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Abstract

Consciousness Level Assessment in Completely Locked-in
Syndrome Patients using Soft Clustering

Brain-computer interfaces (BCIs) are very convenient tools to assess locked-in (LIS) and com-
pletely locked-in state (CLIS) patients’ hidden states of consciousness. For the time being, there
is no ground-truth data in respect to these states for above-mentioned patients. This lack of gold
standard makes this problem particularly challenging. In addition to consciousness assessment,
BCIs also provide them with a communication device that does not require the presence of
motor responses, which they are lacking. Communication plays an important role in the pa-
tients’ quality of life and prognosis. Significant progress have been made to provide them with
EEG-based BCIs in particular. Nonetheless, the majority of existing studies directly dive into
the communication part without assessing if the patient is even conscious. Additionally, the
few studies that do essentially use evoked brain potentials, mostly the P300, that necessitates
the patient’s voluntary and active participation to be elicited. Patients are easily fatigued, and
would consequently be less successful during the main communication task. Furthermore,
when the consciousness states are determined using resting state data, only one or two features
were used.

In this thesis, different sets of EEG features are used to assess the consciousness level of
CLIS patients using resting-state data. This is done as a preliminary step that needed to be
succeeded in order to engage to the next step, communication with the patient. In other words,
the "conversation" is initiated only if the patient is sufficiently conscious. This variety of EEG
features is utilised to increase the probability of correctly estimating the patients’ consciousness
states. Indeed, each of them captures a particular signal attribute, and combining them would
allow the collection of different hidden characteristics that could have not been obtained from a
single feature. Furthermore, the proposed method should allow to determine if communication
shall be initiated at a specific time with the patient.

The EEG features used are frequency-based, complexity related and connectivity metrics.
Besides, instead of analysing results from individual channels or specific brain regions, the
global activity of the brain is assessed. The estimated consciousness levels are then obtained
by applying two different soft-clustering analysis methods, namely Fuzzy c-means (FCM) and
Gaussian Mixture Models (GMM), to the individual features and ensembling their results using
their average or their product. The proposed approach is first applied to EEG data recorded
from patients with unresponsive wakefulness syndrome (UWS) and minimally conscious state
(MCS) (patients with disorders of consciousness (DoC)) to evaluate its performance. It is
subsequently applied to data from one CLIS patient that is unique in its kind because it
contains a time frame during which the experimenters affirmed that he was conscious. Finally,
it is used to estimate the levels of consciousness of nine other CLIS patients. The obtained
results revealed that the presented approach was able to take into account the variations of
the different features and deduce a unique output taking into consideration the individual
features contributions. Some of them performed better than others, which is not surprising
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since each person is different. It was also able to draw very accurate estimations of the level of
consciousness under specific conditions.

The approach presented in this thesis provides an additional tool for diagnosis to the medical
staff. Furthermore, when implemented online, it would enable to determine the optimal time
to engage in communication with CLIS patients. Moreover, it could possibly be used to predict
patients’ cognitive decline and/or death.
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1 Introduction

The beginning is the most important part
of the work.

Plato

We wake up every morning and go to sleep every night. During the time we are up, we
experience things: we can see, hear, smell, taste or sense things that are around us, we can feel
hungry or thirsty. We can also be actively engaging in a task such as reading a book, or passively
listening to some music. Consciousness comprises all these experiences and also the awareness
that we are doing something (reading the book, for example). A relatively simple definition
of what consciousness means is given by Posner and Plum in [Pos+07]: “Consciousness is
the state of full awareness of the self and one’s relationship to the environment”. In normal
circumstances, it begins in the morning when we wake up and lasts until we fall asleep again,
in which case we become unconscious [Koc04].

