
Automatic Recognition of Non-Verbal
Acoustic Communication Events With

Neural Networks
Applied to Infant Vocalizations and Chimpanzee Calls

Von der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

Dissertation

zur Erlangung des akademischen Grades

Doctor Rerum Naturalium
(Dr. rer. nat.)

im Fachgebiet

Informatik

Vorgelegt

von Master of Science Franz Anders

geboren am 01.09.1988 in Jena

Die Annahme der Dissertation wurde empfohlen von:

1. Prof. Dr. Gerik Scheuermann, Universität Leipzig &
Prof. Dr. Mario Hlawitschka, HTWK Leipzig

2. Univ.-Prof. Dr. Franz Pernkopf, TU Graz

Die Verleihung des akademischen Grades erfolgt mit Bestehen
der Verteidigung am 06.05.2022 mit dem Gesamtprädikat magna cum laude.

Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne unzulässige fremde
Hilfe angefertigt zu haben. Ich habe keine anderen als die angeführten Quellen und
Hilfsmittel benutzt und sämtliche Textstellen, die wörtlich oder sinngemäß aus veröf-
fentlichten oder unveröffentlichten Schriften entnommen wurden, und alle Angaben, die
auf mündlichen Auskünften beruhen, als solche kenntlich gemacht. Ebenfalls sind alle
von anderen Personen bereitgestellten Materialen oder erbrachten Dienstleistungen als
solche gekennzeichnet.

Leipzig, den 13.10.2021

Franz Anders

i

Professional and Scientific Career

Personal data

Name Franz Anders

Birth dates 01.09.1988, Jena, Germany

E-mail franz.anders.fa@gmail.com

Professional experience

2017 Apinauten GmbH, Leipzig: Student assistant in software develop-
ment

2014 – 2015 Regiocast Leipzig: Student assistant in audio production

2014 Rohde & Schwarz Headend Systems Berlin: Internship in software
development

2011 – 2013 P3 Systems Stuttgart: Student assistant

2007 – 2010 Antenne Thüringen and Radio Top 40 Weimar: Traineeship in audio
production and music editor.

Education

2017 – 2021 PhD student: Leipzig University of Applied Sciences, research
team Laboratory for Biosignal Processing & Leipzig University.

2014 – 2017 Master of Science: Media Informatics, Leipzig University of Ap-
plied Sciences

2010 – 2013 Bachelor of Engineering: Audiovisual Media, Stuttgart Media Uni-
versity

2000 – 2007 Abitur: Christliches Gymnasium Jena

iii

List of Publications

Peer-reviewed articles as first author
• F. Anders, M. Hlawitschka, and M. Fuchs. Comparison of artificial neural net-

work types for infant vocalization classification. IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, 29:54–67, 2020. https://doi.org/10.
1109/TASLP.2020.3037414

• F. Anders, M. Hlawitschka, and M. Fuchs. Automatic classification of infant vocal-
ization sequences with convolutional neural networks. Elsevier Speech Communi-
cation, 119:36–45, 2020. https://doi.org/10.1016/j.specom.2020.03.
003

• F. Anders, A. K. Kalan, H. S. Kuehl, and M. Fuchs. Compensating class im-
balance for acoustic chimpanzee detection with convolutional recurrent neural
networks. Ecological Informatics, 65, 2021. https://doi.org/10.1016/j.
ecoinf.2021.101423

Preprints as first author
• F. Anders, M. Hlawitschka, and M. Fuchs. Investigation of the assessment of infant

vocalizations by laypersons. arXiv preprint, 2021. https://arxiv.org/abs/
2108.09205

Presentations
• F. Anders, M. Hlawitschka, and M. Fuchs. Automatisierte Erkennung und Klassi-

fizierung von Säuglingslauten in Audiosignalen. In 20. Nachwuchswissenschaftlerkon-
ferenz - Book of Abstracts, pages 94–97. Hochschule Merseburg, 2020

• B. Reichard, F. Schrump, F. Anders, C. Mönch, K. Bode, and M. Fuchs. Utiliz-
ing automatically estimated facial descriptors for pain detection during surgical
interventions. In BMT Biomedical Technology Conference VDE, 2020

v

https://doi.org/10.1109/TASLP.2020.3037414
https://doi.org/10.1109/TASLP.2020.3037414
https://doi.org/10.1016/j.specom.2020.03.003
https://doi.org/10.1016/j.specom.2020.03.003
https://doi.org/10.1016/j.ecoinf.2021.101423
https://doi.org/10.1016/j.ecoinf.2021.101423
https://arxiv.org/abs/2108.09205
https://arxiv.org/abs/2108.09205

Acknowledgments

I want to thank Mario Hlawitschka and Gerik Scheuermann, who supervised this work.
You gave me the chance to do this PhD and always had trust in me and my research.

I want to thank Mirco Fuchs, my mentor at the Laboratory for Biosignal Process-
ing. Although your expertise was of great help, your emotional support was even more
important. Praise is rare in this business, but you always had praise left when I needed
it.

I want to thank my brother, Philipp. There was no day where you had the slightest
doubt that I could do this and it pulled me through. If you wouldn’t have drawn the
short straw, you’d be doing this PhD right now. And you’d be better at it. You are the
most important person in my life.

I want to thank the University of Applied Sciences for funding my research. It was
a luxury focusing on research exclusively for four years thanks to this grant and would
not have been possible without this support.

I want to thank the staff at the Laboratory for Biosignal Processing for all the uncon-
ditional support. Particularly Patrick Frenzel, who ultimately enabled my experiments
through his infrastructure and GPU management.

I want to thank Benni, Johannes, and Bianca, my colleagues for three years. Working
with you by my side made the process much more enjoyable.

I want to thank Hartwig Junge, my coach in scientific writing. 99% of what I know
about scientific writing I learned from you, and you alone. Your knowledge was invalu-
able for each and every paper I wrote.

I want to thank my parents, Christoph and Astrid. It’s safe to say that starting
a PhD at 29 years old is a privilege, which few people have. You made that privilege
possible by supporting me far longer than you needed to, even when I decided to change
careers late.

I want to thank everyone in Schwarzpulver. Thursdays were my weekly highlight for
the past four years. I’m sure that someday we will refer to this period as the “golden
times”.

I want to thank Schlicht & Ergreifend. Particularly August: I know you hate to hear
it, but you’re one of my role models.

I want to thank the Reutlingen Crew. I always had great times with you all, par-
ticularly in Mathon. I hope we manage to stay in contact somehow. This also includes
Micha and Marion.

vii

In no particular order: Leo, Alex, Marie Sophie, Lina, Martin, Anne, Jan, Kai,
Sabrina, Dennis, Dusan, Maria, Erwin, Lea, Javiera, Oli, Frans.

Finally, I want to thank Marlene. You gave me more than I could ever give back.
I’m currently unable to do justice to the praise you deserve.

viii

Abstract

Non-verbal acoustic communication is of high importance to humans and animals: In-
fants use the voice as a primary communication tool, signaling distress through crying,
joy through laughing, and acquiring speech capacity through babbling. Animals of all
kinds employ acoustic communication, such as chimpanzees, which use pant-hoot vocal-
izations or drumming for long-distance communication.

Many applications require the assessment of such communication for a variety of
analysis goals. Computational systems can support these areas through automatization
of the assessment process. This is of particular importance in monitoring scenarios over
large spatial and time scales, which are infeasible to perform manually. Examples for
this include wildlife monitoring of animals and long-term pain assessment in infants.

Algorithms for sound recognition have traditionally been based on conventional ma-
chine learning approaches. In recent years, so-called representation learning approaches
have gained increasing popularity. This particularly includes deep learning approaches
that feed raw data to deep neural networks. However, there remain open challenges
in applying these approaches to automatic recognition of non-verbal acoustic commu-
nication events: Deep learning usually requires large data sets, whereas data sets in
non-verbal acoustic communication are usually small. Therefore, deep learning based
algorithms require thorough optimization to be applied optimally.

The leading question of this thesis is: How can we apply deep learning more effec-
tively to automatic recognition of non-verbal acoustic communication events? The target
communication types were specifically (1) infant vocalizations and (2) chimpanzee long-
distance calls.

This thesis comprises four studies that investigated aspects of this question:
Study (A) investigated the assessment of infant vocalizations by laypersons. The

central goal was to derive an infant vocalization classification scheme based on the
laypersons’ perception. The study method was based on the Nijmegen Protocol, where
participants rated vocalization recordings through various items, such as affective rat-
ings and class labels. Results showed a strong association between valence ratings and
class labels, which was used to derive a classification scheme.

Study (B) was a comparative study on various neural network types for the automatic
classification of infant vocalizations. The goal was to determine the best performing
network type among the currently most prevailing ones, while considering the influence
of their architectural configuration. Results showed that convolutional neural networks

ix

outperformed recurrent neural networks and that the choice of the frequency and time
aggregation layer inside the network is the most important architectural choice.

Study (C) was a detailed investigation on computer vision-like convolutional neural
networks for infant vocalization classification. The goal was to determine the most impor-
tant architectural properties for increasing classification performance. Results confirmed
the importance of the aggregation layer and additionally identified the input size of the
fully-connected layers and the accumulated receptive field to be of major importance.

Study (D) was an investigation on compensating class imbalance for chimpanzee
call detection in naturalistic long-term recordings. The goal was to determine which
compensation method among a selected group improved performance the most for a deep
learning system. Results showed that spectrogram denoising was most effective, while
methods for compensating relative imbalance either retained or decreased performance.

The implication of this thesis’ results is that deep learning systems can match or
even surpass the performance of conventional machine learning approaches for auto-
matic recognition of non-verbal acoustic communication events. However, optimizing
components such as the network architecture is crucial in absence of large data sets.
The algorithms presented in this thesis are applicable for solving specific tasks on recog-
nition of infant and chimpanzee acoustic communication events with high accuracy. The
general insights gained through the studies may aid future research on which parts of
their pipelines to focus first.

x

xi

Mathematical Notation

A A set.

N / R / C
The set of natural numbers, real numbers, and complex numbers
respectively.

{0, 1} A set, containing elements 0 and 1.

{0, 1, . . . , n} A set, containing integers from 0 to n.

[0, 1] The range of all real numbers between 0 and 1.

{x(1), . . . , x(n)} A set of elements x(i), where (i) is the element index.

{x(i)}i={1,...,n} Abbreviation of the expression above.

(x(1), . . . , x(n)) A tuple of elements x(i), where (i) is the element index. Can be
abbreviated likewise.

x A scalar, e.g. x ∈ R. Uppercase italics might also be scalars, e.g. X.

x A column vector, e.g. x ∈ Rn, with elements [x1, . . . , xn]>.

xi Element i of vector x, e.g. xi ∈ R.

xi:j Elements i to j of x, i.e. [xi, . . . , xj]>

〈x,y〉 The inner product between vectors x and y, i.e. x> · y.

X A matrix, e.g. X ∈ Rn×m.

Xi,j Element i, j of matrix X, e.g. Xi,j ∈ R.

Xi,: Row i of matrix X, e.g. Xi,: ∈ Rn.

X :,j Column j of matrix X, e.g. X :,j ∈ Rm.

f : A 7→ B
A function signature, indicating that function f maps from domain A
to codomain B

f(x; θ)
Function f is parametrized by θ. Mathematically, both x and θ are
arguments to the function. Semantically, θ is considered fixed, while x
is considered variable.

x A scalar random variable.

x A vector random variable.

px(x) The probability distribution associated with x.

xii

Contents

Professional and Scientific Career iii

List of Publications v

Acknowledgments vii

Abstract ix

Mathematical Notation xii

Contents xiii

1 Introduction 1
1.1 Thesis topic . 1
1.2 Global thesis goal . 4
1.3 Overview over studies (A) – (D) . 5
1.4 Thesis structure . 6
1.5 Summary of major findings . 7

2 Foundations in Automatic Recognition of Acoustic Communication
Events 9
2.1 Acoustic analysis of non-verbal acoustic communication events 9
2.2 Basics in conventional supervised machine learning 18
2.3 Artificial neural networks as predictive models 33
2.4 Automatic sound recognition through machine learning 44

3 State of Research 53
3.1 Related scientific competitions and communities 54
3.2 Deep learning in ASR and CP . 55
3.3 States of research specific to studies (A) – (D) 59

4 Study (A): Investigation of the Assessment of Infant Vocalizations
by Laypersons 65
4.1 Study goal . 65
4.2 Materials and methods . 66

xiii

4.3 Results . 73
4.4 Discussion . 82

5 Study (B): Comparison of Neural Network Types for Automatic
Classification of Infant Vocalizations 85
5.1 Study goal . 85
5.2 Materials and methods . 86
5.3 Results . 98
5.4 Discussion . 105

6 Study (C): Detailed Investigation of CNNs for Automatic Classifica-
tion of Infant Vocalizations 107
6.1 Study goal . 107
6.2 Materials and methods . 108
6.3 Results . 114
6.4 Discussion . 120

7 Study (D): Compensating Class Imbalance for Acoustic Chimpanzee
Detection With Convolutional Recurrent Neural Networks 123
7.1 Study goal . 123
7.2 Materials and methods . 124
7.3 Results . 138
7.4 Discussion . 146

8 Conclusion and Collected Discussion 149
8.1 Conclusion . 149
8.2 Collected discussion . 150
8.3 Outlook . 151

Bibliography 153

9 Appendix 171
9.1 Appendix for study (A) . 171
9.2 Appendix for study (B) . 172

List of Figures 177

List of Tables 178

Acronyms 179

xiv

CHAPTER 1
Introduction

1.1 Thesis topic

1.1.1 Non-verbal acoustic communication and paralinguistics

Acoustic communication is the communication of humans or animals through sound
waves. It is among the most important communication channels for exchange of infor-
mation. Vocal communication is acoustic communication where sound is produced
through mechanisms similar to human vocal cords. When communicative sounds are
produced through other mechanisms, this is referred to as non-vocal acoustic com-
munication.

The importance of acoustic communication is most obvious in humans. They devel-
oped the most sophisticated type of vocal communication among all animals: speech
(also known as verbal communication), which is spoken language, such as spoken Ger-
man. Sign of the importance of speech for humans is the development of the pharynx in
infants: The infant’s vocal tract is build to allow breathing and swallowing simultane-
ously, at the price of only enabling rudimentary vocal articulation. As an infant ages, the
pharynx changes to enable more complex articulation, however at the cost of becoming
susceptible to choking on food. Consequently, evolution must have valued speech highly.
[148, chapter 1][129, 133]

Non-verbal acoustic communication is any acoustic communication apart from
spoken, human language. Many animal species employ this communication form with
varying degrees of complexity, intends and mechanisms of sound production. Vocal
communication is common: Wolves howl to identify themselves within their group [138],
meerkats emit alarm calls to indicate the predator type [100], and Bird songs are par-
ticularly complex, coding a variety of information, such as species identification, sex, or
mating behavior [33, 102]. An example for non-verbal non-vocal acoustic commu-
nication are cricket chirps, which are produced through file and scraper structures on
the wings [45, 76].

1

1. Introduction

Humans use non-verbal vocal communication as well. One example of this is
modulation of verbal speech to express emotions, either consciously or unconsciously.
Another example are sounds that are not specifically words, but carry communicative
value nonetheless, such as in laughing or crying. Some authors refer to such sounds
as calls in animals and humans [12, 76]. Paralinguistics is the research discipline on
human non-verbal, vocal communication (and, depending on the definition, on written
communication as well). [148, p. 9]

1.1.2 Acoustic communication in infants and chimpanzees

This thesis focused specifically on the non-verbal acoustic communication of two species:
human infant vocalizations and chimpanzee long-distance calls.

The voice is among the most important communication tool for infants. Adult hu-
mans assess infant vocalizations in a variety of contexts, and with varying analysis goals.
Infants use negative affective vocalizations to signal distress, e.g. crying or fussing. Par-
ents assess crying intuitively for ensuring the infant’s well being [16, chapter 1,2]. In
pediatric wards, nurses assess crying as a proxy for pain intensity to employ appropriate
pain management measures [104, chapter 5]. Infants experiment with their voice and
produce increasingly complex sounds as they develop in acquisition of the speech capac-
ity. Professionals in assessment of vocal development monitor the emergence of certain
types of such protophones, such as vowels, squeals, consonants, various types of babbling
etc. to identify developmental delays [21, 115, 122, 163].

For chimpanzees, acoustic communication is of overall less importance, as they pri-
marily use visual and tactile communication [19]. However, their long-distance com-
munication is acoustic. The pant-hoot is perhaps the most stereotypical chimpanzee
vocalization. The exact purpose of this call is still under active research, where signaling
of spacing between groups is hypothesized to be a probable function. They also employ
drumming, where they hit buttresses of trees with their hands and feet [13].

There is a body of behavioral research that focuses on chimpanzee and human infant
vocalizations in combination. Firstly, because of the obvious evolutionary proximity of
both species, and secondly because they share certain vocalization types. For example,
both species elicit crying. It is acoustically similar for both and is hypothesized to signal
distress, particularly separation from the mother. [16, chapter 10]

1.1.3 Objective assessment of non-verbal acoustic communication

Most areas that apply assessment of acoustic communication require consistency within
and across observers, particularly in professional and scientific areas. Let us return to
the example of estimating infant pain by assessing crying intensity. In this case, it is
desirable that the same crying leads to the same pain intensity estimation regardless
of who performs the assessment. However, purely intuitive and subjective assessment
most likely leads to inconsistent evaluations. Consequently, we need to systematize the
process of acoustic communication assessment.

2

1.1. Thesis topic

For an objective assessment of acoustic communication we employ specialized assess-
ment tools. These comprise various components: Firstly, they contain a classification
scheme, which in this context is a catalogue-like listing of acoustic communication event
classes. Secondly, there is an instruction that associates the occurrence of these classes
with certain meanings. Most assessment tools define their own classification schemes.
However, there are also catalogues that exclusively list communication event classes for
their own sake. Assessment tools might then reference these catalogues to associate
classes with meanings.

Infant pain scales are an example for such assessment tools. They are used in
pediatrics to increase the consistency in pain assessment. They list vocalization classes
(focused on distress vocalizations) and associate their occurrence with pain scores [104,
chapter 5]. For example, the The Neonatal Infant Pain Scale (NIPS) defines: no crying
= pain score 0; whimper, mild moaning = 1; vigorous cry, loud scream = 2 [88]. An
example for a catalogue-style vocalization classification scheme is the one by Buder et al.
[21], which is focuses on protophone (babble-like) vocalizations in infants.

1.1.4 Automatic recognition of non-verbal acoustic communication
events

Many applications in assessment of non-verbal acoustic communication can benefit from
the support of computational systems that automatize the assessment process. This
applies particularly to monitoring applications that observe large temporal or spatial
scales, which is infeasible to be realized manually.

For example, long-term pain assessment in infants is of high importance for chronic
pain management, however strongly time-demanding on the staff [104, chapter 5][192].
Wildlife monitoring of chimpanzees in natural habitats depends heavily on acoustic
monitoring, as the dense rain forest restricts visibility [74]. However, even when manual
assessment by humans is feasible, automatic assessment can act as an “objective second
opinion”.

Such automatic systems ideally recognize a set of discrete classes of acoustic com-
munication events against the background. This means they operate at the level of
classification schemes, as opposed to at the level of one specific analysis goal. In this
way, an automatic recognition system can be employed for various analysis goals through
subsequent analysis of recognized event classes. For example, an automatic vocalization
assessment system for infants would first recognize “objective” classes such as crying,
laughing, breathing etc. A system aimed at pain assessment might subsequently count
cry-occurrences to derive a pain score. A system aimed at analyzing vocal development
might discard crying and count occurrences of protophones.

1.1.5 Deep learning for automatic sound recognition

An algorithm performing sound recognition of any kind is referred to as performing au-
tomatic sound recognition (ASR). Consequently, recognition of acoustic non-verbal
communication events is a specific subtype of ASR. Computational paralinguistics

3

1. Introduction

(CP) is also a subdiscipline of ASR focused on automatic recognition of paralinguistic
phenomena.

Machine learning (ML) has been the dominant approach to designing automatic
sound recognition systems for a long time. However, in recent years there has been a
fundamental shift in the type of ML approach taken, from conventional ML approaches
to representation learning approaches.

Conventional approaches emphasize representing audio signals through hand-crafted
features that encode high-level and often application specific signal information. These
are input to simple models, such as logistic regression. Opposed to this, representation
learning emphasizes the use of complex models that operate on raw audio representa-
tions. Deep learning is a particular type of representation learning that uses deep
neural networks as models. [46, chapter 1]

This shift was inspired by the “deep learning boom” in computer vision. Here, deep
learning produced impressive performance gains over conventional ML approaches. This
boom was initiated in 2012, when Krizhevsky et al. [85] managed to significantly outper-
form conventional ML approaches through deep learning in an international competition
on image classification. Through this, Krizhevsky et al. [85] popularized convolutional
neural networks (CNNs). Since then, many areas adapted similar deep learning ap-
proaches. One of those areas was ASR.

1.2 Global thesis goal
While in computer vision the transition from conventional approaches to deep learning
is rather advanced and well investigated, applying deep learning to ASR is still under
active research. Particularly, there is little research on how to transfer deep learning
onto non-verbal acoustic communication events.

One of the main challenges is that deep learning usually requires large data sets
compared to conventional approaches, as more parts of the recognition pipeline are
dynamically adapted onto the data. While it is easy to gather large quantities of image
data, gathering and labeling acoustic data is more time expensive, which causes these
data sets to be smaller [176, chapter 6]. Data sets in non-verbal acoustic communication
are particularly small, as providing reference annotations requires expert knowledge, as
well as specialized recording procedures and subjects [150]. Consequently, components
of the representation learning pipeline need to be highly optimized to use the available
data effectively.

I conducted the research for this thesis in 2017 – 2020. During this time, the meta
question underlying most ASR research was: How can we apply deep learning more
effectively to automatic sound recognition? My research was heavily influenced by this.
Consequently, the thesis goal was answering aspects of this question, specifically aimed
at non-verbal acoustic communication events. More specifically, it was aimed at human
infant vocalizations and chimpanzee acoustic communication.

Let me summarize the global goal of this thesis as follows:

4

1.3. Overview over studies (A) – (D)

1. The general goal is to advance our understanding of objective assessment of non-
verbal acoustic communication events.

2. The more specific goal is to advance our understanding of using deep learning
more effectively for automatic classification of non-verbal acoustic communication
events with neural networks, applied to infant vocalizations and chimpanzee calls.

1.3 Overview over studies (A) – (D)
I performed my research through four individual studies, all within the aforemen-
tioned context of the global research goal. These studies carry the short-hand codes
(A), (B), (C), and (D). Studies had mostly separate research questions and goals, and
partly build on each other. Each study was associated with a scientific paper, which
was either published in an international research journal or as a preprint. Consequently,
large parts of this thesis consist of the content of those studies. However, their content
was modified to accommodate the studies’ recontextualization in this thesis.

The studies were as follows:

1.3.1 Study (A): Investigation of the Assessment of Infant
Vocalizations by Laypersons

The goal of this study was to investigate the assessment capability of laypersons for infant
vocalizations, to derive an infant vocalization classification scheme based on this assess-
ment capability. This particular subject has not been investigated yet, as already existing
classification schemes aim at trained professionals in vocalization assessment. The core
knowledge gain was discovering the association between affective ratings and class labels
for infant vocalizations, and the subsequent proposal of a classification scheme.

Fundamentally, this study investigated human perception and not automatic recog-
nition algorithms. Primarily, this research helped advancing the general knowledge on
objective assessment of infant vocalizations. However, it was also relevant for the de-
velopment of automatic recognition algorithms: These require labeled acoustic data for
training and validation of algorithms. Employing laypersons to label such data is the
most time and cost efficient way to acquire large data sets. However, this requires
knowledge on the laypersons assessment behavior, which was investigated in this study.

This study was published as a preprint, see [10].

1.3.2 Study (B): Comparison of Neural Network Types for
Automatic Classification of Infant Vocalizations

The goal of this study was to determine the neural network type among the currently
most prevalent ones with the best performance for infant vocalization classification, while
also considering the influence of their architectural configuration. This is of importance,
as the neural network architecture is the core module in a deep learning pipeline and
thus of particular importance for performance optimization. Previous research worked

5

1. Introduction

with fixed neural network architectures, leaving it unclear which aspects of the network
architecture are of general importance for increasing performance. The core knowledge
gain was the identification of those network stages and components with the highest
relevance.

This study was published in the scientific journal IEEE/ACM Transactions on Audio
Speech and Language Processing, see [9].

1.3.3 Study (C): Detailed Investigation of CNNs for Automatic
Classification of Infant Vocalizations

The goal of this study was to identify the most important architectural properties of com-
puter vision-like CNNs for automatic classification of infant vocalizations. This study
was similar to study (B), however focused specifically on CNNs, instead of performing a
more broad analysis on various network types. This is of importance, as computer-vision
like CNNs are currently the most prevalent network type employed in ASR classifica-
tion tasks. The core knowledge gain was the identification of the most relevant network
properties.

This study partially builds on results of studies (A) and (B): The target classes
resulted from the classification scheme developed in study (A). The investigated network
type was among the most performant ones in study (B).

This study was published in the scientific journal Elsevier Speech Communication,
see [9].

1.3.4 Study (D): Compensating Class Imbalance for Acoustic
Chimpanzee Detection With Convolutional Recurrent Neural
Networks

The goal of this study was to evaluate methods for compensating class imbalance for
detection of chimpanzee calls in long-term recordings through deep learning. This was of
importance, as chimpanzee calls are particularly rare in naturalistic monitoring scenar-
ios. The resulting class imbalance is known to negatively affect predictive performance.
Previous research circumvented this issue through artificial manipulation of the class
imbalance in their data sets. The core knowledge gain was the identification of the most
effective compensation methods for this application.

This study was published in the scientific journal Elsevier Ecological Informatics,
see [11].

1.4 Thesis structure
This thesis is structured as follows:

Chapter 2 presents foundations and background knowledge for automatic classifica-
tion of non-verbal acoustic communication events. It covers fundamental concepts that

6

1.5. Summary of major findings

are expected to be known to the reader to comprehend this thesis’ studies. This com-
prises topics such as machine learning basics or neural network layer types. The chapter
contains established knowledge in research on ASR and CP. Readers already familiar
with those topics are free to skip this chapter.

Chapter 3 presents the state of research relevant to this thesis’ studies and specifies
the respective research gaps. It first summarizes relevant scientific competitions and their
general developments. It then reports the specific state of research in (1) classification
schemes for infant vocalizations, (2) automatic classification of infant vocalizations, and
(3) automatic detection of chimpanzee calls, and highlights the research gaps in these
areas.

Chapters 4, 5, 6, 7 present studies (A), (B), (C) and (D), respectively. The structure
inside these chapters follows the common structure of scientific papers, i.e. statement of
the study goal, materials and methods, results, and discussion.

Finally, chapter 8 presents a collected discussion of the findings and concludes the
thesis.

1.5 Summary of major findings
For study (A), the major findings were as follows:

• Development of a classification scheme for infant vocalizations based on layperson
perception. This scheme might be applied for large-scale labeling of acoustic data.

• The affective dimension valence has the overall highest association with acoustic
class labels. This association was particularly strong for negative vocalizations,
i.e. whining, crying and screaming, to the point of both being almost redundant.
This implies that including valence ratings in labeling of acoustic data for infant
vocalizations with laypersons is worthwhile. It also confirms the hypothesis of
crying as a graded signal [16, chapter 2].

• Laypersons differentiated 9 salient acoustic classes. Consequently, they differen-
tiate between fewer classes than commonly defined in classification schemes for
infant vocal development, particularly regarding protophones.

For studies (A) – (D), the major findings were as follows:

• Deep learning systems managed to outperform conventional methods for infant
vocalization recognition despite small data sets, if their architecture was optimized
accordingly. This shows that optimizing the network architecture in deep learning
systems is a worthwhile endeavor to significantly increase performance.

• The overall most important network architecture choice was the choice of the ag-
gregation layer for reducing tensor dimensionality inside the network, e.g. choosing
between a GAP layer or a flattening layer. Global pooling operations worked best
on average. This implies that this architectural choice should be considered early
in the network design process.

7

1. Introduction

• Interaction effects played a significant role when analyzing associations between
network properties and their performance. For example, the results of study (C)
showed that the best values for the pooling size of CNNs interact with the choice
of the aggregation layer. This implies that analysis methods should be chosen to
include such interactions.

• Regarding the prior finding, regression trees proved to be an effective analysis tool
to identify associations between network properties and performance.

• Convolutional neural networks outperformed pure recurrent neural networks for
automatic classification with spectrogram inputs, regardless of whether they were
combined with fully-connected or recurrent layers.

• The most important architectural properties in computer vision-like CNNs for in-
fant vocalization classification, besides the aforementioned aggregation layer, were
the cumulative receptive field size and the input size of the fully-connected layers.

• Study (D) showed that methods for compensating absolute class rarity were most
effective for increasing performance to detect rare chimpanzee calls. Spectrogram
denoising improved performance by several degrees. However, measures for com-
pensating relative class imbalance retained or decreased performance, such as re-
sampling of the data sets. This implies that teaching the neural network to decor-
relate target class from background class characteristics is of primary importance
to detect rare animal calls.

8

CHAPTER 2
Foundations in Automatic

Recognition of Acoustic
Communication Events

The goal of this chapter is to introduce basic concepts and terminology in automatic
recognition of acoustic non-verbal communication events. This knowledge is a prerequi-
site for comprehending the relevant state of research and the thesis’s studies.

There is no single textbook that comprises all of the required knowledge, as this
thesis’ research is interdisciplinary. Consequently, my contribution is the compilation of
the knowledge from various sources into a concise introduction to the topic. The main
sources used in this chapter are: [46, 69, 76, 148, 176]

The structure of this chapter is as follows. Section 2.1 introduces basic knowledge in
acoustic analysis of non-verbal communication events. This is of importance to under-
stand the nature of the studies’ recognition tasks themselves, as well as the data sets.
Section 2.2 introduces basic knowledge in machine learning. This is of importance, as
ML is the basis for all current approaches to automatic sound recognition, including the
approaches presented in the studies (B) – (D), as well as some of the analysis meth-
ods. Section 2.3 introduces basics on neural networks. This is of importance, as all of
the studies’ recognition algorithms involved neural network based approaches. Finally,
section 2.4 introduces basics in automatic sound recognition.

2.1 Acoustic analysis of non-verbal acoustic
communication events

Section 1.1.3 argued that any assessment of non-verbal acoustic communication behavior
is based on a prior analysis off the occurrence of certain defined classes of communication
events.

9

2. Foundations in Automatic Recognition of Acoustic Communication Events

This is related to the distinction of the form and function of a concept, which is
present in many research areas. Roughly speaking, form means “what does it look like”
and function means “what is it used for” [148, chapter 1]. For example, imagine we aim
to study infant crying, where the study goal is to analyze the meaning, i.e. the function of
infant crying. To perform such an investigation using quantitative methods, we require a
precise definition of how this vocalization type is defined acoustically, i.e. a definition on
the form of crying. This ensures that the object of analysis and any subsequent analysis
method is comprehensible and reproducible. Then, we might correlate the occurrence cry
events and features with external factors to infer the meaning. Of course, the analysis
goal might be anything apart from function-related analysis.

The goal of this chapter is to introduce basic methods and concepts on how to (1)
define and discover classes of non-verbal acoustic communication events, and (2) how to
identify such classes in recordings, once defined.

The structure of this section is as follows. Section 2.1.1 introduces spectrogram
visualizations of audio signals. Spectrogram visualization are a basic tool for acoustic
analysis. Additionally, they are used extensively in modern deep learning based ASR
systems. Section 2.1.2 introduces an approach for discovering and extracting acoustic
communication events from audio recordings. This is of importance for an understanding
of the nature of the recognition tasks in all studies.

2.1.1 Spectrogram representations of audio signals

One of the most important tools for analysis of non-verbal acoustic communication
events is audio signal visualization, e.g. to identify acoustic patterns of communication
events. There exists a multitude of visualizations, all of which are based on certain signal
transformations.

2.1.1.1 Waveforms

The continuous audio signal is a function xcont(t) = y, where t ∈ R is a time point and
y ∈ R is the associated amplitude. For computational processing, the continuous signal
is digitized through sampling with a sampling frequency Fs ∈ N. The resulting digital
signal is a function x(n) = y, where n ∈ {0, . . . , Lsig − 1} ⊂ N is the sample index and
Lsig ∈ N is the signal length. This signal is referred to as the time domain signal, as
the input variable represents time. [176, chapter 4][63, chapter 5][44, chapter 2]

Visualization of an audio signal through amplitude over time is referred to as a
waveform. This visualization indicates the time points of audio events of relative gains
in signal amplitude, i.e. “loud” events. Waveforms indicate when sounds are happening,
but are uninformative of sound characteristics. [176, chapter 4][63, chapter 5][44, chapter
2]

10

2.1. Acoustic analysis of non-verbal acoustic communication events

2.1.1.2 Frequency spectrum types

The human auditory system primarily judges the qualitative characteristics of sounds
based on the frequency spectrum: The spectrum is the decomposition of a function
into a set of elementary functions. These elementary functions are sinusoids of varying
frequency, phase and amplitude. There are various transforms that define such as de-
composition. The discrete Fourier transform (DFT) is one of the most fundamental
ones and is pointwise defined as

DFT : N 7→ C

DFT (x)(f) = x̃(f) =
N−1∑
k=0

x(k)e
−i2πkf
N ,

(2.1)

where f ∈ {0, . . . , N/2} ⊂ N is the frequency index and N ∈ N ∧ N ≥ Lsig is the
STFT length. The result {x̃(f)}f∈{0,...,N/2} is a frequency spectrum, where R(x̃(f)) and
I(x̃(f)) indicate the amplitude of a cosine and sine at frequency f , respectively. It is also
referred to as the frequency domain signal as the function input domain represents
frequency.

The human auditory system evaluates the spectrum as the primary means to dis-
criminate sounds. It is able to perceive frequencies in the range ≈ 0 – 20 kHz. [161,
chapter 9]

However, direct visualization of the DFT is inconvenient due to the complex valued
codomain. Therefore, we transform the spectrum into a purely real valued codomain.
The most common variants are the magnitude spectrum x̃mag and power spectrum
x̃power, which are pointwise defined as

x̃mag : N 7→ R, x̃mag(f) = |x̃(f)|
x̃power : N 7→ R, x̃power(f) = x̃(f)2.

(2.2)

These transformations are also perceptually motivated. The human auditory system
primarily evaluates the summed energy per frequency channel for judging sound char-
acteristics, rather than evaluating the precise distribution of sines and cosines. [161,
chapter 9][176, chapters 3]

For spectrum visualization, we plot magnitude or power against frequency. This
visualization is more informative than the waveform regarding sound characteristics. It
shows how the signal energy is distributed across frequency channels.

2.1.1.3 Spectrograms

The disadvantage of spectrum representations is that they dismiss temporal information.
They represent the average distribution of frequencies across the analyzed time period.
However, sound characteristics are not static, but change over time.

To combat this disadvantage, we segment the audio signal into frames of length
Lframe ∈ N ∧ Lframe ≤ Lsig. This segmentation is characterized by the frame length
and hop size, i.e. the duration between frames. Frames are so short that their signal

11

2. Foundations in Automatic Recognition of Acoustic Communication Events

content is considered quasi stationary. Typical frame lengths are 20 – 40 ms. We calculate
spectra for all frames and concatenate the results. This allows to analyze the temporal
progression of sound characteristic. [148, chapter 7][176, chapters 4]

Transformations that incorporate time and frequency information are referred to
as time-frequency transformations. Mathematically, they are defined pointwise
through functions S(t, f) = y, where t ∈ {0, . . . , T − 1} is the time frame index (the
start time of a frame), f ∈ {0, . . . , F − 1} is the frequency index, and y is the indexed
value, such as the frequency magnitude or power.

Visualizations of time-frequency transformations are referred to as spectrograms.
Spectrograms are 2D images, where the x-axis encodes time t, y-axis encodes frequency
f , and pixel intensity or color encodes y. There are various spectrogram types, depending
on the definition of the transformation. As an image is usually defined as a matrix, we
collect all possible transformation values into a grid to construct such a matrix S ∈ RT×F

corresponding to the transformation as

S =


S(t = 0, f = F) . . . S(t = T, t = F)

.

S(t = 0, f = 0) . . . S(t = T, f = 0).

 (2.3)

For the remainder of this thesis, a spectrogram type’s name is synonymous to its
respective transformation, as the corresponding image matrix can always be derived
according to equation 2.3. [176, chapter 4] [44, chapter 2]

Most spectrograms are based on the short-time Fourier transform (STFT), which
implements the above described approach of performing DFTs on signal frames. It is
defined pointwise as

Scomp : N× N 7→ C

STFT (x)(t, f) = Scomp(t, f) =
N−1∑
k=0

w(k) · x(t ·N +H) · e
−i2πkf
N ,

(2.4)

where H ∈ N is the hop size between frames, and N and f are defined according to
equation 2.1.

The window function w : R 7→ [0, 1] attenuates the distortion effects caused by the
assumption of the DFT that the input frame is periodic. It also determines the frame
length Lframe through its support. The hanning window is one of the most common
window functions [130], which is defined as

w(n) = 0.5 · (1− cos(2 · πn
Lframe

)). (2.5)

We transform the complex-valued STFT into variants with real-valued codomains
just as the spectrum. The magnitude spectrogram and power spectrogram are
defined, respectively, as

12

2.1. Acoustic analysis of non-verbal acoustic communication events

Smag : N× N 7→ R, Smag(t, f) = |Scomp(t, f)|
Spower : N× N 7→ R, Spower(t, f) = Scomp(t, f)2.

(2.6)

Either of these spectrogram variants might be used for visualization as a 2D image
as described above.

However, the magnitude or power spectrogram does not translate directly to the
human sound perception, although it is a close estimation. For example, humans do not
perceive amplitudes linearly, i.e. a sound with twice as much energy is not necessarily
perceived twice as loud. Psycho acoustics is the science on human sound perception,
however the details of this are beyond the scope of this thesis. There are various tech-
niques to process spectra to resemble the auditory perception more closely. Those with
relevance to this thesis’s studies are presented here.

The log spectrogram applies a point-wise logarithmic transformation to a mag-
nitude or power spectrogram. This approximates the human perception of amplitudes
more closely. It is defined as

Slog : N× N 7→ R

Slog(t, f) = log(S(t, f) + ε),
(2.7)

where ε ≈ 0 is a small constant avoid calculating log(0). The log spectrogram is
among the most commonly used visualizations for research in acoustic communication
in humans and animals, such as speech processing. [176, chapter3, 4][63, chapter 5][44,
chapter 2]

The Mel-scaled spectrogram applies a non-linear transformation to the frequency
axis to better approximate human perception, which is approximately logarithmic. It
involves mapping of the linear frequencies to the mel scale. One of the most common
definitions of the Mel scale is [176, chapter 4]

mel(f) = 1000
log 2 log(1 + f

1000). (2.8)

The goal is to map linear frequencies of the spectrogram onto the Mel scale. For
this, we construct a filter bank with M filters, where each filter m(f)(i) : R 7→ [0, 1] has
a triangular shape. We choose all filters to have the same width in the Mel scale and
locate them to cover the entire available Mel scale. Figure 2.1 shows an exemplary Mel
filter bank. We correlate the magnitude or power with this filter bank to receive the
Mel-scaled spectrogram [176, chapter 4]

Slog Mel(fmel) =
F−1∑
f=0

m(fmel)(f) · S(f), (2.9)

where fmel ∈ {1, . . . ,M} is the filter index. Finally, we log-transform the Mel-scaled
spectrogram as defined in Eq. 2.7 to receive the log Mel-scaled spectrogram.

13

2. Foundations in Automatic Recognition of Acoustic Communication Events

0 2000 4000 6000 8000 10000
frequency in [hz]

0.000

0.001

0.002

0.003

0.004

0.005

fil
te

r a
m

pl
itu

de

Figure 2.1: Exemplary Mel filter bank. In this example, there areM = 15 Mel filters.
The filter bank calculation follows Slaney [158]. Here, filters are area-normalized.

There is not the Mel-spectrogram. There are various implementations for Mel scales
and filterbanks that differ in details. Therefore, publications must state which one they
used specifically. [176, chapter 4]

Figure 2.2 visualizes various spectrogram types presented in this section by the ex-
ample on an input audio signal with infant crying. As shown, the audio wave form
indicates time points of audio events, but is not indicative of the sound characteristics.
The magnitude spectrum indicates the distribution of frequency components, but is not
indicative of time points. The linear magnitude spectrogram appears to be empty, as the
dynamic range is dominated by few values of high magnitude. The logarithmic spectro-
gram shows clearly visible patterns: Time points containing voice show wave patterns,
while time points with pauses contain low intensities across the frequency range. Finally,
the log Mel-scaled spectrogram changes the space between the wave patterns, increasing
the resolution in low frequencies and decreasing it in high frequencies.

There are various, more sophisticated spectrogram variants that are not based on
the STFT, such as wavelet transform [50]. However, discussion of such spectrograms is
beyond the scope of this chapter.

2.1.2 Defining and extracting acoustic communication events

Two central issues in acoustic communication research are as follows. (1) Discovery
of classes: Discovering abstract classes of acoustic communication events. (2) Event
extraction: Given a set of such abstract class definitions, to detect event instances in
an acoustic recording.

Kershenbaum et al. [76] presented a general framework for solving these tasks. Al-
though the framework is specifically aimed at analysis of animal acoustic communication,
I adapted the framework and its terminology for this thesis, as it is applicable to infant
vocalizations as well. The remainder of this section is based on this paper.

14

2.1. Acoustic analysis of non-verbal acoustic communication events

250

0

0

84 62

time (s)

input signal timedomain (waveform)

signal frequency domain (magnitude spectrum)

linear magnitude spectrogram

log. spectrogram

log. mel spectrogram

fre
qu

en
cy

(k
H
z)

fre
qu

en
cy

(k
H
z)

am
pl
itu

de
m
ag

ni
tu
de

fre
qu

en
cy

(m
el
)

time (s)

frequency (kHz)

Figure 2.2: Visualization of various audio representations. The input audio signal
at the top is an excerpt of an audio recording of an infant crying. Spectrograms visualize
intensities through a color map, where dark colors indicate small intensities and light
green colors indicate high intensities.

2.1.2.1 Discovery of classes

Given is a data set with recordings of the target species. The goal is to segment the
recorded communication activity into smaller communication events. Kershenbaum et al.
[76] refer to a communication event as an unit.

The segmentation of the communication activity into units is based on a segmen-

15

2. Foundations in Automatic Recognition of Acoustic Communication Events

tation criterion. Application of these criteria involve inspection of the spectrogram.
Figure 2.3 gives a schematic visualization of the most common criteria, which are defined
as follows:

• Criterion (A): Separation by silence. Units are separated by pauses of a
certain predetermined length.

• Citerion (B): Change in acoustic properties (regardless of silence). Units
are separated by a significant change in acoustic property, regardless of silence.
This segmentation criterion might be used to further subdivide units determined
through criterion (A).

• Criterion (C): Series of sounds. Various sounds are grouped to a single unit
if the pause between them is brief and they have similar spectrogram patterns.

• Criterion (D): Higher levels or organizations. Various sounds that might be
considered different units according to criteria (A) – (C) might be grouped into a
single unit, if they are discovered to always occur together.

The segmentation criterion must be determined by the researcher based on prior
knowledge and hypothesis on the communication behavior of the species. A typical
example of a unit is a note in bird songs.

A segmentation criterion that is common in research on infant vocal development
specifically is the breath group. Nathani and Oller [116] defined it as “vocalizations
or groups of vocalizations separated from all others by audible ingressive breaths or
separable in accord with adult judges’ intuitions that vocalizations are separated by
pauses that potentially could include ingressive breaths”. This segmentation criterion is
most similar to segmentation criterion (A).

Discovering unit classes or unit types works as follows. First we group the ex-
tracted units into clusters of similar acoustic properties. Here, we have various degrees of
freedom on (1) which properties we consider and (2) which grouping criterion we apply.
We then derive general descriptions for the groups, which are then used as the abstract
definitions of unit classes. From the point of view of machine learning, we perform clus-
tering of units. In this context, a classification scheme is a list of such abstract class
definitions. [76]

The discovery of unit classes implies the existence of an abstract parent type, of
which classes are various subforms. I refer to this parent type as the unit super type.
The central property of the unit super type is the segmentation criterion.

To summarize, there are three building blocks to units:

• The unit super type, which is the abstract definition of the building block type
in acoustic communication that we analyze. Its central property is the expected
length, defined through the segmentation criterion. An example for this is a breath
group.

• Unit classes, which are different forms of the super type. Examples of this are
crying and laughing as concepts.

16

2.1. Acoustic analysis of non-verbal acoustic communication events

• Units, which are actual instances of communication events located in a recording,
delineated by the segmentation criterion. Examples of this are actual instances of
crying and laughing in a recording. [148, chapter 3].1

Research disciplines that are specialized in certain species usually have a consensus
on certain unit super types and classes. In many areas, the term call is synonymous
to unit super types with segmentation criterion (A) – (C), for example in research on
chimpanzees, killer whales or frogs [41, 76, 79, 118]. Some researchers adapted this
term also for human non-verbal vocal communication for adults and infants [12, 145]. I
highlight that the term call type in these papers corresponds to what I defined as unit
classes.

A string of consecutive units might be grouped together to form a sequence. A
typical example for a sequence is a bird song, consisting of various units of the super
type note. We might also consider a sentence as a sequence of the unit super type
word in linguistics. We can subject sequences to any further analysis. For example, we
might cluster sequences to discover various sequence classes or correlate the occurrence
of sequences with species behavior to discover their function. Essentially, sequences are
higher levels of organization of units similar to the unit segmentation criterion (D).

2.1.2.2 Challenges in extraction of events

After the unit super type and classes have been formally defined, we can extract unit
examples from recordings. The approach is as follows: (1) First we identify all units in
the recording through application of the segmentation criterion. Each unit is defined
through a start and end time point. (2) We label each unit according to the classification
scheme, i.e. we label them according to the unit classes.

The main challenges in this are as follows.
(1) Ideally, the segmentation criterion is agnostic to the unit classes, so that we can

first segment a recording and then label the units. However, in practice segmentation
criteria and the unit classes can depend on each other. This is obvious from the seg-
mentation criteria shown in Fig. 2.3. For example, criterion (D) requires identifying
unit classes to know whether units are separated by silence or not. Another example of
this is the unit type word in human speech, where identification of words in a sentence
usually requires knowledge of the language, i.e. the set of word classes.

