ularies, different research contexts or a small information coverage. The thesis’ objective was

to computationally link chemical exposure to biological effects employing such complex data.

In chapter 3, we employed data of an omics-based exposure study considering mixture effects

in freshwater. We applied three approaches and different exposure scenarios to disentangle

environmental mixture exposure effects and reliably attribute biological outcomes to chemical

drivers on gene and pathway levels. The correlation-based compound groups helped under-

stand some xenobiotic effects applying differential gene expression and network inference.

Published knowledge represents comprehensively complex information from environmental

toxicology. In chapter 4, we employed semantic predications from a current text-based

biomedical knowledge base and curated knowledge from a toxicological database. We im-

plemented a word embedding neural network with a subsequent feed-forward network that

predicted the toxicogenomic relationships of chemical-biomolecule interactions. Data augmen-

tation and recurrent neural networks were beneficial for training with curated toxicological

knowledge.

The developed approaches allowed assessing the hazard of chemicals more systematically,

e.g. with correlation-based compound groups, and support the prioritisation of chemicals for

testing, e.g. with prediction models. This section sets the thesis’ achievements in the context

of environmental toxicology to understand exposure-related molecular effects through method

comparison, deep learning and data integration.
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5.1 Conclusion

In this dissertation, we took examples of complex environmental data into consideration to

link chemical exposure to biological effects applying computational methods based on linear

modelling, network inference, and machine learning. We employed omics-based measurements

in exposure studies and data from published and curated knowledge bases. Both studies gave

important and joint insights regarding the linkage of chemical exposure to molecular effects.

5.1.1 Investigating complex mixtures in the environment

When determining exposure-related effects on an omics-based molecular level, environmental

toxicologists frequently considered multiple approaches to filtering down results, refining the

specificity or sensitivity, and integrating knowledge on the pathway or disease level. How-

ever, a strategy was missing to compare stand-alone computational methods, when applied

to the same task, particularly for assessing ecological hazards and biomonitoring. There-

fore, we investigated the extent to which computational approaches were suitable to link

complex chemical mixture exposure to biological effects. To be more precise, we linked com-

plex chemical exposure in freshwater sites to transcriptional effects in fathead minnow liver

tissue. The aim was to investigate three stand-alone computational approaches in their suit-

ability to determine exposure-related effects on molecular and pathway levels, highlighting a

biologically meaningful and reliable attribution to adverse effects. Given the data of the pre-

liminary exposure study, highly correlated and subtle chemical exposure patterns led to weak

transcriptional effects. However, the application of DEA and WGCNA, stand-alone and in

combination, was practical to verify the in-vitro measured xenobiotic stress and endocrine dis-

ruption. We determined potentially endocrine effect-driving subsets of the measured chemical

exposure.

The method combination resulted in biologically relevant results. However, these results were

distinct from those of single experiments. Both, applying approaches stand-alone and in

combination, were sound to gain a comprehensive understanding of exposure-related effects

on a molecular level. Each approach had its assumptions and limitations. Thus, significant

outcomes were interesting in light of the approach’s assumptions but might define and weigh

characteristics of interestingness differently. In this thesis, comparing overlapping and singu-

larly detected results identified limitations when considering transcriptomic data measured

in biological systems after complex mixture exposures. Such limitations were (1) the prede-

fined set of investigated chemicals of concern, (2) the not-independent exposure patterns of

compounds due to a relatively small set of selected sites and (3) the low concentrations of
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detected compounds affecting fish somewhat unspecific.

Nevertheless, considering different exposure scenarios allowed disentangling environmental

complex mixtures, in parts, to subgroups of potential chemical drivers. The study presented

differences in examined transcriptional effects for overall, stream-wise, single chemical and

chemical group exposures. Especially in the context of complex environmental mixtures

with lowly concentrated chemicals, the presented approach and elaborations shed light from

multiple perspectives that may be all relevant in exposure-related studies. In this study, the

novel perspective of correlation-based compound groups allowed determining potential drivers

of xenobiotics effects.

In conclusion, DEA and WGCNA were suitable for linking endocrine disruption and xeno-

biotic stress responses to a subset of co-correlated compounds, although the investigated

complex mixtures consisted of lowly concentrated chemicals only. The presented strategies

and established methods helped understand chemical exposures in the selected stream water

sites comprehensively and allowed assessing the risk of chemicals more systematically. In that

respect, the study in chapter 3 explicitly contributed to the investigation of proxies of the eco-

exposome by delivering achievable computational strategies for assessing the environmental

hazard for aqueous species.

5.1.2 Complex knowledge from literature and curated databases predict

chemical-biomolecule interactions

Although stressor-agnostic, toxicologists used the AOP framework to investigate links be-

tween chemical stressors and molecular effects or adverse outcomes on higher biological lev-

els. Exposure-associated effects on the molecular level helped understand the early steps of

toxic mechanisms and correlate them to adverse outcomes. Therefore, data integration and

knowledge representation approaches were fruitful to infer new information from databases

and text. We were interested in whether information-rich knowledge from literature and

databases is suitable for learning toxicologically meaningful exposure-related interactions.

This thesis trained deep learning models employing toxicology-related knowledge of semantic

predications from SemMedDB and curated knowledge from CTD. We evaluated the models’

suitability to predict toxicologically meaningful chemical-biomolecule interactions. In par-

ticular, we predicted chemical-biomolecule relations considering natural language processed

data and subsequent deep learning as novel approach in the context of ET.

Toxicological databases and also literature have various terminologies. The UMLS contains

various vocabularies from biomedicine and allows unifying lexical names in the biomedical
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context through assignment to semantic concepts and semantic groups. For example, it al-

lows unifying various chemical names and pharmaceutical products for similar compounds.

However, the UMLS is biased towards biomedicine and human health, and many concepts are

not relevant for toxicology. We presented a straightforward approach to applying UMLS in a

toxicological context by adding a LOBO assignment to the UMLS terminology. Therefore, we

considered biologically relevant terminologies across all LOBOs. Consequently, the selected

UMLS terminology lost at least some of its biomedical bias, including a smaller ratio of clin-

ical centred terms. Before, such a framework to assign semantic concepts to toxicological

entities was not available.

The UMLS resources had another valuable purpose. Integrating the knowledge from the

UMLS Metathesaurus to the input of SemMedDB or CTD allowed the hierarchically struc-

tured consideration of more generalised biomedical concepts. The parental terms allowed

expanding the data set in the number of samples and elongating relational sequences. For

CTD, horizontal augmentation was the key to improving the deep learning model performance

when training a model with a recurrent neural network. We determined that the CTD set

had a ten times higher information density than the SemMedDB data set. Thus, the input

might need a sufficient information density to benefit from parental terms, which was likely

not the case for the prepared input from SemMedDB.

Conclusively, the current and information-rich knowledge from SemMedDB and CTD were

separately suitable to predict unseen exposure-related interactions from the same data source.

We made a novel prediction tool for ET available that learned UMLS-annotated and -

integrated chemical-gene interactions. The applied computational strategy expanded the

spectrum of predictive toxicology and evaluation approaches for exposure-related and omics-

based data.

5.1.3 Linking chemical exposure to biological effects by integrating CTD

In both studies of this thesis, we applied the toxicologically relevant knowledge base CTD for

data integration. CTD allowed us to look at exposure-related data across different LOBOs

and to validate the biological meaning of outcomes on gene and pathway levels. In chapter 3,

CTD and STITCH proved the applicability of three stand-alone methodologies to determine

biologically meaningful and reliable results. The overlap on the gene level and the significances

of overlap on pathway level helped compare the computational approaches. In chapter 4, we

highlighted the versatility of CTD. Initially, we considered chemical-gene interactions from

CTD as evaluation data set to assess the biological reliability of the predictive model. An

up-scaling to pathway and disease level, similar to the approaches in the first study, helped
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assess the coverage of toxicogenomic relevant knowledge in used literature-based knowledge.

We assumed to handle less noise in data when up-scaling on a lower resolution level, e.g. from

gene to pathway level. Potentially up-scaled results might be generalised, trivial or non-

informative, and have to be considered with caution. Nevertheless, for both studies, the

lower resolution level for outputs was beneficial in evaluating the computational approaches

in their biological meaning.

The exposure-related biological effects on the gene level from CTD were beneficial to train

a deep learning model. This CTD application could be considered a bridge between the

two applied studies of this dissertation. The database comprised knowledge retrieved from

empirically measured omics-based investigations. Thus, CTD contains information which are

determined with computational strategies as compared and combined in chapter 3.

The text-based input from SemMedDB comprises knowledge from abstracts and titles only.

Thus, the SemMedDB knowledge did not cover the complexity of knowledge in published

scientific papers. Moreover, the knowledge from an abstract might not entirely represented

in SemMedDB considering the limitations of SemRep [Cong et al. 2019] and the bias of the

UMLS terminology. Databases like CTD are information-rich, especially in a meta-analytical

scope. For the study in chapter 4, it was essential that CTD contained human-curated

information from publicly available data but not necessarily from published papers. We

potentially considered a deeper investigation level of published knowledge applying CTD

instead of SemMedDB. Both resources were useful for deep learning prediction tools.

Conclusively, the computational investigation of empirical measurements for one specific site,

one specific model organism and one specific environmental system (chapter 3) benefited from

curated toxicological knowledge. Moreover, an investigation of knowledge representative data

(chapter 4) profited from integrating such external toxicological information from CTD.

5.2 Future perspectives

The investigations in this thesis computationally linked chemical compounds to biomolecules

employing complex environmental data sets. We considered two challenges within the ET

research.

In chapter 3, we assessed the environmental status of small streams and adverse effects on

one studied fish species. We focused on three methods to determine biologically meaningful

results with reliable attributions when investigating complex mixtures of lowly concentrated

chemicals. Future tasks for methodological comparisons for exposure-related and omics-based

studies have arisen from the findings in chapter 3. Recent studies also highlighted other
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approaches, e.g. toxicogenomic profiling with self-organising maps, which were not considered

for the comparison in this thesis. Moreover, the study in chapter 3 did not emphasise the

full potential of method integration combining the results of DEA, AR or WGCNA and other

external references. We considered straightforward strategies. However, studies showed that

more sophisticated ones [e.g. Schroeder et al. 2017, Sutherland et al. 2018] or meta-analysis

approaches [e.g. Krämer et al. 2020, Ewald et al. 2020] were meaningful to examine exposure-

related effects and, thus, might be relevant equally relevant in respect to our research question.