According to [Gos+11], consciousness is characterised by two components: arousal, which is
the level of consciousness, and awareness representing the content of the conscious experience.
It originates from the brain and is usually demonstrated by motor activity [Koc04; GIM18].
The ancient Greeks already recognised that an intact brain is indispensable for a normal con-
sciousness [Pos+07]. Therefore, a traumatic brain injury1 (TBI) generates altered states of
consciousness on one hand, but on the other hand it can also induce covert conscious states
in which no purposeful movement from a subject can be observed although consciousness is
present [LCERDM02; GIM18; Lau+05]. Typically, arousal and awareness are positively corre-
lated with one another. When this relationship is disrupted, an altered state of consciousness
also known as disorder of consciousness (DoC) occurs [Gos+11]. There are different types of
disorders of consciousness: coma, Unresponsive Wakefulness Syndrome (UWS), and Minimally
Conscious State (MCS). No arousal nor awareness indicate that a person is in a coma [Bau05].
It cannot then be awakened and does not respond even to intense stimulation [Pos+07]. UWS
are described by non-existent signs of awareness in response to sensory stimuli, but the pres-
ence of signs of arousal recovery demonstrated by periods of eyes opening [GM08; Pos+07].
MCS patients on the other hand have preserved arousal level, but alternating signs of aware-
ness [Gos+11; Pos+07]. The characteristics of the disorders of consciousness are described in
more details in Section 2.1.1.

A TBI can also lead to a state called Locked-In Syndrome (LIS). Nevertheless, LIS can also
arise as a transition from Amyotrophic Lateral Sclerosis (ALS). This condition, also known

1TBI is generally caused by a violent blow to the head or body, causing damages to the brain.
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as Lou Gehrig’s disease, is a neurodegenerative disease that progressively causes the loss of
motor neurons that handle voluntary muscle movements. It is the most common motor neuron
disease [BCP16]. LIS patients are fully conscious, with unaltered cognitive functions, but are
unable to produce speech or perform any muscle movements [KN05; Pos+07]. Patients in
this state are generally able to move their eyes and are, thus, able to communicate using eye
movements and blinking [Gos+09; Bau05; Gos+11]. This limited communication mechanism
becomes impossible when patients enter a total or complete locked-in state (CLIS) and lose
control of voluntary muscle movements altogether. It is nonetheless thought that cognitive
functions and consciousness are still maintained during this state that develops some months
or years after LIS [Gos+09; Roh+17]. This covert state of consciousness is further discussed in
Section 2.1.2.

1.1 Motivation and problem statement

Although the LIS is not a disorder of consciousness, it is frequently misdiagnosed as one. One
such case was a patient who was considered in an UWS for 20 years [Van+18]. A comple-
mentary assessment of the patient’s state was requested by the family after they were under
the impression that he was conscious. This was done by evaluating the patient’s behavioural
responses using neuroimaging techniques. After a series of tests, it was established that the
patient was not in UWS anymore, and has emerged to MCS instead. Furthermore, the patient
was able to communicate by giving yes or no answers to questions asked to him. Consequently,
his diagnosis was revised to incomplete LIS. Another case involved a patient with a brain
tumour that lost consciousness in 1991, and spent the following 14 years without any kind of
rehabilitation because he was thought to be at a terminal stage [LMT10]. The patient’s state
started improving after introducing exercises in 2005, so that in 2007 he was quadriplegic but
conscious.

The difficulty to establish a diagnosis for such patients is probably due to the apparent
similarity of the condition with VS, which exhibit motor immobility and eyes opening, but
without signs of awareness [Sch+09]. Such diagnosis error denies the patients appropriate
medical care and a chance at rehabilitation and a better quality of life [Bru+11]. It can also have
dreadful consequences especially regarding end-of-life decisions. It is without a doubt awful
hearing others deciding their fate but not being able to agree nor object. In any case, this type
of conversation should include the patients, not be about them [Pos+07], especially since the
majority of LIS patients have no desire to end their life [KN05].

