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Abstract

In geometry, various tools have been developed to explore the topology and other features
of a manifold from its geometrical structure. Among the two most powerful ones are the
analysis of the critical points of a function, or more generally, the closed orbits of a dynamical
system defined on the manifold, and the evaluation of curvature inequalities. When any
(nondegenerate) function has to have many critical points and with different indices, then the
topology must be rich, and when certain curvature inequalities hold throughout the manifold,
that constrains the topology. It has been observed that these principles also hold for metric
spaces more general than Riemannian manifolds, and for instance also for graphs. This
thesis represents a contribution to this program. We study the relation between the closed
orbits of a dynamical system and the topology of a manifold or a simplicial complex via the
approach of Floer. And we develop notions of Ricci curvature not only for graphs, but more
generally for, possibly directed, hypergraphs, and we draw structural consequences from
curvature inequalities. It includes methods that besides their theoretical importance can be
used as powerful tools for data analysis. This thesis has two main parts; in the first part we
have developed topological methods based on the dynamic of vector fields defined on smooth
as well as discrete structures. To be more precise, we have introduced a Floer type boundary
operator for generalised Morse-Smale dynamical systems on compact smooth manifolds
which is defined based on counting the number of suitable flow lines between closed (both
homoclinic and periodic) orbits and isolated critical points. We see that the same principle
works for the discrete situation of general combinatorial vector fields, defined by Forman,
on CW complexes and we show that we can recover the Z2 homology of both smooth and
discrete structures directly from the flow lines (V-paths) of our vector field. In the second
part, we concentrate on some curvature notions which already proved themselves as powerful
measures for determining the local (and global) structures of smooth objects. Our main
motivation here is developing methods which are helpful for the analysis complex networks.
Many empirical networks incorporate higher order relations between elements and therefore
are naturally modelled as, possibly directed and/or weighted, hypergraphs, rather than merely
as graphs. In order to develop a systematic tool for the statistical analysis of such hypergraph,
we propose a general definition of Ricci curvature on directed hypergraphs and explore the
consequences of that definition. The definition generalizes Ollivier’s definition for graphs.
It involves a carefully designed optimal transport problem between sets of vertices. While
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the definition looks somewhat complex, in the end we shall be able to express our curvature
in a very simple formula, κ = µ0 − µ2 − 2µ3. This formula simply counts the fraction of
vertices that have to be moved by distances 0, 2 or 3 in an optimal transport plan. We can
then characterize various classes of hypergraphs by their curvature. In the last chapter, we
show that our curvature notion is a powerful tool for determining complex local structures in
variety of real and random networks modelled as (directed) hypergraphs. Furthermore, it
can nicely detect hyperloop structures; hyperloops are fundamental in some real networks
such as chemical reactions as catalysts in such reactions are faithfully modelled as vertices
of directed hyperloops. Moreover with the help of Ollivier-Ricci curvature of reactions
in the metabolic network of Escherichia coli (E.coli), we can measure local clustering in
these networks as the lowest amount of curvature corresponds to directed hypertrees and the
highest amounts, which are very frequent, correspond to high clustering around a directed
hyperedge. Also we see that the distribution of our curvature notion in real networks deviates
from random models. In particular, by applying shuffling process on the wirings of this
network, our notion can nicely detect the shuffling process while during this process degree
sequence and size of hyperedges (both head and tail) remains stable.
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0 Motivations and Overview

Geometry is the science of measuring space, geo means earth and metry means measurement.
There is a beautiful story behind the 2500 years development of this highly influential
subject; classical geometry comes back to Euclid’s work and studies shapes mostly in two
dimensional and three dimensional Euclidean spaces. There, we study notions such as
area, volume, length and angle and also the relations of these notions with each other. In
classical geometry, all the geometrical properties of a shape will be preserved under (mirror)
reflection, rotation or movement. In the 14th-century, philosopher and mathematician Nicole
Oresme introduced the concept of curvature as a measure of departure from straightness.
Then, the curvature of a differentiable curve was originally defined through osculating circles
in the works of Cauchy; curvature was an infinitesimal quantity, obtained by taking second
derivatives of functions describing shapes of smooth objects, like curves or surfaces. A
fundamental step was taken by Gauss in the 19 century who defined the notion of intrinsic
curvature of a surface. This curvature can be determined independently of the embedding
into Euclidean (Flat) space, that is, by taking measurements only on that surface itself and
not from any position outside that surface in space. Inspired by Gauss’ discovery, Riemann
proposed the concept of a “many fold extended quantity” which today is simply called a
“manifold”. A manifold is a geometric object which locally looks like Euclidean space of
some dimension. Thus, a two-dimensional manifold is locally modelled by the Euclidean
plane. In Riemannian geometry, curvatures obtained a deeper conceptual significance, as
tensors encoding the geometric invariants of Riemannian metrics of smooth manifolds. In
particular, the Ricci tensor is fundamental not only in Einstein’s theory of general relativity
and in elementary particle physics (the Calabi-Yau manifolds of string theory, for instance,
are characterized by the vanishing of the Ricci tensor), but it also permeates much of modern
research in Riemannian geometry.
Moreover due to the importance and deep insight that curvature notions have brought us
in smooth settings, mathematicians in the past century have been interested in extending
variety of curvature notions (specifically sectional and Ricci curvatures) to more general
settings; they have been trying to develop notions such that:
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• They are independent of infinitesimal properties such as continuity or differentiability
and/or

• They have (some of) analytical/ geometrical or topological properties of curvature
bounds in Riemannian manifolds.

• They can be applied to a wide range of examples and can be easily computed.

When we talk about Riemannian manifolds, all these manifolds are ”locally” the same. But
this resemblance is qualitative and not quantitative. Curvature is the fundamental geometric
notion that helps us to quantitatively differentiate between different types of the manifolds
in the same dimension. For studying the qualitative features of a manifold however we need
to work with a more flexible type of geometry; Topology is the study of properties that
are preserved not only under reflection, rotation or moving a shape but also under bending
and stretching the shape. Geometrically, a circle and a square are two different shapes. In
Topology we are looking for those properties that are not changed when we deform the shape
continuously (namely we are not allowed to cut our shape). Some people consider Topology
as the ”fluid” Geometry; for instance, all the infinitely-many shapes that we can pass to
obtain a circle from deforming a square (or vice versa) are topologically the same although
they are different when seeing through the lens of classical Geometry. One of the properties
that is preserved under topological changes is connectedness; if we deform our shape without
cutting it, the number of its components would stay the same as before the deformation.
More generally, the same happens if we consider the number of k-dimensional holes of
our n-dimensional manifold ( for 0 ≤ k ≤ n) as their numbers are fixed no matter how we
deform our shape as long as the deformation is continuous. If we consider the example of
circle and square again, both of them have one connected component and a 1-dimensional
hole. Similarly, sphere and cube are both connected spaces which have no 1-dimensional
hole but both of them encircle a two-dimensional hole. Although intuitively we can tell the
number of these parameters easily for simple shapes, for more complicated ones, finding the
number of holes in arbitrary dimensions has been a challenging problem and a variety of
beautiful theories have been introduced in the past century to tackle this problem. Algebraic
Topology is the branch of mathematics where we study invariance of such properties under
topological transformations in terms of algebraic notions and in particular Homology theory
is concerned about the number of holes. There we assign a sequence of algebraic structures
to each object to get the number of its holes in all dimensions.

Nowadays, one of our main challenges is to understand the shape of ”Big Data”; the total
amount of data created, captured, copied, and consumed globally is reaching 79 zettabytes
in 2021 and is forecast to increase rapidly to more than 180 zettabytes in 2025 [28]. This is
even more than what was expected before, due to the COVID-19 pandemic, since more work
and education has been done online. Scientists are confronted with a very massive amount
of data and apart from the issue of finding more storage capacity, our main problem is to
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recognise which part of data is essential to be stored, which part is noisy or redundant, how
we can get useful information from this highly complex data and what are those features of
data that can give deep insight to its structure.

In modern data analysis, we use topological and geometric methods to investigate its
shape and fundamental properties. With the help of Geometry we can analysis local struc-
tures, uncover the main patterns and find the most important parts of data; on the other
side, Topology, as opposed to Geometry, does not need to measure distances, thus is a very
powerful and natural tool to find the persistent features and non-noisy data that form its
global shape. As data is usually discrete and presented by finite number of points, we need to
utilize and/or develop mathematical notions that can be applied to discrete structures such as
real networks, that are modelled as graphs, hypergraphs and simplicial complexes (and more
generally polyhedral complexes). Sometimes we also consider the smooth shapes and then
with the help of these discrete notions we approximate our smooth shape with a sequence of
the discrete ones.
Besides the very important application for discrete data analysis, development of such dis-
crete or more general tools in return has put further fascinating theoretical problems in front
of us. On the other side, in smooth settings, Geometry and Topology have deep connections
as when certain curvature inequalities hold throughout the manifold, that constrains the
topology; thus a main question is how much such connections can be transferred to more
general or discrete settings.
Topological and Geometric Data Analysis are rapidly growing fields that have profoundly
empowered our techniques for visualising, simulating and analysing data. Topological data
analysis gives us insight to both continuous and discrete properties of data and have found
many applications in different domains ranging from neuroscience to cancer biology, road
networks and even astronomy.
The demand of more powerful and faster methods has motivated us to develop a type of
Homology theory, called Floer homology in this thesis that can help us to determine the
structure of both smooth and discrete shapes with the help of geometric notions such as
vector fields.
On the other side, Geometric data analysis is a very useful approach for variety of purposes
such as dimensionality reduction of data sets, which are represented by high dimensional
vectors (Matrices and Tensors), as well as probing the local patterns of huge and complex
structures. In the second part of these thesis, we try to develop our geometric perspective
for looking at data; more precisely, we develop some discrete curvature notions that can be
considered as powerful tools for the analysis of complex networks such as chemical reactions.

The interaction between Topology, Geometry and Data Science have brought us many
beautiful opportunities; Topological and Geometric Data Analysis are relatively new topics
and rapidly penetrating different aspects of Data Science as they have been formed based on
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theoretical advances reached over the centuries. In this thesis we aim at bringing together
some of our recent developed results on geometrical and topological methods on smooth as
well as discrete structures and at the end we briefly show the power and advantage of some
of these methods for analysing real data sets.

Organization of the thesis:
Chapter zero at the beginning, gives an overview of topological and geometric methods
presented in this thesis ; afterwards, this thesis consists of two main parts and each part
includes three chapters; the first chapter of each part is an introduction for the other two
chapters. The first part is on topology and dynamics of smooth and discrete structures; the
second part concerns about some geometric methods and in particular discrete curvature
notions and their application in the analysis of complex networks. In chapter two, we
firstly define the basic concepts about Morse-Smale dynamical systems on smooth closed
manifolds and we then propose our Floer type boundary operator for these systems and at
the end of the chapter we present some concrete examples of how to compute homology
groups with the help of our operator. In chapter three, we focus on dynamical systems
on combinatorial settings and in particular CW complexes. We extend the idea of Morse-
Floer-Forman boundary operator to the general combinatorial vector fields which was
originally defined by Forman. At the end of chapter three, we propose some examples
of computing homology groups for these structures. After the introductory chapter four
for the second part, chapter five is about the concept of discrete curvature notions and in
particular Ollivier-Ricci curvature which was defied originally by Ollivier for Markov chains
on metric measure spaces. We extend this notion to the more general and complex structure
of directed hypergraphs and we show how we can characterise hypergraphs with the help of
their curvatures. in the final chapter, chapter 6, we apply curvature notions to random and
real networks; we focus on chemical reaction networks and in particular metabolic network
of a bacteria, Escherichia coli (E.coli), and we show why our curvature notions can be used
as powerful tools for the analysis of complex networks.



Part I

Topology and Dynamic
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1 Introduction

One of the key ideas of modern geometry is to extract topological information about an
object from a dynamical process operating on that object. For that purpose, one needs to
identify the invariant sets and the dynamical relations between them. The invariant sets
generate groups, and the dynamics defines boundary operators, and when one has shown that
these operators square to zero, one can then define homology groups. The first such ideas
may be seen in the works of Riemann, Cayley and Maxwell in the 19th century. In 1925,
Morse [43] developed his famous theory where he recovered the homology of a compact
Riemannian manifold M from the critical points of a smooth function f , assuming that these
critical points are all non-degenerate. The dynamics in question is that of the gradient flow
of f . The basic invariant sets then are precisely the critical points of f . The theory was
analyzed and extended by Milnor, Thom, Smale, Bott and others. In particular, Bott [7]
extended the theory to the case where the gradient of f is allowed to vanish on a collection
of smooth submanifolds of M .

Based on ideas from supersymmetry, Witten constructed an interpolation between de
Rham and Morse homology. Floer [20] then developed the very beautiful idea that the
boundary operator in Morse theory can be simply obtained from counting gradient flow lines
(with appropriate orientations) between critical points of index difference one. The first
systematic exposition of Floer’s ideas was given in [52] (see also [32]). The main thrust of
Floer’s work was devoted to infinite dimensional problems around the Arnold conjecture, see
[17–19, 22], because for his theory, he only needed relative indices, and not absolute ones,
so that the theory could be applied to indefinite action functionals. But also in the original
finite dimensional case, Floer’s theory advanced our insight considerably and motivated
much subsequent work.

In fact, Floer [20] had been motivated by another beautiful theory relating dynamics and
topology, that of Conley [9] (for more details, see [10] and for instance the presentations in
[31, 56]). Conley’s theory applies to arbitrary dynamical systems, not just gradient flows.
Actually, Smale [54] had already extended Morse theory to an important and general class
of dynamical systems on compact Riemannian manifolds, those that besides isolated critical
points are also allowed to have non-degenerate closed orbits. Similar to Morse functions,
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the class of Morse-Smale dynamical systems is structurally stable, that is, preserves its
qualitative properties under small perturbations. It turns out, however, that these systems
can also be subsumed under Morse-Bott theory. In fact, in [55] Smale proved that for every
gradient-like system there exists an energy function that is decreasing along the trajectories
of the flow, and Meyer [42] generalized this result to the Morse-Smale dynamical systems
and defined a Morse-Bott type energy function based on the flows. Such an energy function
would then be constant on the periodic orbits, and they can then be treated as critical
submanifolds via Morse-Bott theory. Banyaga and Hurtubise [3, 4, 29] then constructed
a general boundary operator for Morse-Bott systems that put much of the preceding into
perspective (see also the detailed literature review in [29]).

There is still another important extension of Morse theory, the combinatorial Morse
theory of Forman [25] on simplicial and cell complexes. Here, a function assigns a value to
every simplex or cell, and certain inequalities between the values on a simplex and on its
facets are required that can be seen as analogues of the non-degeneracy conditions of Morse
theory in the smooth setting. As shown in [6], this theory recovers classical Morse theory
by considering PL triangulations of manifolds that admit Morse functions. This theory has
found various practical applications in diverse fields, such as computer graphics, networks
and sensor networks analysis, homology computation, astrophysics, neuroscience, denoising,
mesh compression, and topological data analysis. (For more details on smooth and discrete
Morse theory and their applications see [34, 53]). In [23], Forman also extended his theory
to combinatorial vector fields.