The study in chapter 4 generated knowledge-driven hypotheses of chemical-biomolecule in-

teractions that might also be a fruitful contribution to AOP development. In chapter 4, we

developed models to predict exposure-related molecular effects based on given toxicological

knowledge, represented through complex data from literature and analysis of exposure-related

studies. We identified limitations of the considered data sets, which were pressing to future

studies. For example, integrating the knowledge from CTD, UMLS and SemMedDB might

retrieve a comprehensive prediction tool in ET. This integration would help determine new

hypotheses (chapter 4) and assess chemical-related effects in the environment (chapter 3).

Based on the thesis’ achievements, we determined future tasks and challenges as presented in

more detail in the following.

Knowledge representations as AOP networks. The network principle has been fre-

quently used to project current knowledge and infer new links. UMLS is also helpful for

network inference in ET research. Assigning and unifying words to LOBOs allows generating

a graph representation of knowledge from databases or parsed text. Such a graph would have

structurally much in common with an AOP network. Whereas the nodes would be biological

entities or events on a specific LOBO, represented by, e.g. UMLS semantic concepts, the given

relations would define the direct edges. These relations could be considered empirical evidence

originating from an expert-based publication or a statistically significant outcome curated in a

toxicological database. By adding the information of LOBOs as node characteristics, we could

identify chains across different levels of biological organisation. The presented approach in

chapter 4 and trained models are helpful to such a graph representation for weighting, adding

or doubting edges between two semantic concepts. Albeit a lot of work and steps in between

are necessary, such a strategy potentially allows data integration across multiple data- and

textbases to retrieve a knowledge graph representation with a unified vocabulary of UMLS

semantic concepts. Although such a network generation and inference approach were not

in the scope of this thesis, the highlighted characteristics of UMLS will allow a linkage of

databases and literature for AOP development approaches in the future.
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UMLS for environmental toxicology. The UMLS is a semantic terminology built for

biomedical research. The UMLS terminology has been already extended to other research

fields [Rosemblat et al. 2013b] like medical informatics [Zhao et al. 2021], public health [Rosem-

blat et al. 2013a] or pharmacogenomics [Ahlers et al. 2007]. In general, this ontological ex-

tension is also achievable for the ET context. However, such a domain-switch of an ontology

will be a resource-intensive task. An interdisciplinary team of environmental toxicologists,

chemists and biologists will be needed with further expert knowledge from linguistics and

computational sciences. This task will comprise various time-consuming tasks, e.g., deciding

whether current concepts are necessary, which concepts are missing, how to re-frame the se-

mantic network, or whether re-definitions of relationship types are necessary. Furthermore, it

will be necessary to reduce the selection of data and add further toxicology specific databases

as the UMLS semantic network comprises biomedical and biological sources.

However, a UMLS extension to the ET context could allow different deliverables. For example,

we could generate an ET-centered SemMedDB of PubMed-Abstracts and titles. Consequently,

applying the strategy from chapter 4 would result in an ET-centered and literature-based deep

learning prediction model. The adapted semantic terminology would be helpful for a predic-

tive AOP hypothesis generation — for chemical-biomolecule interactions and interactions

with other LOBOs of the AOP framework.

Identify knowledge from literature. SemMedDB is a high-content and comprehensive

data source. The NLP tool SemRep has retrieved the SemMedDB input from PubMed liter-

ature abstracts. It is regularly updated with the most recent PubMed citations, but do not

comprise text-based information beyond available PubMed abstracts and titles. However, it

will potentially help parse entire Publications with SemRep. In terms of effort, only a selection

of publications should be considered. A time efficient NLP tool to find a subset of relevant

publications, particularly in AOP development, is the AOP-helpFinder webserver [Jornod

et al. 2021], which associates stressors and biological events with the help of an artificial in-

telligence screening of PubMed. In ET research and AOP development, selection factors will

be, e.g., compounds of interest, taxonomic groups, study designs, or investigated biological

systems.

Furthermore, other texts as peer-reviewed publications will be helpful. For example, in

biomedical literature-based discovery, researchers have considered electronic medical records.

Equivalents in ET research are, e.g. reports of biomonitoring, descriptions of AOPs and KEs

in the AOPwiki or descriptions of biological pathways and networks from KEGG or Reactome.

The application of SemRep will help integrate further literature-based knowledge to SemMedDB

easily and will already be unified with UMLS semantic concepts. Thus, knowledge from
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toxicology-relevant literature beyond SemMedDB will become interoperable with toxicologi-

cal databases.

Combined input of SemMedDB and CTD to train a deep learning model. The

UMLS offers, next to hierarchical information of parents, a data set for sibling information

(see section 2.2.1). This allows determining further relation pairs, which are not considered

in SemMedDB or CTD, respectively. When considering only semantic concepts already rep-

resented in the inputs, we will increase the information density (e.g. measured as sparsity in

the occurrence matrix) with every additional sample. As observed in chapter 4, the CTD

input had a ten times higher information density, which might be a potential reason, that

the application of a horizontal augmentation and LSTM layer was beneficial. By considering

the sibling information, the SemMedDB will have an increased information density and thus

could also benefit of horizontal augmentation and a recurrent neural network layer.

An alternative way of data augmentation will be increasing the number of samples with the

SemMedDB input by relations from CTD. Pre-trained word embeddings and retro-fitting have

been shown advantageous in the biomedical context (see section 1.2.5). In conclusion of the

outcomes in chapter 4, we will retrain the word embedding matrix in the separate SemMedDB-

based model with the fully initialised, partly trained word embedding matrix from the CTD

model. Such a word embedding will represent the semantic meaning of relations from CTD

and SemMedDB. This approach could improve the evaluation of the SemMedDB model with

unseen data of the CTD input. However, further sources — e.g. STITCH, ToxCast or Eco-

ToxDB ∗ — should be taken into account for evaluation of models trained with the combined

toxicological knowledge from CTD and SemMedDB.

Consequently, various follow-up steps to the here shown achievements in chapter 4 are possible

to aim for a comprehensive tool to generate hypotheses for molecular key events. Such further

investigations could be helpful for the entire AOP development. Moreover, such upcoming

achievements will have their use for exposure-related omics-based studies and environmental

hazard assessment as highlighted in the following paragraphs.

Intelligent chemical selection. Switching the purpose of the developed predictive tool

from chapter 4 towards environmental hazard assessment will also help future studies in-

terested in using the presented computational strategies from chapter 3. The prediction of

chemical-biomolecule-interactions under the purpose of an intelligent selection of chemicals

helps also exposure studies of environmental sites. For example, a predictive tool, as pre-

sented in chapter 4 could prove recent lists of chemicals of concern, e.g. by predicting the

∗ https://cfpub.epa.gov/ecotox/
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chemicals which are likely to be associated to genes of a known adverse outcome or biological

pathway. Consequently, such a predictive tool would support the prioritisation of chemicals

for testing, which would be useful for hazard assessment and biomonitoring.

Evaluate knowledge from transcriptomic exposure studies. As shown in chapter 3,

exposure studies that apply omics-based approaches, such as microarray gene expression

analysis, generate exposure-related associations of molecules or even higher biological effects.

This thesis showed that variations in biological and statistically significant effects could be

determined across assumed exposure scenarios and applied methods. Methods have their

limitations potentially leading to some false-positive results. To validate the outcomes, a re-

liable external reference is necessary. In current ET research, such validation and evaluation

systems have commonly been based on toxicological databases such as CTD. The presented

predictive strategy from chapter 4 would have its means for evaluating exposure-related bi-

ological effects, e.g., those from chapter 3. Especially, a prediction tool trained on multiple

references, e.g. SemMedDB and CTD, would present a comprehensive perspective on cur-

rent toxicological knowledge. Models fulfilling some prerequisites, e.g. high test accuracies

for knowledge within training data source and across other databases, would have the future

potential as evaluation system for omics-based exposure studies.

In conclusion, this thesis compared computational approaches and developed predictive mod-

els to link chemical exposure to biological effects on molecular level with complex environ-

mental data. With the help of knowledge and data integration, the achievements of this

dissertation and its future perspectives allow benefiting of the complexity of data. The the-

sis’ achievements might support the prioritisation of chemicals for testing and an intelligent

selection of chemicals for monitoring in future exposure studies. This will help discover

new knowledge and verify empirically measured information for an ET context comprising

biomonitoring and hazard assessment purposes, but also a better conceptual understanding

in e.g. the AOP development. In consequence, this thesis contributed not only to a better

understanding of exposure-related effects in anthropogenically perturbed environments, but

also to computationally investigate Proxies of the Eco-exposome.
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S1.1 Example of an estrogen bioassay

In figure S1-1, the estrogen activity becomes easily detectable through luminescence. The

luminescent intensity in a bioassay-test is equivalent to the joint toxic potency of all com-

pounds in a mixture with the same mode of action, assuming a concentration addition. In this

example, the activation of the estrogen receptor affects the biological endpoint ’reproduction’.

A toxic or bioanalytical equivalent concentration is defined to compare bioassay measures of

sites. For estrogen activity, the equivalent activity levels of natural or synthetic estrogens are

referred like 17-β-estradiol (E2) or 17-α-Ethinyl-estradiol (EE2). Based on this equivalent

value to a well-investigated estrogen, the severity of the adverse reproductive outcome gets

estimated without testing a whole organism. The ecological risk is determined by comparing

the equivalent estrogen concentration to a standardised and previously defined threshold.

S1.2 Types of mode of action

After the intake of a compound in a biological entity, it may interact with a protein as a bind-

ing ligand. Such biomolecules may be receptors, enzymes or other target proteins. Under

normal conditions, the receptors respond to specific endogenous signalling ligands, e.g. hor-

mones or neurotransmitters, and lead to a cell regulating response by, e.g. interfering with ion

channels G-protein coupled receptors or nuclear receptors. However, exogenous compounds

may have a chemical with a similar active group as the endogenous ligand leading to a concur-

rency for the receptor binding sites with the natural ligand. Consequently, xenobiotic ligands

may activate the receptor protein as an agonist or inactivate the receptor as an antagonist.

