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Chapter 1

Introduction

Over the past decades, energy markets worldwide have undergone rapid deregulation, cre-
ating a more competitive market environment and exposing participants to potentially
much greater risks. Not surprisingly, this development has made portfolio and risk man-
agement a primary concern for energy companies (see Bunn, 2004; Eydeland and Wolyniec,
2003). In fact, there is a bunch of sources driving the transformation of energy markets.
With investment banks being drawn into the area as they look for new markets to operate,
traditional approaches from the banking industry like mean-variance portfolio selection
(see Markowitz, 2000) �nd introduction to the energy sector. There is also an increasing
number of power marketers entering the �eld making accurate electricity price forecasts a
valuable input to optimally self-schedule and engage in pro�table bilateral contracts (see
Nowotarski and Weron, 2018; Weron, 2014). In order to control increasing exposure to en-
ergy prices, the use of complex derivatives moves into the focus of many energy companies,
as they often provide the simplest and most �exibile solution of precise risk management
(see Clewlow and Strickland, 2000).

All of these topics can easily grow into tricky problems embedded in complex theoretical
frameworks. There are still approaches to reduce complexity and manage these problems.
These concepts include (i) searching for theoretical frameworks which justify the restriction
on most relevant indicators like mean and variance in portfolio optimization, (ii) the usage
of feature selection or factor models in multivariate electricity price forecasting and (iii) the
translation of quotes for complex energy option in implied volatility. In this doctoral thesis,
each of these approaches is covered in one of three articles. The �rst article answers the
question which distributional requirements of asset returns are necessary and su�cient for
mean-variance analysis in portfolio optimization. The second one deals with dimensionality
problems in multivariate electricity price forecasting. Finally, the third article develops an
implied volatility framework for energy swing options.

In the �rst paper, we focus on portfolio theory and investigate the theoretical and em-
pirical justi�cation of mean-variance analysis in optimal portfolio selection which is still
subject to controversial discussions in literature (see Markowitz, 2014). In an important
contribution, Chamberlain (1983) shows that, in presence of a risk-free asset, the distri-
bution of all scaled portfolios are determined by mean and variance if and only if asset
returns are jointly elliptically distributed. This result has been cited quite frequently be-
cause it is usually the focus of academic interest and is often used by practitioners to reject



2 Chapter 1. Introduction

mean-variance analysis in portfolio optimization. However, Meyer and Rasche (1992) al-
ready point out that Chamberlain's �ndings build on the premise of an unlimited portfolio
universe, which even includes portfolios with negative wealth, and that restricting this
universe extends the class of distributions implying mean-variance utility functions. While
Chamberlain (1983) looks at a rather unusual portfolio universe, we consider the returns of
portfolios and search for a larger family of distributions which allow mean-variance anal-
ysis. For this, we modify the generalized location-scale (GLS) distribution used in Meyer
and Rasche (1992) by introducing elliptical noise. We then show that, if the returns of
risky assets follow what we call skew-elliptical GLS distribution, all investments are ranked
equivalently under expected utility theory and the mean-variance approach. This holds
regardless whether there is a risk-free asset in the choice set or not. Besides this main
result, we illustrate that our approach allows a simple and more catchy representation of
the distributions described in Chamberlain (1983, Theorem 2). Furthermore, as we work
out important model links to the mean-variance-skewness framework of Simaan (1993a),
we derive the famous two-fund separation property. Finally, we extend the framework of
Schuhmacher and Auer (2014) to portfolios including more than one risky asset and con-
clude that in our model setting investment decisions are independent of the performance
measure choice. To round o� our theoretical results, we �nish our study by presenting
some evidence on the empirical relevance of our skew-elliptical GLS model. To this end,
we modify the testing approach proposed by Meyer and Rasche (1992) to be applicable
to our speci�c GLS case. Roughly speaking, our skew-elliptical GLS model can be tested
by checking normalized out-of-sample CAPM residuals for sphericity (a special case of el-
lipticality) via the uniform techniques of Liang et al. (2008). Using a sample of common
stocks, well-known factor portfolios (capturing size, value, momentum, reversal and indus-
try e�ects) and alternative investment vehicles (i. e., indices re�ecting the performance
of commodity futures and hedge funds), we �nd that the skew-elliptical GLS distribution
cannot be rejected in the majority of considered settings.

The second paper deals with electricity price forecasting (EPF). In short-term forecast-
ing of day-ahead electricity prices, many authors emphasize the importance of incorporat-
ing the autoregressive intraday dependency structure (see Maciejowska and Weron, 2013;
Ziel, 2016). That is, we have to take into account that the price for tomorrow's hour h
may depend not only on previous prices for this hour of the day but also on previous prices
for other hours. However, considering more and more autoregressive lags as explanatory
variables quickly leads to models with too many parameters. There are several approaches
to tackle the curse of dimensionality which also have been analysed in several studies in the
context of electricity price forecasting. Among these are factor models (see Maciejowska
and Weron, 2013), elastic net regressions (see Ludwig et al., 2015; Uniejewski et al., 2016;
Ziel and Weron, 2018), bayesian shrinkage (see Joutz et al., 1995; Panagiotelis and Smith,
2008) as well as feature selection and splitting (see Gonzáles et al., 2016; Ludwig et al.,
2015; Pórtoles et al., 2018). Unfortunately, these studies are based on data sets for dif-
ferent markets and, in addition, they tend to compare the employed methods to a few
selected benchmarks only. With a focus on the German/Austrian market, we provide a
comprehensive comparative study featuring all of these approaches instead. Our study
provides several interesting results and insights. First, we systematically analyse the role
of lagged hourly prices and weekday seasonalities in EPF with importance scores drawn
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from random forests. These importance scores con�rm previous results that prices lagged
by one week have considerably more explanatory power than directly preceding smaller
lags and that prices of speci�c daytimes can be forecasted with greater accuracy when
lagged prices of di�erent daytimes are used as predictors (see Ziel, 2016). Second, we get
a profound picture of which forecasting approaches perform well in a multidimensional
EPF setting. Using the most important predictors in a support vector machine is an ap-
proach which shines in comparison to other established forecasting methods. Third, we
�nd that some forecasting methods are more accurate for certain hours of the day than
others which can be explained by the presence of distinct importance pro�les for di�erent
hourly prices. We see that each daytime appears to have its ideal forecasting model. For
example, elastic nets are superior models when it comes to forecasting evening prices. Fi-
nally, to round o� our comparison of predictive accuracy, a last contribution of our study
is motivated by a growing body of literature emphasizing that combinations of forecasts
derived from di�erent models are often more reliable than forecasts from a single model
alone (see Baumeister and Kilian, 2015; Clemen, 1989; Timmermann, 2006). These turn
out to improve forecast accuracy even further which supports the line of research indicating
that simple combination methods often work reasonably well.

In the last paper, we turn to energy swing options and focus on an implied volatility
concept for these options. Implied volatility is one of the most important metrics for the
analysis and presentation of �nancial options. Even though Ball et al. (1985) demonstrate
that implied volatility may be calculated for exotic options as well, the literature tends
to focus on standard options. In particular, there exists no concept to quote commodity
swing options in terms of implied volatility despite the increasing interest of academics
and practitioners in swing options (see Carmona and Ludkovski, 2010; Jaillet et al., 2004).
This is where we step into the picture. We are the �rst to develop an approach to quote
commodity swing options in terms of implied normal volatility by combining a Monte Carlo
valuation procedure with the Newton-Raphson root-fnding method. For this combination
to work, two sets of results from the literature have to be taken into account. First, Barrera-
Esteve et al. (2006) and Bardou et al. (2010) show that the optimal purchase is of digital
type for swing options with di�erent volume constraints and penalties. This simpli�cation
allows us to extend the methodology of Longsta� and Schwartz (2001), originally designed
for American-style options, to the case of Swing options. Second, Bonnans et al. (2012)
justify a pathwise derivative approach for swing options to calculate �rst-order sensitivities.
It enables us to derive a formula for the vega of swing options, which is used as an input
for the Newton-Raphson iteration. The convergence of this iteration can be ensured via
monotonicity and convexity arguments depending on the speci�c price model choice. There
are additional requirements on the price model to support our main objective. First, the
traditional notion of implied volatility demands the measure to be unique which cannot
be achieved in multi-factor or regime-switching environments because they assume distinct
volatilities for each factor and state (see Wahab and Lee, 2011). Second, we require a model
which captures all dimensions of �exibility o�ered to the option holder, notably outright
and time-spread optionality (see Berger et al., 2018; Keppo, 2004). Finally, the price model
has to exhibit necessary theoretical properties like the Markov property or convexity, as
discussed above, to ensure an e�cient valuation and root-�nding procedure (see Kohrs
et al., 2019). Taking these requirements into account, we formulate an additive one-factor
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forward curve model in the spirit of Clewlow and Strickland (1999) which is equipped
with a deterministic volatility function of negative exponential form. We complete our
theoretical discussion with an empirical study. Working with our framework, we analyse
the shape of the value function as well as seasonal and moneyness patterns in implied
volatilities of swing option quotes. Similar to observations for standard electricity options
(see Fanelli and Schmeck, 2019), we �nd the implied volatilities of swing option quotes to
exhibit seasonality with respect to the delivery period. As far as the the moneyness of
swing options is concerned, volatility smirks are not particularly pronounced in contrast
to typical plain vanilla commodity market analyses (see Jia et al., 2021).

The remainder of thesis is organised as follows. We present its three articles in Chapters
2 - 4, where each chapter starts with an abstract containing the main contribution and the
results of the corresponding paper. Chapter 5 then concludes with a summary of the most
important �ndings of the thesis.



Chapter 2

Mean-variance portfolio theory

We show that, in the presence of a risk-free asset, the return distribution of every portfolio
is determined by its mean and variance if and only if asset returns follow a speci�c skew-
elliptical distribution. Thus, contrary to common belief among academics and practitioners,
skewed returns do not allow a rejection of mean-variance analysis. Our work di�ers from
Chamberlain (1983) by focusing on the returns of portfolios, where the weights over the risk-
free asset and the risky assets sum to unity. Furthermore, it extends Meyer and Rasche
(1992) by introducing elliptical noise into their generalized location-scale framework. To
emphasize the relevance of our skew-elliptical model, we additionally provide empirical
evidence that it cannot be rejected for the returns of typical portfolios of common stocks or
popular alternative investments.

2.1 Introduction

In the 1950s, Markowitz (1952, 1959) laid the foundations for e�cient portfolio opti-
mization frameworks by linking expected utility maximization to mean-variance analysis.
His ideas have been extended in various ways and are at the core of many approaches in
modern �nance. The capital asset pricing model (CAPM) of Sharpe (1964), Lintner (1965)
and Mossin (1966) is probably one of the most important follow-up results. Despite the in-
creasing complexity and uncertainty in global �nancial markets, the framework introduced
by Markowitz continues to �nd wide application (see Bernard and Vandu�el, 2014; Gao
and Nardari, 2018; Kolm et al., 2014; Levy and Levy, 2004; Markowitz, 2000; Ray and
Jenamani, 2016). However, the theoretical and empirical justi�cation of mean-variance
analysis remains controversial. There are even widespread misunderstandings concerning
the necessary and su�cient conditions for its application (see Markowitz, 2014). For ex-
ample, if asset returns follow a multivariate normal distribution, or if the utility function
is quadratic, it is su�cient to consider mean and variance of returns in portfolio selection
because these conditions ensure consistency between the mean-variance and the expected
utility model (see Baron, 1977). However, many researchers argue that these conditions
either have theoretical defects or lack empirical support. Quadratic utility implies in-
creasing absolute risk aversion and that marginal utility eventually becomes negative for
risk-averse agents (see Brockett and Golden, 1987; Pratt, 1964). Furthermore, normality
of asset returns is typically rejected based on empirical evidence of skewness or heavy
tails (see Mandelbrot, 1963; Peiró, 1999). While these observations are correct, researchers
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are often unaware that there are more general conditions which imply mean-variance util-
ity functions such that we cannot reject Markowitz's principles based on such simplistic
arguments.

Two strands of literature provide more general justi�cations for mean-variance analysis.
Empirical studies examine whether functions of mean and variance at least serve as good
approximations for expected utility in practice. Markowitz (2014) reviews this issue and
stresses that many authors have ignored the favorable results of this body of research. Us-
ing di�erent methodologies, preference settings and asset return data, Markowitz (1959),
Levy and Markowitz (1979), Dexter et al. (1980), Pulley (1983), Kroll et al. (1984), Hlaw-
itschka (1994) and Simaan (1993b, 2014) show that mean-variance-e�cient portfolios can
provide good approximations for expected-utility-maximizing portfolios. Hence, for the
practical use of mean-variance analysis, it is necessary and su�cient to ensure that a
portfolio choice derived from the mean-variance-e�cient frontier approximately maximizes
expected utility for a wide variety of utility functions. While this pragmatic justi�cation
motivates intensive empirical research using di�erent data sets, it does not explain which
general circumstances justify mean-variance analysis. Identifying theoretical models which
imply mean-variance portfolio utility makes it much easier to justify Markowitz's approach.
Moreover, as we observe good approximations, there has to be a (at least approximate)
theoretical foundation for this phenomenon.

This brings us to the theoretical literature. General consistency conditions should hold
for any risk-averse agent. If we allow the utility function to be an arbitrary increasing
function, we can equivalently search for conditions under which the distributions of port-
folio returns are determined by mean and variance. This refers to the standard (see Black,
1972; Markowitz, 2000) or canonical (see Ingersoll, 1987) portfolio optimization problem,
which is characterized by a full investment condition, i. e., the constraint that the port-
folio weights of all assets (including the risk-free asset, if it exists) must sum to unity. In
an important contribution, Chamberlain (1983) instead considers the distributions of all
scaled portfolios. He argues that expected utility is a function of mean and variance for
every increasing utility function if and only if every portfolio with equal mean and variance
has the same distribution. Then he uses this relationship to provide some insights into
which distributional assumption is necessary and su�cient for portfolio distributions to
be determined by mean and variance. Speci�cally, he shows that, in portfolio selection
with a risk-free asset, portfolio distributions are determined by mean and variance if and
only if asset returns are jointly elliptically distributed (see Chamberlain, 1983, Theorem
1). Without a risk-free asset, elliptical symmetry is still important; however, there is one
additional degree of freedom with respect to the asset return distributions (see Chamber-
lain, 1983, Theorem 2). His result for the portfolio problem with a risk-free asset has been
cited quite frequently because it is usually the focus of academic interest − as it is in
our study − and is often used by practitioners to reject the Sharpe ratio as a measure of
investment performance. Another important contribution has been made by Meyer and
Rasche (1992). They point out that Chamberlain's �ndings build on the premise of an
unlimited portfolio universe, which even includes portfolios with negative wealth, and that
restricting this universe extends the class of distributions implying mean-variance utility
functions. Speci�cally, they illustrate that a generalized location-scale (GLS) distribution,
which allows asymmetries in asset returns, is su�cient to imply mean-variance utility for
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the primary assets in the choice set (in other words, for very simple portfolios with only
one risky asset), but not necessarily for portfolios thereof.

While Chamberlain (1983) and Meyer and Rasche (1992) look at rather unusual port-
folio universes, we consider asset combinations, which are the basis of a wide variety of
portfolio applications. Our research question is, which distributions imply mean-variance
utility functions in the context of standard portfolio optimization with full investment
constraint. With this in mind, we automatically search for the distributions relevant for
portfolio returns as opposed to those relevant for scaled portfolio values, which do not
necessarily represent returns.1 Our answer can be divided between a preliminary result
(su�cient condition) and a main result (necessary condition, full characterization). To
derive the former, we modify the GLS distribution used in Meyer and Rasche (1992) by
introducing elliptical noise. We show that, if the returns of risky assets follow what we call
skew-elliptical GLS distribution, all investments are ranked equivalently under expected
utility theory and the mean-variance approach. This holds regardless whether there is a
risk-free asset in the choice set or not. In comparison to Meyer and Rasche (1992), we
require a larger set of portfolios to be ranked equivalently, namely all portfolio returns. In
this respect, our result is stronger but requires the speci�cation of elliptical noise, which is
not needed in the original framework of Meyer and Rasche (1992). Our preliminary result
is not in con�ict with the condition of elliptical symmetry contained in Chamberlain (1983,
Theorem 1) because the full investment restriction eliminates, for example, portfolios with
negative wealth. The su�cient condition of elliptical symmetry is still su�cient. However,
now there is a more general su�cient condition which directly calls for an analysis of the
necessary condition for mean-variance utility. Our main result highlights that the skew-
elliptical GLS distribution is both a su�cient and a necessary condition. We arrive at this
core �nding by two important insights. First, we show that switching the perspective from
returns to excess returns, which is possible under the full investment constraint, allows us
to connect the situation with risk-free asset and full investment constraint to the situation
without risk-free asset and no full investment constraint. Consequently, when what we
call skew-elliptical mean-standard deviation (MS) distribution used in Chamberlain (1983,
Theorem 2) holds for excess returns, it implies mean-variance utility for portfolio returns.
Second, we show that this distribution is equivalent to a version of our skew-elliptical GLS
distribution.

This set of results highlights that introducing a full investment constraint into Cham-
berlain's framework with risk-free asset − in other words, focusing on portfolio returns −
extends the class of distributions implying mean-variance utility by, in particular, asym-
metric distributions. It allows us to emphasize that, in the presence of a risk-free asset,
conducting mean-variance analysis is justi�ed even when asset and portfolio returns are
skewed. Many seem unaware of this issue because they tend to dismiss mean-variance
analysis based on the lack of empirical evidence for elliptical return symmetry (or even

1In Section 2.2, we discuss in more detail why this di�erence is important and why ignoring it has led
to crucial misunderstandings in the literature.
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normality) in decision problems where all wealth is invested.2 Our skew-elliptical GLS
representation captures the relevant family of distributions by a simple two-factor linear
equation and allows risk to be broken down into two components: an elliptical variance
component and a non-elliptical component which covers skewness (and higher odd cumu-
lants) of asset returns. This simplicity (in contrast to the rather abstract de�nition of
Chamberlain's skew-elliptical MS distribution) can help to make the conditions for mean-
variance utility more accessible to academics and practitioners and thus prevent misun-
derstandings in future research. Furthermore, our GLS model is a valuable tool for the
derivation of additional results, including more intuitive ways of obtaining results of the
early mean-variance literature and the generalization of results provided in more recent
research. We give some examples of such applications after the derivation and discussion
of our main �ndings.

To round o� our theoretical results, we �nish our study by presenting some evidence
on the empirical relevance of our skew-elliptical GLS model. To this end, we modify the
testing approach proposed by Meyer and Rasche (1992) to be applicable to our speci�c
GLS case. Roughly speaking, our skew-elliptical GLS model can be tested by checking
normalized out-of-sample CAPM residuals for sphericity (a special case of ellipticality) via
the uniform techniques of Liang et al. (2008). Using a sample of common stocks, well-
known factor portfolios (capturing size, value, momentum, reversal and industry e�ects)
and alternative investment vehicles (i. e., indices re�ecting the performance of commodity
futures and hedge funds), we �nd that the skew-elliptical GLS distribution cannot be
rejected in the majority of considered settings.

2.2 Preliminary result

Let X = (X1, ..., Xn)′ be a n×1 vector of stochastic (primary) asset returns with �nite
variances and r > 0 the non-stochastic return on the risk-free asset, if there is one.Suppose
that we have an initial budget B > 0 to construct a portfolio consisting of these assets.
In this context, we have to decide on the amount of capital wiB to be assigned to each
asset i (i = 0, 1, ..., n), where wi ∈ R is a weighting factor for asset i. The term w0

refers to the risk-free asset, whereas the terms for the risky assets are collected in the
vector w = (w1, ..., wn)′. We allow the weights to take negative values, i. e., short sales
are permitted. To preserve the budget constraint, however, the weights have to sum to
unity. That is, we introduce the full investment condition w0 +w′e = 1, where e is a vector
of ones, such that the sum of invested capital equals B. If the full investment condition
is imposed, the linear combination P := w0r + w′X can be interpreted as the return of
a portfolio of assets weighted by (w0, w) ∈ Rn+1. In standard portfolio optimization, we

2Grootveld and Hallerbach (1999), Kapsos et al. (2014) and Lwin et al. (2017) are examples motivating
their otherwise high-quality work in such a way. Studies generally discarding mean-variance analysis in
the light of non-normality are, for example, Zakamouline and Koekebakker (2009), Homm and Pigorsch
(2012) and Levy and Kaplanski (2015).



2.2. Preliminary result 9

choose portfolio weights by maximizing the expected utility of the portfolio return (see
Ingersoll, 1987, Section 3.1). That is, we solve the optimization problem

max
(w0,w)∈Rn+1

E[u(w0r + w′X)] (P)

subject to w0 + w′e = 1,

where the utility function u represents our preferences. In the portfolio selection process,
the full investment constraint ensures a well-posed optimization problem, which delivers
optimal asset ratios, i. e., relative amounts of investment capital, for each asset. Conse-
quently, all investors can utilize the results of the optimization regardless of the sum they
wish to invest because they can proportionally adapt an obtained optimal portfolio to their
needs.

With this focus, it is clear that theoretical justi�cation of mean-variance analysis has
to build upon portfolio returns. This is important and often overlooked in articles using
Chamberlain (1983) to reject mean-variance analysis. By pushing the limits of an initially
introduced budget constraint to in�nity in the `early' optimization steps, he describes the
distributions of an unrestricted universe of scaled portfolios B(w0r+w′X) for an arbitrary
budget B ∈ R. From a scienti�c perspective, there is nothing wrong with this approach.
However, readers tend to misinterpret the results. Chamberlain's �ndings cannot be used
to reject mean-variance analysis based on skewness in empirical returns because he is not
looking at portfolio returns.3

By imposing the full investment restriction, we limit the portfolio universe to practically
relevant constellations and simultaneously deal with this interpretation problem because
the restriction enforces a portfolio return focus in our distributional considerations. As
emphasized by Meyer and Rasche (1992), when additional constraints are imposed, larger
families of distributions can be su�cient to justify mean-variance analysis. In the following,
we show that our constraint leads to a signi�cant and highly relevant expansion.

Within our standard portfolio optimization setting, the following distribution will be
essential for our results:

De�nition (Skew-elliptical GLS distribution). A random vector X ∈ Rn is said to have
a skew-elliptical generalized location-scale (GLS) distribution with constant r ∈ R, if its
components Xi (i = 1, ..., n) can be written as

Xi = r + βi · Y + γi · Zi, (2.2.1)

where, conditional on Y , the vector Z = (Z1, ..., Zn)′ is spherically distributed, and Y is a
real-valued random variable with E[Y ] 6= 0 and Var[Y ] = 1. The coe�cients βi, γi are real
numbers with βi 6= 0 for at least one i = 1, ..., n.

Meyer and Rasche (1992) introduced the GLS representation in a more general form,
i. e., they did not restrict the speci�c distributional form of Y and Z, and showed that their

3In other words, when critics argue based on returns they are assuming that the full investment
condition holds. However, in this case, they cannot use Chamberlain (1983) to back up their arguments.
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GLS model leads to mean-variance utility functions for the primary assets in the choice
set, but not necessarily for portfolios thereof. In order to analyze not only primary assets
but also non-trivial portfolios of the primary assets, we di�er from their speci�cation by
de�ning Z to be spherical while leaving Y untouched. Note that spherical distributions
are invariant under orthogonal transformations and, per de�nition, all Zi (i = 1, ..., n)
are identically distributed with zero mean and unit variance. We do not require γi ≥ 0
because the distribution of the Zi is symmetric around the origin such that Zi and −Zi
have identical distributions.4 Our denomination 'skew-elliptical' arises from two facts.
First, the noise vector ξ := (γ1Z1, ..., γnZn)′ is elliptically distributed about the origin
because elliptical random variables are generated by a�ne transformations of spherically
distributed ones.5 Second, while the spherical component Z is symmetric, the distribution
of the non-spherical component Y is not restricted. This means that a skewed Y can
introduce skewness into X (and higher odd moments are in�uenced analogously). Fat tails
of X can originate from excess kurtosis in Z or Y .

Formulation (2.2.1) has the appealing property that it can be interpreted as a market
model (see Elton et al., 2007, Chapter 7), where Y and Zi are systematic and unsys-
tematic components driving the returns Xi of asset i. Thus, from this perspective, our
distributional speci�cation of Y and Z implies that non-zero skewness in asset returns
comes primarily from market-wide shocks. A risk-free asset can be easily introduced, if
r > 0 is interpreted as the risk-free rate of return. That is, if βi = 0 and γi = 0 for one
i = 1, ..., n, we have the risk-free return Xi = r. This is important because, at �rst glance,
it may appear that some of the following theoretical results only hold for portfolios of risky
assets, when, in fact, they also hold for portfolios including the risk-free asset.

In general, any linear combination of an elliptically distributed random vector is also
elliptical (see McNeil et al., 2005, Section 3.3.3). With our modi�cation, the GLS distribu-
tion receives a similar stability property. That is, with elliptical noise, a linear combination
of GLS random variables inherits the GLS distribution from its components. Because this
important feature drives our preliminary result, we state it in a lemma.

Lemma 1. Let X = (X1, ..., Xn)′ be a random vector satisfying the skew-elliptical GLS
property (2.2.1). Then, every linear combination P = w′X with w ∈ Rn subject to w′e = 1
belongs to the same skew-elliptical GLS family (2.2.1).

Proof. See Appendix A.

We are now in a position to formulate our preliminary result (su�cient condition). If
we interpret the Xi as asset returns and if they satisfy (2.2.1), the portfolio returns P have
a representation of the form (2.2.1) as well. In other words, portfolio building does not

4Furthermore, although Y and Zi might be stochastically dependent, we still have Cov[Zi, Y ] = 0
because E[Zi|Y ] = 0 (see Hunter, 1972). In other words, Y and Zi might a�ect each other, but there is
no linear relationship between them.

5In our de�nition, we could alternatively assume Z = (Z1, ..., Zn)′ to be elliptically distributed about
the origin and appropriately scale the coe�cients γi to obtain the same conclusions in our following
discussions. In subsequent proofs, we often use this perspective (with `dropped' scaling argument) when
verifying that a random vector follows a skew-elliptical GLS distribution.
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enlarge the family of return distributions. The stability (or transmission) property has the
consequence that not only are the distributions of the primary asset returns determined by
mean and variance, so are those of portfolio returns. The following proposition captures
this result.

Proposition 1. If a vector X of asset returns satis�es the skew-elliptical GLS property
(2.2.1), then the distribution of a portfolio return P = w′X is determined by its mean and
variance for every w ∈ Rn with w′e = 1.

Proof. See Appendix A.

Researchers and practitioners often use the ellipticality statement of Chamberlain
(1983, Theorem 1) and the observation that empirical returns tend to be asymmetric
to argue that mean-variance analysis should be abandoned. In addition to our previous
discussion, Proposition 1 shows that Chamberlain (1983, Theorem 1) cannot be used in
such a way. It highlights that, in portfolio selection with a risk-free asset, mean-variance
analysis is justi�ed even when asset returns and portfolio returns are skewed. We can nicely
see that the set of relevant distributions signi�cantly extends from distributions with no
skewness to distributions with skewness, when the full investment condition is imposed,
i. e., when we are interested in a theory for portfolio returns. Intuitively, the reason for
this is that fewer portfolios have to be ranked such that the conditions for equal rankings
under expected utility and mean-variance framework relax.

2.3 Main result

Chamberlain (1983, Theorem 1) provides a full characterization of the distributions
that imply mean-variance utility functions for all scaled portfolios, including those with
negative wealth. Since our preliminary result shows that the full investment condition
crucially in�uences his result, i. e., enlarges the set of distributions that imply mean-
variance utility functions, we now aim at the question of whether we can provide a full
characterization of the distributions that imply mean-variance utility for portfolio returns.

Interestingly, it turns out that the mathematical tools for deriving an answer can be
found in Chamberlain (1983, Theorem 2) because the setting of this theorem and our
portfolio selection problem exhibit, in a speci�c way, the same degrees of freedom of dis-
tributional assumptions for portfolio returns to be determined by mean and variance. The
family of distribution relevant in this theorem is de�ned as follows.

De�nition (Skew-elliptical MS distribution). A random vector X ∈ Rn is said to have a
skew-elliptical mean-standard deviation (MS) distribution, if it is a linear transformation of
a random vector in which the last n−1 components are spherically distributed conditional
on the �rst component, which has an arbitrary distribution. Formally, we require

TX =
(
m
S

)
, (2.3.1)

where T is a non-singular matrix, m is a real-valued random variable with E[m] 6= 0 and
S = (S2, ..., Sn)′ is a random vector with S|m being spherically distributed.
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According to Chamberlain (1983, Theorem 2), in the absence of a risk-free asset, the
distribution of every scaled portfolio is determined by its mean and variance if and only if
the primary assets have a skew-elliptical MS distribution (2.3.1). Proposition 1 shows that
the skew-elliptical GLS distribution (2.2.1) applied to asset returns is su�cient for mean-
variance-determined portfolio returns. Our �rst main result is that these two distributions
can be considered identical.6

Theorem 1. A random vector X ∈ Rn follows the skew-elliptical MS distribution (2.3.1)
if and only if it follows the skew-elliptical GLS distribution (2.2.1) with no constant.

Proof. See Appendix A.

Because the skew-elliptical MS distribution and the skew-elliptical GLS distribution are
di�erent representations of the same family of distributions, our GLS framework provides
a concise summary of skewed distributions implying mean-variance utility functions.

With this insight, we can now turn to our core objective: the full characterization of
which distributional assumptions are necessary and su�cient for portfolio returns to be
determined by mean and variance. To our surprise, its derivation is quite simple. The
introduction of the full investment condition in the situation with a risk-free asset and n
risky assets has the consequence that the portfolio excess return is equal to the weighted
sum of asset excess returns:7

P − r = w1(X1 − r) + ...+ wn(Xn − r). (2.3.2)

Otherwise, this equality would not hold. If we denote the risky asset excess returns with
X̄i := Xi− r and the portfolio excess return with P̄ := P − r, we can rewrite the portfolio
excess return as P̄ = w1X̄1 + ... + wnX̄n. Because, formally, the risk-free asset and the
full investment condition `disappear', this is exactly the situation analyzed in Chamberlain
(1983, Theorem 2). Hence, the distribution in Chamberlain (1983, Theorem 2) applied to
excess returns characterizes the distributions that imply mean-variance utility functions
for portfolio returns.8 With the help of Theorem 1, we are now in a position to formulate
our second main result.

Theorem 2. Assume there exists at least one i = 1, ..., n such that E[Xi] 6= r, where Xi

is the ith element of the risky asset vector X. In the presence of a risk-free asset, the
distribution of portfolio returns P = w0r + w′X is determined by its mean and variance

6Showing the equivalence of the distributional representations is not trivial. An elliptically distributed
random vector Z ∈ Rn is, in general, generated by an a�ne transformation of a spherically distributed
random vector of the same dimension n. The vector S, however, is of dimension n−1. We can still choose
the arbitrary random variable m appropriately such that it covers the missing last degree of freedom and
the random variable Y .

7For w0 + w1 + ... + wn = 1, we have P − r = (w0r + w1X1 + .. + wnXn) − r = (w0r + w1X1 + ... +
wnXn)− (w0 + w1 + ...+ wn)r = w1(X1 − r) + ...+ wn(Xn − r).

8It is not important to distinguish whether portfolio returns or portfolio excess returns are determined
by mean and variance because they contain the same information: E[P̄ ] = E[P − r] = E[P ] − r and
Var[P̄ ] = Var[P − r] = Var[P ].
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for every (w0, w) ∈ Rn+1 with w0 + w′e = 1 if and only if the asset returns X have a
skew-elliptical GLS distribution (2.2.1) with r being the risk-free rate.

Proof. See Appendix A.

Theorem 2 contains the core message of our study: elliptical symmetry is not necessary
for mean-variance utility of portfolio returns. In standard portfolio optimization, mean-
variance analysis is justi�ed even when returns are skewed.

To put an end to the longstanding debate on the distributions that imply mean-variance
utility for portfolio returns, we require one more theoretical step. Theorem 2 presents a
necessary and su�cient condition for the situation with a risk-free asset. For the situation
without a risk-free asset, Proposition 1 shows that the same condition is su�cient. Recall
that Chamberlain (1983, Theorem 2) combined with our Theorem 1 states that, in the
latter situation, the skew-elliptical GLS distribution (2.2.1) is a necessary condition if
we consider all scaled portfolios. Thus, the question arises whether introducing the full
investment constraint also relaxes Chamberlain (1983, Theorem 2) such that a larger family
of distributions justi�es mean-variance analysis. As illustrated in the following, it does
indeed. We assume that there is a risky asset, say X0 = R, such that Xi −R and R are
stochastically independent for each i = 1, ..., n. If R is just a constant, this condition holds
vacuously true and R can again be interpreted as the risk-free rate of return. The premise
of this setup, which might look arti�cial at �rst glance, is that with a variable R, which
can be treated just as the constant risk-free rate, our proof can be based on the same chain
of reasoning that we used before.9

Corollary 1. Let X0 = R be a risky asset such that Xi − R and R are stochastically
independent for each i = 1, ..., n in the risky asset vector X. Further, assume E[Xi] 6= E[R]
for at least one i = 1, ..., n. Then, in the absence of a risk-free asset, the distribution of
a portfolio return P = w0X0 + w′X is determined by its mean and variance for every
(w0, w) ∈ Rn+1 with w0 +w′e = 1 if and only if the asset returns Xi have a skew-elliptical
GLS distribution of the form

Xi = R+ βi · Y + γi · Zi, (2.3.3)

where, conditional on Y , the vector Z = (Z1, ..., Zn)′ is spherically distributed, Y is a real-
valued random variable with E[Y ] 6= 0 and Var[Y ] = 1, and R is independent of Y and
Z.

Proof. See Appendix A.

Instead of having a constant risk-free rate, the family of distributions (2.3.3) o�ers space
for another risky return component R. However, since there is no additional coe�cient
to choose, this enlargement is rather unimportant. We did not expect it to be signi�cant
because, if we wish to remain in a mean-variance world, introducing a real third degree

9Note that, because the following Corollary 1 requires R to satisfy speci�c conditions, the necessary
condition for the very general case of n risky assets and no risk-free asset remains open.
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of freedom is not possible. The variance measures symmetric uncertainty such that one
component of the distribution also has to be symmetric. The other component, which
corresponds to the mean, allows an arbitrary distribution. Thus, the skew-elliptical GLS
distribution (2.2.1) already o�ers the maximum degrees of freedom.

2.4 Additional results

Our analysis has produced many additional theoretical results because, based on our
framework, �ndings of the portfolio literature can be derived and/or generalized quite
easily.

First, we can alternatively derive the su�ciency part of Chamberlain (1983, Theorem
1) by realizing that our GLS model contains an elliptical version of the Sinn (1983) and
Meyer (1987) LS model. If this special case holds, the distributions of all scaled portfolios
and portfolio returns are determined by mean and variance. This result also helps to illus-
trate the distributional expansion we observe with the introduction of the full investment
constraint because we are jumping from a LS model to a GLS model.