As communication is an important part of being human, it is particularly crucial for these
patients. Several studies revealed that the ability to communicate with their relatives increases
CLIS patients’ quality of life [Bir+00; K+̈01]. Since they are unfortunately unable to overtly
communicate their states of consciousness [G+́21], and that a brain-computer interface (BCIs)
can provide a direct pathway between the brain and an external device [SM10], this latter has
been employed to attempt to establish communication with such patients. Electroencephalog-
raphy (EEG)- or electrocorticography (ECoG)-based BCIs in particular have been successfully

2
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used by LIS patients to communicate [K+̈01; Bir+99; Van+16]. Despite initial doubts, it has been
later demonstrated that it was also possible for CLIS patients to communicate using their brain
signals, in particular their EEGs [KB08; Gug+17; Han+19]. Likewise, it has also been established
that being able to communicate with their relatives improved LIS patients’ mood, reducing any
desire to end their life [Bir+00; K+̈01; KN05; Rou+15].

For such communication to be successful, it is important to determine the appropriate
time to initiate it. Otherwise, all attempts would fail. This may be the case for patient GR
described in Section 5.1.2 for instance, for which there was only one successful communication
out of 170 attempts. However, most studies do not consider this step and directly begin the
experiment without determining if the patient is in a state to do so. It is after all difficult
to determine the patients’ state, if they are conscious or not at any given time considering
their condition. Moreover, there are no existing ground-truth distinguishing these states at the
moment. Consequently, it is not possible to determine with absolute certainty the "true" level of
consciousness as CLIS patients are unable to express their will or answer in any manner [K2̈0].

1.2 Goal of the research

One of the factors leading to misdiagnosis of LIS patients is the use of behavioural tests such
as the Coma Recovery Scale - Revised (CRS-R) or the Glasgow Coma Scale (GCS) [Sat+15;
Pos+07]. CRS-R in particular consists of auditory, visual, motor, oromotor and verbal functions,
as well as arousal. Basically, these methods assess the extent of the brain injury by rating
each function. The higher the score, the lesser the extent of the injury. In the case of GCS
for example, a total score of 13 or higher is considered a mild brain injury, a value between 9

and 12 is considered a moderate brain injury, while a value of 8 or less is regarded as a severe
brain injury [Pos+07]. In the case of CRS-R, the scores range is from 0 to 23 [Sat+15]. This
type of evaluation is not sufficient since it only accounts for the patients’ behavioural response.
Therefore, a direct recording of the brain activity without the intervention of behavioural
responses makes more sense since it does not rely on external motor responses [Van+18]).
In addition, the use of neuroimaging techniques has the potential to show hidden cognitive
states. BCIs, in particular, can provide an alternate way to detect consciousness in paralysed
patients by circumventing the motor pathway. Furthermore, misdiagnosis heavily impairs
patients’ treatment by giving them inadequate medicine. Also, when they are believed to be
unconscious, no attempt at communicating with them will ever be done, which will deteriorate
their condition faster [Sec+21].

The goal of this thesis is not to differentiate LIS/CLIS patients from those with DoC as
it is the case in most of the existing literature. The aim is rather to assess if the patient is
conscious or not. More specifically, a consciousness level assessment method is proposed as
a step prior to any communication attempt with the patients. This is because the hypothesis
in this work is that communication with LIS or CLIS patients fail because the experiment was
carried out at times when they were not fit to do it (in a sleep state, for example) or simply
did not want to. On that account, the patient’s consciousness level is first determined and
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communication is only established once indications that he/she is conscious enough to do so
are observed. Each subject being different, distinctive features comprising spectral, complexity
and connectivity characteristics are extracted from the EEG signals and assessed in order to
do so. A soft-clustering analysis is thus employed using the computed features as input to
produce a value between 0 (unconscious) and 1 (conscious) characterising the patient’s level of
consciousness. An overview of how the proposed approach operates is given in Chapter 4. The
set of features used in this context are reported in Section 5.2, and the data analysis as well as
the details of the consciousness level assessment are developed in Section 5.2.4.