Thus, the overall receptor activity level in a biological entity may be up- or downregulated

by the xenobiotic influences. For example, the interactions with nuclear receptors affecting

hormone regulation may induce endocrine disruption, or the affection of neurotransmitter

interactions infer with ion channels and may induce neurotoxicity.

Next to the receptors, other proteins may interact with xenobiotic compounds and lead to

cytotoxicity when negatively regulated in their protein activity. Covalent or non-covalent

bindings provoke such interactions leading to irreversible or reversible protein inactivation.

In consequence, metabolic processes, local and peripheral transport of ligands, or cytoskeleton

stability are affected. A teratogen chemical perturbation disturbs a developmental stage of

an organism as like an embryo or produces a malformation.

The intake of xenobiotic compounds may also induce a xenobiotic defence. Thus, the xenobi-

otic metabolism transforms the compound into an endogenous metabolite, excreted through
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Figure S1-1. Example of a cell-based bioassay. An exogenous compound binds to an

estrogen receptor and induces a dimerisation of estrogen receptors. The dimer migrates

in to the nucleus and binds to the DNA and induces the transcription of a gene impor-

tant for the hormone signaling pathway. The bioassay-cell is genetically manipulated and

transcribes next to the estrogen-related gene, the reporter gene luciferase. Added luciferin

binds to the produced luciferase-protein and emits light. The luminiscent activity in an

bioassay-test is equivalent to the mixtures potency to bind to the estrogen receptor. Figure

taken from [Kraak, Michiel 2021].
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faeces or urine [van Straalen, Nico M. 2021a].

The main location of xenobiotic metabolism is the liver tissue. The activating enzymes cy-

tochrome P450 and NADPH cytochrome P450 reductase are mainly produced in hepatocytes.

After enzymatic activation, hydrophilic groups are introduced into the xenobiotic compound.

This reaction allows further conjugations through transferase enzymes, which transforms the

xenobiotic to an endogenous metabolite, ideally with an increased property of water solubility.

The biotransformed xenobiotic will be excreted either by transport via bile and gut to faeces

or via kidney to urine.

However, the xenobiotic metabolism may also cause toxicity. The activation of a xenobi-

otic through cytochrome P450 may make the xenobiotic extremely reactive. For example,

xenobiotic polyaromatic hydrocarbons build DNA adducts after activation and induce mu-

tations. Thus, next to protein interactions, exogenous compounds may also bind to other

biomolecules such as DNA, or RNA leading to genotoxic or carcinogenic effects. Further

xenobiotics, e.g. polychlorinated biphenyls, do not quickly degrade, albeit the enzymes for

biotransformation are induced in high potency. In general, a xenobiotic compound may cause

ROS formation in various ways, e.g. by redox reactions, or indirectly, e.g. by interaction with

ROS-scavenging antioxidants. Consequently, the induced cytochrome P450 increasingly forms

oxygen metabolites, called reactive oxygen species (ROS). The compound itself does not cause

oxidative stress, but the ROS binds to endogenous biomolecules like proteins or DNA and

leads to cellular damage. Oxidative stress and biotransformation of xenobiotics are cellu-

lar responses due to stress. Thus, biotransformation and oxidative stress are co-dependent

processes on a molecular level [van Straalen, Nico M. 2021a].

Integrating chemicals into cellular and mitochondrial membranes may disturb the phospho-

lipid bilayer’s integrity and functioning, leading to membrane damage and narcosis [van

Straalen, Nico M. 2021a]. Chemicals may be partitioned in the lipid bilayer, not depen-

dent on the chemical compound. Thus, each xenobiotic compound exerts this MOA, which

is considered the baseline of toxic effect. Nevertheless, each chemical compound has another

lipid-water-partitioning coefficient and thus differ in their potency of baseline toxicity. Next

to narcosis, changes in the electrolyte gradient of the membrane can disrupt the membrane

integrity through augmented or reduced ion transport.

Furthermore, chemicals may affect immune cells and induce various forms of immunotoxicity.

The immune system is complex consisting of different cell types. A network of cellular and

component interactions protects an organism from infections and pathogens, such as xeno-

biotic compounds. A xenobiotic perturbation may induce immunoregulation via the innate

or the adaptive immune system. For example, a xenobiotic increased ROS production may

156



S1.3. The dogma of molecular biology.

activate an innate immune response leading to the production and the release of cytokines in

macrophages [Dong et al. 1998].

Synthetically designed pharmaceuticals and biocides are produced to affect specifically to cell

types, species-specific proteins or biochemical pathways. Thus, a plethora of chemicals has

further target-specific MOAs practical for the human population to maintain health and pro-

duce food and products for industry and personal care. However, these MOA may also affect

non-target organisms when released into the environment and may also have a cumulative

adverse effect on public health due to the food web.

The concept of MOA is frequently used to describe toxic effects in environmental toxicology

and helps classify compounds and exposures by their molecular effects. In general, a chemical

compound may perturb organisms across multiple MOAs. Therefore, researchers aim to

identify the concentration levels in environmental monitoring and risk assessment, where

MOAs may get active in biological entities. Mixture considerations are essential and frequently

investigated when considering cell- or species-specific effects. In general, the MOAs, defined

by specific interactions with biomolecules, have lower effect levels but are more restricted to

specific groups of chemical exposures. Therefore, Laboratory experiments considering single

compounds or artificial mixtures of chosen compounds may reflect specific and unspecific

effects on the chosen model organism. However, the investigation of environmental samples

expands the complexity of the diverse compounds enormously. Significantly, the mixtures of

lowly concentrated or even undetectable - albeit present - compounds influence the xenobiotic

perturbation as it affects mixtures of specific MOAs and impacts narcotic effects.

S1.3 The dogma of molecular biology.

In 1953, Francis Crick and James Watson have described the double-stranded deoxyribonu-

cleic acid molecule (DNA) [Watson and Crick 1953] ∗. The blueprint of one or multiple

functions † is conserved in the DNA sequence which defines a gene. The DNA has been al-

ready understood as a carrier system of genetic information, but also other biomolecules are

relevant to releasing a gene’s molecular function. In this respect, a second essential publication

of Francis Crick in 1970 has helped understand the biomolecular flow of genetic information

∗ Shared with Maurice Wilkins, both researchers were honored with the Nobel price in Physiology or

Medicine 1962. However, it has to be highlighted, that the assisting chemist Rosalind Franklin made also an

important contribution. She was the first researcher, who imaged the DNA molecule via X-ray diffraction,

which allowed the deciphering of the DNA’s double-helix structure.
† In the case of alternative splicing, identical transcribed mRNA sequences may be modified to different

pre-translational mRNA transcripts, where each may generate different proteins with different functions.
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and led to the description of the central dogma of molecular biology [Crick 1970](see figure S1-

2). The two main processes of transcription and translation describe the transfer of genetic

information from DNA sequences via ribonucleic acid (RNA) to a protein.

Figure S1-2. The central dogma of molecular biology The biological processes of tran-

scription and translation transform genetic information from DNA via RNA to proteins.

In all three cases, chemical modifications may stabilise or activate the molecules in the

environment of a cell. Whereas genetic information on RNA level is reversible to the

DNA level, the protein level is irreversible. Taken from [Fu et al. 2014].

The transcription describes the molecular process of generating a primary transcript of a

DNA sequence section in a complementary RNA sequence. In general, two types of RNA

molecules may be generated: messenger or non-coding RNA. The messenger RNA (mRNA)

is the intermediate product used as a stencil in the molecular process of translation to produce

an amino acid sequence forming the protein. Therefore, mRNA migrates from the nucleus to

the ribosome. The non-coding RNA (ncRNA) does not contain a protein-coding sequence but

forms molecules, which are essential for gene expression regulation, e.g. small nuclear RNA

and microRNA, or for translation, e.g. transfer RNA (tRNA) and ribosomal RNA (rRNA).

The rRNA is an essential building block for a ribosome - the cell compartment where the

translation occurs. The tRNA molecules bind and transport amino acids. During translation,
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the presented anticodon sequences of tRNAs bind complementary to the mRNA sequence in

the ribosome. The tRNA-docked amino acids are chained up sequentially via peptide bonds,

and the built protein is released into the cell’s plasma. As also highlighted in figure S1-2,

DNA, RNA and proteins are chemically modified, e.g. the polyadenylation of the end of a

transcribed mRNA or the splicing of post-transcribed mRNA in eukaryote cells. The latter

process may lead to different pre-translational mRNA transcripts, albeit read out from the

same DNA sequence during transcription and thus to different protein products.

Independent of translating either mRNA or ncRNA from a DNA sequence, biomolecules are

produced, which fulfil some function in some biological entity. Genetic feedback loops may

positively or negatively regulate the gene translation based on the stimulus ∗, which results

in an up- or downregulation in transcription and thus more or fewer copies of specific mRNA

transcripts. Such extracellular stimuli may also be endogenous or exogenous xenobiotics, like

xenobiotic uptake by the organism, and may induce a direct or indirect gene regulation or

lead to an induced or a repressed cellular response cascade.

S1.4 Transcriptomics

One may choose between the hybridisation- or sequence-based transcriptomic approaches.

The hybridisation-based techniques are based on microarrays - small glass plates with fixed

labelled cDNAs. The microarray design shall represent the complete gene complement of the

organism [van Straalen, Nico M. 2021b]. For analysis, a mixture of different RNA molecules

is extracted and enriched from samples of lyzed cells. After induced reverse transcription,

the prepared samples of cDNAs are pooled, e.g. in treatment and control groups. Then,

they are hybridised to the manufactured or customised set of probes on a microarray. The

mRNA molecules bind sequence-specific to probes of labelled cDNA. The microarray analysis

quantifies the amount of a specific set of mRNA transcript copies on microarrays - small glass

plates with fixed labelled cDNAs. Per exposure condition, the normalised intensity of gene

expression per probe is detected, and a gene’s response is expressed relative to the measured

intensity of transcripts to a control condition. Further preprocessing steps are used to correct,

for example, significant gene expressions from the background noise. Then, computational

and bioinformatics approaches are used to model gene expression dependent on exposure to

environmental chemicals.