Second, we generalize the �ndings of Schuhmacher and Auer (2014). Most importantly,
we show that under our skew-elliptical GLS model and some mild axiomatic requirements
(with respect to the quanti�cation of risk), the investment performance rankings of multi-
asset portfolios are identical regardless of the choice of performance measure. This explains
the so far puzzling empirical observation that the Sharpe ratio and many other popular
measures tend to produce the same rank ordering of investment funds with highly non-
normal return distributions (see Eling and Schuhmacher, 2007). It also highlights that
switching from the Sharpe ratio to conceptionally di�erent (typically asymmetric) alter-
natives − an approach practitioners often promote for skewed return environments (see
Bacon, 2008) − does not necessarily improve the investment process. In other words, using
a symmetric risk measure in an asymmetric (skew-elliptical GLS) world still leads to the
optimal portfolio decision.

Third, by linking our GLS model to the framework of Simaan (1993a), we can adopt
his e�cient set calculations to show that the famous two-fund separation property of Tobin
(1958) holds in our setting and to derive the corresponding tangency portfolio formula.

Finally, we illustrate that the parameters determining the distribution of portfolio re-
turns can be identi�ed in a very elegant fashion and derive a generally applicable two-step
guide for use in future research. According to this guide, in the �rst step, we have to show
that a given family of distributions is stable with respect to portfolio formation. If this is
true, we can, in the second step, identify the parameters that determine the distribution
of a primary asset belonging to this family by following the implicit function approach
used in our proofs and in Meyer and Rasche (1992). The resulting parameters conse-
quently determine the return distribution of the primary asset and the return distribution
of portfolios.

The full discussion is located in the following subsections.

2.4.1 Alternative su�ciency proof

The su�ciency part of Chamberlain (1983, Theorem 1) can be derived by realizing that
it resembles a special case of our GLS framework. Similar to the proof of Lemma 1, it can
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be shown that our family of asset returns also exhibits portfolio stability for r > 0 and
all w ∈ Rn, if Y is a non-stochastic constant. In this case, (2.2.1) reduces to an elliptical
version of the LS condition of Sinn (1983) and Meyer (1987), which is ful�lled by a vector
X = (X1, ..., Xn)′ if its components Xi (i = 1, ..., n) can be written as

Xi = r + µi + γi · Zi, (2.4.1)

where µi ∈ R and Z = (Z1, ..., Zn)′ is spherically distributed.10 A vector X satisfying
(2.4.1) is simply an elliptical random vector such that the following statement is in line
with Chamberlain (1983, Theorem 1).

Corollary 2. Assume that the vector X of asset returns satis�es the elliptical LS property
(2.4.1). Then, the distribution of a portfolio P = w′X is determined by its mean and
variance for every w ∈ Rn.

2.4.2 Irrelevance of performance measure choice

Schuhmacher and Auer (2014) investigate investment decisions concerning portfolios of
the risk-free asset and only one risky asset (e. g. an investment fund) belonging to the
original GLS family of Meyer and Rasche (1992). With our Lemma 1, we can expand their
setting to more general portfolios consisting of the risk-free asset and n risky assets.11

Schuhmacher and Auer (2014, Section 3.3) analyze the conditions under which expected
utility and mean-variance e�cient sets are identical. The following corollary extends their
result to the n-asset case.

Corollary 3. Assume the vector X of asset returns satis�es the skew-elliptical GLS con-
dition (2.2.1) and let w, w̃ ∈ Rn. Then, we have E[u(w′X̄)] ≥ E[u(w̃′X̄)] for all non-
decreasing and concave utility functions u, with at least one strict inequality, if and only if
we have E[w′X̄] ≥ E[w̃′X̄] and Var[w′X̄] ≤ Var[w̃′X̄], with at least one strict inequality.

Schuhmacher and Auer (2014, Section 3.4) also look at conditions under which di�erent
performance measures can be written as an increasing function of the Sharpe ratio. While
Chen et al. (2011) show that many measures are a monotonic function of the Sharpe ratio
when asset returns are elliptical, Schuhmacher and Auer (2014) introduce skewness via
the original GLS family and prove monotonicity under such distributions. A performance
measure R of a portfolio P is de�ned as the ratio of expected excess return to investment
risk captured by a risk measure ρ. Thus, we have R(P̄ ) := E[P̄ ]/ρ(P̄ ). The Sharpe ratio
S, as the most famous performance measure, sets ρ to the standard deviation of (excess)
portfolio returns. Other popular measures use, for example, lower partial moments, the
value-at-risk or the expected shortfall. Considering two properties of meaningful risk mea-
sures (positive homogeneity and risk consistency; as in Schuhmacher and Auer, 2014), we

10Note that the parameter r ∈ R is actually redundant, because, in contrast to our GLS framework, it
does not enlarge the family of distributions in the LS framework. We merely use it as a reference to the
risk-free rate.

11In other words, the following corollaries are a consequence of our Lemma 1 and the results of Schuh-
macher and Auer (2014). Put di�erently, we could also say that they follow from our Proposition 1.
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can extend their result in the following corollary. Positive homogeneity means that the risk
of a portfolio is proportional to its size, i. e., we have ρ(ϕP̄ ) = ϕρ(P̄ ) for every ϕ ≥ 0 (see
Artzner et al., 1999). Further, ρ must be consistent with a speci�c order relation. This
risk consistency implies ρ(P̄1) > ρ(P̄2) for two portfolio excess returns P̄1 and P̄2, if P̄1 is
obtained from a random variable by a higher mean-preserving spread than P̄2. Formally,
the portfolios can be written as P̄1 = Y + b1Z1 and P̄2 = Y + b2Z2 for some random
variables Y, Z1, Z2 and real numbers b1 > b2, where Z1 and Z2 are identically distributed
with E[Z1|Y ] = 0 (see also Bigelow, 1993; Hadar and Russell, 1971; Hanoch and Levy,
1969; Ortobelli et al., 2005; Rothschild and Stiglitz, 1970).

Corollary 4. Assume the vector X of asset returns satis�es the skew-elliptical GLS condi-
tion (2.2.1). Further, let ρ be any risk measure satisfying positive homogeneity and denote
by R the corresponding performance measure. Then, we have:

(i) If S(w′X̄) = S(w̃′X̄) for some w, w̃ ∈ Rn, this implies R(w′X̄) = R(w̃′X̄).

(ii) Assume ρ additionally ful�lls risk consistency. Then, if we have S(w′X̄) > S(w̃′X̄)
for some w, w̃ ∈ Rn, this implies R(w′X̄) > R(w̃′X̄).

This shows that for all risk measures satisfying positive homogeneity and risk consis-
tency, the corresponding performance measure is a strictly increasing function in the Sharpe
ratio, if the skew-elliptical GLS condition holds. A portfolio has the highest Sharpe ratio
if and only if it has the highest value of all other admissible performance measures. Simply
put, the e�cient sets corresponding to di�erent performance measures are identical.

Corollary 4 is important because practitioners often reject the Sharpe ratio, arguing
that empirical return skewness makes other performance measures more suitable. Our
results show that, even when returns are skewed, the Sharpe ratio and many alternative
performance measures may produce identical rankings of portfolio alternatives.12

2.4.3 Two-fund separation

An important implication of mean-variance preferences is a separation property. That
is, in the mean-variance framework with risk-free asset, Tobin (1958) found that an investor
can �nd his/her optimal portfolio by �rst identifying the ideal portfolio of risky assets and
then combining this portfolio with the risk-free asset. Ross (1978) completely characterized
the class of distributions that imply such two-fund separability for risk-averse investors.

We can easily derive the e�cient set and the two-fund separation property for our
setting by using the fact that our skew-elliptical GLS distribution is linked to the class of
distributions analyzed in Simaan (1993a). In our notation, his class can be stated as

Xi = µi + βi · Y + γi · Zi, (2.4.2)

where, conditional on Y , Z = (Z1, ..., Zn)′ is spherically distributed, and Y is a real-valued
random variable with E[Y ] = 0 and Var[Y ] = 1. Again, ξ := (γ1Z1, ..., γnZn)′ is elliptically

12This describes the population. Empirical rankings are occasionally di�erent because of sampling
error.
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distributed about the origin, i. e., ξ ∼ E(0,Σ, ψ) where Σ is the covariance matrix and ψ
the characteristic function.13

In comparison to (2.2.1), (2.4.2) has an additional degree of freedom because it allows
E[Xi] = µi to be independent of βi. Consequently, in light of our Theorem 2, under (2.4.2)
portfolio returns P = w0r+w′X with (w0, w) ∈ Rn+1 and w0 +w′e = 1 lose the property of
being determined by mean and variance only. However, in line with intuition, these changes
lead to a setting where portfolio return distributions depend on three parameters. As stated
in Simaan (1993a, Theorem 3), the distribution of any portfolio return is determined by its
mean, variance and skewness, if (2.4.2) holds.14 More precisely, the distribution of P is a
function of the mean parameter w′µ, the non-sphericity and skewness parameter w′β and
the elliptical variance parameter w′Σw. In empirical portfolio selection, such a setting has
the e�ect that an additional parameter type has to be estimated, which adds estimation
error to the one already documented for mean and (co)variance (see, for example, Best
and Grauer, 1991; Britten-Jones, 1999).15

Condition (2.4.2) reduces to (2.2.1) with r = 0 if µi/βi =: c is constant for i = 1, ...n.
We then have Xi = βi · (c+ Y ) + γi · Zi. In this case, the mean and skewness parameters
of a portfolio P provide the same information: w′µ =

∑n
i=1 wiµi = c

∑
i=1wiβi = c · w′β.

Hence, the mean/skewness parameter w′β and the elliptical variance parameter w′Σw are
enough to determine the distribution of portfolio returns. By reintroducing a risk-free
asset (i. e. simply adding it to the class again) we obtain a special case of the Simaan
(1993a) distribution which allows us to model excess returns instead of returns.16 With
this focus and in the presence of the full investment condition, we can adopt the e�cient
set calculations of Simaan (1993a) under (2.4.2) to derive the e�cient set of our portfolio
selection problem. Adding a constant does not render his general line of reasoning invalid.
The proof of Corollary 5, which derives our e�cient set and tangency properties, outlines
this issue in detail.

13The multivariate extended skew-normal and closed extended skew-normal distributions can be repre-
sented via (2.4.2). Adcock (2014) shows that, with adequately chosen parameters, this also holds for the
Student-t extensions of these distributions. Furthermore, McNeil et al. (2005, pp. 77 et sqq.) illustrate that
random variables following the generalized hyperbolic distribution can be written as µi + βiW +

√
WZ̃i,

where Z̃ ∼ N(0,Σ),W ≥ 0 has a generalized inverse Gaussian distribution independent of Z̃, and
√
WZ̃|W

is elliptically distributed.
14Simaan (1993a, Theorem 3) considers no risk-free asset and no full investment constraint. Thus,

similar to our use of Chamberlain (1983, Theorem 2) in our setting, we can rely on Simaan's result even
after adding the risk-free rate and the full investment condition. We only have to slightly modify his
arguments.

15For a further discussion of Simaan (1993a) type models (e. g. variants considering right-hand variables
with non-zero mean), see Adcock (2014, Section 6).

16This is why the tangency portfolio in the following corollary slightly di�ers from the one stated in

Simaan (1993a, Theorem 5), i. e., we have f = V −1β
e′V −1β instead of f = V −1(β−re)

e′V −1(β−re) .
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Corollary 5. Consider the standard portfolio problem for a risk-averse agent, i. e., any
concave non-decreasing utility function u. In the presence of a risk-free asset, solve

max
(w0,w)∈Rn+1

E[u(w0r + w′X)] (P)

subject to w0 + w′e = 1.

Assume that the vector X of asset returns satis�es the skew-elliptical GLS condition (2.2.1)
with risk-free rate r > 0. Then, the e�cient set is spanned by the risk-free asset and the
tangency portfolio

f =
V −1β

e′V −1β
,

where V = Σ + ββ′ is the covariance matrix of X.

Proof. See Appendix A.

We have two-fund separation such that any investor's optimal portfolio can be con-
structed by holding each of two funds (risk-free and tangency) in appropriate ratios.

2.4.4 Identifying the parameters determining portfolio return distributions

Looking at the link between (2.4.2) and (2.2.1) from a di�erent angle, we can obtain
the result of Simaan (1993a, Theorem 3) more easily than the author by following the same
reasoning we used to derive Proposition 1. For w ∈ Rn, we have P = w′X =

∑n
i=1wiµi +∑n

i=1wiβiY +
∑n

i=1 wiγiZi = µ̃ + β̃Y + Z̃, where µ̃ :=
∑n

i=1wiµi, β̃ :=
∑n

i=1wiβi and
Z̃ :=

∑n
i=1wiγiZi. The random variable Z̃ is elliptically distributed about the origin with

the same characteristic function (see proof of Lemma 1), such that portfolio P belongs to
the same family of distributions as the asset returns, namely (2.4.2). Similar to our setting,
the distribution family of asset returns is stable under linear combinations. Consequently,
it is su�cient to show that the distribution of an asset Xi ful�lling (2.4.2) is determined by
its mean, variance and skewness. That is, we only have to verify whether the coe�cients µi,
βi and γi are determined uniquely by E[Xi], Var[Xi] and skewness ν[Xi] because, without
loss of generality, all Zi are identically distributed with unit variance, and Y has unit
variance. We have E[Xi] = µi, Var[Xi] = β2

i + γ2
i and ν[Xi] = E[X3

i ] = β3
i E[Y 3], which

we can solve for µi, βi and |γi|.17 Thus, the distribution of any portfolio which combines
assets satisfying (2.4.2) is determined by its mean, variance and skewness.

It is not a coincidence that we can derive results of studies that do and do not cover
higher moments based on the same reasoning. As soon as a multivariate family of dis-
tributions is stable in portfolio formation, i. e., it has a transmission property ensuring
that a linear combination of random variables belonging to the family is part of the same
family, we simply have to determine the parameters determining the distributions of the

17Again, we do not need to know the sign of γi because the distribution of Zi is symmetric about the
origin.
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original variables and automatically obtain the parameters determining the distribution
of the combination. This important observation leads to a simple concept or guideline
to identify parameters determining the distribution of portfolio returns (and to construct
stable families).

Remark. We propose two steps to derive the parameters that determine portfolio re-
turns. In a �rst step, we have to show that the considered family of distributions is stable
with respect to portfolio building. If this is not the case, the portfolio returns cannot be
determined by a speci�c set of parameters. The second step consists of identifying the
parameters that determine the distribution of an asset belonging to the considered family.
For this, we can follow Meyer and Rasche (1992) by utilizing the implicit function theorem.

2.5 Empirical perspective

Even though the focus of our study is theoretical in nature, we shed some light on
whether our skew-elliptical GLS distribution has empirical support. Meyer and Rasche
(1992) propose an intuitive testing procedure for their original GLS model which uses the
CAPM to �ll it with life, i. e., to establish a link to empirically observable variables. We
adopt their general idea but, at a certain point, have to deviate from it because our GLS
model is more speci�c.

According to the CAPM the random return of an asset or portfolio i is given by Xi =
r + βi(Xm − r) + ξi, where Xm is the random return of the market portfolio, βi governs
systematic risk and ξi represents the random idiosyncratic component of the return. In
this model, Xm and ξi are independent, and the ξi are independent of one another. If the ξi
follow the form ξi = d+γiZi, then the return of i becomes Xi = (r+d)+βi(Xm−r)+γiZi,
which is of the original GLS form. Consequently, to obtain empirical evidence in favor of
the original GLS condition in a sample of N (i = 1, ..., N) assets with T (t = 1, ..., T )
returns each, we should focus on the properties of Zit = [Xit − (r + d)− βi(Xmt − r)]/γi.

To obtain empirical observations of Zit, Meyer and Rasche (1992) use a recent 30-
year sample of stocks with continuous NASDAQ trading history. In our study, such a
selection yields monthly total return data from January 1989 to December 2018 for 503
stocks. The market portfolio is proxied by the CRSP value-weighted index and the risk-free
rate is captured by the one-month Treasury bill rate (from Ibbotson Associates).18 The
stock returns are obtained from Thomson Reuters Datastream whereas the two remaining
variables are taken from Kenneth R. French's data library.19 The data is split into two
subsamples, A and B, of the same number of return observations for each stock. Subsample
A serves to construct values for the parameters determining the Zit. That is, the excess
returns for each stock are regressed against the contemporary excess return of the market.
No intercept is included in the regression equation. The regression slope coe�cient for each
stock is used as its βi. Next, the βi are used to obtain the ξit = (Xit − r) − βi(Xmt − r).

18Following Eling and Schuhmacher (2007), we have used several alternative ways of modeling the
risk-free rate (e. g., initial �xes or diverse averages). None of them a�ected our main conclusion.

19See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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The average of ξit over all i and t gives d, whereas the standard deviation of ξit for each i
delivers γi. In subsample B, these parameter values then allow the calculation of the Zit.

Because this procedure only looks at individual stocks, Meyer and Rasche (1992) em-
ploy a vector sampling procedure to construct portfolios. In contrast to pure random
sampling, this method selects blocks of stocks from a beta-sorted stock vector such that
the resulting portfolios do not overlap (allowing independent idiosyncratic risk terms) and
provide diversity with respect to βi. Within each portfolio, the stocks are weighted equally
(as often in practice; see DeMiguel et al., 2009) and the portfolio Zit are determined sim-
ilar to individual stocks. To illustrate typical empirical test results, we use K = 3, 5, 7
portfolios of S = 2, 4, 6, 8 stocks in each, which are common sizes for individual investors
(see Barasinska et al., 2012; Kumar and Lim, 2008; Statman, 1987).20

To test whether there is empirical support for their GLS speci�cation, Meyer and
Rasche (1992) analyze whether empirical realizations of Zit are likely to have resulted
as independent samples of the same population and whether their mean is signi�cantly
di�erent from zero or not. Speci�cally, they use Kolmogorov-Smirnov (KS) multisample
tests with simulated probability distribution (see Gardner et al., 1980) and classic t-tests
for this purpose.21 Implicitly testing a joint hypothesis that the GLS condition holds across
portfolios and that its variables and parameters are adequately chosen, they cannot reject
their model in almost all settings they consider. Because we closely follow Meyer and
Rasche (1992), our testing procedure will have a similar joint nature. In other words,
we build a conservative setup which is not tilted in favor of the GLS model because the
additional components of the joint hypothesis (such as our potentially suboptimal market
portfolio choice for the common factor) make our tests more likely to reject the GLS
distribution.22

Because our GLS requirements are more restrictive with respect to the model constant
(risk-free rate) and the noise component (elliptical), we drop d and cannot apply the KS
test. At �rst glance, we might jump to established tests for elliptical symmetry, like the
ones of Manzotti et al. (2002), Schott (2002) or Hu�er and Park (2007), and apply them
to the ξit of subsample B.23 However, testing for spherical symmetry of the Zit is more
suitable because, apart from several technical advantages (related to scaling parameter
measurement), it takes into account that the mean of the noise has to be zero. In general,
there are many statistics for this purpose. However, most of them either converge slowly

20For full transparency, the results for other K and S are available from the authors upon request. Also
note that individual investors can, of course, also form portfolios based on characteristics other than betas
(see Green et al., 2017). However, considering them all is beyond the scope of our study.

21For alternative testing procedures (like the Cramer-von Mises test), which can also be used in the
context of the original GLS model, see Vassalos et al. (2012).

22Also note that, by relying on the CAPM framework, we assume that Y and Z are independent, which
is not required in our GLS world. While this simpli�es the testing procedure (because conditional and
unconditional distributions become identical), it introduces an additional hurdle for empirical data to pass
our test.

23More recently proposed ellipticality tests have not found wide acceptance because their implementa-
tion is computationally too expensive for large numbers of dimensions and data points (see Paolella, 2019,
Section C.2.4).
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to their limiting distributions or cannot be easily evaluated in numerical computation. We
use some of the tests recently outlined and extended in Liang et al. (2008, 2019) because
they do not su�er from such shortcomings.

According to Liang et al. (2008), the null hypothesis that the cumulative distribu-
tion function underlying an independently identically distributed K-dimensional sample
{ztj}t=1,...,T,j=1,...,K is spherical can be tested via univariate or multivariate uniform statis-
tics calculated with observations {vtj}t=1,...,T,j=1,...,K−1 originating from well-de�ned trans-
formations of the sample data.24 This is because a test for spherical symmetry can be
substituted by a test of the null hypothesis H1

0 : the vtj are uniformly distributed in (0, 1)
or a test of the null hypothesis H2

0 : the vt = (vt1, ..., vt,K−1)′ are uniformly distributed in
the hypercube [0, 1]K−1. Based on extensive simulations, Quesenberry and Miller Jr. (1977)
and Miller Jr. and Quesenberry (1979) recommend the (modi�ed) Watson (1961, 1962)
statistic or the Neyman (1937) smooth statistic with fourth-degree polynomials for testing
univariate uniformity. Critical values for these tests have been provided by Stephens (1970)
and Miller Jr. and Quesenberry (1979), respectively. As far as multivariate uniformity is
concerned, Liang et al. (2001) propose two statistics: one asymptotically normal and one
asymptotically chi-square with two degrees of freedom. Each of them can be computed us-
ing three di�erent measures of discrepancy: symmetric, centered and star (see Hickernell,
1998). For all tests, high statistics (in absolute terms) indicate evidence of non-uniformity
and thus non-sphericality. In the following, we implement the (modi�ed) Watson (1961,
1962) test and the normal form of the Liang et al. (2001) test because, in comparison to
the two alternatives, they are characterized by better size and power under many known
spherical distributions.

Table 2.1 presents our test results. We �nd that the null hypothesis of sphericity −
and thus our GLS model − cannot be rejected in the majority of cases. Given that our
approach is conservative and yet the number of rejections is low, this is strong evidence
that our distribution model is relevant. As expected, the few observable rejections mainly
occur for less diversi�ed portfolios with S = 2.25 There are also some rejections for more
diversi�ed portfolios with S = 8. Similar to the empirical �ndings of Meyer and Rasche
(1992) there is no clear-cut relationship between rejection and portfolio size. That is, test
statistics do not monotonically fall with a rising number of assets within the portfolios.
However, they tend to be somewhat higher when more portfolios enter the test procedure.
All this also holds in other sampling exercises.26

To analyze larger portfolios (with di�erent weighting schemes) and to go beyond our
initial (limited) stock selection, we also test whether well-known portfolios of French's

24For technical details on these transformations and the formal reasons for the reduction from K to
K − 1, see Liang et al. (2008, pp. 684-685).

25However, in line with earlier evidence (see McNeil et al., 2005, Section 3.3.5), very small portfolios
and even single stocks are not generally in con�ict with spherical symmetry.

26In addition to vector sampling, we implemented random sampling similar to Paolella (2019, Section
C.2.4). That is, we randomly drew S · K of our NASDAQ stocks, formed equal-weighted portfolios,
calculated our test statistics and repeated this 1,000 times. With few exceptions, density plots of the
statistics nicely matched the null distributions of our tests. Performing this procedure for industry subsets
(given by the Worldscope general industry classi�cation) delivered similar results.
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Watson Liang

Symmetric Centered Star

3 portfolios
2 stocks 0.35 0.03 4.30 2.17
4 stocks 0.08 0.16 0.42 0.67
6 stocks 0.03 0.38 0.47 -0.07
8 stocks 0.05 -1.05 0.31 0.27

5 portfolios
2 stocks 0.07 1.50 0.62 1.12
4 stocks 0.05 -0.91 0.68 0.25
6 stocks 0.04 0.34 -0.60 0.29
8 stocks 0.31 -2.65 2.37 -3.41

7 portfolios
2 stocks 0.74 1.83 0.89 5.86

4 stocks 0.10 1.65 0.96 2.91

6 stocks 0.13 1.34 -0.05 -0.89
8 stocks 0.19 0.15 1.73 -1.53

Following the procedure outlined in the main text, this table tests the null hypothesis of sphericity against the alternative
of non-sphericity within a universe of NASDAQ stocks. For several sets of portfolios with speci�c sizes, we obtain CAPM-
�ltered normalized noise, transform the noise as suggested by Liang et al. (2008) and report the uniform statistics of Watson
(1961, 1962) and Liang et al. (2001), where the latter is calculated in its normal version. A signi�cant statistic implies that
the normalized noise may be considered non-spherical and the return data is in con�ict with our GLS model speci�cation.
Signi�cance at the 1 % level is highlighted in bold print.

Table 2.1: NASDAQ stock returns

library, which are typically used as benchmarks in asset pricing studies and have high
relevance in institutional trading (see Ang, 2014, Chapter 10), are in line with our GLS
model. That is, we perform additional tests for 6 size/book-to-market, 6 size/momentum,
6 size/reversal as well as 5 and 10 industry portfolios (de�ned and used in, for example,
Abhakorn et al., 2013; Fama and French, 2012). Furthermore, we look at two additional
asset classes by considering the 5 futures-based subindices of the Goldman Sachs Commod-
ity Index (GSCI) and the 13 strategy subindices of the Credit Suisse Hedge Fund Index
(CSHFI).27 While the stock portfolios and the commodity indices have the same sample
size as our previous analysis, the availability of the hedge fund data is limited to the period
from January 1994 to December 2018.

Table 2.2 presents our additional test results. Based on the Watson statistic, our stock,
commodity and hedge fund data is not in con�ict with a skew-elliptical GLS world. The
test statistics are insigni�cant for all data sets. Turning to the di�erent speci�cations of the
normal Liang test, we see a slightly di�erent picture. While there are still many instances
of non-rejection, the hedge fund results may appear less fortunate. However, this is only a
slight bump in the otherwise supportive nature of our empirical results because investors
typically trade individual hedge funds which are more GLS-compatible (see Schuhmacher,
2012). Furthermore, we must keep in mind that we are testing a joint hypothesis and that
rejection may simply stem from the fact that, instead of the market portfolio proxy, a more
suitable variable capturing common variation of returns is needed.

Because our conclusions may be sensitive to some of the settings in our research design,
we have conducted several robustness checks with respect to a potential survivorship bias,

27The GSCI data is available in Thomson Reuters Datastream. The CSHFI data can be obtained via
https://lab.credit-suisse.com.

https://lab.credit-suisse.com
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Watson Liang

Symmetric Centered Star

Additional stock portfolios
FF 6 size/book-to-market 0.21 5.55 2.98 -0.18
FF 6 size/momentum 0.11 4.53 1.72 0.70
FF 6 size/reversal 0.21 1.39 1.72 -1.99
FF 5 industries 0.04 1.39 1.22 -1.32
FF 10 industries 0.05 1.11 2.60 -1.60

Additional asset classes
GS 5 commodity indices 0.03 1.40 1.90 0.11
CS 13 hedge fund indices 0.23 8.78 8.66 4.16

This table repeats the tests of Table 2.1 for additional data sets. Speci�cally, we use the well-known Fama-French (FF) size,
book-to-market, momentum, reversal and industry portfolios. Furthermore, we look at the subindices of the Goldman Sachs
(GS) commodity futures index and the Credit Suisse (CS) hedge fund index. Again, signi�cance at the 1 % level is marked
bold and implies rejection of our GLS speci�cation.

Table 2.2: Fama-French portfolios and additional asset classes

the choice of sample split in the �lter procedure and the selected common factor in the
case of commodity and hedge fund data. The results, presented in Appendix A, provide
additional support for the GLS model and the practical relevance of our work.

2.6 Conclusion

Almost 70 years after Markowitz's groundbreaking work on mean-variance portfolio
theory and decades of ambiguity over whether its application is justi�ed when returns
are skewed, we build on the important contributions of Chamberlain (1983) and Meyer
and Rasche (1992) to o�er a resolution: if there is a risk-free asset and we introduce a
full investment condition, i. e., focus on the distributions of portfolio returns, then mean-
variance analysis is justi�ed even when asset and portfolio returns are skewed. This cuts
across the widespread belief that mean-variance analysis should be abandoned in the case
of asymmetric return distributions. Using the symmetric risk measure variance in an
asymmetric world leads to the same optimal portfolio decisions as popular asymmetric
risk measures.

The key to this result is the discovery that, if the skew-elliptical MS distribution used in
Chamberlain (1983, Theorem 2) holds for excess asset returns, it completely characterizes
the distributions that imply mean-variance utility for portfolio returns. With the additional
insight that this class of distributions is identical to an extension of the GLS family of
Meyer and Rasche (1992), which we obtain by specifying elliptical noise, we can provide
a concise representation of the distributions that justify mean-variance analysis. The
resulting factor-model-like framework is not only easy to interpret but also allows the
�ndings of previous studies to be reproduced and generalized in a quick and elegant fashion.
In some empirical tests, we additionally show that its validity cannot be rejected in several
data sets containing, for example, portfolios typically held by private investors or portfolios
popular in asset pricing tests.

While we have imposed a wealth restriction, another common assumption in portfolio
selection bans short sales (see Agarwal and Naik, 2004; Board and Sutcli�e, 1994; Grundy
et al., 2012; Jagannathan and Ma, 2003), i. e., requires all portfolio weights to be non-
negative. Meyer and Rasche (1992) emphasize that the necessity of elliptical symmetry in
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Chamberlain (1983) is related to the fact that, for each portfolio, the mirror counterpart
likewise has to be appropriately evaluated. Hence, future theoretical research might exam-
ine whether banning short sales also enlarges the family of distributions which are su�cient
for portfolio return distributions to be determined by mean and variance. To derive speci�c
results, one might think of modifying the assumption that the noise in our GLS model is
elliptically distributed. A closer look at the stability discussion in Cass and Stiglitz (1970)
and Owen and Rabinovitch (1983) may be a suitable starting point for such an endeavor.28

A separate analysis of self-�nancing portfolios, where the sum of the investment weights is
zero (see Korkie and Turtle, 2002), is similarly interesting. As far as additional empirical
work is concerned, Schuhmacher and Auer (2014) provide some thoughts on how we might
�nd or construct a common GLS factor which is not a market portfolio. Consequently, our
empirical setup should be considered as the starting point of a full-scale empirical analysis
of the skew-elliptical GLS model. Given the considerable �exibility of the model, in that
we can set any distribution for the common factor, Monte Carlo studies may also, in a
wide variety of distributional settings, compare the size and power characteristics of the
many alternative methods (identi�able in the references of Liang et al., 2008) we have to
test our GLS model.29

28One may also study Genton and Loper�do (2005) and Shushi (2016, 2018).
29Test extensions in the spirit of Bai (2003) and Li and Tkacz (2011) may also have their merits.



Chapter 3

Multivariate electricity price forecasting

In short-term forecasting of day-ahead electricity prices, incorporating intraday dependen-
cies is vital for accurate predictions. However, it quickly leads to dimensionality prob-
lems, i.e., ill-de�ned models with too many parameters. In an application for the Ger-
man/Austrian market, we address this issue by deriving variable importance scores from a
random forest algorithm and arrive at several interesting insights. First, we can develop full
pro�les stating which hours of which past days have the highest predictive power for speci�c
hours in the future. Second, in a comparison to other approaches (such as dynamic factor
models, penalized regressions or Bayesian shrinkage) that are commonly used to resolve di-
mensionality problems, feeding the identi�ed variables into a support vector machine leads
to a promising forecasting technique. Finally, our variable importance pro�les provide a
possible explanation why some forecasting methods are more accurate for certain hours of
the day than others. The pro�les can therefore serve as a guide for model selection. In
addition, they help to explain why simple forecast combination schemes tend to outperform
the full battery of models considered in our comprehensive comparative study.

3.1 Introduction

Over the past decades, electricity markets worldwide have undergone rapid deregula-
tion, creating a more competitive market environment characterized by more volatile prices
in auction-based day-ahead electricity markets. Not surprisingly, this development has (i)
made energy risk management a primary concern for electricity producers, traders and
consumers, and (ii) elevated price forecasts to a key input in decision making processes
(see Bunn, 2004; Eydeland and Wolyniec, 2003; Weron, 2006). Electricity producers and
retailers, for example, have to predict market-clearing prices to optimally self-schedule, de-
rive bidding strategies in auctions and engage in pro�table bilateral contracts (see Conejo
et al., 2005). Motivated by the practical need for accurate price forecasts, scienti�c research
has brought forth a wide variety of electricity price forecasting (EPF) models. Aggarwal
et al. (2009), Weron (2014) and Nowotarski and Weron (2018) provide excellent reviews
and evaluations of the methods which have been proposed so far.

In many day-ahead markets, agents submit their bids and o�ers for electricity, de-
livered during speci�c hours of the next day, before closing time at noon. Thus, when
modeling and forecasting hourly electricity prices, we have to consider that the prices for
all contracts of the next day are determined at the same time using the same available
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information. Furthermore, many authors emphasize that it is important to incorporate the
autoregressive intraday dependency structure of hourly prices into forecasting models (see
Maciejowska and Weron, 2013; Ziel, 2016). That is, we have to take into account that the
price for tomorrow's hour h may depend not only on previous prices for this hour of the day
but also on previous prices for other hours. However, standard approaches do not capture
this hourly structure because they typically model a univariate price process, which pools
all hourly prices (and does not allow `time-varying' parameters), or set up 24 univariate
price processes, which allow dependence on lags of the same hour only. To capture intra-
day dependencies in the simplest way, we could use a general vector autoregressive (VAR)
process Pd = φ0 +

∑p
l=1 ΦlPd−l + εd with daily (24× 1) price vector Pd = (Pd,0, ..., Pd,23)′,

(24× 1) intercept vector φ0, (24× 24) autoregressive parameter matrices Φl and (24× 1)
error vector εd. However, in this VAR(p) setting with 24+24·24·p = 24+576p parameters,
a rising lag order p quickly leads to a blown-up, over�tted model with poor out-of-sample
properties. Because the statistics literature o�ers several dimension reduction (feature se-
lection and feature extraction) and regularization techniques to deal with this so-called
curse of dimensionality, the question arises which method is most suitable in the context
of EPF.

Several recent studies have analyzed the potential of selected remedies. While, for
example, Maciejowska and Weron (2013) use principal component analysis to condense
input variables, Ludwig et al. (2015), Uniejewski et al. (2016) and Ziel and Weron (2018)
opt for special cases of elastic net regressions. Joutz et al. (1995) and Panagiotelis and
Smith (2008) focus on Bayesian techniques. Lago et al. (2018) suggest variable dropping via
a functional analysis of variance, whereas Ludwig et al. (2015), Gonzáles et al. (2016) and
Pórtoles et al. (2018) have investigated the performance of di�erent types of regression
trees. Unfortunately, these studies are based on data sets for di�erent markets and, in
addition, they tend to compare the employed methods to a few selected benchmarks only.
Consequently, it is di�cult to identify which one should be preferred by decision makers
in speci�c electricity markets (see Gürtler and Paulsen, 2018). This is where we step into
the picture.