In the first chapter of this part, we extend Floer’s theory into the direction of Conley’s
theory. More precisely, we shall show that one can define a boundary operator by counting
suitable flow lines not only for Morse functions, but also for Morse-Smale dynamical
systems, and in fact, we more generally also allow for certain types of homoclinic orbits
in the dynamical system. Perhaps apart from this latter small extension, our results in the
smooth setting readily follow from the existing literature. One may invoke [42] to treat it as
a Morse-Bott function with the methods of [29]. Alternatively, one may locally perturb the
periodic orbits into heteroclinic ones between two fixed points by a result of Franks [27]
and then use [55] to treat it like a Morse function. In some sense, we are also using such a
perturbation. Our observation then is that the collection of gradient flow lines between the
resulting critical points has a special structure which in the end will allow us to directly read
off the boundary operator from the closed (or homoclinic) orbits and the critical points. It
remains to develop Conley theory in more generality from this perspective. Moreover, our
approach also readily extends to the combinatorial situation of [23, 25]. Again, it is known
how to construct a Floer type boundary operator for a combinatorial Morse function, and an
analogue of Witten’s approach had already been developed in [24]. Our construction here,
however, is different from that of that paper. In fact, [24] requires stronger assumptions on the
function than the Morse condition, whereas our construction needs no further assumptions.
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What we want to advocate foremost, however, is that the beauty of Floer’s idea of counting
flow lines to define a boundary operator extends also to dynamical systems with periodic
orbits, in both the smooth and the combinatorial setting, and that a unifying perspective can
be developed.
We should point out that in this part and for both of the next chapters, we only treat homology
with Z2 coefficients. Thus, we avoid having to treat the issue of orientations of flow lines.
This is, however, a well established part of the theory, see [21] or also the presentations in
[32, 52]. These chapters are based on our preprint, Floer Homology: From Generalized
Morse-Smale Dynamical Systems to Forman’s Combinatorial Vector Fields [14].
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2 Floer Homology of Generalised
Morse-Smale Dynamical Systems

This chapter is about the extension of smooth theories of Morse and Floer. In Morse-Floer
theory, we can compute Betti numbers of a closed manifold with the help of a boundary
operator associated to the negative gradient flow lines of a Morse function. Recall that a
Morse function, is a real valued function on a closed manifold that all its critical points are
nondegenerate, that is, the Hessian of the function is nondegenerate at every critical point.
While in Morse theory the critical points have to be isolated and in Floer’s beautiful idea we
consider the gradient flow lines between these points, in this chapter we extend the scope of
Morse-Floer theory to a dynamical system that is allowed to have finite number of closed
orbits. The systems that we consider is a slight generalisation of Morse-Smale dynamical
systems as we are allowed to have finite number of homoclinic points and orbits as well as
periodic orbits. What we need to consider is not only the flow lines between the critical
points but also the flow lines between critical points as well as closed orbits

2.1 Preliminaries

We consider a smooth m dimensional manifold M that is closed, oriented and equipped with
a Riemannian metric whose distance function we denote by d. Let X be a smooth vector
field on M and φt : M −→ M be the flow associated to X . We first recall some basic
terminology. For p ∈ M , γ(p) = ∪tφt(p) will denote the trajectory of X through p. Then
for each p ∈M we define the limit sets of γ(p) as

α(p) := ∩s≤0∪t≤sφt(p)
ω(p) := ∩s≥0∪t≥sφt(p).

Definition 2.1.1. If f : M →M is a diffeomorphism, then x ∈M is called chain recurrent
if for any ε > 0 there exist points x1 = x, x2, ..., xn = x (n depends on ε) such that

d(f(xi), xi+1) < ε for 1 ≤ i ≤ n. For a flow φt, x ∈ M is chain recurrent if for any

ε > 0 there exist points x1 = x, x2, ..., xn = x and real numbers t(i) ≥ 1 such that

d(φt(i)(xi), xi+1) < ε for 1 ≤ i ≤ n. The set of chain recurrent points is called the chain

11
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recurrent set and will be denoted by R(X).

The chain recurrent set R(X) is a closed submanifold of M that is invariant under φt.
We can think ofR(X) as the points which come within ε of being periodic for every ε > 0. A
Morse-Smale dynamical system, as introduced by Smale [54], has the fundamental property
that it does not have any complicated recurrent behaviour and the α and ω limit sets of every
trajectory can only be rest points p or periodic orbits O. Morse-Smale dynamical systems
are the simplest structurally stable types of dynamics; that is if X is Morse-Smale and X ′

is a sufficiently small C1 perturbation of X then there is a homeomorphism h : M → M

carrying orbits of X to orbits of X ′ and preserving their orientation (Such a homeomorphism
is called topological conjugacy and we say that the two vector fields or their corresponding
flows are topologically conjugate). Here, we shall consider a somewhat more general case
where we allow for a certain type of homoclinic rest points and their homoclinic orbits.

Definition 2.1.2. A periodic orbit of the flow φt on M is hyperbolic if the tangent bundle of

M restricted toO, TM |O, is the sum of three derivativeDφt invariant bundlesEc⊕Eu⊕Es

such that:

1. Ec is spanned by the vector field X , tangent to the flow.

2. There are constants C, λ > 0, such that ‖ Dφt(v) ‖> Ceλt ‖ v ‖ for v ∈ Eu, t > 0

and ‖ Dφt(v) ‖6 C−1e−λt ‖ v ‖ for v ∈ Es, t > 0 where ‖‖ is some Riemannian

metric.

A rest point (also called critical) p for a flow φt is called hyperbolic provided that TpM =

Eu ⊕ Es and the above conditions are valid for v ∈ EuorEs.

The stable and unstable manifolds of a hyperbolic periodic orbit O, are defined by:
W s(O) = {x ∈M | d(φtx, φty)→ 0 as t→∞ for some y ∈ O} and W u(O) = {x ∈M |
d(φtx, φty)→ 0 as t→ −∞ for some y ∈ O}. For an isolated rest point and a homoclinic
orbit, we define the stable and unstable manifolds analogously. Also the index of an isolated
rest point or a closed orbit is defined to be the dimension of Eu.

We denote an arbitrary point in a homoclinic orbit H by H0
k where k is the index of the

homoclinic orbit H and the homoclinic orbit itself is denoted by H1
k as it is homeomorphic

to a circle and therefore is one-dimensional. Similarly by O0
k we mean an arbitrary point

in a periodic orbit O of index k and by O1
k we mean the orbit itself as a one dimensional

structure, homeomorphic to a circle.
In the following definition we extend the definition of Morse-Smale vector fields.

Definition 2.1.3. We call a smooth flow φt on M generalised Morse-Smale if :

1. The chain Recurrent set of the flow consists of a finite number of (isolated) hyperbolic

rest points β1(p),... βk(p) and hyperbolic periodic orbit βk+1(O),... βn(O).
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2. R(X) furthermore has a finite number of homoclinic orbits βn+1(H),... βl(H) that can

be obtained via local bifurcation from hyperbolic periodic orbits βn+1(O), ...., βl(O).

3. For each βi(p), 1 ≤ i ≤ k and each βi(O), k + 1 ≤ i ≤ l the stable and unstable

manifolds W s(βi) and W u(βi) associated with βi intersect transversally.

(Here, two such submanifolds intersect transversally if for every x ∈ W u(βi)∩W s(βj)

we have: Tx(M) = TxW
u(βi)

⊕
TxW

s(βj).)

Note that the only difference between generalised Morse-Smale flows as defined here
and standard Morse-Smale flows is the possible existence of homoclinic points and orbits.
In the standard case, one simply excludes the second condition.
Therefore a generalised Morse-Smale flow can be perturbed to a corresponding Morse-Smale
flow where all of the homoclinic orbits βi(H), n + 1 ≤ i ≤ l are substituted by periodic
orbits βi(O). For any two distinct βi and βj in the above definition we consider W (βi, βj) =

W u(βi) ∩W s(βj). Then based on the transversality condition, this intersection is either
empty (if there is no flow line from βi to βj or a submanifod of dimension λβi−λβj +dim βi

where the index of βk is denoted by λβk [4]. For any two critical B and B′ the flow φt

induces an R-action on W (B,B′) = W u(B) ∩W s(B′). Let

M(B,B′) = (W (B,B′))/R)

be the quotient space by this action of the flow lines from B to B′.

Remark 2.1.4. In the definition of standard Morse-Smale flow the (1) above could be

replaced by (1′):

All periodic orbits and rest points of the flow are hyperbolic and there exists a Morse-Bott

type energy function (as Meyer defined [42]).

2.2 The chain complex for generalized Morse-Smale vector fields

Suppose X is a generalized Morse-Smale vector field over M . To motivate our construction,
we first observe that by a slight extension of a result of Franks [27], we can replace every
periodic or homoclinic orbit by two non-degenerate critical points, without changing the
flow outside some small neighbourhood of that orbit.

Lemma 2.2.1. Suppose φt is a generalized Morse-Smale flow on an orientable manifold

with a periodic or homoclinic orbit of index k. Then for any neighbourhood U of that orbit

there exists a new generalized Morse-Smale flow φ′t whose vector field agrees with that of φt
outside U and which has rest points t and t′ of index k + 1 and k in U but no other chain

recurrent points in U .
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Figure 2.1

Proof. In [27] Franks proved that for a Morse-Smale flow φt on an orientable manifold with
a closed periodic orbit O of index k and a given neighbourhood U of O, there exists a new
Morse-Smale flow φ′t whose vector field agrees with that of φt outside U and which has rest
points q1 and q2 of index k and k + 1 in U but no other chain recurrent points in U .

For the generalized Morse- Smale flow we note that each homoclinic orbit is by definition
obtained in a continuous local bifurcation of a periodic orbit. Therefore if we use this
bifurcation in the reverse direction and substitute again any such homoclinic orbit with its
corresponding periodic orbit we can use Franks’ argument for replacing all the periodic and
homoclinic orbits with two rest points and two heteroclinic orbits between them.

Remark 2.2.2. In the above figure, the qualitative feature of the three cases outside the gray

annulus are the same; In particular, we can bifurcate two heteroclinic orbits between two

critical points (in the right) to get a hmoclinic orbit and homoclinic critical point (in the

middle) by making the two critical points closer and closer and then bifurcate the homoclinic

orbit to a periodic orbit (in the left).

With this lemma, we can turn our flow into one that has only non-degenerate critical
points. We could then simply utilize the Floer boundary operator for that flow. In fact, that
motivates our construction, but we wish to define a Floer type boundary operator directly in
terms of the periodic and homoclinic orbits and the critical points. Our simple observation
is that a Floer boundary operator resulting from the replacement that Franks proposed, has
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some additional structure that is derived from the orbits that have been perturbed away. This
allows for an arrangement of the flow lines between the critical points of the perturbed flow
that leads to the definition of the boundary operator in the presence of those orbits. That is,
we can read off the boundary operator directly from the relations between the orbits and the
critical points without appealing to that perturbation, although the perturbation helps us to
see why this boundary operator squares to 0. We define the Morse-Floer complex (C∗(X), ∂)

of X as follows. Let Ck denote the finite vector space (with coefficients in Z2) generated by
the following set of rest points/orbits of the vector field :

(
pk, O

0
k, O

1
k−1, H

0
k , H

1
k−1

)
.

The differential ∂k : Ck(X) −→ Ck−1(X) counts the number of connected components
of M(βi, βj) (mod 2) where βi and βj are isolated rest points pk or closed orbits (either
homoclinic orbits H or periodic orbits O). Here, each such orbit, carrying topology in two
adjacent dimensions, corresponds to two elements in the boundary calculus. More precisely,
a periodic orbit Ok of index k generates an element O1

k in dimension k + 1 and an element
O0
k in dimension k, and analogously for the homoclinics. Thus, our boundary operator is

∂pk =
∑

α(pk, pk−1)pk−1 +
∑

α(pk, Ok−2)O1
k−2

+
∑

α(pk, Hk−2)H1
k−2

∂O1
k−1 =

∑
α(Ok−1, Ok−2)O1

k−2 +
∑

α(Ok−1, Hk−2)H1
k−2

∂O0
k =

∑
α(Ok, Ok−1)O0

k−1 +
∑

α(Ok, Hk−1)H0
k−1

+
∑

α(Ok, pk−1)pk−1

∂H1
k−1 =

∑
α(Hk−1, Hk−2)H1

k−2 +
∑

α(Hk−1, Ok−2)O1
k−2

∂H0
k =

∑
α(Hk, Hk−1)H0

k−1 +
∑

α(Hk, Ok−1)O0
k−1

+
∑

α(Hk, pk−1)pk−1.

In this definition, the sums extend over all the elements on the right hand side; for instance,
the first sum in the first line is over all critical points pk−1 of index k−1. α(pk, pk−1), similar
to the classical Morse-Floer theory (where there is no closed orbit and therefore the vector
field is gradient-like), is the number of flow lines from pk to pk−1. We observe some terms
do not appear; for instance, we do not have terms with coefficients of the form α(pk, O

0
k−1).

This will be important below in the proof of Thm. 2.2.4. The reason why such a term does
not show up is that if there were a flow line from some pk to some O0

k−1, then there would
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also be a flow to the corresponding O1
k−1 which comes from the same closed orbit. But O1

k−1

and pk are the elements of the same Ck, and by the Morse-Smale condition, there are no flow
lines between critical elements of the same Ck. Analogously for homoclinics.

Remark 2.2.3. Note that in defining the chain complex and the corresponding boundary

operator ∂ for X , we could first replace all the homoclinic orbits with bifurcated periodic

orbits and present our definitions for the simpler case where all the closed orbits are periodic.

Then we would have just three generators

(
pk, O

0
k, O

1
k−1

)
for Ck(X). However here we choose not to do this to emphasize that we can construct the

boundary operator also for homoclinic orbits as long as our operator is defined based on

the flow lines outside the tubular neighbourhoods of orbits.

Theorem 2.2.4. ∂2 = 0.

In classical Morse-Floer theory, one assumes that there are only isolated critical points
and no closed or homoclinic orbits, and therefore all the α coefficients in the definition of ∂
except the first one (in the first row) are zero; there to prove ∂2 = 0 one can then use the
classification theorem of one dimensional compact manifolds where the number of connected
components of their boundary mod two is zero (see [32]). Here as W (βi, βi−1) might have
dimension bigger than one, the number of connected components of the boundary of compact
two dimensional manifolds might vary. For our generalized Morse-Smale flows, however,
we use Lemma 2.2.1 to replace any orbit of index k (both periodic Ok and homoclinic Hk)
by a rest point of index k and one of k+ 1 which are joined by two heteroclinic orbits. When
replacing Hk, the resulting rest point of higher index can be taken to be the point h itself,
which then will be no longer homoclinic.

Proof. By the above replacement, we get a vector field Y which has no periodic and
homoclinic orbits and is therefore gradient-like (up to topological conjugacy). This Y has
all the isolated rest points of X , two isolated rest points qupk and q′downk−1 instead of every
periodic orbit Ok−1 of index k− 1 and two isolated rest points tupk and t′downk−1 instead of every
homoclinic orbit Hk−1 of index k − 1. We note that all the critical points in Y are isolated
and for each index k they can be partitioned into five different sets pk, t

up
k , t

′down
k , qupk , q

′down
k .

This partitioning is possible because orbits and isolated rest points have pairwise empty
intersection. The proof will now consist of the following main steps:

1. We define Ck(Y ) to be the finite vector space (with coefficients in Z2) generated by

(
pk, q

up
k , q

′down
k , tupk , t

′down
k

)
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.

2. We define a boundary operator ∂′ and consequently a chain complex corresponding to
(Y,C∗(Y ), ∂′).

3. and then we prove there is an isomorphism (chain map) ϕ∗ : C∗(X) −→ C∗(Y ) . Since ϕ
is an isomorphism we get our desired equality ∂2 = 0 as ∂ = ϕ−1

∗ ∂
′ϕ∗ and ∂2 = ϕ−1

∗ ∂
′2ϕ∗

1. We note that in Ck(Y ), qupk comes from a periodic orbit of index k − 1 and q′downk

comes from the replacement of a periodic orbit of index k. Similarly tupk is obtained
from replacing a homoclinic orbit of index k − 1 and t′downk comes from a homoclinic
orbit of index k.

2. We define ∂′k : Ck(Y ) −→ Ck−1(Y ) as follows:

∂′pk =
∑

α(pk, pk−1)pk−1 +
∑

α(pk, q
up
k−1)qupk−1

+
∑

α(pk, t
up
k−1)tupk−1

∂′qupk =
∑

α(qupk , q
up
k−1)qupk−1

+
∑

α(qupk , t
up
k−1)tupk−1

∂′q′downk =
∑

α(q′downk , q′downk−1 )q′downk−1

+
∑

α(q′downk , t′downk−1 )t′downk−1

+
∑

α(q′downk , pk−1)pk−1

∂′tupk =
∑

α(tupk , t
up
k−1)tupk−1

+
∑

α(tupk , q
up
k−1)qupk−1

∂′t′downk =
∑

α(t′downk , t′downk−1 )t′downk−1

+
∑

α(t′downk , q′downk−1 )q′downk−1

+
∑

α(t′downk , pk−1)pk−1

These sums extend over all the elements on the right hand side and α is the number of
gradient flow lines (mode 2) between the corresponding critical points. We want to prove
∂′2 = 0 over Ck(Y ) by equating ∂′ with the boundary operator ∂M of Floer theory which is
of the form ∂M(sk) =

∑
α(sk, sk−1)sk−1 for a gradient vector field and counts the number

of gradient flow lines α (mod 2) between two rest points with relative index difference one,
without any partitioning on the set of isolated rest points sk of index k. In our case, we have
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such a partitioning and therefore more refined relationships in the definition of ∂′. And then,
for all the generators of C∗(Y ), ∂′ = ∂M ; we show this equality for pk, q

up
k , t

′down
k as for the

other cases it can be similarly proved.
If we consider such a partitioning on the set of rest points of our vector field we have:

∂M(pk) =
∑

α(pk, pk−1)pk−1 +
∑

α(pk, q
up
k−1)qupk−1

+
∑

α(pk, q
′down
k−1 )q′downk−1 +

∑
α(pk, t

up
k−1).tupk−1

+
∑

α(pk, t
′down
k−1 )t′down

;
comparing this formula with that of ∂′pk we see that we have two extra terms in the latter; as
we have explained after the definition of ∂, the 3th and the 5th term are not present in the
former case. To have ∂M(qupk ) = ∂′(qupk ), the three coefficients

α(qupk , q
′down
k−1 ), α(qupk , t

′down
k−1 ), α(qupk , pk−1)

need to be zero. The first one is zero since there are exactly two gradient flow lines
(heteroclinic orbits) from qupk to q′downk−1 which correspond to replacement of an orbit Ok−1.
We note that for the other q′downk−1 coming from other orbits α is zero by definition of ∂
over Ck(X) as otherwise in X we would have flow lines between two orbits of the same
index which is not possible by the Morse-Smale condition. For the same reason, the second
element is also zero since there is no flow line from qupk to t′downk−1 . Also the last α is zero as
otherwise there would be flow lines from a periodic orbit of index k − 1 to an isolated rest
point with index k − 1 in X , again violating Morse-Smale.
Finally ∂M(t′downk ) = ∂′(t′downk ) if we show that α(t′downk , tupk−1) and α(t′down, qupk−1) are zero.
If not, there would be two orbits in X with index difference two which are the boundaries of
a cylinder, which is not possible.
Therefore over C∗(Y ), ∂M = ∂′ and hence ∂′2 = 0 by classical Morse-Floer theory.