(2) Classification schemes can be limited to certain subtypes of acoustic communi-
cation of the target species, according to the communication type it was designed for.
For example, Xie et al. [187] proposed an elaborate classification scheme where the unit
super type is a cry mode, i.e. phoneme-like units inside cry vocalizations (similar to seg-
mentation criterion (B)). Application of this scheme requires that the communication
type itself is limited to cry vocalizations. However, determining whether this is the case
is often not part of the classification scheme. [76][176, chapter 6][148, chapter 3]

1This differentiation expands on the original framework by Kershenbaum et al. [76], which only
defined the terms unit and label. However, I expanded these definitions to differentiate these concepts
further.

17

2. Foundations in Automatic Recognition of Acoustic Communication Events

Figure 2.3: Overview over the various segmentation criteria for units. Image
source: Kershenbaum et al. [76, p. 20]

2.2 Basics in conventional supervised machine learning
The goal of a recognition task is to predict information of interest about input data. For
example, the input data might be an audio signal and the predicted information is the
acoustic communication event class. The algorithm performing the mapping from input
to output is referred to as the model. There are two approaches to designing such a
model: The knowledge based approach and machine learning (ML). [46, chapter
1]

The knowledge based approach involves designing the model purely based on our
assumptions. The model comprises of a set of fixed rules. Fixed in this context means
that we, as the designers of the algorithm, determine the model rules based on our
hypothesis on the relationship between input and prediction, and possibly empirical
observations on the relationship. [46, chapter 1].

18

2.2. Basics in conventional supervised machine learning

An example of a knowledge-based algorithm for infant vocalization recognition is the
model of Mima and Arakawa [112]. They presented a model for automatic recognition
of the crying cause (sleepiness, hunger, discomfort) based on the cry signal. The algo-
rithm is a decision tree, which analyzes the spectrogram patterns (see section 2.1.1 on
spectrograms). For example, according to the tree, vocalizations with high energies in
the range of 0 – 10 kHz and a sharp drop off in energy above this range indicates hunger.
The decision tree rules were based on observations and assumptions of the authors. [46,
chapter 1]

ML is an alternative approach for designing such algorithms. Here, the general shape
of the model is still fixed, i.e. the function family. However, the actual content of the
model is determined through automatic optimization on the data. If Mima and Arakawa
[112] had determined the rules of their decision tree through some algorithmic opti-
mization process, instead of determining them themselves, they would have performed
machine learning. [46, chapter 1]

Currently, virtually any modern algorithm for recognition tasks is based on ML, e.g.
computer vision tasks, ASR tasks, or even predicting customer behavior on websites.
[46, chapter 1]

The above described scenario is a particular kind of ML, referred to as supervised
machine learning (SML). Supervised machine learning requires that input data is
associated with output information of interest. There is also unsupervised machine
learning (USML), where the task is to discover general patterns in data, without
aiming at a particular output information.

The goal of this section is the introduction to the basics in SML. All of the studies’
recognition algorithms as well as some of the analysis tools were based on SML. While
study (A) employed some USML as well, this area was of overall lesser importance to
this thesis. Consequently, any methods associated with USML are introduced in study
(A)’s method section.

The structure of this section is as follows. Section 2.2.1 explains the basic framework
and terminology of SML. Section 2.2.2 elaborates on core ideas of a model’s ability
to generalize. Section 2.2.3 introduces SML task types with relevance to this thesis’s
studies. Section 2.2.4 introduces methods for evaluation of model performance. Section
2.2.5 introduces a selected set of conventional machine learning models.

2.2.1 Core concepts of supervised machine learning

The common definition of machine learning from Mitchell et al. [114] is as follows:
“A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P , if its performance at tasks in T , as measured by
P , improves with experience E.”

The exact definitions of T , E and P depend on the application.

19

2. Foundations in Automatic Recognition of Acoustic Communication Events

2.2.1.1 The task

SML assumes a scenario in which examples x ∈ X are associated with targets y ∈ Y.
This association is expressed through a function ftrue(x) = y. I will leave domains
abstract for the remainder of this introduction. We might imagine x as the recording of
an infant and y as the predicted vocalization class. However, ftrue is unknown. The goal
is to to find a model f : X 7→ Y that performs a prediction f(x) = ŷ, so that ŷ ≈ y.
In the definition of Mitchell [114], the task T is the prediction f(x) = ŷ. [176, chapter
5][69, chapter 2][46, chapter 5]

2.2.1.2 Examples and targets

An example x can be of any domain X, e.g. vectors, matrices etc. Typically, examples
are vectors x = [x1 ∈ F(1), . . . , xN ∈ F(N)]>, where each vector component and domain
is called a feature, and N ∈ N is the amount of features2. x is then referred to as
a feature vector. Features can have domains of varying levels of measurement, e.g.
continuous or nominal. For the remainder of this introduction, we assume examples to
contain exclusively continuous features, so that x ∈ RN . [176, chapter 5][69, chapter
2][46, chapter 5]

The target y is also referred to as the label or response. The target domain Y
depends on the specific task. The two most common tasks in SML are classification
and regression. In classification, the target has a nominal level of measurement, i.e.
it is an unordered set of classes Y = {c(1), . . . , c(K)}. In regression, the target domain
is continuous Y = R. For the remainder of this introduction we assume targets to be
vectors y ∈ RK . To better differentiate y and ŷ, the true targets y are also referred to
the ground truth, and ŷ is referred to as the predicted target. [176, chapter 5][69,
chapter 2][46, chapter 5]

Supervised machine learning assumes that the examples and targets follow probabil-
ity distributions px : X 7→ [0, 1] and py : Y 7→ [0, 1], e.g. an example x has probability
px(x). Both variables follow a joint probability distribution px,y : X× Y 7→ [0, 1]. How-
ever, these probability distributions are unknown. [176, chapter 5]

2.2.1.3 The performance

The performance P measures the agreement between y and ŷ trough a function L :
Y×Y 7→ R. The function L is also referred to as a cost, loss or error function. The term
performance usually implies that high values of L indicate high agreement, while cost /
error / loss function implies that low values indicate high agreement. To determine the
expected cost Jreal ∈ R of f , ideally we would compute the expected loss over the entire
data generating process as

Jreal =
∫
px,y(x,y) · L(y, f(x)) dx dy. (2.10)

2As the term feature applies to both, the value and the domain, we have to infer from the context
which of both is meant.

20

2.2. Basics in conventional supervised machine learning

However, we do not have access to the data generating distribution. Instead, we have
access to a finite data set S, which is a collection of examples with associated true targets
S = {(x(1),y(1)), . . . , (x(M),y(M))} sampled from the distribution px,y, where M ∈ N is
the amount of examples. This set is used to approximate the performance through the
empirical risk, which is defined as [176, chapter 5][69, chapter 2][46, chapter 5]

Jreal ≈ J(S) = 1
|S|

∑
x,y ∈ S

L(y, f(x)). (2.11)

2.2.1.4 Hypothesis space and model weights

The goal is to choose f to minimize equation 2.11. Therefore, we provide f with vari-
ability through a set of parameters or weights θ ∈ �, i.e. f(x;θ) = ŷ. We modulate
f by modulating θ. The manner of how these parameters are applied to an input ex-
ample is subject to the explicit function body of f . The space of functions that are
possible solutions to f via choosing θ is referred to as the model’s hypothesis space.
For example, the hypothesis space of a linear model are all linear functions. [46, chapter
5]

2.2.1.5 Learning

Minimization of equation 2.11 is referred to as empirical risk minimization, which is
defined as

θ∗(S) = argminθ∈�
1
|S|

∑
x,y ∈ S

L(y, f(x;θ)), (2.12)

where θ∗ is the optimal set of weights. The process of finding θ∗ is referred to
as fitting a model or learning. An exhaustive evaluation of the entire space � is
usually infeasible. Therefore, θ∗ is determined through an optimization algorithm or
learning algorithm, which performs some form of more sophisticated evaluation of �.
[176, chapter 5][46, chapter 8]

If the learning algorithm is based on calculating derivatives (which it is for neural
networks), L needs to be differentiable. Particularly for classification loss functions, this
might not be the case. In such a case we define a surrogate loss function l : Y×Y 7→ R,
so that l ≈ L. We then replace l with L in any equation. [176, chapter 5][46, chapter 8]

2.2.1.6 Training, testing and generalization performance

Our goal is to apply f to new, unseen data outside of S. The performance on such
data is referred to as the generalization performance. However, optimization of
equation 2.12 does not ensure good performance on unseen data: The model could simply
memorize S, yielding a perfect score for equation 2.12, without having any applicability
for examples outside of S. [69, chapter 2][46, chapter 5]

21

2. Foundations in Automatic Recognition of Acoustic Communication Events

The general rule in ML is that a data set used for optimization of any component in
the ML system is prone for overestimating the generalization performance, as it becomes
prone to the memorization effect. [69, chapter 2][46, chapter 5]

To combat this issue, we split S into disjoint subsets, the development set Sdev and the
test set Stest. Performances measured on these sets are referred to as the development
performance and test performance, respectively. [176, chapter 6][69, chapter 2]

The development set is used for training, i.e. input to equation 2.12 with θ∗(S =
Sdev). Regarding the definition of Mitchell [114], the development set is the experience
E of the model. Optimization using the development set is referred to as training the
model. We might measure the resulting performance on the development set, however
this will overestimate the generalization performance, as argued above. [176, chapter
5][69, chapter 2][46, chapter 5]

The test set is used for estimation of the generalization performance through equation
2.11, i.e. J(S = Stest;θ∗). [176, chapter 5][69, chapter 2][46, chapter 5]

2.2.1.7 Validation and hyperparameter optimization

The goal is to increase the performance on the test set, while only being able to perform
optimization of model weights θ directly on the development set. To accomplish this
goal, we might modify system components apart from θ, such as the form of the model
itself.

Any choice about the ML system that lies outside of θ is referred to as a hyper-
parameter. An alternative definition is that a hyperparameter is any choice about the
system determined before optimization of θ.

Optimizing hyperparameters is referred to as hyperparameter optimization or
hyperparameter tuning. For example, let us choose the optimal model f from a set
of possible models M through optimization defined as

f∗(S;θ∗) = argminf∈M J(S;θ∗, f). (2.13)

The algorithm used for hyperparameter optimization is referred to as a hyperpa-
rameter optimization algorithm. The algorithm might be an exhaustive evaluation
of a predetermined hyperparameter space, evaluation of a randomly drawn subsample of
that space, or a more sophisticated algorithm such as genetic optimization. [176, chapter
5][46, chapter 11]

However, we must not perform hyperparameter optimization on the test set, as then
it would be directly involved in optimization again, which could cause the memorization
effect.

Consequently, we split the development into two disjoint subsets, the training set
Strain and validation set Sval. We use the training set for direct optimization of model
weights through equation 2.12, i.e. θ∗(S = Strain). We use the validation set as an inter-
mediate estimate of the generalization performance. We also use it for hyperparameter
optimization through equation 2.13, i.e. f∗(S = Sval;θ∗). Finally, we measure the per-
formance on the remaining test set as a final estimate of the generalization performance

22

2.2. Basics in conventional supervised machine learning

through equation 2.11, i.e. J(S = Stest;θ∗, f∗). [176, chapter 5][69, chapter 2][46, chapter
5]

Some sources refer to the development set as the training set as well, i.e. the term
training set is used for two concepts: The data set not used for final testing and the subset
of this data set used for optimization of model weights. Here, we have to infer the exact
meaning of the term training set from the context. However, this naming convention is
advantageous when we do not aim to choose hyperparameters and therefore do not need
a validation set. Here, the development set equals the training set. In these settings,
all hyperparameters are fixed based on prior assumptions. This is commonly the case
when the goal is to analyze the associations between features and targets, rather than
optimization prediction performance, such as when applying linear regression to measure
linear dependencies.

2.2.2 Increasing generalization capability of models

Generalization capability is the capability of a model to display high performance on
new, unseen data. We estimate this performance using the test set, while optimizing
the model itself exclusively on the training and validation set. This chapter introduces
concepts and methods for increasing the generalization capability.

2.2.2.1 Core concepts on generalization: capacity, overfitting, underfitting

The more a data set is involved in optimization of ML algorithm components, the more
its performance will overestimate the generalization performance. Therefore, the training
performance will generally be higher then the test performance.

The gap between the training and the test error is referred to as the generalization
gap. A model with a large generalization gap is referred to as overfitting the training
data. Overfitting means that the training set error is attributed to memorization of
examples, rather than the model having learned rules with general applicability. A
small generalization gap, but with low training and test performance is referred to as
underfitting. [46, chapter 5][69, chapter 2]

The irreducible error is the lower bound to the achievable test loss. Seldom is it
possible to achieve a perfect test performance. The main reason for the irreducible error
is noise, i.e. influences on the true relationship between examples and targets that are
unlearnable by any model. Examples of this include (1) actual stochastic influences on
the example-target-relationship, (2) features with influence on the relationship between
examples and targets that have not been provided, (3) measurement errors of ground
truth labels. The human performance, i.e. the performance of humans on a task, is
closely related to the irreducible error. [46, chapter 5][69, chapter 2]

The ability of a model to overfit or underfit the data is largely determined by the
model’s capacity (alias flexibility). A model with high capacity is able to fit a variety
of different functions. Such a model makes little assumptions about the relationship
between x and y, i.e. it can model relationships of arbitrary complexity. A model
with low capacity makes strong assumptions about the relationship x and y and is

23

2. Foundations in Automatic Recognition of Acoustic Communication Events

capacity

lo
ss

training loss

test loss

optimal capacity

underfitting overfitting

irreducible error

Figure 2.4: Relationship between overfitting, underfitting and model capacity.

unable to adapt when these assumptions are not met. In other words, models with high
capacity have a large amount of functions in their hypothesis space, while models with
low capacity have a small amount of specific functions in their hypothesis space. Usually
(but not necessarily), models of low capacity assume simple relationships, such as linear
relationships.

Figure 2.4 indicates the typical relationship between training loss and test loss as a
function of the capacity. [46, chapter 5][69, chapter 2]

2.2.2.2 Aspects for reducing the generalization gap

The following list is a selection of areas that are commonly approached to reduce the
generalization gap. All of these measures are classified as hyperparameter optimization.
All of these were part of system design and research questions in studies (B) – (D):

(4) Increasing the data amount: The larger the data set, the more the data
set is representative of the true underlying distribution. However, increasing the data
amount usually is limited through practical feasibility. There are methods for artificially
increasing the variability in the data set. One of those methods is data augmentation,
which is the application of artificial computational perturbations to examples to inject
variability that the model should be robust to. This simulates an increased data set size.
[46, chapter 5,7][69, chapter 2]

(2) Model selection: Ideally, we choose a model with low capacity, but with just
the right assumptions about ftrue. If the model capacity is larger then necessary, it will
display overfitting. If the model has low capacity and the wrong hypothesis space, it
will display underfitting. [69, chapter 6]

(3) Regularization: Regularization is the modification of the learning algorithm
to prefer certain solutions θ∗ for the same model f that increase the generalization
performance. For example, we might reward weight vectors that focus on few features
by modifying the performance metric during optimization. Regularization can reduce

24

2.2. Basics in conventional supervised machine learning

overfitting of a models whose capacity is too large. However, excessive regularization
can lead to underfitting. [46, chapter 4, 6]

(4)Manipulation of example representation: Examples are represented through
features. If some features are unrelated to the response, the model will fit them regardless
to increase training performance if it has sufficient capacity to do so. However, if features
are absent from the example representation that are actually part of the true relationship
ftrue, this increases the irreducible error. [69, chapter 6]

2.2.2.3 Basic hyperparameter optimization algorithms

The simplest and most prevalent algorithms for hyperparameter optimization are grid
search and random search.

In grid search, for each hyperparameter {h(1), h(2), . . . } we determine ranges we aim
to investigate {H(1),H(2), . . . }, based on prior assumptions. We build a grid of all pos-
sible combinations of hyperparameter values exhaustively, which is also referred to as
the search space. We choose the setting that reached the highest validation perfor-
mance. We might also include additional measures, such as preferring settings with
greater computational efficiency. The advantage of this approach is its simplicity. The
disadvantage is that the number of combinations grows exponentially with the amount
of hyperparameters and that the search space needs to be finite. [46, chapter 11]

In random search, we only evaluate a randomly drawn subset of the grid. The
advantage of this approach is that it is computationally less expensive: Usually, only
a few of all investigated hyperparameters contribute significantly to the performance,
which can be identified faster using random search. This method allows for infinite
search spaces, as only a finite subset needs to be investigated. [46, chapter 11]

Both searches are often performed iteratively from broad to fine: We begin with an
initial guess on the search space, analyze the results, and refine the search space to the
most auspicious ranges based on this analysis. [46, chapter 11]

There are numerous more sophisticated hyperparameter optimization algorithms,
such as bayesian optimizations. These algorithms usually contain series of exploration
and exploitation steps. Exploration means collecting performance data of unknown re-
gions of the search space and exploitation means focusing the search on the most promis-
ing regions. These algorithms however introduce their own set of secondary hyperpa-
rameters, which determine the behavior of the hyperparameter optimization algorithms
itself. Therefore, some authors still recommend random search as the gold standard,
as more sophisticated algorithms were found to offer only small performance gains over
random search (and sometimes perform worse), while introducing extensive additional
complexity to the search process. [3, 40, 46, 140]. Readers interested in this topic are
recommended to read Feurer and Hutter [40].

2.2.3 Task types and target encoding

This section gives a more detailed introduction to task types relevant to this thesis, as
well as encoding of target vectors.

25

2. Foundations in Automatic Recognition of Acoustic Communication Events

2.2.3.1 Regression

For this thesis, only simple regression tasks were of interest. Here, the target domain
comprises of continuous values, i.e. Y = R.

2.2.3.2 Classification

Classification tasks have nominal target domains Y = {k(1), k(2), . . . , k(K)}, where K is
the number of classes and upper script (i) the the class index.

There are two types of encoding targets: (1) integer encoding, in which the targets
are encoded y ∈ Y = {0, . . . ,K−1}, where y indicates activity of class i+1, and (2) one
hot encoding, in which targets are encoded as vectors y ∈ Y = {0, 1}K , where yi = 1
indicates presence and yi = 0 absence of class i.

In binary classification, there are two classesK = 2, where only one can be chosen.
This task usually employs target integer encoding. This task is most often associated
with detection tasks, where there is one class of particular interest to be recognized
as either present or absent. y = 1 indicates presence and y = 0 indicates absence of
this class. Consequently, y = 1 is referred to as a positive and y = 0 as a negative or
background.

In multi-class classification, there are at least three classes K > 2, where exactly
one class must be chosen for any example. Targets might be encoded either through
integer or one-hot encoding.

In multi-label classification, there are at least two classes K ≥ 2, while any
number of classes can be chosen simultaneously for any example. For this we employ
one-hot encoded target vectors. This task is closely related to binary classification, so
that we perform binary classification for presence vs. absence of each class separately.
Accordingly, binary classification tasks can be viewed as multi-label classification with
one class K = 1, introducing a second dummy class to represent absence. [69, chapter
4][176, chapter 5]

Some models do not output directly onto the target domain, but output class prob-
abilities, i.e. for one-hot encoded target vectors they output p̂ ∈ P = [0, 1]K . Here, p̂i
indicates the probability of class i being active. These models require post processing
function to map these probabilities onto the output domain Γ : P 7→ Y. This mapping
is referred to as binarization.

Designing the binarization function is another hyperparameter. The most common
settings are as follows.

In multi-class settings, we usually choose the most probable class as

Γ(p̂) = argmaxi∈{1,...,K}(p̂i) = ŷ, (2.14)

where y is the one-hot encoded target domain.
For multi-label and binary tasks, we require class-specific thresholds γ ∈ [0, 1]K ,

where γk is the threshold for class i. The thresholding is implemented as

26

2.2. Basics in conventional supervised machine learning

Γ(pi;γ) =
{

1 if p̂i > γi

0 else
= ŷi, (2.15)

where y is the one-hot encoded target domain. The common, unbiased threshold
choice is ∀i : γi = 0.5. [22]

2.2.4 Measurement of model performance

There are various aspects to measuring model performance: First, we require a metric
for comparing ground truth to predicted targets, which is presented in section 2.2.4.1.
Second, we require a evaluation setup, which is presented in section 2.2.4.6.

2.2.4.1 Selected evaluation metrics for classification

Performance metrics are implementations for evaluation of the empirical risk (see Eq.
2.11). However, most performance metrics are more sophisticated than just presenting
implementations for the cost function L. While equation 2.11 weights all examples
equally, some applications require over- and underweighting of certain examples. [176,
chapter 6]

Consequently, here we define performance metrics as functions P : YM × YM 7→ R,
with P (y, ŷ), where y = {y(1), . . . , y(M)}, ŷ = {y(1), . . . , ŷ(M)}, and M is the amount of
examples. [176, chapter 6]

This section is limited to metrics for classification tasks. We assume target vector
integer encoding, i.e. metrics are defined either for binary or multi-class classification
tasks. For multi-label tasks, we calculate metrics for each class individually, as though
each class was its own binary classification task on class presence vs. absence. We then
receive a performance score for each class, which we might average across classes to
receive a single score, which is referred to as macro averaging.

2.2.4.2 Accuracy

This is the simplest performance metric for binary and multi-class classification tasks.
It is defined as

P = 1
M

M∑
i=1

I(y(i), ŷ(i)), (2.16)

where I is the identity function defined as

I(y, ŷ) =
{

1 if y = ŷ

0 else.
(2.17)

The codomain has the range [0, 1], where 0 indicates no and 1 is perfect agreement
between ground truth and predicted targets. [176, chapter 6][148, chapter 11]

27

2. Foundations in Automatic Recognition of Acoustic Communication Events

2.2.4.3 Unweighted average recall (UAR), a.k.a. balanced accuracy

This is a performance metric for binary and multi-class classification tasks. Let ik be
the set of indices of examples belonging to class k defined as

ik := {i |i ∈ 1, . . . ,M ∧ I(y, k) = 1}. (2.18)

Unweighted average recall is then defined as:

P = 1
K

K∑
k=1

1
|ik|

∑
i∈ik

I(y(i), ŷ(i)) (2.19)

Balanced accuracy is similar to accuracy. However, it accounts for class imbalance,
i.e. settings where the relative amount of examples per class is uneven. Classes with few
examples are overweighted and classes with many examples are underweighted. This
metric is of importance when all classes are of equal importance to the application,
regardless of their relative occurrence in the data set. It is the standard metric for
classification tasks in computational paralinguistics. [148, chapter 11]

2.2.4.4 F1, precision and recall

These metrics are closely related evaluation metrics for binary classification settings.
They rely on intermediate statistics. First, we define a specified identity function as

Ia,b(y, ŷ) =
{

1 if y = a ∧ ŷ = b

0 else.
(2.20)

I1,1(y, ŷ) = 1 is referred to as a true positive, I0,0(y, ŷ) = 1 is referred to as a true
negative, I0,1(y, ŷ) = 1 is referred to as a false positive, and I1,0(y, ŷ) = 1 is referred
to as a false negative.

Based on this identity function, we calculate the intermediate statistics true posi-
tives TP , true negatives TN , false positives FP , and false negatives FN as

TP =
M∑
i=1

I1,1(y(i), ŷ(i)) TN =
M∑
i=1

I0,0(y(i), ŷ(i))

FP =
M∑
i=1

I0,1(y(i), ŷ(i)) FN =
M∑
i=1

I1,0(y(i), ŷ(i)).
(2.21)

Based on these, we define the metrics precision PR and recall RC as

PR = TP

TP + FP
RC = TP

TP + FN
. (2.22)

The F1 score is then defined as:

F1 = 2 · PR ·RC
RP +RC

. (2.23)

28

2.2. Basics in conventional supervised machine learning

Precision, Recall and F1 originate from information retrieval tasks. We usually em-
ploy them in highly imbalanced binary classification settings, i.e. when there are much
more negative than positive class examples |{I(y(i), 0)}i=0,...,M | � |{I(y(i), 1)}i=0,...,M |.
These are “needle in a haystack” problems, where the positive class is the needle. Preci-
sion indicates the fraction of true positives among the ones predicted as positive. Recall
indicates the fraction of true positives among the actually positive examples. F1 sum-
marizes precision and recall through the harmonic mean. [176, chapter 6][148, chapter
11]

2.2.4.5 Average precision (AP)

Average precision is a metric for binary classification problems, where the model outputs
class probabilities p̂ ∈ [0, 1], instead of outputting directly onto the target domain ŷ ∈
{0, 1}. As mentioned in section 2.2.3, these models require output binarization. Average
precision is a metric specialized in evaluating the total quality of predictions before
binarization.

Let TPγ , FPγ , . . . be the true positives, false positives etc. resulting from threshold-
ing predicted probabilities at γ. We define AP as

AP = 1
TP + FN

∑
γ∈�

PCγ , (2.24)

where � is the set of thresholds at which new positive predictions are accepted. Average
precision can be interpreted as the average precision across all possible binarization
thresholds. [176, chapter 6]

2.2.4.6 Evaluation procedures

To summarize the relevant aspects introduced in section 2.2.1, the development and
evaluation of an ML system comprises of three stages, which are as follows:

1. Training, i.e. optimization of model parameters. Training performance is usually
not measured as it is of no interest.

2. Validation and hyperparameter optimization. We measure validation per-
formance as an intermediate estimate of the generalization performance. We also
tune hyperparameters on the validation set.

3. Testing, i.e. we measure the test performance using the best found model param-
eters and hyperparameters. [176, chapter 6][69, chapter 5]

There arevarious approaches for implementing this three-stage process. Figure 2.5
visualizes the ones explained in this section.

The most straight-forward implementation is using a singular train-val-test split,
i.e. splitting the data set into fixed subsets Strain, Sval and Stest and using them for
the above described approach. The advantage of this approach is its simplicity. The

29

2. Foundations in Automatic Recognition of Acoustic Communication Events

Test

TestTest

Test

Test

Dataset

Development

Training Validation

Training Validation

Training Validation...

...

...

...

...
5-fold
nested
cross validation

4-fold
cross validation

Singular
train / val / test
split

Figure 2.5: Visualization of various evaluation procedures.

disadvantage is that performance measures on the validation and test set are simple
point estimates. Point estimates can be problematic for various reasons:

(1) Random influences on the training algorithm: Validation and test perfor-
mance can vary between repeated experiments for the same hyperparameter setting if
there are random influences on the training algorithm. An example for this is adding
random noise to features for data augmentation (see section 2.2.2.2 on data augmenta-
tion).

(2) Sampling bias: Sampling bias means that a sample is not representative of
the underlying distribution. Splitting the data can induce sampling bias when certain
properties of examples become over- or underrepresented in subsets. For example, if by
accident only the “difficult” examples were put into the test set, the performance will
underestimate the generalization performance. The smaller the data set, the more prone
it is to sampling bias. [176, chapter 6][69, chapter 5]

We combat issue (1) by repeating the training/validation/testing process multiple
times on the same split. This way, we can derive the average performance of the hyper-
parameter setting based on the performance distribution. [176, chapter 6][69, chapter
5]

We combat issue (2) through cross-validation, i.e. repeating the training and vali-
dation process on multiple splits of the same data set. There are two variants of cross-

30

2.2. Basics in conventional supervised machine learning

validation used in this thesis:
K-fold cross-validation subdivides the development set into K ∈ N mutually

disjoint subsets S(1)
fold, . . . ,S

(K)
fold , which are referred to as folds. Training and validation

is repeated K times, where the n-th fold is used for validation and the remaining for
training. This way, we receive K estimates of the validation performance to assess the
mean and standard deviation. We then estimate the final generalization performance
on the test set. K-fold cross-validation combats the sampling bias in the training and
validation set, but not in the test set. [176, chapter 6][69, chapter 5]

Nested K-fold cross-validation is is an extension of this to combat sampling bias
in the test set as well. Here, the entire data set is subdivided into K folds. Training,
validation and testing is performed for each possible combination of folds, using one
fold for validation, one for testing and the remaining for training. This way, we receive
performance distributions for the validation and test performance and combat sampling
bias in the test set as well. [179]

2.2.5 Selected machine learning models

This section presents selected machine learning algorithms with importance to this thesis’
studies.

2.2.5.1 Multinominal logistic regression

Multinominal logistic regression is a model for multi-class classification tasks with K
classes. It requires all features to be continuous. We assume one-hot encoded target
vectors. It outputs probabilities, i.e. f : RN 7→ [0, 1]K . The model is defined as

f(x;W , b) = gsoftmax(W · x+ b), (2.25)

where x ∈ RN is an input example, and W ∈ RK and b ∈ R is the weight matrix
and bias vector, respectively. Consequently, W i,: and bi are the linear weights and bias
associated with class i, which perform a scalar product with the feature vector.

The function gsoftmax : R 7→ [0, 1] is the softmax function defined as

gsoftmax(x)i = exi∑K
j=1 e

xj
. (2.26)

This function ensures that all output class probabilities sum to one. As this model
outputs probabilities, it requires subsequent binarization to derive the final class (see
section 2.2.3 on binarization).

2.2.5.2 Regression trees

Tree models build models that take on the form of binary trees. They aim at simple
regression tasks (see section 2.2.3 on regression).

Each node in the tree model indicates one feature of the feature space X. The
respective feature is split into two regions, which are indicated by the branches leaving

31

2. Foundations in Automatic Recognition of Acoustic Communication Events

the node. For continuous features, regions are separated by a threshold. For nominal
features, regions are two mutual disjoint groups of values. Such splits are referred to as
axis-aligned cuts or axis-aligned splits. Leafs indicate the predicted target value.
To use a tree model for predicting new data, we follow the path from the tree root to the
leaf by matching the input feature values to the tree splitting rules. [69, chapter 8][46,
chapter 5]

At training time, the model is built through greedy, recursive, binary splitting. First,
we select a loss function that we aim to minimize, such as the root mean square. To
construct the first node, we test each possible axis-aligned cut of the feature space, i.e.
we produce each possible split into two regions for each individual feature and calculate
the respective loss improvement. We choose the one yielding the highest improvement
on the training set. This approach is greedy, as we select the highest improvement one
node at a time. It is recursive, as we repeat the process at each new node recursively.
It is binary, as we only choose binary splits. [69, chapter 8][46, chapter 5]

This procedure leads to severe overfitting if we let the tree grow to arbitrary depth,
as any cut would improve the target criterion on the training set. There are various
methods to combat this. The most common one is to determine the optimal depth on
unseen data on the validation set, possibly through cross-validation (see section 2.2.4.6
on cross-validation). Limiting the depth of a tree to avoid overfitting is referred to as
pruning. [69, chapter 8][46, chapter 5]

Performance-wise, regression trees are usually outperformed by other, more sophis-
ticated ML models. However, they have various advantages, which are as follows:

• Mixed features: Tree models are able to operate on mixed-type feature spaces,
comprising nominal and continuous values without requiring dummy-encoding.

• High interpretability: Features and splitting rules are straight-forward to in-
vestigate for humans through visualization of the tree model.

• Inherent feature selection and highlighting of feature importance: Fea-
tures with high overall importance occur near the tree root. Features with no
importance are pruned off.

• Consideration of feature interactions: The recursive approach to finding splits
can consider feature interactions. If a certain feature is globally unimportant, but
of high importance inside a certain subgroup of the feature space, the tree can find
it. Other models, such as straight linear models such as logistic regression, are
unable to consider interactions. [69, chapter 8][46, chapter 5]

There are various implementations of regression trees, which differ in some aspects,
such as the loss function or the pruning approach. Study (B) and (D) used regression
trees for results analysis. The necessary details of their implementations are presented
in the respective results sections, i.e. sections 5.3 and 7.3.

32

2.3. Artificial neural networks as predictive models

2.3 Artificial neural networks as predictive models
In the context of supervised machine learning as introduced in section 2.2, artificial
neural network (ANN) are “simply” models for predicting m : X 7→ Y. However,
ANN have gained increasing popularity in recent years in the realm of recognition tasks
for media data, namely image recognition tasks, sound recognition etc. At the time of
writing this thesis, the majority of systems in these realms employs ANNs as the central
model. For brevity, I refer to ANNs either as neural networks, or simply as networks in
this thesis. [46]

The naming of ANN suggests a close relationship to biological neural networks. While
biological neural networks might have been of higher importance in the early days of
this technology, modern ANN departed from the biological model and are currently
understood purely as mathematically defined models in the context of ML. Consequently,
this section omits any discussion on biological parallels. [176, chapter 5]

Contrary to conventional ML models, neural networks offer immense degrees of free-
dom in their design. Their architecture is variable, where as conventional ML have
fixed model designs. Even the most simplest class of neural networks allows for infinite
architecture configurations. At its core, neural networks are more similar to a general
framework on designing a certain class of ML models, than a specific model in and of
itselfs. [46, chapters 5,6]

The goal of this chapter is to introduce the reader to the fundamentals in neural
networks. This is of importance, as studies (B), (C) and (D) investigated neural networks
applied to the automatic recognition of infant vocalizations and chimpanzee calls.

The structure of this section is as follows. Section 2.3.1 introduces the basic concepts
of neural networks as layered models. Section 2.3.2 introduces fundamental layer types
relevant to the neural networks applied in this thesis. Section 2.3.3 introduces basics
on neural network training. Section 2.3.4 introduces architectures of particular neural
networks relevant to this thesis.

2.3.1 Fundamental structure of an artificial neural network

A neural network is made up of L ∈ N layers, where each layer is some non-linear
function. The functions are chained as a directed acyclic graph, so that each layer
processes the result of its respective preceding layer. In a three layer network with L = 3,
we construct the model as f(x) = l(3)(l(2)(l(1)(x)))). The upper script (i) ∈ {1, . . . , L}
indexes the layer, e.g. l(2) is the second layer. We denote the output of the ith layer as
v(i) ∈ V(i). Consequently, each layer defines a mapping l(i) : V(i−1) 7→ V(i). Domains V(i)

are tensors of arbitrary dimensionality, i.e. V(i) = RA
(i)×B(i)×···×C(i) , and therefore layer

outputs are referred to as volumes. The last tensor dimension of a volume is referred
to as the channel dimension. [46, chapter 6]

The first layer is referred to as the input layer and its input domain is X, i.e.
l(1) : X 7→ V(1). The last layer l(L) is called the output layer. It might map directly onto
the target domain, i.e. V(L) = Y, or define an intermediate mapping such as probabilities
that require subsequent binarization to map V(L) 7→ Y (see section 2.2.3 on binarization).

33

2. Foundations in Automatic Recognition of Acoustic Communication Events

All layers between the input and the output layer are referred to as hidden layers. [46,
chapter 6]

The actual body of each function is left abstract in this explanation, as it is subject
to the layer type. Modern neural networks usually mix various layer types.

Regardless of the layer type, the ith layer consists of a set of U (i) ∈ N units. Units
are functions that actually produce the values of the layer output volume. Often, but not
necessarily, a layer has as many units as channels, i.e. C(i) = U (i). The core properties
of units are:

• All units in a layer have the same hypothesis space, i.e. they have the same function
body but with possibly different weights. When we denote the parameter set of
unit u(i,j) as θ(i,j), the set of all weights of a network f is defined as θnet =
{θ(1,1), . . .θ(L,U(L))}.

• Units process the layer input in parallel instead of sequentially (otherwise, they
would be located in the next layer). [46, chapter 6]

The number of layers L and number of units U is also referred to as the depth and
width of a model. However, there is no strict definition on how to count layers nor
units. Often layers can be broken down into various sublayers. There is no consensus on
how to count the width when layers have varying numbers of units inside the network.
[46, chapter 6]

2.3.2 Selected layer types

In neural networks, layer types might be combined freely, with the only technical re-
striction being the requirements on each layers input domain. This sections presents a
selected set of layer types l(i), which are relevant to the networks used in this thesis.
However, for simplicity in reading, we omit the upper script layer index in this section
to denote a layers simply as l.

2.3.2.1 Fully-connected layer

A fully-connected layer (FCL) (alias dense layer) has signature ldense : RN 7→ RC ,
i.e. it maps vectors of size N to vectors of size C. It contains a set of U = C units, each
one with signature u(j) : RN 7→ R, where (j) is the unit index. In a FCL, a unit is also
referred to as a neuron. A neuron is defined as

u(x;θ)(j) = g(〈w(j),x〉+ b(j)), (2.27)

where x ∈ RN is the input vector, θ = {w, b, a} is the set of unit parameters, w ∈ RN

are the weights, b ∈ R is the bias, and g : R 7→ R is the activation function. A fully-
connected layer defines a simple linear combination of the vectors w and x, which are
put through a non-linear transfer function g.

34

2.3. Artificial neural networks as predictive models

The jth component of the output vector is provided by the jth unit, i.e. when
ldense(x) = v then vj = u(j)(x), where the upper script (j) is the unit index. Conse-
quently, the entire layer operation can be displayed as a matrix-vector product defined
as

ldense(x;W , b, g) = g(Wx+ b), (2.28)
where g is the point-wise applied activation function, and W ∈ RC×N and b ∈ RC

are the collected weight matrix and bias vector from the units, so that W j,: = w(j) and
bj = b(j).

The activation function g is necessary, as stacking various fully-connected layers
would otherwise collapse into a single linear combination.

The sigmoid function σ used to be the most common activation function for hidden
layers in neural networks. It is defined as

σ : R 7→ [0, 1]

σ(x) = ex

1 + ex
.

(2.29)

However, it has fallen out of favor because of it attenuates the gradient flow through
the network. The most common activation function for hidden layers in modern neural
networks is the ReLU function [176, chapter 5] [46, chapter 6]

ReLU(x) = max(0, x). (2.30)
The central hyperparameter of a FCL is the activation function and the amount of

units.
Comparing this definition with logistic regression presented in section 2.2.5.1, it is

obvious that logistic regression is a special case of a fully-connected layer.

2.3.2.2 2D Convolutional layers

Units in convolutional layers perform the convolution operation. In this context, units
are also referred to as filters. There are different kinds of convolutional layers. For this
thesis, only 2D convolutional layers are of interest.

A 2D convolutional layer has signature l2D-conv(X) = V , where X ∈ RW×H×C
′ and

V ∈ RW×H×C . The volume dimensionsW ,H and C are interpreted as the volume width,
height, and channels, respectively. Filters produce u(j)(X) = O(j), where O ∈ RW×H ,
so that V :,:,j = O(j). The convolution operation of a filter is point-wise defined as

Ow,h = (X ?K)(w, h) = g(b+
Wkernel∑
m=1

Hkernel∑
n=1
〈Xw−m,h−n,: , Km,n,:〉), (2.31)

where w ∈ {1, . . . ,W} is the width index, h ∈ {1, . . . ,H} is the height index, K ∈
RWkernel×Hkernel×C is the filter kernel, b ∈ R is the bias, and g is an activation function
as in a FCL.

35

2. Foundations in Automatic Recognition of Acoustic Communication Events

A filter calculates a linear combination of its input followed by an activation function,
similar to a FCL. However, contrary to a FCL, it only considers a limited range of input
values in width and height according to the filter kernel size Wkernel and Hkernel at each
position. Consequently, the filter kernel size is also referrred to as the receptive field.
A unit in a convolutional layer is specialized in finding a specific pattern, associated with
its filter kernel, at different spatial locations w, h of the input volume. [176, chapter 5][46,
chapter 9]

Usually, input volumes are zero-padded at the borders so that the input and output
volume have the same dimension sizes for width and height. This is referred to as same
padding. If there is no padding, those dimensions shrink accordingly.

A variation to these layers are strided convolutional layers, which define a stride
S ∈ N, which determines the spacing between points at which convolutional results are
calculated w ∈ {S · 1, S · 2, . . . ,W} and h ∈ {S · 1, S · 2, . . . ,H}. [176, chapter 5][46,
chapter 9]

The central hyperparameter of a convolutional layer is the activation function, the
kernel size (widht and height), the stride, and the amount of filters.

2.3.2.3 2D Pooling layers

2D pooling layers operate on three dimensional input volumes RW×H×C and are usually
combined with 2D convolutional layers. They reduce the input dimensionality along
the width W and height H dimension. They operate similar to convolutional layers.
However, instead of performing convolutional operations on the input receptive field,
they perform a parameter-free statistical summary of the input receptive field.

The layer operation is point-wise defined as

lpool(X)w,h,c = p(Xw:w+n,h:h+m,c), (2.32)

where n ∈ N and m ∈ N are the width and height of the pooling kernel, and
p ∈ Rn×m 7→ R is some statistical function, such as maximum or average.

As convolutional layers, padding of input volume is common. To achieve the reduc-
tion in volume size, we stride the pooling layer. [46, chapter 9][176, chapter 5]

The most common pooling operation in CNNs currently is max pooling, i.e. calcula-
tion of the maximum.

The main hyperparameters of a pooling layer are the kernel size, stride, and pooling
operation.

2.3.2.4 Recurrent layers

Recurrent layers are specialized in processing time series with T time steps. The input
volume is X ∈ RT×C , where C is the channel axis. Consequently, Xt,: are the features
at the tth time step. The output volume is V ∈ RT×C

′ . To produce the output, the
layer applies the same weight vector w ∈ RC

′ at each time step Xt,: similar to a FCL.
Additionally, the layer incorporates the output at the previous time step V t−1,: in its

36

2.3. Artificial neural networks as predictive models

own layer through another weight vector r ∈ RC
′ . Consequently, we calculate the output

at time step t as

V t,: = g(〈w,Xt,:〉+ 〈r,V t−1,:〉+ b), (2.33)

where g is an activation function and b ∈ R is the bias. Because of the recurrent
calculation procedure, the output at step t actually involves all previous states 1, . . . , t−1.
[176, chapter 5]

When we forward the entire output volume V , this is referred to as as Many-to-many
translation. However, it is also common to just forward the last output at V T,:, which
is referred to as many-to-one translation. The first case is applied when we aim to stack
various recurrent layers. The latter case is common when we aim to collapse the time
dimension, e.g. when classifying an entire time series. [176, chapter 5]

Training of this layer requires back-propagation through time, where we unroll all
time steps to approximate the gradient. However, in practice this leads to vanishing and
exploding gradients, due to cumulative effects. [176, chapter 5]

In practice, we use more sophisticated extensions of recurrent layers, which extend
the naive implementation to combat the vanishing and exploding gradient problem. The
two most common types are long short-term memorys (LSTMs) [62] and gated
recurrent units (GRUs) [27]. The latter was proposed as a simplification of the
former. Both define additional gates with weight vectors, which control the internal
state to regulate the information flow through time, e.g. there are gates for gradual
“forgetting” of information. Stating the specifics of these implementations is beyond
the scope of this thesis. I recommend interested readers the original publications. [176,
chapter 5]

2.3.2.5 Batch normalization

Batch normalization was proposed by Ioffe and Szegedy [68]. Batch normalization nor-
malize the values of the input volume along the indicated axis through rescaling and
recentering. For many networks, batch normalization significantly improves training
time and convergence of the network.

Let x ∈ RN be an input vector. At the forward pass, we normalize each value as

l(xi) = (xi − µi√
σ2
i

) · αi + βi, (2.34)

where σ2
i and µi are the mean and standard deviation of the input calculated on

the input training batch and αi and βi are learnable parameters that might offset the
normalization (see section 2.3.3.2 on the term batch).

Although this example is aimed at vector inputs, this approach is applicable to
input volumes of arbitrary dimensionality by specifying the axes over which to calculate
statistics accordingly. This layer is usually applied before the activation function of a
convolutional or fully-connected layer.

37

2. Foundations in Automatic Recognition of Acoustic Communication Events

To apply batch normalization at test time to singular examples, we keep a running
average of the training mean and standard deviation, where a momentum parameter
governs the influence of the latest batch on this average.

2.3.2.6 Other layers

This section presents a list of other layers with importance to this thesis:

• Flatten layer: This layer flattens the input volume to a vector.
• Time-distributed layer: This layer wraps another layer. It applies the same

layer at each time step of an input volume
• Dropout: This layer randomly sets a certain percentage of input activations to

zero at each training epoch. Consequently, it induces noise to the activations at
training time, which can reduce overfitting in neural networks. It was proposed by
Srivastava et al. [162].

• Global pooling layers: This layer is similar to the already introduced 2D pooling
layer. However, it performs the pooling operation across the input spatial dimen-
sions. A 2D global pooling inputs 3D input volumes and pools across the entire
width and height. A 1D pooling operation inputs a 2D input volume and pools
across the first dimension. The most common variants of this are global average
pooling (GAP) and global max pooling (GMP), which pool the average or
the maximum across the input volume dimensions, respectively.

2.3.3 Training of neural networks

As described in section 2.2.1, optimization of the model weights requires various compo-
nents, such as a loss function and an optimization algorithm. This section defines those
components for neural networks.

2.3.3.1 Loss calculation

As stated in section 2.2.1, the loss of an example is calculated through a (surrogate)
loss Lloss(y, ŷ) (in this section I highlight the loss through the subscript text to avoid
confusion with the number of layers L). As the model f(x) is a combination of functions
l(L)(. . . l(1)(x)), the actual prediction is produced by the last layer ŷ = l(L)(. . .).

Consequently, we must determine three components for loss calculation: The encod-
ing of the target y, the content of the last layer l(L), and a surrogate loss function Lloss.
All components must be chosen in combination with each other to fit the task. While
theoretically these components can be chosen arbitrarily, there are certain established
default choices for certain tasks. [46, chapter 6][176, chapter 5]

I limit the loss calculation to the tasks binary, multi-class, and multi-label classifica-
tion (see section 2.2.3), as only those were of interest to this thesis’ studies. For these
tasks, neural networks employ FCLs as output layers. They use activation functions
that limit the output layer codomain to the range [0, 1]. Consequently, neural networks

38

2.3. Artificial neural networks as predictive models

output class probabilities p̂, i.e. these probabilities must be subsequently binarized (see
section 2.2.3 on binarization). [46, chapter 6][176, chapter 5]

Binary classification tasks use integer encoded targets with a single output neuron.
The activation function is the sigmoid function (equation 2.29). The loss is binary
cross entropy (BCE), which is defined as

Lloss(y, p̂) =
{
− log(p̂) , if y = 1
− log(1− p̂) , else.