With a focus on the German/Austrian market, which appears to be neglected in many
studies tackling the dimensionality issue, we start by systematically analyzing the role of
lagged hourly prices and weekday seasonalities in EPF. More precisely, we derive impor-
tance rankings which can reduce the number of available predictors by identifying the ones
that do not contain substantial additional information. Because, in very high-dimensional
input variable spaces, unreasonable trust in heuristics and simple �lter scores often lead to
variable subsets of poor quality (see Sorjamaa et al., 2007; Yoon et al., 2005), we implement
a supervised machine learning algorithm called random forest. This method, proposed by
Breiman (2001) and quite popular in bioinformatics (see Díaz-Uriarte and Alvarez de An-
drés, 2006; Heidema et al., 2006; Strobl et al., 2007), relies on simple, yet powerful data
sampling and feature splitting techniques to provide reliable importance scores within a
reasonably short computation time. In our study, random forests con�rm previous results
that prices lagged by one week have considerably more explanatory power than directly
preceding smaller lags and that prices of speci�c daytimes can be forecasted with greater
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accuracy when lagged prices of di�erent daytimes are used as predictors (see Ziel, 2016).1

Extending previous research, we can present detailed variable importance pro�les for hours
of di�erent daytimes which allow several interesting insights. Using the block bid de�ni-
tions of the day-ahead auction, we �nd that, for example, evening prices of the previous day
are highly relevant predictors for after-midnight prices, whereas weekday dummy variables
and yesterday's afternoon prices are very important for the determination of afternoon
prices.

After the derivation of the most important predictors, we use them in a standard regres-
sion setting (statistical model) and a support vector machine (machine learning model),
which has attracted much interest in the EPF literature (see Chaâbane, 2014; Naumzik
and Feuerriegel, 2020; Niu et al., 2010; Yan and Chowdhury, 2010) and tends to shine in
comparison to other established computational intelligence methods (such as some forms
of neural networks; see Che and Wang, 2010; Sansom et al., 2003), to see how the vari-
able selection performs in out-of-sample forecasts. At the same time, we provide a full-
scale comparison with popular alternative forecasting approaches. That is, besides simple
benchmark models (including naive predictions, unrestricted VARs and expert models),
we have a closer look at other techniques commonly applied to deal with dimensionality
issues. Among the alternatives we have, for example, dynamic factor models (principal
component analysis followed by assigning a time series model to the identi�ed factors) for
feature extraction, as well as penalized regressions (such as the elastic net) and Bayesian
shrinkage of VAR models for regularization. As a �rst result, we �nd that expert models
relying on a rough variable set derived from our random forest pro�les tend to outperform
large unrestricted models. Second, when combining the detailed random forest feature
selection with a support vector machine, we obtain lower prediction errors compared to a
feed of the variables into a classic statistical model and also �nd that the former approach
performs well relative to other remedies for dimensionality. Third, in an analysis of the
prediction errors on a hourly level, we see that each daytime appears to have its ideal fore-
casting model. For example, elastic nets are superior models when it comes to forecasting
evening prices. Our importance pro�les can help us to explain such a result. They show
the most relevant variables such that, based on the design of a forecasting approach, we
can determine whether or not the approach includes these variables.

Finally, to round o� our comparison of predictive accuracy, a last contribution of our
study is motivated by a growing body of literature emphasizing that combinations of fore-
casts derived from di�erent models are often more reliable than forecasts from a single
model alone (see Baumeister and Kilian, 2015; Clemen, 1989; Timmermann, 2006). Be-
cause electricity studies have mainly focused on simple time series models so far (see Bor-
dignon et al., 2013; Nowotarski et al., 2014), we look at combination schemes incorporating
more advanced forecasting techniques. When applied to our entire model selection, they
outperform each single model. This is partially because the combinations strongly bene�t

1In contrast, for many multivariate economic series, importance usually declines with higher lags and
cross-dependencies are substantially less pronounced such that univariate models with lags covering the
recent own past are often su�cient.
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from our observation of daytime-dependent model performance. Consequently, if we are
interested in accurate predictions for all hours of the day, we do not necessarily have to
search for one model with this capacity. Instead, we can develop models tailored to speci�c
daytimes and include them in combined forecasts to achieve high overall predictive power.

The remainder of our article is organized as follows: In Section 3.2, we describe our
data, implement our variable importance calculations using the random forest algorithm
and present an overview of competing forecasting models, including our two random for-
est models. In Section 3.3, we evaluate the accuracy of our price models based on their
forecasting errors and selected statistical tests. Section 3.4 concludes, highlights the im-
plications of our study and outlines directions for future research.

3.2 Data and methodology

3.2.1 Sample selection

We use European Power Exchange (EPEX) hourly day-ahead electricity prices (in
EUR/MWh) covering the market area Germany/Austria from January 2013 to Decem-
ber 2017.2 Our sample size is motivated by previous studies which favor short periods
covering only the most recent (typically six, three or even fewer) years (see Lago et al.,
2018; Ludwig et al., 2015; Ziel and Weron, 2018) in order to not overweight less relevant
price characteristics of the very distant past. This is important because, especially in the
recent years, the regulatory changes in electricity markets have caused signi�cant structural
beaks in price and volatility dynamics (see Auer, 2016). Our initial model calibrations rely
on data from 2013 to 2015; the remaining years 2016 and 2017 are used to evaluate out-
of-sample forecasts. For some methods, the calibration period is split up into the two-year
training period 2013-2014 and the one-year validation period 2015.

3.2.2 General technical issues

For each hour h, our goal is to identify the most relevant inputs to explain the price
variable y = (Pd,h)d=1,...N . We focus on the explanatory power of past spot prices and
weekday e�ects. Thus, we work within an almost pure multivariate time series context.
As for past prices, we consider lags up to a maximum order of p = 21 days. Thus, we have
to choose from 24 · 21 = 504 lagged price variables (Pd−l,k)d=1,...,N resulting for the lags
l = 1, ..., p and hours k = 0, ..., 23. As noted by Weron (2006), electricity prices depend on
the day of the week, meaning that weekends tend to exhibit price patterns di�erent from

2The data is available from the European Energy Exchange (EEX) via https://www.eex.com/en/
market-data. Because the loss of an hour due to daylight saving time causes some data problems, we
interpolate the missing hour in March with the two hours around the missing hour. Furthermore, we use
the average of the double hours in October such that we have 24 observable prices each day.

https://www.eex.com/en/market-data
https://www.eex.com/en/market-data
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weekdays. This also holds for holidays, where prices are lower than on business days. To
incorporate the weekday e�ect, we introduce weekday dummies

Wi(d) =

{
1, W(d) = i,

0, W(d) 6= i,
(3.2.1)

whereW(d) is a function that gives a number which represents each day of the week (i = 0
for Sunday, i = 1 for Monday, ..., i = 6 for Saturday). To capture holidays, we follow
Ziel et al. (2014). We treat each public holiday as a Sunday. In addition, each regional
holiday that is not a Sunday is treated as a Saturday. Moreover, we take the 12 hours
after a regional or public holiday as Monday-am and the 12 hours before each holiday as
Friday-pm.

All possible input variables are gathered in the (N×J) regressor matrixX = (xj)j=1,...,J .
Each (N × 1) column xj represents either a weekday dummy variable (Wi(d))d=1,...,N for a
day i = 0, 1, 5, 6 or a lagged price variable (Pd−l,k)d=1,...,N for some lag l = 1, ..., p and hour
k = 0, ..., 23. The standard linear regression model is then given by

y = Xψ + ε (3.2.2)

with (J × 1) coe�cient vector ψ and (N × 1) error term ε.3

In this setup, we derive the importance pro�le of hourly prices with reference to year
2015. In the case of an univariate time series, relevant lag variables are traditionally
selected by inspecting the empirical autocorrelation function and choosing all variables
with statistically signi�cant correlation (see Box et al., 2015). We also implement this
approach as a �rst simple benchmark for our own random forest proposal. That is, we
consider the sample correlation coe�cient between variables xj and y as an importance
score I for variable xj:

I(xj) =

∑N
d=1(xjd − x̄j)(yd − ȳ)√∑N

d=1(xjd − x̄j)2

√∑N
d=1(yd − ȳ)2

. (3.2.3)

An obvious de�ciency of this score is that it looks at each feature separately and con-
sequently cannot reveal mutual information. A more suitable score should assign higher
importance to a few extremely relevant input features, and in return rank features lower
which mainly cover information already supplied by more relevant features.

Using a heat map design, Figure 3.1 presents the correlation matrices between current
and lagged hourly prices. For a one-day lag, we �nd an overall positive correlation between
prices of adjacent days. In addition, we can observe a correlation `break' between hours 05
and 06. While today's after-midnight prices are highly correlated with yesterday's prices
(in particular with prices in the late evening hours), the remaining correlations are notably

3Note that, for notational convenience, our matrix X does not contain the typical initial vector of
ones. Of course, in our empirical application, models are estimated with constant terms (see Allen and
Stone, 2005).
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Based on electricity market data for Germany/Austria in 2015, this �gure plots heat maps for sample
correlations between current spot prices Pd,h and lagged spot prices Pd−l,k for di�erent hours h, k = 0, ..., 23
and lags l = 1, 2, 7.

Figure 3.1: Correlations between current and lagged hourly prices

lower. While, at �rst glance, this appears unspectacular, recall that today's price at hour
00 is formed 24 hours after yesterday's price at hour 23. What might also come as a surprise
is that high correlations on the matrix diagonal (i.e., strong relationships of speci�c hours
to their own past) appear only at evening hours. Turning to the matrix for a seven-day
lag, we can see that the highest correlations occur at daylight from hours 06 to 18. In
a comparison of the seven-day with the two-day lag, we �nd higher correlations for the
weekly lag.

The simple correlation pro�le suggests that hours of di�erent daytimes have distinct
importance, i.e., the explanatory power of lagged input variables appears to vary depend-
ing on daytime. In the following, we provide a more sophisticated analysis of this claim by
deriving variable importance rankings based on random forests. For better visualization
and to identify systematic patterns within these rankings, we use the daytime (or block)
de�nitions of the energy exchange. In the auction forming the day-ahead spot price, agents
can not only place single hour bids but also block bids for combinations of hours. Par-
ticularly popular blocks are night (00-05), morning (06-09), high noon (10-13), afternoon
(14-17) and evening (18-23).4

3.2.3 Random forests

A random forest is an ensemble of Ntree decision trees, where each tree is grown using
a subsample (or bootstrap sample) from the training set and choosing randomly at each
node a subset of explanatory variables. In contrast to a classi�cation and regression tree
(CART) model building strategy (see Breiman et al., 1984), the random forest algorithm
builds unpruned regression trees, where at each node v, features of given number m are
randomly sampled and the best split is calculated only based on these variables (see Genuer

4There are many more block de�nitions including, for example, business hours (08-15).
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et al., 2008). A split divides the remaining observations of a node v over two child nodes
by choosing one of the m features and a threshold value. Split evaluation in regression
trees is performed via a residual sum of squares criterion which de�nes the impurity at
node v as

ι(v) =
1

Nv

Nv∑
n=1

(ydn − ȳ)2, (3.2.4)

where Nv is the number of observations in node v, ydn is the response value of observation
n (i.e., of day dn), and ȳ is the average response of the observations in v. The reduction
in impurity at node v achieved by splitting using the variable xj is given by

∆ι(xj, v) = ι(v)−
∑
c

w(vc|v)ι(vc) (3.2.5)

where vc denotes a child node and w(vc|v) is the proportion of observations in v that are
assigned to vc. At each node, a random set of m features is evaluated, and the feature xj

with the maximum ∆ι(xj, v) is used for splitting the node v. Binary splitting continues
until the subsample (or bootstrap sample) is used up.

Random forests use their so-called out-of-bag (OOB) samples to construct a variable
importance measure: the permutation importance of Breiman (2001). The OOB sample of
a tree includes all observations (of the training sample) not used to grow the tree. For each
feature, the OOB error captures the mean decrease in accuracy by removing the association
between the feature and the target. This is achieved by randomly permuting the values of
the feature and measuring the resulting increase in error. Formally, let B(t) be the OOB
sample for a tree t, with t ∈ {1, ..., Ntree}. Then the variable importance of xj in tree t is

I(t)(xj) =
1

|B(t)|
∑
d∈B(t)

(
yd − ŷ(t)

d

)2

− 1

|B(t)|
∑
d∈B(t)

(
yd −πj ŷ

(t)
d

)2

, (3.2.6)

where ŷ(t)
d and πj ŷ

(t)
d are the predicted values for observation d before and after permuting

the values of variable xj. We predict by simply moving up the tree. The raw importance
score for each variable is computed as the mean importance over all trees:

I(xj) =
1

Ntree

Ntree∑
t=1

I(t)(xj). (3.2.7)

Standard implementations of random forests often provide a scaled version of the per-
mutation importance which is obtained by dividing the raw importance by its standard
error. However, because this alternative measure has statistical defects (see Strobl and
Zeileis, 2008), we focus on the unscaled version.5 Furthermore, it is important to note that

5The ability of the scaled version to identify irrelevant variables does not improve with increased sample
size.
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the permutation importance for variables of di�erent types (in our case, real-valued vs.
dummies) is unbiased only when subsampling (instead of bootstrapping) is used to build
the trees (see Strobl et al., 2007). Therefore, we use the R package party for implementa-
tion, set Ntree = 500 and m = bJ/3c, and opt for subsampling without replacement.

3.2.4 Variable importance scores

We now investigate the random forest importance scores resulting for the market data
in the year 2015. To evaluate the overall importance of speci�c lags, we start with an
aggregate perspective. That is, for each lag, we sum the corresponding scores across hours
and plot the totals in Figure 3.2. Afterward we look at the detailed hourly results. Table
3.1 reports the seven most important input variables (and their scores) for each hour of
the day. Figure 3.3 then presents the full importance pro�les for selected hours, where,
for each daytime, we pick a representative hour and restrict our attention to the most
important lags l = 1, 7.6

0.0
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This �gure plots the relative permutation importance scores (computed via the random forest algorithm
of Section 3.2.3) of lagged price variables Pd−l,k (lags l = 1, ..., 21 days) and weekday dummies Wi (days
i = 0, 1, 5, 6) for the explanation of prices Pd,h. For better visualization, the scores have been aggregated
across all hours h and k.

Figure 3.2: Aggregated lag importance

Our entire set of relative percentage scores supports the idea that the variables which
are most important for price forecasting change over daytime. However, we can also see
that, across hours, the most relevant variables belong to the same lag order. That is, the
�rst lag exhibits the greatest explanatory power, followed by the weekly lags of 7, 14 and
21 days. Interestingly, weekly lags minus 1 (i.e., the lags 6, 13 and 20) are not negligible.
Weekday e�ects are dominant during daylight hours, while they vanish during night and
evening hours. Overall we can sketch the following pro�le for our block-oriented daytime
de�nitions:

Night (00-05): Evening prices of the previous day are not only the most relevant vari-
ables; they also explain night prices almost exclusively. With importance scores between
15.1% (for hour 05) and 41.5% (for hour 00), hour 23 of the previous day stands out. Other

6The importance pro�les for all 24 hours of the day can be found in Appendix B.
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Top seven explanatory variables

h #1 #2 #3 #4 #5 #6 #7

N
ig
h
t

00 Pd−1,23 (41.5) Pd−1,22 (26.7) Pd−1,21 (15.6) Pd−1,20 (08.3) Pd−1,19 (03.6) Pd−1,18 (01.2) Pd−1,17 (00.5)
01 Pd−1,23 (40.2) Pd−1,22 (20.6) Pd−1,21 (19.6) Pd−1,20 (07.9) Pd−1,19 (04.1) Pd−1,18 (01.8) Pd−1,15 (00.7)
02 Pd−1,23 (40.2) Pd−1,22 (20.7) Pd−1,21 (14.7) Pd−1,20 (09.8) Pd−1,19 (04.4) Pd−20,19 (02.2) Pd−1,18 (01.1)
03 Pd−1,23 (39.0) Pd−1,22 (16.5) Pd−1,21 (14.9) Pd−1,20 (13.0) Pd−1,19 (05.3) Pd−1,18 (02.1) Pd−1,5 (01.8)
04 Pd−1,23 (28.4) Pd−1,20 (20.0) Pd−1,21 (15.7) Pd−1,22 (13.9) Pd−1,19 (08.0) Pd−1,18 (03.0) Pd−1,5 (02.8)
05 Pd−1,20 (26.4) Pd−1,21 (17.0) Pd−1,23 (15.1) Pd−1,22 (11.9) Pd−1,19 (08.1) W0 (04.0) Pd−1,18 (02.5)

M
o
rn
in
g 06 W0 (23.6) Pd−1,20 (16.9) Pd−7,7 (08.9) Pd−1,21 (07.6) Pd−1,19 (04.7) Pd−1,23 (04.2) W6 (03.9)

07 W0 (26.2) Pd−7,7 (12.3) Pd−1,20 (08.4) W6 (06.5) Pd−14,7 (05.5) Pd−1,19 (04.3) Pd−14,8 (04.0)
08 W0 (30.9) Pd−7,7 (12.6) Pd−1,20 (09.1) W6 (06.6) Pd−1,19 (04.4) Pd−1,23 (03.9) Pd−7,8 (03.9)
09 W0 (30.4) Pd−1,20 (09.1) Pd−1,23 (07.6) Pd−7,7 (07.4) W6 (04.3) Pd−7,8 (04.1) Pd−1,19 (03.7)

H
ig
h
n
o
o
n 10 W0 (27.7) Pd−1,23 (09.0) Pd−7,7 (08.9) Pd−7,8 (05.3) Pd−1,19 (04.8) Pd−1,20 (04.2) W6 (03.5)

11 W0 (18.1) Pd−1,23 (08.8) Pd−7,7 (08.6) Pd−1,13 (05.1) Pd−1,16 (04.9) Pd−7,8 (04.8) Pd−1,15 (04.6)
12 W0 (21.3) Pd−1,23 (07.7) Pd−7,7 (07.0) Pd−1,16 (06.3) Pd−1,15 (05.3) Pd−1,13 (04.8) Pd−7,8 (04.5)
13 W0 (26.5) Pd−7,7 (09.0) Pd−1,16 (07.0) Pd−1,15 (05.3) Pd−1,17 (05.2) Pd−1,23 (04.3) Pd−1,13 (03.5)

A
ft
er
n
o
o
n 14 W0 (25.3) Pd−1,17 (08.4) Pd−1,16 (08.3) Pd−7,7 (06.8) Pd−1,15 (05.4) Pd−14,7 (04.3) Pd−14,8 (03.0)

15 W0 (18.3) Pd−1,17 (13.1) Pd−1,16 (08.2) Pd−7,7 (05.1) Pd−14,7 (04.9) Pd−7,17 (04.2) Pd−1,18 (03.9)
16 Pd−1,17 (16.5) W0 (08.7) Pd−1,16 (08.0) Pd−7,17 (06.7) Pd−1,18 (05.5) Pd−14,17 (04.2) Pd−7,16 (04.0)
17 Pd−1,17 (18.9) Pd−1,18 (08.6) Pd−7,17 (08.4) Pd−14,17 (06.8) Pd−1,16 (05.1) Pd−7,16 (03.6) Pd−14,15 (03.1)

E
ve
n
in
g

18 Pd−1,18 (23.5) Pd−1,19 (08.1) Pd−1,17 (06.9) Pd−7,17 (03.8) Pd−7,18 (03.6) Pd−14,17 (03.4) Pd−14,18 (02.7)
19 Pd−1,19 (27.0) Pd−1,20 (08.0) Pd−1,18 (05.4) Pd−6,19 (05.1) Pd−7,7 (04.9) Pd−14,19 (03.7) Pd−14,9 (03.3)
20 Pd−1,20 (16.7) Pd−1,21 (11.0) Pd−21,7 (06.7) Pd−1,19 (06.2) Pd−7,7 (05.2) Pd−14,20 (03.8) Pd−14,7 (03.5)
21 Pd−1,21 (24.2) Pd−1,22 (11.2) Pd−1,20 (04.9) W6 (04.9) Pd−14,21 (04.7) Pd−21,7 (03.4) Pd−14,20 (03.0)
22 Pd−1,22 (22.5) Pd−1,23 (16.8) Pd−1,21 (09.9) W6 (05.6) Pd−2,22 (03.7) Pd−2,23 (03.1) Pd−14,21 (02.0)
23 Pd−1,23 (25.3) Pd−1,22 (15.6) Pd−1,21 (06.0) W6 (04.9) Pd−2,22 (04.4) Pd−1,0 (03.7) Pd−2,23 (03.5)

This table reports the most important input variables for explaining the prices Pd,h (h = 0, ..., 23). The
relative permutation importance scores (obtained via the random forest algorithm of Section 3.2.3) are
given in parentheses.

Table 3.1: Most important input variables

variables are barely important. For example, we have almost no weekday e�ect at night
hours.

Morning (06-09): Last evening's prices are still important. For example, hour 20
has high scores of around 10%. Additionally, morning prices lagged by one week gain in
signi�cance, with hour 07 exhibiting scores between 7.4% and 12.6%. The weekday e�ect
grows in strength with sunrise, where the Sunday dummy variable is the most important.

High noon (10-13): For high noon prices, many variables have signi�cant importance
scores. The Sunday dummy is the most relevant one with scores between 18.1% and 27.7%.
The prices of morning hours 07 and 08 lagged by one week also have high scores. As far
as one-day lags are concerned, high noon, afternoon and evening prices are relevant: hour
23 provides the highest scores between 7.7% and 9.0% for the hours 10 to 12.

Afternoon (14-17): In contrast to high noon hours, the most important one-day lags
are concentrated around a few hours, with hour 17 scoring highest. Morning hour 07 and
afternoon hour 17 of the previous week are signi�cant. The Sunday e�ect declines with
sunset.

Evening (17-23): Evening hours are the only hours for which the same hour the previous
day always has the highest importance score. In comparison to afternoon hours, the
explanatory power of weekly lagged morning hours wanes. Weekday e�ects, among which
Saturday reaches higher scores than Sunday, are of little relevance.



34 Chapter 3. Multivariate electricity price forecasting

Lag 1 Lag 7 Weekday

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Mo Fr Sa Su

0.0

0.1

0.2

0.3

0.4

Feature

Im
po

rt
an

ce

(a) Night hour 02
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(b) Morning hour 06
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(c) High noon hour 12
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(d) Afternoon hour 16
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(e) Evening hour 21

This �gure illustrates the relative permutation importance scores (computed via the random forest algo-
rithm of Section 3.2.3) of lagged price variables Pd−l,k (lags l = 1, 7 days) and weekday dummies Wi (days
i = 0, 1, 5, 6) for the explanation of some selected hourly price variables.

Figure 3.3: Variable importance pro�les for selected hours
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Before turning to our comprehensive forecasting study, it is instructive to pre-evaluate
the quality of our random forest scores in comparison to the simple correlation scores of
Section 3.2.2. Speci�cally, we use the variable rankings delivered by the two approaches for
a simple feature selection procedure and investigate the resulting out-of-sample forecasting
errors for the years 2016 and 2017. In both cases, we choose the most important features
whose relative importance in the validation period scores sum up to a pre-set total relative
importance score Itotal. We then calculate the out-of-sample mean absolute error (MAE,
as de�ned in Section 3.3.1) of forecasts produced by linear models which use the identi�ed
feature subsets.

In Figure 3.4, we illustrate the relationship between the choice of total importance and
the corresponding forecasting errors. For the correlation benchmark, the minimum MAE of
5.95 is reached for Itotal = 7%. For the random forest algorithm, we have a lower minimum
MAE of 5.77 for Itotal = 79%. For a large range of Itotal values, random forest errors are
below the best result of the correlation approach and indicate a better selection of feature
subsets by the random forest method.
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(b) Random forest

Using (a) correlation coe�cients (see Section 3.2.2) and (b) permutation scores of random forests (see
Section 3.2.3), we select the most important features whose relative importance scores sum up to a pre-
set total relative score and calculate the out-of-sample mean absolute errors (MAE) of electricity price
forecasts produced by linear models equipped with the identi�ed feature subsets. The out-of-sample period
is given by the years 2016 and 2017. This �gure plots the pre-set total scores against the resulting MAE
values.

Figure 3.4: Importance score evaluation

In our data, we have many variables with similarly high correlation to the dependent
variable and thus similar correlation-based scores. In contrast, the random forest algorithm
assigns high scores only to a few input variables, whereas many other features receive scores
around 0. This makes feature selection easy because we could simply sort out features with
importance scores close to 0.

3.2.5 Competing forecasting models

Our comparative analysis builds on a wide variety of popular forecasting models. We
focus on the explanatory power of past spot prices, such that only pure price models
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without exogenous variables (like weather or load) are considered. One exception is made
for weekday dummies Wi, which are included in all price models. Because many of the
models are well-known, the following discussion focuses on an overview and the speci�cation
issues relevant for our electricity data.7

Benchmark models. We set up three simple and three advanced benchmark models.
In the �rst group, we start with the naive or persistent model which assumes that price
changes are completely random such that the best forecast is an appropriate past hourly
price (see Nogales et al., 2002). Furthermore, we use 24 univariate AR(p) models (hence-
forth abbreviated with 24AR) which are based on centered hourly prices and estimated
via Yule-Walker solving (see Ziel, 2016). The model orders ph are determined by minimiz-
ing the Akaike information criterion (AIC) with an upper bound of pmax = 21. Finally,
we consider an unrestricted VAR(p) model (henceforth just VAR) which is estimated via
equation-by-equation ordinary least squares (OLS) (see Raviv et al., 2015; Ziel and Weron,
2018). Again, we choose the lag order p via AIC with pmax = 21. We obtain p = 2.

The second group of benchmark models consists of expert models which use a �xed
parsimonious autoregressive structure based on prior knowledge of experts. Screening
previous research (see Weron and Misiorek, 2008) or our random forest importance scores,
a straightforward expert choice is to include all lagged price variables Pd−l,k for the lags
l = 1, 7 and weekday dummy variables Wi for Monday, Friday, Saturday and Sunday, i.e.,
i = 0, 1, 5, 6. Using these variables in a VAR setup leads to an expert VAR implementable
via equation-by-equation OLS (see Maciejowska et al., 2016; Misiorek et al., 2006). Besides
a standard time series model, we also feed the expert variable choice into two forms of
machine learning models. First, because energy market research (including Catalão et al.,
2007; Kuo and Huang, 2018; Lago et al., 2018; Szkuta et al., 1999) has paid much attention
to neural networks (NNs), we construct an expert NN. Speci�cally, for each hour h, we train
a (feed-forward) multi-layer perceptron with one hidden layer and tangent-sigmoid transfer
function via the Levenberg-Marquardt algorithm (see Cruz et al., 2011; García-Ascanio and
Maté, 2010). To derive the optimal number of hidden nodes, we consult several rules of
thumb (see Blum, 1992; Boger and Guterman, 1997; Hagan et al., 1996) and train networks
with a number of hidden nodes ranging from 1 to 12. As far as the network generalization
error (the mean square error in the validation sample) is concerned, we �nd 8 hidden nodes
to be a reasonable layer size. Second, because support vector machines (SVMs), depending
on the market, can be more accurate than NNs (see Che and Wang, 2010; Sansom et al.,
2003), we also set up an expert SVM in Schölkopf et al. (2000) form and with Gaussian
radial basis kernel function. The optimal parameters of the SVM regression are obtained
by setting reasonable parameter ranges and then selecting values via a real-value genetic
algorithm (see Scrucca, 2013). In this context, the �tness function is set similar to the
expert NN.

Feature extraction. While random forests concentrate on selecting the most important
features, another approach to dimension reduction is to extract (or generate) new features
from the set of input variables and to use these new variables instead of the original ones

7Full technical model descriptions can be found in Appendix B.
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(see Maciejowska and Weron, 2013). To follow this idea, we assume that each hourly price
can be decomposed into a small set of K common factors and an idiosyncratic component.
These quantities are estimated by principal component analysis (PCA) with an optimal
number of factors K = 7 derived from the tests of Bai and Ng (2002), Alessi et al. (2010),
Onatski (2010) and Ahn and Horenstein (2013). These factors explain 97.3% of the in-
traday variability in our price data. To forecast future prices, we model the idiosyncratic
component via an AR(q) model and the truncated factors via an unrestricted VAR. In the
latter, AIC lag determination yields p = 7. We call the overall price forecasting approach
PC(K)-VAR. In addition to this VAR setting, we also apply the least absolute shrinkage
operator (LASSO, to be discussed below) and a SVM (discussed above) to the factors,
which leads to the PC(K)-LASSO and PC(K)-SVM models. In both cases, we set p = 7.
We use K = 7 and K = 11 because the latter number of factors yields the best forecasts
for PC-LASSO and PC-SVM.

Regularization. To solve ill-posed optimization problems or to prevent over�tting, regu-
larization incorporates additional information into the estimation process. In ridge regres-
sion, this is an l2-penalty (see Uniejewski et al., 2016). In contrast, the LASSO method
adds an l1-penalty (see Ziel, 2016). In both cases, a tuning parameter λ controls the
strength of the penalty. While the ridge penalty shrinks the coe�cients of correlated pre-
dictors towards each other, the LASSO tends to pick one of them and discard the others.
The elastic net combines LASSO and ridge with weights of α and (1 − α), respectively
(see Zou and Hastie, 2005). For pmax = 21, we calibrate the three methods with the path-
wise coordinate descent algorithm of Friedman et al. (2010). That is, we de�ne a grid
of λ (and α) values and afterward determine the optimal ones for each hour by 10-fold
cross-validation minimizing the mean square error in the calibration set. In majority, we
obtain α values between 0.8 and 1.0, that is, elastic nets strongly tilted towards the LASSO
approach.

With the intention of reducing parameter uncertainty, another form of regularization
− Bayesian estimation − introduces prior information on the distribution of model param-
eters (see Karlsson, 2013). In our application, we implement the reduced form Bayesian
VAR with Minnesota prior of Litterman (1986). We assume that a random walk model is
a reasonable `center' of beliefs about parameter behavior. Consequently, the prior mean is
1 for the �rst own lag of each equation and 0 for all other variables. The hyperparameters
determining the prior variances are speci�ed to ensure a low harmonic decay of variances
with rising lags, to forbid a shrinkage of the coe�cients of exogenous variables and to
minimize the mean absolute error in 10-fold cross-validation (see Sims and Zha, 1998). For
the lag order, we set p = 7 such that computation time remains within reasonable limits.

Finally, we consider a regularized random forest (RRF). In comparison to a standard
RF, it introduces a penalty λ such that, depending on the level of λ, a new feature needs
more or less predictive power to be selected for splitting a node. If the penalty is de�ned
individually for each feature and as a function of the normalized importance score of a
preliminary standard RF and a control γ, we arrive at the guided RRF (GRRF) (see Deng
and Runger, 2013). We implement the GRRF using the RF speci�cation of Section 3.2.3
and γ = 0.75, for which it performs best.

Feature selection. We use three distinct feature selection techniques. First, we imple-
ment a stepwise model building procedure (henceforth abbreviated with Step-Linear) which
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starts with the intercept and then iteratively adds (removes) input variables to (from) a
linear model (see Uniejewski et al., 2016). At each step and up to order pmax = 21, this
method searches for the greatest improvement of the model �t (measured by the AIC),
and terminates if no further improvement can be made. Second, besides using LASSO
variables in a standard linear model (see regularization), we also combine LASSO feature
selection with SVM regression (see Becker et al., 2009). This LASSO-SVM model is cali-
brated similar to our LASSO and SVM discussion above. Finally, we turn to our random
forest scores. They are a natural basis for feature selection because they measure how
much we would regret not including a feature in a model and, even though they are based
on linear calculations, they can detect both linear and non-linear relationships between
input and target variables (see Auret and Aldrich, 2012). If relationships were actually
non-linear, it would not be surprising to observe that a random forest selection used in a
linear prediction model performs poorly whereas a strong non-linear regression tool makes
more e�cient use of a random forest feature choice. To elaborate on this perspective, we
use the K most relevant variables according to their importance score rankings in both a
standard linear model and a SVM (as speci�ed above). As for the number K of features
to select, we set K = 50 for each hour to allow a comparison to our expert models which
consider 24 + 24 + 4 = 52 features. We denote the resulting models RF(50)-Linear and
RF(50)-SVM. Furthermore, in the models RF-Linear and RF-SVM, we use the K between
10 and 100 that optimizes generalizability.

Forecast combinations. In addition to forecasting via individual models, we look at
forecast combinations. Because even rudimental combinations often work reasonably well
in comparison to more complex ones (see Genre et al., 2013), we choose two simple weight-
ing schemes. We use the simple average of all forecasts produced by our entire model
selection. While this approach provides some insurance against crucial forecasting failures
(see Hibon and Evgeniou, 2005), it does not consider that the performance of di�erent
models can vary with market conditions (see Weron and Misiorek, 2008). Therefore, we
also generate combinations where forecasting models are weighted based on their inverse
mean square prediction error (MSPE) over the most recent Q periods (see Baumeister and
Kilian, 2015). We label these combinations Inv-MSPE(Q) and test Q = 7, 30, 365 days.

3.3 Empirical results

3.3.1 Forecasting error values

We now present our day-ahead forecasting results for Germany/Austria. Recall that we
use a two-year out-of-sample test period from January 2016 to December 2017, which, in
contrast to typically used one-year out-of-sample periods, helps to deliver more persuasive
results.

Clark and McCracken (2013) and Weron (2014) state that, in forecast evaluation, there
is no `industry standard' and the implemented error measures vary considerably. However,
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the most often used metrics are based on absolute errors. We use the mean absolute error
(MAE) given by

MAE =
1

24N

N∑
d=1

23∑
h=0

|Pd,h − P̂d,h|, (3.3.1)

where P̂d,h is the forecast of Pd,h. Because absolute errors are hard to compare across
datasets, some studies use measures with absolute percentage errors. However, because
electricity can exhibit negative prices, this is no option for us.8

Apart from l1-type norms, square or l2-type norms are also very popular. Therefore,
we additionally calculate the root mean square error (RMSE) de�ned as

RMSE =

√√√√ 1

24N

N∑
d=1

23∑
h=0

|Pd,h − P̂d,h|2. (3.3.2)

While the MAE is a robust measure, the RMSE is a optimal measure for least square
problems but very sensitive to outliers.

In Table 3.2, we report both MAE and RMSE for the evaluation of forecasts produced
by our model selection. As indicated by the de�nitions (3.3.1) and (3.3.2), the errors are
averaged over all hours h = 0, ..., 23. We also present the estimated standard deviations of
MAE and RMSE, which are computed using a residual-based bootstrap with a bootstrap
sample size of 10,000, and several MAE- and RMSE-based model rankings.

In line with our expectation, simple benchmarks, which do not take into account in-
traday dependencies, perform worst. We �nd the largest errors, i.e., MAE = 7.750 and
RMSE = 13.244, for the persistent model. Additionally, the 24AR errors are very close
to this benchmark. The expert VAR model is already a great improvement over these
approaches because, for example, its MAE of 5.651 and RMSE of 8.981 are 27.1% and
32.2% below the persistent forecasts, respectively. The accuracy of the unrestricted VAR
model with AIC-based lag order of p = 2 is slightly lower. In both, the group of benchmark
models and the entire model selection, the expert SVM shines. That is, for example, its
MAE of 5.461 is beaten by only three other individual models: PC(11)-SVM, RF(50)-SVM
and RF-SVM. Thus, the expert variable choice (lags l = 1, 7 plus weekday dummies) pro-
vides solid price forecasts. Within the same set of variables, the choice of regression tool
appears to be particularly important. In a direct comparison of the benchmark models
using the same expert variable choice, the SVM algorithm outperforms the linear model
and the neural network approach. The latter delivers poorer results than the linear model
and, in a pure time series context, appears to be un�t for EPF.