3. We now define ϕ∗ : C∗(X) −→ C∗(Y ). For 0 ≤ k ≤ m, we put

ϕ∗(pk) = pk, ϕ∗(O
0
k) = q′downk , ϕ∗(O

1
k−1) = qupk ,

ϕ∗(H
0
k) = t′downk , ϕ∗(H

1
k−1) = tupk .

ϕ∗ is an isomorphism by the above construction of the rest points of Y . To prove ϕ∗ is a
chain map from C∗(X) to C∗(Y ), we should have ∂′ϕ∗ = ϕ∗∂. Here, we show this equality
for one of the generators of Ck(X) and for the others it can be similarly obtained. For O1

k−1
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Figure 2.2

we have:

ϕ∗∂(O1
k−1) = ϕ∗

(∑
α(Ok−1, Ok−2).O1

k−2 +
∑

α(Ok−1, Hk−2).H1
k−2

)
=
∑

α(qupk , q
up
k−1).qupk−1 +

∑
α(qupk , t

up
k−1).tupk−1

= ∂′qupk

= ∂′ϕ∗(O
1
k−1)

Therefore ∂′ϕ∗ = ϕ∗∂ and since ∂′2 = 0 and ∂2 = ϕ−1
∗ ∂

′2ϕ∗, ∂
2 = 0

We can then define Z2 Morse-Floer homology of M by putting for each k, 0 ≤ k ≤ m,

Hk(M,Z2) = ker(∂k)
image(∂k+1)

.

Remark 2.2.5. Although here we do not treat orientations, we observe from the following

figure that in the above equalities ϕ∗ preserves the parity of α as each connected component

of M(Ok−1, Ok−2) corresponds to exactly one gradient flow line from qupk to qupk−1 (and

exactly one flow line from q′downk−1 to q′downk−2 ). Similarly the same happens when we consider

connected components of M(Ok−1, Hk−2).

2.3 Computing Homology Groups of Smooth Manifolds

We shall now illustrate the simple computation of Floer homology for some smooth vector
fields.

1. Let the sphere S2 be equipped with a vector field V which has two isolated rest points
of index zero at the north (N) and the south (S) pole, and one periodic orbit O of index one
on the equator. Then
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Figure 2.3

C2 =
(
O1

1

)
C1 =

(
O0

1

)
C0 = (N0, S0)

∂2O
1
1 = 0 since there is no closed orbit of index 0

and thereforeO1
1 is the only generator forH2(S2,Z2).

∂1O
0
1 = α(O1, N0).N0 + α(O1, S0).S0 = N0 +

S0 6= 0 and therefore O0
1 does not con-

tribute to H1(S2,Z2) and H1(S2,Z2) = 0.
∂0N0 = 0 = ∂0S0 but since N0 + S0 is in the im-

age of ∂1 therefore we have a single generator for
H0(S2,Z2).

Figure 2.4

2. If we reverse the orientation of flow lines
in the previous example, the isolated rest points at
the north and south pole will get index two and the
index of the periodic orbit becomes zero. There-
fore:

C2 = (N2, S2)

C1 =
(
O1

0

)
C0 =

(
O0

0

)
∂2N2 = O1

0 = ∂0S2 and N2 − S2 is the generator for
H2(S2,Z2).
Also ∂1O

1
1 = 0 but since O1

1 is in the image of ∂2 it
does not contribute to H1(S2,Z2). Finally ∂0O

0
0 = 0 and therefore O0

0 is the only generator
for H0(S2,Z2).

3. Consider S2 as following with a vector field V which has two isolated rest points,
at the north pole of index zero and at the south pole of index two, one orange homoclinic
orbit H of index one and one yellow periodic orbit O of index zero.

C2 =
(
S2, H

1
1

)
C1 =

(
H0

1 , O
1
0

)
C0 =

(
O0

0, N0

)
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Figure 2.5

∂2S2 = O1
0 = ∂2H

1
1 and therefore S2 −H1

1 is the only generator for H2(S2,Z2).
∂1H

0
1 = α(H1, O0).O0

0 + α(H1, N0).N0 = O0
0 +N0 6= 0

and therefore H0
1 does not contribute to H1(S2,Z2). On the other hand, ∂1O

1
0 = 0

but since O1
0 is in the image of ∂2 it does not contribute to H1(S2,Z2) and therefore

H1(S2,Z2) = 0. ∂0N0 = 0 = ∂0O
0
0 but since O0

0 + N0 is in the image of ∂1 therefore
we have just one generator for H0(S2,Z2).

4. Finally, a two dimensional Torus T 2 with a vector field V with two periodic orbits O1

and O′0:

Figure 2.6

C2 =
(
O1

1

)
C1 =

(
O0

1, O
′1
0

)
C0 =

(
O′00
)

∂2O
1
1 = 2.O′10 = 0 therefore O1

1 is the generator for H2(T 2,Z2).
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∂1O
0
1 = 2.O′00 = 0 so O0

1 is a generator for H1(T 2, Z). Also ∂1O
′1
0 = 0 and therefore

O′10 is another generator for H1(T 2,Z2) = 0.
Finally ∂0O

′0
0 = 0 and therefore we have one generator for H0(T 2,Z2).

Remark 2.3.1. For a computation of the homology groups of the first two examples via

Morse- Bott theory (after turning the periodic orbits into critical submanifolds of a gradient

flow), see [4].



3 Floer Homology of (Forman’s)
combinatorial vertor fields

In this chapter, we want to present a type of Floer boundary operator on CW complexes
which provide a natural way of describing spaces combinatorially, preserving their homotopy
types. Forman introduced the notion of a combinatorial dynamical system on CW complexes
[23]. He developed discrete Morse theory for the gradient vector field of a combinatorial
Morse function and studied the homological properties of its dynamic [25] . For the general
combinatorial vector fields where as opposed to gradient vector fields, the chain recurrent set
might also include closed paths, he studied some homological properties by generalizing the
combinatorial Morse inequalities. It remains, however, to construct a Floer type boundary
operator for these general combinatorial vector fields. We define a Morse-Floer boundary
operator for combinatorial vector fields on a finite simplicial complex. With this tool we no
longer need a Morse function to compute the Betti numbers of the complex. Combinato-
rial vector fields can be considered as the combinatorial version of smooth Morse-Smale
dynamical systems on finite dimensional manifolds; here in contrast to the smooth case we
cannot have homoclinic points and homoclinic orbits as here, we cannot have a continuous
bifurcation between a pair of heteroclinic orbits and a closed one, and in particular none
with a homoclinic orbit in the middle.

3.1 Preliminaries

We now recall some of the main definitions that Forman introduced. Let M be a finite CW
complex of dimension m, with K the set of open cells of M and Kp the set of cells of
dimension p. If σ and τ are two cells of M , we write σp if dim(σ) = p, and σ < τ if σ ⊆ τ

where τ is the closure of τ and we call σ a face of τ .
Suppose σp is a face of τp+1, B a closed ball of dimension p + 1 and h : B → M the
characteristic map for τ i.e., a homeomorphism from the interior of B onto τ .

Definition 3.1.1. σp is a regular face of τp+1 if

• h−1(σ)→ σ is a homeomorphism.

23
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• h−1(σ) is a closed p-ball.

Otherwise we say σ is an irregular face of τ . If M is a regular CW complex (such as a
simplicial or a polyhedral complex) then all its faces are regular.

Definition 3.1.2. A combinatorial vector field on M is a map V : K → K ∪ 0 such that

• For each p, V (Kp) ⊆ Kp+1 ∪ 0.

• For each σp ∈ Kp, either V (σ) = 0 or σ is a regular face of V (σ).

• If σ ∈ Image(V ) then V (σ) = 0.

• For each σp ∈ Kp

]{up−1 ∈ Kp−1 | V (u) = σ} ≤ 1.

To present the vector field on M for any σ ∈ K where V (σ) 6= 0 we usually draw an
arrow on M whose tail begins at σ and extend this arrow into V (σ). Thus, for each simplex
σp, there are precisely 3 disjoint possibilities:

• σ is the head of an arrow (σ ∈ Image(V )).

• σ is the tail of an arrow (V (σ) 6= 0).

• σ is neither the head nor the tail of any arrow (V (σ) = 0 and σ 6∈ Image(V );

In the last case we call such a σp a zero or rest point of V of index p. Cells which are not rest
points occur in pairs (σ, V (σ)) with dimV (σ) = dim σ+ 1. From now on and for simplicity
we restrict ourselves to the special case of simplicial complexes, instead of CW complexes.
As the combinatorial version of closed periodic orbits in smooth manifolds we have the next
definition:

Definition 3.1.3. Define a V -path of index p to be a sequence

γ : σ0
p, τ

0
p+1, σ

1
p, τ

1
p+1, ..., τ

r−1
p+1 , σ

r
p

such that for all i = 1, ..., r − 1 :

V (σi) = τ i and σi 6= σi+1 < τ i.

A closed path γ of length r is a V -path such that σ0
p = σrp. Also γ is called non-stationary if

r > 0. In particular we define the index of a simplex σp to be its dimension p.

Forman showed that there is an equivalence relation on the set of closed paths by
considering two paths γ and γ′ to be equivalent if γ is the result of varying the starting point
of γ′. An equivalence class of closed paths of index k will be called a closed orbit of index
k and denoted by Ok.

Definition 3.1.4. The combinatorial chain recurrent set R(V ) for a combinatorial vector

field V on M is defined to be the set of simplices σp which are either rest points of V or are

contained in some non-stationary closed path γ (γ must have index either p− 1 or p).
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The chain recurrent set can be decomposed into a disjoint union of basic sets R(M) =

∪iΛi where two simplices σ, τ ∈ R(V ) belong to the same basic set if and only if there is a
closed non-trivial V -path γ which contains both σ and τ . Forman proved that if there are no
non-stationary closed paths, then V is the combinatorial negative gradient vector field of
a combinatorial Morse function. However when V has closed paths, then it cannot be the
gradient of a function. Subsequently he defined a combinatorial ”Morse-type” function on
K, called a Lyapunov function, which is constant on each basic set, and has the property
that, away from the chain recurrent set, V is the negative gradient of f .

Remark 3.1.5. This Lyapunov function can be considered as the combinatorial analogue of

the Morse-Bott energy function which Mayer defined for Morse-Smale dynamical systems.

3.2 The chain complex of combinatorial vector fields

Forman obtained Morse-type inequalities based on the basic sets of V and showed that these
sets control the topology of M [23]. In this section, we present a direct way of recovering
the homology of the underlying complex from the chain recurrent set of a combinatorial
vector field on M from our Floer type boundary operator; this operator acts on chain groups
generated by the basic sets and counts the number of suitable V-paths between elements of
the chain recurrent set. We consider V to be a combinatorial vector field on a finite simplicial
complex M .
We define the Morse-Floer complex of V denoted by (M,C∗(V ), ∂) as follows. Let Ck
denote the finite vector space (with coefficients in Z2) generated by the set of rest points pk
and closed orbits Ok−1 of the vector field:

(
pk, O

1
k−1, O

0
k

)
in which by O1

k−1 we mean the whole closed orbit Ok−1 of index k − 1 and by O0
k we mean

an arbitrary simplex with dimension k in the closed orbit Ok. Similar to the smooth case,
each such orbit carries topology in two adjacent dimensions, namely a closed orbit Ok

generates an element O1
k in Ck+1 and an element O0

k in Ck. We note that here, by definition
of combinatorial vector fields, we do not have any V -path between the elements of the same
Ck; but in order to get a Floer type boundary operator in the same way as in the smooth
setting we have to exclude three different cases in our vector field; we assume:

1. There is no V -path from a face of a critical simplex pk to a (k − 1)-dimensional
simplex in an orbit Ok−1.

2. There is no V -path from a face of a k-dimensional simplex of an orbit of index k − 1

to a critical simplex of dimension k − 1.
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3. There is no V -path from a face of a k-dimensional simplex of an orbit of index k − 1

to a (k − 1)-dimensional simplex of another orbit of index k − 1.

This will be used in the proof of Thm. 3.2.1. In the smooth setting, the excluded cases
cannot occur because of the Morse-Smale transversality condition.
To be able to define the combinatorial Floer-type boundary operator, we have to transfer
the idea of number of connected components of the moduli spaces of flow lines to our
combinatorial setting. As we saw, the number of these components (mod 2) plays a key rule
in the definition of the boundary operator in the smooth setting. In the following for two
simplices of the same dimension q and q′ by q ⊥ q′ we mean that q and q′ are lower adjacent,
i.e., they have a common face.
We have V -paths between closed orbits and rest points which make different following cases:
For two orbits Ok−1 and Ok−2 we define the set V P (Ok−1, Ok−2) as the set of all V-paths
starting from the faces of k − 1 and k-dimensional simplices of Ok−1 and go to respectively
k − 2 and k − 1 dimensional simplices of Ok−2.
If V P (Ok−1, Ok−2) is non-empty, for O1

k−1 and O1
k−2, we define the higher dimensional

spanned set of V-paths in V P (Ok−1, Ok−2), denoted by SV P (O1
k−1, O

1
k−2) to be

{q ∈ Kk, q ∈ Image(V ) | ∃γ ∈ V P (Ok−1, Ok−2), q ∈ γ}.

On this set we can then define a relation as follows. We say q and q′ in SV P (O1
k−1, O

1
k−2)

are related (q ∼ q′) if q and q′ belong respectively to two V-paths γ : α0
k−1, ..., qk, ..., α

r
k−1

and γ′ : β0
k−1, ..., q

′
k, ..., β

s
k−1 where α0

k−1 and β0
k−1 are faces of k-dimensional simplices of

Ok−1 and αrk−1 and βsk−1 are some k − 1 dimensional simplices in Ok−2 such that one of the
following situations happens:

• Either α0
k−1 and β0

k−1 coincide (and therefore γ and γ′ are the same) or

• α0
k−1 ⊥ β0

k−1 or

• There is a sequences of k − 1 dimensional simplices θ0
k−1, ...θ

z
k−1, where θ0

k−1, ...θ
z
k−1

are the faces of k dimensional simplices in Ok−1 such that α0
k−1 ⊥ θ0

k−1, β0
k−1 ⊥

θzk−1 and for each i, θik−1 ⊥ θi+1
k−1 and θik−1 is the starting simplex of some γ ∈

V P (Ok−1, Ok−2).

It is straightforward to check that ∼ is an equivalence relation on SV P (O1
k−1, O

1
k−2).

On the other side for two arbitrary simplices of dimension k − 1 and k − 2 in respectively
Ok−1 and Ok−2 we consider the following equivalence relation( ∼′) on SV P (O0

k−1, O
0
k−2):

{q ∈ Kk−1, q ∈ Image(V ) | ∃γ ∈ V P (Ok−1, Ok−2), q ∈ γ}.

We say q and q′ in SV P (O0
k−1, O

0
k−2) are related (q ∼′ q′) if there are w and w′ in

SV P (O1
k−1, O

1
k−2) such that q < w and q′ < w′ and w ∼ w′. By definition ∼′ is also
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an equivalence relation on SV P (O0
k−1, O

0
k−2) and the number of its equivalence classes is

exactly the number of equivalence classes of ∼ over SV P (O1
k−1, O

1
k−2).