(2.35)

Multi-class and multi-label classification tasks use one-hot encoded target vectors
with as many output neurons as classes. In multi-class classification, the output activa-
tion function is softmax (equation 2.26). Consequently, the output layer corresponds to
the definition of the multinominal logistic regression as defined in section 2.2.5.1. The
loss is categorical cross entropy (CCE), which is defined as:

Lloss(y, p̂) = −
∑
i

yi · log(p̂i) (2.36)

In multi-label classification, the output activation function is sigmoid. The loss is
multi-label BCE, which is defined as [46, chapter 6]

Lloss(y, p̂) =
∑
i

−yi log(p̂i)− (1− yi) log(1− ŷi). (2.37)

All of these losses weight all classes equally. However, as discussed in section 2.2.4.1,
settings with class imbalance cause the majority classes to dominate the average loss. To
compensate for this imbalance, there are alternative definitions of the above mentioned
losses. One of the most prevalent variant is associating classes with fixed weights [72,
77, 94]. Weighted BCE is defined as

Lloss(y, p̂) =
{
−w1 log(p̂) , if y = 1
−w0 log(1− p̂) , else,

(2.38)

and weighted CCE is defined as

Lloss(y, p̂) = −
∑
i

wi · yi · log(p̂i), (2.39)

where wi ∈ R is the class weight associated with class i. King and Zeng [77] proposed
to choose weights according to the relative count of examples, so that wi = |Ci|/(|K|·|C|),
where i ∈ K = {0, 1} is the class index, Ci is the set of examples for class i, and C is
the total set of examples.

2.3.3.2 Optimization through gradient descent

Training of a neural network means adapting its weights θnet to optimize the loss on
the training set. The total loss is calculated as the empirical risk as defined in equation

39

2. Foundations in Automatic Recognition of Acoustic Communication Events

2.11, using one of the previously shown loss functions. However, there is no analytical
solution to equation 2.11. Alternatively, we use an iterative method of optimization by
randomly initializing model weights and gradually adapting them to iteratively decrease
the loss, which is known as gradient descent.

For this, one calculates the gradient of the loss with respect to the model weights:

∇θJ(θ,S) = 1
|S|
∇θ

∑
x,y∈S

Lloss(y, f(x)), (2.40)

where variables correspond to the definitions in section 2.2.1.
Calculating the gradient is not straight forward, as f is a composite function. The

gradient must be calculated with respect to every weight in every layer. This requires
repeated application of the chain rule, which is referred to as back propagation. The
details of this procedure are beyond the scope of this thesis. Interested readers are
recommended to read Goodfellow et al. [46, chapter 8].

We update the weights according to the gradient. A weight update is defined as

θ′ = θ − η · ∇θJ(θ,S), (2.41)

where η ∈ R is the learning rate.
Stochastic Gradient Descent (SGD) is an algorithm for training a neural network

based on these principles: In a loop, we repeatedly calculate the loss on the entire training
set ∇θJ(θ,S = Strain) according to equation 2.11 and update the weights according to
equation 2.40. Each pass through the training set is referred to as an epoch.

However, computing the gradient over a large data set is computationally expensive.
In practice, we use Mini batch stochastic gradient descent instead. The training
set is subdivided into disjoint subsets B(1)

train,B
(2)
train, . . . of equal size, where a subset is

referred to as a batch. The batch size B = |Btrain| is the amount of examples in
a batch. Weight updates are then calculated according to the gradient of the batch
∇θJ(θ,S = Btrain). An epoch is defined as an pass through the entire training set, i.e.
there are Strain/B weight updates per epoch. Mini batch gradient descent is so common
that it is synonymous to gradient descent, i.e. SGD usually means mini batch gradient
descent. [46, chapter 8]

Optimization Algorithms: There are numerous optimization algorithms that offer
more sophisticated approaches for calculation of the gradient and applying the weight
update. For example, we might want to adapt the learning rate throughout training or
include second-order derivatives into the gradient. Optimization algorithms for neural
networks are an ongoing field of research. An exhaustive presentation of these algorithms
is beyond the scope of this thesis. The optimization algorithm that currently is most
common in the ASR community is ADAM, presented by Kingma and Ba [78]. [46,
chapter 8]

Early stopping: The number of epochs is a hyperparameter. It might be set fixed
prior to starting the training. However, it can also be chosen dynamically during train-
ing: Figure 2.6 visualizes the typical development of the training and validation/test

40

2.3. Artificial neural networks as predictive models

training epoch

lo
ss

training loss

validation loss
stopping epoch

Figure 2.6: Schematic visualization of early stopping in neural network train-
ing

set loss across epochs. Weights of neural networks are initialized randomly following
a predetermined initialization theme. At the start of training, neural networks display
an at-chance performance. During training, the training loss decreases monotonically.
However, the validation/test loss usually decreases first and later increase again. This
is due to the high capacity of neural networks, causing them to overfit as training pro-
gresses. Therefore, we use the validation set to monitor the loss at each epoch and stop
training at the optimal epoch. This process is referred to as early stopping. The pri-
mary hyperparameter is patience, which is the number of epochs we wait for the loss to
improve further before stopping training and returning to the best epoch. [46, chapter
7]

2.3.4 Common architectures

The architecture of a neural network is its layer composition and configuration. Ar-
chitecture design offers immense degrees of freedom: We can select from a wide range
of layer types, of which only a subset was displayed in section 2.3.2. All layers can be
combined freely, stacking layers of the same or different types. The only restriction to
combining layers are the layers’ input and output volume demands. Furthermore, all
layers carry various hyperparameters, such as amount of units. Consequently, there is
an infinite number of possible architectures. The big challenge in neural networks is that
the entire network is a hyperparameter.

Designing of performant architectures is more of an art than a science. There is no
analytical method to calculate the perfect architecture for a given task deterministically,
just based on knowledge of the task. Architectures are usually developed by the re-
searcher making assumptions about the nature of the task and designing an architecture
accordingly. Automatic search of architectures is an ongoing field of research [167].

In this section I present some common architecture templates that currently are
prevalent for a variety of tasks, particularly in ASR. All of these architectures were of
particular importance to studies (B) – (D). Figure 2.7 visualizes these networks.

41

2. Foundations in Automatic Recognition of Acoustic Communication Events

conv k=(3x3), u=64, a=ReLU

image dimensions=224x224x3

conv k=(3x3), u=64, a=ReLU

maxpool k=(2x2), s=(2x2)

conv k=(3x3), u=128, a=ReLU

conv k=(3x3), u=128, a=ReLU

maxpool k=(2x2), s=(2x2)

conv k=(3x3), u=256, a=ReLU

conv k=(3x3), u=256, a=ReLU

maxpool k=(2x2), s=(2x2)

conv k=(3x3), u=512, a=ReLU

conv k=(3x3), u=512, a=ReLU

maxpool k=(2x2), s=(2x2)

conv k=(3x3), u=512, a=ReLU

conv k=(3x3), u=512, a=ReLU

maxpool k=(2x2), s=(2x2)

dense u=4096, a=ReLU

dropout p=0.5

dropout p=0.5

dense u=4096, a=ReLU

dense u=1000, a=softmax

flatteningflattening

conv k=(7x7), u=64, BN, a=ReLU

conv, BN, a=ReLU

conv

addition, BN, ReLU

*residual convolution:

global average pooling

dense u=1000, a=softmax

res. conv* k=(3x3), s=(2x2), u=64

res. conv k=(3x3), u=64

res. conv k=(3x3), u=64

res. conv k=(3x3), s=(2x2), u=128

res. conv k=(3x3), u=128

res. conv k=(3x3), s=(2x2), u=256

res. conv k=(3x3), s=(2x2), u=512

res. conv k=(3x3), u=512

res. conv k=(3x3), u=512

res. conv k=(3x3), u=256

res. conv k=(3x3), u=256

res. conv k=(3x3), u=256

res. conv k=(3x3), u=256

res. conv k=(3x3), u=256

res. conv k=(3x3), u=128

res. conv k=(3x3), u=128

image dimensions=224x224x3

conv k=(5x5), u=96, BN, a=ReLU

conv k=(5x5), u=96, BN, a=ReLU

maxpool k=(1x2), s=(2x2)

conv k=(5x5), u=96, BN, a=ReLU

maxpool k=(1x2), s=(2x2)

maxpool k=(1x2), s=(2x2)

recurrent gru, ret. seq.=True, u=96

recurrent gru, ret. seq. = True u=32

recurrent gru, ret. seq. = False u=32

recurrent gru, ret. seq.=True, u=96

recurrent gru, ret. seq.=True, u=96

flattening
time-distributed

dense
time-distributed

spectrogram dimensions=128x40x1

image dimensions=224x224x3

dense u=4096, a=ReLU

dropout p=0.5

dropout p=0.5

dense u=4096, a=ReLU

dense u=1000, a=softmax

flattening

conv k=(11x11),stride=(4x4), u=96, a=ReLU

maxpool k=(3x3), s=(2x2)

maxpool k=(3x3), s=(2x2)

conv k=(5x5), u=128, a=ReLU

conv k=(3x3), u=128, a=ReLU

conv k=(3x3), u=128, a=ReLU

conv k=(3x3), u=128, a=ReLU

conv k=(3x3), u=256, a=ReLU

maxpool k=(3x3), s=(2x2)

dense u=50, a=ReLU

dropout p=0.2

dropout p=0.2

dense u=50, a=ReLU

dense u=10, a=softmax

dense u=3, a=softmax

flattening

spectrogram dimensions=5x40

spectrogram dimensions=312x64

image dimensions=28x28x1

dense u=120, a=sigmoid

dense u=120, a=sigmoid

dense u=10, a=sigmoid

flattening

conv k=(5x5), u=6, a=sigmoid

averagepool k=(2x2),s=(2x2)

conv k=(5x5), u=16, a=sigmoid

averagepool k=(2x2),s=(2x2)

CRNN, Cakir et al. 2017

FCNN, Mesaros et al. 2016 CNN "LeNet", LCun et al. 1989

CNN "AlexNet", Khrizhevsky et al. 2012

CNN "VGGNet", Simonyan et al. 2014 CNN "ResNet", He et al. 2015

RNN, Wagner et al. 2018

Figure 2.7: Overview over selected network architectures. The left column con-
tains three networks for audio recognition, the right three columns contains networks
for computer vision. Colors encode layer types. Each layer states its parametrization.
Abbreviations: dense = fully connected layer; conv = 2D convolutional layer; maxpool
= 2D max pooling; res. conv. = residual convolutional layer; u = number of units; a =
activation function; k= kernel size; s = stride; BN = batch normalization; ret. seq. =
return sequences. Sources of networks: [22, 55, 85, 90, 106, 155, 177]

2.3.4.1 Fully-connected neural networks

Fully connected neural networks (FCNNs) are neural networks that consist primarily
off fully connected layers. The central design choice in these networks is the amount
of layers and amount of units in each layer. In the literature, these networks are also
referred to as multi layer perceptrons (MLPs). [176, chapter 5]

Technically, fully connected layers require their input volume to be a vector. Oth-
erwise, the input needs to transformed accordingly, e.g. through a flattening layer. A
FCL and network assumes that the order of input vector components conveys no mean-

42

2.3. Artificial neural networks as predictive models

ing, i.e. neighboring components in a vector are not assumed to be more similar than
components that are far apart.

Figure 2.7 shows an exemplar FCNN. The network was presented by Mesaros et al.
[106] for the DCASE 2016 task 1 baseline system. The network inputs a 2D feature map
and therefore requires a flattening layer to input it to the network.

2.3.4.2 Recurrent neural networks

Recurrent neural networks (RNNs) are neural networks that consist primarily of recur-
rent layers. The central design choice in these networks is the choice of the recurrent
layer type, the amount of layers and amount of units per layer.

Figure 2.7 shows an exemplar recurrent network, consisting of two recurrent layers.
The network was used by Wagner et al. [177] for the 2018 ComParE challenge. The
network has two recurrent layers, where the first one returns the output at each time
step and the second one returns only the last state. The RNN requires choosing which
of the input dimensions is considered the time axis.

Recurrent networks assume that the index in the time step axis carries meaning, i.e.
that neighboring time steps are more similar than time steps that are further away. The
index of the feature axis carries no meaning. [176, chapter 5]

2.3.4.3 Convolutional neural networks

Convolutional neural networks (CNNs) are neural networks that contain convolutional
layers as the primary building blocks in the architecture. However, they contain other
layers as well, most importantly pooling layers, and sometimes FCLs. The right three
columns of Fig. 2.7 show a selection of exemplar CNNs that had a particularly high im-
pact on the research community. All of these architectures were developed for computer
vision.

The network LeNet by LeCun et al. [90] is often referred to as the first CNN. It was
proposed for the task of recognition of hand-written digits. It introduced various design
principles, such as: alternating convolutional layers with pooling layers; reducing volume
size with each pooling layer through striding; using quadratic kernels for convolutional
and pooling layers; following convolutional layers with a stack of fully-connected layers;
using flattening to adapt the convolutional layer output to the fully-connected layers.
[46, chapter 9]

AlexNet was proposed by Krizhevsky et al. [85] for the ImageNet competition in 2012.
The key differences to LeNet are: it is deeper; it uses ReLU activation function, which
proved to outperform sigmoid activation used in LeNet; it uses dropout in between fully-
connected layers to improve generalization [162]. AlexNet gained popularity, as it started
the “deep learning era” due to it significant improvement on the competing systems in
the ImageNet challenge that were not neural network based. Following AlexNet, most
modern image recognition solutions are based on CNNs. Up until today, it is not clear
why CNN were “forgotten” after LeNet for over 20 years. [46, chapter 9]

43

2. Foundations in Automatic Recognition of Acoustic Communication Events

VGGNet was proposed by Simonyan and Zisserman [155] for the ImageNet compe-
tition in 2014 and improved on the performance of AlexNet. It gained popularity for
its simplistic architecture and set implicit standards for coming designs in CNNs. The
key differences to AlexNet and LeNet were: greater depth; the usage of smaller 3 × 3
kernel sizes for convolutional layers and 2 × 2 kernel sizes for pooling layers; doubling
the amount of convolutional kernels after each pooling operation; keeping kernel sizes
identical across the entire network.

ResNet was proposed by He et al. [55] for the ImageNet competition in 2015 and
improved on the performance of VGGNet. It is arguably the default pretrained network
for any computer vision task to date. It introduced residual convolutional layers, which
is a stack of two convolutional layers with a skip connection. According to He et al.
[55], these allow better training in very deep networks. Additionally, it popularized
various design principles, such as: Greater depth; following convolutional layers with
batch normalization [68]; using global pooling instead of flattening for adapting volume
dimensionality after the convolutional stage; dismissing the FCLs completely, apart from
the output layer.

Consequently, there was an ongoing trend to increasing depth in networks, with
smaller kernel sizes. The usage of batch normalization has become quasi-standard in
CNNs and has been added to more modern adaptions of VGGNet [32, 60]. Even though
all of these CNN examples were developed for image recognition, they have been used
for audio recognition as well with success [60]. Section 3.2 elaborates further on this.

2.3.4.4 Convolutional recurrent neural networks

Convolutional recurrent neural networks (CRNNs) are networks that combine convolu-
tional layers with recurrent layers. These networks originate from speech recognition
[143] and have been popularized by Cakır et al. [22] for audio detection tasks. Fig. 2.7
shows one of those networks from Cakır et al. [22]. It outputs predictions at each time
step and therefore uses a time-distributed fully-connected layer at the output. These
networks do not reduce volume dimensionality across the time-axis to retain alignment
between the input feature map and output targets. Therefore, the volume dimension-
ality adaption between convolutional and recurrent layers is implemented through a
time-distributed operation as well.

2.4 Automatic sound recognition through machine
learning

Automatic sound recognition (ASR) is the umbrella term for computational tasks with
the goal of automatic, computational prediction of information about an input audio
signal. ASR is primarily concerned with sound classification and detection. This com-
prises all kinds of sounds: every-day sound classes such as a siren, but also non-verbal
communication events specifically. [176, chapter 1]

44

2.4. Automatic sound recognition through machine learning

ASR is not a mere subdisicipline of automatic speech recognition. Both ASR and
automatic speech recognition operate on audio signals, which for some ASR tasks can
involve the human voice. However, the output domain of speech recognition is much more
complex: While ASR usually only outputs classes of sound events with or without time
frames of occurrence, automatic speech recognition outputs text of the spoken speech.
The latter is much more complex than the former, e.g. same-sounding vocalizations can
mean different written words depending on the context. While there is some overlap in
the methods of both research disciplines, ASR is better understood as its own research
discipline, rather than as a derivative of automatic speech recognition. Also, methods
used in ASR overlap just as much with image recognition as they do with automatic
speech recognition. [176, chapter 1]

The goal of this section is to introduce the basics of ASR. This section is in close
relationship with all previous foundations sections: Section 2.1 introduced the type of
acoustic signals and event classes of interest. Section 2.2 introduced ML, which is the
currently leading approach for developing ASR systems. Section 2.3 introduced neural
networks, which currently are the most common type of ML model in deep learning
based ASR systems.

The structure of this section is as follows. Section 2.4.1 specifies the core ASR
tasks. Section 2.4.2 presents audio representations. Section 2.4.3 discusses methods for
prediction of sound information, based on these sound representations. Finally, section
2.4.4 highlights particularities in evaluation of ASR systems.

2.4.1 Overview of ASR tasks

While in section 2.1.1 we defined audio signals as functions x : N 7→ R, here we define
them as vectors x ∈ RLsig of length Lsig. Let f be the function performing the predictive
task on x.

ASR fundamentally knows two types of tasks, which are visualized in Fig. 2.8:

• Sound classification / regression is the prediction of information about an
audio signal without temporal allocation as f(x) = ŷ, where ŷ ∈ Y is the out-
put information. This corresponds to conventional classification or regression as
defined in section 2.2.3, where the input is an audio signal. In ASR, monophone
classification is synonymous to binary or multi-class classification, and polyphone
to multi-label classification.

• Sound detection is the prediction of information about an audio signal with
temporal allocation. The analysis function is defined as

f(x) = {(ŷ(1), t
(1)
start, t

(1)
stop), . . . , (ŷ(O), t

(O)
start, t

(O)
stop)}, (2.42)

where ŷ(i) ∈ Y, t(i)start and t
(i)
stop are the target, start and stop time of of event i. As in

audio classification / regression, the domain of y might be nominal or continuous.
There are two major types of detection tasks: (1) monophone detection, where
only one sound event can be active at a time, and (2) polyphone detection, where
any number of events can be active at a same time. [176, chapter 2]

45

2. Foundations in Automatic Recognition of Acoustic Communication Events

babbling

laughing laughing

crying

babbling

crying

babbling babbling babbling

laughing laughing

crying crying

polyphone sound detectionmonophone sound detectionmonophone sound classification polyphone sound classification

time

time time

am
pl
itu
de

Figure 2.8: Schematic visualization of the major audio recognition tasks by
an example. The top signal is the input waveform x. The bottom shows the activity
of three target classes y ∈ {crying, babbling, laughing}. As shown, in this case only
polyphone systems are able to infer absence of a target class. Figure inspired by [176,
chapter 2].

Audio detection departs from conventional classification and regression, since the
output domain is more complex. However, detection can be solved through sound classi-
fication. For this, we might segment the input signal into a list of shorter segments and
classify these segments separately. The segment duration and overlap determines the
temporal resolution of target activity indications. Consequently, any system originally
trained for audio classification might be transferred to detection. [176, chapter 2]

2.4.2 Audio representation and features

As introduced in section 2.2.1, machine learning requires examples to be represented
as features. In theory, it is possible to consider each signal sample xi directly as a
feature. However, signals are usually represented as feature maps M ∈ RT×F , i.e. a two
dimensional matrix , where T ∈ N is the number of time steps and F ∈ N is the number
of features.

The general approach for transforming a signal into a feature map is as follows, which
is visualized in Fig. 2.9:

(1) Framing: The signal is segmented into a series of frames or windows. This
process is analogous to the framing performed for calculation of the STFT presented in
section 2.1.1.3, however without the direct frequency transformation. As in the STFT,
this framing process is specified by the frame length Lframe and the hop size H between
frames. Typical frame lengths are 20 – 40 ms and typical hop sizes are 25 % – 100 %
of the frame length. The framing process converts x ∈ RLsig into a series of frames
{ẋ(1), . . . , ẋ(T)}, where each element is defined as

ẋ(t) = [xH·t , . . . , xH·t+Lframe]>, (2.43)

where t ∈ {1, . . . , T} is the time frame index, with T = bLsig
H c.

(2) Extraction of time domain features: We extract a set of features on each
time domain frame ẋ(t). Each feature is extracted through a function ft-feat(ẋ(t)) = v,
where each feature v ∈ R represents some kind of summative property of the frame. This

46

2.4. Automatic sound recognition through machine learning

input signal

framing

spectrum

feature map

feature
extraction

feature
extraction

domain
transformation

Figure 2.9: Schematic visualization of the sound feature extraction process.
Figure inspired by [176, chapter 2].

way, we receive a feature vector for each time frame as v(t)
t-feat with as many features as

extraction functions. Typical features are: average energy, zero-crossing rate, or auto
correlation coefficients.

(3) Frequency domain transformation: Each time domain frame ẋ(t) is trans-
formed into the frequency domain through the DFT defined in equation 2.1, so that
DFT{ẋ(t)} = ṡ(t). We might apply a window function such as the hanning window as
defined in equation 2.5. We receive a sequence of spectral frames ṡ(t), . . . , ṡ(T).

(4) Extraction of frequency domain features: Analogous to step (2), we extract
a set of features based on each spectral frame, where each feature represents some type
of summative property on the frame’s spectral characteristic. The resulting spectral
feature vector is v(t)

f-feat.
(5) Collection into feature matrix: We collect all features into a feautre matrix

M :

M =



t-featv
(1)
1 . . . t-featv

(T)
1

t-featv
(2)
1 . . . t-featv

(T)
2

.

f-featv
(1)
1 . . . f-featv

(T)
1

f-featv
(2)
2 . . . f-featv

(T)
2

.


(2.44)

47

2. Foundations in Automatic Recognition of Acoustic Communication Events

We might insert an arbitrary number of additional transformations-and-feature-
extraction-chains before collecting the results into the final feature map. For example,
some applications transform the spectral domain into the cepstrum domain to extract
so-called cepstral features.

The simple spectrogram representations presented in section 2.1.1.3 are special cases
of this approach, where the features directly correspond to the intermediate frequency
representation. Consequently, any spectrogram visualization might be used as a feature
map M .

The key principle in this approach is that we calculate features on short frames
whose content we consider quasi stationary. However, as feature extraction functions
are applied equally at each time frame, they are agnostic to the location or duration of
frames. In this context, features are also referred to as low level descriptors (LLDs)
in the community of computational paralinguistics. Figure 2.9 visualizes this feature
extraction process. [176, chapter 4][148, chapter 8]

2.4.3 Sound prediction through machine learning models

This section presents a generalized pipeline for solving audio recognition tasks through
ML models. I designed this framework as a general template into which various ap-
proaches discussed in this thesis can be placed. It outlines the most essential steps,
while actual pipelines are often more complex. This framework is based on the pipelines
presented by Hershey et al. [60], Schuller and Batliner [148], Virtanen et al. [176].

Let {x(1), . . . ,x(N)} be a a set of N audio signals in the time domain. We perform
classification or detection on each of these signals as follows. Fig. 2.10 visualizes the
process.

1. Time domain preprocessing: Preprocessing has the goal of manipulating signal
properties to facilitate the prediction process. Common preprocessing steps are
mono-conversion of stereo signals or amplitude normalization.

2. Feature map conversion: We convert signals {x(1), . . . ,x(N)} to feature maps
{M (1), . . . ,M (N)} according to the process outlined in section 2.4.2. Each feature
mapM (i) ∈ RT

(i)×F has the same number of features F , but a different times axis
length T (i) according to the duration of the respective signal.

3. Segmentation: The goal of segmentation is to bring all feature maps to the
same temporal duration Tseg ∈ R. This step is only necessary if the model re-
quires equally-sized feature maps for training and testing. If Tseg < T (i), we
need to segment it into segments of fixed length Tseg using some hop size Hseg ∈
R. Consequently, an input feature map M (i) ∈ RT

(i)×F is converted into a
list {Ṁ (i,s)}s=1,...,S(i) , with Ṁ (i,s) ∈ RTseg×F , where s is the segment index and
S(i) = bT (i)/Hsegc is the amount of segments. This segmentation is similar to
the framing process for feature extraction presented in section 2.4.2, just that the
segment and hop size usually span various seconds, instead of milliseconds. If

48

2.4. Automatic sound recognition through machine learning

Tseg > T (i), we need to pad or loop signal (i) to bring its length up accordingly.
Let e be such a padding function, then Ṁ (i,1) = e(M (i)).

4. Temporal feature aggregation: Some models are unable to directly process
two-dimensional matrices, for example conventional machine learning models (see
section 2.2.5) or pure fully-connected neural networks (see section 2.3.4). In this
case, we need to remove the temporal axis of the feature map segments through
some form of aggregation function agg(Ṁ (i,s)) = ṁ(i,s), where ṁ(i,s) ∈ RF

′ is
the resulting feature vector. We achieve this through feature-wise statistical sum-
maries across time, such as calculation of the mean, max, standard deviation etc.
We might also simply flatten the feature map, however this requires the prior
segmentation step if the model requires same-sized inputs.

5. Prediction: The model predicts each segment individually, which is either f(Ṁ (i,s)) =
ˆ̇y(i,s) or f(ṁ(i,s)) = ˆ̇y(i,s). As discussed in section 2.2.3, some models output class
probabilities instead of directly mapping onto the target domain, i.e. they output
ˆ̇p(i,s).

6. Output aggregation: If the recognition task is a detection task, the segment-wise
probabilities {ˆ̇y(i,1), . . . , ˆ̇y(i,S(i))} directly indicate temporal allocations of predic-
tions. For classification tasks, we need to aggregate the segment-wise outputs
through a function agg({ˆ̇y(i,1), . . . , ˆ̇y(i,S(i))}) = ŷ(i), similar to the temporal ag-
gregation of features. One common aggregation function is majority voting, i.e.
setting the most common voted label in a classification setting.

7. Output binarization: If the task is classification and the model outputs prob-
ability scores, we need to binarize outputs as discussed in section 2.2.3. Some
pipelines perform binarization on segments before aggregation.

Most of these steps are optional: The prediction step (5) is the only strictly required
one. Particularly steps (3) and (4) have similar goals: Both aim at eliminating the
variation of the time axis length across different feature maps. Therefore, both or either
one of them might be omitted if the model is able to handle feature maps of different
sizes for training and testing.

Choosing the segment length Tseg in the segmentation step is a non-trivial hyper-
parameter. It determines the amount of context involved in prediction. It represents a
tradeoff between computation time on one hand and retaining sufficient context to allow
class separability on the other hand. Choosing Tseg too small might lead to excessive
truncation of longer segments, which might dismiss information important for class sep-
arability; choosing Tseg too large might lead to extensive padding of shorter segments
which needlessly increases processing time through the network.

The prediction function in step (3) is usually trained through machine learning. Con-
sequently we need to assemble a training database for training of the model, consisting
of training examples and target labels. From the point of view of the data set provider,
the examples are the individual audio signals and their targets x(i),y(i). However, for
training, the examples for the model are actually the segments Ṁ (i,s). Consequently, we

49

2. Foundations in Automatic Recognition of Acoustic Communication Events

modelmodelmodelmodelmodelmodelmodelmodelmodel

feature aggregationfeature aggregationfeature aggregationfeature aggregationfeature aggregation

prediction aggregation

crying: 70%
babbling: 20%
laughing: 10%

segment
feature extraction

segment
predictions

feature
map

segment
feature
vectors

input
signal

signal
prediction

Figure 2.10: Schematic visualization of the audio recognition process.

need to determine a method to inherit the signal-level annotations onto the segments.
In classification tasks, we might simply inherit the signal-level annotations onto all seg-
ments. However, this induces the implicit assumption that the target information is
present in all segments, which might not be the case.

2.4.4 Evaluation of ASR system

Evaluation of an ASR system largely corresponds to evaluation of any ML model as
described in section 2.2.4. However, one special consideration is the album effect:
Machine learning evaluation assumes examples to be i.i.d., so that the test data actually
is new compared to the training data. However, particularly acoustic data sets often

50

2.4. Automatic sound recognition through machine learning

violate this assumption, causing a hidden information flow from training to test data
that models might exploit unintentionally.

This hidden information flow occurs whenever the data set displays a correlation be-
tween acoustic features and the target variable that (a) is caused by recording conditions
or context rather than recording content, and (b) is present in training and test data.
For example, if in a classification task each class is recorded with a different microphone,
the system might learn to differentiate the microphone characteristics rather than the
actual target class characteristics.

Avoiding the album effect requires humans to make prior assumptions about which
recording conditions might cause an album effect. These recording conditions must be
noted as meta data. The exact variables that might cause an album effect are application
specific. Mostly, signals are assumed to display context-related correlation if they are
similar regarding the recording time, recording location or sound producing instance
(e.g. speaker). Consequently, data set splits into training, validation, and testing must
ensure data signal sets are mutually exclusive regarding such factors. [176, chapter 6]

51

CHAPTER 3
State of Research

The goal of any research endeavor is to advance the knowledge in its respective re-
search discipline. The research disciplines that specifically are relevant to this thesis
are the automatic recognition of acoustic communication events of (1) infants and (2)
chimpanzees. However, these research disciplines are not isolated, but exist within the
context of broader research disciplines and communities. Consequently, we have to con-
sider the state of research of both levels: Primarily the state in the specific disciplines
(automatic recognition of infant and chimpanzee acoustics) and secondary in the broader
“parent disciplines”.

The parent discipline relevant to this thesis is general ASR. Historically, research has
primarily been driven through scientific publications in journals. However, in recent years
conferences and competitions have considerably contributed to the advance in research,
particularly for applied ML. A competition usually involves a set of challenges, such as
“automatic classification of recordings of infant vocalizations into a set of predefined
classes”. A challenge typically provides a development and test set. Participants then
design algorithms for solving the challenge and their submissions are evaluated on a
test set regarding a predefined performance metric. The algorithm with the best test
performance wins the competition.

The advantage of such competitions is that recognition algorithms are comparable
under the same evaluation setup. In conventional research, such performance comparison
might not be as straightforward, as various papers might use the same data set, but
different evaluation setups. The disadvantage of this approach is that research might
become overly focused on reaching high performance. Other research questions that are
valuable as well but do not contribute directly to optimizing performance loose attention,
e.g. investigating why certain approaches outperform others.

The goal of this chapter is to introduce the state of research relevant for studies
(A) – (D). For study (A), this means the state of research in classification schemes for
infant vocalizations. For studies (B) – (D), this means the state of research in automatic
recognition of infant and chimpanzee acoustic communication, in the context of the

53

3. State of Research

broader research developments in ASR. This context involves the developments in the
relevant competition-driven research communities. Based on these states, I specify the
research gaps.

The structure of this chapter is as follows. Section 3.1 introduces scientific competi-
tions relevant to the studies of this thesis. Section 3.2 introduces the influence of deep
learning on ASR, as this was of primary importance for my research questions. Section
3.3 presents the state of research specifically relevant to the studies and highlights the
respective research gaps. This includes classification schemes for infant vocalizations,
and automatic recognition of infant vocalizations and chimpanzee communication.

3.1 Related scientific competitions and communities
There are two annual competitions with primary relevance to automatic recognition
of non-verbal acoustic communication events: The Detection and Classification of
Acoustic Scenes and Events (DCASE) competition and the Interspeech Com-
putational Paralinguistics Challenge (ComParE) competition.

The DCASE competition is associated with the equally named DCASE conference1.
Both, the competition and conference, are focused on advancing the state of research on
general ASR. This involves recognition tasks of all kinds of sounds, e.g. acoustic event
detection of classes such as gun shots or sirens. The competition has been established as
an annual, reoccurring event in 2016 (however, there was one first competition in 2013
with a subsequent hiatus). It is coordinated by the Audio Research Group of Tampere
University in Finland.

Particularly in its first years, the competition involved challenges associated with the
fundamental ASR tasks as defined in section 2.4.1. Challenges change each year, with
one exception: The conference’s “flagship” challenge is automatic classification of sound
scenes, where scene classes are cafe, street etc. This is the only challenge to reoccur
each year. In recent years, challenges have diversified and grown increasingly complex,
deviating from the core focus of ASR tasks. For example, since 2019, they have been
hosting a challenge on audio captioning and source separation. [106, 107, 109, 110, 111,
132, 176]

The ComParE challenge is associated with the annual INTERSPEECH conference2.
It was established as an annual competition in 2009. The competition focus are chal-
lenges on computational paralinguistics (CP). The organizers define paralinguistics
as “states and traits of speakers as manifested in their speech signals properties”. Con-
sequently, CP is the computational analysis of paralinguistics.

The challenge usually focuses on monophone classification tasks, as defined in section
2.4.1. Acoustic data sets and target classes are related to paralinguistics. A typical CP
challenge is the automatic recognition of speech sentiment. As in the DCASE compe-
tition, all challenges usually change annually. With time, recognition challenges have

1http://dcase.community
2http://www.compare.openaudio.eu

54

http://dcase.community
http://www.compare.openaudio.eu

3.2. Deep learning in ASR and CP

diversified and deviated from the core focus of paralinguistics. For example, they hosted
challenges on automatic recognition of heart sounds in 2018. [148, 150, 151]

Both of these communities are separate. However, they offer similar tasks, in a sense
that they could generally be solved with similar algorithmic approaches. The ComParE
community is more directly related to the particular recognition tasks of this thesis. As
CP might be viewed as a special case of ASR, the DCASE community is related as well.

There are further research communities that might be considered relevant to au-
tomatic recognition of non-verbal acoustic communication as well. Examples include
music information retrieval or speech recognition. However, I limited this discussion to
CP and DCASE communities, as these affected the state of research relevant to this
thesis’ studies most directly.

Automatic recognition of animal sounds is the general area of research for study (D).
However, as far as I know, there is no dedicated annual competition focused on this
subject. Section 3.3.3 presents the related scientific literature.

3.2 Deep learning in ASR and CP

3.2.1 The deep learning boom

As mentioned throughout several sections in this thesis (sections 1.1.5, 2.2, 2.4), ASR
systems have been based on ML approaches for a long time.

Conventional ML models, such as logistic regression, were long documented to reach
poor performance when trained on raw signal inputs of visual or audio data, i.e. pixels of
images or waveforms of audio signals (see foundations section 2.2.5 on logistic regression).
The main reason was that such models can not incorporate the grid-structured topology
of signals: Slightly shifting the signal leads the input signal to produce widely different
response in the classifier, while to the human observer nearly no change occurred. [46,
chapter 1,9]

Feature engineering used to be the main way to tackle this issue. The idea is to
represent signals through a set of relevant features, instead of the entire raw signal. Each
feature should capture a signal property hypothesized to be relevant for the task and
exclude irrelevant signal properties. Such features are commonly referred to as hand-
crafted features, as they were designed manually by experts. For example, when the
challenge is speaker identification based on audio signals, we might design a feature to
estimate vocal tract length. [46, chapter 1,9][176, chapter 5]

Solving a task with an conventional ML approach means we primarily focus
on feature engineering and employ rather simplistic conventional ML models, such as
logistic regression. The main challenge with this approach is that feature engineering
is complex. Designing a feature describing the vocal tract length might be nearly as
challenging as solving the actual task directly. Also, features tend to be task-specific,
meaning that we would have to redesign at least some of the features for each new task.
[46, chapter 1,9][176, chapter 5]

55

3. State of Research

Representation learning is an alternative approach. Signals are left in their raw
data representations, e.g. pixels in images. The model is designed to contain stages
that are able to learn to extract feature representation themselves. Deep learning
means that the model is made up of a deep hierarchical structure of layers, so that each
layer learns concepts of increasing complexity. Typically, these are neural networks. [46,
chapter 1,9][176, chapter 5].

The main challenge in representation learning systems is that they require far more
data to be trained without overfitting. The reason is that models are essentially trained
to perform two tasks at once: feature extraction and prediction onto the target domain.
Consequently, they have more degrees of freedom and consequently a greater capacity,
which increases the overfitting risk. [46, chapter 1]

Deep learning was primarily made popular in the scientific community through com-
puter vision, particularly through the annual ImageNet Large Scale Visual Recog-
nition Challenge3. This was an annual competition between 2010 and 2017. The
competition comprised a reoccurring challenge on image classification into 1000 classes.
In 2010 and 2011 the challenge was dominated by conventional ML approaches. In 2012
Krizhevsky et al. [85] won the challenge through a deep learning system based on a
CNN by a considerable margin to the second placed system. The network architecture
is commonly referred to as AlexNet.

Since then, the challenge has been dominated by deep learning systems based on
CNNs. Some of the network architectures submitted by other participating teams in the
subsequent years became popular: Deep learning frameworks, such as tensorflow,
make these architectures, which were pre-trained on the ImageNet data set, accessible
for other image recognition tasks. Examples for such networks are VGGNet from 2014
[155] and ResNet from 2016 [55]. Please refer to section 2.3.4 for an overview over
AlexNet, VGGNet and ResNet.

3.2.2 From conventional ML to deep learning in ASR and CP

The success of CNN-based deep learning systems in computer vision has inspired a
similar shift from conventional to representation learning in ASR. I explain this shift in
the context of the general framework for audio recognition outlined in section 2.4.3.

• Conventional sound recognition systems usually employ hand-crafted, com-
plex LLDs as features. The feature design process follows the process outlined in
section 2.4.2. An example for such feature sets are GeMAPS [39]. Models are
simple in a sense that they can not directly process two-dimensional feature maps,
but only vector inputs. They either rely on temporal feature aggregation or di-
rectly predict each individual LLD frame. They usually are conventional machine
learning models, such as logistic regression or tree models discussed in section 2.2.5.

• Representation learning sound recognition systems usually employ simple
audio representations, i.e. the raw audio waveform or spectrogram types as dis-

3https://www.image-net.org/challenges/LSVRC/

56

https://www.image-net.org/challenges/LSVRC/

3.2. Deep learning in ASR and CP

cussed in section 2.1.1. There is an ongoing argument in the research community
on whether spectrograms should be counted as simple representations or hand-
crafted features. The current consensus is to consider them as simple representa-
tions, as (1) they have served as a generic signal visualization tool for centuries
independently of ASR, (2) they are unspecific to the task, and (3) there is evidence
that the human auditory system performs a STFT-like operation as well for hear-
ing. Models are complex, i.e. they usually are neural networks that are constructed
to incorporate the grid-structured topology of the feature map, e.g. CNNs, RNNs
or CRNNs. Consequently, they do not require temporal feature aggregation as
defined in section 2.2.5. [177][176, chapter 3]

The development from conventional sound recognition systems to representation
learning systems can be tracked in the baseline systems of the ComParE and the DCASE
competitions:

The ComParE competition used the same baseline systems for all challenges in each
respective year (at least to this date). Starting in 2014, the challenge featured one
baseline system, which was a conventional sound recognition system. The OpenSmile
system extracts 64 LLDs, comprising features such as root mean squared energy, zero-
crossing rate, spectral energies, fundamental frequency etc. All of these features require
elaborate analysis of the signal to be computed. Then, LLDs are aggregated through
so-called functionals, i.e. statistical summaries across time, as described in the feature
aggregation step in section 2.4.3. The resulting feature set comprises 6373 features per
analyzed time segment. The discriminating model is a support vector machine (SVM),
which is a linear model similar to logistic regression. The system has been a baseline
system for the ComParE challenge since 2012 up until today [149, 184].4

In 2017, an end-to-end system was introduced as an additional baseline system,
referred to as End2You. This system retains signals directly as time domain waveforms.
The waveform is fed into a neural network, which is a one-dimensional CRNN. The model
uses two blocks of convolutional and max-pooling layers, with 2 subsequent LSTM layers.
[172, 174].

The DCASE competition generally uses different baseline systems for each challenge.
As most challenges change annually, I use the automatic classification of sound scenes
challenge as a reference point, as this is the only reoccurring challenge. In 2016, the
baseline system was conventional: The LLDs were MFCCs, delta coefficients, and accel-
eration coefficients. The classifier was a Gaussian mixture model (GMM). MFCCs are
features commonly used in automatic speech recognition. They are produced by apply-
ing a second Fourier transformation onto the power spectrum. GMMs are models that
model the likelihood of features for each class as a mixture of Gaussian distributions and
infer the class through the Bayesian rule [106].

In 2017, the feature set was a Mel-scaled spectrogram and the model was a FCNN
with two layers. It is a hybrid between conventional and representation-learning systems,
as the feature set is simple, but the model requires feature aggregation by flattening

4The system is also referred to as the ComParE feature set + SVM approach.

57

3. State of Research

the input feature map [108]. The 2018 and 2019 editions introduced a deep learning
baseline system. The system used Mel-scaled spectrograms as feature maps and a CNN
as classifier. [110, 132]

The DCASE and CP communities differ on how prevalent deep learning based sys-
tems have become. In the DCASE, deep learning systems have completely replaced
conventional ML approaches: In 2017, approximately two thirds of the participant’s
entries for the scene classification task employed deep learning [109] and all of the top
placed systems were deep learning ones. In 2018, nearly all participant systems were
deep learning systems5.

In CP, deep learning based systems also have become popular, however to a lesser
degree. In 2017, half of the participating systems were deep learning systems [177].
From 2018 until today, the challenge still hosted at least two baseline systems of the
conventional type, in addition to deep learning baseline systems [150, 151, 152]. As
opposed to the DCASE challenge, conventional systems have still been performing on
par with deep learning systems and are still submitted by participants (on average,
details differ regarding the specific challenge).

Consequently, the shift to deep learning systems in ASR occurred with a delay of
about 5 years to the computer vision community, as reflected by the developments in the
DCASE and CP communities. One of the major reasons is data set size: Collecting and
labeling large amounts of sound data is more time-consuming than it is for image data.
Benchmark data sets for ASR are usually a fraction of the size of benchmark image data
sets, such as the ImageNet data set. [176, chapter 6].

At the moment, deep learning has become the default choice in the DCASE commu-
nity. However, In CP, deep learning and conventional approaches are coexisting. One
of the major reasons for this again is data set size: CP usually offers small data sets, as
it requires specialized recording procedures and experts for labeling. DCASE challenges
can use data sets from free internet sources, such as freesound.org or YouTube. [176,
chapter 6][148, chapter 6]

3.2.3 Spectrograms in representation learning systems

Combining spectrograms with CNNs has increasingly become popular for classification
tasks in ASR. Essentially, the spectrogram is merely viewed as a gray-scale image, so
that the CNN performs “image classification”. The CNN architecture is either directly
adapted from one of the popular CNNs for image recognition (e.g. those presented in
section 2.3.4) or one that at least follows similar design principles. This type of approach
has become so prevalent that I refer to it by its own name, the “spectrogram-as-an-
image+CNN”-approach.

The core principle in this is that the CNN treats the time and frequency axis of
the input spectrogram equally, e.g. through quadratic convolutional layers, making it
“unaware” of the fact that the dimensions of the spectrogram carry different meanings;

5For the 2018 DCASE edition, there is no overview paper. See http://dcase.community/
challenge2018/index for an overview of all participant systems.

58

http://dcase.community/challenge2018/index
http://dcase.community/challenge2018/index

3.3. States of research specific to studies (A) – (D)

it merely considers the input as a grid of spatially arranged values. To the best of my
knowledge, Piczak [128] was the first one to apply this approach to an ASR task in 2015,
which was scene classification, and inspired the usage in further DCASE challenges. Re-
search teams then began to directly adapt architectures on computer vision for ASR,
e.g. AlexNet, VGGNet, ResNet etc. (see foundations section 2.3.4 on these architec-
tures). Hershey et al. [60] from Google tested such architectures for large-scale sound
classification for youtube videos in 2017 and reached satisfactory performance. The great
majority of entries to classification challenges in the DCASE competition since 2017 uses
this approach as well [80, 107, 109, 110, 165]. Sections 3.3.2 and 3.3.3 discuss further
examples of this approach type applied infant vocalizations recognition and chimpanzee
recognition specifically.

The most common spectrogram variant is the log Mel-scaled spectrogram (see foun-
dations section 2.1.1.3 on this spectrogram type) [26, 36, 42, 56, 60, 84, 108, 110, 132,
153, 169, 177]. Cramer et al. [32, p. 2] stated that “when a sound is pitch-shifted the
pattern created by its harmonic partials change when using a linear frequency scale,
whereas with a (quasi) logarithmic frequency scale such as the Mel scale, pitch shifts
result in a vertical translation of the same harmonic pattern, meaning that convolutional
filters should generalize better when using the latter”.

In section 2.4.3 I introduced an approach to detection, by subdividing the input
feature map into shorter segments and classifying each segment individually. However,
if we aim to achieve fine-grained resolution for detection outputs, we need to either reduce
segment size or increase the overlap between segments. The former might reduce the
recognizability of classes and the latter is computationally expensive. Therefore, CRNNs
have increasingly gained popularity for detection challenges specifically. Recurrent layers
are able to output predictions for each time frame of the input feature map. This way,
they can incorporate larger temporal contexts and output predictions for every LLD.
The technique was primarily popularized by Cakır et al. [22] and has subsequently been
adapted for other audio detection challenges.

3.3 States of research specific to studies (A) – (D)

3.3.1 Classification schemes for infant vocalizations – study (A)

Section 1.1.3 introduced the importance of infant vocalization classification schemes for
various infant assessment scenarios.

There currently is no consensus on one single of such classification schemes for infant
vocalizations. There is a multitude of classification schemes that were proposed for
different purposes.

Buder et al. [21] presented a catalogue-like classification scheme, in the context of as-
sessment of infant vocal development. The classification scheme operates on the breath
group unit segmentation criterion (see foundations section 2.1.2). It differentiates be-
tween so called reflexive sounds and protophones. Reflexive sounds involve cries and
fusses, laughs, and vegetative sounds (breathing, burping, coughing, sucking etc.). Pro-

59

3. State of Research

tophones are all other vocalizations. These are hypothesized to be precursors to speech.
Examples for protophones are vowels, quasivowels, squeals, raspberries, etc. Protophones
also involve sequences of repeated sounds, such as marginal or canonical babbling (these
correspond to what the layperson usually imagines as stereotypical babbling).

Further classification schemes in the literature are part of assessment tools, in which
infant vocalization classification is an intermediate analysis step.

The most elaborate assessment tools are for assessment of vocal development in
infants. Here, the emergence of vocalization classes is associated with expected ages. The
common denominators of these classification schemes are that (1) they put an emphasize
on protophone vocalizations, and (2) they either use unit segmentation criteria (A) or
the breath group criterion (see foundations section 2.1.2). Nathani et al. [117] proposed
the SAEVD-R, which is among the currently most prevalent of these tools. The set
of vocalization classes is similar to the ones presented by Buder et al. [21], however
associated with typical ages of emergence. Oller [121] presented a similar assessment tool,
which might be considered to be a predecessor to the tool of Nathani et al. [117]. Stark
[163] also presented an assessment tool, which put more focus cry and fuss vocalizations,
as they hypothesized crying to also play an important role in vocal development.