∗ A cellular function may be not only managed by changes in translation. Such stimuli may also regu-

late post-transcriptional modifications and translational processes, and lead to more or less gene products or

metabolites.
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In comparison to microarray-based approaches, RNA-seq is considered to be a more system-

atic analysis of gene expression patterns [Qian et al. 2014]. The total RNA from (pools)

of biological entities are isolated first, and reverse transcription is induced. The sequence

sizes are selected, and cDNA gets labelled with barcode labels to facilitate the sequencing.

Sequencing cDNA pools allow the transcriptome assembly based on a reference genome. If no

reference genome for a species is available, the analysis requires a greater sequencing depth and

usually ends in many incomplete transcripts (de-novo sequencing). The output is corrected to

equalise effects of, e.g. total RNA yield, library size, and gene length. Per exposure condition,

the normalised number of transcripts per gene is counted, and a gene’s response is expressed

relative to the number of transcripts to a control condition. Considering count instead of

light intensity data, data processing and statistical analysis slightly differ. The advantages of

RNA-seq are its ability to quantify a broad coverage of RNA transcripts, including the un-

known variants (e.g. splice variants), and its better applicability for experiments in non-model

organisms. However, this may also be the main limitation, as computational analysis may be-

come more cumbersome [Martins et al. 2019, Qian et al. 2014]. Although hybridisation-based

is taken over by the rapid and high-throughput sequence-based approaches, the microarrays

are still frequently used in environmental toxicology due to (ostensible) cost-efficiency, their

standardised computational and bioinformatics analysis, and prioritisation of the assessed

genes [Martins et al. 2019].
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Table S2-1. List of selected compounds for chemical analysis in stream water samples. (Con-

tinues on next page)

Chemical Name CAS PubChem

CID

Chemical Name CAS PubChem

CID

4-Methyl Benzotriazole (4TTZ) 29878-31-7 122499 Lincomycin 154-21-2 3000540

5,6-Dimethyl Benzotriazole 4184-79-6 77849 Lomefloxacin 98079-51-7 3948

5-Methyl Benzotriazole 136-85-6 8705 Miconazole 22916-47-8 4189

Benzotriazole 95-14-7 7220 Norfloxacin 70458-96-7 4539

2-aminobenzothiazole 136-95-8 8706 Norgestimate 35189-28-7 6540478

2-Hydroxy Benzolthiazole 934-34-9 13625 Ofloxacin 82419-36-1 4583

Benzothiazole 95-16-9 7222 Ormetoprim 6981-18-6 23418

4-Nonylphenols 84852-15-3 Oxacillin 66-79-5 6196

4-Nonylphenol monoethoxylates 84852-15-3 Oxolinic Acid 14698-29-4 4628

4-Nonylphenol diethoxylates 84852-15-3 Penicillin G 61-33-6 5904

Octylphenol 1806-26-4 15730 Penicillin V 87-08-1 6869

BisphenolA 80-05-7 6623 Roxithromycin 80214-83-1 133611834

Triclosan 3380-34-5 5564 Sarafloxacin 98105-99-8 56208

Acetaminophen 103-90-2 1983 Sulfachloropyridazine 80-32-0 6634

Azithromycin 83905-01-5 447043 Sulfadiazine 68-35-9 5215

Caffeine 58-08-2 2519 Sulfadimethoxine 122-11-2 5323

Carbadox 6804-07-5 5353472 Sulfamerazine 127-79-7 5325

Carbamazepine 298-46-4 2554 Sulfamethazine 57-68-1 5327

Cefotaxime 63527-52-6 5742673 Sulfamethizole 144-82-1 5328

Ciprofloxacin 85721-33-1 2764 Sulfamethoxazole 723-46-6 5329

Clarithromycin 81103-11-9 84029 Sulfanilamide 63-74-1 5333

Clinafloxacin 105956-97-6 60063 Sulfathiazole 72-14-0 5340

Cloxacillin 61-72-3 6098 Thiabendazole 148-79-8 5430

Dehydronifedipine 67035-22-7 128753 Trimethoprim 738-70-5 5578

Diphenhydramine 58-73-1 3100 Tylosin 1401-69-0 134693945

Diltiazem 42399-41-7 39186 Virginiamycin M1 21411-53-0 46936184

Digoxin 20830-75-5 2724385 1,7-Dimethylxanthine 611-59-6 4687

Digoxigenin 1672-46-4 15478 Furosemide 54-31-9 3440

Enrofloxacin 93106-60-6 71188 Gemfibrozil 25812-30-0 3463

Erythromycin-H2O 114-07-8 12560 Glipizide 29094-61-9 3478

Flumequine 42835-25-6 3374 Glyburide 10238-21-8 3488

Fluoxetine 54910-89-3 3386 Hydrochlorothiazide 58-93-5 3639

10-hydroxy-amitriptyline (Oxalate) 1246833-15-7 131871090 2-Hydroxy-ibuprofen 51146-55-5 10443535
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CID

Chemical Name CAS PubChem

CID

Ibuprofen 15687-27-1 3672 Meprobamate 57-53-4 4064

Naproxen 22204-53-1 156391 Methylprednisolone 83-43-2 6741

Triclocarban 101-20-2 7547 Metoprolol 51384-51-1 4171

Triclosan 3380-34-5 5564 Norfluoxetine 83891-03-6 4541

Warfarin 81-81-2 54678486 Norverapamil 67018-85-3 104972

Albuterol 18559-94-9 2083 Paroxetine 61869-08-7 43815

Amphetamine 300-62-9 3007 Prednisolone 50-24-8 5755

Atenolol 29122-68-7 2249 Prednisone 53-03-2 5865

Atorvastatin 134523-00-5 60823 Promethazine 60-87-7 4927

Cimetidine 51481-61-9 2756 Propoxyphene 469-62-5 10100

Clonidine 4205-90-7 2803 Propranolol 525-66-6 4946

Codeine 76-57-3 5284371 Sertraline 79617-96-2 68617

Cotinine 486-56-6 854019 Simvastatin 79902-63-9 54454

Enalapril 75847-73-3 5388962 Theophylline 58-55-9 2153

Hydrocodone 125-29-1 5284569 Trenbolone 10161-33-8 25015

Metformin 657-24-9 4091 Trenbolone acetate 10161-34-9 66359

Oxycodone 76-42-6 5284603 Valsartan 137862-53-4 60846

Ranitidine 66357-35-5 3001055 Verapamil 52-53-9 2520

Triamterene 396-01-0 5546 Diatrizoic acid 117-96-4 2140

Alprazolam 28981-97-7 2118 Iopamidol 60166-93-0 65492

Amitriptyline 50-48-6 2160 Citalopram 59729-33-8 2771

Amlodipine 88150-42-9 2162 Tamoxifen 10540-29-1 273356

Benzoylecgonine 519-09-5 448223 Cyclophosphamide 50-18-0 2907

Benztropine 86-13-5 1201549 Venlafaxine 93413-69-5 5656

Betamethasone 378-44-9 9782 Amsacrine 51264-14-3 2179

Cocaine 50-36-2 446220 Azathioprine 446-86-6 2265

DEET 134-62-3 4284 Busulfan 55-98-1 2478

Desmethyldiltiazem 84903-78-6 25834477 Clotrimazole 23593-75-1 2812

Diazepam 439-14-5 3016 Colchicine 64-86-8 6167

Fluocinonide 356-12-7 9642 Daunorubicin 20830-81-3 30323

Fluticasone propionate 80474-14-2 444036 Doxorubicin 23214-92-8 31703

Hydrocortisone 50-23-7 5754 Drospirenone 67392-87-4 68873

Etoposide 33419-42-0 36462 Moxifloxacin 151096-09-2 152946

Oxazepam 604-75-1 4616 Medroxyprogesterone Acetate 71-58-9 6279

Metronidazole 443-48-1 4173 Rosuvastatin 287714-41-4 446157

Teniposide 29767-20-2 452548 Zidovudine 30516-87-1 35370

Melphalan 148-82-3 460612
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Table S2-3. Data flags in chemical analytics. This table has to be used to interpret the

supplement data file FlaggedChemicalInput.xlsx. All measurements with data flag

’B’ and ’U’ were set to 0ng/L in this study. (Data flags had been defined for the prelim-

inary study by Ferrey et al. [2017] and had been provided for this study by collaboration

partner Dalma Martinović-Weigelt. For more details, see [Ferrey et al. 2017])

Flag Definition

B Analyte found in the sample and the associated laboratory blank

U Analyte not detected at reporting limit

K Peak detected but did not meet quantification criteria, the result re-

ported represents the estimated maximum possible concentration

N Authentic recovery is not within method/contract control limits

TIC Compound identity and concentration are estimated

V Surrogate recovery is not within method/contract control limits

H Analyte concentration is estimated

NQ Data is not quantifiable

T The result was recalculated against alternate labeled compound(s) or

internal standard

MAX Analyte concentration is an estimated maximum value

D Dilution data

Bioanalytical assessment for endocrine activity. Next to chemical analyses, our col-

laborators performed an endocrine disruption assessment and provided further information.

ToxCast predicted estrogenic targets were identified in two out of five streams with in-vitro es-

trogenic activity considered with EE2-equivalent concentrations (see supplemental figure S2-

5). The exposure-pattern clustering identified Naproxen, Ciprofloxacin and 5,6-Dimethyl-

Benzotriazole as estrogen activity related (EE2 in compound group 4), although not describ-

ing the total in-vitro assessed endocrine effect. All three compounds were detected in only

one stream with estrogenic activity (EE2). Nitrates are considered as pollution- and landuse

marker. Their exposure pattern represents also an endocrine activity result in this thesis.

Nitrate belongs to compound group 1 and the co-correlated compounds potentially reflect an

endocrine activity. For example, Bisphenol A and Erythromycin were detected in streams

7 and 10, which showed estrogen activity across all three test settings (see supplemental ta-

ble S2-5). One stream showed an androgenic in-vitro activity (see supplemental table S2-5).

The exposure patterns of Lincomycin, Sulfamerazine, Stream9 and CG8 are identical and

may highlight androgenic-related exposure effects.
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Table S2-4. List of 29 detected chemical compounds with CAS-identifier, estimated

range of fish toxicity, the structural formula, and additional information to chemical clas-

sification.