1.3 Dissertation organisation

The present work is organised in 7 chapters. After establishing the topic and motivating the
work in this chapter, some basics and foundations regarding consciousness, brain signals and
machine learning as well as brain-computer interfaces are introduced in Chapter 2. Chapter 3

deals with the current state-of-the-art of consciousness assessments and attempts made to
establish communication with LIS and CLIS patients using BCIs. It is subsequently followed by
Chapter 4, which outlines the adopted modus operandi after introducing the problem and the aim
of the thesis. The presented method is first applied to data from patients with DoC to validate
it. Afterwards, it is applied to data from CLIS patients to evaluate their levels of consciousness.
The different groups of patients are recounted in Chapter 5. The results and discussion part
are presented in Chapter 6 afterwards before concluding this thesis with Chapter 7 by giving a
summary of the work and presenting potential future works.
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2 Basics

Je pense, donc je suis.

René Descartes

This chapter presents basic information associated to consciousness and the brain. It starts
by introducing the concept of consciousness and how it relates to the brain. This is followed
by some foundations on brain signals sources, acquisition, processing and applications. It
concludes with an overview of pattern recognition and machine learning methods that are
commonly used with biomedical signals. These notions are important to understand the
fundamental parts of this thesis.

2.1 What is consciousness?

It is difficult to define the term consciousness. Along the years, a lot of philosophers, neurol-
ogists, and neuroscientists have tried to define it, but so far no concise definition have been
agreed upon. The term comes from the Latin conscientia, which is composed of cum, meaning
"with" or "together" and scire that means "to know" [Koc04]. It is related to visual and sensory
perception and is also closely related to attention i.e. our ability to concentrate on one thing
and ignore other things [BCP16]. In [Koc04], the following definition of the term is given:
“Consciousness consists of those states of sentience, or feeling, or awareness, which begin in the
morning when we are awake from a dreamless sleep and continue throughout the day until we
fall into a coma or die or fall asleep again or otherwise become unconscious.” In Neural models
of consciousness, John G. Taylor asserts that: “Consciousness is synonymous with awareness or
conscious awareness [...]. The content of consciousness encompass all that we are conscious of,
aware of, or experience.” [Tay02]

However, the psychologist Stuart Sutherland explains the term as “The having of perceptions,
thoughts, and feelings; awareness. The term is impossible to define except in terms that are
unintelligible without a grasp of what consciousness means. Many fall into the trap of equating
consciousness with self-consciousness2 - to be conscious it is only necessary to be aware of
the external world. Consciousness is a fascinating but elusive phenomenon: it is impossible to
specify what it is, what it does, or why it evolved. Nothing worth reading has been written on
it.” [GIM18].

2Self-consciousness is the ability to think about ourselves as individuals [Gaz99; Gos+11].
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Figure 2.1: Brain anatomy of consciousness. The cerebral cortex, thalamus, brain stem, and hypothalamus
play important roles in consciousness generation. From [GIM18]. Copyright © 2014, 2009, 2002, 1998 by
Michael S. Gazzaniga, Richard B. Ivry, and George R. Mangun. Used with permission of W.W. Norton
& Company, Inc.

According to [Gos+11], two components characterises consciousness: awareness and arousal.
Awareness represents conscious perception or the content of consciousness. It encompasses
cognition, past and present experiences, and intentions. Clinically, it is assessed by command
following such as "close/open your eyes". It is supported by the cerebral cortex. Arousal also
known as level of consciousness or wakefulness, on the other hand, is reinforced by the brainstem
and the thalamus. More precisely, it is the degree to which a person is conscious [Ton+16]. It
is synonymous to vigilance or alertness, and is evaluated by the presence of eye opening. For
any substantial response to occur, a basic wakefulness is essential. Consciousness is subjected
to the interaction between the activity of the cerebral cortex, the brainstem and the thalamus
(cf. Fig. 2.1). It is composed by the correlation between awareness and arousal, in other words,
by the relationship between the cerebral cortex and the brainstem and thalamus. These two
components as well as their levels for each state of consciousness are illustrated in Fig. 2.2.