Pain scales are assessment tools for infant pain assessment. As introduced in sec-
tion 1.1.3, they associate the occurrence of vocalizations with pain scores. Neutral and
positive vocalizations of any kind usually form one category signaling no pain. Negative
vocalizations such as moaning, whining, fussing, wailing, crying, screaming etc. form an
ordinal scale to signal pain intensity. These classification schemes usually omit the seg-
mentation criterion or further definitions of vocalization classes, i.e. they rely on internal
guidelines by the paediatric staff for reliable usage. [5, chapter 6][104, chapter 5]

There are further classification schemes presented by research papers for a variety
of research goals. Scheiner et al. [145] investigated developmental and emotion-related
changes in infant vocalizations. For this, they defined a classification scheme of 12 call
types. Lin and Green [93] studied the changes in infant expressive behavior to mothers,
by assessing occurrences of negative, neutral and positive vocalizations.

All presented classification schemes are aimed at trained professionals in infant vo-
calization assessment. There is little research on the assessment capability of laypersons
on infant vocalizations. Studies that employed laypersons for vocalizations assessment
did so primarily for rating of distress vocalizations (i.e. fuss- and cry vocalizations). Xie
et al. [187] asked parents to rate the level-of-distress of cry-like signals on a continuous
scale. The goal was to identify correlations between the level-of-distress and acoustic
properties. Barr et al. [15] asked parents to document their infant’s crying behavior in
dictionaries. They were asked to discriminate content, fussing and crying. These studies
defined crying as strings of continuous vocalizations, i.e. as sequences in the framework
presented in section 2.1.2.

There are many open research questions on assessment of infant vocalizations through
classification schemes:

• There is no consensus on classification schemes. There are certain vocalization
classes that carry the same name across classification schemes, such as crying.

60

3.3. States of research specific to studies (A) – (D)

However, these vocalizations are defined differently in detail. For example, some
studies define crying as a unit, while others define it as a sequence; some differen-
tiate fussing and crying, while others refer to any distress vocalization as crying.
[16, chapter 11]

• There is little research on the capability of laypersons to classify infant vocaliza-
tions. All of the above mentioned scenarios on vocalizations assessment and clas-
sification were aimed at professionals. This is of importance for any application in
which this capability is of interest, e.g. employing laypersons for crowd-sourcing
data set labeling.

3.3.2 Automatic recognition of infant vocalizations – study (B) and
(C)

Section 1.1.4 introduced the advantages of supporting infant vocalizations assessment
through automatic systems. Section 1.1.3 introduced that, ideally, we want a system that
(1) detects infant vocalizations, and (2) classifies them into a discrete set of vocalizations.
This allows to employ the system for monitoring and connect the system output to a
variety of subsequent analysis applications.

The LENA6 system most closely fulfills this requirement. Oller et al. [123] orig-
inally presented it in a study. The system automatically detects infant vocalizations
and subsequently classifies them into one of three classes: cry, vegetative vocalizations
(laughter, coughing, etc.) and speech related vocalizations (protophones). The analysis
goal is monitoring of vocal development, with further specific purposes, such as early
detection of speech impairments. The LENA project is a non-profit organization that
distributes devices and software.

The ComParE competition 2018 hosted a challenge on the automatic classification of
infant vocalizations [150], named the crying subchallenge. The challenge was to classify
general infant vocalizations into the classes neutral, fussing, and crying. Seven teams
participated and there were four baseline systems. This challenge was of particular
importance to the research in automatic infant vocalization recognition, as it was the
first time to allow comparing various approaches under the same rules. However, the
challenge did not completely fulfill the above mentioned requirement for monitoring
systems, as it did not involve prior detection of vocalizations.

The majority of the remaining research is aimed at infant crying specifically. The
research is fragmented regarding recognition goals and methods. Examples of recognition
goals are: (1) automatically deriving the crying cause by analyzing the cry signal, e.g.
deriving whether the reason is sleepiness, hunger, or pain [1, 23, 24, 25, 112, 119, 126,
127, 137, 175]7, (2) automatically deriving pathologies, such as asphyxia [37, 43, 125,
131, 139, 178, 190, 191], and (3) automatic regression of the level-of-distress or pain

6https://www.lena.org/technology/
7I highlight that the validity of these research endeavors might be questionable, as it has repeat-

edly been shown that humans are unable to distinguish the infant crying reason without contextual
information [16].

61

https://www.lena.org/technology/

3. State of Research

intensity based on analysis of the cry signal [157, 187]. All of the proposed algorithms
lack practical applicability, as they require limiting inputs to crying specifically.

Lastly, there is research on automatic detection of cry vocalizations [30, 87, 115,
154, 189]. Such systems are applicable for long-term monitoring, however are aimed
at detecting crying specifically and are therefore more constrained regarding specific
applications.

Regardless of the specific recognition challenge, automatic recognition of infant vo-
calizations experienced increased interest in deep learning methods, analogous to the
global trend in ASR.

The great majority of systems for automatic infant vocalization recognition employed
conventional ML approaches, as defined above. This applies to the previously mentioned
LENA system, which uses a similar approach to the DCASE 2016 baseline system [106]
with GMMs. Most of the remaining research employs MFCCs or LPCCs as features,
and used conventional ML models, such as SVMs [23, 25, 137, 175], k-nearest neighbor
[30, 125], decision trees [37], hidden-markov models [115, 187], FCNNs [127, 178, 190,
191]. The studies [43, 119, 139] did in-depth comparative studies on various of such
conventional ML algorithms.

There is less research on deep learning for infant vocalization recognition due to its
novelty. The spectrogram-as-an-imge+CNN approach gained popularity as well. Chang
and Li [23] and Lavner et al. [87] did preliminary studies for identification of the crying
cause and cry detection, respectively, by using a single custom CNN architectures. Yao
et al. [189] applied AlexNet [85] for cry event detection and reported significant perfor-
mance gains over the LENA algorithm. Severini et al. [154] tested single-channel and
multi-channel recordings for cry detection with custom CNNs.

The ComParE Crying sub-challenge 2018 also featured the full spectrum of types of
systems [150]:

Conventional systems in this competition were as follows: The first was the baseline
system Open SMILE, presented in section 3.2). The second baseline system OpenXBOW
[184] used a Bag-of-words approach to feature generation and inputs them to an SVM
classifier. The participants Gosztolya et al. [48] proposed various modifications of the
OpenXBOW baseline, one of which applies FCNN outputs for the Bag-of-words code-
book generation.

Deep learning systems were as follows: The baseline system End2You [174] feeds raw
waveforms into a CRNN. The baseline system AuDeep and the one of Syed et al. [169]
combined Mel-scaled spectrograms with CRNNs. Turan and Erzin [173] proposed a CNN
derivative named CryCaps with spectrogram inputs, but only indicated validation set
performance. Wagner et al. [177] presented an in-depth comparison of various feature
sets combined with an RNN. Some of these sets were simple spectrograms and some
were more elaborate, such as the COMPARE feature set [184]. They found that hand-
crafted LLDs outperformed more simple spectral representations. The remaining entries
likewise combined hand-crafted LLDs with RNNs [67, 197] .

The highest single system performance was held by the conventionalOpen SMILE [38]
system with 73.2 % UAR. Consequently, none of the deep learning systems managed to

62

3.3. States of research specific to studies (A) – (D)

outperform this conventional one. This observation is in accordance to the general de-
velopments in CP discussed in section 3.2.2.

Based on this state of research, I identified two major research gaps in automatic
recognition of infant vocalizations:

• While the application of conventional recognition systems has received ample re-
search, there still is a lack of in-depth studies for representation learning and deep
learning systems. Such research has been restricted to singular performance indi-
cations of fixed pipelines.

• There is a lack of systems designed for practical applicability to monitoring sce-
narios with various assessment goals in mind. Previously proposed systems have
either been focused on crying in particular or focused on classification instead of
detection.

3.3.3 Automatic recognition of chimpanzee communication – study
(D)

Automatic detection of chimpanzee calls is of primary importance for automatic moni-
toring of wild chimpanzee populations. There is a multitude of monitoring applications,
from assessing chimpanzee home ranges for behavioral studies to early-warnings systems
for areas with human-wildlife conflict. [74, 75]

Passive acoustic monitoring (PAM) is one of the most widely employed methods
for monitoring wild animals. Here, autonomous recording units (ARUs) are dis-
tributed over an area for constant soundscape recording. The main advantages of PAM
are: (1) minimal intrusion, as humans are only required for installation and maintenance
of devices, (2) sampling over large spatial and temporal scales, and (3) detection of an-
imals in habitats where visual recognition is limited, e.g. dense rain forests. However,
PAM also produces large amounts of audio data that quickly become infeasible to curate
manually by humans. Consequently, algorithms for automatic detection of target species
are of primary importance for PAM settings. [75]

Ideally, the goal is to design a detection system to detect various chimpanzee vocal-
izations of interest. To my knowledge, there are only two publications that specifically
focused on this task: (1) Heinicke et al. [57] investigated an automatic system for de-
tecting calls of various primate species in PAM recordings of a tropical forest. Their
algorithm employed a conventional ML approach based on hand-crafted features and
GMMs. Algorithm performances varied with respect to target species and call type,
from 10 % F1 for Diana monkeys and King colobus monkeys to 4 % for chimpanzee
drumming and 0.2 % for chimpanzee vocalizations. (2) The master thesis of Dev [35]
also investigated detection of chimpanzee calls, however examples of the negative class
were made up of the Urbansound8K [144] data set classes (e.g. car horn or gun shot),
instead of naturalistic background sounds.

In recent years, deep learning has gained increasing popularity for animal acoustic
detection as well. Here, the spectrogram-as-an-image+CNN approach gained popularity

63

3. State of Research

(see section 3.2.3 on this approach), i.e. all of the following related literature fits into
this approach. Bergler et al. [17] applied variants of the computer vision CNN archi-
tecture ResNet [55] for detection of orca calls in long-term recordings (see foundations
section 2.3.4 on ResNet); Bjorck et al. [18] applied the computer vision CNN architecture
DenseNet Huang et al. [65] for detecting African forest elephants with PAM; Oikarinen
et al. [120] applied siamese CNNs with stereo inputs to the detection of various mar-
moset monkey calls. Mac Aodha et al. [98] investigated CNNs for bat detection. The
DCASE competition 2018 hosted a challenge on automatic bird detection as well. The
baseline system [165] employed custom CNN architectures. The winning team Lasseck
[86] of the challenge applied ResNet [55] with extensive data augmentation, similar to
Bergler et al. [17].

However, there are still research gaps in automatic primate call detection as well as
automatic animal call detection in general.

• Consideration of target class rarity in PAM settings: The majority of
recordings in long-term PAM recordings will comprise background noise rather
than target calls [18, 57, 120]. Consequently, databases feature a heavy imbalance
between background and target class. Numerous studies showed that class imbal-
ances can have detrimental effects on automatic system performances, as classifiers
are usually biased towards the majority class [53, 72, 183]. However, all previously
mentioned studies worked with databases with strongly reduced amounts of back-
ground samples, biasing the class distribution towards the positive class. This
bias was either already present in the respective database or produced by the au-
thors through discarding fixed percentages of noise samples. Additionally, nearly
all papers measured system performances with metrics unsuited for unbalanced
settings, such as accuracy (see foundations section 2.2.4.1 on accuracy). These
give overly optimistic results in recordings with heavy class imbalance as they are
biased towards the majority class [72].

• Time-continuous detection: All previously mentioned deep learning systems
approached detection challenges by classifying broader spectrogram segments of
various seconds, e.g. 25 second patches [18]. Section 2.4.3 discussed the advantage
of using CRNNs with time-continuous outputs instead. However, these networks
have not yet been applied to animal detection tasks.

64

CHAPTER 4
Study (A): Investigation of the

Assessment of Infant
Vocalizations by Laypersons

4.1 Study goal
The central goal of this study was the development of a classification scheme for infant
vocalizations based on the discrimination capability and assessment behavior of layper-
sons. This study focused on human sound perception, not on automatic recognition of
infant vocalizations. The precise research questions were:

• What are the salient labels used for naming infant vocalizations?
• What is the relationship between those labels?
• How do labels relate to affect assessment, such as valence?
• Which classification schemes can be derived based on these salient labels and their

relationships?

In the context of training ML algorithms for automatic infant vocalization recog-
nition, such classification schemes are of particular importance for labeling of datasets
through crowd sourcing. In the context of vocalization assessment, it is of importance
to better understand the general assessment capability of untrained listeners, which has
not yet been investigated in detail. This relates to the research gaps discussed in section
3.3.1.

The methodology for this study followed the Nijmegen Protocol [159], a method for
uncovering linguistically expressed classes and taxonomies. This involved a survey that
presented participants with a set of acoustic stimuli, which they rated regarding textual
labels and continuous affect scales. I derived the salient labels and their affect ranges

65

4. Study (A): Investigation of the Assessment of Infant Vocalizations by
Laypersons

by aggregating ratings across participants for each stimulus. Additionally, I investigated
the relationship between labels by analyzing intra-rater similarities of stimuli based on
label and affect ratings. Finally, I derived taxonomies as semantic maps based on the
discovered salient labels and their relationships.

This study interconnects with study (C), as the classification scheme derived through
this study was applied for labeling the data set for the automatic recognition algorithm.

4.2 Materials and methods
The methods section is structured as follows: Section 4.2.1 introduces the reference
approach this study was based on. Section 4.2.2 presents the acoustic data set. Section
4.2.3 presents the survey procedure. Section 4.2.4 presents the survey rating items in
detail. Section 4.2.5 summarizes the participants of the study. Finally, section 4.2.6
presents the analysis methods applied to the participant ratings.

4.2.1 Study framework: Nijmegen Protocol

The study followed a method that is referred to as the Nijmegen Protocol. This
is a survey-based approach for the discovery of linguistically expressed classes inside a
domain. Majid et al. [99] first applied this method to identify universally recognized
classes of material destruction, such as cutting and breaking. Slobin et al. [159] refined
the method and proposed the term Nijmegen Protocol. They applied it to identify classes
for manners of human gait, such as running or crawling. Anikin et al. [12] applied it
to auditory assessment of human non-linguistic vocalizations and determined four basic
call types laugh, cry, scream and moan. That study primarily inspired the application
of the framework here, as it shares similar goals, however applied to infant vocalizations
instead of vocalizations from adults. I summarize the method as follows:

1. Stimuli selection: First, a set of stimuli is selected. They should be representa-
tive for the variability inside the investigated domain.

2. Rating: Participants rate stimuli in a survey. In this method, the primary rating
items are textual descriptions, i.e. labels. Some studies let participants provide
free textual descriptions [159], while other studies used predefined, finite label sets
[12]. Some studies included additional rating items, such as affect assessments [12].

3. Calculation of stimuli similarities: For each pair-wise combination of stimuli
a similarity score is determined. A similarity score is calculated for each partic-
ipant individually and then averaged across participants. This means that sim-
ilarities measure the average intra-rater similarity, not the inter-rater similarity.
This allows participants to speak different languages and consequently discover
cross-cultural classifications. The resulting distance matrix is then applied to un-
supervised learning algorithms, such as clustering or dimensionality reduction al-
gorithms. [12, 159]

66

4.2. Materials and methods

4.2.2 Acoustic data set

I selected stimuli representing sequences, rather than units (see foundations section 2.1.2
on these terms). Most previous studies on infant vocalizations operated on utterances,
i.e. units with unit segmentation criterion (A). This is particularly common for studies
on infant vocal development [12, 21, 51, 117, 124, 145]. The most prevalent segmentation
criterion in these studies is the breath group (see foundations section 2.1.2).

However, particularly studies on perception of cry-like infant vocalizations showed
that human listeners incorporate acoustic information spanning various units, such as
the rhythm of units [16, 52, 185, 187, 193]. I additionally hypothesized that laypersons
would be me comfortable by judging short collections of units, rather than units in
isolation.

Therefore, I aimed stimuli to be recording excerpts of approximately 6 s spanning
various units, similar to sequences as defined in section 2.1.2. However, if a unit happened
to be present in isolation in a recording, i.e. surrounded by a long pause, it was also
considered, including some of that pause.

I collected audio recordings of infant vocalizations from freely available online sound
libraries. The sources were:

• https://freesound.org

• http://www.bigsoundbank.com

• http://www.soundarchive.online

• https://www.zapsplat.com

• https://www.soundbible.com

• https://www.soundjay.com

All recordings using the keywords baby or infant were considered. I discarded record-
ings that met at least one of the following criteria:

1. Insufficient recording quality: This included constant and high amounts of back-
ground noise or sounds, excessive reverberation and echo, sound effects etc.

2. Shorter than 4 s: These recordings provided insufficient temporal context according
to the discussion above.

3. Infants older than 9 months of age: Infant vocalizations increase in complexity
with age. According to the SAEVD-R [117] infants enter the vocalization stage
advanced forms at 9 months of age. I excluded this stage to limit the complexity of
the babbling-class. The age was determined through the description of the online
source. If the description was absent, I determined acoustically whether a signal
contained such advanced form of babbling as described in [117] and excluded such
signals.

The resulting database consisted of 228 sound files with a total duration of 7910 s
and a mean duration of 34 s. I extracted segments from these recordings as stimuli

67

https://freesound.org
http://www.bigsoundbank.com
http://www.soundarchive.online
https://www.zapsplat.com
https://www.soundbible.com
https://www.soundjay.com

4. Study (A): Investigation of the Assessment of Infant Vocalizations by
Laypersons

candidates, aimed at a length of 4 – 8 s according to the discussion above. Segments had
to contain at least one vocalization, even if it was just slight breathing, i.e. I did not
extract segments with complete absence of vocal activity. I allocated segments to contain
units that were acoustically consistent. Units were contained completely in segments,
i.e. not cut across.

The number of resulting segments was 883, with a mean duration and standard
deviation of 6 s ± 0.8 s, and a total duration of 5217 s. The set of segments displayed a
wide variety of vocalizations, ranging from stereotypical vocalizations such as babbling
or crying to barely audible vocal activity, such as quite breathing.

The pool of segments had to be reduced to a reasonable amount for participant rating.
To ensure that the drawn sample displayed sufficient acoustic diversity, I evaluated each
segment regarding the affect dimensions valence and arousal as defined by Russell [142]
with continuous scales. I clustered segments based on these ratings through the k-means
algorithm [14] with 10 clusters. I randomly sampled 10 segments from each cluster.

The resulting set contained 100 segments, which were the stimuli used for this study.

4.2.3 Procedure

The survey was provided through a customly programmed web site. Participants con-
ducted the survey at home.

Figure 4.1 shows the survey main window for stimulus rating. Participants were
presented with one signal at a time. The top part presented a stimuli’s wave form with
a progression marker, similar to digital audio workstations. Participants could play and
repeat the signal autonomously through buttons. The middle panel contained the rating
items: Three continuous rating scales Stimmung (valence), Wachheit (energetic
arousal) and Ruhe (tense arousal); and one list Bezeichnung (label) for providing
a textual description. Section 4.2.4 describes the rating items in detail. The bottom
panel contained a button for proceeding to the next signal. There was no time limit for
item rating. Additionally, participants could save, quit and resume rating sessions, i.e.
they could distribute completing the survey over various sessions.

The first page of the survey presented introductory information. This comprised the
survey goal, survey procedure and usage of the rating items. Section 9.1.1 states the
instructions on the rating items. The second page listed five signals with rating items
for participants to get used to the rating procedure. Participants were informed that
answers to these signals were discarded. The warm-up signals were preselected to cover
diverse and stereo-typical infant vocalizations, e.g. stereo-typical crying and babbling.

At the end of the survey, participants were asked about their personal data: gender
(female or male); age (5-year intervals of 15 – 19, 20 – 24, . . .); whether they were
parents; whether they had professional working experience with infants such as baby
sitting. For each of the four rating scales, participants should indicate how challenging
they experienced their usage on a scale from 1 – 5, labeled with very easy, easy, modest,
hard and very hard.

68

4.2. Materials and methods

Figure 4.1: Survey main window for stimulus rating. Details are provided in the
text.

4.2.4 Rating items

4.2.4.1 Label

The rating item label asked for a textual description of the vocalization, i.e. naming the
acoustic category. I provided a starting pool of labels that could be expanded freely
through custom labels.

The starting pool was as follows (English translations are provided in parentheses):
schreien (screaming); weinen (crying); jammern (whining or fussing); wimmern (whim-
pering); stöhnen (moaning), brabbeln (babbling); lachen (laughing); husten (coughing);
nicht klar bezeichenbar (no clear label)1. The former five terms originate from the only
validated German pain scales KUSS [195, chapter A3] and BPSN [28]. The terms bab-
bling, laughing, and coughing were determined in a pilot study, were all participants
entered these terms. The option no clear label was provided for cases where participants
felt that none of the starting labels applied, but neither could think of a fitting custom
label. The introductory text encouraged raters to rather think of new labels than use
this option.

Response options were provided via a radio button list. There was no preset value
to encourage deliberate choices. Only one term could be chosen. Participants were
instructed to select the more salient label if they thought to hear the presence of more
than one.

1The stated English translations are meant to be literal translations, not semantically equivalent
translations. For example, it might be argued that crying and schreien are closer semantically.

69

4. Study (A): Investigation of the Assessment of Infant Vocalizations by
Laypersons

New labels were added through a text field. They were permanently added to the
respective participant’s label list, so they could be accessed later in the study analogous
to the starting pool labels. Added labels were restricted to verbs consisting of a single
word, i.e. words with the suffix ing (German: en) without spaces nor special characters.
I imposed this restriction to promote monolexemic, elementary call types, rather than
complex descriptions of the situation, similar to the study of Anikin et al. [12].

The introductory text highlighted that starting pool labels did not have to be used
exhaustively. Participants could ignore starting pool labels that they felt were redundant
or not present throughout the survey.

The final summary page asked participants to indicate whether the starting pools
contained synonym pairs, i.e. labels that were redundant or particularly hard to dif-
ferentiate throughout the study. I indicated that these labels would be mapped together
for the respective participants.

4.2.4.2 Affect dimensions

The remaining rating items were three continuous scales for rating of the estimated
infants’ affect. I adapted the affect model of Schimmack and Grob [146], Schimmack
and Rainer [147], which comprises the following scales: Valence (also known as pleasure)
ranging from pleasant to unpleasant, energetic arousal ranging from sleepy to awake, and
tense arousal ranging from calm to nervous. I chose to include affect ratings additional
to the labels for the following reasons:

• Other studies that employed laypersons for rating of infant vocalizations most
commonly required continuous ratings, rather than categorical descriptions. These
studies were limited to rating of cry-like vocalizations and used the dimension
level-of-distress [185, 187]. However, my study encompassed the entire domain of
infant vocalizations rather than just cry-like vocalizations. Therefore, I employed
a general affect model. I first tested the model by Russell [142] in a pilot study,
containing just two dimensions: valence and arousal. However, participants raised
concerns about the arousal dimension being ambiguous. Therefore, I split the
arousal dimension into tense and energetic arousal as proposed by Schimmack and
Grob [146] [147].

• Any correlations between affect and label ratings are exploitable for designing
classification schemes, as they indicate another level of stimuli similarity that might
not be obvious from label ratings alone. Particularly cry-like vocalizations have
repeatedly been shown to be a graded signal [16, chapter 2]. In the most extreme
case, affect ratings and labels could turn out to be completely redundant. Anikin
et al. [12] discovered a strong but not perfect association between call types and
affect ratings in a similar study.

I implemented affect ratings as continuous scales (see Fig. 4.1) with 101 ticks.

70

4.2. Materials and methods

• Valence, labeled Stimmung had a range of [−50, 50], with highlight labels sehr
negativ (very negative), negative, neutral, positiv, sehr positiv (very positive) at
ticks −50,−25, 0, 25, 50, respectively.

• Energetic arousal labeled Wachheit had a range of [0, 100] with highlight labels
sehr schläfrig (very sleepy), schläfrig (sleepy), wach (wake), sehr wach (very wake)
at ticks 0, 33, 66, 100, respectively.

• Tense arousal, labeled Ruhe had a range of [0, 100] with highlight labels sehr
entspannt (very relaxed), entspannt (relaxed), unruhig/aufgeregt (restless/excited),
sehr unruhig/sehr aufgeregt (very restless/excited) at ticks 0, 33, 66, 100, respec-
tively.

The introductory text highlighted that scale ticks were only for orientation and that
values could be chosen continuously. There were no preset values to encourage deliberate
value choices.

4.2.5 Participants

A total of 23 persons participated. The gender distribution was 12 male and 11 female.
The age range was 20 – 59, with a median age of 25 – 29. 7 of the participants were par-
ents and 4 had professional working experience with infants. All participants completed
the survey from start to finish.

4.2.6 Analysis methods

4.2.6.1 Post-processing of label ratings

Postprocessing meant manipulation of participant ratings after survey data collection
was completed in preparation for the analysis. I applied the following steps for the label
ratings:

• I fixed obvious spelling mistakes of newly added labels. In some cases, this resulted
in labels that originally were different across raters to be mapped to the same label.

• If participants indicated synonym pairs at the end of the study, I unified those
labels for each participant to the one she or he used more frequently in the survey.

4.2.6.2 Measurement of stimuli distances

I represented participant ratings of stimuli through matrices R(L),R(V),R(E),R(T),
where the upperscript (I) indicate rating items (e.g. L = label, V = valence, E =
energetic arousal, T = tense arousal). Rp,i is the rating of participant p ∈ {1, . . . , P}
for item i ∈ 1, . . . , 100, where P is the amount of participants. Based on these I cal-
culated distance matrices for stimuli D(L),D(V),D(E),D(T), where D(I)

i,j ∈ [0, 1] indi-
cates the distance between stimuli i and j for the respective rating item. Consequently,
D ∈ [0, 1]100×100.

71

4. Study (A): Investigation of the Assessment of Infant Vocalizations by
Laypersons

The label based distance D(L) was calculated as

D
(L)
i,j = 1

P

P∑
p=1

I(R(L)
p,i , R

(L)
p,j), (4.1)

where I is the indicator function. Consequently, this distance measures the percent-
age of participants that individually provided the same label.

For the affect rating items I calculated distances as

D
(C)
i,j = 1

P

P∑
p=1

|R(C)
p,i −R

(C)
p,j |

Sp,C
, (4.2)

where C ∈ {valence, energetic arousal, tense arousal} is the scale index and Sp,C =
maxp(R(L)

p,i)−minp(R(L)
p,i) is the range for scale C of participant p.

When combining various items into distance calculation, I summed item-based ma-
trices.

In the context of the Nijmegen Protocol, this calculation of the label-based distance
corresponds to the established approach of counting equal descriptions [12, 159]. In
the context of unsupervised machine learning, the approach corresponds to calculating
distances through the Gower coefficient [49]. This distance metric is specialized in mixed-
type variables, where nominal variables (label) employ the ordinary discrete metric and
continuous variables (affect scales) employ the range-normalized L1-distance. Each rater
and item is treated as a unique feature.

4.2.6.3 Aggregation of stimuli ratings across raters

One step in analysis of results was determining a single consensus rating for each
stimulus and rating item. To accomplish this, I aggregated ratings across participants
for each stimulus and item as follows:

For affect scales, the consensus was the average across all participant ratings.
For the label item, I chose a most salient label as the one most often voted for

the respective stimulus. All labels from the starting pool counted as their own voting
label. However, as participants often added similar, but not completely identical labels,
I accumulated the number of newly added labels for each stimulus to represent a single
voting label. If this accumulated count was chosen more often than starting pool labels,
I chose the one most participants entered identically (including correction of spelling
mistakes).

4.2.6.4 Measurement of association between label and affect ratings

I employed two methods for measuring of the association between label and affect ratings:

• Predictability of most salient label: I tested whether aggregated affect rat-
ings allow precise prediction of the most salient label. I modeled the conditional
probability p(label | emotion) through a multinominal logistic regression model and

72

4.3. Results

assessed the goodness of fit through the UAR metric to account for class imbalance
(see foundations section 2.2.5 for logistic regression and 2.2.4.3 for UAR). In this
context, the metric indicates the degree of overlap between labels regarding their
affect ratings: High UAR values indicate that each affect rating is associated with
a single label, while low UAR values indicate that each affect rating is associated
with multiple labels.

• Correlation of distance matrices: I tested the correlation of stimuli distances
between label-based distances and emotion-based distances. I determined distance
matrices as explained in section 4.2.6.2 to calculate the Pearson correlations be-
tween them. High correlations indicate that stimuli that were rated as similar
according to label ratings were also rated as similar according to affect ratings.

4.3 Results
The structure of the results section is as follows: Section 4.3.1 presents the participants
perception of the rating items, as well as inter-rater reliability. Section 4.3.2 presents a
detailed univariate analysis on the label item ratings, such as derivation of the salient
label set. Section 4.3.3 presents the analysis of associations between rating items, e.g.
correlations between affect dimensions as well as label ratings. Section 4.3.4 performs a
cluster analysis of stimuli based on ratings to identify stimuli groups. Finally, section
4.3.5 presents the derived classification schemes that are based on the former results.

4.3.1 Rating items reliability and perception

Table 4.1 summarizes (1) raters perception of rating items, and (2) inter-rater reliability
(IRR) of rating scales.

I summarized perception ratings through median and mean values across partici-
pants. Ordering rating items ascending by mean perception value, the ranking was
valence 7→ label 7→ tense arousal 7→ energetic arousal. I tested the significance of differ-
ence in item perception through a pairwise Wilcoxon signed rank test with Bonferroni
correction. The difference between valence and energetic arousal (p < 0.05) as well as
tense arousal (p < 0.01) was significant. The difference between valence and label ratings
was not significant (p > 0.05). The difference between label, energetic arousal and tense
arousal was not significant (all p > 0.9).

I calculated IRR through intra-class-correlation (ICC) with a two-way random effects
model for single raters as recommended by Koo and Li [81] (corresponding to an ICC(2,1)
model). Calculation of IRR for label ratings was not possible due to the option of adding
custom labels. Ordering rating items descending by mean IRR value, the ranking was
valence 7→ tense arousal 7→ energetic arousal. Hallgren [54] recommends to interpret
IRR values as poor for < 0.4, fair for 0.4 – 0.6, good for 0.6 – 0.75, and excellent for
> 0.75. Consequently, reliability was high for valence, fair for tense arousal and poor
for energetic arousal.

73

4. Study (A): Investigation of the Assessment of Infant Vocalizations by
Laypersons

perception IRR (mean (95 % quantiles))
mean median agreement consistency

label 2.9 3 (fair) – –
valence 2.2 2 (easy) 0.70 (0.64 – 0.76) 0.72 (0.66 – 0.77)
energetic arousal 3.6 3 (fair) 0.3 (0.24 – 0.38) 0.35 (0.29 – 0.43)
tense arousal 3.4 4 (hard) 0.44 (0.37 – 0.53) 0.49 (0.42 – 0.57)

Table 4.1: Summary of rating item perception and reliability. Perception rating
range was 1 to 5, with 1 =̂ very easy and 5 =̂ very hard. IRR range was -1 to +1, with
0 =̂ reliability at chance and 1 =̂ perfect reliability.

4.3.2 Analysis of label ratings

4.3.2.1 Starting pool synonym pairs

43 % of participants reported synonym-pairs for starting labels, i.e. the starting pool
to contain at least two synonymous labels. Of those, 90 % indicated that whimpering
and whining where synonymous. I remapped the participant’s respective labels to the
more frequent one, which was whining in all cases. Other synonym pairs were crying
and screaming, moaning and screaming, and moaning and whining, all of which were
indicated exactly once.

4.3.2.2 Newly added labels

In total, 93 % of label ratings originated from the starting pool. The quantiles of number
of newly added labels per participants were 0 (0 %), 0 (25 %), 1 (50 %), 2.5 (75 %), and
12 (100 %). Consequently, participants relied mostly on the starting pool labels.

The following labels were added at least twice (after spell checking): 7 × quietschen
(squealing); 3 × hecheln (panting); 2 × erzählen (telling), gähnen (yawning), jauchzen
(whooping), singen (singing), spielen (playing).

Figure 4.2: Frequency of salient labels. Labels are literal English translations from
German.

74

4.3. Results

4.3.2.3 Salient label set

I determined one consensus label per stimulus as the one most often voted, as the
salient label (see section 4.2.6.3). Figure 4.2 shows the frequency of salient labels.
This figure, as well remaining in the results section, displays literal translations from the
original German labels as: schreien = screaming, weinen = crying, jammern = whining,
husten = coughing, hecheln = panting, brabbeln = babbling, quietschen = squealing,
and lachen = laughing. Two newly added labels squealing and panting prevailed, while
all other labels originated from the starting pool. I highlight that the count of labels does
not indicate real-world frequency of the respective call type, but merely the frequency
in the data set.

Figure 4.3 shows a semantic map of the vocalization labels. The semantic map
was constructed through non-metric multidimensional scaling (MDS) using label-based
distances between stimuli (see section 4.2.6.2). MDS is a tool for projecting data points
into a k dimensional space so that distances between data points correspond as close
as possible to original distances. Unlike a metric MDS, a non-metric MDS interprets
distances as rank orders rather than metric distances. The MDS implementation was
provided by the R package vegan v2.5-7 with function metaMDS with monoMDS
engine, global regression mode, and rotation of axis according to the first two principal
components. The stress was 0.1.

I highlight the following observations:

1. The greatest distance is between crying and babbling vocalizations. These are
placed on opposing ends for the first principal component.

2. The arrangement of stimuli follows a “tilted horseshoe pattern”. Stimuli are placed
around the horseshoe in the following order: screaming 7→ crying 7→ whining 7→
breathing / moaning 7→ babbling 7→ squealing 7→ laughing. Coughing is placed as
an outlier far away from all other vocalizations. Laughing and crying represent
the open ends of the horseshoe.

4.3.3 Association between rating items

I aggregated participant votes for each stimulus as described in section 4.2.6.3. Figure
4.4 shows the relationship between aggregated affect and label ratings.

4.3.3.1 Association between affect scales

I highlight the following observations on the associations between affect scales:

1. The Pearson correlation between affect scales are: 0.66 for valence & energetic
arousal, -0.84 between valence & tense arousal, and -0.33 for energetic & tense
arousal. Consequently, valence and tense arousal have the highest association.

75

4. Study (A): Investigation of the Assessment of Infant Vocalizations by
Laypersons

Figure 4.3: Semantic map of salient labels. Data points represent stimuli, color
coded by their respective most voted label. Distances between stimuli represent their
distances according to label ratings. Technically, this is a non-metric MDS of label-based
stimuli distances.

Figure 4.4: Relationship between aggregated label and affect ratings. Each
data point represents a stimulus, color coded by its most salient label. A stimulus’ affect
rating is the average of all participants ratings. The top row shows single affect ratings
vs label ratings, the bottom row shows dual affect ratings vs label ratings.

76

4.3. Results

2. All affect scales are highly correlated inside the negative valence space. When sub-
setting stimuli to those with valence < 0, Pearson correlations are −0.57 for valence
& energetic arousal, −0.89 for valence & tense arousal, and 0.81 for energetic &
tense arousal.

3. When excluding stimuli with label laughing, the correlation between valence and
tense arousal is −0.93. Consequently, both affect scales essentially represent the
same concept, except for laughing vocalizations.

4.3.3.2 Association between label and affect ratings

Section 4.2.6.4 explained the procedure for calculation of the association between label
and affect ratings. I calculated associations for all stimuli as well as for stimuli subsets
based on aggregated valence ratings: Negative stimuli (average valence ratings −50 to
−10), neutral stimuli (−10 to 10) and positive stimuli (10 to 50). Table 4.2 shows the
resulting values.

I highlight the following observations:

1. Valence has the greatest overall association to label ratings. This is supported
by the visualizations in Fig. 4.4, as well as the association values for all stimuli
shown in Tab. 4.2. Tense arousal has the second strongest and energetic arousal
the weakest association.

2. Screaming, crying and whining are highly associated to valence and tense arousal
ratings. They might be viewed as a quantization of the negative valence space.
Evidences for this are: (a) the arrangement of labels according to valence ratings
correspond to their arrangement in the label-based MDS of Fig. 4.3, and (b) the
high associations between label and valence / tense arousal ratings in the negative
valence space shown in Tab. 4.2. However, the association is not perfect, i.e.
emotion-wise there is some overlap between salient labels.

3. Babbling spans the greatest range in all affect dimensions among all labels, partic-
ularly for energetic arousal. It occupies the entire valence domain > 0, i.e. ranges
from completely neutral to very positive.

4. Stimuli with neutral valence ratings have the smallest association to affect ratings,
i.e. their separability by affect ratings is low. This applies particularly to vegetative
vocalizations in the taxonomy of Buder et al. [21], comprising panting, coughing
and moaning. They received nearly neutral ratings for all affect scales, but have
0 % overlap in label ratings. The respective association values shown in Tab. 4.2
support this.

5. Labels of stimuli with positive ratings are best differentiated by tense arousal,
mainly because is has the highest association to laughing and babbling. Association
values in Tab. 4.2 support this.

77

4. Study (A): Investigation of the Assessment of Infant Vocalizations by
Laypersons

all neg. neut. pos.

aggregated
ratings

valence 0.374 0.732 0.374 0.424
energetic arousal 0.263 0.684 0.263 0.532
tense arousal 0.346 0.735 0.346 0.622

distance
correlations

valence 0.644 0.547 0.119 0.563
energetic arousal 0.423 0.320 0.280 0.263
tense arousal 0.526 0.447 0.250 0.563

Table 4.2: Association between label and affect ratings. Calculation methods are
explained in section 4.2.6.4. Aggregated ratings shows the accuracy when predicting the
most salient label based on aggregated affect ratings. Cell values indicate UAR values.
Distance correlation shows the correlation between the label-based distance matrix and
the respective affect distance matrix. Cell values indicate Pearson correlation values.
Columns indicate whether all stimuli were used or limited to those with negative, neutral
or positive ratings on average.

4.3.3.3 Including affect ratings into label MDS

I additionally investigated the influence of including distances for affect scales into MDS
for producing semantic maps. The goal was to observe changes in stimuli placements
and distances. Figure 4.5 shows the results for various combinations of rating items. I
highlight the following observations:

1. The horseshoe shape observed in the purely label-based MDS (see Fig. 4.3) fun-
damentally remained even when combining label distances with any or all affect
distance matrizes. The central difference to the purely label-based MDS is that
neutral reflexive vocalizations panting, coughing and moaning mix into babbling
and whining when affect ratings are considered. As previously explained, this is
due to these stimuli being more similar in the affect domain.

2. Even when excluding label ratings from the MDS and just using all affect scales
a similar horseshoe shape emerges (see plot 4 in Fig. 4.5). Again, the difference
between panting, coughing, moaning and babbling is less pronounced in this case,
and the distance between babbling and laughing is less pronounced as well.

4.3.4 Clustering of stimuli

In previous sections, I grouped stimuli by their most salient labels. As an alternative
approach for stimuli grouping, I performed clustering on label distances. I tested the
following clustering algorithms: partitioning around medoids (alias k-medoids) PAM, as
well as agglomerative clustering variants average, single, complete and ward [136]. For
each algorithm, I evaluated solutions for number of clusters k ∈ {2, . . . , 7}.

78

4.3. Results

Figure 4.5: Semantic maps for MDS based on combinations of various rating
items. All semantic maps were constructed through MDSs similar to Fig. 4.3. Titles
of plots indicate the rating items included in the respective MDS.

For evaluation I used the average silhouette coefficient [141]. This metric indicates
the performance of a clustering solution regarding cluster separability in the value range
[−1, 1], where 1 indicates perfect separability between clusters, 0 indicates no structure
in data, and -1 indicates worse-than-random separability. I used the implementation of
the R package cluster v1.2.0 for clustering algorithms and silhouette calculation.

Figure 4.6 shows the silhouette scores for various cluster numbers and algorithms. I
highlight the following observations:

1. Silhouette scores are generally low, with the highest silhouette score reaching 0.32
with PAM and 3 clusters. This indicates that stimuli separability based on labels
is generally difficult.

2. The best clustering solutions were found for 2,3 and 5 clusters. Silhouette coeffi-
cients dropped for more than 5 clusters.

Figure 4.7 shows the clustering solutions with the highest silhouette score for each
number of clusters. k = 2 differentiates between positive and negative vocalizations.
k = 3 differentiates between laughing, positive non-laughing vocalizations and negative
vocalizations. k = 4 separates coughing. k = 5 breaks negative vocalizations into slightly
negative vocalizations (whining) and medium & strongly negative vocalizations (crying
& screaming).

4.3.5 Derivation of classification schemes

Based on the previous findings, I proposed two classification schemes shown in Fig.
4.8. Both schemes are stylized semantic maps, i.e. they indicate classes in a spatial
arrangement that indicates their relationship to each other [198].

I chose to primarily base these classification schemes on label and valence ratings:
Label was the central rating item as it expressed linguistically expressed categories.
Affect scales did not completely explain the variability between label ratings as shown in
section 4.3.3.2, particularly regarding neutral reflexive vocalizations. I chose valence for
supporting information as it was the affect scale with the highest inter-rater agreement
as well as highest rater perception.

79

4. Study (A): Investigation of the Assessment of Infant Vocalizations by
Laypersons

Figure 4.6: Average silhouette scores for various clustering algorithms and
cluster numbers. All algorithms are agglomerative clustering variants, except for
PAM.

Figure 4.7: Clustering solutions. Each column of plots shows clustering solutions
for number of clusters k = {2, 3, 4, 5}. For each k, the clustering was performed by the
algorithm that reached the highest silhouette coefficient (see Fig. 4.6). The top row
indicates valence ratings of cluster groups. The bottom row indicates groups through
data points shapes in the MDS solutions based on valence + label distances.

80

4.3. Results

The two schemes are as follows:

• Horseshoe scheme: Classes are based on the salient labels identified in section
4.3.2.3. However, I grouped neutral, voice-less reflexive vocalizations into a sin-
gle class, comprising sounds such as coughing, breathing, This represents the
vegetative sounds group in the taxonomy of Buder et al. [21]. I did this to ac-
count for further of such vocalizations such as hiccup, sucking etc., all of which
would share the property of involuntary, voice-less vocalizations with neutral affect
ratings. The arrangement of classes is a stylized variant of the MDS projections
shown in figures 4.3 and 4.5. Class placement particularly highlights similarity
between classes based on their acoustic category, for example laughing and cry-
ing. The scheme additionally indicates the rough association to valence ranges as
supporting information.

• Mood scheme: Classes correspond to the horseshoe scheme. However, the ar-
rangement of classes indicates their expected valence ranges. Particularly classes
screaming, crying and whining are indicated as a quantization of the negative va-
lence space, according to the findings in section 4.3.3.2. Vegetative vocalizations
are associated with neutral valence ratings. The remaining classes are merely
roughly associated with neutral and positive valence ratings according to their
greater valence-wise variance.

According to the cluster analysis in section 4.3.4, it is to be expected that classes
are not perfectly separable. Separability might be increased by combining neighboring
classes. For example, the “resolution” of the negative vocalizations might be increased
by combining them into two or just one group. Also, babbling might be combined with
either vegetative vocalizations or squealing to increase separability.

neutral / positive

negative

lachen
(laughing)

lachen
(laughing)

schreien
(screaming)

schreien
(screaming)

neutralnegative
strong medium positiveslight

weinen
(crying) weinen

(crying)

jammern
(whining)

jammern
(whining)

quietschen
(squealing) quietschen

(squealing)

brabbeln
(babbling)

brabbeln
(babbling)

husten, atmen, schluckauf ...
(coughing, breathing, hiccup...)

husten,
atmen,

schluckauf...
(coughing,
breathing,
hiccup,...)

Figure 4.8: Derived classification schemes Left: Horseshoe scheme. Right: Mood
scheme. Circles represent classes. The class coughing, breathing,. . . indicates a group
for neutral vegetative vocalizations. Valence related information represents supporting
information.

81

4. Study (A): Investigation of the Assessment of Infant Vocalizations by
Laypersons

4.4 Discussion
One of the central results of this study is that screaming, crying and fussing might be
viewed as a quantization of the negative valence space. Previous research reflects this:
Barr [16, chapter 2] argued that crying is best understood as a graded signal. Pain scales
likewise order classes of negative vocalizations as ordinal scales.

Regarding negative affective vocalizations, participants were likely biased by the
starting pool of labels, preventing usage of alternate synonyms. For example, crying
might have spanned a larger range if whining would have not been provided in the
starting pool. Evidence for this is that almost all label ratings originated from the
starting pool, particularly in the negative valence space. Consequently, future studies
might research which labels provide an optimal quantization of the negative valence
space, considering reliability as well as close distress association.

The final classification scheme shares similarities to the scheme of Buder et al. [21]
(see state of research section 3.3.1). The class laughing is present in both; Crying and
fussing corresponds to screaming, whining and fussing, i.e. my scheme differentiates
between three instead of two distress vocalization classes; However, the entire protophone
category with its numerous subclasses (vowels, grunts, gooing etc.) is contained entirely
by the babbling class in my scheme. The only protophone subclass separated from
babbling was squealing. This could indicate that laypersons indeed have a low capability
to differentiate inside protophone-like vocalizations. However, this could also be an
artifact of biasing through the starting pool label set. Possibly, babbling was to broad of
a term and participants would have differentiated more if it was absent.

Oller et al. [124] introduced a concept named functional flexibility: This concepts
means protophone vocalizations are flexible regarding the expressed emotion, while re-
flexive vocalizations are associated with fixed affects. The results of this thesis partially
confirm this: Laughing, vegetative vocalizations, and whining/crying/screaming were
strictly associated with positive, neutral, and negative valence. However, the babbling
class, which closely corresponds with the protophone class, spanned the largest valence
range, from completely neutral to positive. Consequently, it was indeed associated to a
lesser degree with fixed valence values.

Another finding that is supported by my study is that separating vegetative vocal-
izations from protophones usually requires visual confirmation, to determine whether a
vocalization was involuntary [21, 124]. There were various stimuli for which individual
participants provided new labels associated with vegetative classes, such as sucking or
defication, but which the great majority labeled as babbling. I hypothesize that coughing
and breathing were recognized primarily because they are voice-less.