Chemicals CAS ToxArea

(Fish)

mg/L

Formula Class

5,6-Dimethyl-

Benzotriazole

1354973-50-4 10 C8H9N3 Benzotriazole

Sulfamerazine 127-79-7 500 C11H12N4O2S Antibacterial Agent

Lincomycin 154-21-2 1000 C18H34N2O6S Antibacterial agent

Iopamidol 60166-93-0 5000 C17H22I3N3O8 Contrast Agent

Nitrate 1 NO3 NA

Metformin 657-24-9 500 C4H11N5 Biguanide

4-Methyl-Benzotriazole 29878-31-7 50 C7H7N3 Benzotriazole

Amitriptyline 50-48-6 1 C20H23N Antidepressant

Ethinyl Estradiol 57-63-6 1 C20H24)2 Estrogen

Naproxen 22204-53-1 50 C14H14O3 Non-Steroidal anti-inflammatory

drug

Cotinine 486-56-6 100 C10H12N2O Alkaloid

Triclosan 3380-34-5 0.1 C12H7Cl3O2 Polychloro phenoxy phenol

5-Methyl-benzotriazole 136-85-6 10 C7H7N3 Benzotriazole

Caffeine 58-08-2 500 C8H10N4O2 Methylxanthine alkaloid

DEET 134-62-3 10 C4H13N3 Insect repellent

Diazepam 439-14-5 1 C16H13ClN2O Anxiolytic Agent

Triamterene 396-01-0 10 C12H11N7 Potassium sparing Diuretic

Sertraline 79617-96-2 0.1 C17H17Cl2N Antidepressiva

Benzothiazole 95-16-9 10 C7H5NS Benzothiazole

2-Hydroxy-Benzothiazole 934-34-9 1 C7H5NOS Benzothiazole

Trimethoprim 738-70-5 100 C14H18N4O3 Antibacterial Agent

Benzotriazole 95-14-7 10 C6H5N3 Benzotriazole

Bisphenol A 80-05-7 1 C15H1602 Xenoestrogen

2-Amino-Benzothiazole 136-95-8 1 C7H6N2S Benzothiazole

Erythromycin-H20 114-07-8 50 C37H67NO13 Antibacterial Agent

Sulfamethoxazole 723-46-6 100 C19H11N3)3S Antibacterial agent

Meprobamate 57-53-4 10 C9H18N2O4 Antidepressant

Carbamazepine 298-46-4 10 C15H12N2O Antidepressant

Ciprofloxacin 85721-33-1 100 C17H18FN3O3 Antibacterial agent
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Table S2-5. Estrogen and androgen receptor-related activities in water samples

of ten selected streams. Low levels of estrogen activity were detected in surface wa-

ter samples (in vitro cell assays, below 0.25 ng EE2 equivalents/L) (see second row).

Pathway enrichment results were associated with estrogen receptor signalling (fourth col-

umn). Enrichment results were negative for one site but vitellogenin upregulation was

determined (*). (This overview of endocrine activities was measured in a preliminary

study by Ferrey et al. [2017] and provided for this study by collaboration partner Dalma

Martinović-Weigelt. For more details, see [Ferrey et al. 2017])

Site Estrogen

(ToxCast)

Estrogen

(in-vitro)

Estrogen

(Microarray)

Androgen

(in-vitro)

1

2 *

3 X X

4 X X

5

6

7 X X X

8 X X

9 X X

10 X X X
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A B

Figure S2-1. Pairwise Jaccard similarity and overlap of DEA results for sin-

gle compound exposure scenarios. Here, only single compound scenarios were com-

pared when exposure patterns have at least two values unequal zero (multiple detected

compounds). Thus eighteen compounds are represented in columns and rows. The chemi-

cals are assigned to compound groups. In both cases, DEA results have, in any case, any

overlap. The similarity degrees of DEA results support the clustering to compound groups,

but shows some exceptions (e.g. 5-Methyl-Benzotriazole or Cotinine). A) The overlap of

significantly differentially expressed genes. B) The overlap of enriched terms.
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Biweight-midcorrelation

Figure S2-2. Module-trait-correlations across all 37 considered exposure traits (X)

and 21 modules (Y). Black framed tiles represent significant biweight mid-correlations.

The color code represents the direction and the strength of correlation. The exposure

traits are grouped into four exposure scenario groups (general treatment, stream-wise,

single compound and compound group). The module-trait-correlations were considered

significant, if |bicor| ≥ 0.3 and pbicor ≤ 0.05.
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Table S2-6. Overlap of association rule mined chemical-gene interactions to CTD

and STITCH. The AR results with single compound exposure scenario (N(tot)) over-

lapped to the chemical-wise gene sets in STITCH (N(S)) and CTD (N(C)). The results

are cumulatively sorted by overlap to CTD (U(C)) and STITCH (U(S)). The endocrine

compounds Bisphenol A and EE2 are covered the best considering the relative overlap

(%()) to CTD.

Scenario Compound N(tot) N(C) N(S) U(C) U(S) %(C) %(S)

Single Bisphenol A 211 6678 291 115 4 54.5 1.9

Carbamazepine 525 902 343 38 13 7.2 2.5

EE2 91 3967 624 32 8 35.2 8.8

Triclosan 399 631 202 25 15 6.3 3.8

Sulfamethoxazole 266 7 204 0 38 0.0 14.3

Cotinine 174 14 405 1 27 0.6 15.5

Triamterene 180 4 153 0 23 0.0 12.8

Caffeine 164 281 1008 7 8 4.3 4.9

Metformin 164 256 1154 7 7 4.3 4.3

Diazepam 399 27 480 2 12 0.5 3.0

Ciprofloxacin 500 23 512 1 12 0.2 2.4

Benzotriazole 266 1 151 0 0.0 13 4.9

Naproxen 216 45 342 0 9 0.0 4.2

Trimethoprim 422 4 252 0 9 0.0 2.1

Benzothiazole 422 3 131 0 7 0.0 1.7

Sertraline 159 64 0 5 0 3.1 0.0

Amitriptyline 155 68 0 4 0 2.6 0.0

DEET 164 83 111 0 2 0.0 1.2

Erythromycin 211 28 370 1 0 0.5 0.0
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Table S2-7. Overlap of association rule mined compound group-gene interactions

to CTD and STITCH. The AR results with compound group exposure scenario (N(tot))

overlapped to the chemical-wise gene sets in STITCH (N(S)) and CTD (N(C)). The results

are cumulatively sorted by overlap to CTD (U(C)) and STITCH (U(S)). The endocrine

compounds Bisphenol A and EE2 are covered the best considering the relative overlap

(%()) to CTD.

Scenario Compound N(tot) N(C) N(S) U(C) U(S) %(C) %(S)

CG Bisphenol A 422 6678 291 249 4 59.0 0.9

EE2 500 3967 624 175 25 35.0 5.0

Carbamazepine 525 902 343 38 13 7.2 2.5

Sulfamethoxazole 525 7 204 1 46 0.2 8.8

Triclosan 399 631 202 25 15 6.3 3.8

Caffeine 399 281 1008 17 23 4.3 5.8

Metformin 422 256 1154 12 25 2.8 5.9

Naproxen 500 45 342 1 17 0.2 3.4

Benzotriazole 525 1 151 0 17 0.0 3.2

Cotinine 399 14 405 2 15 0.5 3.8

Diazepam 399 27 480 2 12 0.5 3.0

Ciprofloxacin 500 23 512 1 12 0.2 2.4

Trimethoprim 422 4 252 0 9 0.0 2.1

Benzothiazole 422 3 131 0 7 0.0 1.7

Erythromycin 422 28 370 2 3 0.5 0.7

Amitriptyline 155 68 0 4 0 2.6 0.0

DEET 422 83 111 2 2 0.5 0.5

Triamterene 399 4 153 1 1 0.3 0.3
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Table S2-8. Overlap of chemical-gene interactions to CTD and STITCH applying

differential gene expression analysis. The DEA results with single compound expo-

sure scenario (N(tot)) overlapped to the chemical-wise gene sets in STITCH (N(S)) and

CTD (N(C)). The results are cumulatively sorted by overlap to CTD (U(C)) and STITCH

(U(S)). The endocrine compounds Bisphenol A and EE2 are covered the best considering

the relative overlap (%()) to CTD.

Scenario Compound N(tot) N(C) N(S) U(C) U(S) %(C) %(S)

Single Bisphenol A 521 6678 291 318 10 61.0 1.9

EE2 694 3967 624 248 21 35.7 3.0

Caffeine 515 281 1008 21 17 4.1 3.3

Metformin 453 256 1154 11 25 2.4 5.5

Triclosan 423 631 202 23 3 5.4 0.7

Carbamazepine 184 902 343 21 3 11.4 1.6

Erythromycin 649 28 370 2 12 0.3 1.8

Naproxen 689 45 342 3 10 0.4 1.5

Trimethoprim 425 4 252 0 10 0.0 2.4

Cotinine 521 14 405 0 8 0.0 1.5

Sulfamethoxazole 305 7 204 0 7 0.0 2.3

Diazepam 423 27 480 1 6 0.2 1.4

Ciprofloxacin 495 23 512 0 5 0.0 1.0

Sertraline 477 64 0 5 0 1.0 0.0

DEET 470 83 111 2 3 0.4 0.6

Benzotriazole 388 1 151 0 4 0.0 1.0

Triamterene 411 4 153 1 2 0.2 0.5

Benzothiazole 425 3 131 0 2 0.0 0.5

Amitriptyline 403 68 0 1 0 0.2 0.0

Iopamidol 449 10 18 0 1 0.0 0.2
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Table S2-9. Overlap of compound group-gene interactions to CTD and STITCH

applying differential gene expression analysis. The DEA results with compound

group exposure scenario (N(tot)) overlapped to the chemical-wise gene sets in STITCH

(N(S)) and CTD (N(C)). The results are cumulatively sorted by overlap to CTD (U(C))

and STITCH (U(S)). The endocrine compounds Bisphenol A and EE2 are covered the

best considering the relative overlap (%()) to CTD.