2.1.1 Disorders of consciousness

As stated in Section 2.1, consciousness depends on the interaction between the activity of the
thalamus, the brainstem and the cerebral cortex. Damages in one of these systems will result
in an impairment of consciousness. In other words, a disruption of the relationship between

6
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Figure 2.2: Major components of consciousness: Arousal: level of consciousness or wakefulness and
Awareness: content of consciousness. The level and content of consciousness are positively correlated
in normal states and in coma. Consciousness occurs when both arousal and awareness levels are high,
and vice versa. Adapted from [Gos+11].

arousal and awareness will lead to a condition called disorder of consciousness [Gos+11].
Table 2.1 summarises the characteristics behaviours of patients in different conditions.

After a brain injury, behavioural assessments are administered to the patients to determine
their consciousness levels and establish a diagnosis. The CRS-R is usually the most used
measure to do so. It is a standardised evaluation used to establish prognosis in addition to
the diagnosis. Moreover, this assessment also allows to monitor patients’ recovery rate and to
determine adequate treatment [Sat+15]. Table 2.2 shows the different elements of the assessment.
The numbers on the left are scores attributed to each item, and general score vary from 0 to 23.
High scores reflect cognitive behaviour, while low scores represent reflexive activity [Sat+15].

2.1.1.1 Coma

In [Bau05], a coma state is described as an "unarousable unconsciousness". It is defined
by the absence of spontaneous eyes opening as well as reflexive or voluntary muscle move-
ments [Les+15]. This state can last from two to four weeks [Les+15; Pos+07]. It can be provoked
by an acute brain injury and is characterised by an absence of arousal and awareness [Gos+11]
(see Fig. 2.2). This unarousability distinguished it from sleep, which is a physiological loss of
consciousness. Coma may result in different outcomes, namely, LIS described in Section 2.1.2,
VS, chronic coma in some rare cases, and eventually in brain death3 as illustrated in Fig. 2.3.

3irreversible loss of all function of the entire brain [Pos+07].
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Table 2.1: Consciousness and motor behaviour characteristics in patients with disorders of consciousness
and locked-in syndrome [MLO10].

Condition Sleep-wake
cycles

Awareness Motor behaviour characteristics

Coma no no No purposeful behaviour
UWSa/ VSb yes no No purposeful behaviour
MCSc yes Partial, fluctuating Inconsistent but reproducible purposeful

behaviour
LISd yes yes Yes, limited to eye movements (depending

on lesion)

a Unresponsive Wakefulness Syndrome
b Vegetative State
c Minimally Conscious State
d Locked-In Syndrome

2.1.1.2 Vegetative state (VS)

Patients in the VS,4 currently known as UWS patients, present no sign of awareness in response
to visual, auditory, or tactile stimuli, indicating an absence of signs of cortical function [GM08].
Patients develop alternating periods of sleep and wakefulness that manifest by periodic eye
opening, which suggest a recovery of arousal [Bau05; Gos+11], and show no purposeful motor
behaviour (cf. Table 2.1 and Fig. 2.2). A reduction of head, limbs and eyes movements are also
observed [GM08]. The condition may develop suddenly, for example after a brain injury, or
gradually as a result of a neurodegenerative disorder, such as Alzheimer’s disease [MLO10].
A patient is diagnosed as in a VS when the CRS-R is between 0 and 9; more precisely, when
the scores for the individual items in Table 2.2 are: Auditory ≤ 2, Visual ≤ 1, Motor ≤ 2,
Oromotor/Verbal ≤ 2, Communication = 0, and Arousal ≤ 2 [Sat+15]. After some time, VS
can turn into MCS or permanent VS, and eventually to death (cf. Fig. 2.3). VS is considered
permanent or persistent when it lasts longer than a month [Pos+07].