I highlight that study results might not be directly transferable to English. First and
foremost, linguistically expressed categories are inherently influenced by language [12].
The literal translations of salient labels into English should be regarded as such: While
schreien and screaming are literal translations, crying might semantically be the more
appropriate term in the context of infant vocalizations, considering the frequency of usage
in English research literature [15, 21, 164]. Similarly, fussing is primarily associated with

82

4.4. Discussion

slightly negative vocalizations in these studies, however the literal translation aufregen
is not commonly used in German. I hypothesize that fussing corresponds to jammern,
which I translated with whining. Consequently, it is possible that replication of this
study with native English speakers results in the discovery of different classes.

83

CHAPTER 5
Study (B): Comparison of Neural

Network Types for Automatic
Classification of Infant

Vocalizations

5.1 Study goal
The goal of this study was to identify which neural network type among the currently
most prevalent ones reaches the highest performance for infant vocalization classification.
These types comprised convolutional neural networks, recurrent neural networks, fully-
connected neural networks, as well as combinations of thereof. The precise research
questions were:

• How does the arrangement of well-known network components affect the perfor-
mance of network types?

• What is the best arrangement for each network type?
• Which type reaches the highest performance, given the best arrangement?

This study facilitates the understanding of representation learning systems with neu-
ral networks for automatic infant vocalization classification. There has not yet been an
in-depth study comparing various network architectures while considering the influence
of their configuration. The network architecture is the core of any representation learn-
ing system and thus of particular importance. Previous studies either directly adapted
computer vision architectures, such as AlexNet [189], or presented a custom architecture
without further justifications for the chosen configuration [23, 87, 173]. This relates to
the research gaps discussed in section 3.3.2.

85

5. Study (B): Comparison of Neural Network Types for Automatic
Classification of Infant Vocalizations

All networks operated on Mel-scaled spectrogram inputs, as this currently is the most
prevalent audio representation in deep learning systems. The task was a monophone
classification task for infant vocalizations into classes neutral, fussing, and crying. I
defined an architecture scheme to derive all network types in an uniform manner. For
each type, I performed a semi-random hyperparameter search. I employed regression
trees to identify the most auspicious hyperparameter ranges and subsequently focused
the search spaces. I finally selected the best configurations of each type and compared
their performances in a contest-like setup.

Study (C) builds on the results of this study. The results of this study showed that
CNNs reached the highest performance. Study (C) performs a more detailed investiga-
tion of CNNs, applied to another data set.

5.2 Materials and methods
The structure of the methods section is as follows: Section 5.2.1 presents the acoustic
data set. Section 5.2.2 presents the general classification pipeline including the neural
network. Section 5.2.3 presents the neural network architecture scheme, which was the
basis for defining the various ntwork types. Section 5.2.4 presents the hyperparameter
search space for each network type. Sections 5.2.5 and 5.2.6 present the training and
evaluation setup, respectively. Finally, section 5.2.7 presents the experimental setup,
i.e. the manner in which the investigation on network types and configurations were
executed.

5.2.1 Acoustic data set

The data set for this study was taken from the ComParE 2018 challenge. This data
set was already briefly introduced in section 3.3.2. Marschik et al. [101] provided the
data set, which originates from their study on early detection of neurodevelopmental
disorders. They named it the Cry Recognition In Early Development (CRIED) data
set. It comprises 20 infants (10 male, 10 female) recorded in various sessions across the
first months of life. The segmentation criterion for unit extraction was the breath group
criterion, which resulted in 5587 units (see foundations section 2.1.2 on this criterion).
Units were classified as either crying, fussing or neutral [150].

Figure 5.1 shows the duration histogram of the resulting units. The distribution of
durations is considerably positively skewed. The class distribution is unbalanced as well,
with the classes neutral, fussing and crying accounting for 79.9 %, 14.5 % and 5.6 % of
data set examples, respectively.

The coding was performed by two trained experts based on audio-video data, i.e.
the coders could see an infant’s face while assigning classes. The procedure ensured
agreement between both raters. However, some degree of information necessary for class
separability might have been lost when discarding videos, as other studies reported that
visual information influences vocalization coding [116, 124, 163].

86

5.2. Materials and methods

Figure 5.1: Histogram of segment durations of the data set presented by Marschik
et al. [101], Schuller et al. [150]. The x-axis is log2-scaled to provide better visibility of
the positively skewed distribution. The quartiles are at Q0 = 0.33 s, Q25 = 0.8 s, Q50 =
1.3 s, Q75 = 2.1 s and Q100 = 41.1 s.

5.2.2 Classification pipeline surrounding the neural network

This section describes the processing pipeline surrounding the neural network, which
performs the core of the prediction. I modeled the task as a monophone classification
task. Target vectors use one-hot encoding for network training and integer encoding for
evaluation, with three classes corresponding to neutral, fussing and crying (see founda-
tions sections 2.4.1 and 2.2.3 on these terms).

The pipeline fundamentally follows the blueprint presented in section 2.4.3. Fig. 5.2
visualized the pipeline. The implementation of the blueprint follows a common pipeline
in modern deep learning classification algorithms [176, chapter 2][60, 108]. The process
is as follows:

1. Preprocessing: Audio segments were first converted to mono and subsampled to
16.000 Hz, which is common in CP [150, 177]. Each segment was normalized to
an absolute peak amplitude of 1 to ensure similar volume levels across all audio
segments.

2. Feature map conversion: The feature map type was the log Mel-scaled spec-
trogram as the audio representation, as defined in section 2.1.1. This currently is
the most prevalent feature map choice in modern deep learning systems (see state
of research section 3.2).
The implementation of the log Mel-scaled spectrogram roughly followed the pro-
cedure of the DCASE 2018 task 1 baseline system [110]: First, signals were
transformed into the magnitude spectrogram as defined in Eq. 2.6, were then
transformed into Mel-scaled spectrograms as defined in Eq. 2.9, and finally log-
transformed as defined in equation 2.7. The Mel-scale and filterbank implementa-
tion followed the proposal of Slaney [158].
The exact parameters of the feature maps were as follows: The window function
was the hanning window, window length was 30 ms, the hop size h = 15 ms, the

87

5. Study (B): Comparison of Neural Network Types for Automatic
Classification of Infant Vocalizations

F

cl
as
s
pr
ob
ab
ili
ty

T(i)

TsegTsegTseg

Input signal /
preprocessing

feature map
conversion

segmentation

prediction

output
aggregation

time in [s]

ANN ANN ANN

ne
utr
al

fus
sin
g

cry
ing

Figure 5.2: Overview of the classification procedure.

FFT size of N = 512 and m = 80 Mel bands. Spectrograms were z-standardized
with global statistics calculated on the training set. The feature extraction process
was implemented through the python library librosa v.0.7.1 [103].

The resulting feature map for signal (i) is a two dimensional matrixM (i) ∈ RT
(i)×F ,

where T (i) is the time axis and F is the frequency axis.
3. Segmentation: Mini-batch training of neural networks (see foundations section

2.3.3.2) requires all input segments to have equally sized dimensions, even if the
model itself aggregates across the time axis. Therefore, I implemented feature map
segmentation to bring all feature maps to the same temporal length Tseg. Signals
with Tseg > T (i) were zero-padded at the beginning, following Wagner et al. [177].
Signals with Tseg < T (i) were segmented into non-overlapping windows, i.e. the
segment size was equal to the hopsize following Hershey et al. [60]. The last
segment was allowed to overlap with the penultimate when Tseg mod T (i) 6= 0.
The challenge in choosing Tseg was the heavy positive skew in signal durations

88

5.2. Materials and methods

in the data set (see Fig. 5.1). I chose Tseg = 5 s, so that most segments (95 %)
are not truncated to ensure that little information is discarded. Increasing Tseg
further had diminishing returns due to the positive skew in segment durations (see
foundations section 2.4.3 on the tradeoff when choosing Tseg).

After segmentation, each feature mapM (i) is converted into a list {Ṁ (i,s)}s=1,...,S(i) ,
where Ṁ (i,s) ∈ RTseg×F and S(i) ∈ N is the respective number of segments. For
training, segments inherited the labels of their parent signals.

4. Prediction: The neural network predicts each segment f(Ṁ (i,s)) = ˆ̇p(i,s), where
ˆ̇p(i,s) ∈ [0, 1]3 indicates class probabilities.

5. Output aggregation and binarization: To derive the final integer-encoded
class label ŷ(i) per signal, I averaged network output scores across all of its respec-
tive segments and chose the most probable class:

ŷ(i) = argmax(1
S(i)

S(i)∑
s=1

ˆ̇p(i,s)) (5.1)

5.2.3 Neural network architecture scheme

All neural network types evaluated in this study were derived from a unified parent
architecture scheme. The scheme was based on the CLDNN architecture proposed by
Sainath et al. [143]. Figure 5.3 shows the scheme. It defines a cascade of stages that
collectively define the model, which progressively process the incoming feature map to
a vector of class probability scores.

For further explanations on the layers and components referred to in this section,
please refer to section 2.3 and particularly section 2.3.2.

LetMT×F be an input spectrogram. The input layer expands the dimensionality of
the input spectrogram by adding an empty channel dimension RT×F 7→ RT×F×C=1. The
output layer contains three fully-connected neurons with softmax activation functions
that output class probabilities.

Both frequency and time aggregation stages are mandatory stages that tensors have
to pass through in the indicated order. They progressively reduce the tensor dimension-
ality to finally produce a one-dimensional tensor to be fed into the output layer. The
respective removed dimension is integrated into the channel dimension, although the
actual aggregation operations depend on the stage’s parametrization.

The convolutional, recurrent and fully-connected stages contain a stack of layers of
their respective type, e.g. the convolutional stage contains convolutional layers. These
three processing stages are optional, i.e. each one can be skipped. This allows for a
flexible configuration of neural networks by switching stages in and out and is essential
for their systematic comparison in this study: I defined Network Types through the
processing stages that are included in the network. For example, the network type C-
FC-NN contains a convolutional and a fully-connected stage and skips the recurrent

89

5. Study (B): Comparison of Neural Network Types for Automatic
Classification of Infant Vocalizations

Figure 5.3: Parent neural network architecture scheme. Each box represents a
network stage. Blue boxes represent processing stages, pink boxes represent aggregation
stages. Arrows indicate connection pathways between stages. Dotted arrows indicate
connections between aggregation stages that skip processing stages. Indications between
stages denote tensor dimensionalities, with axis meanings T = time, F = frequency, and
C = channel. For example, the temporal aggregation stage inputs a two-dimensional
tensor with axes time × channel and outputs an one-dimensional tensor.

Figure 5.4: Schemes of the processing stages. Details are provided in the text.

90

5.2. Materials and methods

stage. Consequently, the scheme is a general template for the current popular network
types (see foundations section 2.3.4 on examples)1.

Each stage constrains the dimensionality of its input tensor as indicated in figure 5.3.
In contrast to the aggregation stages, the three processing stages do not alter a tensor’s
dimensionality. The proposed order of stages directly results from the tensor dimension-
ality progression as well as from their hypothesized functions: The convolutional stage
is hypothesized to produce a feature map by extracting local features from spectrogram
patches; the recurrent stage processes local features at each time step while incorporating
temporal information; and the fully-connected stage processes a set of static, summative
features [22, 46, 143].

While I adapted the basic arrangement of skippable convolutional, recurrent and
FCLs from Sainath et al. [143], my scheme differs as follows: (1) The reference archi-
tecture defines layer stacks with fixed configurations that I generalized to stages, e.g.
my recurrent stage represents the generalized case of the original LSTM layers. (2)
I added the temporal aggregation stage as this studies’ task requires one-dimensional
outputs; the reference architecture was developed for speech recognition, which requires
time-distributed outputs.

Figure 5.4 shows the architecture schemes for the processing stages. Each stage
contains a variable number of consecutive blocks. For fully-connected and recurrent
stages, each block merely contains a layer of the respective type as in the reference
architecture [143]. A convolutional block however contains a stack of convolutional layers
followed by a pooling layer, which is the most common architecture principle for CNNs
(see foundations section 2.3.4 on examples). The last convolutional block omits the
pooling layer to avoid applying two pooling layers in succession through the subsequent
aggregation stage.

5.2.4 Hyperparameter search space

A network’s actual performance depends on the parametrization of its layers. The objec-
tive of the hyperparameter search is to find the configuration that maximizes a network’s
performance. Section 5.2.4.1 presents the network hyperparameters and section 5.2.4.2
the search space.

5.2.4.1 Network hyperparameter definitions

Theoretically each hyperparameter in each network’s layer could be chosen individually
in the search process, e.g. each layer could contain a different activation function. The
downside to this approach is that it induces codependencies into the parameter selec-
tion process, e.g. choosing a layer’s activation function depends on the priorly chosen
amount of network layers. Consequently, networks would contain different amounts of

1Note that network naming is more specific than usually is the case. Usually, CNN is an umbrella
term for networks containing convolutional layers in general, regardless of whether they contain FCLs
as well. However, in this study a C-NN specifically means that a network contains a convolutional stage
and no FCLs

91

5. Study (B): Comparison of Neural Network Types for Automatic
Classification of Infant Vocalizations

N
etw

ork
stage

H
yperparam

.
identifier

and
dom

ain
E
xplanation

convolutional,
recurrent,and
fully-connected

stage

num
ber

ofblocks
∈

N
N
um

ber
ofconsecutive

blocks
in

the
stage,the

“stage
depth”.

num
ber

ofunits
in

the
first

layer
∈

R
N
um

ber
ofunits

(alias
neurons

or
kernels)

in
the

first
layer

ofthe
stage

relative
to

the
absolute

num
ber

ofunits
in

the
last

layer
ofthe

preceding
stage.

For
exam

ple,a
value

of2
m
eans

that
the

first
layer

ofthis
stage

has
tw

ice
as

m
uch

units
as

the
last

layer
ofthe

preceding
stage.

Ifthis
is

the
first

stage,the
value

directly
indicates

the
absolute

am
ount

ofunits,i.e.the
reference

value
is

1.
unit

grow
th
∈

R
Factor

by
w
hich

the
the

num
ber

ofunits
grow

s
w
ith

each
block.

For
convolutional

stages,allconvolutionallayers
in

a
stack

contain
the

sam
e
am

ount
ofunits.

batch
norm

alization
∈

B
Indicates

w
hether

batch
norm

alization
is

applied
after

each
stage

layer
(before

the
activation

function).
activation

∈
f

:
R
7→

R
T
ype

ofactivation
function

applied
to

alllayers
inside

the
stage.

convolutionalstage

kernelshape
∈

R
2

K
ernelsize

ofallconvolutionallayers.
conv.

type
∈

f
:

R
N

3
7→

R
T
ype

ofconvolution
operation

perform
ed

by
each

convolutionallayer,e.g.
conventionalconvolution

or
residualconvolution.

stack
size
∈

R
2

N
um

ber
ofconsecutive

convolutionallayers
inside

a
block,see

Fig.
5.4.

pooling
shape

∈
R

2
Pooling

size
and

stride
ofallpooling

layers.
pooling

type
∈

f
:

R
N

2
7→

R
T
ype

ofpooling
operation

perform
ed

by
allpooling

layers.

recurrent
stage

recurrent
type

R
ecurrent

unit
type

used,e.g.LST
M
s
or

G
R
U
s.

bidirectional∈
B

W
hether

each
recurrent

layer
is

applied
unidirectionalor

bidirecitonal.
For

bidirectionalconnections,halfofthe
layer

units
run

forw
ard

and
halfbackw

ard.

tem
p.

and
freq.

aggregation
stage

operation
f

:
R
N

1 ×
N

2
7→

R
N

3
O
peration

to
reduce

tensor
dim

ensionality.
T
he

frequency
integrator

applies
a

tim
e-distributed

operation,i.e.the
sam

e
operation

at
each

tim
e
step.

Table
5.1:

Stage
H
yperparam

eters.
A
ll

hyperparam
eters

are
stage-specific

even
if

stages
share

the
sam

e
param

eter
identifier.

For
exam

ple,
each

aggregation
stage

contains
its

ow
n
hyperparam

ter
operation

rather
than

sharing
the

sam
e

operation.

92

5.2. Materials and methods

hyperparameters depending on their configuration even if they belong to the same net-
work type. This prevents the application of ordinary statistical methods to analyze
the relationship between a network’s configuration and its performance, e.g. we could
not simply regress from the activation function onto the performance. Additionally, the
search space becomes unmanageably large as each parameter in each individual layer
adds another dimension to the hyperparameter search space.

To circumvent these problems, I defined a fixed set of hyperparameters for each
stage whose values can be chosen independently of one another (see Tab. 5.1). The
stage’s layers are then configured according to these parameters. This ensures the same
number of hyperparameters per network type and the applicability of ordinary statistical
methods.

As shown in Tab. 5.1, most stage hyperparameters merely constrain contained lay-
ers to share certain settings, e.g. all stage’s layers share the same activation function.
However, layers usually don’t share the same number of units (alias neurons or kernels)
inside a stage, but successively grow or shrink with each layer (see foundations section
2.3.4 for examples) [46, 55, 155, 194]. The number of units U (s,b) ∈ N is calculated with
respect to the number in the preceding layer as

U (s,b) =


U

(0)
first if s = b = 0

U
(s)
first · U (s−1,B(s−1)) if s > 0 ∧ b = 0

U (s,b−1) ·G(s) else
, (5.2)

where s ∈ {0, 1, 2} is the stage index, b ∈ {0, . . . , B(s)−1} is the block index inside the
stage, Bs is the number of blocks hyperparameter, U (s)

first is the number of units in the
first layer parameter, and G(s) is the unit growth parameter of stage s.

I designed the stage hyperparameters and the rules by which their layers are con-
structed to reflect prevalent network design principles found in previously published
networks, e.g. applying the same activation function across the entire network, applying
the same recurrent or convolutional type across the entire network, ensuring smooth
unit growth across layers etc. (see foundations section 2.3.4 for network examples)
[26, 36, 42, 56, 60, 84, 110, 153, 169, 177].

The drawback of this approach is that certain network configurations were excluded
from the search space a priori, which theoretically are valid according to the parent archi-
tecture scheme, such as CNNs with varying kernel shapes across the network. However,
this drawback did not inhibit a fair comparison between network types, as their stages
were subjected to the same restrictions regardless of their application to a network type,
which ultimately was the focus of this research.

5.2.4.2 Network hyperparameter ranges

Among the set of possible networks types resulting from the network scheme, I chose to
evaluate R-NNs, R-FC-NNs, C-NNs, C-FC-NNs, and C-R-NNs. I omitted FC-NNs and
C-R-FC-NNs to reduce computation time: Pure fully-connected networks are unable to
make use of the grid-structured arrangement of the input and have already been proven

93

5. Study (B): Comparison of Neural Network Types for Automatic
Classification of Infant Vocalizations

Stage
Param

eter
N
etw

ork
T
ype

R
-N

N
R
-FC

-N
N

C
-N

N
C
-FC

-N
N

C
-R

-N
N

convol.
stage

activation
–

–
R
eLU

,E
LU

,
LeakyR

eLU
←

←

n.
ofblocks

–
–

2,3,4
←

←
n.

units
first

l.
–

–
8,16,32,64

←
←

unit
grow

th
–

–
1,2

←
←

batch
norm

.
–

–
Yes,N

o
←

←
kernelshape

–
–

(3,3),(1,5)
←

←
pooling

shape
–

–
(2,2),(1,2)

←
←

conv.
type

–
–

P
lain,R

esidual
←

←
pooling

type
–

–
M
ax,Average,Stride

←
←

stack
size

–
–

1,2,3
←

←
freq.
agg.

operation
Flattening

←
G
A
P
,G

M
P
,

Flattening
←

←

recurr.
stage

activation
Tanh

←
–

–
←

n.
ofblocks

1,2,3,4
←

–
–

1,2
n.

units
first

l.
8,16,32,64,128

←
–

–
0.5,1,2

unit
grow

th
0.5,1,2

←
–

–
1

batch
norm

.
N
o

←
–

–
←

recur.
type

G
R
U
,LST

M
←

–
–

←
bi-direcitonal

Yes,N
o

←
–

–
←

tem
p.

agg.
operation

G
A
P
,G

M
P
,

A
ttention,Last

Step
←

G
A
P
,G

M
P
,

A
ttention,

Flattening

←
G
A
P
,G

M
P
,

A
ttention,Last

Step

fully-
conn.
stage

activation
–

R
eLU

,E
LU

,
LeakyR

eLU
–

←
–

n.
ofblocks

–
1,2

–
←

–
n.

units
first

l.
–

0.5,1.0,2.0
–

←
–

unit
grow

th
–

1
–

←
–

batch
norm

.
–

Yes,N
o

–
←

–

Table
5.2:

Search
spaces

of
all

netw
ork

types.
T
he

tw
o
leftm

ost
colum

ns
indicate

the
netw

ork
stages

and
param

eters
as

defined
in

Tab.
5.1.

C
ells

indicate
param

eter
ranges,depending

on
the

netw
ork

type.
A

“-”
represents

em
pty

ranges
for

skipped
stages.

A
n
arrow

←
indicates

that
the

respective
range

corresponds
to

the
one

from
the

neighboring
left

cell.

94

5.2. Materials and methods

to be outperformed by networks with weight sharing (CNNs and RNNs) in the DCASE
competition [108, 110]. C-R-FC-NNs are computationally most expensive to train while
also having the largest parameter search space; I expected the results on C-R-NNs and
R-FC-NNs to sufficiently translate to this type.

Table 5.2 presents the parameter ranges for all network types. Justifications and
further explanations for the presented ranges are as follows. Please refer to section 2.3.2
for further details on the layer types and to section 5.2.3 for an introduction on the
referenced networks LeNet[90], AlexNet[85], VGGNet[155] and ResNet[55].

Convolutional Stage: The convolutional type plain means that each schematic
convolutional layer in figure 5.4 directly corresponds to a simple convolutional layer and
the residual type means that each schematic convolutional layer in figure 5.4 employs
an ResNet like residual block. However, all layers in the first convolutional block always
consist of plain type layers in correspondence to ResNet2. I included these types as they
currently are the most prevalent CNNs in the DCASE and CP contests [4, 26, 56, 66,
73, 84, 96, 110, 153, 169, 170, 180, 188].

In view of the relatively small data set, I set the ranges for the parameters depth,
number of units in the first layer, stack size and unit growth so to scan for smaller
networks as well. The values for the quadratic kernel and pooling shapes are in ac-
cordance to the standard design pattern in CNNs for computer vision. I additional
included one-dimensional kernel and pooling shapes across the frequency axis as these
are more prevalent in networks for audio detection and speech recognition that preserve
time frame alignment, such as CRNNs [22, 92, 143]. I included LeakyReLU [97] and
ELU [29] as parameter-free alternatives of the commonly used ReLU activation. Max,
average and stride pooling were adapted from LeNet, VGGNet and ResNet.

Recurrent Stage: Gated recurrent units (GRU) and long short-term memory units
(LSTM) [27] are the two most common recurrent types in CP [47, 67, 166, 177, 197].
Unidirectional [177, 197] as well as bidirectional [67, 166] networks are popular. I used the
CuDNN implementations3 to reduce the training time of the recurrent units. However,
as these implementations do not allow to alter the activation function nor implement
recurrent batch normalization [31] I fixed the corresponding parameter ranges to the
implementations’ preset values.

Frequency aggregation stage: R-NNs and R-FC-NNs employed flattening aggre-
gation exclusively to directly convert frequencies to channels without information loss.
For networks with convolutional stages, flattening and 1D GAP correspond to the ver-
tical aggregation operations of VGG and ResNet, respectively. I additionally tested 1D
GMP, as this is the most common intermediate pooling operation inside convolutional
stages and consequently could prove advantageous as a global aggregation operation.

Temporal aggregation stage: The temporal aggregation operations were adapted
from Mirsamadi et al. [113]. Particularly attention pooling was widely employed in the
2018 ComParE challenge [47, 166]. All pooling types incorporate outputs at every time

2Note that, while the original residual block definition also used batch normalization layers, stride-
pooling and ReLU-activations, these parameters are subject to the other hyperparameters in this study.

3https://developer.nvidia.com/cudnn

95

https://developer.nvidia.com/cudnn

5. Study (B): Comparison of Neural Network Types for Automatic
Classification of Infant Vocalizations

step, while last step means that only the output of the last time step is forwarded to
the next layer (alias many-to-one-prediction). As for convolutional stages last-step-
aggregation is not applicable as units do not carry internal states, I used flattening
corresponding to the vertical aggregation operation of more conventional CNNs.

5.2.5 Training setup

The optimizer algorithm was Adam with standard parameters [78]. As the loss I chose
weighted CCE in accordance with Wagner et al. [177], where I calculated weights sep-
arately for the training and validation set. I applied early stopping with a patience of
20 epochs. Training examples were shuffled between each epoch, the batch size was 32.
The training and evaluation procedure was implemented in python through the deep
learning framework keras v.2.3.1 with backend tensorflow-gpu v1.14.0 and
CUDA v. 10.0.130 (see foundations section 2.3.3 for definitions of these terms).

5.2.6 Evaluation setup and performance metric

The ComParE 2018 challenge setup specified a data split with 50 % of infants being used
for development and testing, respectively [150]. The challenge recommended leave-one-
subject-out-cross-validation (LOSO) for hyperparameter tuning. LOSO is a special kind
of cross-validation, where folds are separated by subjects to avoid the album effect (see
foundations sections 2.4.4 and 2.2.4.6 for these concepts).

As cross-validation is uncommon in deep learning [46], I adapted the alternative
approach of the deep learning baseline systems [150, 177], which used a fixed training-
validation-test split. I assigned 3 infants from the development set as a fixed validation
set. I selected infants to produce similar class distributions in the training and validation
set. The final data split used 35 %, 15 % and 50 % of subjects for training, validation
and testing, respectively.

I measured validation set performance directly through the validation loss. I mea-
sured the test set performance through UAR metric in accordance to the ComParE
challenge setup [150] (see foundations section 2.2.4.3 for this metric). Due to random
layer initializations and random example shuffling between epochs, validation and test
performance could vary between runs of the same configuration. For this reason, I
trained and evaluated each network configuration thrice and averaged results.

5.2.7 Experimental setup

The basic notion was to design the comparison between network types by the model
of competitions such as the DCASE or ComParE: First, a hyperparameter search is
conducted for each network type to evaluate configurations on the validation set. Then,
each type’s most auspicious configurations are selected as competitors to be evaluated on
the test set. The configuration with the highest test performance prevails, representative
of its respective network type.

96

5.2. Materials and methods

However, the parameter space presented in section 5.2.4.2 was too large for an ex-
haustive grid search. Instead I conducted a random search, divided into a coarse and
a fine search phase (see foundations section 2.2.2.3 on these terms). The details of the
procedure were as follows:

1. Coarse Search and Analysis: I generated a random sample of 500 configu-
rations per type drawn from the search space described in section 5.2.4.2. Each
configuration was trained and evaluated as described in section 5.2.6. To identify
the most auspicious parameter settings per network type, I performed a regres-
sion analysis from the validation performance on the network parameters through
regression trees (see explanation below).

2. Fine Search and Analysis: I focused the search space for each type according
to the results of the prior regression analysis. I generated another random sample
of 500 configurations per type from the restricted parameter space. I conducted
another regression tree analysis on the results to gain additional insights on param-
eter importance. As this regression analysis did not influence further parameter
tuning, I regressed directly from the test performance on the parameters.

3. Comparison between types: I selected n models for each type from the fine
search sample ranked by validation performance to be compared regarding their
test set performance.

I employed regression trees to model the relationship between performance P and
the hyperparameters θ. For this, I set θ as the features, P as the target, and build the
regression tree. Each model’s tree path leading to the leaf with the highest target value
indicates the combination of hyperparameter values that resulted in the best performance
on average. I utilized this fact to identify the corresponding optimal parameter setting
for each network type and focus the fine search space accordingly. Other regression
algorithms might have been used in a similar manner, e.g. multiple linear regression.
However, regression trees have various advantages for this application, such as (1) ability
to operate on mixed-type features, (2) account for feature interactions (see foundations
section 2.2.5.2 for further explanations on regression trees).

This search strategy can be viewed as random search, interleaved with an exploita-
tion step. Other more sophisticated hyperparameter search strategies might have been
used instead of my approach, such as Bayesian Optimization. The reasons for favoring
my approach were as follows: (1.) Simplicity of random search, as discussed in section
2.2.2.3. (2.) Validation set overfitting: Hyperparameters are tuned on the validation set,
which carries the risk of overfitting the validation data while reducing test performance.
The validation set in this study was unavoidably small due to the ComParE challenge’s
original 50/50 development/test split. Consequently, a mismatch between validation
and test set was to be expected a priori. This mismatch has already been documented
implicitly by the 2018 ComParE challenge [150], where validation and test performances
of baseline systems were considerably decorrelated. By favoring exploration over ex-
ploitation in the search process, I reduced the risk of overfitting the validation data. (3.)

97

5. Study (B): Comparison of Neural Network Types for Automatic
Classification of Infant Vocalizations

Assessment of hyperparameter importance: Rather than merely finding good network
configurations, the goal was to assess hyperparameter importance as this carries greater
generalizable knowledge gain. Randomly drawn samples facilitate the application of
statistical analysis on hyperparameter importance.

5.3 Results
The structure of the results section corresponds to the procedure outlined in section 5.2.7.
Sections 5.3.1 and 5.3.2 present the analysis on the fine and coarse hyperparameter search
results, respectively. Section 5.3.3 presents the comparison between network types.

5.3.1 Coarse search analysis

Subject of the analysis in this section was the random sample of 500 configurations
per network type drawn from the initial search space described in Tab. 5.2. I ensured
a balanced distribution of hyperparameter values for each network type. I fitted one
regression tree per network type, with the predictor variables being the hyperparameters
and the target variable being the validation loss (averaged over three runs, respectively,
see section 5.2.6).

Regression trees were implemented with the R package rpart v.4.1-15 [171].
This implementation optimizes the mean squared error metric. As this is prone to
outliers, the target variable was preprocessed to approximate normal distribution us-
ing the ordered quantile technique as implemented by the R package bestNormalize
v.1.4.2. Each tree was pruned to the depth that yielded the lowest error in 10-fold
cross-validation. All regression tree hyperparameters were set to default values (see
section 2.2.5.2 for further explanations on regression trees).

All complete regression trees are displayed in Fig. 9.1. For each tree, I extracted the
tree path from the root to the leaf with the highest target value, as the corresponding
branches indicate each type’s optimal hyperparameter combination. The left column of
Tab. 5.3 summarizes these best performing tree paths.

The importance of hyperparameters for raising performance is indicated twofold:

1. Splitting rules that occur higher up in the hierarchy, i.e. first in a regression tree
rule chain, are of higher importance. This is due to the greedy approach in decision
tree building. [69].

2. Each splitting rule indicates the coefficient of determination R2. This value indi-
cates the gain in R2 to the fit produced by the respective split, i.e. the proportion
of explained variance in the target variable [171]. Consequently, it can be viewed as
a measure of the statistical effect size of the splitting rule, with R2 > 0.04, > 0.25
and > 0.64 indicating low, medium and high effect sizes, respectively [168].

I highlight the following observations on the best performing tree paths:

98

5.3. Results

1. All best performing tree paths include all aggregation operations present in the
respective network type. The respective splitting rules have at least medium ef-
fect sizes R2, except for C-R-NNs with small effect sizes. This emphasizes that
aggregation operations are the overall most influential hyperparameters.

2. All best performing tree paths exclusively contain 1D GAP for temporal aggrega-
tion.

3. The frequency aggregation operation flatten always reduced performance for net-
work types with convolutional stages.

4. Batch normalization always reduced performance when applied to FCLs.

5.3.2 Fine search analysis

For the fine search process, the initial search space presented in Tab. 5.2 was restricted
according to the best performing tree paths of the coarse search shown in the left column
of Tab. 5.3. I drew another random sample of 500 configurations per network type from
the restricted search space for training and evaluation. For R-NNs only 72 configurations
remained, which allowed for an exhaustive grid search.

Corresponding to the coarse search analysis, I fitted one regression tree per network
type on the results, however on the test UAR. The complete trees are displayed in Fig.
9.2. The right column of Tab. 5.3 shows the resulting best performing tree paths. It
can be seen that the overall effect sizes of splitting rules R2 were lower compared to the
coarse search, i.e. the impact of hyperparameter choices decreased in general.

I highlight the following observations:

1. All best performing tree paths contain rules for limiting the number of blocks.
For convolutional stages with larger amounts of blocks, limiting the stack size
alternatively increases performance, as shown by the complete regression trees
of C-NNs, C-FC-NNs and C-R-NNs (see Fig. 9.1 and 9.2). This indicates that
increasing total network depth generally correlates with reduced performance. R-
NNs are an exception by not indicating a rule for limiting depth; however, these
networks were the shallowest to begin with.

2. Ultimately, all networks with convolutional stages exclusively chose 1D GMP for
frequency aggregation, as indicated by the best performing tree paths of the coarse
or fine search.

3. Ultimately, all networks with recurrent stages favored GRU-type units over LSTM-
type units, as indicated by the best performing tree paths of either the coarse or
fine search.

5.3.3 Comparison of network type performances

5.3.3.1 Comparison of overall test performances

Figure 5.5 gives an overview of the configuration’s test performances of the fine search
sample, i.e. 500 configurations per network type (72 for R-NNs). Networks with con-

99

5. Study (B): Comparison of Neural Network Types for Automatic
Classification of Infant Vocalizations

volutional stages reached a maximum performance of ≈ 75 % and recurrent networks
(i.e. those without convolutional stages) reached ≈ 73 %. Fully-connected stages did
not increase the performance compared to the corresponding network type without a
fully-connected stage, neither on average nor for the maximum performance (R-NNs vs.
R-FC-NNs, and C-NNs vs. C-FC-NNs). The hyperparameter setting of each type’s best
configuration (marked with a red asterisk in Fig. 5.5) is stated in Tab. 9.1.

Figure 5.5: Overall test performances of fine search sample. Each data point
indicates the test performance reached by a network configuration (averaged over three
runs, respectively), grouped by network type. I applied a slight vertical jitter to facilitate
the visibility of data points. Boxplots indicate the distributions of test performances.
Red asterisk highlight the highest performance reached for each type.

5.3.3.2 Contest-like comparison

When designing the comparison between network types as a competition between ap-
proaches, each type is limited to contributing n configurations to be compared in terms
of test performance. To select the most auspicious n configurations, each type’s con-
figurations were ranked by validation performance and the first n ranks were selected.
Among the contributed configurations, only the top configuration prevails for each
type, i.e. the one with the highest test performance [69, 150]. Fig. 5.6 shows the out-
come of this competition for n ∈ {1, . . . , 500}. Validation performance was measured by
validation loss.

Fig. 5.6 shows that the maximum test performance increased with the number of con-
tributed network configurations. This results from the test and validation performance
not being perfectly correlated, which to some extent is inherent to splitting test and val-
idation set. All ComParE challenge baseline systems [150] show a similar decorrelation
effect. The performance difference between n = 1 and n = 500 was < 1.5 % for all net-
work types. The performance difference between the top configurations of convolutional

100

5.3. Results

and recurrent networks (i.e. networks with and without convolutional stages) consis-
tently stayed at ≈ 2 % regardless of the number of contributions. The lead between the
top configurations of the network types R-NNs/R-FC-NNs and C-NNs/C-FC-NNs/C-
R-NNs changed depending on n, respectively. For R-NNs and R-FC-NNs, the absolute
performance difference between the top configurations stayed below 0.3 for any number
of contributed configurations. For C-NNs, C-FC-NNs and C-R-NNs, the absolute per-
formance difference between the top configurations started at 0.8 % for n = 1 and closed
to 0.3 % for n > 151.

Figure 5.6: Comparison between networks types in a contest-like setup. First,
all configurations were ranked by validation performance for each network type. The
x-axis indicates the rank index n up to which configurations were contributed by each
type. The y-axis indicates the highest test performance among all of each type’s con-
tributed configurations. Labels indicate performances at rank 1 as well as each type’s
overall highest performance. Horizontal dashed/dotted lines indicate baseline system
performances.

Fig. 5.6 additionally indicates the performances of baseline systems from the Com-
ParE 2018 challenge [150]. The AuDeep system with 71.1 % was selected for reaching
the highest test performance among all previously published end-to-end systems. The
OpenXBOW system with 73.6 % was selected for reaching the highest test performance
among all previously published single systems, as well as conventional systems. The
fusion system with 74.6 % was selected for reaching the highest previously published test
performance overall. As shown, all network type’s top configurations surpassed the Au-
Deep baseline and all network types with convolutional stages surpassed the openXBOW
baseline. The Fusion baseline was surpassed by networks with convolutional stages de-
pending on how many contributions one considers valid.

101

5. Study (B): Comparison of Neural Network Types for Automatic
Classification of Infant Vocalizations

The parameter tuning for the baseline systems was performed by the challenge orga-
nizers [150]. They performed a grid search for one hyperparameter for each algorithm,
respectively. In contrast to this study, the parameters were tuned directly on the test
set, i.e. the validation performance was measured but not considered by the organizers.
Choosing the algorithm settings with the highest respective validation rank reduces test
UARs to 62.1 % for the AuDeep System and 67.6 % for the OpenXBOW system. The
fusion system included the 3 algorithm configurations with the highest test performance.
Consequently, the fusion system prematurely considered test performances at two steps:
(1.) for selecting the included single-system algorithms, and (2.) for selecting the fusion
method.

5.3.3.3 Significance testing of performance differences

I additionally tested the significance of the network type performance differences. The
basic test methodology was to represent each model type through a group of its most m
auspicious configurations and assess the test set performance between groups by means
of a significance test.

To select the configurations into groups, I first ordered each model type’s fine-search
configurations by validation performance as in section 5.3.3.2. Among each type’s first
n validation ranks, I selected m = 10 models with the highest test performance. For
example, for n = 20 the 10 configurations with the highest test performance among the
first 20 validation ranks were selected. For significance testing, I chose the Wilcoxon
signed-rank test for independent samples as it does not normal distributions in groups.
Fig. 5.7 shows the resulting p-values for n = {10, . . . , 500} for each pairwise combination
of network types.

For n = 10, all network types with convolutional layers (C-NN, C-R-NN and C-FC-
NN) had significantly higher (p < 0.01) performance than networks without (R-NN and
R-FC-NNs). The difference between C-NN vs. C-R-NN vs. C-FC-NN as well as R-NN vs.
R-FC-NN was not significant. With growing n, the significance of the difference between
networks with vs. without convolutional layers increased (p < 0.001). The difference
between C-NN vs. C-R-NN and R-NN vs. R-FC-NN was not significant regardless of n.
The difference between C-NN vs. C-FC-NN and C-R-NN vs. C-FC-NN varied between
significant p < 0.01 and not significant p > 0.01 for n > 20.

To summarize, regardless of the amount of validation ranks considered, (1) convo-
lutional networks reached a significantly higher performance than recurrent networks,
(2) R-NNs and R-FC-NNs performed similar, and (3) C-NNs and C-R-NNs performed
similar. The difference between C-NNs/C-R-NNs vs. C-FC-NNs was ambiguous, as the
significance depended on the validation ranks considered.

102

5.3. Results

Figure 5.7: Significances between network type performances. The x-axis indi-
cates the validation rank n for building network type groups. The y-axis indicates the
p-value of the significance test between groups. Both x and y axis are log-scaled.

103

5. Study (B): Comparison of Neural Network Types for Automatic
Classification of Infant Vocalizations

C
oarse

Search
Fine

Search

R
-N

N
tem

p.
aggregation

operation
∈

{G
A
P}

(R
20
.34)

→
R
-Stage

rec.
type

∈
{G

R
U
}

(R
20.29)

→
R
-Stage

n.
units

first
layer

≥
24

(R
20.18).

R
-Stage

bi-directtional∈
{Yes}

(R
20.20).

R
-FC

-N
N

FC
-Stage

batchnorm
∈
{N

o}
(R

20
.4)
→

tem
p.

aggregation
operation

∈
{G

A
P}

(R
20
.33)

→
R
-Stage

rec.
type

∈
{G

R
U
}

(R
20.17).

R
-Stage

num
.
blocks

≤
3

(R
20.045)

→
R
-Stage

n.
units

first
layer

≥
12

(R
20.041)

→
R
-Stage

bidirectional∈
{Yes}

(R
20
.038)

→
FC

-Stage
activation

∈
{R

eLU
}

(R
20.075).

C
-N

N
tem

p.
aggregation

operation
∈

{G
A
P,G

M
P}

(R
20.39)

→
tem

p.
aggregation

operation
∈

{G
A
P}

(R
20
.29)

→
freq.

aggregation
operation

∈
{G

M
P}

(R
20
.23).

C
-Stage

num
.
blocks

≤
4

(R
20.13)

→
C
-Stage

batchnorm
∈

{Yes}
(R

20.07)
→

C
-Stage

pooling
type

∈
{average,m

ax}
(R

20.076)
→

C
-Stage

kernelshape
=

(1,5)
(R

20.1)
→

C
-Stage

activation
∈
{R

eLU
}

(R
20.26).

C
-FC

-N
N

tem
p.

aggregation
operation

∈
{G

A
P}

(R
20
.3)
→

FC
-Stage

batchnorm
∈
{N

o}
(R

20
.38)

→
freq.

aggregation
operation

∈
{G

A
P,G

M
P}

(R
20
.25).

freq.
aggregation

operation
∈
{G

M
P}

(R
20.04)

→
C
-Stage

num
.
blocks

≤
3

(R
20
.06)

→
FC

-Stage
num

.
blocks

<
2

(R
20.15).

C
-R

-N
N

tem
p.

aggregation
operation

∈
{G

A
P}

(R
20
.16)

→
freq.

aggregation
operation

∈
{G

A
P,G

M
P}

(R
20
.13)

→
C
-Stage

pooling
type

∈
{average,m

ax}
(R

20.14).

freq.
aggregation

operation
∈

{G
M
P}

(R
20.14)

→
C
-Stage

num
.
blocks

≤
4

(R
20
.08)

→
R
-Stage

rec.
type

∈
{G

R
U
}

(R
20
.09).

Table5.3:B
est

perform
ing

tree
paths.

Each
cellstatestheregression

treepath
leading

to
theleafw

ith
thehighestaverage

perform
ance

for
the

respective
netw

ork
type.

Splitting
rules

indicate
stage

nam
e,param

eter
nam

e
and

value
according

to
Tab.

5.2.
A
rrow

sindicate
the

orderoftree
splitting

rules.
R

2
valuesindicatesthe

gain
in
R

2
to

the
fitproduced

by
a
splitting

rule,i.e.the
split’s

effect
size

[171].
A
bbreviations:

C
-Stage,R

-Stage
and

FC
-Stage

abbreviate
convolutional,recurrent

and
fully-connected

stages.

104

5.4. Discussion

5.4 Discussion
The main result of the network type comparison is that networks with convolutional
stages (C-NNs, C-R-NNs and C-FC-NNs) outperformed recurrent networks (R-NNs and
R-FC-NNs) by at least 2 % performance. This is supported by the outcome of the
contest-like comparison as well as the significance testing. This result reflects recent
developments in the DCASE community, in which virtually all competition systems
contain convolutional stages [4, 36, 56, 66, 84, 108, 110, 153, 188]. However, the CP
community still relies primarily on pure recurrent networks [67, 150, 177, 197].

Between C-NNs, C-FC-NNs and C-R-NNs there was no clear winner. In the contest-
like comparison, the network type of the configuration with the best performance was
dependent on the competition conditions, i.e. the number of contributions per type.
Regarding the absolute evaluation metric, the final performance difference between the
type’s best overall configurations was just 0.3 %. The significance testing showed that C-
NN and C-R-NNs performed similar regardless of the validation ranks considered. The
difference between C-NNs/C-R-NNs and C-FC-NNs was ambiguous, as the difference
was either significant or not significant when considering high or low validation ranks,
respectively.

A limitation of this study was the infeasibility of evaluating the entire grid of network
configurations. My results are based on randomly drawn samples of configurations and
therefore should rather be interpreted as tendencies on the network type’s potentials
than as absolute upper limits.

Based on the results of the fine search, I hypothesize that among the convolutional
networks, C-R-NNs have the highest potential for further improvement when continuing
the parameter tuning process and C-FC-NNs the least. An indication for this is that
C-R-NNs produced the highest density of top configurations in the range > 74 % while
also having the greatest remaining search space; C-FC-NNs produced the lowest density.
However, this could also be an artifact of the random sample. Proof of this hypothesis
needs further research.

The regression analysis of the parameter search showed that the most influential
hyperparameters were the aggregation operations for reducing the tensor dimensionality
inside the network. The best temporal aggregation operation was 1D GAP, regardless
of the network type. This aggregation operation is already common in convolutional
networks, as 2D GAP currently is the most prevalent layer for parallel frequency- and
temporal aggregation [55, 60, 170]. However, recurrent networks commonly use the last
step for temporal aggregation [134, 177, 197]. The best frequency aggregation oper-
ation was 1D GMP. These findings somewhat contradict current practices in network
architecture design, since average pooling [55, 56, 60, 170] and flattening [22] are more
commonly used for frequency aggregation.

Apart from the actual best aggregation operations found in our research, I draw the
following conclusions: (1) selecting the right aggregation operation should be of primary
concern in architecture optimization, and (2) for CNNs it should be considered to choose
different aggregation operations for the frequency- and temporal dimension, as currently

105

5. Study (B): Comparison of Neural Network Types for Automatic
Classification of Infant Vocalizations

most CNNs merely employ 2D global pooling operations [4, 55, 60, 170].
Based on the regression analysis of the random search results, I derive various recom-

mendations for designing network architectures. In general, overly deep networks should
be avoided as they reduce performance, which has already previously been documented
[46, 55]. FCLs should not be used with batch normalization. For recurrent stages, I
found bidirectional layers with GRU-Type units to work best. Pure recurrent networks
also benefit from a larger number of units in the first layer, i.e. > 24. For convolutional
stages, I recommend max or mean pooling for intermediate volume reduction rather
than striding kernels, 1D Kernel sizes, and ReLU activation function. The best perform-
ing tree path of the fine search analysis for the C-NN type support this finding. For
C-FC-NNs and C-R-NNs, similar rules are found among various regression tree paths,
although not the best performing ones. Most of these findings reflect the configurations
of conventional convolutional networks such as VGGNet. However, the superiority of
1D kernel sizes was noteworthy, as currently 2D quadratic kernel sizes are more common
[4, 22, 56, 60].