All models incorporating PCA feature extraction provide relatively good MAE (RMSE)
values below 5.633 (8.716). Feature extraction combined with a VAR model leads to better

8We could normalize the error by the average price obtained in a speci�c evaluation interval (for
example, a week). Also note that some EPF applications report week-weighted mean absolute errors.



40 Chapter 3. Multivariate electricity price forecasting

Error values Group ranks Overall ranks

MAE RMSE MAE RMSE MAE RMSE

Benchmarks
1 Persistent 7.750 (.130) 13.244 (.212) 6 6 27 27
2 24AR 6.605 (.117) 10.186 (.175) 4 4 25 25
3 VAR 5.824 (.098) 9.075 (.165) 3 3 23 21
4 Expert VAR 5.651 (.093) 8.981 (.170) 2 2 19 20
5 Expert NN 6.657 (.062) 10.649 (.190) 5 5 26 26
6 Expert SVM 5.461 (.098) 8.709 (.159) 1 1 8 10
Feature extraction
7 PC(7)-VAR 5.628 (.100) 8.716 (.171) 5 6 16 12
8 PC(7)-LASSO 5.565 (.099) 8.661 (.166) 4 3 14 7
9 PC(7)-SVM 5.461 (.100) 8.684 (.174) 2 4 8 8
10 PC(11)-VAR 5.633 (.101) 8.710 (.173) 6 5 17 11
11 PC(11)-LASSO 5.512 (.098) 8.636 (.164) 3 2 12 6
12 PC(11)-SVM 5.396 (.095) 8.588 (.161) 1 1 7 5
Regularization
13 Ridge 5.575 (.096) 8.918 (.167) 4 4 15 17
14 LASSO 5.464 (.097) 8.756 (.170) 2 3 11 16
15 Elastic net 5.462 (.097) 8.754 (.171) 1 2 10 15
16 Bayesian VAR 5.516 (.098) 8.685 (.167) 3 1 13 9
17 GRRF 5.761 (.106) 9.514 (.159) 5 5 21 23
Feature selection
18 Step-Linear 6.301 (.107) 9.611 (.171) 6 6 24 24
19 LASSO-SVM 5.783 (.098) 9.138 (.160) 5 5 22 22
20 RF(50)-Linear 5.655 (.097) 8.922 (.169) 4 3 20 18
21 RF-Linear 5.633 (.095) 8.922 (.167) 3 3 17 18
22 RF(50)-SVM 5.391 (.095) 8.744 (.170) 2 2 6 14
23 RF-SVM 5.385 (.096) 8.726 (.168) 1 1 5 13
Forecast combinations
24 Simple Average 5.332 (.094) 8.557 (.163) 4 4 4 4
25 Inv-MSPE(7) 5.289 (.093) 8.524 (.165) 1 1 1 1
26 Inv-MSPE(30) 5.307 (.093) 8.533 (.165) 2 2 2 2
27 Inv-MSPE(365) 5.325 (.093) 8.534 (.163) 3 3 3 3

For the forecasting models of Section 3.2.5 and the German/Austrian out-of-sample test period from
January 2016 to December 2017, this table reports the mean absolute errors (MAE) and root mean
square errors (RMSE) across all hours of the day. The corresponding bootstrap standard deviations
are given in parentheses. We also present group and overall model rankings, where the best model has
rank 1. To allow a comparison with the hourly Tables 3.3 and 3.4, we additionally implement a heatmap
indicating well (→ green) and poorly (→ red) performing models.

Table 3.2: Forecasting errors

results than the standard VAR approach. In contrast, MAE and RMSE of the PC(7)-VAR
and the PC(11)-VAR are only marginally better than the expert VAR benchmark. The best
model of the group is the PC(11)-SVM. It also yields the third-lowest MAE of 5.396 across
all individual models and barely misses the top rank. In summary, feature extraction
(i) slightly stabilizes forecasts, i.e., lowers RMSE values, and (ii) can achieve top MAE
performance in combination with SVM regression. However, our results also highlight that
the determination of the number of factors K is not trivial. Commonly used test statistics
appear to supply a too-small number of factors (in our case K = 7), which negatively
in�uences forecasting accuracy (because we could obtain better results for K = 11).

In the class of (linear) regularization approaches, the elastic net appears to be a solid,
ready-to-use method. It reaches the best-in-class MAE of 5.462 and, among all individual
models, is outperformed only by competing models using (non-linear) SVM regressions
(except for LASSO-SVM). For reasons discussed in Section 3.2.5, the performance of the
LASSO is similar to the elastic net. Consequently, ridge regression performs worse than the
LASSO. When turning to the RMSE, the value of 8.756 for the elastic net is outperformed
not only by SVM settings but also all PCA approaches. Interestingly, the Bayesian VAR
provides a better RMSE value of 8.685, which simultaneously is the best performance
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among all individual models excluding PCA approaches. Its MAE of 5.516 is not bad, but
worse than many other techniques, including LASSO regression. While providing reliable
importance scores, the GRRF is characterized by poor performance and cannot beat the
expert VAR benchmark.

High errors of MAE = 6.301 and RMSE = 9.611 suggest that stepwise linear regression
can be considered an obsolete approach to feature selection. It is not only outperformed
by all alternative feature selection techniques but also almost all other individual models
(except for the persistent model, 24AR and the expert NN). While standard linear LASSO
regression performs well, using LASSO-selection in a non-linear SVM yields rather unsat-
isfactory results. That is, we obtain MAE = 5.783 and RMSE = 9.138. Turning to our
random forest proposal and starting with the linear model, the detailed variable choice
derived from random forest importance scores performs similar to the expert choice. This
is not surprising because our importance pro�les suggest that lagged prices with l = 1, 7
comprise most of the explanatory power. Also, in comparison to the linear regularization
and feature extraction settings, random forests cannot shine. However, in combination
with a non-linear SVM, the 50 input variables with the highest importance scores result in
the second-lowest MAE of 5.391 across all individual models and beat the expert choice.
The RMSE of 8.721 is slightly above the expert choice. Optimally tuning the number K of
input variables, we obtain the model with the lowest individual MAE of 5.385. While this
implies that there appear to be some non-linear tendencies which can be captured best via
random forests, the RMSE value of RF-SVM suggests that other non-linear approaches
like PC-SVM (and partially even linear ones) have similar qualities.9

As far as our forecast combinations are concerned, we �nd that our selection of com-
bination schemes can beat each individual model in terms of MAE and RMSE. That is,
combining models instead of relying on just one has bene�ts for forecasters. We can isolate
two causes of enhanced predictive power. First, because we can already observe lower er-
rors for the simple average, averaging itself increases accuracy. Second, because the errors
for Inv-MSPE(Q) combination schemes (especially for the short evaluation period Q = 7)
are lower than for the simple average, the former kind of combined forecasts appears to
bene�t from introducing recent forecasting performance via changing model weights. An-
other aspect worth noting is related to the consistency of rankings derived from MAE and
RMSE. While, for individual models, we have seen that evaluations can di�er depending on
the error measure (e.g., the elastic net has a lower MAE but a higher RMSE than PC-VAR
approaches), both MAE and RMSE agree on the ranks of the combined approaches.

So far our discussions have focused on an aggregate perspective including all hours
of the day. Because this may conceal important e�ects, we complete the picture with a
separate look at each hour. Based on Tables 3.3 and 3.4, we gain several interesting insights.
First, while prices of night hours 00-05 and evening hours 20-23 can be forecasted with
relative ease, it is harder to predict hourly prices during daylight hours 06-19. Second,
we can identify di�erent leading models depending on daytime. For example, if we are
interested in the night hours 00-05, the RF-SVM approach outperforms the PC(11)-SVM

9In Section 3.3.2, we discuss this observation in more detail.
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model, whereas, for most daylight hours, the latter is slightly more accurate. In addition,
the elastic net performs best for many evening hours. Hence, in our application, another
reason for the superiority of forecast combination schemes is related to the fact that they
merge very di�erent approaches which are characterized by advantages for speci�c hours
of the day.10

A close comparison of our variable importance pro�les and the observed model perfor-
mance explains why some models outperform others for certain hours. In other words, it
provides a `guide' for model selection which helps us to select the best model depending
on the hour we wish to forecast. For night hours, there are only a few important fea-
tures. These features can be e�ciently identi�ed by random forest scores and passed on
to a SVM. During day-time, there are more relevant inputs (corresponding to lags of order
l = 1, 7) which should be transformed to a lower dimensional space utilizing PCA and then
transferred to a SVM. For evening hours, large lags of the same hour are relevant input
variables. In our setting, the PCA-approaches only consider lag variables up to order p = 7
which explains why PC(11)-SVM loses accuracy for these hours. At the same time, there
are many other relevant input variables. The elastic net considers lag variables up to order
p = 21 and therefore performs best for evening hours.

3.3.2 Diebold-Mariano test

To supplement Section 3.3.1, we perform several statistical tests. We start with the
Diebold and Mariano (1995) (DM) test of equal predictive ability, which compares two
models. Because our predictions for all 24 hours of the next day are made at the same
time using the same information set, forecast errors for a particular day typically exhibit
high serial correlation. However, the classic version of the test requires their stationarity.
Therefore, we follow Bordignon et al. (2013), Nowotarski et al. (2014) and Maciejowska
and Nowotarski (2016) by conducting the test for each of the 24 load periods h separately.
We de�ne its loss function based on absolute and squared error losses

Li(εd) = |εd|i = |Pd,h − P̂d,h|i (3.3.3)

of the model forecasts, where i = 1, 2 and, to simplify notation, we drop the dependence
on h on the left hand side. For each model pair (m1,m2) and hour h, we compute the loss
di�erential series

li,d = Li(ε
(m1)
d )− Li(ε(m2)

d ), (3.3.4)

which is the main focus of the test. We specify two one-sided DM tests at the 5% sig-
ni�cance level. For both tests, the null hypothesis is H0 : E[li,d] = 0, i.e., both methods
have the same forecast accuracy. However, the tests di�er with respect to the alternative
hypothesis. For the �rst test, we have H1 : E[li,d] < 0, i.e., model m2 is less accurate than
model m1. The second test is complementary with the reverse alternative H̄1 : E[li,d] > 0,

10A further explanation may be that some models work better for certain seasons than others. A
detailed analysis of this aspect is left for future research.



3.3. Empirical results 43

ID
H
ou
r

00
01

02
03

04
05

06
07

08
09

10
11

12
13

14
15

16
17

18
19

20
21

22
23

1
6.
95

6.
87

7.
19

7.
03

6.
60

6.
15

7.
35

8.
00

8.
29

8.
34

8.
86

9.
11

9.
12

9.
53

9.
35

8.
56

8.
31

8.
24

8.
26

7.
74

6.
97

6.
32

6.
12

6.
74

2
5.
39

5.
48

5.
77

5.
66

5.
44

5.
10

6.
38

7.
40

7.
45

7.
28

7.
65

7.
91

7.
94

8.
54

8.
41

7.
67

7.
20

7.
02

7.
13

6.
53

5.
89

5.
16

4.
91

5.
21

3
2.
88

3.
09

3.
69

3.
95

3.
93

3.
82

5.
22

6.
35

6.
37

6.
22

6.
56

7.
08

7.
07

7.
52

7.
56

7.
08

6.
91

7.
29

7.
61

7.
18

6.
25

5.
47

5.
25

5.
42

4
2.
87

3.
11

3.
70

3.
96

3.
98

3.
81

4.
90

5.
94

6.
03

6.
02

6.
46

6.
97

7.
01

7.
42

7.
45

6.
93

6.
69

6.
89

7.
23

6.
71

5.
98

5.
27

4.
98

5.
35

5
3.
33

3.
48

4.
43

4.
80

5.
59

4.
60

5.
74

6.
69

8.
24

7.
29

7.
19

7.
94

8.
70

8.
16

8.
43

7.
60

7.
81

8.
86

8.
90

7.
73

6.
58

6.
31

5.
27

6.
09

6
2.
85

2.
96

3.
44

3.
71

3.
57

3.
63

4.
85

5.
57

5.
71

5.
76

6.
28

6.
62

6.
69

7.
13

7.
15

6.
69

6.
54

6.
84

7.
07

6.
60

5.
89

5.
11

5.
32

5.
11

7
3.
07

3.
19

3.
68

3.
84

3.
82

3.
73

4.
80

5.
81

6.
06

6.
12

6.
45

6.
94

6.
99

7.
41

7.
53

7.
00

6.
67

6.
91

7.
17

6.
73

5.
98

5.
11

4.
84

5.
21

8
3.
09

3.
23

3.
73

3.
90

3.
88

3.
78

4.
76

5.
69

5.
94

6.
00

6.
36

6.
84

6.
88

7.
28

7.
34

6.
84

6.
56

6.
86

7.
04

6.
54

5.
92

5.
08

4.
85

5.
19

9
3.
03

3.
11

3.
51

3.
66

3.
66

3.
61

4.
65

5.
58

5.
78

5.
94

6.
31

6.
76

6.
80

7.
13

7.
17

6.
64

6.
45

6.
75

7.
03

6.
52

5.
84

5.
08

4.
85

5.
20

10
2.
97

3.
19

3.
72

3.
87

3.
83

3.
70

4.
90

5.
82

5.
98

6.
07

6.
47

6.
96

6.
99

7.
34

7.
43

6.
90

6.
57

6.
93

7.
28

6.
85

5.
93

5.
15

4.
94

5.
39

11
2.
98

3.
27

3.
80

3.
99

3.
96

3.
79

4.
83

5.
71

5.
86

5.
89

6.
30

6.
79

6.
80

7.
14

7.
13

6.
62

6.
37

6.
68

6.
91

6.
55

5.
79

4.
99

4.
90

5.
24

12
2.
98

3.
08

3.
53

3.
67

3.
67

3.
59

4.
68

5.
54

5.
73

5.
84

6.
17

6.
63

6.
64

6.
96

6.
98

6.
48

6.
29

6.
69

6.
91

6.
47

5.
76

5.
01

4.
92

5.
28

13
2.
98

3.
20

3.
63

3.
91

3.
94

3.
85

4.
89

5.
77

5.
94

5.
92

6.
41

6.
93

6.
97

7.
38

7.
43

6.
87

6.
69

6.
95

6.
97

6.
42

5.
60

4.
90

4.
90

5.
35

14
2.
71

3.
03

3.
51

3.
75

3.
70

3.
61

4.
86

5.
86

5.
94

5.
83

6.
33

6.
84

6.
90

7.
32

7.
33

6.
83

6.
55

6.
72

6.
83

6.
31

5.
60

4.
93

4.
77

5.
09

15
2.
71

3.
03

3.
51

3.
77

3.
76

3.
61

4.
86

5.
84

5.
92

5.
80

6.
33

6.
81

6.
90

7.
30

7.
33

6.
83

6.
56

6.
72

6.
80

6.
32

5.
59

4.
93

4.
76

5.
09

16
2.
85

3.
01

3.
48

3.
70

3.
73

3.
61

4.
85

5.
94

6.
01

5.
97

6.
29

6.
83

6.
92

7.
36

7.
33

6.
75

6.
53

6.
73

7.
04

6.
62

5.
77

5.
07

4.
85

5.
14

17
3.
17

3.
68

4.
31

4.
53

4.
50

4.
37

5.
15

5.
86

6.
01

6.
07

6.
51

7.
00

7.
02

7.
46

7.
39

7.
01

6.
67

6.
81

7.
01

6.
51

5.
87

5.
18

5.
02

5.
14

18
3.
22

3.
57

4.
22

4.
47

4.
75

4.
43

5.
44

6.
44

6.
73

6.
33

7.
42

8.
39

8.
01

8.
27

8.
11

7.
71

6.
83

7.
61

8.
42

8.
10

6.
23

5.
56

5.
26

5.
71

19
3.
52

3.
72

4.
18

4.
30

4.
30

4.
40

5.
31

6.
00

6.
11

6.
23

6.
58

7.
11

7.
16

7.
38

7.
30

6.
87

6.
73

7.
21

6.
91

6.
58

5.
89

4.
98

4.
94

5.
05

20
2.
85

3.
17

3.
74

3.
89

3.
87

3.
81

4.
91

5.
99

6.
14

6.
13

6.
54

7.
13

7.
14

7.
57

7.
57

7.
02

6.
68

7.
00

6.
97

6.
52

5.
85

5.
13

4.
87

5.
24

21
2.
87

3.
15

3.
75

3.
89

3.
87

3.
86

4.
93

5.
95

6.
08

6.
11

6.
51

7.
08

7.
14

7.
52

7.
56

6.
92

6.
64

6.
99

7.
03

6.
45

5.
84

4.
96

4.
84

5.
27

22
2.
75

2.
96

3.
34

3.
59

3.
56

3.
81

4.
74

5.
59

5.
77

5.
95

6.
27

6.
76

6.
78

7.
05

7.
15

6.
58

6.
40

6.
66

6.
66

6.
23

5.
78

4.
97

4.
82

5.
20

23
2.
74

2.
99

3.
36

3.
62

3.
62

3.
61

4.
86

5.
55

5.
78

5.
82

6.
25

6.
85

6.
75

7.
13

7.
03

6.
58

6.
37

6.
67

6.
69

6.
37

5.
67

4.
94

4.
93

5.
08

24
2.
79

2.
99

3.
46

3.
68

3.
70

3.
61

4.
69

5.
53

5.
68

5.
71

6.
19

6.
66

6.
70

7.
10

7.
08

6.
57

6.
28

6.
50

6.
63

6.
24

5.
56

4.
88

4.
71

5.
03

25
2.
74

2.
95

3.
40

3.
61

3.
61

3.
59

4.
63

5.
45

5.
62

5.
68

6.
16

6.
62

6.
68

7.
08

7.
06

6.
53

6.
25

6.
46

6.
60

6.
20

5.
53

4.
82

4.
66

5.
01

26
2.
74

2.
96

3.
40

3.
63

3.
65

3.
59

4.
65

5.
49

5.
67

5.
70

6.
17

6.
64

6.
69

7.
10

7.
08

6.
55

6.
28

6.
48

6.
62

6.
22

5.
54

4.
84

4.
67

5.
01

27
2.
75

2.
96

3.
43

3.
65

3.
67

3.
59

4.
66

5.
53

5.
69

5.
72

6.
19

6.
65

6.
71

7.
10

7.
10

6.
58

6.
28

6.
49

6.
63

6.
24

5.
56

4.
88

4.
72

5.
03

F
o
r
th
e
fo
re
ca
st
in
g
m
o
d
el
s
o
f
S
ec
ti
o
n
3
.2
.5
a
n
d
o
u
r
G
er
m
a
n
/
A
u
st
ri
a
n
o
u
t-
o
f-
sa
m
p
le
te
st
p
er
io
d
fr
o
m

J
a
n
u
a
ry

2
0
16

to
D
ec
em

b
er

2
0
1
7
,
th
is
ta
b
le

re
p
o
rt
s
th
e
m
ea
n
a
b
so
lu
te

er
ro
rs
p
er

h
o
u
r.
T
h
e
ID

in
th
e
�
rs
t
co
lu
m
n
id
en
ti
�
es

th
e
fo
re
ca
st
in
g
m
o
d
el
(s
ee

a
ls
o
T
a
b
le
3
.2
).
A
h
ea
tm

a
p
is
u
se
d
to

in
d
ic
a
te

w
el
l
(→

g
re
en
)
a
n
d
p
o
o
rl
y
(→

re
d
)
p
er
fo
rm

in
g
m
o
d
el
s.

T
a
b
l
e
3
.3
:
M
ea
n
a
b
so
lu
te

er
ro
rs
p
er

h
o
u
r



44 Chapter 3. Multivariate electricity price forecasting

ID
H
our

00
01

02
03

04
05

06
07

08
09

10
11

12
13

14
15

16
17

18
19

20
21

22
23

1
11.59

12.10
12.84

12.29
11.60

11.35
13.70

14.05
14.38

13.59
14.02

14.65
15.24

17.00
16.83

14.68
13.50

12.86
13.52

11.79
10.62

9.85
9.77

12.94
2

8.77
8.83

9.47
9.05

8.59
8.20

9.93
11.00

11.17
10.77

11.13
11.49

11.77
12.87

12.99
11.35

10.72
10.44

10.92
9.41

8.47
7.61

7.51
9.31

3
5.02

5.50
6.58

6.39
6.23

6.24
7.62

9.21
9.29

9.07
9.66

10.18
10.65

11.8
12.15

10.66
10.43

10.84
11.29

9.90
8.72

7.85
7.77

9.33
4

4.88
5.44

6.61
6.39

6.28
6.27

7.55
8.89

9.06
8.89

9.55
10.14

10.73
11.75

12.07
10.46

10.18
10.54

11.16
9.91

8.66
7.83

7.75
9.25

5
5.70

5.99
6.59

6.91
8.54

7.16
9.44

10.28
12.56

10.57
11.52

14.43
14.18

12.85
14.41

12.18
11.54

12.84
12.84

10.95
9.25

8.78
7.91

10.08
6

4.31
4.60

5.52
5.60

5.44
5.82

7.71
8.64

9.04
8.78

9.57
9.74

10.65
11.68

12.00
10.23

9.95
10.31

10.61
9.49

8.41
7.51

7.76
9.05

7
4.70

4.76
5.52

5.61
5.57

5.78
7.39

8.77
9.05

8.90
9.40

9.91
10.46

11.56
11.92

10.33
10.08

10.39
10.79

9.58
8.33

7.42
7.41

9.16
8

4.78
4.83

5.58
5.65

5.60
5.82

7.40
8.70

8.97
8.80

9.30
9.81

10.38
11.47

11.79
10.21

10.00
10.36

10.69
9.36

8.29
7.43

7.42
9.16

9
4.72

4.74
5.39

5.40
5.36

5.64
7.43

8.77
9.02

8.88
9.43

9.94
10.46

11.54
11.84

10.21
10.05

10.39
10.76

9.56
8.30

7.46
7.44

9.13
10

4.67
4.85

5.69
5.76

5.66
5.77

7.29
8.71

8.89
8.80

9.36
9.92

10.41
11.47

11.86
10.25

9.97
10.33

10.88
9.69

8.37
7.50

7.55
9.27

11
4.69

4.84
5.63

5.72
5.65

5.86
7.55

8.80
9.01

8.76
9.29

9.82
10.38

11.44
11.70

10.09
9.89

10.22
10.50

9.30
8.22

7.38
7.46

9.20
12

4.67
4.71

5.44
5.50

5.45
5.70

7.47
8.85

9.01
8.82

9.26
9.71

10.24
11.38

11.73
10.09

9.87
10.23

10.53
9.21

8.17
7.36

7.44
9.12

13
4.70

5.03
5.76

5.94
5.94

6.16
7.81

9.12
9.36

8.93
9.57

10.11
10.74

11.87
12.23

10.59
10.26

10.73
10.92

9.46
8.25

7.43
7.56

9.32
14

4.66
5.09

5.96
5.92

5.82
6.00

7.59
8.98

9.07
8.77

9.43
9.93

10.54
11.62

11.93
10.34

10.10
10.38

10.75
9.28

8.18
7.44

7.43
9.11

15
4.66

5.09
5.96

5.90
5.77

6.00
7.59

8.99
9.07

8.76
9.43

9.92
10.54

11.61
11.93

10.34
10.09

10.41
10.74

9.28
8.18

7.43
7.43

9.11
16

4.79
5.12

5.96
5.89

5.86
5.97

7.23
8.78

8.90
8.74

9.26
9.83

10.44
11.54

11.82
10.16

10.03
10.14

10.72
9.41

8.23
7.47

7.41
9.13

17
5.39

5.77
6.38

6.56
6.76

6.99
8.74

9.91
10.26

10.02
10.59

11.13
11.50

12.48
12.53

11.17
10.73

11.04
11.48

9.74
8.72

7.80
7.66

9.31
18

5.14
5.84

7.10
6.81

7.13
6.92

7.93
9.44

9.81
9.19

10.63
11.62

11.73
12.44

12.50
11.18

10.2
11.11

12.36
11.26

8.91
8.00

7.91
9.69

19
4.96

5.26
6.48

6.38
6.45

6.51
8.62

9.53
9.61

9.67
9.85

10.35
10.88

11.90
12.13

10.60
10.25

10.94
10.98

9.67
8.47

7.56
7.69

9.15
20

4.89
5.50

6.35
6.24

6.13
6.32

7.60
9.07

9.22
8.91

9.40
10.05

10.59
11.78

11.99
10.52

10.26
10.60

11.05
9.56

8.38
7.62

7.51
9.19

21
4.88

5.43
6.25

6.16
6.18

6.22
7.57

9.18
9.18

8.87
9.37

10.08
10.58

11.79
12.10

10.45
10.23

10.61
11.10

9.48
8.56

7.59
7.53

9.21
22

4.34
4.68

5.43
5.53

5.52
6.04

7.89
8.92

8.99
9.08

9.48
9.95

10.47
11.54

12.18
10.21

10.00
10.43

10.89
9.36

8.37
7.48

7.39
9.09

23
4.33

4.61
5.41

5.63
5.59

5.81
7.83

9.03
9.12

8.74
9.43

10.14
10.49

11.70
11.70

10.32
9.98

10.39
10.91

9.44
8.25

7.44
7.46

9.04
24

4.50
4.74

5.52
5.59

5.56
5.86

7.54
8.72

8.95
8.67

9.28
9.78

10.30
11.41

11.65
10.08

9.81
10.09

10.43
9.12

8.09
7.32

7.30
9.04

25
4.41

4.73
5.58

5.57
5.54

5.83
7.39

8.64
8.84

8.60
9.21

9.69
10.28

11.41
11.67

10.09
9.80

10.07
10.42

9.10
8.06

7.29
7.27

9.03
26

4.43
4.72

5.51
5.56

5.53
5.83

7.42
8.66

8.90
8.64

9.25
9.74

10.28
11.41

11.65
10.08

9.81
10.09

10.42
9.10

8.08
7.29

7.27
9.03

27
4.41

4.67
5.47

5.54
5.50

5.81
7.43

8.70
8.91

8.65
9.26

9.74
10.28

11.38
11.65

10.07
9.80

10.09
10.43

9.12
8.09

7.32
7.31

9.03

F
o
r
th
e
fo
reca

stin
g
m
o
d
els

o
f
S
ectio

n
3
.2
.5
a
n
d
o
u
r
G
erm

a
n
/
A
u
stria

n
ou
t-of-sa

m
p
le
test

p
erio

d
fro

m
J
a
n
u
a
ry

20
1
6
to

D
ecem

b
er

2
0
1
7
,
th
is
ta
b
le

rep
o
rts

th
e
ro
o
t
m
ea
n
sq
u
a
re

erro
rs
p
er

h
o
u
r.
T
h
e
ID

in
th
e
�
rst

co
lu
m
n
id
en
ti�

es
th
e
fo
reca

stin
g
m
o
d
el
(see

a
lso

T
a
b
le
3
.2
).
A
h
ea
tm

a
p
is
u
sed

to
in
d
ica

te
w
ell

(→
g
reen

)
a
n
d
p
o
o
rly

(→
red

)
p
erfo

rm
in
g
m
o
d
els.

T
a
b
l
e
3
.4
:
R
o
o
t
m
ea
n
sq
u
a
re

erro
rs
p
er

h
o
u
r



3.3. Empirical results 45

i.e., model m2 is more accurate than model m1. We assume that the forecasts of con-
secutive days (and hence loss di�erentials) are not serially correlated. Especially for the
well-performing models, this is a valid assumption.

The DM test results are summarized in the heatmaps of Figure 3.5 (3.6), where, for
each model pair, we report the number of hours for which model m2 is signi�cantly less
(more) accurate than model m1. Starting with Figure 3.5, we �nd that, regardless of the
loss measure, some models are signi�cantly less accurate than most other models for almost
all hours. The persistent, 24AR, expert NN, GRRF and Step-Linear approaches are typical
examples. Only one model is not signi�cantly worse than any other model for all hours:
the Inv-MSPE(7) scheme. The additional forecast combination schemes are not inferior
when compared to the individual models except for some hours forecasted via the expert
SVM, RF(50)-SVM and PC(11)-SVM methods. Figure 3.6 provides stronger evidence in
favor of the forecast combinations. It shows that, with the former three exceptions and
in terms of MAE, they tend to provide signi�cantly better forecasts than all models for
almost all hours. When focusing on the RMSE, outperformance becomes less signi�cant
but still favors the combinations.

With respect to our RF-SVM proposal, we can see that, in terms of MAE, it is signif-
icantly more accurate than many competing models in almost all hours. It even outper-
forms its most serious competitors (expert SVM, PC-SVM) for many hours. Turning to
the RMSE, it cannot outperform these rivals (and additionally some linear regularization
techniques) at all. However, this is no reason to worry because our results also show that,
in these cases, the RF-SVM is almost never signi�cantly less accurate than these models.
Consequently, it can be considered a promising new technique with the advantage that, in
contrast to the similarly performing alternatives, it can deliver variable importance pro�les
that give valuable insights into the price dynamics in electricity markets and, as we have
seen in Section 3.3.1, can guide model selection in future research.

3.3.3 Hansen test

As a second test, we apply the Hansen (2005) test of superior predictive ability. In
contrast to the two-model DM test, its idea is to compare a given benchmark model mb to
all alternative models ms, s 6= b. The key variables for the test are relative performance
metrics

l
(ms)
i,d = Li(ε

(mb)
d )− Li(ε(ms)

d ), (3.3.5)

where the loss function Li is given by (3.3.3) and we again set i = 1, 2. Consequently,
l
(ms)
i,d measures the day-d performance of model ms relative to the benchmark. We collect

the di�erences of all alternatives to the benchmark in the vector li,d = (l
(ms)
i,d )s 6=b. Provided

that µ := E[li,d] is well-de�ned, we can then formulate the set of hypotheses H0 : µ ≤ 0
and H1 : ∃s, µs > 0 because the vector element µs corresponds to the case where a model
ms is better than mb.

As in Hansen and Lunde (2005) we use a bootstrap implementation based on the
stationary bootstrap of Politis and Romano (1994). It uses pseudo time series li,τb,d , b =
1, ..., B, which are resamples of the original data li,d and where a series {τb,1, ..., τb,N} is
constructed by combining blocks of random length taken from {1, ..., N}. More speci�cally,
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For all models of Section 3.2.5 and our German/Austrian out-of-sample period from 2016 to 2017, this
�gure presents the results of one-sided Diebold and Mariano (1995) tests conducted with the alternative
hypothesis `less accurate' and a signi�cance level of 5%. We compare each model with each other model
and perform the comparison for each hour separately. We then sum the number of signi�cant di�erences
in forecasting performance across the 24 hours and use a heatmap to indicate the number of hours for
which model m2 (x-axis) is less accurate than model m1 (y-axis).

Figure 3.5: Diebold-Mariano test with alternative `less accurate'
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(b) Squared error losses (i = 2)

In analogy to Figure 3.5, this �gure presents the results of one-sided Diebold and Mariano (1995) tests
conducted with the alternative hypothesis `more accurate'.

Figure 3.6: Diebold-Mariano test with alternative `more accurate'
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we use a number of B = 1, 000 bootstrap resamples and the block length is assumed to
follow a geometric distribution with mean 20.11

We summarize the Hansen test results in Figure 3.7, where heatmaps evaluate the
signi�cance of the test statistic at conventional levels of 1%, 5% and 10%. If, in forecasts of
the hour-h price, the benchmark modelmb is signi�cantly worse than any alternative model,
the signi�cance level is stated and colored in grayscale. In contrast, no level statement
and coloring re�ect insigni�cance. In other words, in these cases, the null hypothesis of
no inferiority in comparison to the alternatives cannot be rejected at any of the given
signi�cance levels. For absolute error losses, we detect only a few models whose test
statistics are insigni�cant for many hours of the day. The expert SVM, PC(7)-SVM and
PC(11)-SVM are not inferior to the alternatives for most hours, with the exception of the
evening hours 17-23. In contrast, the elastic net is not inferior in most of these evening
hours. Only RF(50)-SVM and RF-SVM techniques as well as all three Inv-MSPE forecast
combinations show convincing results during almost all hours of day. Switching to squared
error losses, we observe more models with insigni�cant test statistics over many hours
and even two models (Inv-MSPE(7) and Inv-MSPE(30)) with insigni�cance for all hours.
Supporting our previous results, the RF-SVM setting often cannot be rejected, but this
also holds, for example, for an expert SVM and PC-SVMs.

3.4 Conclusion

Recent studies emphasize that taking into account the autoregressive intraday depen-
dency structure of electricity prices is of crucial importance for short-term forecasting.
While empirical correlation patterns support this idea, practical implementation is com-
plicated by dimensionality problems. That is, simply including a wide range of lagged
prices (for example, in an unrestricted VAR model) can lead to over�tting and ignores
that some lags may be more relevant for prediction than others. Luckily the econometrics
and machine learning literature o�ers a battery of methods, including feature selection,
feature extraction and regularization techniques, which can help to deal with this issue.

In an analysis of the German/Austrian electricity market, we propose to perform feature
selection based on variable importance pro�les derived from a random forest algorithm.
It is an ideal choice for dimension reduction in high dimensional spaces and, in contrast
to other popular methods, allows us to provide a very detailed picture of existing price
dependencies. Our analysis shows that previous �ndings on the dominant position of prices
lagged by one day and one week also hold for our data and methodology. Thus, they can
be considered robust. Furthermore, we highlight that the predictive power of past prices
depends on which hourly contract we would like to forecast. For example, evening prices
of the previous day are highly relevant for prices of night hours, but less relevant for prices
of morning and high noon hours.

By using the detailed importance pro�les in combination with a non-linear support
vector machine and comparing its performance to a wide selection of traditional benchmark

11Using a rule of thumb, which suggests 1/(signi�cance level) × 100 resamples, does not in�uence our
conclusions.
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For all models of Section 3.2.5 and our German/Austrian out-of-sample period from 2016 to 2017, this
�gure presents the results of Hansen (2005) tests. The heatmap evaluates the signi�cance of the test
statistic at conventional signi�cance levels of 1%, 5% and 10%. That is, if the benchmark model mb

(x-axis) is signi�cantly worse than any alternative when forecasting the price of hour h (y-axis), the
signi�cance level is stated and colored in grayscale. No level statement and coloring re�ect insigni�cance.