2.1.1.3 Minimally Conscious State (MCS)

The MCS is portrayed by a preserved arousal level and fluctuating signs of awareness [Gos+11]
as illustrated in Fig. 2.2. Indeed, sleep-wake cycles could be observed as well as inconsistent but
reproducible motor behaviours. Patients with MCS can follow simple command and produce
intelligible speech (high-level behavioural response), and some are able to show behaviours
that are not attributable to reflexive activity like visual pursuit or appropriate smiling or crying
to emotional stimuli (low-level behavioural response) [GM08]. Those who are displaying
high-level responses are categorised as MCS+, while those who exhibit low-level behavioural
responses are classified as MCS- [Bru+11]. A patient is usually diagnosed as in a MCS when the

4also called coma vigil or apallic state [Pos+07]
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2.1 What is consciousness?

Table 2.2: Coma Recovery Scale-Revised. Adapted from http://www.tbims.org/combi/crs/CRS_
Syllabus.pdf

4 Consistent movement to commanda

3 Reproducible movement to commanda

2 Localisation to sound
1 Auditory startle
0 None

5 Object recognitiona

4 Object localisation: Reachingb

3 Visual pursuitb

2 Fixationb

1 Visual startle
0 None

6 Function object usec

5 Automatic motor responseb

4 Object manipulationb

3 Localisation to noxious stimulationb

2 Flexion withdrawal
1 Abnormal posturing
0 None

3 Intelligible verbalisationa

2 Vocalisation / Oral movement
1 Oral reflexive movement
0 None

2 Functional: Accuratec

1 Non-functional: Intentionala

0 None

3 Attention
2 Eye opening without stimulation
1 Eye opening with stimulation
0 Unarousable

a Denotes Minimally Conscious State Plus (MCS+)
b Denotes Minimally Conscious State Minus (MCS-)
c Denotes emergence from Minimally Conscious State (eMCS)

Auditory function scale

Visual function scale

Oromotor/Verbal function scale

Motor function scale

Communication scale

Arousal scale

9
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2 Basics

Figure 2.3: Different states of consciousness that may arise after a coma. If the state of the patient
improves, they transition to a vegetative state, and in some rare cases in locked-in syndrome after a
short period [Les+15]. The worse cases result in chronic coma and eventually in brain death. Vegetative
state in turn evolves to a minimally conscious state (best case scenario) or into a permanent vegetative
state that can result in death (worst case scenario). Normally, the minimally conscious state ameliorate
and in time, the patient becomes progressively independent. Figure adapted from [MLO10].

CRS-R is from 9 to 21. The detailed score for each item is: Auditory = 3 to 4, Visual = 2 to 5,
Motor = 3 to 5, Oromotor/Verbal = 3, Communication = 1. Nevertheless, when the scores
are between 7 to 9 included, the patient can be either VS or MCS [Sat+15]. Moreover, a motor
score equal to 6 and a communication score equal to 2 denote an emergence from MCS (eMCS)
(cf. Table 2.2). eMCS develops when the patient is able to communicate accurately and/or
practically use objects and is therefore not considered a DoC [Gos+14a]. MCS can develop from
a vegetative state, and may also transition to a confusional state,5 which in turn can eventually
lead to an increasing independence (see Fig. 2.3).

2.1.2 Covert states of consciousness: Locked-in syndrome

A level of wakefulness is fundamental for consciousness, which can also manifest by ac-
tion [GIM18]. This latter is however not necessary for consciousness [Koc04]. One such
state is the LIS, which is described below.