For instance consider the following triangulation of the torus which has two closed or-
bits of index one and index zero, respectively shown by green and red arrows. Here,
SV P (O1

k−1, O
1
k−2) is the set of all the two dimensional coloured simplices and based on

the above equivalence relation, this set is partitioned into two sets of yellow and pink two
dimensional simplices. Also SV P (O0

k−1, O
0
k−2) is the set of all marked (with cross sign)

edges which is partitioned into two sets, represented by orange and purple signs.

Figure 3.1

If for two orbits, Ok−1 and Ok−2, V P (Ok−1, Ok−2) is empty and some of the faces of
Ok−1 (faces of both k − 1 and k-dimensional simplices) coincide with k − 2 and k − 1

dimensional simplices in Ok−2, we say Ok−2 is attached to Ok−1. In the tetrahedron shown
below the bottom faces of the closed red orbit of index one, is the closed orbit of index zero
with purple arrows

Figure 3.2

Also we could have V-paths, V P (pk, Ok−2), from the faces of a critical simplex pk of
index k which go to the k− 1 dimensional simplices of some orbit of index k− 2 ; we define
the span set of these V-paths, denoted by SV P (pk, O

1
k−2) to be

SV P (pk, O
1
k−2) := {q ∈ Kk, q ∈ Image(V ) | ∃γ ∈ V P (pk, Ok−2), q ∈ γ}.

As above we can define an equivalence relation on this set in which the equivalence classes
are obtained based on the following relation:
q ∼ q′ if they belong respectively to two V-paths γ : α0

k−1, ..., qk, ..., α
r
k−1 and γ′ :

β0
k−1, ..., q

′
k, ..., β

s
k−1 such that either α0

k−1 and β0
k−1 coincide or α0

k−1 ⊥ β0
k−1 or there
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is a sequence of k − 1 dimensional simplices θ0
k−1, ...θ

z
k−1, where θ0

k−1, ...θ
z
k−1 are the faces

of pk such that α0
k−1 ⊥ θ0

k−1, β0
k−1 ⊥ θzk−1 and for each i, θik−1 ⊥ θi+1

k−1. We note that here,
α0
k−1 and β0

k−1 are faces of pk and αrk−1 and βsk−1 are some k − 1 elements of Ok−2.

Also for V on M , for some rest point pk and some closed orbit Ok−2, the faces of pk and
k − 1 dimensional simplices in Ok−2 might coincide. In the above tetrahedron where the
faces of orange 2-d rest simplex coincides with the one dimensional simplices in the closed
orbit of index zero with purple arrows. We consider this again as an attachment.

In the third possible case, V-paths start from the faces of k-dimensional simplices
of a closed orbit of index k, Ok, and go to a rest simplex of index k − 1, pk−1. We
denote the set of such V-paths by V P (Ok, pk−1) and we consider SV P (O0

k, pk−1) := {q ∈
Kk, q ∈ Image(V ) | ∃γ ∈ V P (Ok, pk−1), q ∈ γ}. In this set we call two simplices
q and q′ equivalent if either q and q′ coincide or q ⊥ q′ or we can find a sequence of
simplices in SV P (O0

k, pk−1) such as θ0
k−1, ...θ

z
k−1, such that q ⊥ θ0

k−1, q′ ⊥ θzk−1 and for
each i, θik−1 ⊥ θi+1

k−1. Here we have to exclude pk−1 for determining lower adjacency of
k-dimensional simplices in SV P (O0

k, pk−1), namely if q∩q′ = pk−1, they belong to different
classes. As an example consider the following triangulation for the torus with four orange
rest simplices, one of index two, two of index one and another one of index zero, and a closed
red orbit of index one. Here, the edges marked by cross signs are the edges in SV P (O0

1, p0),
which is portioned into two pink and yellow marked edges. If V P (Ok, pk−1) is empty, but
Ok and pk−1 have a non-empty intersection, we have another type of attachment. For an
example of this case see the top critical vertex and the red O1 in the above tetrahedron.

Figure 3.3

Finally if we substitute O0
k in the third case by a rest point of index k, pk, we count

the number of equivalence classes of SV P (pk, pk−1) := {q ∈ Kk, q ∈ Image(V ) | ∃γ ∈
V P (pk, pk−1), q ∈ γ} where V P (pk, pk−1) is the set of all V-paths starting from the faces
of pk and go to pk−1 by passing through k-dimensional simplices, based on the following
relation:
We say q and q′ in SV P (pk, pk−1) are related (q ∼ q′) if there is a V-path in V P (pk, pk−1)

which includes both q and q′. Therefore the number of equivalence classes here is the number
of V-paths starting from the faces of pk which go to pk−1.
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The differential ∂k : Ck(V ) −→ Ck−1(V ) counts the number of the above equivalence
classes mod 2, denoted by α, and for the three types of attachments we consider α = 1. That
is,

∂pk =
∑

α(pk, pk−1)pk−1 +
∑

α(pk, O
1
k−2)O1

k−2

∂O0
k =

∑
α(O0

k, O
0
k−1)O0

k−1 +
∑

α(O0
k, pk−1)pk−1

∂O1
k−1 =

∑
α(O1

k−1, O
1
k−2)O1

k−2

where the sums extend over all the elements on the right hand side; for instance the second
sum in the first line is over all closed orbits O1

k−2 of index k− 2. In Forman’s discrete Morse
theory where there is no closed orbit (and therefore the combinatorial vector field is the
gradient of a discrete Morse function), α(pk, pk−1) is the number of gradient V-paths from
the faces of the rest point pk of higher dimension to the rest point of lower dimension pk−1

(in this case all the coefficients in the above formula except the first coefficient in the first
line are zero).
Also in the above definition, α(O0

k, O
0
k−1) = α(O1

k, O
1
k−1) as in the left side the k and k − 1

dimensional simplices are chosen arbitrarily from their orbits. On the other hand, similar
to the smooth case we do not have terms with coefficients of the form α(pk, O

0
k−1) in the

definition of the boundary operator. This will be used in the proof of Thm. 3.2.1. If there
were a V-path from the faces of some pk to some O0

k−1, then we would be able to consider
V-paths to the corresponding O1

k−1 which comes from the same closed orbit. But O1
k−1 and

pk belong to the the same Ck which contradicts our main assumption on chain groups.

Theorem 3.2.1. ∂2 = 0.

To prove this theorem similarly to Theorem 2.2.4 in the smooth case, we introduce a
procedure to replace any closed path of index p (correspondingly its orbit of index p, Op)

by a rest point of index p and one of index p+ 1 which are joined by two gradient V-paths
starting from the faces of a higher dimensional rest point and going to the lower dimensional
rest point.
We assume V has a finite number of closed non-stationary paths (orbits) and rest simplices.
Choose arbitrarily one of these closed paths γ of index p, γ : σ0

p, τ
0
p+1, σ

1
p, τ

1
p+1, ..., τ

r−1
p+1 , σ

r
p =

σ0
p . γ is a sequence of p and (p+1) dimensional simplices. Take one of the p+1 dimensional

simplices τ kp+1 where k 6= r− 1. (Note that for non-stationary closed paths such a τ k always
exists). We consider the following two sets of the simplices of γ by preserving the orders in
each of the sets:

σ0
p, ...., τ

k−1
p+1 , σ

k
p , τ

k
p+1 and

τ kp+1, σ
k+1
p , τ k+1

p+1 , ...., σ
r
p = σ0

p
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where the union of the elements in these sets consists of all the simplices of γ and their
intersection is the starting simplex of the closed path σ0

p and the one of higher dimension
that we took τ kp+1.

We keep the arrows in the second set as they are in γ and in the first set we reverse the
direction of V-path from σ0

p to τ kp+1. Namely instead of a pair such as (σsp, τ
s
p+1) in γ (for

0 ≤ s ≤ k) we will have (σsp, τ
s−1
p+1 ) in our vector field where the two simplices σ0

p and τ kp+1

will no longer be the tail and head of any arrow; therefore by definition both of them become
rest points and there is no other rest point in γ created in this process. We note that in this
procedure we just change the arrows in O and the other pairs of the vector field (outside O)
are not changed.

Proof. of theorem 3.2.1. If by the help of above procedure we replace all the closed paths
(orbits) by two rest points whose indices (dimensions) differ by one we get a vector field
V ′ which has no closed path (orbit) and therefore there is a discrete Morse function on M
whose gradient is V ′. V ′ has all the rest points of V and two rest points qupk (the simplex of
higher index) and q′downk−1 (the simplex of lower index) instead of every orbit Ok−1 of index
k − 1. Then we have the following three steps to prove the theorem:

1. We consider Ck(V ′) to be the finite vector space (with coefficients in Z2) generated by

(
pk, q

up
k , q

′down
k

)
where in this set qupk comes from an orbit of index k − 1 and q′downk comes from the
replacement of an orbit of index k.

2. we define a boundary operator ∂′ and consequently a chain complex corresponding to
(V ′, C∗(V

′), ∂′).

3. Then we prove there is an isomorphism (chain map) ϕ∗ : C∗(V ) −→ C∗(V
′) .

Since ϕ∗ is an isomorphism we get our desired equality ∂2 = 0 as ∂ = ϕ−1∂′ and ∂2 =

ϕ−1∂′2.

1. All the elements of the chain recurrent set of V ′ are rest simplices and for each index
k they can be partitioned into three different sets pk, q

up
k , q

′down
k . Here, in contrast to

the smooth case, orbits and rest points can have non-empty intersections; in particular
for the three types of attachments, the pairwise intersections are non-empty. However
partitioning of rest simplices is possible since the indices of the rest simplices are the
same as their dimensions and after converting orbits into two rest simplices, they will
belong to different chain groups (in adjacent dimensions).
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2. We define ∂′ : Ck(V ′) −→ Ck−1(V ′) as follows:

∂′pk =
∑

α(pk, pk−1).pk−1 +
∑

α(pk, q
up
k−1).qupk−1

∂′qupk =
∑

α(qupk , q
up
k−1).qupk−1

∂′q′downk =
∑

α(q′downk , q′downk−1 ).q′downk−1

+
∑

α(q′downk , pk−1).pk−1

To prove ∂′2 = 0 over Ck(V ′), we want to equate ∂′ with the discrete Morse-Floer
boundary operator ∂M of a combinatorial gradient vector field of the form ∂M(sk) =∑
α(sk, sk−1).sk−1. There we count the number of gradient V-paths α (mod 2) between

two rest points of relative index difference one without any such partitioning on the set of
rest simplices sk of index k. In our case where we have such kind of partitioning we should
show that for all the generators of C∗(V ′), ∂′ = ∂M .
After the preceding procedure, we have:

∂M(pk) =
∑

α(pk, pk−1).pk−1 +
∑

α(pk, q
up
k−1).qupk−1

+
∑

α(pk, q
′down
k−1 ).q′downk−1 ;

comparing this formula with that of ∂′pk in the above formula we see that there is one extra
term in the latter; because we exclude case (1) in our vector field, the third sum is not present
in the former case.
As in the previous discussion to have ∂M(qupk ) = ∂′(qupk ), the following two coefficients
should be zero:
α(qupk , q

′down
k−1 ), α(qupk , pk−1). In the first case if qupk and q′downk−1 are coming from replacement

of the same orbit Ok−1, we will have exactly two V ′-paths from the faces of qupk to q′downk−1

and it is zero mud 2. If they are not obtained from replacement of the same orbit Ok−1, α is
zero as otherwise in V we would have V -paths between two orbits of the same index which
either contradicts the non-existence of V -paths between elements of the same chain group
or violates our exclusion (3) on the vector field. On the other hand, the second α is zero as
otherwise it violates our assumption (exclusion 2) on the vector field.
Finally ∂M(q′downk ) = ∂′(q′downk ) if α(q′downk , qupk−1) is zero; if not, we would have two closed
orbits O and O′ in V such that the faces of O are connected to O′ by some V-paths and their
indices differ by two which is not possible.
Therefore on C∗(V ), ∂M = ∂′ and ∂′2 = 0 since by Morse-Floer theory for combinatorial
gradient vector fields (∂M)2 = 0.
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3. We define ϕ∗ : C∗(V ) −→ C∗(V
′) as follows. For 0 ≤ k ≤ m,

ϕ∗(pk) = pk, ϕ∗(O
0
k) = q′downk , ϕ∗(O

1
k−1) = qupk

ϕ∗ is an isomorphism by the above partitioning method for the set of rest points of V ′.
To prove ϕ∗ is a chain map from C∗(V ) to C∗(V ′) we should have ∂′ϕ∗ = ϕ∗∂

Here, we show the equality for O1
k−1 and for the other generators of Ck(V ) it can be

similarly obtained:.

ϕ∗∂(O1
k−1) = ϕ∗(

∑
α(O1

k−1, O
1
k−2).O1

k−2

=
∑

α(qupk , q
up
k−1).qupk−1

= ∂′qupk

= ∂′ϕ∗(O
1
k−1)

ϕ∗ preserves the parity of α(O1
k−1, O

1
k−2) since each equivalence class of SV P (O1

k−1, O
1
k−2)

corresponds to exactly one gradient V-path from qupk to qupk−1 (and one gradient V-path from
q′downk−1 to q′downk−2 .
Therefore ∂′ϕ∗ = ϕ∗∂ and since ∂′2 = 0 and ∂2 = ϕ−1

∗ ∂
′2ϕ∗, ∂

2 = 0

Remark 3.2.2. For the three types of attachments in the above equality, after replacing orbits

with two rest simplices and two gradient V-paths between them, α(pk, q
up
k−1), α(qupk , q

up
k−1),

α(q′downk , q′downk−1 ) are also one. For instance, in the left tetrahedron below, we have two

orange rest simplices, one of index two B2 at the bottom and one of index zero at the top T0

and two red and purple closed orbits of indices one and zero. If we convert the red orbit

into two rest simplices, marked with red crosses, one of index two R2 and the other one of

index one R1 and similarly turn the purple orbit into two rest simplices, marked with purple

crosses, one of index one P1 and the other one of index zero P0 (shown in the right figure),

we have α(B2, P1) = 1, α(R2, P1) = 1 and α(R1, P0) = 1.

(Also α(R2, R1) = 0, α(P1, P0) = 0 and α(R1, T0) = 1.)

Figure 3.4

We can then define the Z2 Morse-Floer homology of M , for each k, 0 ≤ k ≤ m by

Hk(M,Z2) = ker(∂k)
image(∂k+1)
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In [23] Forman proved Morse inequalities for general combinatorial vector fields based
on his combinatorial Morse type Lyapunov function. There the main components are rest
points and orbits in basic sets. Here we want to present these inequalities in a much shorter
way based on the idea of changing every orbit of index k − 1, Ok−1 to two rest points of
index k and k − 1 as above. The following result can be considered as the combinatorial
version of what Franks proved for smooth Morse-Smale dynamical systems [27].

Theorem 3.2.3. Let V be a combinatorial vector field over a finite simplicial complex M

with ck rest points of index k and Ak orbits of index k. Then

ck − ck−1 + ....± c0 + Ak ≥ βk − βk − 1 + ...± β0,

where βk = dimHk(M,Z2).

Proof. We create a new vector field V ′ over M by replacing each closed orbit with two
rest points as above. Since there is no closed orbit in V ′, based on what Forman showed in
[25], V ′ is the gradient of some combinatorial Morse function on M . On the other hand, the
indices of rest points do not change when turning V to V ′ and V ′ has c′k rest points of index
k where c′k = ck + Ak + Ak−1. Applying the Morse inequalities for gradient vector fields to
c′k in V ′ gives us the desired inequalities.

Remark 3.2.4. If a simplicial complex is obtained by triangulation of a non-orientable

manifold, we might not get the correct (Z2) homology groups when the chain recurrent set of

our combinatorial vector field has non-stationary closed V-paths. However for computing

the Z2 homology, we can turn each orbit into two rest simplices and two V-paths between

them as above to get a combinatorial gradient vector field on the simplex and use the

classical discrete Floer-Morse theory. For instance, consider a triangulation of the Klein

bottle which has two closed orbits represented by red and blue arrows of index one and zero,

respectively, as shown in the left diagram below. We note that the red orbit is twisted. Here

by turning orbits into two rest simplices and two V-paths between them we get the correct

Z2-homology of the Klein bottle which is the same as the Z2-homology of the triangulated

torus as Z2-homology cannot distinguish between orientable and non-orientable surfaces.