Figure 3.7: Hansen test

models and alternative approaches typically applied to limit dimensionality problems, we
provide additional insights. On an aggregated level, we can, for example, sort out naive
predictions, unrestricted linear models, standard neural networks and stepwise regressions
as un�t forecasting techniques. Furthermore, our proposed method turns out to be highly
competitive, with typically only expert and principal component support vector machines
reaching up to it. In general, support vector machines stand out in our study, which calls for
a more frequent use of this model class in electricity price forecasting. On a disaggregated
level, we observe that the performance ranking of our forecasting models depends on the
daytime of interest. For example, to forecast night hours, our random forest support
vector machine is preferable, while, for evening hours, elastic net regularization regression
is superior. Interestingly, our variable importance pro�les can provide a likely explanation
why some models outperform others for speci�c hours. This is because the pro�les show
the relevant forecasting variables and we can deduce whether the general design of a given
model captures them.

When there is uncertainty regarding the best model choice, decision makers in govern-
ment agencies, corporate sectors or households may combine the predictions of di�erent
models based on some more or less complex weighting scheme. Because this topic has
received great attention in the literature, we performed some supplementary calculations
and found that all of our combination schemes, including the simple average, outperform
all individual models of our selection. This superior accuracy is reasonable because we have
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shown that our individual models do not perform equally well for all hourly time series. As
far as future research is concerned, such a result does not mean that we can stop developing
new individual forecasting models. It is the variety of models − each having advantages
over the others − that leads to overall improvement. New forms of machine learning (i.e.,
advanced random forests or support vector machines), which provide better forecasts for
afternoon hours, might be added. For example, while we have kept our approach simple,
we might alternatively assign permutation scores to subsets of features instead of single
features (see Gregorutti et al., 2015). Furthermore, we may wish to leave the boundaries
of pure time series analysis by incorporating supply and demand factors, economic vari-
ables and electricity market-speci�c features (like temperature or wind) into the universe
of potential predictors (see Avci et al., 2018; Gürtler and Paulsen, 2018; Kristiansen, 2012;
Ludwig et al., 2015).



Chapter 4

Swing option-implied volatility

Motivated by the increasing interest of academics and practitioners in swing options, we
develop a method for computing swing option-implied volatility. Using recent theoretical
advances, we build a dynamic programming option pricing framework supplemented by
an additive single-factor forward curve model which, as we show, is a natural candidate
for implied volatility estimation. Within this framework, we propose to obtain implied
volatility via a combination of Monte Carlo techniques and a root-�nding algorithm. In
a �rst empirical study of volatilities implied by natural gas swing options, we illustrate
key features of swing option-implied volatilities which serve as a starting point for future
research parametrizing the swing option volatility surface and studying its predictive power.

4.1 Introduction

Implied volatility is one of the most important metrics for the analysis and presenta-
tion of �nancial options. Under the Black and Scholes (1973), Cox et al. (1979) and other
models, there is a one-to-one link between the option value and the volatility of the under-
lying asset. Consequently, the option pricing formula can be used to translate the market
price of an option into expectations about future asset price �uctuations. This feature has
in�uenced research and practice in various ways. First, in trading software, options are
typically quoted in terms of implied volatility rather than price (see Mayhew, 1995).1 Sec-
ond, implied volatilities are the key ingredient of major investor sentiment indicators such
as the CBOE Volatility Index (VIX) (see Whaley, 1993). Finally, there is a vast literature
suggesting that implied volatility is a valuable predictor for future realized volatility (see
Bandi and Perron, 2006; Busch et al., 2011; Christensen and Prabhala, 1998) and that
pro�table investment strategies can be constructed based on option-implied information
(see DeMiguel et al., 2013; Xing et al., 2010).2

Calculating implied volatility is not a simple task because, even if models deliver closed-
form pricing formulas, they often cannot be inverted analytically. While for the special case

1This is partially because volatility is the main value driver of a delta-hedged option, i.e., an option
hedged against small changes of the underlying's price.

2Some earlier studies suggested otherwise (see, for example, Canina and Figlewski, 1993; Jorion, 1995).
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of European-style at-the-money options there are at least some closed-form approximations
(see Brenner and Subrahmanyan, 1988; Curtis Jr and Carriker, 1988), the general approach
to obtaining implied volatility is numerical and typically involves feeding the value-price
di�erence into a root-�nding algorithm.3 Fast convergence can be achieved if an analytic
expression exists for the option's vega, i.e., the derivative of the option value with respect to
the volatility parameter. In this case, a Newton-Raphson algorithm can achieve reasonably
accurate estimates within just two or three iterations (see Kritzman, 1991; Orlando and
Taglialatela, 2017).

Even though Ball et al. (1985) demonstrate that implied volatility may also be calcu-
lated for exotic options, the literature tends to focus on standard options.4 In particular,
there exists no implied volatility concept for commodity swing options which are becoming
more important than ever in natural gas markets (see Carmona and Ludkovski, 2010; Jail-
let et al., 2004). Subject to periodic volume constraints, such options permit the holder to
repeatedly exercise the right to receive large or small quantities of the underlying. While
this design provides great �exibility in terms of execution, it complicates option valuation
(because subperiod decisions in�uence future exercise possibilities) and all follow-up work
(such as the derivation of option sensitivities and implied volatilities) requiring a solid
valuation framework. Fortunately, recent research has achieved signi�cant breakthroughs
which now allow us to develop a method for computing swing option-implied volatilities.

Building on the general swing option de�nition of Jaillet et al. (2004), the core of our
proposal combines Monte Carlo option valuation with the Newton-Raphson root-�nding
method. For this combination to work, two sets of results from the literature have to be
taken into account. First, Barrera-Esteve et al. (2006) and Bardou et al. (2010) show that,
for swing options with certain types of penalty functions or absolute global constraints, the
optimal execution is of digital type. This allows us to simplify the general swing option
valuation problem such that the well-known Longsta� and Schwartz (2001) method, orig-
inally designed for American-style options, becomes applicable for the valuation of swing
options. Second, for the case of an optimal purchasing behavior of the swing option holder,
Bonnans et al. (2012) justify a pathwise approach to calculate �rst-order sensitivities. It
enables us to derive a formula for the vega of swing options,5 which is required for the
root-�nding procedure. We ensure the universal convergence of the Newton-Raphson iter-
ation in our setting by showing that the swing option value function is strictly increasing
and convex with respect to volatility.

When it comes to deriving implied volatilities, a suitable stochastic model for the price
dynamics of the underlying is essential. Keppo (2004) and Berger et al. (2018) show
that swing contracts can be viewed as baskets of forwards, calls and time-spread options.
Consequently, we cannot simply assume a common geometric Brownian motion for spot
prices because it would cause the time-spread optionality of swing options not to be priced.

3Alternatives include the robust but ine�cient shotgun method (see Kritzman, 1991) and the bisection
method (see Brown, 1990; Chriss, 1996), which requires a starting interval centered on an initial guess.

4A notable exception is the coverage of Asian-style options in Yang et al. (2009).
5In contrast to previous studies typically focusing on swing options with �xed strike prices, an impor-

tant novelty of our study is that we also derive vega for swing options with gas-indexed strikes.
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We require a model which captures all dimensions of �exibility o�ered to the option holder
and is compatible with our main objective. While Boogert and de Jong (2011), Wahab and
Lee (2011) and Chiarella et al. (2016) opt for multi-factor and regime-switching designs to
model gas prices, we formulate an additive one-factor forward curve model in the spirit of
Clewlow and Strickland (1999) which is equipped with a deterministic volatility function
of negative exponential form. This modeling choice is important for three reasons.6 First,
as many studies breaking new ground, we wish to keep our setup easy to understand
and to reproduce (see Jaillet et al., 2004). This is particularly relevant for the practical
implementation of our method. Second, the traditional notion of implied volatility (and
our root-�nding procedure) demands the measure to be unique which cannot be achieved in
multi-factor or regime-switching environments because they assume distinct volatilities for
each factor and state (see Kohrs et al., 2019; Wahab and Lee, 2011). Finally, our choice of
volatility function ensures a Markovian spot price which is a key requirement for e�cient
dynamic programming in our valuation process (see Bellman, 1957). The implied spot
price process is mean-reverting with a mean-reversion parameter that controls the value
trade-o� between outright and time-spread optionality of swing options. It thus helps us
to better understand the �exibility value of swing options.

To provide some insights into typical empirical levels and properties of swing option-
implied volatilities, we apply our new method to a dataset of market quotes for European
natural gas swing options. This is therefore the �rst study to translate swing option
prices into implied volatilities. Working with a uni�ed implied volatility concept places us
in a position to compare swing option quotes,7 to identify potential patterns and better
understand relevant price drivers. We empirically investigate some generic volatility surface
dimensions like time-to-maturity and moneyness. Similar to observations for standard
electricity options (see Fanelli and Schmeck, 2019), we �nd the implied volatilities of swing
option quotes to exhibit seasonality with respect to the delivery period. As far as the
moneyness of swing options is concerned, we provide a formal de�nition and a computation
method. In contrast to plain vanilla commodity market analyses (see Jia et al., 2021),
volatility smirks are not particularly pronounced because swing options are often quoted
at-the-money.

The remainder of our article is organized as follows. Section 4.2 introduces the theory
on swing option valuation and sensitivity analysis. Section 4.3 discusses the speci�cs of the
price model used for the underlying. Section 4.4 illustrates the core of our implied volatility
approach based on Longsta�-Schwartz valuation and Newton-Raphson root-�nding iter-
ation. Section 4.5 applies our concept and algorithm to empirical data and searches for
noticeable patterns in implied volatilities. Section 4.6 concludes and discusses the impli-
cations of our results for energy market practice and future research.

6The theoretical motivation for preferring an additive over a multiplicative setup is discussed in Section
4.3.3.

7Because natural gas markets are less liquid than, for example, stock markets (see Felix et al., 2013),
the identi�cation of inexpensive and expensive deals is particularly important for energy traders.
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4.2 Swing option theory

4.2.1 Contract de�nition

We start with the formal Jaillet et al. (2004) and Barrera-Esteve et al. (2006) swing
contract de�nition. Subject to periodic constraints, a swing option provides �exibility
with respect to when and how much natural gas is purchased. The swing option holder
can repeatedly exercise the right to receive gas and is allowed to �swing", i.e., change the
quantity each time. The exercise time stamps are some �xed date indices t = 0, ..., T − 1
during the delivery period, where T is referred to as the number of steps.8 The quantity
qt purchased at time index t is subject to the �daily" volume constraint

qmin ≤ qt ≤ qmax, (4.2.1)

where qmin and qmax are called the minimum and maximum daily contract quantity (DCQ).
The cumulative volume Qt =

∑t−1
s=0 qs purchased up to time t− 1 must satisfy the �global"

constraint

Qmin ≤ QT ≤ Qmax. (4.2.2)

That is, the quantity purchased until the end of the contract is restricted by a minimum
and maximum total contract quantity (TCQ).9

Swing contracts, whose delivery period spans more than one year, usually restrict the
annual contract quantity (ACQ). In our study, we treat each yearly subperiod as an in-
dependent swing option such that constraints concerning the ACQ coincide with those
concerning the TCQ. Note that this does not necessarily hold for any kind of swing option
because, for example, make-up clauses can have a cross-cutting e�ect on di�erent yearly
periods (see Edoli et al., 2013).

The purchase price (or strike price) Kt for natural gas at date t can either be �xed or
�oating. Gas-indexed contracts rely on realized forward prices averaged over a pre-de�ned
reference period to derive the strike of a related validity period. The simplest approach
is the use of a monthly index, where the strike of each month in the delivery period is
calculated as the average month-ahead forward price of the previous month. In this case,
the length of each reference and validity period is one month, and there is no time-lag
between reference and validity period. In a more general approach, we can de�ne the four
formula parameters a, b, c, d, where a is the length of the reference period (in months), b
the time-lag (in months), c the length of the validity period (in months) and d the starting
month of the strike price building formula. The delivery period is composed ofM adjacent
validity intervals J1, ..., JM with equal lengths of c months. The intervals are sorted in

8The indices 0, ..., T − 1 correspond to a uniform discretization of the delivery period, i.e., τ0 < ... <
τT−1, which we spare out for the sake of readability.

9Violating the constraint (4.2.2) can be allowed but will then be penalized when the option expires.
For example, a contract might budget a one-time or a per-unit penalty which could be constant or depend
on market prices at expiration (see Jaillet et al., 2004). We treat (4.2.2) as an absolute constraint, i.e., we
would de�ne the penalty for violating the terminal constraint as in�nite.
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For an exemplary time frame, this �gure shows the relevant periods of a 9-6-12-1 gas indexation for-
mula. The strike price is obtained by averaging all settlement forward prices observed during the
9-month reference period. These forward prices correspond to the 12-month validity period beginning 6
months after the reference period.

Figure 4.1: Gas indexation

ascending order by date and the �rst interval J1 starts with month d. The formula strike
price Kt for t ∈ Jm (and m = 1, ...,M) will be determined after the reference period Im and
then be (pathwise) constant in each validity period Jm. That is, we have KJm := Ks = Kt

for each s, t ∈ Jm. It is calculated by averaging the realized forward prices F (i, Jm) for
validity period Jm of each trading day i in the reference period Im,

KJm :=
1

|Im|
∑
i∈Im

F (i, Jm) =
1

|Im|
∑
i∈Im

1

|Jm|
∑
j∈Jm

F (i, j) (4.2.3)

where |Im| (|Jm|) is the number of days in the reference (validity) period Im (Jm) of a (c)
months. We have a time-lag of b months between the end of the reference period Im and
the start of the validity period Jm. Figure 4.1 illustrates the relevant time periods for a
gas indexation with parameters a = 9, b = 6, c = 12 and d = 1. The monthly index can
be described by a = 1, b = 0, c = 1 and d = 1.

Aside from the forward market, natural gas can be purchased at the spot market. The
spot price at date index t for delivery at the following day is denoted by St. We assume
(St) to be memoryless or a Markov process in the probability space L2(Ω, (Ft),P;R). That
is, future price dynamics depend only on the current spot price. The canonical �ltration
associated with (St) = (St)t=0,...,T−1 is denoted by (Ft) := σ(Ss : 0 ≤ s ≤ t). For gas-
indexed strikes, induced forward prices can then be obtained as F (s, t) = E[St|Fs]. In
addition, we conveniently assume the interest rate to be constant and zero, although a
constant discount factor could be easily introduced. Thus, the payo� of a swing option at
index t is Pt = St − Kt. Again, the strike Kt may be a �xed constant, i.e., K := Kt for
every t, or a gas-indexed random variable, i.e., calculated via (4.2.3) and hence dependent
on realized forward prices.

4.2.2 Valuation theory

Swing option valuation requires a modi�cation of the dynamic programming techniques
known from American-style options with one-time exercise right. In the original framework,
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the spot price St is the only state variable to be considered. However, for a swing option
with gas-indexed strike, the expected future payo� E[Pt|Fs] = E[St − Kt|Fs] for t > s
also depends on the �forward" strike prices K(s, Jm) := E[KJm|Fs] if t ∈ Jm.10 After
the initiation of the strike-building period, they are determined by average past forward
prices. Thus, St is not su�cient to determine future payo� expectations. The vector of
price state variables has to be expanded to Xt := (St, K(t, J1), ..., K(t, JM))′. Furthermore,
because swing options can be exercised multiple times subject to the constraints (4.2.1)
and (4.2.2), even Xt is not enough. We also have to add the purchased quantity Qt such
that the variable set (Xt, Qt) forms the dynamics of the stochastic control framework as a
discrete-time Markov chain which is controlled by local consumption (qt).

That said, the fair value v of a swing contract can be obtained by maximizing its
expected payo� over the delivery period. Formally, we have to solve

v := sup
(qt)∈L2

E

[
T−1∑
t=0

Pt(Xt) · qt

]
subject to qmin ≤ qt ≤ qmax almost surely,

Qt+1 = Qt + qt, q0 = 0,

Qmin ≤ QT ≤ Qmax almost surely,

(4.2.4)

where the local consumption qt is a real-valued, square-integrable and Ft-measurable ran-
dom variable for every t. Each consumption control (qt) = (qt)t=0,...,T−1 is hence an element
of the functional space L2 := L2(Ω, (Ft),P;R). A feasible control additionally satis�es the
local and global constraints (4.2.1) and (4.2.2) almost surely. The set of feasible controls
is denoted by Q, i.e.,

Q := {(qt) ∈ L2 : qmin ≤ qt ≤ qmax for all t = 0, ..., T − 1 a.s.

and Qmin ≤ QT ≤ Qmax a.s.}.
(4.2.5)

An optimal control (q∗t ) ∈ Q ful�lls the equation

v = E

[
T−1∑
t=0

Pt · q∗t

]
(4.2.6)

under risk-neutral probability. The set Q∗ of all optimal controls is nonempty. 11

10We add the label �forward" to the strike prices because their de�nition is close to the fact that forward
prices can be seen as conditional expectations under risk-neutral probability, i.e., F (s, t) = E[St|Fs].

11A priori, we have to ensure the existence of an optimal exercise control. In some settings, the
supremum of (4.2.4) may be unbounded or cannot be associated with a feasible control.
However, Q is a bounded and closed subset of L2∩L∞ as it takes values in [qmin, qmax] and is constrained

by (4.2.2). According to the Banach-Alaoglu theorem (see Brezis, 2010, Theorem 3.16), it is hence a
weak compact subset of L2. Further, note that the objective function J : Q → R, de�ned by J (q) =

E
[∑T−1

t=0 Pt · qt
]
, is weakly continuous and thus preserves compactness. That is, the image of Q under the
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We now present several steps to simplify the valuation problem (4.2.4). In the �rst
step, we follow Bardou et al. (2010) by splitting up the original swing option into a swap
and a normalized swing option with local constraint q̃t ∈ [0, 1].12 This has the consequence
that the value v of the swing contract subject to the original constraints (4.2.1) and (4.2.2)
can be obtained via

v = (qmax − qmin)ṽ + qmin

T−1∑
t=0

E[Pt], (4.2.7)

where ṽ denotes the value of a swing contract subject to the local constraints q̃t ∈ [0, 1]
and the global constraints Q̃t ∈ [Q̃min, Q̃max] with

Q̃min =
Qmin − Tqmin

qmax − qmin

and Q̃max =
Qmax − Tqmin

qmax − qmin

. (4.2.8)

It also allows us to assume in the following that, with no loss of generality, qt ∈ [0, 1].
In the second step, we exploit the Markov property of (Xt, Qt) which implies that an

optimal exercise decision on day t can be made solely based on the state variables Qt and
Xt. This is because the expected future payo� on a day s can be written as a function of
these variables:

Vs(Qs,Xs) := max
(qt)∈Q

E

[
T−1∑
t=s

Pt(Xt) · qt

]
subject to Qs+1 = Qs + qs almost surely.

(4.2.9)

Bellman (1957) shows that, under such circumstances, the dynamic optimization prob-
lem can be broken down into simpler subproblems. For each exercise date, a policy function
can be formulated which determines the controls as a function of the states. Furthermore,
Bellman (1952) points out that an optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the �rst decision. This optimality principle allows
us to rewrite the original problem as a backward dynamic programming problem:

Vt(Qt,Xt) = max
qt∈[0,1]

Pt(Xt) · qt + E[Vt+1(Qt + qt,Xt+1)|Ft]

VT (QT ,XT ) =

{
0, if Qmin ≤ QT ≤ Qmax,

−∞, otherwise.

(4.2.10)

mapping J is also compact, i.e., a closed and bounded subset of R. Consequently, the function J attains
its maximum.

12This can be justi�ed by the fact that the Ft-measurable random variable qt is [qmin, qmax]-valued if and
only if there exists a [0, 1]-valued Ft-measurable random variable q̃t such that qt = qmin + (qmax − qmin)q̃t.
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The procedure starts at the option's expiration date and steps backward in time while
considering two additional dimensions: spot price and consumption level. At each �back-
ward induction" step t, the decision is made by maximizing the future payo� over using
or skipping an exercise right. For this, we have to calculate Vt(Qt,Xt) for every possible
consumption level Qt and every price state Xt, given all the values Vs(Qs,Xs) for s > t.

To make this manageable, the third step uses the important result that swing contracts
can be optimally exercised in digital fashion, i.e., either at the highest or lowest feasible
level of qt. This feature allows us to consider only two possibilities in decision making and
only a �nite grid of relevant consumption levels for �nding the fair option value.

Proposition 2. Consider the stochastic dynamic decision problem (4.2.4) with qmin = 0
and qmax = 1. If Qmin, Qmax ∈ N0, then there exists an optimal policy (q∗t ) ∈ Q∗ of digital
type, i.e., q∗t is {0, 1}-valued for all t = 0, ..., T − 1.

Proof. See Bardou et al. (2010).

Based on this proposition, we can demand qt ∈ {0, 1} for every t if both Qmin and Qmax

are natural numbers. As a consequence, the variable Qt ∈ N0 can be interpreted as the
cumulative number of used exercise rights up to day t − 1. To refer to the digital case,
we often write rt instead of Qt. We further call r := Qmax ∈ N0 the number of exercise
rights and l := Qmin ∈ N0 the number of exercise liabilities of a swing option. We refer to
the ratio l/r as the take-or-pay (ToP) factor. If l = r, we speak of a 100% ToP contract.
Figure 4.2 depicts the digital state grid of Qt for an exemplary option with l = 10 and
r = 20.

With this �nal simpli�cation, the swing option valuation problem becomes quite similar
to that of American-style options. In both cases, an exercise decision is made by comparing
the possible instantaneous payo� and the continuation value of the option, i.e., the expected
future payo� in the case of retaining the exercise right (see Haugh and Kogan, 2004; Ibáñez
and Zapatero, 2004; Longsta� and Schwartz, 2001). However, in contrast to having only
one exercise right, the continuation value C%t for a swing option at time t is the expected
future payo� with % = rt+1 used rights up to and including day t:

C%t (Xt) := E[Vt+1(%,Xt+1)|Ft]. (4.2.11)

When the backward induction in the simpli�ed framework is completed, one digital
optimal policy (q∗t ) can be derived via forward induction

q∗t =

{
1, if Pt + Crt+1

t ≥ Crtt
0, otherwise

(4.2.12)

starting at t = 0 with r0 = 0.

4.2.3 Sensitivity analysis

Sensitivity analysis is the foundation for hedging option portfolios against market risks
(i.e., changes of value-determining parameters such as price or volatility of the underlying).
In our study, we have a di�erent objective. We need an analytical formula for �rst-order
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For an option with 10 exercise liabilities and 20 exercise rights in the delivery period January 2021, this
�gure plots the possible daily numbers of used exercise rights Qt up to t− 1.

Figure 4.2: Digital consumption state grid

sensitivities to speed up the root-�nding process for the determination of implied volatili-
ties.

We are interested in the local behavior of the value function in the neighborhood of
model parameters. Let p ∈ R denote a parameter of the spot price model such that the
mapping p 7→ St(p) is di�erentiable for every t = 0, ..., T − 1 and both St and its deriva-
tive ∂St

∂p
have a distribution absolutely continuous with respect to the Lebesgue measure.

Furthermore, their density function with respect to the Lebesgue measure is assumed to
be bounded. The same assumptions have to hold for p 7→ Kt. They are automatically
ful�lled if Kt is constant. For a gas-indexed strike price, p 7→ F (s, t) has to satisfy the
stated requirements for every s ≤ t. In this context, the following proposition holds.

Proposition 3. Consider the stochastic dynamic decision problem (4.2.4) and let p ∈ R be
a parameter of the price model such that the mapping p 7→ Pt(p) is di�erentiable for every
t = 0, ..., T − 1 and both Pt and its derivative ∂Pt

∂p
have a distribution absolutely continuous

with respect to the Lebesgue measure. Further, assume that their density function with
respect to the Lebesgue measure is bounded. Then, the optimal value function v(p) is
di�erentiable at almost every p ∈ R. At the points p where the derivative exists it is given
by

v′(p) =
∂v(p)

∂p
= E

[
T−1∑
t=0

∂Pt
∂p
· q∗t

]
= E

[
T−1∑
t=0

(
∂St
∂p
− ∂Kt

∂p

)
· q∗t

]
, (4.2.13)

where q∗ ∈ Q∗ is an arbitrary optimal policy.

Proof. See Bonnans et al. (2012).

This result justi�es a pathwise derivative approach for the unbiased estimation of �rst-
order sensitivities which has been developed in a study of simulation techniques by Broadie
and Glasserman (1996) and can be implemented with little additional computation e�orts.
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It is important to stress that (4.2.13) is not an outcome of the Leibniz integral rule (i.e.,
interchanging di�erentiation and taking expectations). It is not allowed in our context
because the optimal exercise strategy might change discontinuously on sample paths due
to parameter changes. Instead, the optimality of q∗ is crucial for the result. In the spirit of
the celebrated �rst-order condition in mathematical optimization, toggling between p and
p + ∆p may cause signi�cant adjustments of the optimal policy q∗ but its impact on the
optimal value is actually negligible. (4.2.13) does not hold for general exercise strategies
(see Chen and Liu, 2014).

This line of argumentation does not rule out second-order e�ects related to changes in
the optimal policy. Because changes in optimal policy cannot be expressed analytically
in general, there is no way of deriving a pathwise derivative formula for second-order
sensitivities. Nevertheless, we can study the properties of the derivatives. The following
proposition, derived from Kohrs et al. (2019), shows that, when using a common additive
or multiplicative model to describe the dynamics of the spot price process (St), convexity
of the value function emerges for a�ne parameters of the spot price function.

Proposition 4. Consider the stochastic dynamic decision problem (4.2.4) and let p ∈ R
be a parameter of the price model. Assume Xt may be written in the form

Xt+1 = ft,Wt(Xt, p), 0 ≤ t ≤ T − 2, (4.2.14)

where X0 is deterministic, (Wt) is a sequence of independent squared integrable random
variables and ft,w is an a�ne measurable mapping for �xed w. Then, the value function
v(p) is convex and hence twice di�erentiable almost everywhere.

Proof. See Appendix C.

We use this result later on to ensure convergence of our root-�nding procedure. It holds
only for certain price model choices which we discuss in the following.

4.3 Price model

4.3.1 General setup

For the valuation of swing options with gas-indexed strike prices, we have to look at
the joint dynamics of the spot price process (St) and the forward curve (F (s, t)). Because
the strike price Kt may depend on past forward prices, modeling only spot prices St is not
su�cient. Luckily, any speci�cation of the forward curve dynamics implies a process for
the spot price because we can derive the spot price by simply taking the t-expiring forward
contract at time t, i.e., St := F (t, t) (see Clewlow and Strickland, 2000). Therefore, our
starting point is the stochastic evolution of the price forward curve (PFC).

In a risk-neutral world, investors price all claims by the expected future value discounted
with the riskless rate (see Haugh and Kogan, 2004). Because forward contracts do not
require an initial investment, in a risk-neutral world, the expected change in the forward
price must be zero. Furthermore, because we wish to translate a given option value to one
implied volatility, we assume that forward curve dynamics are driven by a single volatility
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factor σ(s, t). That is, we assume the returns R(s, t) of the forward price F (s, t) to follow
the process

R(s, t) = σ(s, t)dWs, (4.3.1)

where (Wt) is a Brownian motion. To become applicable, the functional form of the volatil-
ity factor and the return type both need to be speci�ed. To incorporate the continuous
price model into our discrete time valuation framework, we use standard Euler-Maruyama
discretization.

4.3.2 Volatility function

The simplest form of volatility function is a constant, i.e., σ(s, t) = σ. However, it
is a suboptimal choice because it ignores certain aspects of swing option �exibility. To
understand this, note that, in the case of constant volatility and relative returns, each
forward contract F (·, t) follows the famous Black (1976) model, which has been introduced
to price plain vanilla options on commodity forward contracts. It is also well-suited for the
valuation of certain kinds of swing options which are strips of daily options in nature. We
are talking here about swing options with zero liabilities and a number of exercise rights
equal to the number of steps (i.e., 0 = l < r = T ). We refer to this kind of optionality
as �quantity �exibility" because it allows the purchase of more or less of the underlying
commodity. However, a model with constant volatility function is not suitable to value the
�structure �exibility" of swing options, i.e., the opportunity to restructure exercise rights
in response to the evolution of forward price time-spreads until maturity. Take a 100%
ToP swing option (with constraint l = r) as an extreme example. It exhibits no quantity
�exibility but still o�ers the right to choose the date of gas consumption if the number of
exercise rights is less than the number of steps (i.e., r < T ). A swing option of this type
would exhibit no extrinsic value in a constant volatility model because parallel shifts are
the only form of modeled forward curve movement. Such shifts do not provide volatility
in forward price time-spreads which drive the value of structure �exibility.

Another fact that could be considered when selecting the volatility function is that
natural gas markets exhibit seasonality in form of summer-winter spreads of time-varying
magnitude (see Chiarella et al., 2016; Kohrs et al., 2019).13 Modeling summer-winter
spread movements via trigonometric functions may help to assign a monetary value to
structure �exibility. However, because we are limited to one factor, incorporating solely
this time-of-maturity e�ect (and ignoring more important features) leads to misbehaving
option time values.

Interestingly, a volatility function which captures a key characteristic of natural gas
markets − a decreasing volatility term structure − values quantity and structure �exibility.
In contrast to stock and bond markets, production and storage are two major drivers of
supply in gas markets. As gas providers are frequently confronted with high demand,
supply overcapacity or production de�ciency, we can observe high volatility in spot and

13In other areas, such as power markets, where swing options are traded as well, summer-winter sea-
sonality is not strongly pronounced (see Weron, 2014).
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short-term forward prices. At the same time, we expect a balance between long-run supply
and demand. Hence, long-term forward prices are subject to less �uctuation around a
rather stable equilibrium price level, which re�ects expectations of market production and
costs in the long run. Consequently, we need a volatility function which declines with
increasing time-to-maturity.

When looking for a function with such features, we are actually quite limited. To obtain
a Markovian spot price process, the volatilities of forward prices must have a negative
exponential form (see Carverhill, 1994). Therefore, the function

σ(s, t) = σe−ϑ·(t−s) (4.3.2)

is a natural and common choice (see Clewlow and Strickland, 1999; Fleten et al., 2012).
It obviously �ts a decreasing volatility term-structure. A higher attenuation rate ϑ leads
to lower volatilities until maturity and hence to a lower value of quantity �exibility. In
addition, the function generates volatility in forward price spreads because forward con-
tracts near maturity exhibit higher volatility than long-term contracts. The magnitude of
these forward spreads is directly linked to the attenuation rate ϑ. Starting from ϑ = 0, a
higher ϑ leads to higher forward spreads and hence a higher value of structure �exibility.
Thus, in summary, the choice of ϑ involves a trade-o� between giving quantity or structure
�exibility a higher value. In Section 4.5.2, we discuss this issue in more detail.

Note that the attenuation of the volatility of the forward curve is also directly related
to a mean-reverting behavior of the spot price (see Propositions 5 and 6). That is, as often
observed in �nancial markets, prices tend to return to an equilibrium level over time (see
Balvers et al., 2000; Poterba, 1988). As far as gas markets are concerned, several factors
drive a strong mean-reversion. Its rate depends on, for example, the speed at which the
market supply reacts to certain events or how quickly the e�ects of these events wear o�.

4.3.3 Return speci�cation

In general, the returns R(s, t) can be de�ned in relative or absolute form. Choosing
between the two alternatives

R(s, t) =
dF (s, t)

F (s, t)
and R(s, t) = dF (s, t)

leads either to a multiplicative model (with log-normal forward prices and implied volatil-
ities measured in percent) or an additive model (with normal forward prices and implied
volatilities measured in monetary units).14

There are three theoretical reasons for choosing the absolute de�nition. First, in a
constant relative volatility model, a rising price of the underlying goes along with increasing
absolute volatility (in terms of the product of relative volatility and price). This causes
a higher value of �exibility and hence a higher option value. Because the degrees of

14Price normality is not necessarily problematic because energy markets can exhibit negative prices (see
Zhou et al., 2016) and additive models can perform quite well empirically (see Versluis, 2006).
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freedom of our price model are limited (i.e., there is only one volatility parameter to be
set) and individual PFCs might exhibit di�erent price levels (due to short-term or seasonal
e�ects), it is important to wipe out this price level e�ect on the value of �exibility. A
constant relative volatility parameter would lead to higher and lower simulated absolute
price �uctuations along the time axis; a constant absolute volatility model would not.

Second, the choice of return de�nition has a crucial in�uence on option sensitivities
and thus on the risk exposures implied by the resulting option price model. To illustrate
this important point, we compare the induced spot price processes of multiplicative and
additive PFC models and discuss their implications.

Proposition 5 (Multiplicative price model). Consider a multiplicative single-factor PFC
model with volatility function (4.3.2), i.e.,

dF (s, t)

F (s, t)
= σe−ϑ·(t−s)dWs, (4.3.3)

with its solution

F (s, t) = F (0, t) · exp

(
−1

2

∫ s

0

|σe−ϑ·(t−u)|2du+

∫ s

0

σe−ϑ·(t−u)dWu

)
. (4.3.4)

This forward price model induces the spot price process

dSt
St

=
∂F (0, t)

∂t
dt+ ϑ(logF (0, t)− logSt)dt+

σ2

4
(1− e−2ϑt)dt+ σdWt. (4.3.5)

The price forward curve can be reconstructed with the formula

F (s, t) = F (0, t)

(
Ss

F (0, s)

)exp(−ϑ(t−s))

exp

(
−σ

2

4ϑ
e−ϑt(e2ϑs − 1)(e−ϑt − e−ϑs)

)
. (4.3.6)

Proof. See Clewlow and Strickland (1999).

Proposition 6 (Additive price model). Consider an additive single-factor PFC model with
volatility function (4.3.2), i.e.,

dF (s, t) = σe−ϑ·(t−s)dWs, (4.3.7)

with its solution

F (s, t) = F (0, t) +

∫ s

0

σe−ϑ·(t−u)dWu. (4.3.8)

This forward price model induces the spot price process

dSt =
∂F (0, t)

∂t
dt+ ϑ(F (0, t)− St)dt+ σdWt. (4.3.9)
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The price forward curve can be reconstructed with the formula

F (s, t) = F (0, t) + e−ϑ(t−s) · (Ss − F (0, s)). (4.3.10)

Proof. See Appendix C.