Locked-in syndrome (LIS) is a neurodegenerative disorder, in particular a motor neuron
disease (MND) that causes a patient to be completely paralysed, thus leaving her/him unable
to perform any voluntary movement except for the muscles that control vertical eye movements

5condition wherein consciousness is maintained but with no intellectual understandability and orientation to time,
area, and sometimes the self.
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[Pos+07; Les+15]. According to the American Congress of Rehabilitation Medicine (ACRM),
LIS is characterised by the presence of sustained eye opening, aphonia6 or severe hypophonia,7

quadriplegia8 or quadriparesis,9 preserved cognitive functioning, and a primary and elementary
code of communication using vertical eye movements or blinking [Sch+09]. LIS patients also
have normal sleep-wake cycles [GIM18], but as their condition evolves, increasing signs of
insomnia are observed [Soe+13; Pos+07]. The condition is very rare and affects approximately
1 out of 20, 000 persons. There is no cure nor standard course of treatment at the moment, but
medication like riluzole10 can slow the disease down by a few months [BCP16; PP04].

On one hand, the LIS (also known as de-efferented state or pseudo-coma) may arise after a
traumatic brain injury (TBI) as illustrated in Fig. 2.3, a disease of the circulatory system, or
even from medication overdose. Brain lesions can be located in the ventral part of the pons in
the brainstem or in rare cases, in the midbrain and bilateral internal capsules [GIM18; PP04;
Lau+05]. TBI constitutes the most common cause of the condition [K2̈0]. On the other hand, it
may also result as an evolution of neurological diseases such as ALS or Guillain-Barré syndrome.
ALS, which is the most frequent neurodegenerative cause of LIS [K+̈01], was first described
in 1869 by the French neurologist Jean-Martin Charcot. The initial signs of the condition are
muscle weakness and atrophy, probably resulting from a motor neuron disease among other
causes, most of them unknown. Excitotoxicity11 constitutes another cause of ALS. The patient
loses all voluntary movement such as walking, speaking, swallowing and breathing over the
course of one to five years. This will eventually lead to death due to failure of the respiratory
muscles [Mur+11]. Fig. 2.4 illustrates the different causes of paralysis in ALS and stroke.

Depending on the extent of motor impairment, the state can be separated into different
categories: classical LIS consists of total immobility except for vertical eye movements or blinking;
incomplete LIS during which some remnants of voluntary motion still remains; and total LIS
during which no voluntary muscle movement are possible [Lau+05]. Total LIS develop after a
transition from ALS-LIS, but it can also arise following a coma or disorders of consciousness
such as VS in which case, the inability to move is due to extensive brain damage [KB08]. A
study of this transition in one CLIS patient showed that eye movements were the very last
muscle group that becomes uncontrolled. It is preceded by facial muscle activity and external
anal sphincter [Mur+11].

Locked-in syndrome is not a disorder of consciousness but is more than often diagnosed
as one [Lau+05; BPL08]. It is characterised by high levels of both arousal and awareness (see
Fig. 2.2). Therefore, the patient presents no alteration of consciousness and can think and reason.
Communication is generally possible via blinking [Gos+11; Bau05; Gos+09]. One inspiring story
of a patient in the locked-in state after a severe stroke is that of Jean-Dominique Bauby, editor

6inability to produce voiced sound
7soft speech
8also known as tetraplegia: partial or total loss of use of all the limbs and torso due to illness
9temporary or permanent weakness in all four limbs

10an oral medication that is presumed to lessen damages to motor neurons by reducing levels of glutamate, which
carries messages between nerve cells and motor neurons [NIN13].

11deterioration or death of nerve cells due to an unhealthy increase of the levels of some neurotransmitters, resulting
in too much stimulation for the receptors.
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Figure 2.4: Causes of paralysis in ALS and stroke. ALS can be caused by either the degeneration of
neurons in the motor cortex, or the degeneration of the first and second motoneurons in the spinal cord.
Stroke, on the other hand, is caused by an haemorrhage in the ventral parts of the pons. From [K+̈01].
Copyright © 2001 by American Psychological Association. Reproduced with permission of the copyright
owner.

of ELLE magazine,12 who wrote a book titled "Le scaphandre et le papillon" in 1997 using only eye
movements [Koc04]. Table 2.3 showcases some books written by other LIS patients.