Figure 3.5
Remark 3.2.5. Orientability of a simplicial complex is not a necessary condition for defining

the Floer boundary operator for general combinatorial vector fields. For instance in the
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following diagram, we have a non-orientable simplex as each vertex is the intersection of

three different edges. Here, the chain recurrent set has an orbit of index zero with red arrows,

as well as three critical edges and one critical vertex in the middle. If we use theorem 3.2.1

to compute the Z2 homology of M based on this vector field we get H0(M,Z2) = 1 and

H1(M,Z2) = 3.

Figure 3.6

3.3 Computing Homology Groups of Simplicial Complexes

We now present the computation of Floer homology groups for some CW complexes.

1. Consider the tetrahedron as a symmetric triangulation of the Sphere S2,

Figure 3.7

equipped with a vector field V which has two rest simplices,
one of index (dimension) zero (p0) (the vertex at the top corner)
and another of index two τ2 (the simplex at the bottom), shown
in orange, and a closed red orbit O1 of index one and one of
index zero O′0 in purple. Then

C2 =
(
τ2, O

1
1

)
C1 =

(
O0

1, O
′1
0

)
C0 =

(
O′00 , p0

)
∂2τ2 = O′10 as this is an attachment where the faces of τ2

and edges in O1
0 coincide. On the other hand, ∂2O

1
1 is also equal to O′10 (another type of

attachment) and therefore τ2 −O1
1 is the only generator for H2(M,Z2).

∂1O
0
1 = α(O0

1, O
′0
0 ).O′00 + α(O0

1, p0).p0 = O′00 + p0 6= 0 and O0
1 does not contribute to

H1(M,Z2). Also ∂1O
′1
0 = 0 but since O′10 is in the image of ∂2, it does not contribute to

H1(M,Z2) and H1(M,Z2) = 0 Finally ∂0p0 = 0 = ∂0O
′0
0 , but since O′00 + p0 is in the

image of ∂1 we have just one generator for H0(M,Z2).

Figure 3.8

2. Let T 2 at right be a triangulation of the two dimensional
torus equipped with a vector field which has two closed orbits
O1 and O′0 with green and red arrows.
Since this case is actually a discrete version of example
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4 in the previous section, we have analogous structures
for the chain complexes and boundaries; SV P (O1

1, O
′1
0 )

is partitioned into two equivalence classes and therefore
α(O1

1, O
′1
0 ) = α(O0

1, O
0
0) = 0 and all of the generators of Ck

for k = 0, 1, 2 contribute to the corresponding homology groups.

Figure 3.9

3. Consider another combinatorial vector field on the tri-
angulated torus where V has four orange rest simplices, one of
index zero (p0), a vertical edge ve1 of index one, a horizontal
edge he1 of index one and one rest simplex τ2 of index two
and also a red orbit O of index one. We have

C2 =
(
τ2, O

1
1

)
C1 =

(
ve1, he1, O

0
1

)
C0 = (po)

∂2τ2 = 1.ve1 + 1.he1 6= 0; also ∂2O
1
1 = 0 as there is no

orbit of index zero here. Therefore O1
1 is the only generator for

H2(M,Z2). ∂1ve1 = 2.p0 = 0 = ∂1he1 but since ve1 + he1 is in the image of ∂2, ve1 − he1

is one generator for H1(M,Z2). ∂1O
0
1 = 2.p0 = 0 and therefore O0

1 is the other generator of
H1(M,Z2). ∂0p0 = 0 and it is the generator for H0(M,Z2).

4. Finally to compute the Floer homology groups of the depicted cube, we consider a
vector field V that has two (orange and yellow) rest simplices of index two at the top τN2
and at the bottom τS2 and three different orbits, one blue orbit (bO)0 of index zero, one green
orbit (gO)0 of index zero and a red orbit (rO)1 of index one.

Figure 3.10

C2 =
(
τN2 , τ

S
2 , (rO)1

1

)
C1 =

(
(rO)0

1, (bO)1
0, (gO)1

0

)
C0 =

(
(bO)0

0, (gO)0
0

)
∂2τ

N
2 = 1.(gO)1

0 6= 0; ∂2τ
S
2 = 1.(bO)1

0 6= 0; ∂2(rO)1
1 = 1.(gO)1

0 + 1.(bO)1
0 6= 0 but
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∂2(τN2 + τS2 − (rO)1
1) = 0 and therefore we have one generator for H2(M,Z2).

∂1(rO)0
1 = 1.(bO)0

0 + 1.(gO)0
0 6= 0. ∂1(bO)1

0 = 0 = ∂1(gO)1
0, but since both (bO)1

0 and
(gO)1

0 are in the image of ∂2, we have no generator for H1(M,Z2). Finally ∂0(bO)0
0 =

0 = ∂0(gO)0
0, but as (bO)0

0 + (gO)0
0 is in the image of ∂1 we have one single generator for

H0(M,Z2).
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4 Introduction

Principles of Network Analysis
Network analysis constitutes one of the success stories in the study of complex systems
[15, 30, 44]. For the mathematical analysis, a network is modelled as a (perhaps weighted
and/or directed) graph. One can then look at certain graph theoretical properties of an empir-
ical network, like its degree or motiv distribution, its assortativity or clustering coefficient,
the spectrum of its Laplacian, and so on. One can also compare an empirical network with
certain deterministic or random theoretical models. Successful as this analysis clearly is,
we nevertheless see two important limitations. One is that many of the prominent concepts
and quantities used in the analysis of empirical networks are node based, like the degree
sequence. The structure of a network is encoded, however, not in its vertices or nodes, but
rather in its edges, that is, the relations between the nodes. Therefore, here we wish to
advocate and pursue an analysis whose fundamental ingredients are edge based quantities.
Secondly, many real data sets are naturally modelled by structures that are somewhat more
general than graphs, because they may contain relations involving more than two elements.
For instance, chemical reactions typically involve more than two substances. This leads to
hypergraphs, a subject that is currently gaining much momentum, see for instance [16]. In an
undirected graph, an edge is given by an unordered pair of vertices, that is, by a two-element
subset of the set of all vertices. For an undirected hypergraph, a hyperedge is given by
any non-empty subset of the vertex set. In a directed graph, an edge is an ordered pair of
vertices, that is, it connects two vertices, its tail and its head. Analogously, in a directed
hypergraph, a hyperedge connects two non-empty sets of vertices, a tail set and a head set.
Directed graphs thus are special directed hypergraphs, where each such set contains a single
vertex. Under the label of Petri nets [35], directed hypergraphs have played an important
role in computer science, but withan emphasis rather on processing schemes than on network
properties. As systems get larger, however, network aspects are gaining importance. Like
graphs, hypergraphs can also be weighted. Let us look at some examples. In a coauthorship
network, the authors are the vertices, and a set of authors constitutes a hyperedge when
they coauthor a paper. Thus, coauthorship networks are naturally modelled as undirected
hypergraphs. Modelling them as a graph would connect two vertices when they are part of
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the set of authors of a paper. But already for three authors A,B,C, when they are pairwise
connected in a graph, this cannot distinguish between the case where we have just three
papers with two authors each, or whether there is a joint paper by all three of them, and
perhaps in addition also some two or single author papers. Hypergraphs modelling empirical
networks can also be directed. Taking the example of chemical reactions, they are typically
not reversible, but rather transform a set of educts into a set of products. Thus, the task we
set ourselves here is to forge tools that are powerful in the analysis of empirical networks
modelled as hypergraphs. And as advocated above, such a tool should primarily evaluate
properties of hyperedges rather than of vertices. Of course, once we have suitable quantities
associated to hyperedges, quantities for vertices can be then also be derived, for instance by
averaging over all hyperedges incident to or emanating from a vertex. So, how to go about
this task? We take a conceptual approach and consider a hypergraph as a geometric object
and then look for mathematical strategies for identifying invariants that can characterize
geometric structures. And that leads us to one of the greatest successes in mathematics,
Riemannian geometry. There, the fundamental invariants are curvatures. It might now seem
that curvature is a concept only suitable for smooth structures, like smooth curves or surfaces,
and therefore ill-suited for discrete structures like hypergraphs. But as it turns out, curvature
concepts can be formulated more abstractly than taking second derivatives of some smooth
objects. We shall now explain this in more detail, in order to motivate the approach taken in
this part.
Ricci curvature: From Riemannian Geometry to Network Analysis
In Riemannian geometry (see for instance [32] as a reference), the curvature of a space
quantifies its non-flatness. Among the various curvature notions that are of importance in
Riemannian geometry, Ricci curvature quantifies this deviation by comparing the average
distance between two sufficiently close points and the distance between two small balls
around them. Bounds on curvatures can be used to connect the geometry of a Riemannian
manifold with its topology, or to control stochastic processes on it. More precisely, a positive
lower bound for the Ricci curvature yields the Bonnet-Myers theorem, which bounds the
diameter of the space in terms of such a lower Ricci bound, the Lichnerowicz theorem for
the spectral gap of the Laplacian, a control on mixing properties of Brownian motion and
the Levy-Gromov theorem for isoperimetric inequalities and concentration of measures. In
view of these strong implications, it is desirable to extend this to metric spaces that are
more general than Riemannian manifolds. Speacifically, since such objects and properties
are also meaningful and important in metric spaces that are more general than Riemannian
manifolds, alternative definitions of Ricci curvatures have been proposed that are formulated
in terms of local quantities and no longer depend on taking derivatives. In particular, Yann
Ollivier [45] defined a notion of Ricci curvature on metric spaces equipped with a Markov
chain, and extended some of the mentioned results for positively curved manifolds. His
definition compares the Wasserstein distance between probability measures supported in
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the neighborhoods of two given points with the distance between these points. The Wasser-
stein distance between two probability measures is defined as the minimal cost needed for
transporting one into the other. That is, an optimal transport problem has to be solved. –
On Riemannian manifolds, this recovers the original notion of Ricci curvature (up to some
scaling factor), and at the same time, it naturally applies to discrete metric spaces like graphs.
Recently, this curvature has been applied in network analysis, to determine spreading or
local clustering in networks modelled as undirected or directed graphs, see for instance [50].
It is therefore desirable to have such a tool also for hypergraphs. In the next chapter, we shall
develop a notion of an Ollivier-type Ricci curvature for, possibly directed and/or weighted,
hypergraphs [13]. There have been some prior proposals for extensions of Ollivier-Ricci
curvature in such a direction (see for instance [1, 2, 57]), but our approach is more general
and, as we argue, also more natural both in terms of its conceptual motivation and its range of
applicability to empirical networks. From a geometric perspective, the fundamental principle
that curvature characterizes types of spaces also applies here as we can distinguish and
classify particular classes of directed hypergraphs in terms of their curvature. A definion of
the Ollivier Ricci curvature of directed graphs was firstly proposed and investigated in [57]
where out-out directions for assigning measures are used. For that, however, one needs to
assume strong connectivity of the underlying directed graphs in order to find transportation
plans with finite cost, but this does not hold in many real directed networks. Therefore,
here, we work with in-out directions, which does not require such a strong assumption. The
resulting theory is rather different from that of [57]. The first extension of the notion of
Ollivier Ricci curvature to hypergraphs was proposed in [1], using a multi-marginal optimal
transport problem to define curvature. Because of that, the resulting curvature in the end is
an analogue of Riemannian scalar rather than Ricci curvature. Also, it does not directly apply
to directed hypergraphs. We therefore propose a notion of directed hypergraph curvature that
extends Ricci curvature rather than scalar curvature [13]. Since in our setting, hyperedges are
directed and each direction separates the vertices of the hyperedge into two classes, similar
to directed graphs, we consider a double marginal optimal transport problem. We study some
implications of our definition and then take a closer look at hypergraphs of constant Ricci
curvature. In [12, 36, 37], our notion of Ricci curvature for hypergraphs is systematically
applied to empirical networks, leading to insight not readily available through other methods
of network analysis. Specifically, we see that combination of the measures that we have
developed, can reveal the fundamental structural properties of specific reactions as well as
complex connectivity patterns in variety of real networks such as binary protein interaction
networks, transcriptional regulatory networks and metabolic networks. Finally, we show that
our developed geometric notions can nicely detect deviation of real networks from random
models and in particular those which are obtained by shuffling the hyperedges of our real
network.
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5 Ollivier Ricci curvature of directed
hypergraphs

In this chapter, after reviewing some basics about Riemannian-Ricci curvature as well as
Ollivier’s definition for graphs, we propose an Ollivier type Ricci curvature for directed
hypergraphs and explore some of its properties. In particular, we will see this curvature
notion can be used to characterize various classes of directed hypergraphs [13].

5.1 Preliminaries

Figure 5.1

Ricci curvature
In order to proceed, we first need to explain the geometric meaning
of Ricci curvature. Ricci curvature is a fundamental concept from
Riemannian Geometry (see for instance [32]) that more recently
has been extended to a discrete setting. For a Riemannian manifold
M of dimension N , Ricci curvature can be defined in several equiv-
alent ways. What is relevant for the extension to the discrete setting
is that it measures the local amount of non-flatness of the manifold
by comparing the distance between two small balls with the dis-
tance of their centers when these centers are sufficiently close to
each other. To be more precise, consider a unit tangent vector w at
a point x in a Riemannian manifold M and let ε, δ > 0 be smaller
than the injectivity radius of M . Suppose expx(.) : TxM −→ M

denotes the exponential map and y is the endpoint of expx δw and
hence at distance δ from x. Let Sx be the sphere of radius ε in
the tangent space at x (and hence expx Sx is the sphere of radius
ε around x in the manifold). Then if Sx is mapped to Sy using
parallel transport, the average distance between a point of expx Sx

and its image in expy Sy is

δ

(
1− ε2

2N
Ric (w,w) +O(ε3 + ε2δ)

)
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when (ε, δ) → 0. If balls are used instead of spheres, the scaling factor is ε2

2(N+2)
instead

of ε2

2N
[46]. This follows from standard Jacobi field estimates. These estimates involve the

sectional curvature, but summing over all directions orthogonal to the geodesic connecting
x and y results in a Ricci curvature term. Here, one should think of ε as being smaller
than δ, and O(ε3) then simply indicates a higher term, whereas O(ε2δ) is needed when the
Ricci curvature is not constant. In Riemannian geometry, one can then average the Ricci
curvatures of the directions at a point. This then yields the scalar curvature, which thus is a
quantity naturally associated to points. The scalar curvature is a much weaker geometric
invariant than the Ricci curvature. Returning to the latter, if balls in average are closer than
their centers (Fig5.1, a), Ricci curvature in the direction of xy is positive. If the manifold is
locally flat, Euclidian (Fig5.1, b), then the two distances coincide. Most manifolds, however,
are locally negatively curved (Fig5.1, c)[41].

This local characterization is the key property for defining Ricci curvature notions in
more general settings than smooth manifolds. In 2007, Ollivier defined a notion of Ricci
curvature, called Ollivier (coarse) Ricci curvature, on metric spaces equipped with a random
walk m; Recall that if (X, d) is a Polish metric space equipped with its Borel σ-algebra,
a random walk m on X is a family of probability measures {mx|x ∈ X} satisfying the
following conditions ([45]):

• The map x→ mx is measurable.

• Eachmx has finite first moment, i.e., for some (hence any) z ∈ X one has
∫
d(z, y)dmx(y) <

∞.

Also in the following definition, we let d(x, y) be the distance from x to y obtained from the
metric.

Definition 5.1.1. [45] Let (X, d) be a metric space with a random walk m, let x, y ∈ X be

two distinct points. The Ricci curvature of (X, d,m) in the direction (x, y) is

κ(x, y) := 1− W1(mx,my)

d(x, y)

where W1 is the 1-Wasserstein distance between mx and my on X:

W1(mx,my) := inf
E∈Π(mx,my)

∫
(x,y)∈X×X

d(x, y)dE(x, y)

where Π(mx,my) is the set of measures on X ×X whose first (second) marginal is mx (my)

(thus, each E(x, y) is a coupling between random walks projecting to mx and my) and their

support are finite discrete sets. Thus each coupling between mx and my can be represented

by a matrix and fining the optimal coupling is done by solving a linear programming.