The delta position of a swing option is de�ned as the value sensitivity with respect to
shifts of forward prices F (0, t). More formally, we consider the mapping F (0, t) 7→ v and
de�ne the delta position δt for maturity t as the partial derivative of v with respect to
F (0, t). Following Proposition 3, this sensitivity can be calculated as

δt :=
∂v

∂F (0, t)
= E

[(
∂St

∂F (0, t)
− ∂Kt

∂F (0, t)

)
· q∗t
]
. (4.3.11)

To delta-hedge a swing option, one has to take a position in the amount of δt in each
forward contract F (0, t) of the delivery period t = 0, ..., T − 1. The overall delta position
δ is de�ned as the sum of all daily delta positions. It can alternatively be de�ned as the
value sensitivity with respect to parallel shifts of the entire forward curve. That is, we
have

δ =
T−1∑
t=0

δt = E

[
T−1∑
t=0

(
∂St

∂F (0, t)
− ∂Kt

∂F (0, t)

)
· q∗t

]
. (4.3.12)

This shows that the delta position is in�uenced by the way forward curve shifts a�ect the
spot prices. For the multiplicative price model (4.3.3), we have

S ′t(F (0, t)) :=
∂St

∂F (0, t)
= exp

(
−1

2

∫ t

0

|σe−ϑ·(t−u)|2du+

∫ t

0

σe−ϑ·(t−u)dWu

)
, (4.3.13)

whereas the additive price model (4.3.7) yields

S ′t(F (0, t)) = 1. (4.3.14)

Consequently, for �xed-strike swing options, the delta position δt in an additive price
model is equal to the expected exercise quantity E[q∗t ], which is similar to the plain vanilla
option pricing model of Bachelier (1900).15 In contrast, the overall delta position in a
multiplicative model is generally higher than its expected total exercise quantity.16 This

15For a detailed technical analysis of this model, see Schachermayer and Teichmann (2008).
16To see more intuitively why the multiplicative model commands higher risk exposure than the addi-

tive one, note the following. E[S′t(F (0, t))] = 1 holds in both models. However, a sample realization
nS′t(F (0, t)) > 1 on a path n indicates a relatively high spot price such that exercising is advanta-
geous. There is therefore a positive correlation between the derivative S′t(F (0, t)) and q∗t which results in
E [S′t(F (0, t)) · q∗t ] ≥ E [q∗t ]. From another perspective, we can argue that the multiplicative delta position
captures value gains related to a rise in absolute volatility (see discussion above).
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is in line with the Black (1976) model, where the delta of a call option is higher than the
exercise probability.

Portfolio managers might prefer a price model where the total delta hedge does not
exceed the total contract quantity. For 100% ToP options, where the time of consumption
is �exible, the total exercise quantity is predetermined. Nevertheless, a multiplicative price
model would suggest to hedge an overall quantity above the total contract quantity. Figure
4.3 illustrates this behavior for a selected swing option. Here, the delta in the multiplicative
price model adds up to 123% of the total contract quantity. An analogue e�ect occurs in
gas storage valuation because 100% ToP options can be interpreted as speci�c types of
storage options (see Boogert and de Jong, 2008, 2011; Lai et al., 2010).

Besides the delta argument, which can be an intuitive guide in the return model deci-
sion,17 a third and �nal theoretical property of the additive model is particularly valuable
in our context. The sensitivity with respect to the model volatility is much simpler than
in the multiplicative model. In the additive model, we have a linear mapping σ 7→ F (s, t)
for every s ≤ t leading to a very comfortable computational framework. In Section 4.4.2,
we shed more light on this important aspect.

4.4 Implied volatility algorithm

We now introduce our algorithm to translate swing options quotes, which can be embed-
ded into the framework of Section 4.2, into implied volatility parameters σ of the additive
price model de�ned in Section 4.3. To handle the complexity of swing option valuation,
we use the Monte Carlo techniques described in Section 4.4.1. That is, we adapt the
least squares Monte Carlo algorithm of Longsta� and Schwartz (2001) to general swing
contracts. We then utilize the Newton-Rhapson iteration as a root-�nding algorithm for
implied volatility calculation, as described in Section 4.4.2. Because a �rst-order deriva-
tive is required in every iteration step, we provide an analytical formula to calculate the
vega of swing options with no additional computational burden.18 Finally, we deduce the
unconditional convergence of the iteration via derivative property arguments.

4.4.1 Option valuation algorithm

Longsta� and Schwartz (2001) proposed a simulation-based approach for pricing
American-style options by using least squares regression to estimate their continuation
values. Least squares Monte Carlo (LSMC) has become a literature standard (see Hanfeld
and Schlüter, 2017; Kohler, 2010) and can be considered a state-of-the-art approximate
dynamic programming approach. It is applicable to a wide range of path-dependent and
multi-factor settings typically encountered when studying complex energy options (see
Nadarajah et al., 2017).

We can transfer this approach to swing options with Qmin, Qmax ∈ N0 which are ex-
ercised in a digital fashion according to Proposition 2. Consider an exercise decision on

17It should not be considered a de�nitive knockout argument because even delta hedges based on
additive models can be �awed.

18This means that we can use results from the option valuation process to compute vega.
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For a selected �xed-strike 100% ToP swing option, this �gure compares the delta position (given as a
percentage of the total contract quantity) of the additive price model (4.3.7) to that of the multiplica-
tive model (4.3.3). The delta of the multiplicative model sums up to 123% and hence is not �volume
neutral".

Figure 4.3: Delta in additive and multiplicative models

some day t ∈ {0, ..., T − 1} with a given number of used exercise rights rt ∈ N0 up to
day t − 1 and observed price state Xt. To decide whether to use one of the remaining
exercise rights (if there is one), we have to obtain proper estimates for the continuation
values (4.2.11), with % ∈ {rt, rt + 1}, because they cannot be calculated analytically as a
non-trivial conditional expectation. For this purpose, we introduce an orthonormal basis
φ = (φj)j∈N of L2(Ω,Ft,P). Then, the continuation value can be represented as

C%t (Xt) =
∞∑
j=1

α
(%,t)
j φj(Xt) = 〈α(%,t), φ(Xt)〉,

where α(%,t) = (α
(%,t)
j )j∈N (see Brezis, 2010). Two features of LSMCmake this representation

applicable in a practical setting. First, only a �nite number of basis functions is drawn from
the set (φj)j∈N to estimate C%t as a linear combination thereof. Second, the coe�cients α(%,t)

are estimated by least squares regression based on information from all simulated paths.
Formally, we consider a sample of daily price states (nXt)0≤t≤T−1 with n = 1, ..., N

referring to one sample path. Furthermore, we have the exercise decision on day t for a
given number of used exercise rights rt. Our goal is then to derive an optimal decision
q̂∗t (

nXt) for each path n using (4.2.12). Because we go backwards in time, we have already
estimated optimal decisions q̂∗s(

nXs) on each path n and for every possible number of used
exercise rights rs on s = t+ 1, ..., T − 1. For �xed % ∈ {rt, rt + 1}, we therefore obtain the
future payo� on each path n using the optimal decisions (q̂∗s(

nXs))s≥t+1 as

nC%t =
T−1∑
s=t+1

Ps(
nXs) q̂

∗
s(
nXs),
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which we treat as an observation of the dependent variable Vt+1(%,Xt+1). These observa-
tions can then be used to perform the least squares regression

nC%t =
J∑
j=1

α
(%,t)
j φj(

nXt) + εn

with error term εn. This yields the estimated coe�cients (α̂
(%,t)
j )j=1,...,J , which �nally deliver

estimates Ĉ%t (nXt) =
∑J

j=1 α̂
(%,t)
j φj(

nXt) of the continuation values.
A crucial issue of every Monte Carlo approach is convergence. While the LSMC algo-

rithm is rather intuitive, proving its convergence is far from trivial. The reason for this
lies in the variety of potential error sources. For example, when estimating the conditional
expectation C%t (Xt), we use a linear combination of a �nite set of J basis functions, i.e.,
C%t (Xt) ≈ JC%t (Xt) :=

∑J
j=1 α

(%,t)
j φj(Xt). In practical settings, it is impossible to use the

entire sequence (φj)j∈N such that one source of error is naturally linked to the number of
used basis functions J . Additional error originates from the simulation technique. When
estimating the coe�cients α(%,t)

j , the estimation error will depend on the number of paths
N . Overall, an exercise strategy derived by means of an approximated variable might be
suboptimal.

We justify our approach by previous results on LSMC convergence. For a �xed number
of paths N , Longsta� and Schwartz (2001) propose to choose the number of basis functions
J by increasing J until the option value no longer rises. Clément et al. (2002) provide the
�rst complete proof of convergence under fairly general conditions. While their work con-
siders a single-stopping problem in discrete time, Barrera-Esteve et al. (2006) show that
it can be adapted to swing options. Unfortunately, Clément et al. (2002) treat the error
sources outlined above separately. Their proof is based on a sequential rather than a joint
limit. To ensure the convergence of the estimator in a joint limit, the relationship between
N and J has to be analyzed. Glasserman and Yu (2004) take this issue into account and
prove convergence of the estimator as the number of paths grows approximately expo-
nentially with the number of basis functions. Under the requirement of a smooth payo�
function, Stentoft (2004) shows that convergence to the true value is ensured, if J → ∞
and J3/N →∞.

In light of this discussion, the number of basis functions has to be chosen carefully.
A low J might not capture the true shape of the continuation value function whereas a
high J can lead to misbehaving regressions. Both cause poor continuation value estimates.
To �nd an adequate J , we borrow the �greedy heuristic" of Boogert and de Jong (2011)
which considers a potentially large basis but only selects a subset monitored for stability.19

In contrast, as outlined in Section 4.4.2, the number of simulation paths N is set by
computational limits.

Within a �nite sequence φ = (φj)
J
j=1 of basis functions, the greedy heuristic decides in

a speci�c way which ones to include in the regression. To limit the risk of an oversized

19As we will see, this heuristic is inspired by the increasing J approach of Longsta� and Schwartz
(2001).
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basis, basis functions are successively added to the regressor matrix X until it misbehaves.
We assume a linear relation between the continuation value C := (1C%t , ..., NC

%
t )′ and the

regressor matrix X with columns xj = (1xj, ...,
Nxj)

′ and nxj := φj(
nXt). That is, we have

C = Xα(%,t) where α(%,t) is the coe�cient vector. Consequently, α(%,t) can be estimated via
the Moore-Penrose pseudo inverse, i.e., by least squares, as

α̂(%,t) = (X ′X)−1X ′C. (4.4.1)

If X ′X is well-conditioned, its inverse can be computed with acceptable accuracy and we
can expect stable coe�cient estimates.20 Therefore, starting with x1, we successively �ll
X with the vectors xj, check the condition of X ′X in each step and terminate if X ′X is
no longer well-conditioned.

Besides determining the number of basis functions, we have to take into account the
potential impact of using di�erent types of basis functions. Moreno and Navas (2003)
consider ten families and show that, for American-style options, LSMC is quite robust to
the choice of basis functions. For more complex derivatives, however, there can be large
di�erences in option values. In an application of gas storage valuation, Boogert and de Jong
(2011) investigate the same families and emphasize that powers should be the preferred
choice. Besides the power class, they consider other polynomial families (like Chebyshev,
Hermite, Legendre or Laguerre) but �nd that all of them underperform and/or consume
more computation time. Guided by this result, we use the power family with polynomials
up to degree three. For �xed-strike swing options, the sequence of basis functions is simply
(St, S

2
t , S

3
t ). In the case of gas-indexation, we also include the forward strike pricesK(t, Jm)

for all validity periods Jm.
Figure 4.4 illustrates the continuation value regression for a �xed-strike swing option

with a delivery period spanning 366 steps. The option provides 180 exercise rights of which
162 are mandatory. We can clearly see how the number of remaining exercise rights, avail-
able 120 steps before delivery, a�ects the shape of the continuation value function. Figure
4.4a shows a situation where the option holder has 100 remaining exercise liabilities such
that there is little opportunity left to pass on exercising. Consequently, the continuation
value function exhibits little convexity and is well approximated by the payo� function of
a simple forward contract. In contrast, Figure 4.4b shows a situation in which the option
holder has only 10 remaining exercise liabilities such that there is ample scope to exercise
at the right time. The continuation value hence exhibits stronger convexity and resembles
the value function of a plain vanilla call.

4.4.2 Root-�nding algorithm

Even for European-style options under the Black and Scholes (1973) model, implied
volatility calculation is not trivial because its closed-form representation does not allow ob-
taining the measure analytically. Initiated by Curtis Jr and Carriker (1988) and Brenner

20The condition number of a matrix A is de�ned as cond(A) = ||A||2 · ||A−1||2. A is said to be well-
conditioned if cond(A) is su�ciently low, i.e., below a pre-set barrier. We set this barrier to (ε · 106)−1,
where ε is the machine epsilon.
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This �gure illustrates the continuation value regression for a selected �xed-strike swing option with
a 366-step delivery period. Of its 180 exercise rights, 162 are mandatory. The future cash �ows (in
EUR/MWh) are plotted 120 steps before delivery and dependent on the current payout St − K (in
EUR/MWh). Sub�gures (a) and (b) distinguish between situations where the option holder has 100 and
10 remaining exercise liabilities, respectively.

Figure 4.4: Continuation value regression

and Subrahmanyan (1988), some studies have therefore developed approximate closed-
form inversion methods which apply some form of Taylor expansion to the pricing formula
and then analytically invert the expansion. Unfortunately, there is no closed-form pricing
formula for swing options and we have to value them via Monte Carlo techniques. Conse-
quently, we need a solver method. One of the most e�cient algorithms to estimate implied
volatilities is the classic Newton-Raphson method. This procedure has been shown to work
well for standard options, usually producing very accurate estimates with negligible com-
putation time (see Kritzman, 1991), and has also been used in the context of Asian-style
options (see Yang et al., 2009). In both cases, it relies on an accurate and fast computa-
tion of option vegas. Fortunately, the theoretical results of Section 4.2.3 allow us to derive
a vega formula for swing options and to justify the application of the Newton-Raphson
method for volatility root-�nding.

The Newton-Raphson method produces successively better approximations to the roots
of a real-valued function by utilizing the function's derivative. Given a quote v̄ for the value
of a swing option with a value function v(σ) depending on σ, we have to compute a solution
of

v(σ)− v̄ = 0.

Because v is di�erentiable by Proposition 3, we can apply Newton-Raphson iteration, i.e.,

σn+1 = σn −
v(σn)− v̄
v′(σn)

. (4.4.2)
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To implement this iteration, in a �rst step, we have to derive a vega formula for swing
options with �xed or gas-indexed strike prices. Recall that, in our additive model (4.3.7),
we have

F (s, t) = F (0, t) +

∫ s

0

σe−ϑ(t−u)dWu

such that di�erentiating with respect to σ yields

∂F (s, t)

∂σ
=

∫ s

0

e−ϑ(t−u)dWu =
F (s, t)− F (0, t)

σ
. (4.4.3)

Thus, the �rst-order payout derivatives are

∂St
∂σ

=
St − F (0, t)

σ
and

∂KJm

∂σ
=

1

|Im|
∑
i∈Im

F (i, Jm)− F (0, Jm)

σ
, (4.4.4)

where F (i, Jm) = 1
|Jm|

∑
j∈Jm F (i, j). Following Proposition 3, the swing option vega can

be calculated by inserting (4.4.4) in

v′(σ) = E

[
T−1∑
t=0

(
∂St
∂σ
− ∂Kt

∂σ

)
· q∗t

]
. (4.4.5)

In a second step, we ensure the universal convergence of the iteration (4.4.2) by using
the classic result on monotone global convergence (see Deu�hard, 2011). It requires v to
be twice di�erentiable in a right neighborhood of the root. If v is (i) increasing and (ii)
convex, the sequence σn is monotonically decreasing to the root.

With our previous results, we can derive these necessary conditions quite easily. Start-
ing with (i), note that, in case of a gas-indexed strike, we can compactly write

∂KJm

∂σ
=
KJm −K(0, Jm)

σ
, (4.4.6)

where K(0, Jm) = E[KJm|F0] = F (0, Jm). In case of a �xed strike price, the derivative of
Kt is zero which can be expressed as Kt −K(0, t). This leads us to

v′(σ) = E

[
T−1∑
t=0

(
St − F (0, t)

σ
− Kt −K(0, t)

σ

)
· q∗t

]

=
1

σ

T−1∑
t=0

E [(St −Kt) · q∗t ]− E[St −Kt] · E[q∗t ]

=
1

σ

T−1∑
t=0

Cov(St −Kt, q
∗
t ).

(4.4.7)
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Here, the last term is non-negative because of the optimality of the exercise strategy (q∗t ).
In other words, if there is value in �exibility, the payout St − Kt and the quantity q∗t
should be positively correlated on average. The term is zero in edge cases only, e.g., when
a contract does not exhibit any �exibility in the �band delivery" con�guration (l = r = T )
or when we have a �xed-strike 100% ToP option in combination with no mean-reversion
in prices (ϑ = 0).

With respect to (ii), the pathwise constant �rst-order derivatives (4.4.3) imply that

∂2F (s, t)

∂σ2
= 0.

Thus, the second-order derivative of P (σ) is equal to 0 and, according to Proposition 4,
the mapping σ 7→ v(σ) is convex. Because the second-order e�ect from the price model is
zero, strict convexity can arise from changes in optimal exercise only, i.e.,

v′′(σ) = lim
∆σ→0

E

[
T−1∑
t=0

(
∂St
∂σ
− ∂Kt

∂σ

)
· ∆q∗t (σ)

∆σ

]
, (4.4.8)

where ∆q∗t (σ) = q∗t (σ + ∆σ) − q∗t (σ). Recall from our discussion of Proposition 3 that
jumping between q∗t (σ) and q∗t (σ+∆σ) has no signi�cant �rst-order impact on the optimal
value v. However, we can have changes in the optimal policy (q∗t ), which lead to the second-
order e�ects captured in (4.4.8). Without second-order e�ects from the price model, we
expect the overall second-order e�ect to be rather small. This would result in a slightly
curved value function (caused by changes in optimal exercise) and quick Newton-Raphson
convergence.

These two presumptions can be con�rmed by numerical testing. Figure 4.5, which plots
the value function v(σ) of a selected swing option, illustrates the expected curvature. As
far as the convergence speed is concerned, note that, based on the monotone convergence
argument, σ0 should be high and lie above the root. Otherwise, the method overshoots
the root in the �rst iterative step due to the convexity. For example, with a starting value
of σ0 = 100, the mean calibration error quickly reaches its minimum which corresponds
to the number of sample paths used for Monte Carlo valuation. Speci�cally, Figure 4.6
shows that, for N = 1, 000 (N = 10, 000) sample paths, a stable calibration error below
0.01 EUR/MWh (0.001 EUR/MWh) can be reached after four iterations. With a higher
N , the error can be reduced even further. However, this goes along with signi�cantly
higher computation time. Because we wish to keep the duration of our numerical analysis
in Section 4.5 reasonably low, the remainder of our study sets an error tolerance of 0.01
EUR/MWh by choosing N = 1, 000. In practice, it is up to the user to decide which levels
of accuracy (and thus speed) are required for a given application.



4.5. Numerical study 71

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Volatility

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

V
a
lu
e

theta = 1

theta = 2

theta = 3

For di�erent choices of ϑ ∈ {1, 2, 3}, this �gure shows the value function v(σ) in EUR/MWh of a se-
lected �xed-strike 100% ToP swing option with 90 exercise rights during the summer season 2020. The
volatility parameter σ is quoted in EUR/MWh p.a.

Figure 4.5: Convex value function

4.5 Numerical study

4.5.1 Preliminaries

Our numerical study is based on a quotation data set collected at the VNG Handel
& Vertrieb GmbH, which is part of a large company network with more than 60 years
of experience in the European energy market.21 The data set contains 1,897 natural gas
swing option quotations in the two-year period of 2019-2020. We have 962 quotes for
�xed-strike options and 935 quotes referring to swings with gas-indexation. The majority
of �xed-strike option quotes correspond to 100% ToP options (869 cases). Among the
gas-indexed options, a monthly index is the most common form (918 cases). Options with
complex �oating strikes are rare (17 cases). Besides quotations, we use PFC data with daily
granularity of maturity and implied volatility data of plain vanilla options with monthly
granularity of maturity based on end-of-day price quotations of natural gas forward and
future prices of the Dutch Title Transfer Facility (TTF), the leading virtual trading point
for natural gas in continental Europe.22

Figure 4.7 presents the implied volatilities of the swing option quotations (bid, ask
and trade prices) along the time axis. Provisionally, we have set a mean-reversion rate of

21For more details, see https://vng.de/en/newsroom/publications.
22Wholesale gas trading at the TTF is largely conducted over-the-counter via interdealer brokers.

Physical short-term gas and gas futures contracts are also traded and handled by the ICE Endex Energy
Exchange and the European Energy Exchange (EEX) which recently merged with Powernext (see https:
//www.eex.com/en/market-data/natural-gas/spot-market/ttf). All curves are constructed by a curve-
building procedure which yields an arbitrage-free PFC, i.e., the curves match all relevant price quotations
in the market. When available, price quotations of products with daily granularity (e.g., day-ahead or
balance-of-month) are supplemented by products for months, quarters, seasons, calendar and gas years.
At the same time, the curves follow daily and seasonal historical shapes.

https://vng.de/en/newsroom/publications
https://www.eex.com/en/market-data/natural-gas/spot-market/ttf
https://www.eex.com/en/market-data/natural-gas/spot-market/ttf
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For a representative subset of our swing option data set (see Section 4.5.1) and di�erent numbers of
sample paths N ∈ {100, 1000, 10000}, this �gure shows the average of the Newton-Raphson iteration
calibration error |v(σn)− v|. The parameter ϑ is obtained via volatility curve �tting (see Section 4.5.3).

Figure 4.6: Volatility calibration errors

ϑ = 2.0. At given quotation dates, the volatilities vary in a smaller range for swings with
monthly indexation than for �xed-strike options. That is, further option speci�cations
aside, traders of monthly index options have a stronger agreement on market volatility.
Furthermore, they do not expect volatility to be as extreme as the levels priced by some
�xed-strike option traders.

In the following, we deepen this overview by investigating the relationship between
implied volatilities and the mean-reversion rate (see Section 4.5.2) and proposing a method
to estimate the mean-reversion rate (see Section 4.5.3). In addition, we screen implied
volatilities for patterns with respect to seasons (see Section 4.5.4) and moneyness (see
Section 4.5.5).

4.5.2 Value drivers

In general, the shape of a swing option's value function is complex and depends on many
parameters. Nevertheless, we can derive some interesting features for the two most fre-
quently occurring types of swing options: options with monthly indexation and �xed-strike
100% ToP options. In preparation for Section 4.5.3, where we determine a suitable value
for the mean-reversion rate ϑ, we focus on the relationship between ϑ and σ. Speci�cally,
we calculate the implied volatility of each available swing option (via our root-�nding pro-
cedure) for various ϑ ∈ {1.0, 1.1, ..., 5.8, 5.9} and explain the resulting shape of the mapping
ϑ 7→ σ(ϑ).

Feature 1: The value of a monthly index option is driven by the volatility of the spread
between the spot and the monthly index price. In other words, monthly index options
provide a market view on spot price volatility in a short future period between t − i and
t where i covers approximately a one-month distance. To see this without getting lost in
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(a) Monthly index
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(b) Fixed strike

The �gure shows the model-implied volatilities (in EUR/MWh p.a.) for our data set of swing option
quotations. While Sub�gure (a) refers to options with monthly indexation, Sub�gure (b) looks at �xed-
strike options. The mean-reversion rate is set to ϑ = 2.0.

Figure 4.7: Implied volatilities of swing options

too much technical details, we consider the spread between the spot price St = F (t, t) and
a past forward price F (t− i, t). Its variance is given by

V ar(F (t, t)− F (t− i, t)) = V ar

(∫ t

t−i
σe−ϑ(t−s)dWs

)
=
σ2

2ϑ
(1− e−2ϑi). (4.5.1)

We speculate that the value of a monthly index option is determined by this variance. To
test this hypothesis, we hold ν2

i := V ar(F (t, t)− F (t− i, t)) constant and rearrange

ν2
i =

σ2

2ϑ
(1− e−2ϑi) ⇐⇒ σ =

√
2ϑν2

i

1− e−2ϑi
. (4.5.2)

For each option, we then use a non-linear regression to search for optimal parameters νi
and i such that (4.5.2) �ts our (ϑ,σ) pairs. The results in Table 4.1 (Panel A) are in
line with our hypothesis. The average MAE of 4.02e-3 over all regressions is lower than
our root-�nding tolerance of 1e-2 and the minimum R2 is 0.9842. As expected, with an
average of 23.7 days, the relevant time to maturity is almost one month. In this interval,
prices move with an average volatility of 1.913 EUR/MWh. As illustrated in Figure 4.8a,
for typical values of the mean-reversion rate ϑ, implied volatility σ is approximately an
increasing linear function of ϑ.

Feature 2: The �exibility value of 100% ToP options arises from the possibility of
switching exercise times during the delivery period. On a day t, we may decide to exercise
on day t+ i instead of day t+j. This is close to a situation considered in Margrabe (1978),
where one risky asset is exchanged for another. In his framework, asset prices follow a
geometric Brownian motion and the ratio of prices has a constant volatility. Consequently,
similar to Black and Scholes (1973), there is a one-to-one link between the volatility of
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Panel A: Monthly index Panel B: Fixed-strike 100% ToP

MAE R2 νi i MAE R2 νij i j

Min 2.27e-4 0.9842 0.622 10.7 8.47e-3 0.9134 0.0004 0.0 67.5
Avg 4.02e-3 0.9995 1.913 23.7 1.35e-1 0.9868 5.2403 1.9 424.1
Max 2.93e-2 1.0000 3.223 27.1 2.52e-0 0.9999 25.6881 75.9 934.6

Panel A of this table summarizes the results of �tting (4.5.2) to each of our monthly index options. Be-
sides the mean absolute error (MAE, in EUR/MWh p.a.) and the coe�cient of determination (R2), we
present the estimated parameters of the non-linear regressions: the volatility of the spot-forward spread
(νi, in EUR/MWh) and the time distance of the spread (i, in days). In a similar vein, Panel B reports
the results of �tting (4.5.3) to each of our �xed-strike 100% ToP options. Here, the regression parame-
ters are the volatility of the forward spread (νij , in EUR/MWh) and the maturities of the corresponding
forward prices (i, j, in days).

Table 4.1: Implied volatility function �ts
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(b) Fixed-strike 100% ToP

For two selected swing options (i.e., two quotes), this �gure shows the �tted relationships between σ
and ϑ. Sub�gure (a) refers to the implied volatility function of a monthly index option, i.e., the base-
line regression (4.5.2), whereas Sub�gure (b) considers a �xed-strike 100% ToP option, i.e., regression
(4.5.3).

Figure 4.8: Exemplary implied volatility functions

the asset price ratio and the option price. Because we use an additive price model, we
investigate the di�erence F (t, t+ i)− F (t, t+ j) instead. We have

d (F (t, t+ i)− F (t, t+ j)) = dF (t, t+ i)− dF (t, t+ j) = σe−ϑidWt − σe−ϑjdWt

= σ(e−ϑi − e−ϑj)dWt.

In other words, F (t, t+ i)−F (t, t+ j) follows a Brownian motion with volatility σ(e−ϑi−
e−ϑj). We wish to check whether the value of �exibility is determined by a characteristic
forward spread de�ned by i and j. That is, again via non-linear regressions, we test the
relation

νij := σ(e−ϑi − e−ϑj) ⇐⇒ σ =
νij

e−ϑi − e−ϑj
. (4.5.3)
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The results are reported in Table 4.1 (Panel B). With an average MAE (R2) of 1.35e-1
(0.9868), the �tting errors are higher than for the monthly index options. Nevertheless,
the implied volatility functions are well-approximated by the shape in (4.5.3). The charac-
teristic forward spread volatility is on average 5.24 EUR/MWh and refers to a time spread
from over a year to a few days ahead. A closer look at the individual regressions, which
provide outcomes of the form illustrated in Figure 4.8b, reveals some key properties of the
volatility function of structure �exibility options. For ϑ→ 0+, the implied volatility tends
to go to ∞. That is, for ϑ = 0, a �xed-strike 100% ToP option would have no �exibility
value. With increasing ϑ, the implied volatility rises after an initial decline. Because i ≥ 0,
the mapping ϑ 7→ σ slopes slightly upward for ϑ→∞. Thus, there is a unique ϑ for which
σ attains its minimum.

4.5.3 Mean-reversion rate

Because ϑ is a vital input for implied volatility determination, we evaluate three esti-
mation approaches. First, historical day-ahead spot prices tend to exhibit mean-reversion
such that they could be a starting point for a historic estimation. Second, because the
attenuation rate of the volatility term-structure is directly related to the mean-reversion
rate, we could obtain ϑ by �tting the model term-structure to implied volatilities of plain
vanilla options. Finally, we might choose ϑ such that it �ts empirical swing option quotes.

We start by ruling out historic estimation because it typically requires rather long time
series (see Yu, 2012), which are not available in our context, and has a strong backward-
looking nature. In contrast, focusing on liquid vanilla options, whose prices are set in a
forward-looking manner, allows a more �up-to-date" perspective on the mean-reversion rate
in dynamic markets.23 Recalling that the variance curve of model (4.3.7) can be calculated
with

Var(F (t, t)) =
σ2

2ϑ

(
1− e−2ϑt

)
, (4.5.4)

we can obtain a daily estimate of ϑ by �tting (4.5.4), i.e., its square root, to the daily
volatility term structure of at-the-money plain vanilla gas options. We refer to this easily
implementable method as volatility forward curve (VFC) �tting.

Our �nal estimation method arises from the fact that ϑ is connected to the value of
quantity and structure �exibility of swing options (see Sections 4.3.2 and 4.5.2). Pure
structure �exibility is provided by �xed-strike 100% ToP options. Quantity �exibility is
strongly exhibited by options with a low ToP percentage and a long time period between
strike �xation and maturity. It is somewhat weaker for monthly index options, where this
period is rather short. Nevertheless, there is a �exibility trade-o� when choosing ϑ for our
two main option types. As shown by Figure 4.8, it has the consequence that a given ϑ can
lead to quite distinct implied volatilities. To resolve this issue, we could choose ϑ such that
the implied volatilities of all individual swing options �uctuate around an �equilibrium"

23In a sense, this is similar to the literature emphasizing that implied volatilities are better predictors
for future volatility than past volatilities (see Christensen and Prabhala, 1998).



76 Chapter 4. Swing option-implied volatility

level. To achieve this, we suggest looking for uniform values of σ and ϑ which most suitably
respect the bid, ask and trade boundaries of our quotes. Speci�cally, for a �xed ϑ and
initial time window, we start by searching for a σ which ideally lies above all bids and
below all asks.24 Put di�erently, we want to know whether we can separate all bid and ask
quotes by a constant σ. This is a typical linear classi�cation task which can be tackled by
a support-vector machine (SVM; see Vapnik, 1995).

We may embed our approach into a linear SVM framework. For a given ϑ, we have a
data set (x1, y1), ..., (xn, yn), where yi encodes bids as −1 and asks as 1, and xi = (σi(ϑ))′

is a one-dimensional vector which contains only the implied volatility value dependent on
ϑ.25 Any hyperplane can be written as the set of points x satisfying w′x− b = 0, where w
is the normal vector to the hyperplane. If the quotes are linearly separable, we can select
two parallel hyperplanes that separate all bids and asks. That is, we have a minimum ask
hyperplane w′x − b = 1 (i.e., all asks lie on or above this boundary) and a maximum bid
hyperplane w′x− b = −1 (i.e., all bids lie on or below this boundary). The region bounded
by these two hyperplanes is called the �margin". To prevent quotes from falling into the
margin, we require yi(w′x−b) ≥ 1 for all i = 1, ..., n. Further, we want the distance 2/||w||
between these boundaries to be as large as possible. The SVM optimization problem is
hence to minimize ||w|| subject to yi(w′x− b) ≥ 1 for i = 1, ..., n. In our simple setting, w
is a scalar and the corresponding σ can be calculated as σ = b/|w|.

Because some quotations corresponding to di�erent options may result in bids lying
above asks, our data is not linearly separable. We hence introduce a squared hinge loss

l(w, xi, yi) = max(0, 1− yi(w′xi − b))2 (4.5.5)

which penalizes xi that lie on the wrong side of the margin. The goal of the optimization
is then to minimize

1

2
w′w + C

n∑
i=1

l(w, xi, yi), (4.5.6)

where C > 0 is a penalty parameter determining the trade-o� between increasing the
margin size and ensuring that the xi lie on the correct side of the margin.26

Figure 4.9 shows an exemplary �t for quotes in the three-month period before June
26, 2019 and ϑ = 1.8 (which will turn out to be the optimal choice). The SVM leads
to an equilibrium volatility of σ = 7.022 EUR/MWh p.a. which is accompanied by a
classi�cation accuracy of α = 74.7%.27 Because the latter metric measures how well a data
set can be separated by a chosen SVM model, we can use it to determine an appropriate
mean-reversion rate. Speci�cally, we repeat the SVM procedure for each mean-reversion

24Trade quotations can be treated as a bid and an ask, i.e., σ should match a trade quotation best.
25In Sections 4.5.4 and 4.5.5, we extend xi by seasonal and moneyness scores.
26In our procedure, we choose a default value of C = 1.
27Classi�cation accuracy α is de�ned as the fraction of correct model predictions (i.e., the number of

quotes i with yi = ŷi) divided by the number of total quotes n, where ŷi = 1, if w′xi− b ≥ 0, and ŷi = −1,
otherwise.
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For a selected three-month period and a mean-reversion rate ϑ = 1.8, this �gure shows the �t of a SVM
classi�cation to estimate the equilibrium volatility. The approach yields an optimal choice of σ = 7.022
EUR/MWh p.a. with a classi�cation accuracy of α = 74.7%.

Figure 4.9: Quote �tting procedure

rate ϑ ∈ {1.0, 1.1, ..., 5.8, 5.9} and then select the ϑ which maximizes the classi�cation
accuracy α. In the exemplary period, this delivers ϑ = 1.8. Overall, we employ a rolling
window approach to avoid look-ahead bias. That is, at each day of our sample, we estimate
ϑ based on quote data from the previous three months.

Figure 4.10 illustrates the ϑ estimates of both VFC and SVM �tting. Interestingly, in
our application, the mean-reversion rates are quite close to each other. Even though the two
approaches have di�erent goals (quick estimation independent from swing option data vs.
supplying a uni�ed model for swing option valuation), their results are highly correlated
and imply similar parameter choices. Therefore and because the VFC approach yields
�seamless" estimates with daily frequency, we use the VFC �t results in the remainder of
our analysis and simply write σi instead of σi(ϑ).

4.5.4 Seasonality

After computing the implied volatilities of our swing options, we now turn to a screening
with respect to pronounced empirical patterns. In this context, seasonality is a particularly
important issue because day-ahead spot prices of natural gas often exhibit higher volatility
in winter than in summer. Monthly indexed swing option quotes are natural candidates for
a closer investigation because, in contrast to �xed-strike swing options, their spot linkage
(see Section 4.5.2) makes them more susceptible to seasonality.

We start by introducing a seasonal score which measures the distance to the middle of a
calendar year. For a speci�c day t of a year (ranging from 1 to 366), we obtain |t−183|/183.
For each quote, we then calculate a winter score ρi as the average of this distance over all
days of the delivery period. Thus, the higher the score, the more of the delivery period
falls into the winter season. We �nally add ρi to the SVM vector xi of Section 4.5.3, i.e.,
we now have xi = (σi, ρi)

′, and execute the SVM classi�cation.
Figure 4.11a (4.11b) shows the classi�cation results for our entire data set of monthly

indexed (�xed-strike) quotes. For �xed-strike options, seasonality is not pronounced. That
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This �gure shows the daily estimates of ϑ delivered by our two competing methods. VFC �t refers
to �tting the model implied volatility forward curve (4.5.4) to plain vanilla option data. SVM �t is a
three-month rolling window SVM optimization based on swing option quotes.