A result that might be considered surprising is that the most performant network
configurations were not the most “advanced” ones: For example, shallow C-NNs with
1D Kernel sizes and simple temporal average pooling were among the best performing
networks. These are arguably simpler than other more complex architectures covered in
the search space, e.g. C-R-NNs with ResNet-like conv. stages. I hypothesize that this is
attributed to the small data set size, which is prone to overfitting, putting more complex
layer types at a disadvantage as these usually contain more trainable parameters.

Finally, our study indicates that components are most important to differentiate
vocalization classes. The results suggest that the information is primarily encoded in
qualitative characteristics of local spectrogram patches rather than the temporal evolve-
ment of the signal. This is supported by the finding that R-NNs, which primarily
process sequential temporal information, were outperformed by C-NNs with 1D kernel
sizes, which calculate local features on STFT-like time frames without incorporating
temporal information and forward a mere statistical summary of these features to the
output layer. Consequently such convolutional networks fundamentally work similar to
conventional classification approaches such as Open SMILE [38, 150], which likewise
perform classification on statistics (functionals) of LLDs (features computed on STFT
frames).

106

CHAPTER 6
Study (C): Detailed Investigation

of CNNs for Automatic
Classification of Infant

Vocalizations

6.1 Study goal
The goal of this study was to investigate the influence of the architecture configuration of
computer vision-like CNNs1 for infant vocalization classification in detail. More precisely,
the goal was to identify the networks properties with the greatest association to the
performance.

The similarities between both studies are: (1) both investigate infant vocalization
classification, (2) both employ similar processing pipelines, e.g. using log Mel-scaled
spectrograms, (3) both core study objectives focus the network architecture. However,
while study (B) presented a broader comparison of various network types, this study
specifically focused on CNNs in depth. CNNs were identified in study (B) as the network
type with the highest performance potential. Additionally, the classification challenge
itself was broader, as the label set included five vocalizations classes instead of three.

As study (B), this study is of importance to further the understanding of represen-
tation learning systems for automatic infant vocalization classification. As CNNs with
computer vision-like architectures have become particularly prevalent in ASR (see state
of research section 3.2.3), studying the configuration of such architectures is beneficial
for ASR in general.

1Contrary to study (B), the term CNNs refers to the usual definition of CNNs as neural networks
with convolutional layers in general (see foundations section 2.3.4).

107

6. Study (C): Detailed Investigation of CNNs for Automatic Classification of
Infant Vocalizations

The methodology was as follows: I first defined a CNN architecture scheme repre-
sentative of conventional VGGNet-like CNNs [155]. I produced numerous configurations
of this scheme and performed a grid search. I analyzed the association between archi-
tectural CNN properties and the classification performance through statistical methods
to identify the most influential properties.

Besides the intersections with study (B), this study incorporates results form study
(A), as the target classes were derived from one of the resulting classification scheme.

6.2 Materials and methods
The structure of the methods section is as follows: Section 6.2.1 presents the acoustic
data set. Section 6.2.2 presents the general classification pipeline involving the CNN. Sec-
tion 6.2.3 presents the CNN architecture scheme and configuration search space. Section
6.2.4 and 6.2.5 present the training and evaluation setup, respectively. Finally, section
6.2.6 presents the experimental setup, i.e. the approach for investigating correlations
between network properties and performance.

6.2.1 Acoustic data set

The data set of this study originated from study (A) (see study (A) section 4.2.2). The
source signals were the same 228 sound files, collected from free online sources, cut into
883 segments. These segments are referred to as examples in this study.

I labeled all sound files according to the classification scheme shown in Tab. 6.1.
Each example was assigned to exactly one class. This classification scheme was based
on the results of study (A) (see study (A) section 4.3.5). However, I slightly modified
the scheme by grouping neighboring classes. I grouped crying and whining (from study
(A)’s scheme) into fussing (in this scheme), and babbling and squealing into babbling.
This change ensured that all classes had sufficient examples.

The classes fussing and crying are frequently required for distress and pain assessment
in medical applications [70, 104, chapter 37]. The classes babbling, laughing and vegetative
vocalizations are typically of interest in assessment of vocal development [21, 123] (see
state of research section 3.3.1).

Key property of the data set are: (1) it considers general infant vocalizations, in-
stead of just a subdomain, such as cry-like vocalizations, (2) examples involve a greater
temporal context than most studies on automatic vocalization recognition. I consider
examples to contain sequence level information, rather than unit level information, as
discussed in section 4.2.2. [2, 23, 43, 87, 182, 196].

Section 2.4.1 discussed how classification algorithms can be adapted for detection
tasks, which in principle applies to this study as well. However, the classification scheme
does not contain a class for complete absence of infant vocalizations. Experiments showed
that examples with near silence are mapped to the vegetative vocalizations class, due to
the examples with slight breathing being most similar acoustically.

108

6.2. Materials and methods

Class name Perc. affective
valence Qualitative description

Crying highly negative Vocalizations of high negative valence and distress.
Continuous, periodic and intense.

Fussing moderately
negative

Vocalizations of moderate negative valence. Similar to
crying, but quieter and more discontinuous.

Babbling neutral or
positive

Vocalizations of neutral or positive valence. These fall
under the protophone umbrella term in vocal development
research [21], e.g. protophones, e.g. canonical babbling,
squealing, grunting, moaning, gooing, etc.

Vegetative
vocalizations neutral

Involuntary vocalizations of neutral valence, e.g. coughing,
sucking, burping etc. Also, near silence with slight
breathing.

Laughing positive Full-lunged laughing as well as slight chuckling.

Table 6.1: Target classes.

6.2.2 Classification pipeline surrounding the neural network

The task was modeled as a monophone sound classification task with five classes. As in
study (B), targets were one-hot encoded for training and integer-encoded for validation
(see foundations section 2.4.1 on these terms). The classification pipeline generally
corresponds to the on in study (B) (see study (B) section 5.2.2), which in turn builds
on the general framework presented in foundations section 2.4.3:

1. Preprocessing: The preprocessing directly corresponds to the procedure of study
(B). The sampling rate was 22 050 Hz.

2. Feature map conversion: The calculation procedure was equal to the one in
study (B). However, here I used the power spectrogram instead of the magnitude
spectrogram (see foundations section 2.1.1). The exact parameters of the feature
map were as follows: The STFT length was N = 2048 samples, window length of
40 ms, hop length of 20 ms, a hanning-window function, and the number of Mel
filters was 80. Spectrograms were z-standardized with global statistics calculated
on the training set. The feature extraction was implemented with the python
library librosa v.0.7 [103].

3. Segmentation: In this study, the segment size and hop size was part of the
investigated hyperparameters, see section 6.2.3.

4. Classification: Directly corresponds to study (B).
5. Output aggregation and binarization: Directly corresponds to study (B).

109

6. Study (C): Detailed Investigation of CNNs for Automatic Classification of
Infant Vocalizations

6.2.3 Neural network architecture scheme and search space

Figure 6.1 shows the CNN architecture scheme for prediction. Table 6.2 shows the
corresponding scheme hyperparameters. As in study (B), the actual architecture of a
network results indirectly through the architecture build rules defined in the scheme and
hyperparameters. Hyperparameters are not chosen directly for layers (see study (B)
section 5.2.3). For further explanations on the layers and concepts in this section, see
foundations section 2.3 and particularly section 2.3.2.

Figure 6.1: CNN architecture scheme. The values of the parameters D, k, p, n0, τ
are subject to the configuration. Table 6.2 explains the parameters. The variable d
indicates the current depth of the convolutional block d ∈ {0, . . . , D − 1}

The scheme was designed to represent a template for “conventional” CNN architec-
tures used for computer vision, such as LeNet, AlexNet, or VGGNet (see foundations
section 2.3.4 for these architectures). It was aimed to keep those properties of the
network to be variable that I hypothesized to be of primary interest for increasing per-
formance and those fixed that were of less interest. As these networks, the scheme
contains a convolutional and a fully-connected stage: The convolutional stage extracts
acoustic features from the spectrogram via alternating convolutional and pooling layers,
and the fully connected stage processes those features to the output. The aggregation
layer adapts the volume dimensionality between both stages, by aggregating the time
and frequency axis. The quadratic kernel shapes reflect that the architecture treats the

110

6.2. Materials and methods

temporal and frequency axis identically as though they were spatial dimensions of an
image.

All scheme hyperparameters force layers to share certain properties, such as the kernel
size. The number of units doubles with each layer as in VGGNet [155]. Therefore, the
number of units in a layer is determined indirectly through the parameters filters in the
first layer no and depth D.

Justifications for the scheme hyperparameters and ranges are as follows:

• The depth, kernel size, and filters in the first layer primarily determine the capacity
of a CNN according to Goodfellow et al. [46, chapter 11].

• The aggregation layer proved to be one of the most important hyperparameters in
study (B). It is one of the central architectural differences between conventional
CNNs, such as VGGNet, and more modern CNNs, such as ResNet [55, 155].

• Although pooling sizes greater than (2 × 2) are uncommon in image recognition
networks, larger pooling sizes are common in networks for audio recognition, e.g.
the DCASE baseline systems [110].

• The segment length determines the temporal context evaluated by the network at
once. The values correspond to approximately the average duration / half of the
average duration of the database examples (see Tab. 6.3).

The segmentation hop size in the processing pipeline was adapted dynamically ac-
cording to the chosen segment length Tseg. For Tseg = 3 s I distributed 2 segments and
for Tseg = 6 s I distributed 3 segments across each example’s entire duration. These
numbers of segments were chosen as the minimum possible values to cover the longest
examples in the database entirely with the respective context length.

This scheme might be considered a special case of the global scheme presented in
study (B) (see study (B) section 5.2.3). In the terminology of study (B), this was a
C-FC-NN. The central differences between this scheme and study (B)’s scheme were:
(1) the recurrent stage was omitted, (2) the frequency and temporal aggregation layers
were fused to a single aggregation layer, and (3) some hyperparameters were fixed that
were variable in study (B), including: the activation functions were fixed to ReLU, the
unit growth factor was fixed to 2, there was one fixed FCL, max pooling was the fixed
intermediate pooling operation, and convolutional layers were always followed with batch
normalization. All of these fixes are in line with the design principles for conventional
CNNs, such as LeNet, AlexNet, and VGGNet.

Consequently, this scheme is more restricted than the global parent scheme of study
(B), i.e. there are less degrees of freedom to be investigated in a hyperparameter search.
The reason for this was to keep the search space small enough to perform an exhaustive
grid search (see foundations section 2.2.2.3), focused on the central parameters of this
CNN type.

111

6. Study (C): Detailed Investigation of CNNs for Automatic Classification of
Infant Vocalizations

Parameter name Parameter values Description

aggregation layer s s ∈ {flatten,
GAP}

Determines the layer that adapts the volume dimension-
ality of the convolutional stage to the fully-connected
stage. Flatten flattens the volume to a vector. GAP av-
erages globally across the time and frequency axis. When
using GAP, the last pooling operation is omitted to avoid
the consecutive application of two pooling layers.

segment length Tseg Tseg ∈ {3 s, 6 s} temporal length of the segments

depth D D ∈ {2, 3, 4} number of convolutional blocks

kernel size (k × k) k ∈ {3, 5, 7} Determines the kernel size common to all convolutional
layers. The stride is always (1× 1).

pooling size (p× p) p ∈ {2, 3, 5} kernel size and stride of 2D max pooling layers

filters in the first
layer n0

n0 ∈ {16, 32, 64} amount of filters in the first convolutional layer

Table 6.2: Network scheme hyperparameters and search spaces for configura-
tion of the architecture scheme shown in Fig. 6.1.

6.2.4 Training setup

The training setup corresponded to study (B) (see study (B) section 5.2.5). The learning
rate was 0.0001, the batch size 64, and early stopping patience was 30 epochs. For
implementation of networks and training I used the python library keras v.2.24
with tensorflow-gpu v.1.14.0 backend.

6.2.5 Evaluation setup and performance metric

For evaluation I chose a nested cross-validation setup to compensate sampling bias due
to the small data set size (see foundations section 2.2.4.6). Contrary to study (B) and
(D), I was free to chose the evaluation setup as the data set was created specifically for
this study.

I split the data set into 4 folds. Assignment from examples to folds was performed in
a stratified manner, i.e. each fold was aimed to contain similar distributions of class ex-
amples. Folds always contained all signals from the same source signal to avoid the album
effect (see foundations section 2.4.4). Table 6.3 summarizes the example distributions
for all folds.

In each evaluation loop, two folds were used in combination for training, one for
validation, and one for testing. The validation set was solely used for determining the
stopping epoch through early stopping. However, validation performance itself was of
no interest in this study. Consequently there were 4 · 3 = 12 evaluation runs per CNN
configuration, so that each fold was used thrice for testing, and each of the remaining
folds once for validation. The total performance of a network configuration was the
average of all 12 runs.

112

6.2. Materials and methods

Fold: 1 2 3 4
∑

durations

babbling 55 63 59 79 256 6.24 ± 0.79 s
crying 65 64 78 74 281 6.50 ± 0.88 s
fussing 38 38 43 38 157 6.26 ± 0.84 s
laughing 10 12 11 8 41 5.85 ± 0.90 s
vegetative 25 30 19 24 98 5.76 ± 0.89 s∑

193 207 210 223 833 6.26 ± 0.87 s

Table 6.3: Overview over data set folds. Table cells state the number of examples
for each class and fold. The last column indicates the mean and standard deviation of
the example durations, measured in seconds.

The performance metric was UAR (see foundations section 2.2.4.3) as in study (B),
as it accounts for the imbalance in class distribution and is the standard metric in CP
competitions [148].

6.2.6 Experimental setup

The experimental setup fundamentally corresponded to a grid search (see foundations
section 2.2.2.3), i.e. all possible architectures resulting from the search space defined in
Tab. 6.2 were trained and evaluated. I omitted overly large network configurations in
light of the low amount of training data, i.e. omitting configurations with more than 5
million trainable parameters. The total amount of network configurations was 283.

The goal was to identify correlations between network properties and performance.
As in study (B), those network properties encompassed the scheme hyperparameters
themselves as defined in Tab. 6.2. The results section refers to these parameters as the
determining CNN properties.

However, in this study I additionally included derived network properties that cap-
ture interaction effects between the scheme hyperparameters. This was done to gain
greater insight into the relationship between network architecture and performance for
CNNs specifically. The results section refers to these parameters as the derived CNN
properties. They were as follows:

• Trainable Weights: Total amount of trainable weights in the CNN. This is
considered as one of the central properties for a network’s capacity [46, chapter
11].

• Input size of the fully-connected layer (FCL): Size of the vector input to
the FCL after the aggregation layer, i.e. the size of the feature bottleneck. This
number indicates the amount of acoustic features that is finally extracted by the
convolutional stage. When the aggregation layer is GAP, the size is 2D−1 · n0
(variable names correspond to Tab. 6.2). When the aggregation layer is flatten,
the size is

113

6. Study (C): Detailed Investigation of CNNs for Automatic Classification of
Infant Vocalizations

m · Tframes · 2(D−1) · n0
p2D ,

where m = 80 is the number of input Mel bands and Tframes is the number of input
spectrogram time frames. This feature captures the interaction between network
depth and width (see foundations section 2.3.1 for these terms).

• Cumulative receptive field: This property indicates the range each filter of the
last convolutional layer (before the FCL) receives across the time and frequency
axis through all of its preceeding layers. The range is indicated in units [number
of Mel bands] for the frequency axis and in [seconds] for the time axis. I calculated
this value as proposed by Le and Borji [89]:

RANu = RANu−1 + (qu − 1)
u−1∏
i=0

si ,

where RANu is the range of layer u ∈ {0, . . . , 2 ·D − 1} (including convolutional
as well as pooling layers), qu the the layer kernel size, and si the layer stride.
I measured the cumulative receptive field for the time and frequency axis sepa-
rately. Koutini et al. [83] showed the cumulative receptive field to be a factor for
performance in the context of acoustic scene classification.

Contrary to study (B) and (D), this study contained a single experimental round,
i.e. there was no secondary step that build on intermediate results. I chose the following
methods to analyze the correlations between network properties and performance: (a)
PCA, which is a dimensionality reduction technique for correlated variables, which I
applied to infer correlations through factor loadings, as well as to visualize them [69,
chapter 6, 10], and (b) direct measurement of correlations through correlation metrics,
globally as well as in selected subgroups. For clarity, the results section explains these
methods in greater detail.

6.3 Results
The structure of the results section is as follows: Section 6.3.1 presents the overall system
performance and the analysis the class-wise performance. Section 6.3.2 presents the more
detailed analysis on the relationship between network properties and performance.

6.3.1 Overall system performance

Figure 6.2 summarizes the distribution of test performances of all 283 tested CNN ar-
chitectures through a histogram. The mean performance was 64.83 % with a standard
deviation of 4.29.

114

6.3. Results

unweighted average recall [%]

Figure 6.2: Histogram of system performances. The x-axis indicates the system
performances as measured with the UAR. The y-axis indicates relative amounts of CNN
configurations. The blue bars indicate histogram counts. The red area indicates the
smoothed density estimate. The vertical black line indicates the mean performance of
all CNN configurations.

The highest performance value was 72.84 %. The corresponding configuration was:
aggregation layer s = GAP, temporal context Tseg = 6 s, depth D = 3, kernel size k = 3,
pooling size p = 2, number of filters in the first layer n0 = 32.

Fig. 6.3 shows the corresponding confusion matrix for the entire test set, as produced
by this best performing CNN configuration. To ensure that each test fold was included
exactly once into the confusion matrix (as each one was used thrice for testing, see
section 6.2.5), for each test fold I chose the result that yielded the lowest validation loss.

The matrix shows that the most often confused classes were fussing and crying,
fussing and babbling, babbling and vegetative vocalizations, and laughing and babbling.

6.3.2 Relation between CNN properties and performance

This section presents a detailed analysis of the association between CNN properties and
the performance. Section 6.3.2.1 visualizes property importance by means of a principal
component analysis. Section 6.3.2.2 analyzes significances and effect sizes of the CNN
properties.

6.3.2.1 Principal component analysis

Principal component analysis (PCA) is a method for dimensionality reduction that ap-
proximates a larger set of correlated variables through a smaller set of decorrelated
variables representing linear combinations of the former [69, chapter 6, 10]. I included
all CNN properties described in section 6.2.6, i.e. the determining CNN properties (the
scheme hyperparameters 6.2), the derived CNN properties, and the performance metric
UAR.

115

6. Study (C): Detailed Investigation of CNNs for Automatic Classification of
Infant Vocalizations

Figure 6.3: Confusion matrix for all audio examples. The numbers show absolute
classification results. Colors indicate classification results normalized per row, i.e. the
amount of predicted classes in relation to the amount of examples present in the respec-
tive true class.

Figure 6.4: PCA visualization. The axis show the first two principal components.
Data points represent CNN configurations, which are placed according to their PCA
rotations. Data points colors and shapes code the performance and aggregation layer,
respectively.

116

6.3. Results

The only correlations exploitable by the PCA were between the three groups of
variables (a) determining CNN properties (b) derived CNN properties, and (c) the per-
formance; However, within the group of determining CNN properties there were no
exploitable correlations, as these were defined to be independent of one another. Con-
sequently, the PCA primarily reveals any correlations between the performance and
network properties of any kind.

The binary categorical variable for the aggregation layer was dummy-encoded with
0 =̂ flatten and 1 =̂ GAP. All variables were z-standardized. The PCA was performed
with the prcomp() function of the R package stats v.3.4.4.

Table 6.4 lists the variable loadings of the first two principal components and fig-
ure 6.4 visualizes the projections of the CNN configurations. The relatively low cumu-
lative explained variance of 49 % is due to the variables of the determining parameters
group being decorellated.

The first principal component assigns the highest variable loadings to the perfor-
mance, the input size of the FCL and the aggregation layer. Consequently this com-
ponent represents properties important to the classification performance, with GAP
aggregations as well as smaller sizes to the FCLs positively impacting performance. A
decreased number of trainable weights also increased performance, albeit to a lesser
degree.

The second component was associated with CNN properties correlated with the cu-
mulative receptive field, which were the pooling size and depth. The small loading of
the performance variable indicates that these properties have little impact on the CNN
performance.

Variable name Variable loading
PC1 PC2

aggregation layer 0.483 −0.059
segment length 0.044 0.038
depth −0.052 0.512
kernel size −0.097 0.054
pooling size 0.09 0.426
filters first layer 0.053 0.092
trainable weights −0.386 0.186
input size of the FCL −0.502 −0.316
cum. receptive field −0.13 0.636
performance 0.57 0.020

variance explained 24.41 % 19.11 %

Table 6.4: PCA variable loadings for the first two components. Variables with load-
ings > 0.4 are printed bold.

117

6. Study (C): Detailed Investigation of CNNs for Automatic Classification of
Infant Vocalizations

6.3.2.2 Analysis of network property significances and effect sizes

As PCA variable loadings are not interpretable in absolute terms, I additionally calcu-
lated significances and effect sizes for CNN properties.

The correlation was calculated univariate for each property and the performance
separately. For all continuous network properties, I chose the Spearman correlation
coefficient for measuring the effect size r and the significance p. For the categorical
feature aggregation layer I chose the point-biserial correlation coefficient instead, with
dummy-encoding 0 =̂ flatten and 1 =̂ GAP. According to Sullivan and Feinn [168],
properties with significance values of p < 0.01 and effect sizes |r| > 0.2, > 0.5 and > 0.8
might be interpreted has having small, medium and high relevance, respectively.

Spearman correlation values were calculated via the function cor() and significance
values via the function cor.test() of the R package stats v.3.4.4. The point
biserial correlation was calculated via the function biserial.cor() of the R package
ltm v.1.1-1.

Main effects

The left column of table 6.5 shows effect sizes and significances when taking all CNN
configurations into consideration. The properties with the highest effect sizes were the
aggregation layer and the input size of the FCL, both having medium relevance. This
reflects the variable loadings of the first principal component presented in section 6.3.2.1.
Increasing the number of filters in the first layer and dercreasing the number of trainable
weights had small relevance. All other CNN properties had no relevance.

Effects grouped by aggregation layer

I additionally calculated significances and effect sizes for CNN configurations grouped by
aggregation layer. This was motivated by the observation that the aggregation layer and
the input size of the FCL had the largest main effects while also being intercorrelated, so
I aimed to investigate if this effect still held up in subgroups of aggregation layers. The
two right columns of table 6.5 show effect sizes and significances for those subgroups.

For the flatten aggregation subgroup, the properties with the highest effect sizes
were the pooling size, the input size of the FCL and the cumulative receptive field, all
having medium relevance. Larger pooling sizes, smaller input sizes to the FCL and
larger cumulative receptive fields positively affected the performance. Those properties
were also intercorrelated, i.e. larger pooling sizes mainly produce smaller input sizes to
the FCL and larger cumulative receptive fields. All other network properties had small
relevance, except the kernel size.

For the GAP aggregation subgroup, all properties had either no or small relevance.
Consequently, these CNNs were overall less sensitive to parameter variations than CNNs
with flatten aggregations. Among those properties with small relevance, the most sig-
nificant was the cumulative receptive field, with smaller cumulative receptive fields pos-
itively affecting the variance. This was contrary to CNNs with flatten aggregations,
which benefited form larger cumulative receptive fields.

118

6.3. Results

Grouping variable Main effects aggregation
Grouping value - Flatten GAP

aggregation layer *** 0.631 – –
temporal context 0.038 **−0.255 ** 0.232
depth −0.030 ** 0.276 **−0.232
kernel size −0.114 −0.173 *−0.182
pooling size 0.018 *** 0.552 −0.103
filters first layer *** 0.284 *** 0.377 ** 0.228
trainable weights ***−0.381 **−0.257 *−0.159
input size of the FCL ***−0.604 ***−0.630 −0.029
cum. receptive field *−0.119 *** 0.518 ***−0.298

Table 6.5: Effects of network properties. Table cells indicate effect sizes as measured
with the spearman / point-biserial correlation coefficient. Asterisks indicate p-values
with *** = p < 0.001, ** = p < 0.01, * = p < 0.05. Effect sizes with at least medium
relevance > 0.5 are highlighted bold. The left column shows the main effects. The two
columns show effects when grouping CNNs by aggregation layer.

Fig. 6.5 visualizes the association between CNN properties and the performance for
aggregation subgroups. Only properties with at least small relevance in either subgroup
are shown. I highlight the following observations:

1. Aggregation layer: GAP aggregations clearly outperform flatten aggregations
on average.

2. Input size of the FCL: There is a visible overall negative association between
the input size of the FCL and the performance. GAP aggregations are shown to
cause smaller input sizes to the FCL in general. The local maximum for flatten
aggregations is at ≈ 256 – 2048 and for GAP aggregations it is at ≈ 64 – 128.

3. Depth: The optimal depth for both subgroups is 3.
4. Cumulative receptive field: Both aggregation layers cause opposite correlations

between the size of the cumulative receptive field and the performance. The local
maximum for GAP aggregation layers is at ≈ 30 Mel frequency bands and ≈ 0.65 s.
For flatten aggregations, it is at ≈ 150 – 400 frequency bands and ≈ 3 – 6 s. For
the frequency axis, this corresponds to ≈ 2 – 5 times of the provided input range of
80 Mel frequency bands. For the time axis, this corresponds to the entire temporal
context provided by the input segments.

119

6. Study (C): Detailed Investigation of CNNs for Automatic Classification of
Infant Vocalizations

Figure 6.5: Plots of CNN properties vs performance. CNNs are color coded by
aggregation layer. The black dotted lines of the last three plots show local polynomial
regression lines fitted to the subgroups.

6.4 Discussion
I summarize that the CNN properties with the strongest overall impact on the perfor-
mance were the choice of aggregation layer as well as the input size of the fully connected
layers. The most efficient CNN configurations employed a 2D GAP aggregation layer
and had cumulative receptive fields of ≈ 0.65 s and ≈ 37 % of the provided frequency
range. CNNs with flatten aggregation layers additionally benefited from large pooling
kernel sizes/strides in conjunction with large cumulative receptive fields.

I conclude that CNNs optimized for the task of infant vocalization classification must
be designed to have small feature bottlenecks between the convolutional stage and the
fully connected stage. This bottleneck should be achieved through broad aggregation
of the convolutional feature maps of the convolutional stage across the time- and fre-
quency axis. This aggregation should be performed “late”, i.e. once at the end of the
convolutional stage through a broad global pooling layer such as GAP, in contrast to
aggregation through repeated broader pooling between convolutional layers. The sec-
ond most important factor is management of the size of the cumulative receptive field,
appropriate to the aggregation layer. Koutini et al. [83] made a similar observation for
acoustic scene classification.

Increasing the depth of the CNN was less effective, although it also produced a smaller
feature bottleneck. However, the architecture scheme doubled the amount of filters
when increasing depth, leading to diminishing returns when increasing depth to produce
a smaller bottleneck. Consequently it could be beneficial keep the amount of filters
constant across all layers, despite this being an uncommon CNN architecture concept.
Increasing the amount of filters in the convolutional layers affected the performance

120

6.4. Discussion

positively despite producing larger feature bottlenecks. Possibly detrimental effects of
larger amounts of filters were not fully explored as I excluded CNNs with more than 5
million trainable weights, excluding the largest CNNs.

The implication of the dominance of GAP aggregation layers is that this layer pro-
vides a sort of regularization that improves the generalization ability of the networks
without sacrificing audio properties important for class differentiation. Particularly in-
formation about the temporal progression of filter outputs is withheld from the fully
connected layers, which are instead provided with a statistical summary about local
acoustic properties calculated at various time steps. Consequently, vocalization classes
are differentiable through statistical summaries of local properties alone. This reflects
the approach of conventional ML approaches for infant vocalization recognition, which
also evaluate statistical summaries of local acoustic properties, such as the conventional
baseline systems of ComParE challenge [150].

I highlight that networks with flatten aggregations had the highest performance when
each filter of the last convolutional block covered a range of 3−6 s. This means that the
CNN filter cumulative receptive field effectively covered the entire input spectrogram.
The temporal progression of the input signal was thus captured by the filter stage, instead
of being evaluated by the fully connected stage. This hints at the fully connected layers
being inadequate for interpreting local acoustic properties.

Finally, there are interesting similarities between the confusion matrix and the clas-
sification scheme the target classes were based on. The classification scheme originated
from the results of study (A) (see study (A) section 4.3.5). I highlight the following
observations: (1) Class similarity according to human perception is reflected in the mis-
classification by the algorithm. Evidence for this is that classes were more often confused
if they were neighboring according to the classification scheme. This neighborhood as-
sociation is primarily determined by the valence rating. (2) The class with the lowest
accuracy was fussing. This is class acts as a valence “bridge” between babbling and
crying, but has few unique acoustic properties besides that (as opposed to laughing for
example). This underlines the hypothesis of crying as a graded signal, i.e. that distress
vocalizations form a continuum, which is difficult to quantize into discrete classes [16].

121

CHAPTER 7
Study (D): Compensating Class

Imbalance for Acoustic
Chimpanzee Detection With

Convolutional Recurrent Neural
Networks

7.1 Study goal
The goal of this study was to investigate methods for compensating severe class imbal-
ance for automatic detection of chimpanzee calls in long-term audio recordings. The task
was to detect chimpanzee calls drumming and vocalizations in PAM recordings from the
African rain forest (Taï National Park, Côte d’Ivoire). The data set contained a severe
imbalance between positive and negative classes: The test set, with a total duration
of 179 hours, contained merely ≈ 10 minutes of chimpanzee calls. This imbalance is
representative of the prevalence of chimpanzee calls in naturalistic recordings. Conse-
quently, I selected a set of common methods for compensating this imbalance, which
were: (1) spectrogram denoising, (2) resampling, and (3) alternate loss functions. The
core question was which of these methods is most effective for increasing performance.
An additional question was whether frame-precise detection through CRNNs is feasible.
Both of these questions refer to the research gaps discussed in section 3.3.3.

The study is of importance for transferring ML detection systems to realistic condi-
tions: Severe rarity of target class is known to negatively impact the performance of ML
systems, as these tend to be biased towards the majority class Johnson and Khoshgoftaar
[72]. Previous studies circumvented the imbalance issue through manual rebalancing of
their data sets. This relates to the research gaps discussed in section 3.3.3.

123

7. Study (D): Compensating Class Imbalance for Acoustic Chimpanzee
Detection With Convolutional Recurrent Neural Networks

The detection approach was adapted by Cakır et al. [22]. Their approach is based on
a CRNN with frame-wise outputs. I extended their detection pipeline through various
stages aimed at compensating class imbalance. I studied the effects of these stages on
the detection performance in two experimental rounds. The main tools for analysis were
regression trees and statistical assessment, similar to studies (B) and (C).

7.2 Materials and methods
The structure of the methods section is as follows: Section 7.2.1 presents the acoustic
data set. Section 7.2.2 presents the general detection pipeline involving the CRNN.
Section 7.2.3 presents the approach to spectrogram denoising. Section 7.2.4 presents
the CRNN architecture. Section 7.2.5 presents the loss variants and section 7.2.6 the
resampling variants. Section 7.2.7 and 7.2.8 present the training and evaluation setup,
respectively. Finally, section 7.2.9 presents the experimental setup.

7.2.1 Acoustic data set

The data set was originally collected by Kalan et al. [74, 75] with the aim of developing an
automated approach for detecting primate calls in PAM forest recordings [57]. Heinicke
et al. [57] presented the evaluation of this automated system.

The recording site was the western section of the Taï National Park, Côte d’Ivoire.
The area sampled the territories of two chimpanzee communities. The soundscape of the
park featured a wide variety of biogenic sounds, e.g. birds, insects, anthropogenic sounds,
rain, wind etc. The recording setup comprised 20 ARUs distributed evenly across an
area of ≈ 35 km2. ARUs recorded in stereo with a sampling rate of 16 kHz and a depth
of 16 bit. The recording took place from from November 2011 to May 2012. ARUs
recorded daily from 6 am to 6 pm at the full hour for 30 minutes. Overall 12 889 h of
audio data was collected.

vocalization

drumming

Figure 7.1: Example spectrogram of target classes.

The original automated approach [57] targeted chimpanzees, Pan troglodytes ssp.
verus, as well as three other primate species. The present study focuses exclusively

124

7.2. Materials and methods

Figure 7.2: Histogram of call type durations.

on chimpanzees. Heinicke et al. [57] defined two chimpanzee call types for detection:
(1) drumming, which is produced by chimpanzees when they repeatedly hit buttress
roots of trees with their hands and feet, and (2) vocalizations, referring primarily
to chimpanzee pant-hoots and screams for long-distance communication. Drumming
is characterized by short energy bursts with low frequency. Vocalizations in the data
set are characterized by harmonic patterns with an estimated frequency range of 200 –
2000 Hz. Fig. 7.1 shows an example spectrogram excerpt with both call types. For the
remainder of this chapter, I refer to call types as classes and call instances as events in
accordance with the vocabulary established in general ASR.

To construct sets for training and validation of the automated system, Kalan et al.
[74, 75] sampled the data set and annotated the sampled recordings. Table 7.1 summa-
rizes the data sets used in this study:

• The complete test set corresponds to the original test set constructed by Heinicke
et al. [57]. They randomly sampled 358 recordings (each with a duration of 30 min)
from the data pool, balanced across ARUs (one file per ARU per week) and time of
day. This procedure ensured that the test set reflected diverse acoustic conditions
for varying seasons, daytimes and sampling sites.

• I additionally constructed a reduced test set from the complete test set. It
comprised all recordings from the complete test set with at least one chimpanzee
event, i.e. it is a subset of the complete test set. I used this test set for repeated
evaluation runs, as the complete test set was computationally expensive due to its
size. The experimental setup in section 7.2.9 describes the purpose of this set in
more detail.

• The training set contained 44 additional recordings that were likewise randomly
sampled (i.e. training and test set comprised of distinct recordings). Each individ-
ual recording in the training and test set was 30 min long.

• The validation data set contained 25 additional recordings collected during a
pilot study at the same location in 2010. Contrary to the other sets, recordings in
the validation set had varying lengths with a mean duration of 1.3 min.

125

7. Study (D): Compensating Class Imbalance for Acoustic Chimpanzee
Detection With Convolutional Recurrent Neural Networks

Two trained experts for primate vocalizations annotated call events in these record-
ings with precise start- and end times [57].

A central characteristic of the data set is the rarity of the target classes. The com-
plete test set with approximately one week of recording time merely contained a total of
2.5 min of drumming and 7 min of vocalization events. The relative amount for drum-
ming and vocalizations was 0.02 % and 0.06 %, respectively. This imbalance is represen-
tative of the real-world prevalence of chimpanzee calls obtained using PAM in natural
settings. Even the reduced test set, which biased the class distribution in favor of the
target classes, contained 0.16 % and 0.47 % of drumming and vocalization events, re-
spectively. The training set contained 0.2 % and 0.35 % of drumming and vocalization
events, respectively.

According to Weiss [183], the imbalance between the number of positive class ex-
amples (i.e. target calls) and negative class examples (i.e. background samples) has two
effects:

• Absolute rarity, i.e. low amounts of training examples for the target classes. This
causes classifiers to overfit individual examples rather than learning generalized
patterns for the target classes, particularly in deep learning systems [46, 176].

• Relative imbalance between background class and target class examples. This
usually induces a bias into the classifier to favor the majority class, while the
minority class often is of greater interest to the user [53, 72, 91, 183]. However, the
magnitude of the negative effect depends on the complexity of the classification
task at hand. The algorithm might be completely unaffected if classes are linearly
separable [71, 72].

test complete test reduced training validation

ARU record.
recordings 358 50 44 25
total duration 179 h 25 h 22 h 0.7 h
% recordings with at
least 1 chimp. call 14 % 100 % 50 % 76 %

drum.
events 100 100 78 29
total duration 149 s 149 s 159 s 96 s
mean duration 1.29 s 96 s 1.76 s 2 s

vocal.
events 50 50 53 23
total duration 431 s 431 s 270 s 88 s
mean duration 5.72 s 5.72 s 4.35 s 3 s

Table 7.1: Data set overview.

126

7.2. Materials and methods

7.2.2 Detection pipeline surrounding the neural network

I modeled the task as a polyphone sound detection tasks (see foundations section 2.4.1).
Figure 7.3 gives an overview of the detection pipeline at training and test time. The
pipeline comprises a series of pipeline stages that progressively process an input audio
signal (i.e. ARU recording).

The general approach and stage arrangement of feature extraction, segmentation,
CRNN, output concatenation and output thresholding originated from Cakır et al. [22]. I
further added the stages spectrogram denoising and resampling. These stages, together
with the choice of the loss function, were the three components aimed at compensating
class imbalance investigated in this study.

This pipeline was more elaborate than the general framework for sound prediction
presented in the foundations (see section 2.4.3). In addition to that framework, the
pipeline of this chapter contains several additional stages and the network outputs pre-
dictions for each spectrogram frame, instead of the entire input segment.

Although Cakir’s pipeline aimed at direct polyphonic detection, the network in this
study was trained for binary detection of one class at a time, i.e. drumming vs. back-
ground or vocalization vs. background. This restriction was imposed to study the effects
for both classes separately.

The pipeline stages function as follows:

1. Input: Input are ARU recordings x(i) ∈ RL
(i)
sig of length L(i)

sig ∈ N as time-domain
audio signals, where (i) is the signal index. Signals are converted to mono, nor-
malized to a peak amplitude of 1, and kept at a sampling rate of 16 kHz. Ground
truth annotations are tables that list occurrences of target calls with their start-
and end times within signals.

2. Feature map conversion: As in study (B) and (C), I employed log-mel scaled
spectrograms. The calculation procedure was equal to study (B) (see study (B) sec-
tion 5.2.2). I adapted the frame length of 40 ms and hop-length of 20 ms from Cakır
et al. [22]. The number of Mel-bands was 80, i.e. I doubled the frequency resolution
to reduce the loss of potentially important frequency information, particularly in
view of the low signal-to-noise-ratio in this task. The feature extraction process
was implemented through the python library librosa v.0.8. [103]. Ground
truth annotations were likewise converted to binary integer-encoded target vectors
y(i) ∈ {0, 1}T (i) , where y(i)

t = 1 encodes presence and 0 encodes absence of the
target class in time frame t of signal (i) (alias positive and negative example).

3. Spectrogram denoising: This stage applies a series of denoising functions to
spectrograms fden(M (i)) = M

′(i), whereM (i) ∈ RT
(i)×Fin is an input spectrogram

and M (i) ∈ RT
(i)×Fden is the denoised spectrogram. While the time axis size T (i)

of each signal (i) remains unchanged, the frequency axis might be reduced to Fden.
This stage also z-standardizes all spectrograms through global statistics calculated
on the training set.

127

7. Study (D): Compensating Class Imbalance for Acoustic Chimpanzee
Detection With Convolutional Recurrent Neural Networks

feature map

+input annotations

ground truth

F

F'

pred. prob.

ground truth

bin. pred.

ground truth

segmentation

resampling

training

T

feature extraction

CRNNloss

Tseg Tseg

TestingTraining

CRNNCRNNCRNN

spectrogram denoising

output concatenation

output thresholding

(1)

(2)

(3)

(4)

(5)

(6)

(6)

(7)

(8)

Figure 7.3: Overview of the detection pipeline at training and test time. In
this example there is only one input signal x, so that the index i is omitted.

128

7.2. Materials and methods

4. Segmentation: In this study, I used a fixed segment length and hop length of
Tseg=̂10 s as a balance between computational efficiency and providing sufficient
temporal context in spectrogram segments for recognition of target classes. For
signals with T (i) mod Tseg 6= 0 (some signals in the validation set), the last seg-
ment was partially overlapped with the penultimate to cover T (i) completely if the
overlap was < 75 %, or discarded otherwise. A feature map is represented as a list
{Ṁ i,s}s=1,...,S(i) , where s is the segment index.

5. Resampling: This stage alters the distribution between positive and negative
examples through over and undersampling of segments. This stage is only active
for training to not affect class distribution when validating the system. Section
7.2.6 provides details on the resampling procedure.

6. CRNN prediction / training: The CRNN predicts spectrogram segments to
produce corresponding class probability vectors fcrnn(Ṁ (i,j)) = ˆ̇pi,j ∈ [0, 1]Tseg ,
i.e. ˆ̇p(i,j)

t indicates the probability of the target class being present in frame t of
segment j for signal i. Section 7.2.4 provides details on the CRNN configuration.
Section 7.2.5 describes the loss functions experimented with.

7. Output concatenation: The stage concatenates the prediction segments to pro-
duce one target vector per input spectrogram [ˆ̇p(i,0), ˆ̇p(i,1), . . .] = p̂(i) ∈ RT

(i) .
8. Output binarization: This stage binarizes predicted probabilities through thresh-

olding: ŷ(i)
t = 1, if p̂(i)

t > C, else 0. I used the unbiased threshold C = 0.5 (see
foundations section 2.2.3 on binarization).

7.2.3 Spectrogram denoising

Spectrogram denoising is a common preprocessing step in automatic animal call detec-
tion. The aim is to increase the signal-to-noise-ratio, as recordings usually carry high
amounts of noise due to the nature of open field settings. In this context, the signal
is the target call of interest. Noise refers to background sounds, i.e. geophony (environ-
mental sounds such as wind and rain), anthrophony (noise generated by humans, such
as traffic) and biophony (sounds of animals not of interest). In the context of this study,
I employed spectrogram denoising as a method for combating absolute rarity of target
classes. Target event examples are present for only few background noise conditions,
possibly causing the classifier to infer false coupling between noise conditions and event
probability. Prior elimination of variability between noise conditions can mitigate this
effect. [61, 98, 186]

Among the multitude of available methods, I chose to evaluate: (1) frequency removal
and (2) spectral subtraction, as they are among the most prevalent and straight-forward
methods in automatic animal call detection [61, 98, 186]. Both methods exploit the
observation that background noise is fairly consistent over large periods of time, while
target classes are comparatively short and seldom.

129

7. Study (D): Compensating Class Imbalance for Acoustic Chimpanzee
Detection With Convolutional Recurrent Neural Networks

7.2.3.1 Frequency removal

Animal target calls usually occupy narrow frequency ranges. Therefore, many systems
for call detection apply preprocessing filters to remove unneeded frequency ranges [53].
I calculated frequency ranges for target classes through the following proposed method:

The goal is to calculate a class mask r ∈ RF , whose values rf indicates the strength
of association between Mel frequency bins f and the target class. Let T (e)

start ∈ N and
T

(e)
end ∈ N be the start and end time of event e ∈ {0, . . . , E− 1} indicated as spectrogram

time frame indices. M (e) ∈ RT×F and y(e) are the spectrogram and ground truth vectors
that contain event e at some points. t̃(e) ∈ [T (e)

start − Tc, . . . , T
(e)
end + Tc] is the list of time

frames for event e, padded by a fixed context size Tc. Then, M̃ (e) and ỹ(e) are the
spectrogram and ground truth vector patches corresponding to t̃(e), i.e. M̃ (e) = M

(e)
t̃
(e)
,:
.

For each event (e), we obtain an event mask r̃(e) ∈ RF by calculating the Pearson
correlation between the Mel frequency bin f and the target vector as:

r̃
(e)
f =

cov(M̃ (e)
:,f , ỹ

(e)
:)

σ(M̃ (e)
:,f) · σ(ỹ(e)

:)
(7.1)

The total class mask r is the average of all E event masks:

rf = 1
E

E−1∑
e=0

r
(e)
f (7.2)

The intuition behind this calculation method is as follows: Any call event causes an
increase in energy of its associated frequency bands relative to the background noise.
If an event is surrounded by time invariant noise, this gain is measurable as a positive
correlation between a frequency band’s energy and the target vector. The class mask
value range is −1 ≤ rf ≤ +1, where +1/− 1 indicates perfect association of a frequency
band to the target vector and 0 indicates no association. Positive correlations > 0
are attributed to the actual target class acoustic content, i.e. energies active during
target events. Negative correlations < 0 indicate systematic absence of band energies
during events, which might be caused by other sounds commonly preceding, succeeding
or pausing during target events. This approach is applicable for calculating frequency
ranges of arbitrary sound classes, if the mentioned preconditions are met.

Figure 7.4 shows the class masks for both target classes. These masks were calcu-
lated exclusively on events from the training and validation set. The context length
was Tc=̂1 min, which roughly corresponds to the length of the longest call event in the
database. When applying frequency removal, I set a correlation threshold Cr to remove
frequency bands with rf < Cr. I chose Cr = 0.025 as a rather low threshold to ensure no
significant target class information got lost. I exclusively considered positive correlations
as only those were indicative of the actual target class’ signal content. Negative corre-
lations, particularly > 2500 Hz, were attributed to variations in the background noise
conditions such as periodic insect calls, which I aimed to eliminate in this preprocessing
step.

130

7.2. Materials and methods

r[f
]

f

Figure 7.4: Class masks. Graphs indicate the strength of association between Mel
frequency bands and target classes. rf = 0 indicates no association and rf = +1/ − 1
indicates perfect association. The red line indicates the threshold under which I removed
frequency bands when applying frequency removal.

This procedure retained the lowest 5 frequency bins for drumming (range 0 – 152 Hz)
and 39 frequency bins for vocalization (range 267 – 2097 Hz). Those frequency ranges
correspond to estimations of previous studies [57]. Figure 7.5 visualizes the effect of
frequency removal.

7.2.3.2 Spectral subtraction

Spectral subtraction removes background noise by subtracting a noise profile from sig-
nals. If the noise profile is assumed invariant across time/recordings, the profile is
commonly estimated by averaging each frequency bin across all time steps inside a
background noise region [186]. However, I observed that noise conditions vary strongly
between recordings due to time of day, season and ARU location, but are fairly consis-
tent within recordings. Consequently, I estimated local noise profiles for recordings as
follows:

A spectrogramM (i) was segmented into non-overlapping segments Ṁ (i,j) ∈ RTsub×F

of length Tsub similar to the segmentation step in the processing pipeline. From each
segment I subtracted each frequency bin’s average value:

Ṁ
′(i,j)
t,f = Ṁ

(i,j)
t,f −

1
Tsub

Tsub∑
t=1

Ṁ
(i,j)
t,f (7.3)

If Tsub is sufficiently large compared to the expected target event duration, the aver-
age frequency band energy is dominated by the noise profile rather than the target class
profile. Denoised spectrogram segments were then concatenated to reconstruct the input
spectrogram progression. This method was similar to the one applied by Mac Aodha

131

7. Study (D): Compensating Class Imbalance for Acoustic Chimpanzee
Detection With Convolutional Recurrent Neural Networks

et al. [98]. I chose Tsub=̂3 min, so that even the maximum expected call duration con-
tains twice as much noise as the target signal. Fig. 7.5 visualizes the effect of spectral
subtraction.