Here instead of taking metric balls around two close enough points we consider the
Wasserstein distance (Transportation or Earthmover distance), between two probability
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measures mx and my corresponding to two random walks which are starting at x and y
respectively. When (X, d,m) is Riemannian manifold equipped with Riemannian volume
measure, as it is shown in [45], this notion coincides with the Riemannian Ricci curvature in
the direction of xy (up to some scaling factor).
In 2010 Lin et.al modified Ollivier’s definition on graphs to study the properties of the Ricci
curvature of general graphs. Specifically they presented some bounds for this curvature
on locally finite graphs and established the upper bounds for diameters and the number of
vertices in terms of Ollivier-Ricci curvature on graphs [39]. For a (locally finite) graph, the
two measures mx and my are discrete and their supports are finite. Namely for two input
(discrete) distributions on the graph we have:

mx =
n∑
i=1

aiδxi my =
m∑
j=1

bjδyj

and since the graph is locally finite, there are finite points in the support of these measures :
(xi)1≤i≤n, (yj)1≤j≤m

where each of these points might get different weights:
ai ≥ 0, bj ≥ 0.

n∑
i=1

ai =
m∑
j=1

bj = 1

Thus a coupling can be represented as the following matrix:

E(mx,my)
def
= {C ∈ Rn×m

+ : C1n = mx, C
T1m = my}

As an example, consider the green edge in following graph; this edge is a connection between
vertices x in the left and y in the right and we have two measures, coloured respectively by
red and blue, which are defined based on randomly jumping from x and y to their adjacent
vertices.

� •

•�

•

•

• • �

�

�

•

Figure 5.2
Here we consider unweighed graphs and as x has six adjacent vertices, each ai = 1/6 and
similarly each bj = 1/5 since y has five adjacent vertices. Therefore E(xi, yj) is the amount
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of mass that is moved from red square in xi to fill the blue hole in yj .
Liu and Jost [33] interpreted the notion of Ricci curvature of an edge as a control on
the amount of overlap between the neighborhoods of its involving vertices and obtained
curvature bounds on graphs in terms of local clustering coefficients, which is defined based
on the presence of triangles containing those vertices. More recently, in [1], the notion of
Ollivier-Ricci curvature was naturally extended to undirected hypergraphs. Recall that an
undirected hypergraph H = (V,E) consists of a set V of vertices and a multiset E of subsets
of V , called hyperedges (∀e ∈ E, |e| ≤ |V |). Therefore, as a generalization of edges in
graphs which connect two vertices, hyperedges represent connections between any number
of vertices. In [1], this leads to

Definition 5.1.2. Coarse Scalar Curvature For a collection of n points Xn := {x1, . . . , xn}
in a metric space (X, d) with random walk m := {mx|x ∈ X}, coarse scalar curvature of

Xn is defined as:

κ(Xn) := 1− W1(Xn)

c(x1, x2, . . . , xn)

W1(Xn) = inf
ν∈Π(mx,ν)

∑
W1(mx, ν)

c(x1, . . . , xn) = inf
z∈X

n∑
i=1

dX(xi, z)

If {x1, . . . , xn} are the vertices of a hypergraph connected by a hyperedge e, then the above

formula for scalar curvature is an extension for the edge Ricci curvature in an undirected

graph[33] (when n = 2 in every hyperedge).

In network analysis, and particularly for networks that are modelled as undirected graphs,
Ollivier Ricci curvature has proved itself as a very useful tool to determine clustering and
coherence in the network [33, 50], and since it is based on Markov chains, it is very well
suited for capturing diffusion and stochastic processes in the network. One can see this as a
motivation for the above definition of [1] on undirected hypergraphs, where multi-marginal
optimal transport was used. Since this is defined for points rather than for directions, from
our perspective, this should be considered as a version of scalar curvature, rather than of
Ricci curvature. However, the definition we shall present in the next section will be different.
Before going to our main formulation and results on Ollivier Ricci curvature of directed
hypergraphs, we need to be more familiar with the structure of directed graphs and some of
the main approaches that have been taken in the literature for defining some of analytical
and geometrical notions such as Laplacian and curvature on these settings.
Directed graphs are more difficult to analyse than undirected graphs as we do not have
a unique notion for some of the most basic definitions. For instance although we have a
unique and straightforward notion of connectedness in undirected (hyper) graphs, we have
two main connectivity notions for the directed setting, weakly-connectedness and strongly-
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connectedness; we call a directed (hyper)graph weakly-connected if the underlying directed
(hyper) graph is connected, namely there is a path between every two vertex of hypergraph.
On the other side, when there is a directed path between any vertex of directed (hyper) graph
to any other, it is strongly connected. Thus strongly-connectedness is much more restricted
than weakly-connectedness as every strongly-connected directed (hyper)graph is weakly-
connected but to make a strongly-connected directed (hyper)graph from a weakly-connected
one we might need to add so many directed (hyper)edges between the existing vertices.
Subsequently, there are two main approaches in the literature for defining Laplacian and
curvature notions for directed graphs; in the first approach we consider strongly- connected
directed graphs. Additionally assigned weights to directed edges are all non-negative. In
the contrary, in the second approach neither of these two assumptions have been assumed.
Each of these approaches has its own bountiful advantages; the first approach implicates that
the Perron measure (stationary distribution of Markov chain) exists and consequently we
can define a type of symmetric and non-negative Laplacian [8]. Also many of analytical
or geometrical results can be extended to the directed settings with proofs similar to their
undirected counterparts [47].

In the second approach however, as its presented by Bauer [5] for defining Laplacian
notions, the main motivation is dealing with real-word structures and developing some tools
which are useful for the analysis of complex networks. Developing such tools, is crucial
since many real networks, such as neural networks or chemical reaction networks, are far
from being strongly-connected. On the other side, cyclic graphs, which for instance are
important for inferring causality relation, are not strongly connected. This approach is what
we consider in the next section to define Olliver-Ricci curvature of directed hypergraphs.

5.2 Transport plans and curvature of directed hypergraphs

As already mentioned, similar to directed graphs, in directed hypergraphs, every hyperedge e
in E represents a directional relation between two non-empty subsets Ae (tail), Be (head) of
the vertex set V . In this chapter we often write A instead of Ae, and B instead of Be when
the hyperedge e is specified and fixed. Note that the sets Ae, Be and V can be equal, namely
when the hypergraph has just one hyperedge e and its tail set and head set coincide. However
if for a hyperedge e, Ae or Be is a proper subset of V , then since we consider non-empty
subsets of V , the other one should also be proper. Similarly, for any vertex x ∈ V , dinx is
the number of incoming hyperedges to x (those hyperedges which include x in their head
set), and doutx is the number of outgoing hyperedges from x (those hyperedges which have
x in their tail set). Also a directed path between the vertices in a directed hypergraph G is
an alternating sequence of distinct vertices and directed hyperedges (v1, e1, ....., vk, ek, vk+1)

such that for each i, vi and vi+1 are in the tail and head sets of ei respectively. If k ≥ 1

and v1 and vk+1 are the same vertices, the path is called a directed k-cycle. From now
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on we consider directed hypergraphs to be weakly connected, meaning that the underling
undirected hypergraph is connected.

Definition 5.2.1. Let H = (V,E) be an unweighted directed hypergraph and e ∈ E

be an arbitrary directed hyperedge such that A = {x1, . . . , xn} e−→ B = {y1, . . . , ym}
(n,m ≤ |V |). We define the Ollivier Ricci curvature of this hyperedge as

κ(e) := 1−W (µAin , µBout)

where the probability measures µAin (called mass) and µBout(called hole), are defined on V

as follows:

µAin =
∑n

i=1 µ
in
xi

where ∀1 ≤ i ≤ n and ∀z ∈ V (H)

µinxi(z) =



0 z = xi & dinxi 6= 0

1
n

z = xi & dinxi = 0∑
e′;xi∈Be′ , z∈Ae′

1

n× dinxi × |Ae′|
z 6= xi & z ∈ Ae′

0 otherwise
and likewise

µBout =
∑m

j=1 µ
out
yj

where ∀1 ≤ j ≤ m, z ∈ V (H):

µoutyj
(z) =



0 z = yj & doutyj
6= 0

1
m

z = yj & doutyj
= 0∑

e′;yj∈Ae′ , z∈Be′

1

m× doutyj
× |Be′ |

z 6= yj & z ∈ Be′

0 otherwise

and W (µAin , µBout) is the 1-Wasserstein distance between these two discrete measures

defined as follows:

W (µAin , µBout) = min
E∈Π(µAin ,µBout )

∑
u→A

∑
B→v

d(u, v)E(u, v)

where d(u, v) is the length of a shortest path from u to v and for a transport plan E , E(u, v)

represents the amount of mass moved from vertex u to vertex v and Π(µAin , µBout) is the set

of transport plans, that is, probability measures on V × V that have µAin and µBout as their

marginals. In other words, the minimum is taken over all couplings E between µAin and

µBout which satisfy

∑
u→A

E(u, v) =
m∑
j=1

µoutyj
(v) and

∑
B→v

E(u, v) =
n∑
i=1

µinxi(u)

and by Ain(u→ A) we mean the vertices u ∈ V with µAin(u) 6= 0. Similarly Bout(B → v)

refers to the vertices v ∈ V with µBout(v) 6= 0.
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Remark 5.2.2. Since we are working with directed objects, in this definition we had to

provide for the situation where a vertex in the tail does not have incoming connections, or

where a vertex in the head does not have any outgoing ones. In undirected networks, this is

not an issue, because then the hyperedge in question itself provides both.

We can construct for each directed hypergraph a corresponding directed graph. That
graph has the same set of vertices as the directed hypergraph and for each hyperedge, we
draw an edge from each vertex in its tail to every vertex in its head. Thus, a directed
hyperedge A = {x1, . . . , xn} e−→ B = {y1, . . . , ym} corresponds to a set with nm elements
of directed edges. Note, however, that there might be directed graphs that correspond to
more than one directed hypergraph.

Proposition 5.2.3. The curvature of a hyperedge e : A = {x1, . . . , xn} → B = {y1, . . . , ym}
is bounded from below by the minimum of the Ricci curvatures of directed edges in its corre-

sponding directed graph.

Proof. Let Eij be the optimal transport plan for the edge eij : xi → yj , i.e.

W (µinxi , µ
out
yj

) =
∑
u,v∈V

d(u, v)Eij(u, v)

Then

E :=
1

mn

n∑
i=1

m∑
j=1

Eij

has the marginal distributions µAin and µBout . Therefore :

W (µAin , µBout) ≤
∑
u,v∈V

d(u, v)E(u, v) =
1

mn

n∑
i=1

m∑
j=1

W (µinxi , µ
out
yj

) ≤ max
1≤i≤n
1≤j≤m

W (µinxi , µ
out
yj

)

and therefore κ(e) ≥ min 1≤i≤n
1≤j≤m

κ(eij).

However, the corresponding directed edges of a directed hyperedge do not fully represent
the geometric structure of that hyperedge as shown in the following

Remark 5.2.4. The maximum of the Ricci curvatures of directed edges corresponding to

a directed hyperedge is not necessarily an upper bound for its Ricci curvature, as one can

see from the example where the curvature of the hyperedge with red colour is one and the

curvature of all its four corresponding directed edges is −1/2.
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Figure 5.3

Lemma 5.2.5. For a directed hyperedge e : A→ B we have

W (µAin , µBout) ≥ sup

(∑
u→A

f(u)µAin(u)−
∑
B→v

f(v)µBout(v)

)

where the supremum is taken over all functions on V (H) with f(u)− f(v) ≤ d(u, v).

Proof. The proof is similar to the proof of proposition 2.10 in [57] where another measure
(out-out) for defining Ricci curvature of a directed edge is considered. Here we show that the
same result holds for directed hypergraphs by assuming other directions (in-out) for defining
measures. We have :∑

u→A

∑
B→v

d(u, v)E(u, v) ≥
∑
u→A

∑
B→v

(f(u)− f(v))E(u, v)

=
∑
u→A

f(u)
∑
B→v

E(u, v)−
∑
B→v

f(v)
∑
u→A

E(u, v)

thus:

=
∑
u→A

f(u)µAin(u)−
∑
B→v

f(v)µBout(v)

and since for all Lipschitz functions on hypergraphs this inequality holds and the left hand
side is independent of f , we obtain

W (µAin , µBout) ≥ sup

(∑
u→A

f(u)µAin(u)−
∑
B→v

f(v)µBout(v)

)
.

Remark 5.2.6. In general, we do not get equality in this lemma; equality holds for undirected

hypergraphs (see [57]), or more generally, if for every directed hyperedge e from Ae to

Be, we have a directed hyperedge e′ in the reverse direction, from Be to Ae (i.e, Ae′ = Be,

Be′ = Ae). In that case, all distances d(u, v) become symmetric.
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We now propose another formula for the curvature of a hyperedge which is more intuitive
and in some cases much easier to work with.

For defining the Ricci curvature of a hyperedge e, we use incoming hyperedges to its
tail set (Ae) and outgoing hyperedges from its head set (Be). If u and v are in the support of
µAin and µBout respectively, then d(u, v) ≤ 3. Recall that for any real valued function f on
V , the support of f (denoted by suppf ) is the set of all vertices in V where f is non-zero,
i.e., supp(f) = {u ∈ V | f(u) 6= 0}.
If µi is the amount of mass that is moved with distance i(i ≤ 3) in an optimal transport plan,
then we have:

3∑
i=0

µi = 1,
3∑
i=1

iµi = W. (5.1)

If κ = 0 then W = 1, and we thus have µ0 = µ2 + 2µ3. More generally, we obtain

Theorem 5.2.7. The curvature of a hyperedge is given by

κ = µ0 − µ2 − 2µ3. (5.2)

In fact, we could simply use (5.2) as a definition of Ricci curvature.The formula (5.2) for
the curvature of a directed hyperedge, also works for curvature of edges in undirected graphs.
As in the (undirected) graph case, µ0 represents the amount of mass which is not moved in
an optimal plan, i.e., the amount of the stable mass in directed 3-cycles (u→ xi → yj → u)

(where u is simultaneously in the support of µAin and µBout) or directed loops emerging from
any of the xis. Although µ1 (the mass moved with distance one, possibly through directed
quadrangles (u→ xi → yj → v, while u is directly connected to v, u→ v) does not appear
in the formula for the curvature, computing µ1 is an intermediate step for the computations
of µ2 and µ3 where µ2 is the amount of mass that should be moved with distance 2 (possibly
through directed pentagons including xi and yj) and µ3 is the amount of the mass that is
moved with distance 3 in an optimal plan.

Remark 5.2.8. While finding the general formula for µ1 (and µ2) may be difficult, any lower

bound for µ1 (after simply knowing the exact amount of µ0) helps us to derive some upper

bounds for W and therefore a lower bound for the curvature. Also the µi can differ between

different optimal transport plans, but equalities (5.1) and (5.2) will always hold.

We also point out that while optimal transport plans always exist in our finite setting, they

need not be unique.

Remark 5.2.9. Formula (5.2) for edges in undirected graphs simply implicates that:

i) κ is bounded above by 1 and from below by -2.

ii) we can relate the local shape of graphs with the presence of triangles, quadrangles

and pentagons.
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iii) By averaging over all Ricci curvatures of the edges connected to a point, we get a type

of scalar curvature at that point which is controlled by the local clustering coefficient

[33].

As an example, in the following figure, for computing the curvature of the green hy-
peredge which connects 3 vertices in its left(A) to 2 vertices in its right(B), separated by
dots, we assign masses (red bullets) and holes (empty squares) respectively to the incoming
neighbours of A and outgoing neighbours of B. Note that since for a vertex x in A (the
lowest vertex inA), dinx = 0, we put all its assigned mass at xwhich is equal to 1/3. Similarly
there is a vertex y in B such that douty = 0. Therefore we put its whole assigned measure at y
itself and it is equal to 1/2. Also for the other vertices in A (respectively B), their assigned
masses (holes) are divided between the vertices in the tails of incoming hyperedges to A
(the vertices in the heads of outgoing hyperedges from B) based on Definition 5.2.1. It is
straightforward to check that in (any) optimal transport plan, 1/12 of the mass need not be
moved. This is the amount of the mass which coincides with one of the holes. Also 1/3

of the mass at x is moved with distance one to the hole at y. 1/6 is moved with distance
two and the remained part is moved with distance three. Hence the curvature of the green
hyperedge is −11/12.

•
•

•

• •

•��
�

•
•

•

•
•

�

•
•

�•

Figure 5.4
Bounds for the curvature

For obtaining an upper bound for the curvature of a hyperedge we need to control µ0 which
corresponds to the stable mass at directed 3 cycles (triangles in the undirected graph case)
and those vertices which are in the intersection of A and B.

In what follows, we shall see that increasing the number of vertices in this intersection
will make the curvature more positive. Here, a directed hyperloop is a directed hyperedge
e : A = {x1, . . . , xn} → B = {y1, . . . , ym} for which A ∩ B is non-empty. Specifically
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where A ∩ B = A = B, we shall have κ(e) = 1. Directed k-cycles where k ≥ 4 do not
affect the curvature of directed hyperedges since they can not make short-cuts for moving
any of the masses to any of the holes.

Proposition 5.2.10. For a directed hyperedge e : A = {x1, . . . , xn} → B = {y1, . . . , ym}
we have ∑

u∈supp µAin (u)∪supp µBout

µAin(u) ∧ µBout(u) ≥ κ(e).