Figure 4.10: Estimates of the mean-reversion rate
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(a) Monthly index
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(b) Fixed strike

For our entire sample period and subdivided into monthly index and �xed-strike options, this �gure
presents the seasonal SVM classi�cation of implied volatilities. For both swing option types, the winter
score measures the average distance to the middle of a calendar year over all days of the delivery period.

Figure 4.11: Full sample seasonal classi�cation

is, we detect only a marginal slope coe�cient of 0.636 EUR/MWh p.a. for equilibrium
volatility. Furthermore, with α = 69.5%, the classi�cation is rather inaccurate. In con-
trast, the monthly index classi�cation yields a signi�cant slope of 6.056 EUR/MWh p.a.
supplemented by an accuracy of α = 76.1%. As indicated by ρ = 0.0 and ρ = 1.0, we
have low summer volatility of 4.851 EUR/MWh p.a. and high winter volatility of 10.907
EUR/MWh p.a., respectively.

If we conduct the seasonal classi�cation in a three-month rolling window setup similar
to Section 4.5.3, we obtain the results of Figure 4.12. For each date, it reports the winter
and summer σ as well as the accuracy α of the classi�cation. We see that the seasonal e�ect
for monthly index options robustly occurs over time and is supported by high accuracy
scores between roughly 70% and 95%. In contrast, for �xed-strike options, the slope of
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(a) Monthly index
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(b) Fixed strike

This �gure shows the three-month rolling window seasonal SVM classi�cation results for monthly in-
dex and �xed-strike quotes. Besides the winter and summer σ, we report the accuracy scores α of the
classi�cation.

Figure 4.12: Rolling window seasonal classi�cation

the seasonal e�ect changes its sign multiple times, so we have no evidence of a sustained
seasonal e�ect.

4.5.5 Moneyness

We also search for moneyness patterns in implied volatilities. In general, moneyness
measures the likelihood of a derivative to expire in-the-money dependent on the relative
position of the current price of the underlying and the strike price (see Neftci, 2008). In
our setting, we have to consider the distance of each underlying forward price F (0, t) for
delivery at day t to the �xed strike price Kt. We do not consider gas-indexed options
because their strike building formula is designed to yield at-the-money or near-the-money
strikes. In the Bachelier (1900) model, the standardized moneyness (in terms of standard
deviation units) is given by

dt =
F (0, t)−Kt

σt
√
t

, (4.5.7)

where σt is the corresponding volatility of the forward price (F (·, t)) till maturity. The
correct percentage moneyness of a plain vanilla call is Φ(dt), i.e., the risk-neutral likelihood
of expiring in-the-money, which coincides with the option's delta value.28 Unfortunately,
the delta position of a swing option (given as a percentage of the total contract quantity)
does not re�ect its moneyness. This can be seen best when looking at 100% ToP options
which exhibit a �xed total delta position regardless of the current intrinsic payouts F (0, t)−
Kt of the delivery period.

28This is in contrast to the Black (1976) model, where the risk-neutral probability of exercise deviates
from the delta of a vanilla option (see also Section 4.3.3).
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Because swing options permit the holder to spread more or less consumption over the
delivery period, it is not clear how to weight the moneyness of di�erent dates. We propose
to calculate the moneyness corresponding to the maximum intrinsic position. This position
is characterized by the optimal execution of all exercise rights with respect to the current
intrinsic payouts, i.e.,

q× := arg max
(qt)

T−1∑
t=0

(F (0, t)−K(0, t)) · qt,

subject to qmin ≤ qt ≤ qmax, and
T−1∑
t=0

qt = Qmax.

(4.5.8)

The calculation of this intrinsic position is visualized in Figure 4.13. We can approxi-
mate the correct percentage moneyness

M× := P

(
T−1∑
t=0

(St −Kt) · q×t ≥ 0

)
(4.5.9)

via the Monte Carlo quantile of the valuation in Section 4.4.1. The quantile can also be
calculated analytically because the intrinsic position (q×t ) is �xed and model-free. We have

E[St] = F (0, t), (4.5.10)

Cov(Ss, St) =
σ2

2ϑ

(
e−ϑ|s−t| − e−ϑ|s+t|

)
. (4.5.11)

We restrict the means µ := (E[St]−Kt)t=0,...,T−1 and covariances Σ := (Cov(Ss, St))s,t=0,...,T−1

to the delivery period and calculate

T−1∑
t=0

(St −Kt) · q×t ∼ N
(
(q×)′µ, (q×)′Σ q×

)
. (4.5.12)

The intrinsic percentage moneyness is hence given by

M× = Φ(d×) with d× =
(q×)′µ√
(q×)′Σ q×

. (4.5.13)

We �nd only small di�erences between the analytical and the Monte Carlo approach. The
error distribution for N = 1, 000 sample paths is presented in Figure 4.14.

In our sample, searching for moneyness patterns in implied volatilities is complicated by
the fact that most of our quotations refer to swing options which are at-the-money or barely
in-the-money. 90% of the swing quotations have a moneyness between 50% and 60%. We
do not have many in-the-money and only few out-of-the-money quotations. Nevertheless,
we examine our data. That is, we extend the SVM framework of Section 4.5.3 by adding
the moneynessM×

i for each quote i to the vector xi, i.e., xi = (σi,M×
i )′, and then perform

the SVM classi�cation. As with our seasonal classi�cation, we conduct the analysis for the
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This �gure shows the daily intrinsic exercise loadshape (as a percentage of the total contract quantity)
of a selected swing option with 90 exercise rights during the summer season 2019. It addition, it plots
the corresponding intrinsic payouts (in EUR/MWh), which are given by the PFC of the valuation date
(long intrinsic payout) and the �xed strike price (short intrinsic payout).

Figure 4.13: Intrinsic execution

−0.02 −0.01 0.00 0.01 0.02

Approximation error

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

F
re
q
u
en
cy

This �gure shows the error distribution of the moneyness approximation. Speci�cally, for all �xed-strike
swing options, we have compared the analytical and the Monte Carlo moneyness values which corre-
spond to the derived implied volatilities. The mean absolute approximation error for N = 1, 000 sample
paths is 0.00317.

Figure 4.14: Moneyness approximation error

full data set (of �xed-strike options) and in the form of a rolling window setup. Figure
4.15a, which plots implied volatility against moneyness in the full sample, suggests that
implied volatilities decrease with higher moneyness. The rolling window results of Figure
4.15b imply that the form of the volatility smirk changes over time. In periods with higher
at-the-money volatility, the smirk is more often upward sloping than in periods with lower
at-the-money volatility. However, this should be understood as a preliminary result. More
research, which considers non-linear classi�cation kernels (see Lee and Mangasarian, 2001)
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(b) Rolling window

With a focus on �xed-strike swing options, this �gure shows the moneyness SVM classi�cation of im-
plied volatilities over the full sample period and in a three-month rolling window approach. The visual
design follows Figures 4.11 and 4.12.

Figure 4.15: Moneyness classi�cation

or modi�es the components of the input vector xi, is needed to fully capture the empirical
dynamics of swing-option implied volatilities.

4.6 Conclusion

Closing a signi�cant gap in the option pricing literature, we have developed an approach
to derive implied volatilities from swing option quotes. Speci�cally, we have used numerous
recent theoretical results to formulate a uni�ed option valuation and sensitivity analysis
framework, which, in combination with an adequate price model for the underlying, allows
using established Monte Carlo methods and a Newton-Raphson root-�nding procedure
for an e�cient calculation of implied volatilities. Even for just 1,000 sample paths, our
universally convergent technique converges after a few iterations and exhibits calibration
errors of acceptably low magnitude.

Along the lines of our work, we have made several additional contributions. For exam-
ple, we use delta-hedging arguments to emphasize that, in the context of energy options,
additive price models could be preferred to multiplicative ones. Furthermore, we show
that our speci�c single-factor price model, i.e., its mean-reversion parameter, is linked to
the �exibility value of swing options. This relationship helps us to better understand the
value dynamics of swing options and can be exploited to estimate the mean-reversion rate
(by choosing a parameter value which minimizes implied volatility scattering). Finally, we
develop a formula for the vega of swing options (with special emphasis on options with
gas-indexed strike prices) and a de�nition for the moneyness of swing options.

Our study delivers a valuable tool for energy market practice which can be readily
understood and implemented. It not only allows a comparison of option market quotes
but also informs about the perceptions of traders with respect to future spot market
�uctuations. In addition, our empirical study of the European natural gas market presents
some �rst evidence on the properties of swing option-implied volatilities. They serve as an
important input for future research. For example, documented seasonalities and partial
smirk-indications support a full characterization of the complex high-dimensional swing
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option-implied volatility surface (see Fengler et al., 2007). Furthermore, they naturally
lead to the question whether information contained in this surface can be used to predict
future market movements (see Busch et al., 2011) and improve portfolio selection decisions
(see DeMiguel et al., 2013).



Chapter 5

Summary

In this thesis, we analyse selected questions in the �eld of energy portfolio management.
The main results of the three papers can be summarised as follows.

The paper on portfolio theory addresses the theoretical and empirical justi�cation of
mean-variance analysis in portfolio optimization. Our main contribution is a character-
ization of distributions that imply mean-variance determined portfolio returns. That is,
we focus on returns where the weights over the risk-free asset and the risky assets sum to
unity. We show that, in presence of a risk-free asset, a speci�c class of skew-elliptical dis-
tributions is necessary and su�cient for the distribution of all portfolios to be determined
by its mean and variance. This �nding implies that skewed returns do not allow a rejection
of mean-variance analysis, which is a common belief among academics and practitioners.
Additionally, we provide auxiliary results which point out links between famous works on
this topic and rule out common misunderstandings. Among these are the works of (i)
Chamberlain (1983) who provides the basis of our proof but focuses on scaled portfolios
rather than on returns, (ii) Meyer and Rasche (1992) who introduces the weight constraint
in the context of distributional requirements but only treats some special cases, (iii) Schuh-
macher and Auer (2014) whose implications on the irrelevance of the performance measure
choice can be expanded to our framework and (iii) Simaan (1993a) whose derivation of the
e�cient set in his mean-variance-skewness framework can be reduced to our case. To round
o� our theoretical results, we �nish our study by presenting some evidence on the empir-
ical relevance of our skew-elliptical model. To this end, we modify the testing approach
proposed by Meyer and Rasche (1992) to be applicable to our speci�c case.

In the context of electricity price forecasting we run a comprehensive comparative
study featuring various approaches to tackle dimensionality problems in multivariate short-
term forecasting of day-ahead prices. Our study provides several important insights which
are relevant for the performance of di�erent forecasting approaches. First, importance
scores drawn from random forests reveal the distinct intraday dependencies of hourly prices
stating which hours of which past days have the highest predictive power for speci�c hours
in the future. Second, using these scores to perform a feature selection for powerful machine
learning tools lead to very promising forecasting results. That is, feeding the identi�ed
variables into a support vector machine is an outstanding forecasting technique in our
study compared to other approaches (such as dynamic factor models, penalized regressions
or Bayesian shrinkage) that are commonly used to resolve dimensionality problems. Third,
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we �nd that some forecasting methods are more accurate for certain hours of the day than
others which can be explained by the presence of distinct importance pro�les for di�erent
hourly prices. Finally, we can cite this observation as a reason for the fact that simple
forecast combination schemes tend to outperform the full battery of models in our study.

Dealing with energy swing options in the last paper, we develop an approach to derive
implied volatilities from swing option quotes. Speci�cally, we �rst formulate a uni�ed op-
tion valuation and sensitivity analysis framework building on numerous recent theoretical
results. Second, we discuss an adequate price model choice for the underlying with par-
ticular attention to the volatility function and return speci�cation. Third, we apply the
well-known Longsta� and Schwartz (2001) method for the valuation of swing options and
a Newton-Raphson root-�nding procedure for an e�cient calculation of implied volatili-
ties. Working with this concept in our empirical study, we analyse the shape of the value
function as well as seasonal and moneyness patterns in implied volatilities of swing option
quotes. We provide several insights for the two most often quoted types of options, which
are monthly index and 100% ToP �xed price options. For monthly index options, we
�nd that (i) their value is mainly driven by the volatility of the spread between spot and
monthly index price and (ii) implied volatilities are higher for delivery in winter months.
For 100% ToP �xed price options, we �nd that (ii) their value is mainly determined by the
volatility of a characteristic forward time spread, (ii) implied volatilities exhibit no ongo-
ing seasonality pattern (with respect to the delivery period) and (iii) the implied volatility
smile is more often upwards sloping in periods with higher market uncertainty, i.e. higher
implied volatilities in general.
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Appendix A

Appendix of Chapter 2

A.1 Proofs

Proof of Lemma 1. Assume that theXi (i = 1, ..., n) satisfy (2.2.1) where Y is a real-valued

random variable and, using Footnote 5, Z|Y ∼ En(0,Σ, ψ) is n-dimensionally elliptically

distributed about the origin with covariance matrix Σ and characteristic generator ψ.

Note that
∑n

i=1wir = r
∑n

i=1wi = r, if
∑n

i=1 wi = 1. For w ∈ Rn with w′e = 1, we

hence have P = w′X = r + Y
∑n

i=1 wiβi +
∑n

i=1wiγiZi. Set β̃ :=
∑n

i=1wiβi and Z̃ :=∑n
i=1wiγiZi. Because linear combinations of elliptical random vectors remain elliptical

with the same characteristic generator (see McNeil et al., 2005, Section 3.3.3), it follows

that Z̃|Y ∼ E1(0, σ2, ψ) is elliptically distributed with variance σ2 = c′Σc, where c :=

(w1γ1, ..., wnγn)′.

Proof of Proposition 1. Assume that X satis�es (2.2.1). From Lemma 1, it follows that

portfolio returns P = w′X belong to the same skew-elliptical GLS family for every w ∈ Rn

with w′e = 1. To prove the proposition it is hence su�cient that the distribution of every

primary asset Xi (i = 1, ..., n) is determined by its mean and variance. The two equations

E[Xi] = r+ βiE[Y ] + γiE[Zi] = r+ βiE[Y ] and Var[Xi] = β2
i Var[Y ] + γ2

i Var[Zi] = β2
i + γ2

i

can be solved for βi and |γi|, i. e., βi = (E[Xi] − r)/E[Y ] and |γi| = (Var[Xi] − ((E[Xi] −
r)/E[Y ])2)

1
2 . Note that E[Y ] 6= 0 such that these terms are well-de�ned. Recall that Zi

and −Zi have the same distribution such that βi and |γi| are in fact enough to determine

the distribution of Xi.

Proof of Theorem 1. We have to prove that the random vector X satis�es (2.3.1) if and

only if X satis�es (2.2.1) with no constant.
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"⇐": Assume that X satis�es condition (2.2.1) with no constant, i. e., Xi = βiY +γiZi

for i = 1, ..., n. Additionally, we have by de�nition βi 6= 0 for one i = 1, ..., n. Without loss

of generality, let β1 6= 0.

First step: Find a non-singular matrix T such that E[S] = 0 and Cov[S] = In−1,

where (m,S ′)′ = TX.1 First, choose

T1 :=


1 0 0 · · · 0

−β2/β1 1 0 · · · 0
−β3/β1 0 1 · · · 0

...
...

...
. . .

...
−βn/β1 0 0 · · · 1


and set X̃ := (X̃1, ..., X̃n)′ := T1X. Note that we have X̃i = βiY + γiZi − βi/β1 ·
(β1Y + γ1Z1) = γiZi − γ1βi/β1Z1 and hence E[X̃i] = 0 for i = 2, ..., n. Second, set

Σ̃ := Cov[(X̃2, ..., X̃n)] and let Σ̃ = QΛQ′ be its spectral decomposition, i. e., Q is an

orthogonal matrix and Λ = diag(λ2, ..., λn) is a diagonal matrix with λi > 0 for i = 2, ..., n

(see Strang, 2009, Section 6.4). De�ne the block matrix

T2 :=

(
1 0

0 Σ̃−
1
2

)
where Σ̃−

1
2 := QΛ−

1
2Q′ is the inverse of the positive de�nite square root of Σ̃ and we have

Λ−
1
2 := diag(λ

− 1
2

2 , ..., λ
− 1

2
n ). Let (m,S ′)′ := TX, where T := T2T1. Note that T is non-

singular because both T1 and T2 are non-singular. Further, we have E[S] = 0 due to T1 and

Cov[S] = In−1 due to T2. This is because Cov[TX] = Cov[T2X̃] = T2 Cov[X̃]T ′2 and hence

Cov[S] = Σ̃−
1
2 Σ̃(Σ̃−

1
2 )′ = QΛ−

1
2Q′QΛQ′QΛ−

1
2Q′ = QΛ−

1
2 ΛΛ−

1
2Q′ = QIn−1Q

′ = In−1.

Second step: Show that S given m is spherically distributed. Similar to the proof of

Lemma 1, we can easily verify that, for r = 0, all linear transformations of random vectors

satisfying condition (2.2.1) inherit the GLS property, i. e., we have the representation TX =

(β̃iY + γ̃iZ̃i)i=1,...,n with some suitable β̃i, γ̃i and elliptically distributed Z̃ = (Z̃1, ..., Z̃n)′,

conditional on Y . Because E[S] = (0, ..., 0)′, E[Y ] 6= 0 and E[Z̃2, ..., Z̃n] = (0, ..., 0)′, we

have β̃1 6= 0 and β̃2 = ... = β̃n = 0, i. e., S = (γ̃2Z̃2, ..., γ̃nZ̃n)′. We have E[m] 6= 0 as

β̃1 6= 0 and E[Y ] 6= 0. Further, as (Z̃1, S
′)′ is elliptically distributed (conditional on Y ), the

conditional distribution of S given Z̃1 (and Y ) is also elliptical, although generally with

di�erent characteristic generator (see McNeil et al., 2005, Section 3.3.3). For γ̃1 = 0, we

1Chamberlain (1983) does not prove this statement because arguments are drawn from basic linear
algebra only. Nonetheless, we provide a proof for the sake of completeness.



A.1. Proofs 103

have m = β̃1Y such that S|m is elliptically distributed. In the case of γ̃1 6= 0, S|m is also

elliptically distributed because S is elliptically distributed conditional on {Y = y, Z̃1 = z}
for every y, z ∈ R and {m = k} = {β̃1Y + γ̃1Z̃1 = k} =

⋃
l∈R{Y = l/β̃1, Z̃1 = (k − l)/γ̃1}.

Finally, considering Cov[S] = In−1, it follows that S given m is spherically distributed.

"⇒": Assume that there is a non-singular matrix T such that TX = (m,S ′)′. If we

denote T−1 = (t̄i,j)i,j=1,...,n, we have X = T−1(m,S ′)′ and hence Xi = t̄i,1m +
∑n

j=2 t̄i,jSj

for i = 1, ..., n. Setting βi := t̄i,1, Y := m and Z̃i :=
∑n

j=2 t̄i,jSj, we have the representation

Xi = βiY + Z̃i. As elliptical distributions are obtained by linear transformations of spher-

ical distributions (see McNeil et al., 2005, Section 3.3.2), Z̃ = (Z̃1, ..., Z̃n) is elliptically

distributed, conditional on Y .

Proof of Theorem 2. As we have already proven the su�cient condition in Proposition 1,

we now turn to the necessary condition. Assume that E[Xi] 6= r for at least one i = 1, ..., n

and the distribution of P = w0r + w′X is determined by its mean and variance for every

(w0, w) ∈ Rn+1 with w0 +w′e = 1. Note that E[P −r] = E[P ]−r, Var[P −r] = Var[P ] and

{(w0, w) : (w0, w) ∈ Rn+1 and w0 + w′e = 1} = {(1− w′e, w) : w ∈ Rn}. Hence, in light of

the fact that, for the excess returns P̄ and X̄, we have P̄ = w′X̄ under the full investment

constraint, our assumption states that the distribution of w′X̄ is determined by its mean

and variance for every w ∈ Rn. Note that E[X̄i] 6= 0 for at least one i = 1, ..., n. Following

from Chamberlain (1983, Theorem 2), X̄ must satisfy (2.3.1). By Theorem 1 the family

of distributions (2.2.1) with no constant and (2.3.1) are equivalent.

Proof of Corollary 1. "⇐": Assume the X1, ..., Xn in X satisfy (2.3.3) and, furthermore,

w0 and the w1, ..., wn in w are real numbers with w0 +w′e = 1. Then, P = w0X0 +w′X =

(w0 + w′e)R + w′βY + w′ξ with β := (β1, ..., βn)′ and ξ := (γ1Z1, ..., γnZn)′. Note that

(w0 + w′e)R = R, w′β ∈ R and w′ξ is elliptically distributed about the origin (with

the same arguments as before). Thus, in analogy to the proof of Proposition 1, we have

mean-variance determination.

"⇒": To prove the necessary condition, we can proceed similar to the proof of Theorem

2. Assume that P = w0X0 + w′X is determined by its mean and variance for every

(w0, w) ∈ Rn+1 with w0 + w′e = 1. Let X̃i := Xi − R and note that P̃ := P − R =

w′X + (w0 − 1)R = (w0 − 1)R + w′X̃ + w′eR = (w′e + w0 − 1)R + w′X̃ = w′X̃ similar

to before. Further, we have E[P̃ ] = E[P − R] = E[P ] − E[R] and Var[P̃ ] = Var[w′X̃] =

Var[w′(X− eR)] + Var[R]−Var[R] = Var[w′(X− eR) +R]−Var[R] = Var[w′(X− eR) +

(w0 +w′e)R]−Var[R] = Var[w0R+w′X]−Var[R] = Var[P ]−Var[R]. Here we used that

Xi −R and R are independent for each i = 1, ..., n, such that w′(X − eR) is independent

of R. Hence, our assumption states that the distribution of w′X̃ is determined by its
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mean and variance for every w ∈ Rn. Note that E[X̃i] 6= 0 for at least one i = 1, ..., n, as

E[Xi] 6= E[R] for at least one i = 1, ..., n. Following from Chamberlain (1983, Theorem 2),

X̃ must satisfy (2.3.1). In analogy to our Theorem 1, X must follow (2.3.3).

Proof of Corollary 5. For a portfolio return P = w0r + w′X with (w0, w) ∈ Rn+1 subject

to w0 + w′e = 1, we have E[P ] = r + w′βµY and Var[P ] = w′V w, where V = Σ + ββ′.

Recall that µY := E[Y ] 6= 0 and Var(Y ) = 1. Following Simaan (1993a, Theorem 3), the

distribution of P is a function of w′βµY and w′Σw. Similar to Simaan (1993a, Theorem

4), for given E[P ] − r = w′βµY , the expected utility E[u(w0r + w′X)] is a non-increasing

function of w′Σw, i. e., the elliptical component of the portfolio's variance. Thus, in line

with Simaan (1993a, Corollary 4.1), there exists a µ ∈ R which corresponds to the optimal

value of (E[P ]− r)/µY such that the portfolio problem (P) is equivalent to

min
(w0,w)∈Rn+1

1

2
w′Σw (P*)

subject to w′β = µ

w0 + w′e = 1.

The Lagrangian and �rst-order conditions are

L =
1

2
w′V w − 1

2
(w′β)2 + λ1(µ− w′β) + λ2(1− w0 − w′e)

dL

dw0

= −λ2 = 0

dL

dw
= V w − w′ββ − λ1β − λ2e = 0

and consequently we have 0 = V w − (λ1 + w′β)β = V w − (λ1 + µ)β. Solving for w yields

the solution w∗ = αf , where α := (λ1 + µ)(e′V −1β) and f is the tangency portfolio

f =
V −1β

e′V −1β
.

Further, we have

w∗0 = 1− e′w∗ = 1− e′
(
α
V −1β

e′V −1β

)
= 1− αe

′V −1β

e′V −1β
= 1− α.
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A.2 Robustness checks

Because our empirical conclusions may be sensitive to some of the settings in our

research design, Table A.1 reports the results of several robustness checks.

Watson Liang

Symmetric Centered Star

Survivorship adjustment
3 portfolios, 2 stocks 0.91 0.76 4.77 6.94

3 portfolios, 4 stocks 0.35 0.97 0.51 4.71

3 portfolios, 6 stocks 0.55 1.45 2.00 5.28

3 portfolios, 8 stocks 0.07 -0.35 0.35 0.87
5 portfolios, 2 stocks 0.13 -0.28 2.70 -2.08
5 portfolios, 4 stocks 0.02 0.78 0.37 -0.56
5 portfolios, 6 stocks 0.04 1.82 1.32 -0.38
5 portfolios, 8 stocks 0.08 1.41 0.65 -1.57
7 portfolios, 2 stocks 0.42 -1.86 4.86 -3.10

7 portfolios, 4 stocks 0.21 -0.57 2.88 -5.00

7 portfolios, 6 stocks 0.32 -1.42 3.94 -3.88

7 portfolios, 8 stocks 0.13 -0.91 2.02 -1.33
25:75 sample split
FF 6 size/book-to-market 0.14 4.99 0.16 3.03

FF 6 size/momentum 0.21 5.07 -0.61 2.64

FF 6 size/reversal 0.43 5.58 -2.92 1.65
FF 5 industries 0.54 2.22 3.38 -4.48

FF 10 industries 0.07 0.82 2.61 -0.38
75:25 sample split
FF 6 size/book-to-market 0.36 2.88 3.05 -1.84
FF 6 size/momentum 0.08 2.23 1.77 -1.44
FF 6 size/reversal 0.24 0.57 0.19 -2.31
FF 5 industries 0.15 0.67 -0.72 -1.93
FF 10 industries 0.14 0.79 3.08 -1.58

Non-equity common factor
GS 5 commodity indices 0.12 1.94 -0.97 -0.85
CS 13 hedge fund indices 0.44 9.28 8.57 5.09

Extending the results of Tables 2.1 and 2.2, this table presents the outcomes of three robustness checks. In the �rst one, we
account for potential survivorship bias by using an equal-weighted portfolio of our stock selection as the common factor. The
second sensitivity check changes the sample split rule (estimation sample A vs. test sample B) for Fama-French portfolios
from the initially used 50:50 to 25:75 and 75:25. Finally, the last subanalysis for alternative asset classes replaces the stock
market index underlying our main calculations by the aggregates of the GSCI and the CSHFI.

Table A.1: Robustness checks

First, since following the Meyer and Rasche (1992) portfolio construction approach in-

troduces a potential survivorship bias, we replace the CRSP index with an equal-weighted

portfolio of the 503 stocks under consideration.2 Second, besides implementing a 50:50

split, we extend our investigation of the Fama-French portfolios by also using 25:75 and

75:25 to determine the sizes of our estimation (A) and test (B) samples. This is because,

similar to extreme value research (see Gilli and Këllezi, 2006), there may be a trade-o� be-

tween accurate parameter estimates in the former and the number of available observations

for testing in the latter. Finally, while our main calculations follow Fung et al. (2008) by

using an equity index as the market proxy when analyzing hedge fund (and commodity)

data, we also performed our tests with the aggregate CSHFI (GSCI) instead.

2Using a value-weighted portfolio or even the S&P 500 index yields similar results.
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Looking at the outcomes, it is reassuring that the overall picture of mainly insigni�cant

test statistics continues to hold. As far as the survivorship adjustment is concerned, we

have slightly more cases of rejection than before. With respect to the sample split, we

observe that there are signi�cantly fewer (more) rejections for the Fama-French portfolios

when a larger (smaller) estimation sample is used. Finally, the two alternative market

indices do not change our conclusions for commodities and hedge funds.
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Appendix of Chapter 3

B.1 Additional empirical results
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(b) Hour 01

This �gure plots the relative permutation importance scores (computed via the random forest algorithm
of Section 3.2.3) of lagged price variables Pd−l,k (lags l = 1, 7 days) and weekday dummies Wi (days
i = 0, 1, 5, 6) for the explanation of all hourly price variables belonging to the speci�ed daytime `night'. It
is continued in Figure B.2.

Figure B.1: Importance pro�les `night' I
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(d) Hour 05

This �gure continues Figure B.1.

Figure B.2: Importance pro�les `night' II
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(d) Hour 09

This �gure plots the relative permutation importance scores (computed via the random forest algorithm
of Section 3.2.3) of lagged price variables Pd−l,k (lags l = 1, 7 days) and weekday dummies Wi (days
i = 0, 1, 5, 6) for the explanation of all hourly price variables belonging to the speci�ed daytime `morning'.

Figure B.3: Importance pro�les `morning'
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(d) Hour 13

This �gure plots the relative permutation importance scores (computed via the random forest algorithm
of Section 3.2.3) of lagged price variables Pd−l,k (lags l = 1, 7 days) and weekday dummies Wi (days
i = 0, 1, 5, 6) for the explanation of all hourly price variables belonging to the speci�ed daytime `high
noon'.

Figure B.4: Importance pro�les `high noon'
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(d) Hour 17

This �gure plots the relative permutation importance scores (computed via the random forest algorithm
of Section 3.2.3) of lagged price variables Pd−l,k (lags l = 1, 7 days) and weekday dummies Wi (days
i = 0, 1, 5, 6) for the explanation of all hourly price variables belonging to the speci�ed daytime `afternoon'.

Figure B.5: Importance pro�les `afternoon'



112 Appendix B. Appendix of Chapter 3

Lag 1 Lag 7 Weekday

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Mo Fr Sa Su

0.00

0.05

0.10

0.15

0.20

Feature

Im
po

rt
an

ce

(a) Hour 18

Lag 1 Lag 7 Weekday

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Mo Fr Sa Su

0.0

0.1

0.2

Feature

Im
po

rt
an

ce

(b) Hour 19

Lag 1 Lag 7 Weekday

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Mo Fr Sa Su

0.00

0.05

0.10

0.15

Feature

Im
po

rt
an

ce

(c) Hour 20

Lag 1 Lag 7 Weekday

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Mo Fr Sa Su

0.00

0.05

0.10

0.15

0.20

0.25

Feature

Im
po

rt
an

ce

(d) Hour 21

This �gure plots the relative permutation importance scores (computed via the random forest algorithm
of Section 3.2.3) of lagged price variables Pd−l,k (lags l = 1, 7 days) and weekday dummies Wi (days
i = 0, 1, 5, 6) for the explanation of all hourly price variables belonging to the speci�ed daytime `evening'.
It is continued in Figure B.7.

Figure B.6: Importance pro�les `evening' I
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This �gure continues Figure B.6.

Figure B.7: Importance pro�les `evening' II
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B.2 Benchmark models

B.2.1 Persistent model

Simple persistent forecasts, which assume that price changes are completely random

and thus the best forecast is to use an appropriate past hourly price, are probably the most

often-used benchmarks in EPF (see Nogales et al., 2002). In our application, we generate

such forecasts as follows: For a working day (Monday through Friday, ignoring holidays),

we use the hourly prices of the previous working day. For a weekend day (Saturday through

Sunday), we use the hourly prices of the previous week. Thus, we have

Pd,h =


Pd−3,h + εd,h, W(d) = 1,

Pd−1,h + εd,h, W(d) ∈ {2, ..., 5},

Pd−7,h + εd,h, W(d) ∈ {0, 7}.

(B.2.1)

Forecasts via this model are also called naive forecasts and, in many �elds, have been

shown to be superior to more complex forecasting methods (see Alquist and Kilian, 2010;

Alquist et al., 2013).

B.2.2 24 univariate AR models

Ziel (2016) suggests another benchmark for evaluating new electricity price models: 24

univariate AR(p) models (henceforth abbreviated with 24AR).1 That is, for each hour, we

have

Pd,h = φh,0 +
6∑
i=0

δh,iWi(d) +

ph∑
l=1

φh,l

(
Pd−l,h −

6∑
i=0

δh,iWi(d− l)− φh,0

)
+ εd,h. (B.2.2)

To estimate these models, we follow Ziel (2016) by �rst regressing prices on weekday

dummies to produce centered hourly prices. Afterward, we solve the Yule-Walker equations

to estimate the parameters φh,l because their solution guarantees stationarity (see Pindyck

and Rubinfeld, 1998). We select the model orders ph by minimizing the Akaike (1974)

information criterion (AIC) with a maximum upper bound of pmax = 21.

1One might also think of considering smoothing models (see Makridakis et al., 2018).
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B.2.3 Unrestricted VAR

As a more advanced benchmark, we consider an unrestricted VAR(p) model (henceforth

VAR) with exogenous weekday dummies, which has been used by, for example, Raviv et al.

(2015) and Ziel and Weron (2018). That is, we specify

Pd = φ0 +

p∑
l=1

ΦlPd−l +
6∑
i=0

DiWi(d) + εd, (B.2.3)

with (24 × 1) intercept vector φ0, (24 × 24) parameter matrices Φl and (24 × 1) weekday

dummy parameter vectors Di. We estimate the VAR model via equation-by-equation

ordinary least squares (OLS) and choose the lag order p by minimizing the AIC for a

maximum lag order of pmax = 21. For our data, this yields p = 2.

B.2.4 Expert VAR

Expert models use a �xed parsimonious autoregressive structure based on prior knowl-

edge of experts (see Maciejowska et al., 2016; Misiorek et al., 2006). Because the one- and

seven-day lags are often considered the most important (see Weron and Misiorek, 2008),

a straightforward expert model would include all lagged price variables Pd−l,h for the lags

l = 1, 7. Moreover, experts would add weekday dummy variables Wi for Monday, Friday,

Saturday and Sunday, i.e., i = 0, 1, 5, 6. In the following, we refer to this selection of lagged

and dummy variables as expert choice and note that it could also have been derived from

our random forest importance scores. Additionally considering that the most common

expert models are linear, we come up with the expert VAR model

Pd = φ0 + Φ1Pd−1 + Φ7Pd−7 +
∑

i=0,1,5,6

DiWi(d) + εd, (B.2.4)

with (24 × 1) intercept vector φ0, (24 × 24) parameter matrices Φl for lags l = 1, 7 and

(24 × 1) weekday dummy parameter vectors Di. We estimate via equation-by-equation

OLS.

B.2.5 Expert neural network

Besides the standard time series models of the previous sections, we use well-established

machine learning methods as benchmarks. Because energy market research (including

Catalão et al., 2007; Kuo and Huang, 2018; Lago et al., 2018; Szkuta et al., 1999) has

paid much attention to neural networks (NNs), we set up an expert NN. The network

architecture of such models is inspired by nature and consists of connected network nodes
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(or neurons). The simplest network, a single-layer perceptron (SLP), covers only an input

and an output layer of nodes and is equivalent to a linear regression. Each node value of

the output layer is derived by a linear combination of the input node values. The weights

connecting the nodes correspond to the coe�cients of the regression and are selected using

a learning algorithm that minimizes, for example, the mean square error. By adding

intermediate layers with hidden nodes, we obtain the multi-layer perceptron (MLP). MLPs

(and SLPs) belong to the family of feed-forward networks which have no loops and are

often preferred in forecasting (see Weron, 2014).2 The outputs of the nodes in one layer

are inputs for the next. The transfer function for the nodes in the hidden layers is often

non-linear because otherwise the MLP would collapse to a SLP (see Cybenko, 1989).