Figure 7.5: Visualization of preprocessing operations for an example vocal-
ization event. Top: Input spectrogram. Middle: Effect of spectral subtraction (see
section 7.2.3.2). Bottom: Effect of frequency removal (see section 7.2.3.1)

7.2.4 Convolutional recurrent neural network

As in study (B) and (C), the network architecture was subjected to a hyperparame-
ter search. However, the search was more restricted than in the preceding studies, as
investigation of the architecture influence was of secondary importance for this study.

Figure 7.6 visualizes the network architecture scheme. The scheme is based on the
CRNN architecture presented in foundations section 2.3.4.4, which was originally pro-
posed by Cakır et al. [22]. A central network property is that the temporal dimension T
remains intact throughout the network, i.e. the temporal alignment between spectrogram
frames and output time steps is maintained.

For further explanations on the layers and components referred to in this section,
please refer to section 2.3 and particularly section 2.3.2.

132

7.2. Materials and methods

7.2.4.1 Architecture scheme

The architecture contains the following stages:

1. The input stage appends an empty channel dimension to the spectrogram in
preparation for the convolutional stage RT×F 7→∈ RT×F×(C=1).

2. The convolutional stage corresponds to the usual pattern of convolutional stages
in CNNs, i.e. alteranting convolutional and pooling layers, as described in founda-
tions section 2.3.4.3 as well as the architecture scheme of study (C) described in
section 6.2.3. However, all strides across the time axis must be 1, i.e. the time axis
must not be downsampled. This ensures that the aforementioned temporal align-
ment between input and output frames is retained. The stage output volume is
∈ RT×Fconv×Cconv , where Fconv is the frequency size remaining after several pooling
operations and Cconv is the number of filter kernels in the last convolutional layer.

3. The frequency aggregation stage aggregates the frequency axis and incorpo-
rates it into the channel dimension through a time-distributed function. This is
analogous to the stage of the architecture scheme in study (B) (see study (B)
section 5.2.3). The output volume is ∈ RT×Cfreqint .

4. The recurrent stage contains a recurrent layer that processes the output of the
frequency aggregation stage sequentially at every time step. The output volume is
RT×Crec .

5. Finally, the output layer consists of a time-distributed FCL RT×Crec 7→ [0, 1]T ,
i.e. a single fully-connected neuron that is applied with the same weights at each
time step.

The central difference between the scheme of Cakır et al. [22] and mine is the defini-
tion of the frequency aggregation stage as a generic stage, while Cakır et al. [22] defined
a single fixed aggregation operation for flattening the frequency axis. This change was
based on the results of study (B) and (C), which both identified the aggregation opera-
tion as an important network choice for increasing performance.

7.2.4.2 Network configuration

The following network parameters were fixed. For the convolutional stage, all convolu-
tional layers used kernel sizes of (5, 5) and strides of (1, 1). Convolutional layers were
always followed by a batch-normalization layer and ReLU activation. Pooling layers
always used max pooling. The recurrent stage contained a single recurrent layer with
gated recurrent units (GRU). All of these parameters were chosen in accordance to the
recommendations of Cakır et al. [22]. I initialized the bias parameter of the output
neuron to the respective training class distribution loge(pos/neg), where pos and neg
are the amount of positive and negative time steps, respectively. This way, networks
start training with appropriate output distributions, which can prevent instability in
the initial training steps, as recommended by Lin et al. [94].

133

7. Study (D): Compensating Class Imbalance for Acoustic Chimpanzee
Detection With Convolutional Recurrent Neural Networks

F
C

C

C

C

conv. layer

conv. layer

integration
operation

recurrent layer

fully-conn. layer

freq. pooling
layer

conv.→ pool →

F'

F''

F

T

T

T

T

T

T

C'

convolutional stage

freq. integration stage

recurrent stage

output stage

Figure 7.6: Convolutional recurrent neural network architecture scheme

The following network parameters were subjected to a parameter search as part of
the experimental setup in this study (see section 7.2.9). The channel size ∈ N is the
number of filters in each convolutional or recurrent layer, i.e. the number of filters/units is
constant across the entire network. The conv. stage depth ∈ N determines the number
of convolutional layers. I chose to search these parameters as they primarily determine
the amount of network weights and consequently the capacity to fit the data [46]. The
pooling size ∈ N determines the pooling size and stride for all pooling layers. The
frequency aggregation operation is the time-distributed operation for aggregation
of the frequency dimension. Finally, recurrent bi-directional ∈ B determined whether
the recurrent layer was used bi-directionally. If yes, half of the units run forward and half
backwards. I searched this parameter as I hypothesized it to be of primary importance
for the network’s capability to precisely locate frames of event activity.

Table 7.2 summarizes the search space. As explained further in section 7.2.9, I
investigated network configuration in combination with the spectrogram denoising stage

134

7.2. Materials and methods

input class vocal drumming

freq. removal no yes no yes
input size T × F 500× 80 500× 39 500× 80 500× 5
spectrl. subtr. {no, yes} {no, yes} {no, yes} {no, yes}

channel size {32, 64, 96} ← ← ←
conv. stage depth {2, 3, 4} ← ← {1, 2}
pool size & stride {2, 3, 4, 5} ← ← {2, 3}
freq. integr. op. {flatten, GAP, GMP} ← ← ←
recurrent {no, yes} ← ← ←

Table 7.2: Search space for network configuration and spectrogram denoising.
Table header shows input class, the top half shows denoising setting, and the bottom half
shows the search space for network configuration parameters. The symbol ← indicates
that a search space corresponds to the respective left cell.

setting. All search spaces were equal regardless of input class and denoising setting,
except for drumming when frequency removal was applied, as this removed 93 % of the
input frequency axis size.

7.2.5 Loss

The choice of loss function is among the primary algorithm-level methods for mitigating
class imbalance in neural networks. There exists a multitude of loss variations aimed at
compensating class imbalance. Among these, I chose to evaluate the ones that currently
are most popular in classification [72]:

• Standard BCE as defined in the foundations section, Eq. 2.37. This is the
standard loss for binary classification problems [46, chapter 6] and was also used
by Cakır et al. [22].

• Weighted BCE, as defined in the foundations section, Eq. 2.38. Classes are
associated with fixed weights according to their relative amount. This is one of
the simplest and most prevalent modifications to standard BCE [72, 94, 177].

• Focal loss (FL) was recently proposed by Lin et al. [94] as a modification to
BCE for visual object detection. Since then, it has gained wide popularity [72]. It
down-weights the loss of well-classified examples irregardless of the class through
w0 = (p̂)γ and w1 = (1− p̂)γ , where w0 and w1 are weights in equation 2.38. The
hyperparameter γ determines the amount of down-weighting. I chose the default
value γ = 2 according to study [94].

• Weighted FL combines FL with class weights as previously described.

135

7. Study (D): Compensating Class Imbalance for Acoustic Chimpanzee
Detection With Convolutional Recurrent Neural Networks

stage component default search space

training loss BCE {weighted BCE, FL, weighted FL}

resampling
oversampling dupl. amount 2 {0, 2, 4, 8, 16}
undersampling disc. percentage 75% {0%, 50% 75%, 90%, 95%}

Table 7.3: Search space for loss and resampling.

7.2.6 Resampling

Resampling is the most prevalent data-level technique for mitigating relative class im-
balance. Resampling seeks to rebalance the distribution between class examples by
undersampling, i.e. discarding examples from the majority class, and oversampling, i.e.
duplicating examples from the majority class. Both techniques have been successfully
applied for deep learning based systems in imbalanced settings [72]. Among the set
of available resampling techniques, I chose to experiment with the most prevalent and
straight-forward implementations: random over and undersampling.

I implemented resampling as follows. After the segmentation step, each ARU record-
ing was represented as a list of spectrograms Ṁ (i,s) and target vectors ẏ(i,s) where
i is the recording and s is the segment index. I separated each recording’s segment
list into disjoint subsets, those containing negative segments, i.e. segments with ex-
clusively background time steps Neg(i) = {M (i,s)| max(y(i,s)) = 0}s, and those con-
taining positive segments, i.e. segments with at least one time step with a target call
Pos(i) = {M (i,s)| max(y(i,s)) = 1}s.

The strength of undersampling is determined through a parameter U ∈ [0, 1] that in-
dicates the percentage of discarded examples from Neg(i). The strength of oversampling
is determined through a parameter O ∈ N that indicates the number of duplications of
all examples in Pos(i), e.g. O = 1 means that each positive example is duplicated once.
Undersampling and oversampling was performed for each input signal (i) separately.
This ensured that the resulting total set of background examples displayed a certain
degree of diversity even for higher discarding percentages, as noise had greater variance
between than within signals.

Table 7.3 shows the default settings and search space for the resampling stage. As
shown, the default setting applies some amount of over- and undersampling, while not
completely balancing distributions. The reasons were (1) decreasing training time for the
initial experiments by reducing the data set size, (2) ensuring that the extreme imbalance
in the training set does not prevent training convergence [72], and (3) to imitate the
default setting commonly used in animal call detection systems, which usually start
with already undersampled databases [17, 18, 120].

136

7.2. Materials and methods

7.2.7 Training setup

The optimizer was Adam with standard parameters [78] and early-stopping based on
the validation set loss with a patience of 20 epochs. Training examples were shuffled
between each epoch, the batch size was 64. I implemented networks and training with
tensorflow v.2.3.1 (see foundations section 2.3.3 for these terms).

7.2.8 Evaluation setup and performance metrics

This study used a fixed training-validation-testing split according to Tab. 7.1. The
specific usage of the total and reduced test set depended on the experimental setup
described in section 7.2.9.

I repeated each network training and evaluation 5 times and averaged performance
results to reduce performance variability due to random model initializations and data
set shuffling.

As evaluation metrics I chose (1) average precision (average precision) (AP), as
described in foundations section 2.2.4.5 , and (2) F1 score, as described in foundation
section 2.23. Both metrics are recommended for the evaluation of imbalanced class
distributions [18, 34]. Metrics were implemented with scikit-learn v.0.23

I chose the segment based approach as the evaluation method, i.e. metrics were based
on comparing fixed-length time intervals as evaluation instances [105]. The temporal
resolutions were as follows:

• Frame-wise resolution: Evaluation segments corresponded directly to spectro-
gram frame indications p̂ or ŷ and y. Consequently, the evaluation segment length
was 20 ms. This resolution measures the system capacity for precise localization of
events. It implicitly weighs target events according to the amount of time frames,
i.e. longer events influence metric scores more than short events. This resolution
was noted through the subscript APfrm and F1frm.

• 5 second resolution: Ground truth and prediction vectors were down-sampled
to 5 s intervals as evaluation instances. The down-sampling was performed through
max pooling in non-overlapping segments of 5 s length. This resolution measures
the system capacity for coarse localization of events. It also compensates the
effect of event importance being weighted by length, as all events with length < 5 s
contribute the same amount of evaluation segments. However, it also over-penalizes
short false-positive-peaks. This resolution was noted through the AP5 and F15.

• Averaged resolution: The average of both resolutions, e.g. F1avg = (F1frm +
F15)/2

I used APavg as the primary evaluation metric for the following reasons: (1) It is
independent of a binarization threshold, which imposes another hyperparameter that
might require tuning. (2) End users for this application prefer unbinarized predictions
as being more informative and (3) It summarizes the system capacity for precise and
coarse event localization.

137

7. Study (D): Compensating Class Imbalance for Acoustic Chimpanzee
Detection With Convolutional Recurrent Neural Networks

7.2.9 Experimental Setup

The central goal of the experimentation was to evaluate the influence of pipeline stages
for mitigating class imbalance. Tables 7.2 and 7.3 summarize the stage’s search spaces
and default settings. However, the search space was too large to exhaustively evaluate
through a grid search (see foundations section 2.2.2.3). Therefore, I split the experiment
into two rounds to investigate local combinations of stages exhaustively.

1. Round: Optimization of network architecture + spectrogram denoising:
For each setting of the denoising stage (no preprocessing / freq. removal / spec.
sub. / freq. removal + spec. sub.) I performed a full architecture grid search
according to the search space shown in Tab. 7.2. The goal was to identify the
optimal combination of denoising setting and network architecture configuration.
As this round performed hyperparameter selection, performance was measured on
the validation set. Resampling and loss stages used their default values as shown
in Tab. 7.3. The reason for optimizing these components first were as follows: (a)
The network architecture is the central and only obligatory part of the pipeline and
thus of primary importance for optimization. (b) I hypothesized interaction effects
between denoising and network architecture parametrization, since the denoising
setting altered the dimensionality and nature of the input features.

2. Round: Optimization of loss type + resampling: For each loss variant, I
investigated each possible combination of over & undersampling according to Tab.
7.3. Network architecture and spectrogram denoising were fixed to the optimal
configuration found in round 1. I investigated these stages in combination, since I
suspected interaction effects, e.g. loss variants specialized in balancing stages might
prefer less oversampling. For this round I used the reduced test set for evaluation,
as it more accurately mirrored the real class distribution than the validation set.

Experiments were performed separately for each class.

7.3 Results
The structure of the results section follows the structure outlined in section 7.2.9. Section
7.3.1 states the analysis on the first optimization round, the architecture and spectrogram
denoising. Section 7.3.2 states the analysis on the second optimization round, resampling
and loss. Section 7.3.3 states the final performance evaluation.

7.3.1 Optimization of network architecture & spectrogram denoising

Figure 7.7 shows the validation set performances achieved by networks in the architecture
grid search, grouped by denoising operations.

To statistically assess the influence of the investigated parameters, I constructed
regression trees (see foundations section 2.2.5.2) analogous to the analysis approach of
study (B) (see study (B) section 5.3). In this study I used conditional inferences trees

138

7.3. Results

Figure 7.7: Performances of network configurations, grouped by denoising
operations. The x-axis indicates spectrogram denoising operations, the y-axis indicates
validation performance. Performance is indicated in range [0, 1], e.g. 0.5 =̂ 50 % AP .
Each data point presents the performance of a network configuration produced in the
architecture grid search, averaged over 5 runs.

(c-trees). C-trees are regression trees, where the splitting criterion is the statistical
significance (p-value), as opposed to the R2-value used by the trees of study (B). At
each node, the tree chose the split criterion with the highest p-value between subgroups.
This has the advantage of stating statistical association more directly.

Figure 7.10 visualizes the resulting regression trees. The target variable was the
validation performance APavg and predictors were the denoising and architectural hy-
perparameters. The p-value-cutoff was 0.001 with Bonferroni-correction to limit trees to
the most essential effects. C-trees were implemented with R-package party v 1.4-5
[64].

I highlight the following observations based on these visualizations:

1. Detection performance was drastically higher for drumming than for vocalization,
regardless of network architecture and denoising setting (drumming APavg range:
55 – 95 %, vocalization: 3 – 50 %). Drumming performances reached up to almost
perfect scores, while the worst drumming performance was still higher than the
best vocalization performance.

2. AP5 values were generally higher than APfrm values for both target classes. This
means that networks were better at detecting rough localization of target events
than frame-precise localization (see Fig. 7.7).

3. Both spectrogram denoising operations increased performance APavg on average
(i.e. over all network configurations constructed in the grid search). Using no
denoising operation yielded significantly (p < 0.0001) lower performance than using

139

7. Study (D): Compensating Class Imbalance for Acoustic Chimpanzee
Detection With Convolutional Recurrent Neural Networks

either or both operations in combination. Using both operations simultaneously
yielded a significantly higher (p < 0.0001) performance than using either or none.
The performance difference between using either operation individually was not
significant (p > 0.01).

4. Both spectrogram denoising operations increased performance regarding the max-
imum APavg reached by a model constructed in the architecture grid search. The
order was no preprocessing 7→ freq. rem. 7→ spec. sub. 7→ freq. rem. + spec. sub.
for both classes.

5. The usage of a bi-directional recurrent layer was the most important network archi-
tecture property, i.e. it increased performance for both classes with most denoising
operations. For vocalization, they only increased APfrm and not AP5, i.e. they
only increased the capability for precise localization of target events while rough
allocation remained the same. The two clusters in Fig. 7.7 for drumming with
spec. sub. + freq. rem. are explained through bi-directional layers.

6. The influence of network architecture choices decreased when applying aggregation
operations. This is evidenced by the fact that both c-trees (Fig. 7.10) have the
largest depths in the paths without denoising operations. The network properties
with the most influence were the depth and the choice of frequency aggregation op-
eration. However, which depth and aggregation operation optimized performance
was dependent upon the denoising setting. On average, performance increased
with depth and GAP for frequency aggregation.

Table 7.4 shows architectures with the highest validation performance APavg per
denoising setting and their test set performances. I highlight the following observations:

1. Test performances dropped drastically compared to the validation set. This is
largely due to the test set containing far more negative examples than the validation
set (see Tab. 7.1).

2. While frequency removal and spectral subtraction performed similarly on the val-
idation set, frequency removal outperformed spectral subtraction on the test set.
Combining both operations yielded the highest test performance for drumming
and performed on par with using frequency removal alone for vocalization.

3. For drumming, the importance of denoising functions increased on the test set.
The performance difference between using no and both operations was 5 % on the
validation set, but 18 % on the test set. For vocalization, denoising importance
decreased on the test set. The performance difference between using none and
both was 28 % on the validation set, but only 8 % on the test set.

7.3.2 Optimization of loss variant + resampling

I used the setting with the highest validation performance APavg from optimization
round 1 for the experiments on loss and resampling in this second optimization round,
i.e. the underlined models in Tab. 7.4.

140

7.3. Results

Figure 7.8 shows the results of the experiments on the loss variant and resampling,
measured on the reduced test set as APavg. Additionally, I calculated the total ratio of
positive to negative segments resulting from the over / undersampling settings (positive
segment = segment with at least one positive frame, see section 7.2.6). Figure 7.9 shows
the corresponding c-tree analysis analogous to the one of section 7.3.1 (target: reduced
test set APavg, predictors: loss variant and resampling parameters + pos/neg ratio).

drumming

vocalization

Figure 7.8: Influence of resampling grouped by loss functions. Upper row: drum-
ming, lower row: vocalization. The x-axes indicate the the ratio of positive to negative
segments. Oversampling is shown implicitly, where 5 data points per undersampling
setting correspond to oversampling duplication amounts {0, 2, 4, 8, 16}. Performance is
indicated in range [0, 1], e.g. 0.5 =̂ 50 % AP .

Loss and resampling had greater influence on drumming than vocalization, i.e. perfor-
mance range was 20 % – 50 % APavg for drumming and 5 % – 9 % APavg for vocalization.
For drumming I highlight the following observations:

1. Both unweighted loss functions reached higher performances than weighted func-
tions. The global effect of weighted vs. unweighted functions was significant
(p < 0.001). The global difference between unweighted BCE and FL was not
significant. However, standard BCE had significantly higher performance than FL
(p < 0.01) when undersampling ≤ 0.5.

2. Performance decreased globally with increased undersampling.
3. For unweighted loss functions there was a significant global association for increased

performance with a decreased ratio of positive/negative segments (p < 0.001). This
also means that performance decreased with increased oversampling.

141

7. Study (D): Compensating Class Imbalance for Acoustic Chimpanzee
Detection With Convolutional Recurrent Neural Networks

(drumming) (vocalization)

Figure 7.9: Conditional inference trees for loss type and resampling. Perfor-
mance is indicated in range [0, 1], e.g. 0.5 =̂ 50 % AP .

4. The highest performance 49 % APavg was reached with BCE using the “raw” train-
ing database without any resampling.

For vocalization, the only significant influence was standard BCE performing better
than the other loss functions, although the influence was still low in absolute terms.
Resampling had no systematic influence. The highest value APavg = 9 % was reached
with no oversampling and undersampling of 0.75.

7.3.3 Final performance evaluation

Table 7.5 shows the final performance evaluation on the complete test set for the best
hyperparameter settings found in this study. The denoising settings and network archi-
tecture setting correspond to the settings underlined in Tab. 7.4. The loss type and
resampling correspond to the settings with the highest performance found on the re-
duced test set (see Fig. 7.8). APavg values dropped by approximately 60 % from the
reduced to the complete test set. This is due to the sevenfold increase of negative exam-
ples compared to the complete test set, increasing the number of possible false positive
predictions.

The baseline performance corresponds to the performance achieved by Heinicke et al.
[57]. Their F1 values were computed on event-based metrics with varying event lengths
based on the segmentation algorithm in their study, i.e. they are not directly comparable
to these segment-based metrics. When comparing the baseline values to F1avg-values,
my performances were an improvement, increasing baseline performance. For drumming
the increase was 30 % F1, which is a 7-fold increase. For vocalization, the increase was
5 % F1, which is a 25-fold increase.

142

7.3. Results

(drumming)

(vocalization)

av
g.
pr
ec
is
io
n

av
g.
pr
ec
is
io
n

Figure 7.10: Conditional inference trees for optimization of network archi-
tecture + denoising. Nodes show hyperparameters with the p-value resulting from
splitting the feature into groups indicated by the branches. Leafs show the performance
distributions.

143

7. Study (D): Compensating Class Imbalance for Acoustic Chimpanzee
Detection With Convolutional Recurrent Neural Networks

class
denoising

setting
architecturalhyperparam

eters
valperform

ance
[%

]
com

plete
test

perform
ance

[%
]

freq.
rem

.
spec.
subtr.

conv.
stage

depth

pool-
ing
size

chan-
nel
size

freq.
int.

bi-
direct.

A
P

frm
A
P

5sec
A
P

avg
A
P

frm
A
P

5sec
A
P

avg

drum
.

False
False

4
2

96
G
A
P

True
79.1

90.1
84.6

02.5
05.9

04.2

True
False

2
2

32
G
M
P

True
79.4

92.8
86.1

08.4
21.4

14.9
False

True
4

2
96

G
A
P

True
80.8

93.9
87.3

04.4
07.9

06.1
True

True
2

2
96

G
A
P

True
83.9

95.7
89.8

16.2
29.4

22.8

voc.

False
False

3
3

64
G
A
P

True
17.1

34
25.6

0.8
01.3

01
True

False
2

3
96

G
A
P

True
28.3

49.8
39

01.5
0.2

01.8
False

True
3

3
32

G
M
P

True
32.5

51.1
41.8

01.1
01.4

01.3
True

True
2

4
96

G
A
P

True
38.2

48.8
43.5

01.6
02

01.8

Table
7.4:

N
etw

ork
architectures

w
ith

highest
validation

perform
ance

per
denoising

setting.
T
he

underlined
m
odels

w
ere

selected
for

subsequentexperim
ents

regarding
loss

functions
and

resam
pling.

C
om

plete
testperform

ance
m
eans

that
the

com
plete

test
set

w
as

used
for

testing
(and

not
the

reduced
test

set,
see

Tab.
7.1).

B
old

num
bers

highlight
the

highest
perform

ance
reached

for
each

class.

144

7.3. Results

class loss resampling pos/neg ratio
train set complete test set performance [%]

under-
samp.

over-
samp. frm seg APfrm AP5 APavg F 1frm F 15 F 1avg

baseline
F 1 [57]

drum. cross entr. 0 0 0.002 0.012 30.8 38.5 34.7 34 32.6 33.3 4.6
voc. cross entr. 0.75 0 0.011 0.034 01.8 02.5 02.1 5 5.3 5.1 0.2

Table 7.5: Final performance evaluation.

145

7. Study (D): Compensating Class Imbalance for Acoustic Chimpanzee
Detection With Convolutional Recurrent Neural Networks

7.4 Discussion
The F1 scores of 33 % for drumming and 5 % for vocalization might seem rather low in
absolute terms. However, one has to take into account that even for humans the problem
is exceptionally difficult. In addition to the rarity of the target calls, they are also very
faint and subtle. This issue requires extensive training by human listeners to label calls
reliably. Hence, although my results leave room for further improvement, they represent
an improvement compared to previous methods.

The detection performance for chimpanzee drumming was drastically higher than
for vocalization, with and without denoising/resampling. The same effect occurred in
Heinicke’s [57] method, although absolute values were lower. I hypothesize that the
following factors contribute to the difficulty of detecting chimpanzee vocalizations: (1)
Vocalizations are more complex with greater intra-class variability than drumming, as
they encompass multiple call types with respect to pant hoots and screams. In compar-
ison, drumming has a more “fixed” and stereotypical pattern. (2) The frequency bands
for chimpanzee vocalization are also occupied by calls of other primate species, which
are acoustically similar. However, drumming is the only animal call occupying such low
frequency bands in my data set. In my experience, human listeners also have greater dif-
ficulty in identifying chimpanzee vocalizations, particularly because they confuse them
for other animal calls. Thus, I reason that the vocalization class may have needed more
training examples to be learned effectively by the network, given the greater difficulty
of the task.

Both denoising operations, spectral subtraction and frequency removal, increased
performance significantly, particularly for drumming’s test set performance. This find-
ing is in accordance with other studies on animal call detection that applied similar
operations with success [61, 98, 186]. The magnitude of increase in performance by
frequency removal was particularly surprising. Theoretically, networks should learn to
ignore irrelevant frequency bands by themselves. I give two possible explanations for this:
(1) Positive class examples were only present for few recordings. Possibly, this led the
network to infer a false association between noise conditions and target call occurrence.
Removing uncorrelated frequencies reduced the features that could be used for such false
associations. (2) Possibly, the test set contained background noise conditions that were
drastically different from the ones in the training set so that they occupy regions far
away from the learned manifold and cause faulty forward-passes in the network, similar
to adversarial examples [160]. I highlight that frequency removal carries the additional
advantage of decreasing computation time.

I found that taking relative class balance did not increase performance. Drumming
reached the highest performances using standard BCE loss without any data set resam-
pling, i.e. using the raw, heavily imbalanced training data. Vocalization also performed
best with vanilla BCE , but was insensitive to resampling. I draw the conclusion that
performance-wise, combating relative class imbalance is unnecessary or even harmful.
For drumming, undersampling decreased the performance regardless of the loss func-
tion, i.e. displaying diversity of the background class is important even if examples might

146

7.4. Discussion

seem redundant for humans. Still, undersampling can reduce training time with little
loss in performance if used only slightly. Drumming reached essentially the same per-
formance using 0 % and 50 % of the training data and began dropping when only using
75 %. This finding is in contrast to other studies [53, 72, 94, 183], which usually report
positive effects for balancing methods. I give the following possible explanations for this
discrepancy: (1) Studies reporting positive effects of resampling commonly worked with
imbalanced training sets, but balanced test sets [20, 59]. Consequently, the positive effect
of resampling could be attributed to approximating class distributions between training
and test set and not to compensating the imbalance within the training set. (2) Stud-
ies reporting positive effects of class weights in classification settings usually performed
multi-class single-label classification with softmax activation as in multinominal logistic
regression [6, 77, 181]. However, I used BCE for single-class prediction, which might
be inherently more robust to class imbalances. (3) When Lin et al. [94] reported FL to
outperform BCE, they performed multi-label detection for 91 classes with one network
for the COCO data set. As the influence of the background class multiplicates across all
positive classes in multi-label detection, loss balancing might become beneficial in such
multi-label settings.

In summary, my results show that supporting the network to learn decoupling target
class characteristics from background class characteristics is of primary importance for
increasing performance. Spectrogram denoising explicitly supports this decoupling by
discarding information from signals that are assumed to only be associated with back-
ground noise based on prior knowledge. Including more examples from the background
class (no undersampling) implicitly supports this decoupling by displaying a greater
amount of background noise variability to the network.

147

CHAPTER 8
Conclusion and Collected

Discussion

8.1 Conclusion
The goal of this thesis was to advance the knowledge in automatic recognition of non-
verbal acoustic communication through neural networks. The thesis focused specifically
on two types of such communications, i.e. infant vocalizations and chimpanzee long-
distance calls.

Computational systems for automatic recognition of sounds in general, and specifi-
cally for acoustic communication, used to be based on conventional ML approaches. In
recent years, neural network based deep learning approaches emerged and demonstrated
significant performance gains over conventional approaches. However, there has been
little research on how to apply deep learning to non-verbal acoustic communication.
There are various challenges: Particularly, deep learning usually requires large data sets,
while data sets in non-verbal acoustic communication are usually small. Consequently,
recognition system components require high degrees of optimization to make effective
use of the available data.

The thesis comprised four studies that investigated aspects of the question: How can
we apply deep learning more effectively to automatic recognition of non-verbal acoustic
communication events?

The goal of study (A) was to investigate the assessment of infant vocalizations by
laypersons to develop an infant vocalization classification scheme. Results showed that
(1) acoustic classes correlate strongly with affective valence ratings, and (2) laypersons
differentiate relatively few acoustic classes. Based on these findings, I proposed a classi-
fication scheme.

The goal of study (B) was to identify the neural network type with the highest per-
formance for infant vocalization classification among the currently most prevalent ones.

149

8. Conclusion and Collected Discussion

Results showed that networks with convolutional stages reached the highest performance,
i.e. CNNs (with and without fully-connected layers) and CRNNs. As the most impor-
tant architectural choice I identified the choice of the aggregation operation for adapting
volume dimensionality between network stages.

The goal of study (C) was to identify the key architectural properties of computer
vision-like CNNs for automatic infant vocalization classification. Results confirmed the
importance of the aggregation operation for adapting the volume dimensionality after
the convolutional stage. Additionally, I identified the size of the cumulative receptive
field to be a key property.

The goal of study (D) was to identify the most effective methods for combating class
imbalance for automatic detection of chimpanzee calls in long-term monitoring record-
ings. Results showed that spectrogram denoising increased performance the most. How-
ever, methods for manupliting relative class imbalance, such as resampling or weighted
loss functions, decreased performance.

8.2 Collected discussion
Studies (B), (C) and (D) all involved optimization of the neural network architecture
to increase recognition performance, with varying degrees of attention to the subject.
Various findings were consistent across all of these studies:

• Optimization of the network architecture always influenced performance substan-
tially. The “wrong” architecture could not be trained at all, i.e. remained at chance-
level performance. The “right” architecture managed to outperform conventional
ML approaches and set new benchmark performance (if such a comparison was
drawn).

• The most influential architecture choice in all studies was the aggregation opera-
tion to reduce tensor dimensionality between network stages. Consequently, when
performing some form of architecture optimization, I recommend optimizing this
network module first.

• There were always systematic influences of certain network properties on the per-
formance, which were measurable through statistical methods. Consequently, ap-
plying such statistical analysis tools to rapidly identify important properties can
be beneficial, as opposed to pure uninformed search such as random or grid search.

• Interaction effects always occurred in analysis of architectures. Study (C) showed
this most directly, where the optimal cumulative receptive field size depended on
the aggregation layer. Therefore, architecture optimization algorithms must be
designed to account for such interaction effects. I applied regression trees in par-
ticular for this reason, which proved to be successful for accounting for interaction
effects.

However, there were also discrepancies to be found. While the aggregation opera-
tion for reducing tensor dimensionality was highly important in all studies, the exact

150

8.3. Outlook

chosen one to optimize the performance varied. While for study (B), the best frequency
aggregation function was global max pooling, for study (C) it was global average pooling.

The implication is that, while architecture tuning is worthwhile, it must be tuned
according to the task. It seems that there is not the best neural network architecture
for all tasks — not even for closely related tasks in the realm of non-verbal acoustic
communication. If we choose to optimize the network architecture, I recommend to focus
on a few key architectural hyperparameters, namely: (1) The aggregation operation, (2)
the pooling size, and (3) the depth. I highlight that these are fairly simple and straight-
forward network properties, which actually suggest simplifying architectures, as opposed
to making them more complex.

8.3 Outlook
I recommend future research to place increasing importance on further investigation of
the key, essential network properties. As of now, research in deep learning has become
overly focused on increasing complexity of deep learning systems, e.g. through propos-
ing increasingly complex architectures. However, such research fails in identifying the
sources of empirical gains, if increasing complexity is done for the sake of it. An example
of this trend are participant submissions in the DCASE competitions, where all partic-
ipants usually propose unique network architectures with increasingly complex designs,
but little justification for those choices over more pragmatic ones. Lipton and Steinhardt
[95] published the paper Research for practice: Troubling Trends in Machine Learning
Scholarship, which highlighted this very observation in all areas that apply deep learning

However, we might also strive for circumventing optimization of the network archi-
tecture entirely. First, the network architecture is merely one among many modules in
a recognition system pipeline that can be optimized. We might as well operate with an
unoptimized architecture, but optimize the surrounding building blocks, such as the au-
dio representation, data augmentation etc. Second, research in ASR has begun to shift
increasingly to employing pretrained networks for feature extraction. Those networks
were trained on vasts amounts of data with dummy tasks, e.g. classifying youtube sound-
clips. An example for such an network is the L3 network [32]. The features extracted
by the convolutional stages of these networks can be used to train an conventional ML
classifier. In 2020, the DCASE competition allowed the usage of pretrained networks for
the first time and shifted the baseline system accordingly [58]. Although such pretrained
networks might not contain the “optimal” architecture, they are trained on such vasts
amount of data that it offsets such imperfection. Ironically, this approach returns to be
similar to the conventional ML approach, however instead of using hand-crafted feature,
we use features of a pretrained neural network.

I close this thesis with an appell:
Ultimately, systems for automatic recognition of non-verbal acoustic communication

should not be developed for their own sake. The focus should be to facilitate subsequent
analysis goals of practical interest, such as pain assessment in infants or home-range
monitoring of chimpanzees. This requires designing systems that are applicable to real

151

8. Conclusion and Collected Discussion

world scenarios, i.e. long-term monitoring with imperfect acoustic conditions. However,
as of now, the majority of data sets for non-verbal acoustic communication are not
designed with this goal in mind. They mostly contain presegmented and preselected
clips of communication events for monophone classification tasks that simulate perfect
conditions, as in most challenges of the ComParE competition.

Practitioners should communicate their needs regarding computational systems for
supporting their work, and support gathering data sets representative of these real-
world conditions. Communication scientists should develop communication classification
schemes and assessment instruments to systematize the practitioners’ analysis process,
and label large data sets accordingly. Finally, engineers should implement recognition
systems for these real-world scenarios, rather than chasing increasing performance in
benchmark data sets with little real-world value. I hope that my thesis is a small, but
noticeable step in this very direction.

152

Bibliography

[1] Y. Abdulaziz and S. M. S. Ahmad. An accurate infant cry classification system
based on continuos hidden markov model. In 2010 International Symposium on
Information Technology, volume 3, pages 1648–1652. IEEE, 2010.

[2] Y. Abdulaziz and S. M. S. Ahmad. Infant cry recognition system: A compari-
son of system performance based on mel frequency and linear prediction cepstral
coefficients. In Information Retrieval & Knowledge Management,(CAMP), 2010
International Conference on, pages 260–263. IEEE, 2010.

[3] M. O. Ahmed, B. Shahriari, and M. Schmidt. Do we need “harmless” bayesian
optimization and “first-order” bayesian optimization. NIPS BayesOpt, 2016.

[4] O. Akiyama and J. Sato. Multitask learning and semisupervised learning with
noisy data for audio tagging. In Proceedings of the Detection and Classification of
Acoustic Scenes and Events 2019 Workshop (DCASE), 2019.

[5] K. J. Anand, B. J. Stevens, P. J. McGrath, et al. Pain in neonates and infants:
pain research and clinical management series, volume 10. Elsevier Health Sciences,
2007.

[6] R. Anand, K. G. Mehrotra, C. K. Mohan, and S. Ranka. An improved algorithm
for neural network classification of imbalanced training sets. IEEE Transactions
on Neural Networks, 4(6):962–969, 1993.

[7] F. Anders, M. Hlawitschka, and M. Fuchs. Automatisierte Erkennung und
Klassifizierung von Säuglingslauten in Audiosignalen. In 20. Nachwuchswis-
senschaftlerkonferenz - Book of Abstracts, pages 94–97. Hochschule Merseburg,
2020.

[8] F. Anders, M. Hlawitschka, and M. Fuchs. Automatic classification of infant vocal-
ization sequences with convolutional neural networks. Elsevier Speech Communi-
cation, 119:36–45, 2020. https://doi.org/10.1016/j.specom.2020.03.
003.

153

https://doi.org/10.1016/j.specom.2020.03.003
https://doi.org/10.1016/j.specom.2020.03.003

Bibliography

[9] F. Anders, M. Hlawitschka, and M. Fuchs. Comparison of artificial neural net-
work types for infant vocalization classification. IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, 29:54–67, 2020. https://doi.org/10.
1109/TASLP.2020.3037414.

[10] F. Anders, M. Hlawitschka, and M. Fuchs. Investigation of the assessment of infant
vocalizations by laypersons. arXiv preprint, 2021. https://arxiv.org/abs/
2108.09205.

[11] F. Anders, A. K. Kalan, H. S. Kuehl, and M. Fuchs. Compensating class im-
balance for acoustic chimpanzee detection with convolutional recurrent neural
networks. Ecological Informatics, 65, 2021. https://doi.org/10.1016/j.
ecoinf.2021.101423.

[12] A. Anikin, R. Bååth, and T. Persson. Human non-linguistic vocal repertoire: Call
types and their meaning. Journal of nonverbal behavior, 42(1):53–80, 2018.

[13] A. C. Arcadi, D. Robert, and C. Boesch. Buttress drumming by wild chimpanzees:
Temporal patterning, phrase integration into loud calls, and preliminary evidence
for individual distinctiveness. Primates, 39(4):505–518, 1998.

[14] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding.
In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 1027–1035. Society for Industrial and Applied Mathematics, 2007.

[15] R. Barr, M. Kramer, C. Boisjoly, L. McVey-White, and I. Pless. Parental diary
of infant cry and fuss behaviour. Archives of Disease in Childhood, 63(4):380–387,
1988.

[16] R. G. Barr. Crying as a sign, a symptom, and a signal: Clinical, emotional
and developmental aspects of infant and toddler crying. Number 152. Cambridge
University Press, 2000.

[17] C. Bergler, H. Schröter, R. X. Cheng, V. Barth, M. Weber, E. Nöth, H. Hofer,
and A. Maier. Orca-spot: An automatic killer whale sound detection toolkit using
deep learning. Scientific reports, 9(1):1–17, 2019.

[18] J. Bjorck, B. H. Rappazzo, D. Chen, R. Bernstein, P. H. Wrege, and C. P. Gomes.
Automatic detection and compression for passive acoustic monitoring of the african
forest elephant. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 476–484, 2019.

[19] C. Boehm. Methods for isolating chimpanzee vocal communication. In Under-
standing chimpanzees, pages 38–59. Harvard University Press, 2013.

[20] M. Buda, A. Maki, and M. A. Mazurowski. A systematic study of the class im-
balance problem in convolutional neural networks. Neural Networks, 106:249–259,
2018.

154

https://doi.org/10.1109/TASLP.2020.3037414
https://doi.org/10.1109/TASLP.2020.3037414
https://arxiv.org/abs/2108.09205
https://arxiv.org/abs/2108.09205
https://doi.org/10.1016/j.ecoinf.2021.101423
https://doi.org/10.1016/j.ecoinf.2021.101423

Bibliography

[21] E. H. Buder, A. S. Warlaumont, D. K. Oller, B. Peter, and A. MacLeod. An acous-
tic phonetic catalog of prespeech vocalizations from a developmental perspective.
Comprehensive perspectives on child speech development and disorders: Pathways
from linguistic theory to clinical practice. Hauppauge, NY: NOVA, 2013.

[22] E. Cakır, G. Parascandolo, T. Heittola, H. Huttunen, and T. Virtanen. Convolu-
tional recurrent neural networks for polyphonic sound event detection. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 25(6):1291–1303, 2017.

[23] C.-Y. Chang and J.-J. Li. Application of deep learning for recognizing infant
cries. In Consumer Electronics-Taiwan (ICCE-TW), 2016 IEEE International
Conference on, pages 1–2. IEEE, 2016.

[24] C.-Y. Chang, Y.-C. Hsiao, and S.-T. Chen. Application of incremental svm learning
for infant cries recognition. In 2015 18th International Conference on Network-
Based Information Systems, pages 607–610. IEEE, 2015.

[25] C.-Y. Chang, C.-W. Chang, S. Kathiravan, C. Lin, and S.-T. Chen. Dag-svm based
infant cry classification system using sequential forward floating feature selection.
Multidimensional Systems and Signal Processing, 28(3):961–976, 2017.

[26] H. Chen, Z. Liu, Z. Liu, P. Zhang, and Y. Yan. Integrating the data augmenta-
tion scheme with various classifiers for acoustic scene modeling. In Proceedings
of the Detection and Classification of Acoustic Scenes and Events 2019 Workshop
(DCASE), 2019.

[27] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recur-
rent neural networks on sequence modeling. 2014. arXiv preprint arXiv:1412.3555,
2014.

[28] E. Cignacco, R. Mueller, J. P. Hamers, and P. Gessler. Pain assessment in the
neonate using the bernese pain scale for neonates. Early human development, 78
(2):125–131, 2004.

[29] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

[30] R. Cohen and Y. Lavner. Infant cry analysis and detection. In 2012 IEEE 27th
Convention of Electrical and Electronics Engineers in Israel, pages 1–5. IEEE,
2012.

[31] T. Cooijmans, N. Ballas, C. Laurent, Ç. Gülçehre, and A. Courville. Recurrent
batch normalization. arXiv preprint arXiv:1603.09025, 2016.

[32] J. Cramer, H.-H. Wu, J. Salamon, and J. P. Bello. Look, listen, and learn more:
Design choices for deep audio embeddings. In ICASSP 2019-2019 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
3852–3856. IEEE, 2019.

155

Bibliography

[33] C. Cure, T. Aubin, and N. Mathevon. Sex discrimination and mate recognition by
voice in the yelkouan shearwater puffinus yelkouan. Bioacoustics, 20(3):235–249,
2011.

[34] J. Davis and M. Goadrich. The relationship between precision-recall and roc
curves. In Proceedings of the 23rd international conference on Machine learning,
pages 233–240, 2006.

[35] C. Dev. Automatic Detection of Chimpanzee Vocalizations using Convolutional
Neural Networks. PhD thesis, California State University Channel Islands, 2020.

[36] J. Ebbers and R. Haeb-Umbach. Convolutional recurrent neural network and
data augmentation for audio tagging with noisy labels and minimal supervision.
In Proceedings of the Detection and Classification of Acoustic Scenes and Events
2019 Workshop (DCASE), 2019.

[37] T. Etz, H. Reetz, and C. Wegener. A classification model for infant cries with
hearing impairment and unilateral cleft lip and palate. Folia Phoniatrica et Lo-
gopaedica, 64(5):254–261, 2012.

[38] F. Eyben, F. Weninger, F. Gross, and B. Schuller. Recent developments in opens-
mile, the munich open-source multimedia feature extractor. In Proceedings of the
21st ACM international conference on Multimedia, pages 835–838, 2013.

[39] F. Eyben, K. R. Scherer, B. W. Schuller, J. Sundberg, E. André, C. Busso, L. Y.
Devillers, J. Epps, P. Laukka, S. S. Narayanan, et al. The geneva minimalistic
acoustic parameter set (gemaps) for voice research and affective computing. IEEE
transactions on affective computing, 7(2):190–202, 2015.

[40] M. Feurer and F. Hutter. Hyperparameter optimization. In Automated Machine
Learning, pages 3–33. Springer, Cham, 2019.

[41] J. K. Ford. Acoustic behaviour of resident killer whales (orcinus orca) off vancouver
island, british columbia. Canadian Journal of Zoology, 67(3):727–745, 1989.

[42] M. Freitag, S. Amiriparian, S. Pugachevskiy, N. Cummins, and B. Schuller. audeep:
Unsupervised learning of representations from audio with deep recurrent neural
networks. The Journal of Machine Learning Research, 18(1):6340–6344, 2017.

[43] T. Fuhr, H. Reetz, and C. Wegener. Comparison of supervised-learning models for
infant cry classification/vergleich von klassifikationsmodellen zur säuglingsschrei-
analyse. International Journal of Health Professions, 2(1):4–15, 2015.

[44] S. A. Fulop. Speech spectrum analysis. Springer Science & Business Media, 2011.

[45] H. C. Gerhardt, F. Huber, et al. Acoustic communication in insects and anurans:
common problems and diverse solutions. University of Chicago Press, 2002.

156

Bibliography

[46] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[47] C. Gorrostieta, R. Brutti, K. Taylor, A. Shapiro, J. Moran, A. Azarbayejani, and
J. Kane. Attention-based sequence classification for affect detection. In Interspeech
Proceedings, pages 506–510, 2018.

[48] G. Gosztolya, T. Grósz, and L. Tóth. General utterance-level feature extraction
for classifying crying sounds, atypical & self-assessed affect and heart beats. In In-
terspeech Proceedings, pages 531–535, 2018. doi: 10.21437/Interspeech.2018-1076.
URL http://dx.doi.org/10.21437/Interspeech.2018-1076.

[49] J. C. Gower. A general coefficient of similarity and some of its properties. Bio-
metrics, pages 857–871, 1971.

[50] A. Graps. An introduction to wavelets. IEEE computational science and engineer-
ing, 2(2):50–61, 1995.

[51] J. A. Green, P. G. Whitney, and M. Potegal. Screaming, yelling, whining, and
crying: Categorical and intensity differences in vocal expressions of anger and
sadness in children’s tantrums. Emotion, 11(5):1124, 2011.

[52] E. Gustafsson, F. Levréro, D. Reby, and N. Mathevon. Fathers are just as good as
mothers at recognizing the cries of their baby. Nature communications, 4(1):1–6,
2013.

[53] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing. Learning
from class-imbalanced data: Review of methods and applications. Expert Systems
with Applications, 73:220–239, 2017.

[54] K. A. Hallgren. Computing inter-rater reliability for observational data: an
overview and tutorial. Tutorials in quantitative methods for psychology, 8(1):23,
2012.

[55] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[56] K. He, Y. Shen, and W. Zhang. Thuee system for dcase 2019 challenge task 2.
In Proceedings of the Detection and Classification of Acoustic Scenes and Events
2019 Workshop (DCASE), 2018.

[57] S. Heinicke, A. K. Kalan, O. J. Wagner, R. Mundry, H. Lukashevich, and H. S.
Kühl. Assessing the performance of a semi-automated acoustic monitoring system
for primates. Methods in Ecology and Evolution, 6(7):753–763, 2015.

157

http://www.deeplearningbook.org
http://dx.doi.org/10.21437/Interspeech.2018-1076

Bibliography

[58] T. Heittola, A. Mesaros, and T. Virtanen. Acoustic scene classification in dcase
2020 challenge: generalization across devices and low complexity solutions. arXiv
preprint arXiv:2005.14623, 2020.