Scenario Compound N(tot) N(C) N(S) U(C) U(S) %(C) %(S)

CG EE2 640 3967 624 219 19 34.2 3.0

Bisphenol A 239 6678 291 147 5 61.5 2.1

Metformin 239 256 1154 5 13 2.1 5.4

Ciprofloxacin 640 23 512 0 10 0.0 1.6

Naproxen 640 45 342 2 5 0.3 0.8

Triclosan 83 631 202 6 1 7.2 1.2

Amitriptyline 800 68 0 4 0 0.5 0.0

Caffeine 83 281 1008 2 2 2.4 2.4

Trimethoprim 239 4 252 0 3 0.0 1.3

Erythromycin 239 28 370 0 3 0.0 1.3

Iopamidol 632 10 18 0 3 0.0 0.5

DEET 239 83 111 0 2 0.0 0.8
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Table S2-10. Overlap of chemical-gene interactions to CTD and STITCH apply-

ing weighted gene correlation network analysis. The WGCNA results (N(tot)) with

single compound (top) and compound group (bottom) exposure scenario resulted in com-

pound wise gene sets. These overlapped to compound wise gene sets in STITCH (N(S))

and CTD (N(C)). The results are cumulatively sorted by overlap to CTD (U(C)) and

STITCH (U(S)). The endocrine compounds Bisphenol A and EE2 are covered the best

considering the relative overlap (%()) to CTD.

Scenario Compound N(tot) N(C) N(S) U(C) U(S) %(C) %(S)

Single EE2 2178 3967 624 680 50 31.2 2.3

Naproxen 2178 45 342 7 34 0.3 1.6

Bisphenol A 37 6678 291 21 2 56.8 5.4

Metformin 37 256 1154 4 3 10.8 8.1

Erythromycin 176 28 370 1 6 0.6 3.4

Benzotriazole 37 1 151 0 3 0.0 8.1

CG EE2 2178 3967 624 680 50 31.2 2.3

Ciprofloxacin 2178 23 512 4 45 0.2 2.1

Naproxen 2178 45 342 7 34 0.3 1.6

Sertraline 1086 64 0 5 0 0.5 0.0

Iopamidol 2504 10 18 1 1 0.0 0.0
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S3.1 Hyperparameter tuning results

We examined the improvement to the initial model (see figure 4.5). Therefore, we performed

a training run for the best-performing word embedding model (with embedding vector size

n = 100) according to a RandomSearch with kerasTuner across one hundred hyperparameter

recombinations (see table S3-1). The training and validation curves and the confusion matrix

for the test set are shown in supplemental figure S3-1.

A similar examination for an LSTM model with n = 100 neurons (see figure 4.6) was done.

We determined the parameter setting for LSTM model (with n = 100 neurons) by deter-

mining the best-performing model in aRandomSearch with kerasTuner across one hundred

hyperparameter combinations (see table S3-2). The outcome of the training run with this

parameter setting is shown in supplemental figure S3-2.

Table S3-1. Hyperparameter tuning for word embedding model. Applying kerastuner

100 combinations of variable parameters were tested. The list of variable instances is

shown in the second column. The model with the lowest validation loss was considered the

best model, and its respective parameters are shown in the third column.

Parameter Variable instances Best model

WE L2-regularization [0,1e-6, 1e-8] 0

Activation function after WE [True, False] True

Activation function [ReLU, tanh] tanh

Dropout dense layers [0,0.2,0.4,0.6,0.8] 0.4

Number dropouts [0,1,2] 2

Number dense layers [3,4,5] 5
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Figure S3-1. Model performance of the selected word embedding model after hy-

perparameter tuning. The deep learning model was trained with UMLS-annotated

chemical-biomolecule-pairs retrieved from SemMedDB to predict their toxicogenomic re-

lationship. The model has an initial word embedding layer followed by five dense layers,

which decrease in size. The training performance across epochs was determined for a val-

idation set with approximately 71T relations (20% of training). A: The binary accuracy

(dashed line) and binary cross-entropy (solid line) for training and validation. The val-

idation loss decreased and finally converged to 0.582. The maximal validation accuracy

was valued at 0.70. B: The confusion matrix presents the prediction results for the test

set IE (n=20T) and resulting in a true-positive rate of 0.697. This model is marginally

better than the original word embedding model with vector size n = 100 (see figure 4.5).

Table S3-2. Hyperparameter tuning for model with LSTM. The number of units

for the output vectors of LSTM and time distributed dense layer were set to 100. The

RandomSearch function of kerastuner tested 100 randomly selected combinations of pa-

rameters. The best recombination is shown in the last column.

Parameter Variable instances Best model

LSTM L2-regularization [0, 1e-2, 1e-6] 0

Bidirectional LSTM [True, False] False

unroll LSTM [True,False] True

Dropout [0,0.2,0.4,0.6,0.8] 0.4

len(Time distributed) [100, 50] 100
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Figure S3-2. Training performance of the selected model with LSTM layer The deep

learning model was trained with UMLS-annotated chemical-biomolecule-pairs retrieved

from SemMedDB to predict their toxicogenomic relationship. The model has an initial

word embedding layer. The following LSTM layer and time distributed dense layer are set

up with two neurons each, equal to the sequence length. Then, five dense layers, which

decrease in size, are trained to classify the relationship type from the hidden sequence

information. A: The binary accuracy (dashed line) and binary cross-entropy (solid line)

for training and validation. We determined the training performance across epochs for a

validation set with approximately 71T relations (20% of training). The binary accuracy

(dashed line) and binary cross-entropy (solid line) were tracked for training and valida-

tion. The loss decreased over time and reached a saturated state at approximately 0.583.

The maximal accuracy was valued at 0.70. B: The confusion matrix presents the pre-

diction results for the test set IE (n=20T) and resulting in a true-positive rate of 0.692.

This model is marginally better than the original word embedding model with vector size

n = 100 (see figure 4.5).

Hyperparamer tuning of model with LSTM. LSTM contains many parameters that

are potentially helpful when considering such complex input data (based on a vocabulary of

more than 40 000 semantic concepts). However, the performance improvement was marginal

after adapting the model architecture B based on hyperparameter tuning when considering

loss and accuracy. Although we considered different parameter settings for the application

of LSTM and investigated the influence of the LSTM neuron output length, this study is far

from an extensive parameter analysis. Still, the decisions for chosen parameters should be
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S3.2. Functional enrichment with predicted chemical-gene interactions and CTD reference
pathway genesets

described shortly.

The dropout helps to improve training processes and to overcome overfitting in training. It

was seen as a standard parameter to test. What might be surprising for the reader is the

range of dropout values, also considering dropouts for more than half of the input vector

(see table S3-2). However, as in the early stages of the model training learning curves had

a relatively fast loss drop in less than ten epochs and reached a saturation plateau relatively

fast, the chances of overfitting were considered as high with the given input. Consequently,

the dropout was investigated in a broad range, also considering potentially aggressive values.

As already mentioned, there are various deep learning knowledge representation alternatives

possible. Alone for the case of recurrent neural networks, various alternative architectures

may be considerable. For example, bidirectional recurrent neural networks were frequently

used to capture biomedical knowledge from text [Zhao et al. 2019, Lyu et al. 2017, Peng et al.

2018]. Consequently, this possibility was also considered within the hyperparameter tuning

of LSTM in the present investigation, albeit not applied in the final model architecture B.

A bidirectional LSTM might be expected to improve for the short sequence length of two

marginally. Applying a bidirectional layer might influence the horizontally augmented data

more substantially. However, it was decided to determine the same architecture when consid-

ering all different inputs. The effect of bidirectionality was not tested for augmented input as

this option was neglected in hyperparameter tuning beforehand. Due to the potential early

rejection of bidirectionality, bidirectional LSTMs for elongated sequences should be consid-

ered also in future investigations.

S3.2 Functional enrichment with predicted chemical-gene in-

teractions and CTD reference pathway genesets

We need to filter chemical-gene interactions to perform a functional enrichment based on

their prediction probability. Therefore, a filtering threshold f was determined first. We

determined the true-positive rate (TPR) for the known chemical-gene interactions in TC2G

for different values of f to determine a threshold for f (see table S3-3). We expected that

false-positive results tend to have a probability distribution closer to 0.5 than the distribution

of true-positive results.

As the violin plot for the probabilities of predictions for TC2G in figure S3-3 shows, the

probability distributions of the false-positive predictions were visually somewhat similar to

those of true-positives. However, the left red violin plot — the true-positive INHIBITS
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predictions — tapers less than the right red violin plot towards lower prediction values. We

observed a slightly higher ratio of lower prediction probabilities (below 0.2) for true-positive

INHIBITS results. Equivalently, true-positive STIMULATES predictions had higher ratios

for the higher prediction values (above 0.8) (see blue violin plots).

INHIBITS STIMULATESCTD-Relation 
0.0

0.2

0.4

0.6

0.8

1.0
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b
a
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INHIBITSSTIMULATESPrediction

Figure S3-3. Relationship grouped violin plots of prediction probability for

chemical-gene interactions from TC2G.

The value of TPR presents the ratio of the true-positive predictions to the total amount of

samples. Whereas the TPR for STIMULATES decreased for enlarged values of f , the TPR for

INHIBITS increased. Although both TPR-trends diverged, the overall TPR increased with

increasing f (see table S3-3), albeit the values were still close to 0.5 and not convincingly

better than a random guess. Approximately, false-positive results were equally often with

higher probabilities as true-positive results. However, a filter threshold of f = 0.9 was chosen

to apply an example of a functional enrichment to chemical semantic concepts.

We performed a chemical wise evaluation for the ten most frequent chemical semantic

concepts in TC2G applying an overrepresentation analysis (ORA). This study regarded the

pathway level only. However figure S3-4 shows that toxicological evaluation with CTD is

technically possible on chemical and disease levels.