Similar to García-Ascanio and Maté (2010) and Cruz et al. (2011), for each hour h,

we train a MLP with one hidden layer. As input variables, we use the expert choice of

Section B.2.4. The transfer function is chosen to be a tangent-sigmoid function. For the

implementation, we resort to the feedforwardnet function provided in Matlab, where

we set training and validation ratios of 2/3 and 1/3 for our calibration period. Learning

happens via the Levenberg-Marquardt algorithm, which is a reasonable choice because it

trains a network 10 to 100 times faster than back-propagation (see Amjady, 2007). The

ideal number of hidden nodes complexly depends on various factors such as the number of

input and output nodes, the number of training cases and the magnitude of noise in the

variables. However, there are some rules of thumb for deriving a reasonable number. Blum

(1992) argues that the size of the hidden layer should be somewhere between the input

layer size and the output layer size. Boger and Guterman (1997) propose an interesting

heuristic. They specify as many hidden nodes as there are principal components needed to

capture between 70% and 90% of the input data variance. In our case, this rule suggests

a number between 2 and 6. If we require 95% of the variance to be explained, the number

increases up to 10. An additional rule of thumb, which can be derived from Hagan et al.

(1996), states that the ratio Ntrain/[α · (Ninput + Noutput)] gives an upper bound on the

number of hidden nodes, which will not result in over�tting. Here, Ntrain is the number

of training samples, Ninput (Noutput) is the number of input (output) nodes and α is an

arbitrary scaling factor (usually between 2 and 10). If we start with α = 2, we obtain a

node number around 7. To avoid relying exclusively on rules of thumb, we train several

2We focus on a MLP because it is frequently used in the literature and a popular parsimonious
benchmark. Alternatives would be feedback networks of simple/fully recurrent nature (see Anbazhagan
and Kumarappan, 2013; Andalib and Atry, 2009; Ugurlu et al., 2018) or self-organizing type (see Fan
et al., 2007; Niu et al., 2010) as well as networks using fuzzy logic (see Amjady, 2006).
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networks with a number of hidden nodes ranging from 1 to 12. As far as the network

generalization error (the mean square error in the validation sample) is concerned, we �nd

8 hidden nodes to be a reasonable layer size.3

B.2.6 Expert support vector machine

Support vector machines (SVM) are another popular machine learning technique, typ-

ically occur as elements of hybrid EPF systems (see Weron, 2014) and, depending on the

market, have been shown to be more accurate than NNs (see Che and Wang, 2010; Sansom

et al., 2003). While, in the more advanced sections of our study, we utilize SVMs sup-

plemented by feature selection and feature extraction techniques, we start by specifying a

simple expert SVM for benchmarking. Again, we use the expert choice of Section B.2.4 to

determine the input variables of the model.

SVMs were originally developed to solve pattern recognition problems (see Boser et al.,

1992; Cortes and Vapnik, 1995) but can also be used as a regression method. The goal of

SVM regression is to �nd a function of the input variables that deviates from the response

variable by a value no greater than a pre-set value ε > 0 for each training data point, and

at the same time is as smooth as possible. Because there may be no function to satisfy this

constraint for all points, slack variables ξ and ξ∗ are introduced for each point. This allows

regression errors to exist up to the value of ξ and ξ∗, yet still satisfy the required conditions.

Finally, a parameter C > 0 is used to control the penalty imposed on observations outside

the ε-margin.

For each day d, let the row vector xd contain the relevant values of di�erent features

and yd be the corresponding target output, both originating from y and X de�ned in

Section 3.2.2. Then, the standard form of SVM regression involves solving the optimization

problem

min
w,b,ξ,ξ∗

1

2
w′w + C

N∑
d=1

(ξd + ξ∗d) (B.2.5)

subject to (w′φ(xd) + b)− yd ≤ ε+ ξd,

yd − (w′φ(xd) + b) ≤ ε+ ξ∗d

ξd, ξ
∗
d ≥ 0, d = 1, ..., N,

3Even though Lago et al. (2018) propose some new speci�cation rules to boost the performance of
NNs, our focus is a simple benchmark derived from currently established speci�cation standards.
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where the function φ(xd), if non-linear, maps xd into a higher-dimensional space, and w,

b are regression parameters (see Vapnik, 1998). The algorithm of Schölkopf et al. (2000)

introduces a parameter ν ∈ (0, 1] to control the number of support vectors (see below).

Also, ε becomes a parameter to be determined in the optimization. This setting is called

SVM with ν-regression and solves

min
w,b,ξ,ξ∗,ε

1

2
w′w + C

(
νε+

1

N

N∑
i=d

(ξd + ξ∗d)

)
(B.2.6)

subject to the same constraints used in (B.2.5). This problem (also called primal problem)

is computationally simpler to solve in its Lagrange dual formulation.4 That is, we solve

min
α,α∗

1

2
(α− α∗)′Q(α− α∗) + y′(α− α∗) (B.2.7)

subject to e′(α− α∗) = 0, e′(α + α∗) ≤ Cν, (B.2.8)

0 ≤ αd, α
∗
d ≤ C/N, d = 1, ..., N, (B.2.9)

where Q is a (N ×N) positive semide�nite matrix and Qd,l = K(xd, xl) = φ(xd)
′φ(xl) is a

kernel function. After the problem is solved, the approximate function is

ŷ(x) =
N∑
d=1

(−αd + α∗d)K(xd, x) + b. (B.2.10)

If either αd or α∗d is not 0, then the corresponding observation is called a support vector.5

In other words, the function to predict new values depends only on support vectors. For

the kernel, we use a Gaussian radial basis function, i.e., K(xd, xl) = e−γ||xd−xl||
2
with

bandwidth parameter γ. This way, we can model a non-linear input-output relationship.

To implement our SVM regression, we have to choose suitable values for the parameters

C, ν and γ. This is not easy because, for good regression performance, they have to �t the

sample data. Several authors have proposed selecting parameters using cross-validation

(see Schölkopf and Smola, 2002) or grid search optimization (see Cherkassky and Mulier,

1998; Schölkopf et al., 1998). However, these methods are computationally intensive and

4In general, the optimal values of the primal and the dual problem need not be equal. However, when
the problem is convex and satis�es a constraint quali�cation condition, the value of the optimal solution
to the primal problem is given by the solution of the dual problem.

5αd = α∗d = 0 holds for all observations which lie strictly inside the ε-insensitive zone.
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time-consuming. We therefore use a genetic algorithm (similar to Chen and Wang, 2007;

Kang-Lin et al., 2004) to �nd optimal parameters for SVM regression.6 In a �rst step,

we search for reasonable parameter ranges by heuristics, empirical regularities, and trial

and error. In a second step, we select parameters from the derived ranges by using the

real-value genetic algorithm of Scrucca (2013).

The parameter ν is a lower bound for the share of support vectors in the training sample

and an upper bound on the fraction of poorly predicted training observations. Because

electricity prices have a complex importance pro�le and, in addition, exhibit spikes and high

volatility (especially for German/Austrian data), we search for relatively high parameter

values in the range ν ∈ [0.5, 1]. The cost parameter C determines the trade-o� between the

smoothness of the function of interest and the amount up to which deviations larger than

ε are tolerated. Increasing the cost value achieves a closer �t to the calibration data but

presents the danger of over�tting. Mattera and Haykin (1999) propose setting C based on

the output values, i.e., C = max(y)−min(y). This is reasonable but sensitive to outliers

in the training data. We consider the similar heuristic C = |mean(y)|+3 · |sd(y)| which, in
our application, takes values between 50 and 100 across di�erent hours h. To limit the risk

of faulty heuristic-based selection, we enlarge this range and search within C ∈ [10, 200].

The kernel parameter γ controls the shape of the separating hyperplane. Increasing γ

typically increases the number of support vectors. A standard value for γ is the reciprocal

of the number of features. We �nd reasonable values (below this standard) in the range

γ ∈ [10−4, 10−3] by trial and error.

For the search algorithm of Scrucca (2013), we use a maximal number of 10 generations.

The population size is 50, the elitism parameter is 2, the crossover probability 0.8 and

the mutation probability 0.1. We further have to specify a �tness function for parameter

evaluation. Since the goal of our SVM regression is to forecast future electricity prices, it is

vital to choose a �tness function capturing generalizability. Recall that the training sample

is used to estimate the SVM model for a certain parameter set, while the validation sample

is used to assess the generalizability of the estimated model. We use the mean square error

in the validation sample as the �tness function.

For our SVM regression, we rely on the implementation LIBSVM of Chang and Lin

(2011) provided in the R package e1071 by Meyer (2001). We set a termination criterion

tolerance of 0.01 and use shrinking heuristics following Chang and Lin (2011).

6Hu et al. (2013) follow a related approach based on a memetic algorithm for parameter selection.
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B.3 Feature extraction

While our random forest approach concentrates on selecting the most important fea-

tures, another approach to dimension reduction is to extract (or generate) new features

from the set of input variables and to use these new variables instead of the original

ones. Maciejowska and Weron (2013) have proposed reducing the dimension of the 24-

dimensional electricity price process by specifying a dynamic factor model, i.e., performing

principal component analysis (PCA).

The main assumption is that all hourly prices Pd,h co-move and depend on a small set

of common factors F (K)
d = (F1,d, ..., FK,d)

′. The individual series Pd,h can be modeled as a

linear function of the K ≤ 24 principal components Fk,d and the idiosyncratic components

νd,h. Speci�cally, we have

Pd,h = µh +
K∑
k=1

γh,kFk,d + νd,h, (B.3.1)

where the factor loading γh,k describes the e�ect of the kth factor Fk,d on the price Pd,h of

hour h.7 This model can be rewritten as a 24-dimensional time series

Pd = µ+ Γ(K)F
(K)
d + νd, (B.3.2)

where Pd = (Pd,0, ..., Pd,23)′ is the (24 × 1) price vector, Γ(K) = (γh,k)h=0,...,23;k=1,...,K the

(24 × K) loading matrix, F (K)
d = (F1,d, ..., FK,d)

′ the (K × 1) factor score vector and

νd = (νd,0, ..., νd,23)′ the (24× 1) vector of idiosyncratic components.

Let P = (P̄d,h)d=1,...,N ;h=0,...,23 be the (N × 24) centered price matrix, where P̄d,h =

Pd,h − µ̂h and µ̂h is the sample mean of (Pd,h)d=1,...,N . The sample covariance matrix of

prices is then given by Σ = P ′P/N . We decompose Σ = ΘΛΘ′, where Θ = (ϑ0, ..., ϑ23)

is the matrix containing the eigenvectors as column vectors and Λ is the diagonal matrix

containing the corresponding eigenvalues λ0, ..., λ23 ordered descending by magnitude. We

calculate Γ̂ = (
√
λ0 · ϑ0, ...,

√
λ23 · ϑ23) and truncate Γ̂(K) = (Γ1, ...,ΓK). The factor scores

can be reconstructed by taking F̂d = Γ̂−1Pd for each day d.8 Note that the estimated

7The factor loadings γh,k are model parameters which should not be confused with power system loads.
8Stock and Watson (2002) show that multiplying the tuple of eigenvectors of the matrix PP ′ by

√
N

yields a consistent estimator of the factor scores. Our calculation is equivalent to theirs.
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factor scores F̂d are standardized to a variance of 1. The idiosyncratic component scores

are calculated via (B.3.2) using the truncated factor scores and loading matrix.

To determine the ideal number of factors K, we compare several statistical tests. The

popular approach of Bai and Ng (2002) suggests to �nd K by minimizing a variance

criterion with a penalty term depending on the number of used factors. For their criteria

IC1 and IC2, Alessi et al. (2010) have improved the �nite sample performance via the

calibration strategy of Hallin and Li²ka (2007). Applying this approach in our setting,

both IC1 and IC2 advise to use K̂ = 7. Ahn and Horenstein (2013) propose selecting K

by maximizing the ratio of adjacent eigenvalues. Their eigenvalue ratio test yields K̂ = 6.

Alternatively, Onatski (2010) has introduced a threshold approach based on the empirical

distribution of the sample covariance eigenvalues, which can be used for both stationary

and non-stationary factors. For the estimated dimension, this technique provides K̂ = 7.

Given these results, we use K = 7 factors which explain 97.3% of the intraday variability

in our data.9

To predict future hourly prices, we have to forecast both factor scores and the idiosyn-

cratic components. The idiosyncratic components can only be weakly correlated across

periods and should therefore be modeled separately for each hour. Maciejowska and Weron

(2016) use an AR(q) model to describe and forecast the hourly idiosyncratic component.

That is, we specify

νd,h =

qh∑
l=1

θl,hνd−l,h + εd,h, (B.3.3)

where θl,h are the autoregressive parameters and εd,h are the error terms. For each hour

h, we solve the Yule-Walker equations where the lag order qh is chosen by minimizing the

AIC for a maximum lag order of qmax = 21. To forecast factor scores, Maciejowska and

Weron (2016) assign an unrestricted VAR model to the truncated factors. Incorporating

weekday e�ects, this yields

F
(K)
d = φ0 +

p∑
l=1

ΦlF
(K)
d−l +

6∑
i=0

DiWi(d) + ξd, (B.3.4)

where φ0 is the (K×1) intercept, Φl the (K×K) autoregressive parameter matrices and ξd
the (K×1) error process. The lag order p is chosen by minimizing the AIC for a maximum

9A smaller number of factors yields worse out-of-sample forecasts.
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order of pmax = 21. In our case, this yields p = 7. We refer to the overall price forecasting

approach as PC(K)-VAR.

Besides this setting we can think of two related forecasting techniques. First, we can

modify the previous PCA approach by applying the least absolute shrinkage and selection

operator (LASSO) method (as speci�ed in Section B.4.1) to (B.3.4). Even though PCA

already reduces dimensionality, LASSO may identify additional simpli�cation potential.

Second, we may combine PCA and the SVM with ν-regression and radial basis function

kernel (as speci�ed in Section B.2.6). However, in this case, a consistent implementation

(linear vs. non-linear) and a fair comparison to our random forest counterpart require

kernel PCA (as in Islam et al., 2017; Nahil and Lyhyaoui, 2018). For both alternatives,

we set p = 7 to (i) ensure comparability with the PC-VAR model estimated via equation-

by-equation OLS and to (ii) avoid introducing new dimensionality problems with higher

p. We call the additional settings PC(K)-LASSO and PC(K)-SVM and use K = 7 as well

as K = 11 because the latter number of factors yields the best forecasts for PC-LASSO

and PC-SVM regression.

B.4 Regularization

Regularization is a process of adding information to solve ill-posed optimization prob-

lems or to prevent over�tting (see Bühlmann and van de Geer, 2011). This information

can be quite di�erent across di�erent methods. For example, in elastic net regressions (see

Section B.4.1), the objective function is equipped with additional penalties, whereas, in a

Bayesian framework (see Section B.4.2), additional (inexact) restrictions are imposed.

B.4.1 Elastic net

Introduced by Zou and Hastie (2005), the elastic net penalizes large coe�cient values

in linear regression models and shrinks them to 0. To this end, it combines the l1- and

l2-penalties of ridge and LASSO methods. For a better understanding of these techniques,

two aspects are important. First, in their standard forms, they are all applied to a scaled

version of the linear model (3.2.2), where we again use a maximum lag order of pmax = 21.10

The scaled model has the form

ỹ = X̃β + ε, (B.4.1)

10As discussed in Sections B.3 and B.5.2, we also use LASSO in conjunction with estimated factors and
a SVM.
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where X̃ is the (N ×J) scaled regressor matrix, ỹ is the (N × 1) scaled dependent variable

vector and β is the (J × 1) standardized coe�cient vector. The columns of X̃ and ỹ are

scaled to a mean of 0 and a variance of 1. Second, recall that OLS minimizes the sum

of squared residuals, such that the OLS estimator of the scaled model can be compactly

written as

β̂ = arg min
β
||ỹ − X̃β||22. (B.4.2)

Ridge regression is a regularization method developed by Hoerl and Kennard (1970)

and its �rst EPF application can be found in Uniejewski et al. (2016). In contrast to OLS,

ridge regression has a preference for smaller coe�cient values and minimizes the sum of

squared residuals penalized by a quadratic shrinkage factor. That is, we have

β̂ = arg min
β
||ỹ − X̃β||22 + λ||β||22, (B.4.3)

where ||β||22 =
∑J

j=1 |βj|2 is the squared l2-norm and λ is a pre-set tuning parameter. Note

that, for λ = 0, we get the standard OLS estimator. Ridge regression will include all

predictors in the �nal model. While the quadratic factor will shrink all coe�cient values

towards 0, it will not set any of them exactly to 0. This issue is resolved by the LASSO.

The LASSO method has been suggested by Tibshirani (1996) as a regularized esti-

mation technique and also found its way to EPF (see Ziel, 2016). Due to its shrinkage

property, the estimator can handle models with many parameters from which only a few

are included in the �nal model. Hence, LASSO regression performs a feature selection

within model estimation. The LASSO estimator is given by

β̂ = arg min
β
||ỹ − X̃β||22 + λ||β||1, (B.4.4)

where ||β||1 =
∑J

j=1 |βj| denotes the l1-norm and λ is again a tuning parameter. While

the ridge penalty shrinks the coe�cients of correlated predictors towards each other, the

LASSO tends to pick one of them and discard the others.

Zou and Hastie (2005) proposed the elastic net, a regularization and variable selec-

tion method, which often outperforms the LASSO, while exhibiting a similar sparsity of

representation. The elastic net uses a mixture of linear and quadratic penalty factors, i.e.,

β̂ = arg min
β
||ỹ − X̃β||22 + λ(α||β||1 + (1− α)||β||22/2), (B.4.5)
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where α ∈ [0, 1] controls the elastic net penalty bridging the gap between ridge (α = 0)

and LASSO (α = 1) regression. The tuning parameter λ controls the overall strength of

the penalty.

For elastic net estimation, we adopt the very fast pathwise coordinate descent algorithm

of Friedman et al. (2010), which is available in the R package glmnet. It e�ciently solves

the elastic net problem on a grid Λ of λ-values. We de�ne Λ = {2j : j ∈ G}, where G is

an equidistant grid from 4 to −12 with step size −0.2. We then set the tuning parameter

λ ∈ Λ for each hour h by 10-fold cross-validation minimizing the mean square error in the

calibration set.11 For ridge and LASSO, we proceed analogously. The elastic net mixture

parameter α is tuned (simultaneously to λ) on the grid [0, 0.1, ..., 0.9, 1]. Table B.1 presents

its optimal value for each hour h. Interestingly, most of the numbers correspond to a pure

LASSO approach (α = 1.0). Thus, we expect the forecasting performance of elastic net

and LASSO to be similar.

h 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
α 1.0 1.0 1.0 1.0 0.8 0.6 1.0 0.4 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.4 0.5 0.9 0.6 0.5 0.2 1.0

For each our h of the day and based on our calibration dataset, this table reports the optimal mixture
parameter α for elastic net regression.

Table B.1: Optimal elastic net mixture parameters

B.4.2 Bayesian VAR

Rather than using exact restrictions (such as zeroing out lags or deleting variables alto-

gether), a Bayesian VAR model imposes a set of inexact restrictions on model coe�cients.

It treats the model parameters as random variables and assigns prior probabilities to them.

Thus, by using informative priors, an unrestricted model can be shrunk towards a parsimo-

nious model, thereby reducing parameter uncertainty and improving forecast accuracy (see

Karlsson, 2013). We rely on the reduced form Bayesian VAR model with Minnesota prior

of Litterman (1986), which is a special case of the general Sims and Zha (1998) framework.

We start with the VAR model (B.2.3) in reduced form, where εd ∼ N(0,Σ), d = 1, ..., N ,

are (24 × 1) vectors of independent Gaussian shocks. To describe the prior distributions,

we write the model in stacked matrix form similar to (3.2.2). That is, we have

P = Xφ+ ε (B.4.6)

11Using the mean absolute prediction error instead does not improve out-of-sample forecasts.
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with (N × 24) price matrix P = (Pd,h)d=1,...,N ;h=0,...,23, (N × J) regressor matrix X =

(xj)j=1,...,J and (J × 24) stacked coe�cient matrix φ = (ψ0, ..., ψ23), which is formed by

stacking the coe�cient vectors ψh for each hour h. Note that, in this section, we add the

index h to ψ for clarity. The error term ε has dimension (N × 24).

In this model, the likelihood function becomes

L(P |φ,Σ) ∝ |Σ|−N/2 · exp

(
−1

2
tr
(
(P −Xφ)′Σ−1(P −Xφ)

))
. (B.4.7)

Given the joint prior distribution of the parameters, denoted p(φ,Σ), their joint posterior

distribution conditional on the data P can be obtained via the Bayes rule

p(φ,Σ|P ) ∝ L(P |φ,Σ)p(φ,Σ). (B.4.8)

In the Sims and Zha (1998) system of priors, we assume Σ = diag(σ2
ε,0, ..., σ

2
ε,23) to be

�xed and diagonal. Further, p(ψh) = N(ψ̄h,Ωh) is a normal probability density function

with yet to de�ne mean ψ̄h and diagonal covariance matrix Ωh. In the process of supplying

these de�nitions, we are guided by the Minnesota prior which assumes that a random walk

model for each variable is a reasonable `center' of beliefs about variable behavior. This

way, the prior mean is 1 for the �rst own lag of each equation and 0 for the other lags, the

intercept and exogenous variable parameters. Formally, we have φ̄ = vec(I24, 0). Priors on

variances are calculated from hyperparameters λ0, λ1, λ3, λ4, λ5. Speci�cally, the variance

νl,k,h of the parameter at lag l of the price variable P·,k in equation for hour h, the variance

νc of the intercept and the variance νw for exogenous weekday parameters are

νl,k,h =

(
λ0λ1

σklλ3

)2

, νc = (λ0λ4)2 , νw = (λ0λ5)2 , (B.4.9)

where the prior variances di�er between dependent variables by a scaling factor σk which

we set equal to the calibration sample standard deviation of P·,k.

We use the R package MSBVAR for estimation. In the hyperparameter calibration, we

prefer a low, harmonic decay of variances with rising lags of the independent variables,

i.e., we follow Sims and Zha (1998) by setting λ3 = 1. We `forbid' a shrinkage of the

coe�cients of exogenous variables via λ5 = 1, 000. In other words, the estimated dummy

coe�cients shall be similar to OLS estimates. To allow loose shrinkage models, the overall

tightness of the prior is set to λ0 = 0.6. The remaining λ1 and λ4, which control the

tightness around the AR(1) parameters and the intercept, are chosen by a 10-fold cross-
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validation grid search to minimize the mean absolute forecast error in the calibration set.12

We search in the parameter space subset spanned by the �nite sets λ1 ∈ {0.1, 0.2, ..., 0.9}
and λ4 ∈ {0.2, 0.4, ..., 2.0}. For the lag order, we choose p = 7 only, such that compu-

tation time remains within reasonable limits. In summary, we �nd the following optimal

hyperparameters for our setting: λ0 = 0.6, λ1 = 0.3, λ3 = 1, λ4 = 1, λ5 = 1, 000.13

B.4.3 Guided regularized random forest

As a last regularization technique, we consider the regularized random forest (RRF)

algorithm which applies a tree regularization framework to a RF. While it is very similar

to a standard RF, the main di�erence is that a regularized impurity reduction

∆ιR(xj, v) =

λ ·∆ι(xj, v), j 6∈ F

∆ι(xj, v), j ∈ F
(B.4.10)

is used, where F is the set of indices corresponding to features used for splitting in previous

nodes and is an empty set at the root node in the �rst tree. λ ∈ (0, 1] is a penalty coe�cient.

When j 6∈ F , it penalizes the jth feature for splitting the node v. More intuitively, the

smaller λ, the more predictive power a new feature needs to be selected for splitting a

node. A RRF with λ = 1 has the minimum regularization and refers to a standard RF.

An enhanced RRF, referred to as the guided RRF (GRRF), has been proposed by

Deng and Runger (2013). It uses the importance scores of a preliminary standard RF to

guide the feature selection process of the RRF. A normalized importance score is de�ned

as Ĩ(xj) = I(xj)/maxi I(xi), where I(xj) is the importance score delivered by the standard

RF. Instead of assigning the same penalty coe�cient to all features, a GRRF assigns an

individual penalty coe�cient

λj = (1− γ) + γĨ(xj) (B.4.11)

to each feature. Here, γ ∈ [0, 1] controls the degree of regularization. We tested the

values γ ∈ {0, 0.25, 0.5, 0.75, 1} and found that, for γ = 0.75, the model performs best.

Furthermore, following Section 3.2.3, we use Ntree = 500 andm = bJ/3c as RF parameters.

12In empirical Bayes fashion, we could alternatively calibrate by maximizing the marginal likelihood
with respect to the hyperparameters. However, we �nd that this is rather unreliable for the determination
of the best forecasting model.

13Because electricity prices exhibit a strong weekly persistence, we also used a higher lag decay term
λ3 = 2 for the variance ν7,k,h of parameters at lag l = 7. However, this did not improve out-of-sample
performance.
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B.5 Feature selection

We now summarize the speci�cations of our feature selection approaches. Besides

introducing a popular stepwise regression procedure, we discuss a LASSO-extended non-

linear model and details on our proposal, i.e., the combination of random forest selection

with a SVM.

B.5.1 Stepwise regression

Stepwise regression is a systematic method for adding and removing terms from a

regression model based on some prespeci�ed criterion. In our study, it has a benchmark

character because it is one of the simplest variable selection procedures. Following the EPF

application of Uniejewski et al. (2016), we perform a linear model selection by minimizing

the exact AIC (henceforth abbreviated with Step-Linear) because this measure directly

penalizes a model for unnecessary complexity. With respect to model (3.2.2), the stepwise

procedure starts with the intercept as a `lower bound model' and then iteratively adds

(removes) input variables xj to (from) the model. At each step, the algorithm searches

for the greatest improvement of the model �t (measured by the AIC), and terminates if

no further improvement can be made. Although leading to longer computation times, we

have a look at lagged variables up to order p = 21 to ensure a fair comparison.

B.5.2 LASSO selection

LASSO regression encourages shrinking coe�cients to 0, i.e., dropping the correspond-

ing variates from a model. Therefore, it is a powerful special case of regularization which

allows feature selection. While, in Section B.4.1, a linear model is shrunk via the LASSO

and used for prediction afterward, the approach of this section is di�erent because we wish

to de�ne a close counterpart to our own prediction approach based on importance scores

(see Section B.5.3). Speci�cally, we combine LASSO feature selection with SVM regression

(similar to Becker et al., 2009). In this LASSO-SVM model, we set the LASSO param-

eter λ ∈ Λ for each hour h similar to Section B.4.1 and select all features with non-zero

coe�cients as inputs for a non-linear SVM with ν-regression speci�ed as in Section B.2.6.

B.5.3 Random forest scores

In the presence of a signi�cant number of input variables, classic feature selection

methods, which evaluate many feature subsets by building forecasting models for each

subset, are error-prone (see Flack and Chang, 1987). In what follows, we demonstrate

that we can �nd a good feature subset by solely relying on the importance scores provided

in Section 3.2. That is, we simply select the K most relevant features according to their
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importance score ranking. After that, we feed the selected variables into a linear and a non-

linear regression model. Recall that the importance score I(xj) derived from the random

forest algorithm is the mean decrease in prediction accuracy caused by removing the link

between feature xj and the target. The score is therefore directly related to the explanatory

power of xj and measures how much we would regret not including it in the feature subset.

In addition, even though they are based on linear calculations, an important feature of

random forests is that they can detect both linear and non-linear relationships between

input and target variables (see Auret and Aldrich, 2012).14 Thus, if relationships were

actually non-linear, it would not be surprising to observe that a random forest selection

used in a linear prediction model performs poorly whereas a strong non-linear regression

tool makes more e�cient use of a random forest feature choice.

As for the numberK of features to select, we consider two settings. First, we setK = 50

for each hour h to allow a comparison to our expert models which consider 24+24+4 = 52

features, i.e., all lagged variables for the orders l = 1, 7 plus our weekday dummies. This

is because we are interested in answering the question of whether the exact importance

score rankings have superior predictive abilities than the rough expert choice. Second, we

optimize K. In general, K should be chosen such that we can expect a good performance

of the favored regression model. Therefore, we determine the K between 10 and 100 which

minimizes the mean absolute prediction error in the validation set after estimating the

model in the training set.15

We combine random forest feature selection with a standard linear model and a non-

linear SVM with ν-regression (see Section B.2.6). The models using K = 50 features will

be denoted RF(50)-Linear and RF(50)-SVM. For optimized K, we simply write RF-Linear

and RF-SVM.

B.6 Forecast combinations

Besides forecasting via individual models, we look at simple forecast combinations

because (i) many authors emphasize that they can substantially improve forecast accuracy

(see Stock andWatson, 2006; Timmermann, 2006) and (ii) rudimental combination schemes

often work reasonably well in comparison to more complex ones (see Genre et al., 2013).

By analyzing combinations containing machine learning techniques, we can extend studies

14We might alternatively think of using a non-linear model within the random forest calculations.
15Minimizing the mean square error instead delivers worse results.



B.6. Forecast combinations 129

combining electricity price forecasts of less sophisticated models (see Nowotarski et al.,

2014; Weron, 2014).

We consider two popular weighting schemes for forecast combination. A weighting

scheme can be formally introduced as

P̂d,h =
M∑
m=1

w
(m)
d,h P̂

(m)
d,h , (B.6.1)

where M is the number of considered forecasting methods and P̂ (m)
d,h is the forecast of the

hourly price obtained from method m. For each hour h, w(m)
d,h assigns a weight to forecast

method m. This weight may vary over time d. For each d-h-tuple, we have w(m)
d,h ≥ 0 ∀

m = 1, ...,M and
∑M

m=1w
(m)
d,h = 1.

The �rst combination scheme is the simple average which uses equal weights w(m)
d,h =

1/M for each d, h and m. While this approach can provide some insurance against crucial

forecasting failures and thus makes combined forecasts potentially less risky than selecting

an individual forecasting model (see Hibon and Evgeniou, 2005), it does not consider the

fact that the performance of di�erent models can vary with market conditions (see Weron

and Misiorek, 2008). In contrast, the second weighting approach uses inverse mean square

prediction error (MSPE) weights based on the recent forecasting performance of each model

(see Baumeister and Kilian, 2015).16 We have

w
(m)
d,h =

1/MSPE(m)
d,h∑M

m=1 1/MSPE(m)
d,h

, (B.6.2)

where MSPE(m)
d,h = 1

Q

∑Q
j=1(Pd−j,h − P̂ (m)

d−j,h)
2. Thus, the smaller the MSPE over the most

recent Q periods, the larger the weight a model receives in the combined forecast. We test

three di�erent window lengths to determine combination weights: a very short period of

one week (Q = 7 days), a mid-term period of one month (Q = 30 days) and a longer period

of one year (Q = 365 days). These forecast combination settings are labeled Inv-MSPE(Q).

Combinations generally contain the individual forecasts of all models discussed above.

16Other popular alternatives are exponentially weighted averages or use a `gradient trick' to take into
account dependencies between models (see Devaine et al., 2013).
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Appendix of Chapter 4

C.1 Proofs

Proof of Proposition 4. (based on Kohrs et al., 2019, Proposition 3.9)

We show by backward induction that p 7→ Vt(Qt,Xt(p)) is convex for every t ∈
{0, ..., T − 1} and every feasible quantity Qt. Note that, on day t, subject to the lo-

cal constraint qt ∈ [0, 1] and the global constraint QT ∈ [Qmin, Qmax], a feasible pol-

icy requires Qt ∈ [Q
t
, Qt] := [0 ∨ (Qmin − (T − t)), Qmax ∧ t] and qt ∈ [q

t
, qt] :=

[0 ∨ (Qmin − Qt − (T − t − 1)), 1 ∧ (Qmax − Qt)]. Further note that, by forward induc-

tion, it is easy to see that p 7→ Xt(p) is an a�ne mapping and hence convex (but not

strictly convex).

For t = T − 1 and QT−1 ∈ [Q
T−1

, QT−1], we have

VT−1(QT−1,XT−1(p)) = max
qT−1∈[0,1]

XT−1(p) · qT−1 + E[VT (QT ,XT (p))|FT−1]

= max
qT−1∈[q

T−1
,qT−1]

XT−1(p) · qT−1,

which is convex in p as a pointwise maximum over a set of convex functions.1

We now pass from t to t − 1. Let Qt−1 ∈ [Q
t−1
, Qt−1]. By induction assumption,

p 7→ Vt(Qt−1 + qt−1,Xt(p)) is convex for every qt−1 ∈ [q
t−1
, qt−1]. For �xed w, the function

ft−1,w is a�ne in its arguments by assumption, such that the mapping p 7→ Vt(Qt−1 +

1Operations preserving convexity are discussed in, for example, Boyd and Vandenberghe (2009).
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qt−1, ft−1,w(Xt−1(p), p)) is convex. Denote by ϕt−1 the density function of Wt−1. Then, it

follows that

p 7→ E[Vt(Qt−1 + qt−1,Xt(p))|Ft−1] =

∫
x

Vt(Qt−1 + qt−1, ft−1,w(Xt−1(p), p))ϕt−1(w)dw

is convex. Because p 7→ Xt−1(p) is convex and taking the pointwise maximum or adding

functions of this kind are operations preserving convexity,

Vt−1(Qt−1,Xt−1(p)) = max
qt−1∈[q

t−1
,qt−1]

Xt−1(p) · qt−1 + E[Vt(Qt−1 + qt−1,Xt(p))|Ft−1]

is convex, which concludes the induction step.

As v is convex, the theorem of Alexandrov (1939) ensures the twice di�erentiability

almost everywhere.

Proof of Proposition 6. We start with the forward curve at time s in terms of its initially

observed state at time 0:

F (s, t) = F (0, t) +

∫ s

0

σ(u, t)dWu. (C.1.1)

Hence, the spot price St = F (t, t) is given by

St = F (0, t) +

∫ t

0

σ(u, t)dWu. (C.1.2)

Di�erentiating this equation yields the stochastic di�erential equation for the spot price

process:

dSt =
∂F (0, t)

∂t
dt+

∫ t

0

∂σ(s, t)

∂t
dWsdt+ σ(t, t)dWt.

Considering our speci�c volatility function (4.3.2), we have

∂σ(s, t)

∂t
= −ϑσe−ϑ(t−s) = −ϑσ(s, t)

and hence

dSt =
∂F (0, t)

∂t
dt− ϑ

(∫ t

0

σ(s, t)dWs

)
dt+ σdWt.
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Using the rearranged (C.1.2), i.e.,∫ t

0

σ(s, t)dWs = St − F (0, t), (C.1.3)

we �nally receive (4.3.9):

dSt =
∂F (0, t)

∂t
dt+ ϑ(F (0, t)− St)dt+ σdWt.

Furthermore, (4.3.10) can be obtained by using (4.3.2) and (C.1.3) in (C.1.1):

F (s, t) = F (0, t) +

∫ s

0

σe−ϑ(t−u)dWu

= F (0, t) + e−ϑ(t−s)
∫ s

0

σe−ϑ(s−u)dWu

= F (0, t) + e−ϑ(t−s)(Ss − F (0, s)).
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