[59] P. Hensman and D. Masko. The impact of imbalanced training data for convolu-
tional neural networks. Degree Project in Computer Science, KTH Royal Institute
of Technology, 2015.

[60] S. Hershey, S. Chaudhuri, D. P. Ellis, J. F. Gemmeke, A. Jansen, R. C. Moore,
M. Plakal, D. Platt, R. A. Saurous, B. Seybold, et al. CNN architectures for large-
scale audio classification. In 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 131–135. IEEE, 2017.

[61] I. Himawan, M. Towsey, B. Law, and P. Roe. Deep learning techniques for koala
activity detection. In Interspeech Proceedings, pages 2107–2111, 2018.

[62] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[63] S. L. Hopp, M. J. Owren, and C. S. Evans. Animal acoustic communication: sound
analysis and research methods. Springer Science & Business Media, 1998.

[64] T. Hothorn, K. Hornik, and A. Zeileis. ctree: Conditional inference trees. The
comprehensive R archive network, 8, 2015.

[65] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4700–4708, 2017.

[66] J. Huang, H. Lu, P. Lopez Meyer, H. Cordourier, and J. Del Hoyo Ontiveros.
Acoustic scene classification using deep learning-based ensemble averaging. 2019.

[67] M. Huckvale. Neural network architecture that combines temporal and summa-
tive features for infant cry classification in the interspeech 2018 computational
paralinguistics challenge. In Proceedings of the Annual Conference of the Interna-
tional Speech Communication Association, INTERSPEECH 2018, pages 137–141.
International Speech Communication Association (ISCA), 2018.

[68] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In International conference on machine
learning, pages 448–456. PMLR, 2015.

[69] G. James, D. Witten, T. Hastie, and R. Tibshirani. An introduction to statistical
learning, volume 112. Springer, 2013.

[70] I. S. James-Roberts, S. Conroy, and K. Wilsher. Bases for maternal perceptions of
infant crying and colic behaviour. Archives of disease in childhood, 75(5):375–384,
1996.

158

Bibliography

[71] N. Japkowicz. The class imbalance problem: Significance and strategies. In Proc.
of the Int. Conf. on Artificial Intelligence, volume 56. Citeseer, 2000.

[72] J. M. Johnson and T. M. Khoshgoftaar. Survey on deep learning with class im-
balance. Journal of Big Data, 6(1):27, 2019.

[73] J.-w. Jung, H.-S. Heo, H.-j. Shim, and H.-J. Yu. Knowledge distillation with
specialist models in acoustic scene classification. In Proceedings of the Detection
and Classification of Acoustic Scenes and Events 2019 Workshop (DCASE), 2019.

[74] A. K. Kalan, R. Mundry, O. J. Wagner, S. Heinicke, C. Boesch, and H. S. Kühl.
Towards the automated detection and occupancy estimation of primates using
passive acoustic monitoring. Ecological Indicators, 54:217–226, 2015.

[75] A. K. Kalan, A. K. Piel, R. Mundry, R. M. Wittig, C. Boesch, and H. S. Kühl.
Passive acoustic monitoring reveals group ranging and territory use: a case study
of wild chimpanzees (pan troglodytes). Frontiers in zoology, 13(1):1–11, 2016.

[76] A. Kershenbaum, D. T. Blumstein, M. A. Roch, Ç. Akçay, G. Backus, M. A. Bee,
K. Bohn, Y. Cao, G. Carter, C. Cäsar, et al. Acoustic sequences in non-human
animals: a tutorial review and prospectus. Biological Reviews, 91(1):13–52, 2016.

[77] G. King and L. Zeng. Logistic regression in rare events data. Political analysis, 9
(2):137–163, 2001.

[78] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[79] J. Koehler, M. Jansen, A. Rodriguez, P. J. Kok, L. F. Toledo, M. Emmrich,
F. Glaw, C. F. Haddad, M.-O. Roedel, and M. Vences. The use of bioacous-
tics in anuran taxonomy: theory, terminology, methods and recommendations for
best practice. Zootaxa, 4251(1):1–124, 2017.

[80] Q. Kong, T. Iqbal, Y. Xu, W. Wang, and M. D. Plumbley. Dcase 2018 chal-
lenge surrey cross-task convolutional neural network baseline. In Proceedings of
the Detection and Classification of Acoustic Scenes and Events 2019 Workshop
(DCASE), 2018.

[81] T. K. Koo and M. Y. Li. A guideline of selecting and reporting intraclass correlation
coefficients for reliability research. Journal of chiropractic medicine, 15(2):155–163,
2016.

[82] R. Kotikalapudi and contributors. keras-vis. https://github.com/
raghakot/keras-vis, 2017.

[83] K. Koutini, H. Eghbal-Zadeh, M. Dorfer, and G. Widmer. The receptive field as a
regularizer in deep convolutional neural networks for acoustic scene classification.
In 2019 27th European signal processing conference (EUSIPCO), pages 1–5. IEEE,
2019.

159

https://github.com/raghakot/keras-vis
https://github.com/raghakot/keras-vis

Bibliography

[84] K. Koutini, H. Eghbal-zadeh, and G. Widmer. Cp-jku submissions to dcase 2019:
Acoustic scene classification and audio tagging with receptive-field-regularized
cnns. In Proceedings of the Detection and Classification of Acoustic Scenes and
Events 2019 Workshop (DCASE), 2019.

[85] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems,
25:1097–1105, 2012.

[86] M. Lasseck. Acoustic bird detection with deep convolutional neural networks. In
Proceedings of the Detection and Classification of Acoustic Scenes and Events 2018
Workshop (DCASE), 2018.

[87] Y. Lavner, R. Cohen, D. Ruinskiy, and H. IJzerman. Baby cry detection in do-
mestic environment using deep learning. In 2016 IEEE international conference
on the science of electrical engineering (ICSEE), pages 1–5. IEEE, 2016.

[88] J. Lawrence, D. Alcock, P. McGrath, J. Kay, S. B. MacMurray, and C. Dulberg.
The development of a tool to assess neonatal pain. Neonatal network: NN, 12(6):
59–66, 1993.

[89] H. Le and A. Borji. What are the receptive, effective receptive, and projective fields
of neurons in convolutional neural networks? arXiv preprint arXiv:1705.07049,
2017.

[90] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[91] J. L. Leevy, T. M. Khoshgoftaar, R. A. Bauder, and N. Seliya. A survey on
addressing high-class imbalance in big data. Journal of Big Data, 5(1):42, 2018.

[92] H. Lim, J. Park, and Y. Han. Rare sound event detection using 1d convolutional
recurrent neural networks. In Proceedings of the Detection and Classification of
Acoustic Scenes and Events Workshop (DCASE), pages 80–84, 2017.

[93] H.-C. Lin and J. A. Green. Infants’ expressive behaviors to mothers and unfamiliar
partners during face-to-face interactions from 4 to 10 months. Infant Behavior and
Development, 32(3):275–285, 2009.

[94] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object
detection. In Proceedings of the IEEE international conference on computer vision,
pages 2980–2988, 2017.

[95] Z. C. Lipton and J. Steinhardt. Research for practice: troubling trends in machine-
learning scholarship. Communications of the ACM, 62(6):45–53, 2019.

160

Bibliography

[96] D. Luo, Y. Zou, and D. Huang. Investigation on joint representation learning for
robust feature extraction in speech emotion recognition. In Interspeech Proceedings,
pages 152–156, 2018.

[97] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neu-
ral network acoustic models. In Proceedings of the International Conference on
Machine Learning, volume 30, page 3, 2013.

[98] O. Mac Aodha, R. Gibb, K. E. Barlow, E. Browning, M. Firman, R. Freeman,
B. Harder, L. Kinsey, G. R. Mead, S. E. Newson, et al. Bat detective - deep
learning tools for bat acoustic signal detection. PLoS computational biology, 14
(3):e1005995, 2018.

[99] A. Majid, J. S. Boster, and M. Bowerman. The cross-linguistic categorization of
everyday events: A study of cutting and breaking. Cognition, 109(2):235–250,
2008.

[100] M. B. Manser. The acoustic structure of suricates’ alarm calls varies with predator
type and the level of response urgency. Proceedings of the Royal Society of London.
Series B: Biological Sciences, 268(1483):2315–2324, 2001.

[101] P. B. Marschik, F. B. Pokorny, R. Peharz, D. Zhang, J. O’Muircheartaigh, H. Roey-
ers, S. Bölte, A. J. Spittle, B. Urlesberger, B. Schuller, et al. A novel way to mea-
sure and predict development: a heuristic approach to facilitate the early detection
of neurodevelopmental disorders. Current neurology and neuroscience reports, 17
(5):43, 2017.

[102] N. Mathevon and T. Aubin. Sound-based species-specific recognition in the black-
cap sylvia atricapilla shows high tolerance to signal modifications. Behaviour, 138
(4):511–524, 2001.

[103] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg, and O. Ni-
eto. librosa: Audio and music signal analysis in python. In Proceedings of the 14th
python in science conference, pages 18–25, 2015.

[104] P. J. McGrath, B. J. Stevens, S. M. Walker, and W. T. Zempsky. Oxford textbook
of paediatric pain. Oxford University Press, 2013.

[105] A. Mesaros, T. Heittola, and T. Virtanen. Metrics for polyphonic sound event
detection. Applied Sciences, 6(6):162, 2016.

[106] A. Mesaros, T. Heittola, and T. Virtanen. Tut database for acoustic scene clas-
sification and sound event detection. In 2016 24th European Signal Processing
Conference (EUSIPCO), pages 1128–1132. IEEE, 2016.

161

Bibliography

[107] A. Mesaros, T. Heittola, E. Benetos, P. Foster, M. Lagrange, T. Virtanen, and
M. D. Plumbley. Detection and classification of acoustic scenes and events: Out-
come of the dcase 2016 challenge. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 26(2):379–393, 2017.

[108] A. Mesaros, T. Heittola, A. Diment, B. Elizalde, A. Shah, E. Vincent, B. Raj, and
T. Virtanen. DCASE 2017 challenge setup: Tasks, datasets and baseline system.
In DCASE 2017-Workshop on Detection and Classification of Acoustic Scenes and
Events, 2017.

[109] A. Mesaros, T. Heittola, and T. Virtanen. Acoustic scene classification: an
overview of DCASE 2017 challenge entries. In 2018 16th International Workshop
on Acoustic Signal Enhancement (IWAENC), pages 411–415. IEEE, 2018.

[110] A. Mesaros, T. Heittola, and T. Virtanen. A multi-device dataset for urban acous-
tic scene classification. arXiv preprint arXiv:1807.09840, 2018.

[111] A. Mesaros, A. Diment, B. Elizalde, T. Heittola, E. Vincent, B. Raj, and T. Vir-
tanen. Sound event detection in the DCASE 2017 challenge. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, 27(6):992–1006, 2019.

[112] Y. Mima and K. Arakawa. Cause estimation of younger babies’ cries from the
frequency analyses of the voice-classification of hunger, sleepiness, and discomfort.
In 2006 International Symposium on Intelligent Signal Processing and Communi-
cations, pages 29–32. IEEE, 2006.

[113] S. Mirsamadi, E. Barsoum, and C. Zhang. Automatic speech emotion recognition
using recurrent neural networks with local attention. In 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2227–
2231. IEEE, 2017.

[114] T. M. Mitchell et al. Machine learning. McGraw-hill New York, 1997.

[115] G. Naithani, J. Kivinummi, T. Virtanen, O. Tammela, M. J. Peltola, and J. M.
Leppänen. Automatic segmentation of infant cry signals using hidden markov
models. EURASIP Journal on Audio, Speech, and Music Processing, 2018(1):
1–14, 2018.

[116] S. Nathani and D. K. Oller. Beyond ba-ba and gu-gu: Challenges and strate-
gies in coding infant vocalizations. Behavior Research Methods, Instruments, &
Computers, 33(3):321–330, 2001.

[117] S. Nathani, D. J. Ertmer, and R. E. Stark. Assessing vocal development in infants
and toddlers. Clinical linguistics & phonetics, 20(5):351–369, 2006.

[118] H. Notman and D. Rendall. Contextual variation in chimpanzee pant hoots and
its implications for referential communication. Animal behaviour, 70(1):177–190,
2005.

162

Bibliography

[119] S. Ntalampiras. Audio pattern recognition of baby crying sound events. Journal
of the Audio Engineering Society, 63(5):358–369, 2015.

[120] T. Oikarinen, K. Srinivasan, O. Meisner, J. B. Hyman, S. Parmar, A. Fanucci-
Kiss, R. Desimone, R. Landman, and G. Feng. Deep convolutional network for
animal sound classification and source attribution using dual audio recordings. The
Journal of the Acoustical Society of America, 145(2):654–662, 2019.

[121] D. K. Oller. The emergence of the speech capacity. Psychology Press, 2000.

[122] D. K. Oller, R. E. Eilers, A. R. Neal, and H. K. Schwartz. Precursors to speech in
infancy: The prediction of speech and language disorders. Journal of communica-
tion disorders, 32(4):223–245, 1999.

[123] D. K. Oller, P. Niyogi, S. Gray, J. Richards, J. Gilkerson, D. Xu, U. Yapanel,
and S. Warren. Automated vocal analysis of naturalistic recordings from children
with autism, language delay, and typical development. Proceedings of the National
Academy of Sciences, 107(30):13354–13359, 2010.

[124] D. K. Oller, E. H. Buder, H. L. Ramsdell, A. S. Warlaumont, L. Chorna, and
R. Bakeman. Functional flexibility of infant vocalization and the emergence of
language. Proceedings of the National Academy of Sciences, 110(16):6318–6323,
2013.

[125] A. Oren, A. Matzliach, R. Cohen, and H. Friedman. Cry-based detection of de-
velopmental disorders in infants. In 2016 IEEE International Conference on the
Science of Electrical Engineering (ICSEE), pages 1–5. IEEE, 2016.

[126] P. Pal, A. N. Iyer, and R. E. Yantorno. Emotion detection from infant facial
expressions and cries. In 2006 IEEE International Conference on Acoustics Speech
and Signal Processing Proceedings, volume 2, pages II–II. IEEE, 2006.

[127] M. Petroni, A. S. Malowany, C. C. Johnston, and B. J. Stevens. Classification of
infant cry vocalizations using artificial neural networks (anns). In 1995 Interna-
tional Conference on Acoustics, Speech, and Signal Processing, volume 5, pages
3475–3478. IEEE, 1995.

[128] K. J. Piczak. Environmental sound classification with convolutional neural net-
works. In 2015 IEEE 25th International Workshop on Machine Learning for Signal
Processing (MLSP), pages 1–6. IEEE, 2015.

[129] S. Pinker and B. MacWhinney. The bootstrapping problem in language acquisition.
Mechanisms of language acquisition, pages 399–441, 1987.

[130] P. Podder, T. Z. Khan, M. H. Khan, and M. M. Rahman. Comparative perfor-
mance analysis of hamming, hanning and blackman window. International Journal
of Computer Applications, 96(18), 2014.

163

Bibliography

[131] F. B. Pokorny, B. Schuller, P. B. Marschik, R. Brueckner, P. Nyström, N. Cum-
mins, S. Bölte, C. Einspieler, and T. Falck-Ytter. Earlier identification of children
with autism spectrum disorder: An automatic vocalisation-based approach. In
Interspeech Proceedings, 2017.

[132] A. Politis, A. Mesaros, S. Adavanne, T. Heittola, and T. Virtanen. Overview and
evaluation of sound event localization and detection in dcase 2019. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 29:684–698, 2020.

[133] L. R. Rabiner and R. W. Schafer. Introduction to digital speech processing, vol-
ume 1. Now Publishers Inc, 2007.

[134] S. Rallabandi, B. Karki, C. Viegas, E. Nyberg, and A. W. Black. Investigating
utterance level representations for detecting intent from acoustics. In Interspeech
Proceedings, pages 516–520, 2018. doi: 10.21437/Interspeech.2018-2149. URL
http://dx.doi.org/10.21437/Interspeech.2018-2149.

[135] B. Reichard, F. Schrump, F. Anders, C. Mönch, K. Bode, and M. Fuchs. Utiliz-
ing automatically estimated facial descriptors for pain detection during surgical
interventions. In BMT Biomedical Technology Conference VDE, 2020.

[136] A. P. Reynolds, G. Richards, B. de la Iglesia, and V. J. Rayward-Smith. Clustering
rules: a comparison of partitioning and hierarchical clustering algorithms. Journal
of Mathematical Modelling and Algorithms, 5(4):475–504, 2006.

[137] R. L. Rodriguez and S. S. Caluya. Waah: Infants cry classification of physiological
state based on audio features. In 2017 International Conference on Soft Comput-
ing, Intelligent System and Information Technology (ICSIIT), pages 7–10. IEEE,
2017.

[138] H. Root-Gutteridge, M. Bencsik, M. Chebli, L. K. Gentle, C. Terrell-Nield,
A. Bourit, and R. W. Yarnell. Identifying individual wild eastern grey wolves
(canis lupus lycaon) using fundamental frequency and amplitude of howls. Bioa-
coustics, 23(1):55–66, 2014.

[139] A. Rosales-Pérez, C. A. Reyes-García, J. A. Gonzalez, O. F. Reyes-Galaviz, H. J.
Escalante, and S. Orlandi. Classifying infant cry patterns by the genetic selection
of a fuzzy model. Biomedical Signal Processing and Control, 17:38–46, 2015.

[140] A. Rostamizadeh, A. Talwalkar, G. DeSalvo, K. Jamieson, and L. Li. Efficient
hyperparameter optimization and infinitely many armed bandits. In 5th Interna-
tional Conference on Learning Representations, 2017.

[141] P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. Journal of computational and applied mathematics, 20:53–65,
1987.

164

http://dx.doi.org/10.21437/Interspeech.2018-2149

Bibliography

[142] J. A. Russell. A circumplex model of affect. Journal of personality and social
psychology, 39(6):1161, 1980.

[143] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak. Convolutional, long short-
term memory, fully connected deep neural networks. In 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4580–
4584. IEEE, 2015.

[144] J. Salamon, C. Jacoby, and J. P. Bello. A dataset and taxonomy for urban sound
research. In Proceedings of the 22nd ACM international conference on Multimedia,
pages 1041–1044, 2014.

[145] E. Scheiner, K. Hammerschmidt, U. Jürgens, and P. Zwirner. Acoustic analyses
of developmental changes and emotional expression in the preverbal vocalizations
of infants. Journal of Voice, 16(4):509–529, 2002.

[146] U. Schimmack and A. Grob. Dimensional models of core affect: A quantitative
comparison by means of structural equation modeling. European Journal of Per-
sonality, 14(4):325–345, 2000.

[147] U. Schimmack and R. Rainer. Experiencing activation: Energetic arousal and
tense arousal are not mixtures of valence and activation. Emotion, 2(4):412, 2002.

[148] B. Schuller and A. Batliner. Computational Paralinguistics. Emotion, affect and
personality in speech and language processing. Wiley, 2014.

[149] B. Schuller, S. Steidl, A. Batliner, J. Hirschberg, J. K. Burgoon, A. Baird,
A. Elkins, Y. Zhang, E. Coutinho, K. Evanini, et al. The interspeech 2016 com-
putational paralinguistics challenge: Deception, sincerity & native language. In
17TH Annual Conference of the International Speech Communication Association
(Interspeech 2016), Vols 1-5, pages 2001–2005, 2016.

[150] B. Schuller, S. Steidl, A. Batliner, P. B. Marschik, H. Baumeister, F. Dong,
S. Hantke, F. B. Pokorny, E.-M. Rathner, K. D. Bartl-Pokorny, C. Einspieler,
D. Zhang, A. Baird, S. Amiriparian, K. Qian, Z. Ren, M. Schmitt, P. Tzirakis,
and S. Zafeiriou. The interspeech 2018 computational paralinguistics challenge:
Atypical & self-assessed affect, crying & heart beats. In Proceedings Interspeech
2018, pages 122–126. ISCA, 2018. doi: 10.21437/Interspeech.2018-51. URL
http://dx.doi.org/10.21437/Interspeech.2018-51.

[151] B. Schuller, A. Batliner, C. Bergler, F. B. Pokorny, J. Krajewski, M. Cychosz,
R. Vollmann, S.-D. Roelen, S. Schnieder, E. Bergelson, et al. The interspeech 2019
computational paralinguistics challenge: Styrian dialects, continuous sleepiness,
baby sounds & orca activity. 2019.

[152] B. W. Schuller, A. Batliner, C. Bergler, E.-M. Messner, A. Hamilton, S. Amiri-
parian, A. Baird, G. Rizos, M. Schmitt, L. Stappen, et al. The interspeech 2020

165

http://dx.doi.org/10.21437/Interspeech.2018-51

Bibliography

computational paralinguistics challenge: Elderly emotion, breathing & masks. In
Proceedings Interspeech 2020, pages 2042–2046. ISCA, 2020.

[153] H. Seo, J. Park, and Y. Park. Acoustic scene classification using various pre-
processed features and convolutional neural networks. In Proceedings of the Detec-
tion and Classification of Acoustic Scenes and Events 2019 Workshop (DCASE),
2019.

[154] M. Severini, D. Ferretti, E. Principi, and S. Squartini. Automatic detection of cry
sounds in neonatal intensive care units by using deep learning and acoustic scene
simulation. IEEE Access, 7:51982–51993, 2019.

[155] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[156] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional net-
works: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

[157] R. Sisto, C. V. Bellieni, S. Perrone, and G. Buonocore. Neonatal pain analyzer:
development and validation. Medical and Biological Engineering and Computing,
44(10):841, 2006.

[158] M. Slaney. Auditory toolbox. Interval Research Corporation, Tech. Rep, 10(1998),
1998.

[159] D. I. Slobin, I. Ibarretxe-Antuñano, A. Kopecka, and A. Majid. Manners of human
gait: A crosslinguistic event-naming study. Cognitive Linguistics, 109(4):701–741,
2014.

[160] L. Smith and Y. Gal. Understanding measures of uncertainty for adversarial ex-
ample detection. arXiv preprint arXiv:1803.08533, 2018.

[161] S. Smith. Digital signal processing: a practical guide for engineers and scientists.
Elsevier, 2013.

[162] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Jour-
nal of Machine Learning Research, 15(1):1929–1958, 2014.

[163] R. E. Stark. Infant vocalization: A comprehensive view. Infant Mental Health
Journal, 2(2):118–128, 1981.

[164] R. E. Stark, S. N. Rose, and P. J. Benson. Classification of infant vocalization. In-
ternational Journal of Language & Communication Disorders, 13(1):41–47, 1978.

[165] D. Stowell, M. D. Wood, H. Pamuła, Y. Stylianou, and H. Glotin. Automatic
acoustic detection of birds through deep learning: the first bird audio detection
challenge. Methods in Ecology and Evolution, 2018.

166

Bibliography

[166] B.-H. Su, S.-L. Yeh, M.-Y. Ko, H.-Y. Chen, S.-C. Zhong, J.-L. Li, and C.-C. Lee.
Self-assessed affect recognition using fusion of attentional blstm and static acoustic
features. In Interspeech Proceedings, pages 536–540, 2018.

[167] M. Suganuma, S. Shirakawa, and T. Nagao. A genetic programming approach to
designing convolutional neural network architectures. In Proceedings of the genetic
and evolutionary computation conference, pages 497–504, 2017.

[168] G. M. Sullivan and R. Feinn. Using effect size — or why the p value is not enough.
Journal of graduate medical education, 4(3):279–282, 2012.

[169] Z. S. Syed, J. Schroeter, K. A. Sidorov, and A. D. Marshall. Computational
paralinguistics: Automatic assessment of emotions, mood and behavioural state
from acoustics of speech. In Interspeech Proceedings, pages 511–515, 2018.

[170] D. Tang, J. Zeng, and M. Li. An end-to-end deep learning framework for speech
emotion recognition of atypical individuals. In Interspeech Proceedings, pages 162–
166, 2018.

[171] T. M. Therneau, E. J. Atkinson, et al. An introduction to recursive partitioning
using the rpart routines. Technical report, Mayo Foundation, 1997.

[172] G. Trigeorgis, F. Ringeval, R. Brueckner, E. Marchi, M. A. Nicolaou, B. Schuller,
and S. Zafeiriou. Adieu features? end-to-end speech emotion recognition using a
deep convolutional recurrent network. In 2016 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pages 5200–5204. IEEE, 2016.

[173] M. A. T. Turan and E. Erzin. Monitoring infant’s emotional cry in domestic
environments using the capsule network architecture. In Interspeech Proceedings,
pages 132–136, 2018.

[174] P. Tzirakis, S. Zafeiriou, and B. W. Schuller. End2you–the imperial toolkit for
multimodal profiling by end-to-end learning. arXiv preprint arXiv:1802.01115,
2018.

[175] R. R. Vempada, B. S. A. Kumar, and K. S. Rao. Characterization of infant cries
using spectral and prosodic features. In 2012 National Conference on Communi-
cations (NCC), pages 1–5. IEEE, 2012.

[176] T. Virtanen, M. D. Plumbley, and D. Ellis. Computational analysis of sound scenes
and events. Springer, 2018.

[177] J. Wagner, D. Schiller, A. Seiderer, and E. Andre. Deep learning in paralinguis-
tic recognition tasks: Are hand-crafted features still relevant? In Interspeech
Proceedings, pages 147–151, 2018. doi: 10.21437/Interspeech.2018-1238. URL
http://dx.doi.org/10.21437/Interspeech.2018-1238.

167

http://dx.doi.org/10.21437/Interspeech.2018-1238

Bibliography

[178] N. Wahid, P. Saad, and M. Hariharan. Automatic infant cry pattern classification
for a multiclass problem. Journal of Telecommunication, Electronic and Computer
Engineering (JTEC), 8(9):45–52, 2016.

[179] J. Wainer and G. Cawley. Nested cross-validation when selecting classifiers is
overzealous for most practical applications. Expert Systems with Applications,
182:115222, 2021.

[180] M. Wan, R. Wang, B. Wang, J. Bai, C. Chen, Z. Fu, J. Chen, X. Zhang, and
S. Rahardja. Ciaic-asc system for dcase 2019 challenge task1. In Proceedings of
the Detection and Classification of Acoustic Scenes and Events 2019 Workshop
(DCASE). Technical Report, DCASE2019 Challenge, 2019.

[181] H. Wang, Z. Cui, Y. Chen, M. Avidan, A. B. Abdallah, and A. Kronzer. Predicting
hospital readmission via cost-sensitive deep learning. IEEE/ACM transactions on
computational biology and bioinformatics, 15(6):1968–1978, 2018.

[182] A. S. Warlaumont, D. K. Oller, E. H. Buder, R. Dale, and R. Kozma. Data-driven
automated acoustic analysis of human infant vocalizations using neural network
tools. The Journal of the Acoustical Society of America, 127(4):2563–2577, 2010.

[183] G. M. Weiss. Mining with rarity: a unifying framework. ACM Sigkdd Explorations
Newsletter, 6(1):7–19, 2004.

[184] F. Weninger, F. Eyben, B. W. Schuller, M. Mortillaro, and K. R. Scherer. On the
acoustics of emotion in audio: what speech, music, and sound have in common.
Frontiers in psychology, 4:292, 2013.

[185] R. M. Wood. Changes in cry acoustics and distress ratings while the infant is
crying. Infant and Child Development: An International Journal of Research and
Practice, 18(2):163–177, 2009.

[186] J. Xie, J. G. Colonna, and J. Zhang. Bioacoustic signal denoising: a review.
Artificial Intelligence Review, pages 1–23, 2020.

[187] Q. Xie, R. K. Ward, and C. A. Laszlo. Automatic assessment of infants’ levels-of-
distress from the cry signals. IEEE transactions on speech and audio processing,
4(4):253, 1996.

[188] H. Yang, C. Shi, and H. Li. Acoustic scene classification using cnn ensembles and
primary ambient extraction. In Proceedings of the Detection and Classification of
Acoustic Scenes and Events 2019 Workshop (DCASE), 2019.

[189] X. Yao, M. Micheletti, M. Johnson, and K. de Barbaro. Classification of in-
fant crying in real-world home environments using deep learning. arXiv preprint
arXiv:2005.07036, 2020.

168

Bibliography

[190] A. Zabidi, L. Y. Khuan, W. Mansor, I. M. Yassin, and R. Sahak. Classification
of infant cries with asphyxia using multilayer perceptron neural network. In 2010
Second International Conference on Computer Engineering and Applications, vol-
ume 1, pages 204–208. IEEE, 2010.

[191] A. Zabidi, W. Mansor, and K. Y. Lee. Optimal feature selection technique for
mel frequency cepstral coefficient feature extraction in classifying infant cry with
asphyxia. Indonesian Journal of Electrical Engineering and Computer Science, 6
(3):646–655, 2017.

[192] G. Zamzmi, D. Goldgof, R. Kasturi, Y. Sun, and T. Ashmeade. Machine-
based multimodal pain assessment tool for infants: a review. arXiv preprint
arXiv:1607.00331, 2016.

[193] D. M. Zeifman. Acoustic features of infant crying related to intended caregiving
intervention. Infant and Child Development: An International Journal of Research
and Practice, 13(2):111–122, 2004.

[194] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks.
In European conference on computer vision, pages 818–833. Springer, 2014.

[195] B. Zernikow. Schmerztherapie bei Kindern. Springer, 2013.

[196] Z. Zhang, A. Cristia, A. S. Warlaumont, and B. Schuller. Automated classification
of children’s linguistic versus non-linguistic vocalisations. training, 2(267):280,
2018.

[197] Z. Zhang, J. Han, K. Qian, and B. Schuller. Evolving learning for analysing
mood-related infant vocalisation. In Proc. Interspeech 2018, pages 142–146, 2018.
doi: 10.21437/Interspeech.2018-1914. URL http://dx.doi.org/10.21437/
Interspeech.2018-1914.

[198] J. Zwarts. Semantic map geometry: Two approaches. Linguistic Discovery, 8(1):
377–395, 2010.

169

http://dx.doi.org/10.21437/Interspeech.2018-1914
http://dx.doi.org/10.21437/Interspeech.2018-1914

CHAPTER 9
Appendix

9.1 Appendix for study (A)

9.1.1 Starting page introductory text

Stimmung: Bitte beurteilen Sie, wie “positiv” oder “negativ” Sie die Simmungslage
bzw. die Emotionalität des Säuglings auf Grundlage der gehörten Lautäußerungen ein-
schätzen.

• Werte im linken Bereich der Skale bedeuten, dass die Stimmung des Säuglings eher
negativ auf Sie wirkt. Dieser Teil der Skale erstreckt sich von “sehr negativ” über
“negativ” bis “neutral".

• Werte im rechten Bereich der Skale bedeuten, dass die Stimmung des Säuglings
eher positiv auf Sie wirkt. Dieser Teil der Skale erstreckt sich von “neutral” über
“positiv” bis “sehr positiv".

(<here, participants were presented with a dummy-version of the scale corresponding
to the one shown in fig. 4.1>)

Die horizontalen, schwarzen Linien der Skale dienen Ihnen zur Orientierung. Die
Skale ist kontinuierlich, das heißt, dass alle möglichen Werte zwischen diesen Linien
ebenfalls zulässig sind. Das selbe gilt für die nächsten beiden Skalen.

Wachheit: Bitte beurteilen Sie, wie hoch Sie den Grad der “Wachheit” oder “En-
ergetisierung” des Säuglings auf Grundlage der gehörten Lautäußerungen einschätzen.

• Werte im linken Bereich der Skale bedeuten, dass der Säugling eher “schläfrig”
oder “müde” oder “schlapp” auf Sie wirkt.

• Werte im rechten Bereich der Skale bedeuten, dass der Säugling eher “wach” oder
“munter” oder “frisch” auf Sie wirkt.

171

9. Appendix

Ruhe: Bitte beurteilen Sie, wie hoch Sie den Grad der “inneren Ruhe” oder “Gelassen-
heit” des Säuglings auf Grundlage der gehörten Lautäußerung einschätzen.

• Werte im linken Bereich der Skale bedeuten, dass der Säugling eher “ruhig”,
“entspannt” oder “gelassen” auf Sie wirkt.

• Werte im rechten Bereich der Skale bedeuten, dass der Säugling eher innerlich
“unruhig”, “angespannt”, “aufgeregt” oder “nervös” auf Sie wirkt.

Bezeichnung: Bitte wählen Sie die Bezeichnung aus, die Ihrer Meinung nach die
gehörte Lautäußerung am ehesten beschreibt. Beachten Sie dabei die folgenden Punkte:

• Sie können nur eine Bezeichnung je Aufnahme auswählen. Falls Sie eine Aufnahme
hören, bei der Sie mehrere Bezeichnungen als zutreffend erachten, entscheiden Sie
sich bitte für diejenige, die für Sie “häufiger zu hören” oder “präsenter” ist.

• Es ist nicht erforderlich, dass Sie alle Begriffe mindestens einmal im Verlauf der
Umfrage verwenden. Wenn Sie zum Beispiel denken sollten, dass zwei der gegebe-
nen Bezeichnungen für Sie Synonyme darstellen, können Sie im Verlauf der Um-
frage auch nur eine dieser beiden Bezeichnungen verwenden.

Die gegebene Liste ist nur als Ausgangspunkt zu betrachten. Sie können die Liste
im Velauf der Umfrage erweitern:

• Wenn Sie der Meinung sind, dass keine der bereits gegebenen Bezeichnungen
zutrifft, versuchen Sie, eine eigene Bezeichnung zu finden. Diese können Sie mit
Hilfe des Punktes “Neue Bezeichnung” hinzufügen. Hinzugefügte Bezeichnungen
stehen Ihnen für die restliche Umfrage dauerhaft zur Verfügung.

• Wenn Sie eine neue Bezeichnung hinzufügen, muss es sich dabei um ein Verb
handeln, dass die Lautäußerungen mit einem Wort bezeichnet. Nicht zulässig
sind beispielsweise zwei Worte, wie “sich aufregen”, oder nicht-Verben, wie z.b.
“ängstlich".

• Falls Sie keine der gegebenen Bezeichnungen als zutreffend empfinden und Ih-
nen auch keine eigene, passende Bezeichnung einfällt, wählen Sie bitte die Option
“Nicht klar bezeichenbar".

9.2 Appendix for study (B)

9.2.1 Complete Regression Trees

Figure 9.1 and Fig. 9.2 show the complete regression trees for all network types of the
coarse and fine search process, respectively. Further details about the creation of the
trees are provided in the main manuscript in sections 5.3.1 and 5.3.2. The nodes show
hyperparameter names and branches show parameter values. All label names correspond
to Tab. 5.2 in the main manuscript. The node labels contain prefixes CStage, RStage

172

9.2. Appendix for study (B)

or FCStage corresponding to the convolutional, recurrent or fully-connected stage, re-
spectively. Leafs indicate the average performance value of their respective network
configurations (validation loss in the coarse search, test UAR in the fine search). Perfor-
mance values are emphasized through color-coding from red to green. The right branch
of a node indicates the direction of increasing performance (decreasing loss or increasing
UAR, respectively). Numbers under each leaf indicate the absolute amount and per-
centage of contained configurations. Visualizations were realized through the R package
rpart.plot v.3.0.8.

Figure 9.1: Coarse search regression trees.

9.2.2 Best Configurations of each Network Type

Tab. 9.1 shows each network type’s configuration that reached the highest test per-
formance, as found in the hyperparameter fine search (see section 5.3.3.2 in the main
manuscript).

173

9. Appendix

Table 9.1: Best network configuration per network type. Column, row and cell
meanings correspond to Tab. II in the main manuscript.

Stage Parameter Network type
R-NN R-FC-NN C-NN C-FC-NN C-R-NN

convolutional
stage

activation - - ReLU ReLU ReLU
n. of blocks - - 2 3 2
n. units first l. - - 64 32 16
unit growth - - 2 2 2
batch norm. - - Yes Yes No
kernel shape - - (1 5) (1 5) (1 5)
pooling shape - - (1 2) (1 2) (1 2)
conv type - - plain residual residual
pooing type - - average average average
stack size - - 2 3 2

frequency
integration operation Flattening Flattening 1D GMP 1D GMP 1D GMP

recurrent
stage

activation Tanh Tanh - - -
n. of blocks 4 2 - - 2
n. units first l. 64 64 - - 1
unit growth 0.5 2 - - 1
batch norm. No No
recur. type GRU GRU - - GRU
bidirectional Yes No - - Yes

temporal
integration operation 1D GAP 1D GAP 1D GAP 1D GAP 1D GAP

fully-
connected
stage

activation - ReLU - LeakyReLU -
n. of blocks - 2 - 1 -
n. units first l. - 1 - 2 -
unit growth - 1 - 1 -
batch norm. - No - No -

average test
performance 72.89 % 72.97 % 75.22 % 75.07 % 75.35 %

174

9.2. Appendix for study (B)

Figure 9.2: Fine search regression trees.

9.2.3 Visualization of Learned Features

I additionally visualized the neural network’s learned feature. Figure 9.3 shows class
activation maps, i.e. the input spectrograms that maximize the activations for the output
neurons, respectively. Each spectrogram can be interpreted as the spectrogram template
the corresponding output neuron is looking for. The visualizations were produced with
the python package keras-vis v.0.5.0 [82]. The technique follows the approach
of Simonyan et al. [156]: The network is fed with a randomly initialized input, where
the entries were drawn independently from a standard normal distribution. For a given
output neuron, the gradient with respect to the input is computed and the input is
iteratively modified to maximize the output. I run the visualization for a C-NN with 1D
kernel sizes corresponding to the group of best selected hyperparameters in the study.

It can be seen that the class neutral focuses on high energies in the lower frequen-

175

9. Appendix

cies, while fussing and crying focus on high energies in the medium and high frequencies.
The templates resemble different kinds of harmonic wave patterns across the frequency
axis: neutral resembles periodicities of both medium frequency, fussing a periodicity
of medium frequency, and crying resembles a periodicity of medium and high frequen-
cies. I hypothesize that the neutral activation map captures the dominance in the low
frequencies, which is absent in fussing and crying. The fussing templates captures the
evenly distributed harmonic pattern throughout the mid frequencies. Crying captures
the narrowly stacked harmonic waves throughout the high frequencies, as well as the
strong harmonic peaks throughout the mid frequencies.

Figure 9.3: Visualization of exemplar spectrograms for classes (left) and learned class
activation maps of a neural network (right). The horizontal axis represents the time
dimension and the y-axis the frequency dimension. Colors encode frequency intensity.

176

List of Figures

2.1 Foundations: Exemplary Mel filter bank . 14
2.2 Foundations: Visualization of various audio representations 15
2.3 Foundations: Overview over the various segmentation criteria for units 18
2.4 Foundations: Relationship between overfitting, underfitting and model capacity. 24
2.5 Foundations: Visualization of various evaluation procedures 30
2.6 Foundations: Early stopping in neural network training 41
2.7 Foundations: Overview over selected network architectures 42
2.8 Foundations: Schematic visualization of the major audio recognition tasks by

an example . 46
2.9 Foundations: Schematic visualization of the sound feature extraction process 47
2.10 Foundations: Schematic visualization of the audio recognition process 50

4.1 Study (A): Survey main window for rating of an recording 69
4.2 Study (A): Frequency of salient labels . 74
4.3 Study (A): Semantic map of salient labels . 76
4.4 Study (A): Relationship between aggregated label and affect ratings 76
4.5 Study (A): Semantic maps for MDS based on combinations of various rating

items . 79
4.6 Study (A): Other MDS plots . 80
4.7 Study (A): Clustering solutions . 80
4.8 Study (A): Derived classification schemes . 81

5.1 Study (B): Histogram of segment durations 87
5.2 Study (B): Overview of the classification procedure 88
5.3 Study (B): Parent neural network architecture scheme 90
5.4 Study (B): Schemes of the processing stages 90
5.5 Study (B): Overall test performances of fine search sample 100
5.6 Study (B): Comparison between networks types in a contest-like setup 101
5.7 Study (B): Significances between network type performances 103

6.1 Study (C): CNN architecture scheme . 110
6.2 Study (C): Histogram of system performances 115
6.3 Study (C): Confusion matrix for all audio examples 116
6.4 Study (C): PCA visualization . 116

177

6.5 Study (C): Plots of CNN properties vs performance 120

7.1 Study (D): Example spectrogram of target classes 124
7.2 Study (D): Histogram of call type durations 125
7.3 Study (D): Overview of the detection pipeline at training and test time . . . 128
7.4 Study (D): Class masks . 131
7.5 Study (D): Visualization of preprocessing operations for an example vocal-

ization event . 132
7.6 Study (D): Convolutional recurrent neural network architecture scheme . . . 134
7.7 Study (D): Performances of network configurations, grouped by denoising

operations . 139
7.8 Study (D): Influence of resampling grouped by loss functions 141
7.9 Study (D): Conditional inference trees for loss type and resampling 142
7.10 Study (D): Conditional inference trees for optimization of network architec-

ture + denoising . 143

9.1 Study (B): Coarse search regression trees . 173
9.2 Study (B): Fine search regression trees . 175
9.3 Study (B): Visualization of learned network features 176

List of Tables

4.1 Study (A): Summary of rating item perception and reliability 74
4.2 Study (A): Association between label and affect ratings 78

5.1 Study (B): Stage Hyperparameters . 92
5.2 Study (B): Search spaces of all network types 94
5.3 Study (B): Best performing tree paths . 104

6.1 Study (C): Target classes . 109
6.2 Study (C): Network scheme hyperparameters and search spaces for configu-

ration of the architecture scheme . 112
6.3 Study (C): Overview over data set folds . 113
6.4 Study (C): PCA variable loadings . 117
6.5 Study (C): Effects of network properties . 119

7.1 Study (D): Dataset overview . 126
7.2 Study (D): Search space for network configuration and spectrogram denoising 135
7.3 Study (D): Search space for loss and resampling 136

178

List of Tables

7.4 Study (D): Network architectures with highest validation performance per
denoising setting . 144

7.5 Study (D): Final performance evaluation . 145

9.1 Study (B): Best network configuration per network type 174

179

Acronyms

a.k.a. also known as. 28

ANN artificial neural network. 33

AP average precision. 29, 137

ARU autonomous recording unit. 63, 124–127, 131, 136

ASR automatic sound recognition. xiii, 3, 4, 6, 7, 9, 10, 19, 40, 41, 44, 45, 50, 53–59,
62, 107, 125, 151

BCE binary cross entropy. 39, 135, 136, 141, 142, 146, 147

CCE categorical cross entropy. 39, 96

CNN convolutional neural network. xiv, 4, 6, 8, 36, 43, 44, 56–58, 62–64, 85, 86, 91,
93, 95, 96, 105–108, 110–121, 133, 150, 177, 178

ComParE Interspeech Computational Paralinguistics Challenge. 43, 54, 55, 57, 61, 62,
86, 95–97, 100, 101, 121, 152

CP computational paralinguistics. xiii, 4, 7, 28, 48, 54–58, 63, 87, 95, 105, 113

CRNN convolutional recurrent neural network. 44, 57, 59, 62, 64, 95, 123, 124, 129,
132, 150

DCASE Detection and Classification of Acoustic Scenes and Events. 43, 54, 55, 57–59,
62, 64, 87, 95, 96, 105, 111, 151

DFT discrete Fourier transform. 11, 12

FCL fully-connected layer. 8, 34–38, 42–44, 91, 99, 106, 111, 113, 114, 117–119, 133,
150

FCNN fully-connected neural network. 42, 43, 49, 57, 62, 85

FFT fast Fourier transformation. 88

181

Acronyms

FL focal loss. 135, 136, 141, 147

GAP global average pooling. 7, 38, 94, 95, 99, 104, 105, 112, 113, 115, 117–121, 135,
140, 144, 151, 174

GMM Gaussian mixture model. 57, 62, 63

GMP global max pooling. 38, 94, 95, 99, 104, 105, 135, 144, 174

GRU gated recurrent unit. 37, 92, 94, 95, 99, 104, 106

i.i.d. independent and identically distributed. 50

IRR inter-rater reliability. 73, 74

LLD low level descriptor. 48, 56, 57, 59, 62, 106

LPCCs linear predictive cepstral coefficients. 62

LSTM long short-term memory. 37, 57, 91, 92, 94, 95, 99

MDS multidimensional scaling. 75–81, 177

MFCCs Mel frequency cepstral coefficients. 57, 62

ML machine learning. 4, 7, 9, 16, 18, 19, 22, 23, 29, 32, 33, 45, 48, 50, 53, 55, 56, 58,
62, 63, 65, 121, 123, 149–151

PAM passive acoustic monitoring. 63, 64, 123, 124, 126

PCA principal component analysis. 114–118, 177, 178

RNN recurrent neural network. 8, 43, 57, 62, 85, 95

SGD stochastic gradient descent. 40

SML supervised machine learning. xiii, 18–21, 23, 25, 27, 29, 31, 33

STFT short-time Fourier transform. 11, 12, 46, 57, 106, 109

SVM support vector machine. 57, 62

UAR unweighted average recall. 28, 73, 78, 96, 99, 113, 115, 173

USML unsupervised machine learning. 19, 72

182

	Professional and Scientific Career
	List of Publications
	Acknowledgments
	Abstract
	Mathematical Notation
	Contents
	Introduction
	Thesis topic
	Global thesis goal
	Overview over studies (A) – (D)
	Thesis structure
	Summary of major findings

	Foundations in Automatic Recognition of Acoustic Communication Events
	Acoustic analysis of non-verbal acoustic communication events
	Basics in conventional SML
	Artificial neural networks as predictive models
	Automatic sound recognition through machine learning

	State of Research
	Related scientific competitions and communities
	Deep learning in ASR and CP
	States of research specific to studies (A) – (D)

	Study (A): Investigation of the Assessment of Infant Vocalizations by Laypersons
	Study goal
	Materials and methods
	Results
	Discussion

	Study (B): Comparison of Neural Network Types for Automatic Classification of Infant Vocalizations
	Study goal
	Materials and methods
	Results
	Discussion

	Study (C): Detailed Investigation of CNNs for Automatic Classification of Infant Vocalizations
	Study goal
	Materials and methods
	Results
	Discussion

	Study (D): Compensating Class Imbalance for Acoustic Chimpanzee Detection With Convolutional Recurrent Neural Networks
	Study goal
	Materials and methods
	Results
	Discussion

	Conclusion and Collected Discussion
	Conclusion
	Collected discussion
	Outlook

	Bibliography
	Appendix
	Appendix for study (A)
	Appendix for study (B)

	List of Figures
	List of Tables
	Acronyms