Where α ∧ β := min{α, β}.

Proof. Jost and Liu have established this theorem in undirected graphs (thorem 7 in [33]).
Here, we simply notice that the number of non-zero elements in this summation coincides
with the number of vertices u belonging to a directed 3-cycle (u→ xi → yj → u) or A∩B.
For other vertices u either of µAin(u) or µBout(u) is zero.
Also the equality holds when for a hyperedge e, all the masses coincide with all the holes
with the same size. For instance in isolated directed hyperloops when A ∩B = A = B both
sides of the above formula are equal to one. As another general example see Lemma 5.2.22.

As already mentioned in Remark 5.2.8 after computing µ0, any non-zero amount for
µ1 would give us an upper bound for W . For that, at least one incoming neighbour of A
should be at distance one from some outgoing neighbour of B. For example, when for the
hyperedge e, e : A = {x1, . . . , xn} → B = {y1, . . . , ym}, there is at least one hyperedge e′

from any yj to any xi (e′ : yj → xi) or/ and when there is at least one xi with dinxi = 0 and at
least one yj with doutyj

= 0, the required condition is sattisfied and there is at least one mass
which is in distance one from at least one hole and therefore we can present a transfer plan
(similar to that in Theorem 3 in [33]) to obtain a positive lower bound for µ1. Specifically, in
the same way that trees reach the smallest possible amount of curvature in undirected graphs,
here hyperedges in directed hypertrees get the lowest possible number.

Definition 5.2.11. A directed loopless hypergraph is a hypertree if

i) There is at most one directed path between any two vertices and

ii) It does not contain any directed cycle.

We note that although these two conditions are equivalent in undirected (hyper)graphs,
they do not coincide in the directed case.

Theorem 5.2.12. Let A = {x1, . . . , xn} and B = {y1, . . . , ym} be two subsets of vertices

V of a hypertree H with respectively n and m elements and A e−→ B be a hyperedge in this

hypertree. If k elements in A have no incoming hyperedge, namely #{xi ∈ A, dinxi = 0} = k

and k′ element in B have no outgoing hyperedge, i.e #{yj ∈ B, doutyj
= 0} = k′ , we have :

κ(e) = −2 + k
n

+ k′

m
.



54 5.2. Transport plans and curvature of directed hypergraphs

Proof. Note that since e is in a hypertree, according to the definition µ0 = 0. Hence in a
hypertree, the curvature of any hyperedge is non-positive (κ(e) ≤ 0). We shall propose a
transfer plan, which gives us an upper bound for W , and we will obtain a lower bound for
W based on a single Lipschitz function (defined on the support of µAin and µBout). We shall
see that these two bounds coincide.

First we move ( k
n
∧ k′

m
) of the mass from k xi’s to k′ yj’s with distance one. Then if

k
n
≥ k′

m
we move k

n
− k′

m
of the mass from xi’s with no incoming hyperedges to outgoing

neighbours of the yj’s with distance 2 and if k′

m
> k

n
we move k′

m
− k

n
of the mass at incoming

neighbours of xi’s to those yj’s with no outgoing hyperedges with distance 2. Then we move
the remaining part of the mass with distant 3. Therefore W ≤ 3− k

n
− k′

m
.

On the other hand, for all z in V (H) we define

f(z) =



3 ∃1 ≤ i ≤ n&∃e : z → xi

2 ∃1 ≤ i ≤ n&z = xi

1 ∃1 ≤ j ≤ m&z = yj

0 otherwise

It is straightforward to check that f is a Lipschitz function on A ∪ B ∪ suppµAin ∪
suppµBout , hence according to the theorem 3.5, we have

W (µAin , µBout) ≥ sup
∑
z→A

µAin(z)f(z)−
∑
B→z′

µBout(z′)f(z′)

≥ 3

(
1− k

n

)
+ 2

(
k

n

)
− 1× k′

m
− 0×

(
1− k′

m

)
= 3− k

n
− k′

m
.

and κ(e) = −2 +
k

n
+
k′

m
.

Proposition 5.2.13. If for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, dxini 6= 0 and dyoutj
6= 0 and there

is a bijective map g : supp µAin → supp µBout such that g(z) = z′ and d(z, z′) = 1 and

µAin(z) = µBout(z′) then κ(e) = 0.

Proof. By assumption, µ0 = 0 and the whole mass in any transport plan has to be moved
with distance at least one. Also we know that the bigger µ1, the lower the cost of the transport
between µAin and µBout . But according to the assumption there is a direct (length 1) path
between every pair (z, z′) and it’s corresponding hole at z′ can be filled with mass at z (no
further mass remains at z). Therefore µ1 = 1, W = 1 and κ = 0

Remark 5.2.14. In the above proposition, neither of the assumptions is necessary to have

κ = 0. In such cases a more subtle transfer plan is needed. For instance in the following
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hypergraphs, the red hyperedge has curvature zero.

• •

• •

• •

Figure 5.5
Remark 5.2.15. With the same assumptions as in the previous theorem, but changing the

assumption d(z, z′) = 1 to d(z, z′) = 2 and assuming there is no directed quadrangle

(u→ xi → yj → v, u→ v), the curvature will become negative (−1). Since in this case the

distance between any mass and it’s corresponding hole is 2 and no hole can be filled with a

mass at lower distance.

Extention and Reduction

• Removing vertices from a hyperedge (Reduction) In this part we want to investigate
what happens to the curvature of an edge e : A = {x1, . . . , xn} → B = {y1, . . . , ym}
if we remove a number (l, l′) of vertices from A (l ≤ n) and/or from B (l′ ≤ m).
Curvature depends on the connections between elements of supp µAin and supp µBout

and removing different vertices from A(and/orB) might have different effects on the
curvature. However since the amount of the masses (size of holes) which is assigned
to any xi(and yj) is already determined and is equal to respectively 1/n (and 1/m),
we can give a bound for such changes.

Proposition 5.2.16. Let e : A = {x1, . . . , xn} → B = {y1, . . . , ym}. By removing a

vertex xi from A we get e′ : A− {xi} → B = {y1, . . . , ym} and we have

|κ(e′)− κ(e)| ≤ 3

n
.

Similarly, by removing l vertices from A (l < n) we have

|κ(e′)− κ(e)| ≤ 3l

n

Proof. The two bounds for the curvature of e′ arise from two extreme scenarios which
might happen while removing vertex xi (or l vertices) from A.

1. If the whole mass which is assigned to xi is in directed loops or directed 3-cycles
including xi and any of yj s, and after removing xi, its corresponding mass has
to be moved with distance 3 in an optimal plan, then

κ(e) = µ0 − µ2 − 2µ3

κ(e′) =

(
µ0 −

1

n

)
− µ2 − 2

(
µ3 +

1

n

)
.
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2. If the whole mass around xi was transported with distance 3 in an optimal plan
and after removing this vertex, the corresponding mass is in the place of directed
loops or directed 3-cycles including vertices of A− {xi} and B, then

κ(e′) =

(
µ0 +

1

n

)
− µ2 − 2

(
µ3 −

1

n

)
= κ(e) +

3

n
.

Therefore we have
κ(e) +

3

n
≥ κ(e′) ≥ κ(e)− 3

n
.

The same argument works for removing l vertices from A and the proof is complete.

Analogously, by removing l′ vertices from B (l′ < m) and using the same argument
as before for the holes assigned to B, we have

|κ(e′)− κ(e)| ≤ 3l′

m
.

Therefore :

Proposition 5.2.17. By removing l vertices from the set A and l′ vertices from B

(e : A → B) the following relation holds between the curvature of the resulting

hyperedge (e′) and the old one :

|κ(e′)− κ(e)| ≤ 3

(
l

n
+
l′

m

)
∧ 3

• Adding vertices to a hyperedge (Extension) Here we want to obtain bounds for the
curvature of a hyperedge obtained by adding some new vertices to the set A and/or to
B and possibly adding new connections between them.

Proposition 5.2.18. Let e : A = {x1, . . . , xn} → B = {y1, . . . , ym}. By adding l

vertices to A and l′ vertices to B we get a hyperedge e′ : A′ = {x1, . . . , xn+l} →
B′ = {y1, . . . , ym+l′} with

|κ(e′)− κ(e)| ≤ 3

(
l

l + n
+

l′

l′ +m

)
∧ 3

Proof. Here, since to each xi in A′ we assign 1
l+n

of the total mass (= 1) and 1
l′+m

of the total hole (= 1) is assigned to each yj in B′, by considering the two extreme
scenarios as before we have:

µ0(e)→ µ0(e′)±
(

l

l + n
+

l′

l′ +m

)
∧ 1
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and therefore:
µ3(e)→ µ3(e′)∓

(
l

l + n
+

l′

l′ +m

)
∧ 1

and according to the formula 5.2 the proof is complete.

Hypergraphs with constant Ricci curvature
We want to construct examples of directed hypergraphs in which the curvature of the
hyperedges is constant (κ = 1, κ = 0, κ = −2). In the case of κ = 0 these (hyper)graphs
are called Ricci flat. For brevity, we also call the others Ricci 1 and Ricci −2 directed
hypergraphs.

• Ricci 1 directed hypergraphs

Theorem 5.2.19. The vertices of a Ricci 1 directed loopless hypergraph which for

every hyperedge e : {x1, . . . , xn} → {y1, . . . , ym} does not have any hyperedge in

the reverse direction (6 ∃e′ : yj → xi), can be divided into 3 subsets A,B,C such

that A → B → C → A. This means that some (not necessarily all) vertices in A

are connected to vertices in B via a non-empty collection of directed hyperedges and

similarly for the other connections as in the following diagram.

A B

C

Figure 5.6

Proof. Consider a hyperedge e1 : A1 → B1. Since κ(e1) = 1

supp µAin
1

= supp µBout
1

=: C1 and ∀z ∈ C1 : µAin
1

(z) = µBout
1

(z) (5.3)

So the diagram related to e1 looks like

A1

C1

B1
e1

E3 E2

Figure 5.7

where E2 and E3 represent collections of directed hyperedges. Now, if there is no
outgoing hyperedge from C1 other than elements in E3 and there is no incoming
hyperedge to C1 other than elements of E2 and there is no outgoing hyperedge other
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than e1 from A1 and there is no incoming hyperedge to B1 other than e1, then A1, B1

and C1 would be the desired partitioning set; Since the hypehgraph is loopless, the
intersection of any two of these sets is empty and because it is weakly connected the
union of the vertices is the whole vertices set, V(H). If any of the above conditions
does not hold, we can extend A1 and/or B1 and/or C1 as follows:
For instance, let there be at least one hyperedge going out of A1 other than e1; we call
it eOA1 : A1 → B11 and we put B2 = B1 ∪B11 where B1 and B11 are not necessarily
disjoint. Since κ(eOA1) = 1, so C2 := supp µBout

11
= supp µAin

1
⊇ C1. We next

consider edges in E3; If any of them has an endpoint outside A1 and if the set of
endpoints of E3 is denoted by A2, then A1 ⊆ A2. By repeating this process we obtain
an increasing sequence of Ai’s, Bj’s and Ck’s. We put A = ∪Ai, B = ∪Bj and
C = ∪Ck. Obviously, based on the process, elements in A are connected to B, B to
C and C to A and these 3 sets are our desired partitioning.

A1

C1

B1

B11

C2

A2

B2

e1

E3 E2

Figure 5.8

Remark 5.2.20. The converse of this theorem is not necessarily true. For instance,

the following hypergraph is not Ricci 1 although there is such a partitioning for the

set of vertices of this hypergraph:

•
•
•

•
•

•

C

A B

Figure 5.9

Instead we have the following:

Proposition 5.2.21. If in the corresponding directed graph of a directed (loopless)

hypergraph, the set of vertices can be partitioned into 3 different sets A,B,C such

that A → B → C → A and all of the elements in A are connected (via directed
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edges) to all the elements in B and similarly for the other arrows as above, then the

original directed hypergraph is Ricci 1.

Before proving this Proposition we state the next Lemma.

Lemma 5.2.22. A directed (loopless) graph is Ricci 1 iff it’s set of vertices can be

partitioned into 3 sets A,B,C such that A → B → C → A and all the vertices in

A are connected to all the vertices in B and similarly for the other arrows, as in the

digram in previous theorem.

Proof. ⇒The proof is similar to that of Theorem 5.2.19. Here, in addition all the
vertices of A should be connected to all the vertices of B and so on. The reason is
that here, for every edge e : x→ y, dinx = douty, and the condition that supp µxin =

supp µyout implies that the tails of incoming edges to x coincide with the heads of
outgoing edges from y. Hence in the resulted partition every vertex in A is connected
to every vertex in B and similarly for the connections between other sets the same
situation holds.

⇐ For proving that every edge has curvature 1, for every edge e : x → y, we
should have dinx = douty and supp µxin = supp µyout and for every z in this support
µxin(z) = µyout(z). Since in the partition all the vertices in A are connected to all the
vertices of B and so on, for every edge the needed conditions obviously hold and the
directed graph is Ricci 1.

Proof of Proposition 5.2.21. Since we have such a partition for the vertices of the
corresponding directed graph of this hypergraph, according to the previous Lemma,
the curvature of all the corresponding edges of each directed hyperedge is 1. Therefore
their minimum also has curvature 1. On the other hand, according to Proposition 5.2.3

κ(every hyperedge) ≥ minκ(edges in the corresponding directed graph)

So for all hyperedges e, κ(e) = 1 and the hypergraph is Ricci 1.

Remark 5.2.23. It might be possible that the directed hypergraph is Ricci 1, but as

shown in the following example, its corresponding directed graph is not.

•
•

•

•
•

•
•

•

•
•

Figure 5.10



60 5.2. Transport plans and curvature of directed hypergraphs

Corollary 5.2.24. If in a directed (loopless) hypergraph, the set of vertices can be

partitioned into 3 different sets A,B,C such that A → B → C → A and all of the

elements in A are connected (via directed hyperedges) to all the elements in B and

similarly for the other arrows, the directed hypergraph is Ricci 1. Here any connection

inside any of these sets might violate the constant curvature 1 for some hyperedges.

For instance, in the following directed graph, the curvature of all the edges is 1 but the

red edge has curvature −1 .

• C

•

• •
A

B

Figure 5.11

• Ricci flat directed hypergraphs

Theorem 5.2.25. If the vertices of a directed hypergraph can be divided, as in the

left diagram, into two sets A (source) and B (sink) such that all the vertices in A

have outgoing hyperedges and no incoming hyperedges and all the vertices of B have

incoming hyperedges and no outgoing hyperedges, then the hypergraph is Ricci flat .

Also If the set of vertices can be divided into 3 sets, A, B, C such that all the vertices

in these sets are connected to the vertices of the other sets as indicated in the right

diagram, then the hypergraph is Ricci flat.

A B A B

C

Figure 5.12

Proof. Based on the construction, for the two set partitioning, for every hyperedge,
the masses are in the source set (A) which is at distance one from the holes which
are in the sink set (B). So µ1 is equal to 1 and the hypergraph is Ricci flat . For the
other case, since we are assuming that all the vertices of A are connected to all the
vertices of B and similarly for other connections the same condition holds, for every
hyperedge e : A → B, the distance between any incoming neighbour of A to any
outgoing neighbour of B is one. So µ1 is equal to 1 (and obviously by construction
µ0 = 0). Therefore the hypergraph is Ricci flat .
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Remark 5.2.26. The convese of the previous theorem is not necessarily true. However,

If in a Ricci flat directed hypergraph for every directed hyperedge e there is no

incoming hyperedge to its tail set and there is no outgoing hyperedge from its head set,

then the set of vertices in this directed hypergraph can be partitioned into two sets A

and B as above. Since we put all the tail sets of all of directed hyperedges in set A

and all the head sets of all of directed hyperedges in set B

In the above theorem, for 3-set partitioning, in contrast to the 2-set partitioning, the
sets are partitioned into source, saddle and sink sets. The vertices in a saddle have
both incoming and outgoing hyperedges. Also similar to the Ricci 1 case, connections
inside any of these 3 sets might violate constant curvature along different hyperedges.
As the last case, in the following part we introduce a class of directed hypergraphs
with the most negative curvature.

Remark 5.2.27. Examples of Ricci flat directed hypergraphs can be constructed

in which the set of their vertices is partitioned into 3 sets, but not all the above

connections are present. In these hypergraphs, as before the presence of internal

hyperedges (Likewise, connections inside each of these sets) might violate the flatnesses

as can be seen in the next figure.