We compared the distribution of prediction probabilities based on prediction classes to TC2G

and chose a filter threshold f = 0.9. As the prediction was a binary classification, we se-

lected all predictions for relationship type INHIBITS with a probability p ≥ f and STIM-

ULATES with p ≤ (1 − f) as potentially biologically meaningful relations. A selected

chemical-biomolecule relation C →Relation B could be interpreted as a toxicologically regu-

lated biomolecule B after exposure to chemical C. We predicted the relationship type across

all biomolecular semantic concepts represented in TC2G and I for each of the ten chemical

semantic concepts. The chemical wise predictions were grouped in STIMULATED, INHIB-
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pathway genesets

Table S3-3. Influence of probability threshold f on true-positive rate (TPR). Differ-

ent prediction probability thresholds (f) were considered, and the true-positive rate (TPR)

was calculated for each relationship type (TPRI and TPRS) and over the entire set TC2G

(TPRAll). Whereas the TPRI increased with higher thresholds f , the TPRS decreased.

Nevertheless, the TPRAll increased with increasing f .

f TPRI TPRS TPRAll

0.5 0.578 0.475 0.527

0.6 0.598 0.468 0.533

0.7 0.623 0.459 0.541

0.8 0.662 0.458 0.551

0.9 0.738 0.390 0.564

CTD C2G
C2P
C2D

filter X X2G Geneset chemical X

Genesets pathways

Genesets diseases

CUI2Word
UMLS

Gene annotation
UMLS annotated gene sets

GENE SET GENERATION

All UMLS annotated genes

CHEMICALWISE GENELIST

X2Biomolecule

Predict Filter by

probability

threshold

List of X-regulated 

UMLS annotated genes

ENRICHMENT ANALYSIS
WebGestaltR

Overrepresentation 

analysis

CTD

C2GC2P

enriched chemical geneset?

enriched pathways

enriched diseases

TOXICOGENOMIC

OVERLAP

Figure S3-4. Toxicological evaluation applying functional enrichment on CTD ref-

erence sets. For one chemical CUI X, the relationship type can be predicted to each gene

CUI the model is trained with. When applying a filter based on the prediction probabili-

ties, we retrieve a set of predicted genes that is expected to be regulated due to exposure

to X. Furthermore, CTD information of chemical-gene (TC2G), gene-pathway (TC2P )

and gene-disease associations (TC2D) can be transformed to UMLS-annotated genesets

and applied in an overrepresentation analysis with webGestaltR. Significantly enriched

genesets (FDR ≤ 0.05) may be associations of X to the chemical X itself or pathways or

diseases. With help of TC2P and TC2D the overlaps of enrichment results to CTD can be

determined and interpreted. In this study, functional enrichment analysis was applied on

pathway level only.
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ITED or UNREGULATED with the help of f . In consequence, we determined chemical wise

lists of regulated (STIMULATED or INHIBITED) genes.

The list of the ten most frequent CUIs in TC2G comprised three chemical compounds: Bisphe-

nol A (three CUIs), Benzo(a)pyrene (one CUI) and Valproic acid (six CUIs). For all three

chemical compounds, lists of regulated genes with model A? were predicted and filtered

with threshold filter f = 0.9. Out of the UMLS-annotated background with 6779 genes,

the respective genesets comprised 219, 321, and 1063 as REGULATED predicted genes to

Benzo(a)pyrene, Bisphenol A and Valproic acid, respectively. The functional enrichment

across 2283 UMLS-annotated pathways retrieved from TG2P resulted in 4, 7 and 2 overrepre-

sented pathways (see table S3-4).

Table S3-4. Chemical wise enrichment results for genes predicted as regulated. For

the most frequent represented CUIs in TC2G, regulated genes across all genes available in

the model were determined with the chosen threshold of f = 0.9 (see table S3-3). A unique

gene set was generated for CUIs, which represent the same chemical. An overrepresen-

tation analysis was performed applying webGestaltR, and significantly enriched terms

(FDR ≤ 0.05) of biological pathways were determined. Most of the chemical associated

gene sets were represented in TC2P .

Chemical Pathway FDR inCTD

Bisphenol A Nuclear receptor transcription pathway 0.0376 X

Intrinsic pathway for apoptosis 0.0376 X

Synthesis of PG 0.0376

Activation of NOXA and translocation to mitochondria 0.0376

Benzo(a)pyrene Synthesis of PG 0.0153

Intrinsic pathway for apoptosis 0.0153 X

Nuclear receptor transcription pathway 0.0153 X

Apoptosis multiple species 0.0153 X

Longevity regulation pathway 0.0451 X

cAMP signaling pathway 0.0451 X

Mitochondrial biogenesis 0.0451 X

Valproic acid Biological oxidations 0.0027 X

Steroid hormone biosynthesis 0.0027 X

Although the number of enriched terms was small and marginal to the number of associated

pathways in TC2P (Benzo(a)pyrene: 1629, Bisphenol A: 1668, Valproic acid: 1551), 2, 6, and
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2 enriched pathways were covered in TC2P . Thus, empirical measurements supported our

prediction-based outcomes.

S3.3 Reduction of learning rate in a model with large word

embedding vectors.

The training in figure 4.5 had a smaller number of epochs, the larger the length of the

word embedding vector (n) was. However, the loss was slightly better for the largest n with

binary crossentropy = 0.601. In comparison, the loss for the chosen vector size n = 100

valued binary crossentropy = 0.636. We chose the smallest word embedding size when

considering an unseen test set IE , as the accuracy was the largest.

To proof, whether the rapid drop in binary cross-entropy for word embeddings with large n

might be not inflicted by the selected learning rate, the word embedding model with n =

5000 was trained with
⋃5
i=2 IT i and validated with IT1. Nothing was changed on the word

embedding model architecture but the learning rate (reduced from 1e − 5 to 1e − 6). The

results of the model training are shown in Figure S3-5.

As can be seen in the left plot, the binary cross-entropy decreased steadily and rather fast

within the first 100 epochs for both the training and validation set. After that the difference

in loss per epoch became smaller and the loss curve reached a plateau until stopping after 214

epochs. The minimal loss valued binary crossentropy = 0.614. Also, the accuracy increased

in the training and validation data. In the first 50 epochs, the training did not result in any

accuracy improvement, albeit loss decreased. The validation accuracy diverged to 0.693.

Compared to the word embedding model with n = 5000 in section 4.2.2, the binary cross-

entropy was not smaller with a lower learning rate. Furthermore, the accuracy for the unseen

test data valued 0.685 and was smaller than for the models with higher learning rates (n =

5000:0.696, n = 100:0.697). As expected, the choice of the learning rate influenced the training

duration in terms of epochs. However, the change in the learning rate did not improve the

model performance in training or evaluation.

S3.4 Horizontal augmentation without tail-padding

To proof, whether the order has an influence, the model performance for training with hori-

zontally augmented input was performed with zero-masked tokens but without tail-padding

to conserve the semantically identical order across all samples. The input preparation re-

mained identical as before for horizontally augmented inputs, except that sequences were not
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tail-padded where parental or grandparental terms were missing. Consequently, when samples

were integer encoded, the zero-values are not at the end but on its semantically specified posi-

tion (<Subject, Subject Parent, Subject Grandparent, Object, Object Parent,

Object Grandparent>).
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Figure S3-5. Training and validation curves of word embedding model (n=5000)

and lower learning rate (α = 1e − 6). The deep learning model was trained with

UMLS-annotated chemical-biomolecule-pairs retrieved from SemMedDB to predict their

toxicogenomic relationship. The model has a word embedding layer, an LSTM layer,

a time distributed dense layer and five subsequent dense layers decreasing in size. A:

The binary accuracy (dashed line) and binary cross-entropy (solid line) for training and

validation. We determined the training performance across epochs for a validation set

with approximately 71T relations (20% of training). The loss decreased over time and

reached a saturated state at approximately 0.6. The maximal accuracy was valued at 0.68.

B: The confusion matrix presents the prediction results for the test set I E (n = 20T )

resulting in a true-positive rate of 0.684.

The input was considered for a 5-fold cross-validated model training with model architecture

A and with B. Supplemental figure S3-6 shows the training curves during training for both

model architectures and the confusion matrices considering the unseen test data set.

The validation loss decreased rather quickly within the first five epochs and converged to a

value at minimally 0.69. The binary accuracy curve for validation data increased within the

first five epochs and converged to 0.65.

The evaluation with unseen test data resulted in true-positive rates of 65% for both model
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architectures. The values of relationship type-specific performance measures were similar

across models (see table S3-5) and compared to the previous experiments with tail-padded

sequences (see table 4.4 AH and BH). Consequently, preserving a semantically meaningful

order of the horizontally augmented input did not significantly affect the model performance.
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Figure S3-6. Performance of model trained with horizontally augmented, but not

tail padded input. The SemMedDB input set I was horizontally augmented to IHE

considering the UMLS semantic network. Some subject and object concepts have no se-

mantic parents or grandparents and were zero-masked. In contrast to the trained models

in figure 4.7, the horizontally augmented input was not tail-padded. A: Curves of binary

accuracy and loss for 5-fold cross-validated training with model architecture A. B: Curves

of binary accuracy and loss for 5-fold cross-validated training with model architecture B.

C: Confusion matrices for not tail-padded test data IHE for one trainings fold of model

architecture A (top) and B (bottom).

S3.5 Four-relationship classification

We performed training of deep learning models with SemMedDB chemical-gene interactions

considering four predicates (see section 4.2.6). The input data I4 was considered a four-class

classification problem and a binarised classification problem. Furthermore, we trained models

with model architecture A and B, respectively. The results of the four 5-fold cross-validations
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Table S3-5. Test performances of models with not tail-padded horizontally aug-

mented input. Performance measures were calculated based on not tail-padded relations

in the test sets (IHE ). Next to binary accuracy (Acc), the other measures (precision (Prec),

recall (Rec) and the F1-score (F1)) were considered per relationship type.

Relationship Acc Prec Rec F1

AH
ordered INHIBITS 0.65 0.73 0.64 0.67

STIMULATES 0.59 0.69 0.63

BH
ordered INHIBITS 0.65 0.69 0.64 0.66

STIMULATES 0.61 0.66 0.63

Table S3-6. Number of chemical-biomolecule-relations per predicate. The not en-

tirely preprocessed input I (with contradictions) consisted of triplets with twenty-five pred-

icates. The numbers varied extremely and made the dat set very unbalanced considering

predicates.

Predicate Number of Relations Predicate Number of Relations

INTERACTS WITH 320845 CONVERTS TO 6245

INHIBITS 250468 TREATS 5442

STIMULATES 215934 PREVENTS 4344

AFFECTS 182786 ASSOCIATED WITH 4171

COEXISTS WITH 148957 lower than 2556

PART OF 135495 PREDISPOSES 2325

DISRUPTS 130933 same as 2011

AUGMENTS 106087 PRODUCES 1364

compared with 49511 USES 1249

CAUSES 44716 LOCATION OF 285

ADMINISTERED TO 18498 COMPLICATES 257

higher than 13964 PROCESS OF 3

ISA 9067
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are shown in supplemental figure S3-7. In summary, neither considering a categorical nor a

binary classification of the expanded input I4 improved overall performance.

Independent of the classification task and the model architecture, the five folds of a cross-

validation training behaved similarly and were visually not distinct (see supplemental fig-

ure S3-7 A-D). The validation loss decreased relatively fast in the first twenty epochs and

converged to approximately 0.67 after 60 to 120 epochs. The validation accuracies reached

maximal values of 0.68. Considering the test set I4,E with 63 287 relations, true-positive rates

of 0.683, 0.664, 0.683 and 0.680 were measured for the categorical case with model architecture

A and B and binary case with model architecture A and B (see supplemental figure S3-7).

Consequently, the previous experiments performed marginally better when considering input

I and two predicates.

However, the categorical consideration revealed an exciting characteristic in confusion ma-

trices. Although overall classification performed nearly identical, the model distinguished

pharmacogenomic relationship types (AUGMENTS and DISRUPTS ) from substance inter-

actions (STIMULATES and INHIBITS ), with a true-positive rate of 0.994 with both model

architectures. Thus, the models recognised the general semantic meanings of the relationship

types and respective suitable chemical and biomolecular semantic concepts. Furthermore,

the applied binary classification task presented that the models could distinguish negative

regulations from positive relations with 0.68% accuracy. Albeit not that accurate as for the

interaction types, the predictive model was still able to predict positive or negative directions

of chemical-biomolecule interactions.

The very accurate distinction between pharmacogenomic and substance interactive relation-

ships probably originated in the input data itself. The subject concepts overlapped 30% across

predicate types (see supplemental figure S3-8) STIMULATES and INHIBITS share less than

2% of object concepts with DISRUPTS and AUGMENTS. However, predicate groups shared

37.78% and 13.12% of objects. Consequently, the models have learned to differentiate the

relationship types most likely regarding the object concept.

S3.6 Interpreting loss observations for SemMedDB trained

models.

We observed a meaningful trend of the validation loss curve. In the beginning, the loss

decreased relatively fast. In the second phase, the loss decreases still steadily. However

the changes get more minor over training duration. Finally, a plateau was reached, where

minimal decreases or even smaller fluctuations were observed. The training and validation
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Figure S3-7. Model performance considering four relationship types Models were

5-fold cross-validated trained based on architecture A and B with chemical-biomolecule

interactions from SemMedDB. A binary (0: NEGATIVE, 1: POSITIVE) or categori-

cal classification task ((INHIBITS, STIMULATES, AUGMENTS and DISRUPTS)) was

considered. The accuracy and cross-entropy were tracked for five folds of training and

validation (20% of training). A: Binary with architecture A. B: Binary with architecture

B. C: Categorical with architecture A. D: Categorical with architecture B. E: Confusion

matrices for best fold model from A-D with test set (n=63 287).
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Figure S3-8. Concept overlap in input across four predicates. The input data set I4

contains 632 864 relations with 32 527 chemical and 24 550 molecular concepts which are

not equally distributed across predicates. The matrix presents the percentage of overlapping

subjects (blue) and objects (green). Number of unique subject (y) and object (x) concepts

per predicates are given with the axis labels.

curves performed somewhat similar. In most cases, the validation curves reached a slightly

higher loss plateau, which is an expected training behaviour in deep learning. Consequently,

the trained models learned with the given input. The as best selected model predicted 70%

of relationships correctly.

However, the minimal values of loss for the best model were at values of binary cross-entropy

of 0.6. The tracked binary cross-entropy represented the average per-sample loss per batch.

Thus, in average the prediction probability for the correct label values p = 10−0.6 = 0.2512 ∗.

Thus, the probability value calculated from the average loss hints at misleading predictions.

According to these estimations, the binary cross-entropy values below 0.3 would indicate a

∗ The average per-sample-loss per batch can be calculated as following:

binary accuracybatch = − 1

N

N∑
i=1

yi ∗ log10ŷi + (1− yi) ∗ log101− ŷi (S3.1)

In the case of a binary classification the true label has a probability of 1, whereas the predicted value for this

label is p, thus the formula can be reduced to:

binary accuracybatch = − 1

N

N∑
i=1

log10p = −log10p̄ (S3.2)

, where p̄ presents the average prediction probability of the true label. In consequence, the average prediction

probability can be estimated as:

p̄ = 10−p (S3.3)
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trend towards true predictions. As shown in the results, the average loss value underestimates

the hard classification of the model, as accuracy values highlighted a true positive rate of

70%. The loss value considered probabilities on a log-scale, and probabilities closer to zero

may affect the average more than values closer to one. Thus, few outlying false predictions

with probabilities close to zero may lead to higher average loss values. In consequence, albeit

the minimally tracked binary accuracy was still rather high with a value of 0.6, it should not

be misinterpreted that the model might perform not well. Especially when the validation loss

curve showed an expected behaviour in training.
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Glossary

AO Adverse outcome. 10, 100

AOP Adverse Outcome Pathway. 9–11, 20, 22, 23, 44, 91, 100, 102, 120, 127, 128, 130, 136,

140, 143, 146–149

AOPwiki An open access database of the recent known and hypothesized adverse outcome

pathways. 10, 11, 22, 100, 136, 147

AR Association Rule mining. 16, 32, 36, 57, 58, 69, 72, 74, 75, 81, 92–94, 97, 146, 168, 169

BERT Bidirectional Encoder Representations from Transformers. 26, 101, 136

BioGRID Biological General Repository for Interaction Datasets . 135

BioWordVec Retro-fitted wordembedding with UMLS-vocabularies. 26, 137

CA Concentration addition. 5

cDNA Complementary Deoxyribonucleic Acid. 12, 13, 157, 158

CG Chemical compound groups. 34, 69, 74, 75, 77–84, 86, 87, 89–92, 96

CTD Comparative Toxicogenomic Database. iv, v, vii, viii, III, IV, 20–22, 25, 29, 31, 40, 41,
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W. Busch, M. Chadeau-Hyam, A. Covaci, A. Eisenträger, J. J. Galligan, N. Garcia-Reyero, T. Hartung,

M. Hein, G. Herberth, A. Jahnke, J. Kleinjans, N. Klüver, M. Krauss, M. Lamoree, I. Lehmann, T. Luck-
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J. R. Parsons, A. M. Ragas, N. M. van Straalen, and M. G. Vijver, editors, Environmental Toxicology,

an open online textbook, pages 481–486. Elsevier, 2021. URL https://research.ou.nl/en/publications/

environmental-toxicology-an-open-online-textbook.

G. Rosemblat, M. P. Resnick, I. Auston, D. Shin, C. Sneiderman, M. Fizsman, and T. C. Rindflesch. Extend-

ing SemRep to the public health domain. Journal of the American Society for Information Science and

Technology, 64(10):1963–1974, 2013a. DOI: 10.1002/asi.22899.

xxx

https://www.R-project.org/
https://research.ou.nl/en/publications/environmental-toxicology-an-open-online-textbook
https://research.ou.nl/en/publications/environmental-toxicology-an-open-online-textbook
https://doi.org/10.1186/gb-2013-14-9-r95
https://doi.org/10.1145/2975167.2975197
https://doi.org/10.1016/j.jbi.2003.11.003
https://lhncbc.nlm.nih.gov/LHC-publications/pubs/SemanticInterpretationfortheBiomedicalResearchLiterature.html
https://lhncbc.nlm.nih.gov/LHC-publications/pubs/SemanticInterpretationfortheBiomedicalResearchLiterature.html
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1016/j.envpol.2015.01.021
https://doi.org/10.1021/acs.est.8b03603
https://research.ou.nl/en/publications/environmental-toxicology-an-open-online-textbook
https://research.ou.nl/en/publications/environmental-toxicology-an-open-online-textbook
https://doi.org/10.1002/asi.22899


G. Rosemblat, D. Shin, H. Kilicoglu, C. Sneiderman, and T. C. Rindflesch. A methodology for extending

domain coverage in SemRep. Journal of Biomedical Informatics, 46(6):1099–1107, 2013b. ISSN 15320464.

DOI: 10.1016/j.jbi.2013.08.005.

M. Rotmensch, Y. Halpern, A. Tlimat, S. Horng, and D. Sontag. Learning a health knowledge graph from

electronic medical records. Scientific reports, 7(1):1–11, 2017. DOI: 10.1038/s41598-017-05778-z.

M. Rugard, X. Coumoul, J. C. Carvaillo, R. Barouki, and K. Audouze. Deciphering Adverse Outcome Pathway

Network Linked to Bisphenol F Using Text Mining and Systems Toxicology Approaches. Toxicological

Sciences, 173(1):32–40, 2020. ISSN 10960929. DOI: 10.1093/toxsci/kfz214.

SAAOP. Aop-wiki, 2021. URL http://aopwiki.org. last accessed on 01.12.2021.

S. Santos, L. Maitre, C. Warembourg, L. Agier, L. Richiardi, X. Basagaña, and M. Vrijheid. Applying

the exposome concept in birth cohort research: a review of statistical approaches. European Journal of

Epidemiology, 35(3):193–204, 2020. ISSN 15737284. DOI: 10.1007/s10654-020-00625-4.

S. Scholz, J. W. Nichols, B. I. Escher, G. T. Ankley, R. Altenburger, B. Blackwell, W. Brack, L. Burkhard,

T. W. Collette, J. A. Doering, D. Ekman, K. Fay, F. Fischer, J. Hackermüller, J. C. Hoffman, C. Lai,

D. Leuthold, D. MartinovicWeigelt, T. Reemtsma, N. Pollesch, A. Schroeder, G. Schüürmann, and
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