•
•

•

•
•

Figure 5.13

• Ricci negative (−2) directed hypergraphs

Proposition 5.2.28. If the set of vertices of a directed hypergraph can be divided into 4

sets, A ,B , C and D such that all the vertices in these sets are connected to the vertices

of the other sets as indicated, then the hypergraph is Ricci −2 . The presence of internal

hyperedges (connections inside each of these sets ) might violate constant curvature along

different hyperedges.

A B

CD

Figure 5.14
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Proof. Here for every hyperedge e : A→ B, the distance between any incoming neighbour
of A to any outgoing neighbour of B is 3. Therefore all µi = 0, except µ3 = 1, and every
hyperedge has curvature −2.

Remark 5.2.29. Although we have presented some general examples of directed Ricci flat

and −2 hypergraphs, we still cannot classify them. Also playing with (5.2) and considering

different values of the µis, we can obtain non-negative, negative and non-positive curvatures

for hyperedges, and possibly some Ricci constant hypergraphs.

We can extend our constructions to weighted directed hypergraphs where the vertices
and hyperedges may both carry weights. The vertices may carry different weights depending
on the hyperedges they are involved in (This can be represented by a vector of the dimension
of the hyperedge set with non-negative components. Here, zero means the corresponding
hyperedge does not involve that vertex). For a specified hyperedge whose curvature we want
to measure, the weights of its vertices need to be fixed, of course. In this case we denote the
vertex and hyperedge weights by wv and we respectively.

Definition 5.2.30.
κ(e) := 1−W (µAin , µBout)

where the probability measures µAin (called mass) and µBout(called hole), are defined on

V as follows: Let H = (V,E) be a weighed directed hypergraph and e ∈ E an arbitrary

directed hyperedge such that A = {x1, . . . , xn} e−→ B = {y1, . . . , ym} (n,m ≤ |V |). We

define the Ricci curvature of this hyperedge as

κ(e) := 1−W (µAin , µBout)

where the probability measures µAin and µBout are defined on V as follows:

µAin =
∑n

i=1 µ
in
xi
quad∀1 ≤ i ≤ n and ∀z ∈ V (H)

and µinxi(z) is :

0 z = xi & dinxi 6= 0
wxi∑n
i=1 wxi

z = xi & dinxi = 0∑
e′;z∈Ae′ , xi∈Be′

wxi∑
xj∈A wxj

× we′∑
e we:z→A

× wz∑
z∈Ae′

wz
z 6= xi & z ∈ Ae′

0 otherwise

Similarly,

µBout =
∑m

j=1 µ
out
yj

where ∀1 ≤ j ≤ m, z ∈ V (H):

where µoutyj
(z) is:
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0 z = yj & doutyj
6= 0

wyj∑
yi∈B wyi

z = yj & doutyj
= 0∑

e′;yj∈Ae′ , z∈Be′

wyj∑
yi∈B wyi

× we′∑
e we:B→z

× wz∑
z∈Be′

wz
z 6= yj & z ∈ Be′

0 otherwise

Remark 5.2.31. In weighted directed graphs, the Proposition 5.2.21 does not hold because,

due to the weights we might have masses which coincide with holes of different sizes and

therefore it violates Ricci 1 condition. For instance if we consider two directed 3-cycles

which have one edge in common, by considering non-equal weights assigned to two other

edges in the two cycles, the curvature of the common edge is not one although we have a 3

set partitioning in which all the required connections exist.

Further differences between directed and undirected (hyper)graphs

• In directed (hyper)graphs, lower curvature bounds no longer control random
walks.
Also since the Wasserstein distance no longer needs to satisfy a triangle inequality, we
cannot define curvatures for vertex sets that are not connected by a hyperedge. These
problems come essentially from the fact that we consider incoming edges at the tail A
and outgoing edges at the head B of a hyperedge. In principle, we could of course also
consider in-in or out-out relationships instead, but then, we might not always be able to
move our masses, and so, curvatures might then become−∞. This can only be avoided
if we assume some strong connectedness condition in the directed case (see for in-
stance [57]). Such a condition, however, is typically not satisfied in empirical data sets.

• The curvature of a directed (hyper)graph might be rather different from that
of the underlying undirected (hyper)graph.
For instance, in an undirected graph, every edge in a quadrangle has curvature zero.
But a directed k-cycle where k ≥ 4 is negatively curved.

• Directed Triangles
In undirected graphs, it has been proven that the local clustering coefficient at each
vertex can control the scalar curvature of any vertex which by definition is obtained
by averaging over the Ricci curvature of all the edges connecting to that vertex (see
Corollary 1 in [33]). In the undirected graph case, the local clustering coefficient
is based on the number of triangles containing that vertex and its neighbours. In
the directed case, after fixing the direction of every hyperedge, we encounter with 4
different types of triangles which share the property of having a directed edge that
goes out from A and enters into the set B. Therefore in contrast to the undirected
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graph case, not all directed triangles but only some of them affect the curvature; in
fact, for µ0 the presence of directed 3-cycles containing the vertices of A and B and
of vertices u where u → xi → yj → u, u ∈ Ain(u → A) and u ∈ Bout(B → u)

increases the curvature of the corresponding hyperedge since they directly increase
the amount of µ0.

In contrast, those directed triangles which contain vertices of A and B and u in such a
way that xi → u, xi → yj → u, u ∈ Aout(A → u) and u ∈ Bout(B → u) and those
containing A and B and u such that u → xi → yj, u → yj, u ∈ Ain(u → A), u ∈
Bin(u → B) might affect on the amount of µ2 and thereby can make the curvature
less negative. The last type of directed triangles are those which include vertices of
A and B, outgoing vertices of A and incoming vertices to the set B, but they do not
affect any of the µis and therefore the curvature. For instance in the following directed
graph, for computing the curvature of the green edge, the triangle consisting of the
red and green edges affects µ0. Both triangles including orange-green and blue-green
edges have an effect on µ2 and the curvature is not affected by the presence of the
triangle of the pink-green edges.

• •

•
•

•
•

•

•

Figure 5.15



6 Networks can be curved!

As already mentioned, in traditional analysis of complex networks, we were modelling
complex networks by (di)graphs and were using vertex based measures to determine the
structure (local and global) of these networks, measures such as node degree and (local)
clustering coefficient. However, in the modern analysis, we take higher order interactions
into account based on modelling via (di)hypergraphs and simplicial complexes and we are
trying to develop (hyper)edge (or simplex) based measures with the help of ideas originated
from Rimannian smooth settings for probing local or global structures. This paradigm is
obviously fundamental for the analysis of empirical networks, be they from the biological
sciences or other domains. In this last chapter we show that Ricci curvature and in particular
what we developed in previous chapter can be used as a very powerful tool to capture some
important structures in variety of complex networks.

6.1 Preliminaries

In recent years, alongside Ollivier Ricci curvature, another type of Ricci curvature, origi-
naly defiend by Forman in 2003, has been used for analysing complex network modelled
as directed and undirected graphs. Forman defined his notion of Ricci curvature for cell
complexes based on totally different ideas coming from Riemannian Geometry[26]. While
Forman’s definition applies to general CW-complexes, here we recall it for simplicial com-
plexes. Forman defines functions :

Fp : {p− simplices} −→ R

by putting, for a p-simplex α,

Fp(α) := ]{(p+ 1)-simplices β > α}+ ]{(p− 1)-simplices γ < α}
− ]{parallel neighbors of α},

65
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where β > α means that the p-simplex α is contained in the boundary of the (p+ 1)-simplex
β, and analogously, γ < α means that the (p− 1)-simplex γ is contained in the boundary
of α; a parallel neighbour of the p-simplex α is another simplex α′ of the same dimension
that is disjoint from α, but either contained in the boundary of some (p + 1)-simplex that
also contains α in its boundary or contain some (p− 1)-simplex in its boundary that is also
contained in the boundary of α, but not both.
Recently, Leal et.al generalised this notion to both undirected and directed hypergraphs [38].
Here we recall this definition for the special case of directed hypergraphs which currently
are vastly used for modelling many biochemical networks. Consider we have a directed
hypergraph, denoted by a coupleH = (V,E) that V is a set of vertices andE a set of ordered
pairs of subsets of V called hyperedges. Given a hyperedge e : A = {x1, . . . , xn} → B =

{y1, . . . , ym} in E, where A and B are two non-empty subsets of V , respectively called the
tail and the head of e, Forman-Ricci curvature of e is defined as follows:

F (e) := |A|+ |B| −
∑
xi∈A

in-deg(xi)−
∑
yj∈B

out-deg(yj) (6.1)

where the in(out)-degree of a vertex xi(yj) is the number of hyperedges that have xi(yj) as
part of its head (tail).

In fact, in [38], different types of Forman Ricci curvature of a directed hyperedge have
been introduced. Here we use only the version in (6.1) to be able to compare it with the
other notion of Ricci curvature, namely Ollivier, for a given hyperedge.

6.2 Why Ricci curvature?

In the past few years, both Ollivier-Ricci and Forman-Ricci curvatures have been extensively
used for analysing variety of structures and networks. For the case of graphs it has been
shown that these curvature notions shed light on different aspects of network structure and
behaviour. Moreover applying these tools to a wide range of both model and real-world
graph-networks already shows that the two discretizations of Ricci curvature are highly
correlated in many networks that are modelled as graphs [50]. More importantly, to name
a few, the two curvature notions have been used for differentiating cancer networks [51],
characterizing the structure of financial systems [49] and even to infer COVID-19 epidemic
network fragility and systemic risk [11]. Here we extend the utility of these two popular
notions of Ricci curvature, introduced in previous section (and in [13]) by us and in [38] by
Leal et.al, to the more general and complex case of directed hypergraphs and in particular
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real hypernetworks. Specifically we show Ollivier-Ricci curvature notion that we developed,
is a powerful tool for analysing local structures of complex networks which are faithfully
modelled as directed hypergraphs, networks such as chemical reactions.

• Forman and Ollivier Ricci curvatures are complementary tools for the local
identification and analysis of connectivity motif and patterns.

Figure 6.1
We discuss signs and values of F and O for the red hyperedges of the nine directed
hypergraphs presented in the above diagram, based on the connections of their tails
and heads; when we go from left to right, as we are changing some of the shortcrust for
moving masses to holes, Ollivier-Ricci curvature is decreasing and specifically its sign
changes while the sign of F is fixed. As we see in the left column, triangles are present
as the best type of short-cuts (where some masses and holes coincide) and in the middle
column we have quadrangles which are substituted with pentagons in the right columns
where distances between each mass and each hole of e is two. On the other hand, when
we move vertically in the plot, the F sign changes as we increase the number of incom-
ing hyperedges to the set A and outgoing hyperedges from the set B while the sign of
O is fixed. In the diagonal, directed hyperedges have the same sign for both curvatures.
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• Geometry of Hyperloops.
As already defined, a directed hyperloop in a directed hypergraph is a directed hyper-
edge e in which its tail A and head B have non-empty intersection.

Figure 6.2

In the above figure, we are concerning about Forman-Ricci and Ollivier-Ricci curva-
tures of the green hyperedges and their tail and head are respectively represented by
red and blue ellipse.
Base on our definition, the green hyperedges in the left and middle columns are hyper-
loops while in the right columns we have no hyperloops.
When in a hyperedge e, the A and B coincide and furthermore the hypereloop is iso-
lated, as shown in the top left hyperloop, F (e) = 0 while O(e) = 1. If the hyperedge
is not isolated, both curvature notions might change. If we move down in columns, we
see that both F (e) and O(e) decrease, as the result of the incoming neighbours added
to the tail of e. On the other side when we move from left to right horizontally in each
row, Forman-Ricci curvature of the green hyperedges increases while Ollivier-Ricci
curvature decreases.
For instance in the first row the amount of Ollivier-Ricci curvatures are 1, 1/2 and 0
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respectively from left to right while Forman-Ricci curvatures are respectively 0, 2 and
4.

• Detecting local/global important structures such as clustering, sparsity, bottle-
neck or redundant reactions.
One of the best examples of complex networks that can be modelled by directed
hypergraphs are metabolic networks. Each chemical reaction can be represented
faithfully by a directed hyperedge e : A → B, where A and B are respectively the
set of educts and the set of products of the reaction. Here, we use our geometric tool,
Ollivier Ricci curvature, to investigate the structure of the directed hypergraph that
represents the E. coli metabolic hypernetwork. In particular, we present the curvature
distribution fingerprints of Ollivier-Ricci curvature for this network.The metabolism of
this bacterium, reported in [48] (K-12 (iJR904GSM/GPR)), is modelled as a directed
hypergraph where vertices represent chemical substances (metabolites) and hyper-
edges represent metabolic reactions. There are 625 vertices (metabolites, |V | = 625)
and 1176 hyperedges (chemical reactions, |E| = 1, 176). It has been observed that in
the metabolic network of E. coli, (and in general in the whole Chemical Space [40]),
90% of chemical reactions have at most three reactants and three products. On the
other hand when considering the number of incoming neighbours of reactants and
outgoing neighbours of products for every reaction, frequencies are of the order of
hundreds and, for some reactions, almost the whole set of metabolites, as shown in the
following diagram.

Figure 6.3
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In networks that are modelled by undirected graphs, one very main task is to quan-
tify the amount of clustering around a vertex. There we use measures such as local
clustering coefficient to determine the density of triangles including each vertex. As
mentioned before, local clustering coefficient of a vertex in an undirected graph is
directly related to the scalar curvature at a vertex where the scalar curvature is obtained
by taking the average of Ollivier Ricci curvatures of the edges including that vertex.
However, when it comes to directed structures and edge-based measures, determining
the amount of overlap between adjacent neighbourhoods becomes important. The
question that arises is that how close the neighbourhoods of sets A and B are in such
structures? As we saw, Ollivier Ricci curvature is one main tool for quantifying close-
ness of neighbourhoods and in particular in real networks such as metabolic reactions
we are interested in measuring closeness based on the distance between masses and
holes of a reaction. The Ollivier-Ricci curvature distribution in the next plot shows
that in the metabolic network of E. coli most masses and holes are at distance less
than 3, since the vast majority have curvature greater than -0.5. Also less than 10%
of incoming and outgoing neighbours are at distance 3. Only four reactions have
curvature -2, which shows that their masses are at distance three from their holes.

Figure 6.4
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• Shuffling of metabolic network of E.coli can be nicely detected by both Ollivier
and Forman Ricci curvatures.

Figure 6.5
Another very usual framework in analysing complex networks is to compare them

with the randomly generated models. Specifically we can shuffle hyperedges of a directed
hypergraph. As in the shuffling process degree sequence and size of hyperedges are stable,
the shuffled network is very close to the original case and therefore its very desirable to look
for measures or tools that can detect the shuffling process; in the shuffling experiment, we
start with the metabolic network M and end up with a directed hypergraph S of the same
size (distributions of tail and head sizes are fixed) and with the same degree sequence. As
we see in the above figure, the distributions of shuffled metabolic network clearly deviates
from the original network of metabolic of E.coli and thus this confirms that our notion of
curvature detect differences that the degree sequence and size of hyperdges can not. Also as
presented in [37], the same principle works when we consider distribution of Forman-Ricci
curvature for both metabolic network of E.coli as well as its corresponding shuffled network.

Remark 6.2.1. In [37], we introduce a random model of directed hypergraphs, a hypergraph

version of the Erdös-Rényi (ER) model, and explore the distribution of both Forman and

Ollivier Ricci curvatures. There, we have shown that the distributions of both Forman and

Ollivier Ricci curvatures for E.coli are very different from those of random hypergraphs.

Also as its shown in [38], frequent values of Forman-Ricci curvatures help us to distinguish

bottle neck and redundant reactions in the metabolic network.

Remark 6.2.2. In [12], we have summarized the relation-based measures, Ollivier [13].
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and Forman [38] Ricci curvatures , both for (di) graphs, that being the simplest case, and

for (directed) hypergraphs; Specifically, we have analysed the distribution of the two types

of Ricci-curvatures [13, 38] for binary protein interaction networks in human and fission

yeast which are modelled as undirected graph; we see that the distribution of curvature

values can point us to biologically relevant properties of the interaction statistics in the

PPI networks of different species. To illustrate an application to directed networks, we

have studied the transcriptional regulatory network (TRN) of an important human pathogen.

Lastly as a network modelled as directed hypergraph, we have studied another metabolic

network, metabolic network of Mycobacterium tuberculosis H37Rv; in particular, we see

that combination of the two geometric measures that have been mentioned, can reveal the

fundamental structural properties of specific reactions inside the metabolic network. Both

evaluating the statistical distributions of these quantities and comparing them for different

networks, and analysing those reactions that produce particularly prominent values for them

in more detail should yield deeper insight into the structure of metabolic networks.
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