2.2 Brain signals

Consciousness is subjected to the interaction between the activity of several brain areas [Gos+11;
Koc04]. Consequently, using brain signals can provide an objective assessment of a subject’s
consciousness level. This section gives a brief overview of human brain signal acquisition and
processing, and introduces brain-computer interfaces.

The brain is the most complex organ in the human body. It is responsible for different pro-
cesses such as perception, reasoning, self-awareness, language or imagination. It is composed of
the cerebrum, the cerebellum and the brain stem. The cerebrum is composed of several lobes: the
12https://www.elle.com

12

https://www.elle.com
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Table 2.3: Some books written by LIS patients [BPL08]

Author Year Title Publisher

Jean-Dominique
Bauby

1998 The Diving Bell and the Butterfly:
A Memoir of Life and Death

Vintage

Julia Tavaro 1997 Look Up for Yes Kodansa (NY)
Karl-Heinz Pankte 1999 Locked-in. Gefangen im eigenen

Körper (Taschenbuch)
Mabuse-Verlag

Philippe and
Stéphane Vigand

2000 Only the Eyes say Yes (original ti-
tle: Putain de silence)

LGF - Livre de Poche

Philippe Vigand 2002 Promenade immobiles Le Livre de Poche
Roland Boulengier 2002 Solitaire, dans le silence Imprimerie - Editions De-

mol
Vincent Humbert 2003 Je vous demande le droit de

mourir
Michel Lafon

Laetitia Bohn-Derrien 2005 Je parle: l’extraordinaire retour à
la vie d’un Locked-In Syndrome

J.-C- Lattès

frontal lobe, the parietal lobe, the temporal lobe and the occipital lobe as can be seen in Fig. 2.5.
The Sylvian fissure divides the frontal lobe from the temporal lobe, and the central sulcus
separates the frontal lobe from the parietal lobe. Each of the brain areas have specific functions.
For example, the frontal lobe is responsible for motor control, speech and problem solving
among other things. Facial recognition and hearing functions are located in the temporal love.
The cerebellum is responsible for coordination as the occipital lobe is in charge of vision. Touch,
taste and body awareness are functions of the parietal lobe [BCP16].

Cognitive neuroscience enables the analysis of brain signals in order to attempt to understand
these different mechanisms. The term comes from cognition, which is the process of know-
ing and neuroscience, which is the study of the functions and organisations of the nervous
system [GIM18; BCP16].

2.2.1 Brain signal acquisition

2.2.1.1 Types of brain recordings

Several methods have been developed to measure brain activity, depending on the temporal and
spatial resolution needed, and the type of signals to be recorded (electrical activity, magnetic
fields, etc.) [GIM18; Sub19]. Fig. 2.7 illustrates the most common brain recording techniques,
and Fig. 2.6 shows different brain imaging techniques relative to their temporal and spatial
resolutions.

• Electroencephalography (EEG): measures the electrical activity of the brain, be it sponta-
neous or evoked (cf. Fig. 2.7a).

13
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Figure 2.5: Different lobes of the cerebral cortex. Important landmarks separate them: the frontal and the
parietal lobes by the central sulcus, the temporal lobe from the other lobes by the lateral sulcus or Sylvian
fissure. From Wikipedia (CC BY 3.0).

• Functional Near Infrared Spectroscopy (fNRIS): measures the cortical haemodynamic activity
that occurs in response to neural activity by the means of near-infrared. A typical setup
for measuring fNRIS is shown in Fig. 2.7b.

• Magnetoencephalography (MEG): allows the localisation of the sources of the brain’s neural
activity, especially those deep below the surface. It measures magnetic fields produced
by the brain’s electrical activity (cf. Fig. 2.7c).

• Functional Magnetic Resonance Imaging (fMRI): determines the metabolic changes in blood
flow correlated with neural activity in the brain. Fig. 2.7d illustrates an fMRI machine.

• Positron Emission Tomography (PET): measures local variations in the cerebral blood flow
that correlate with mental activity using radioactive-labelled compounds.

• Single Photon Emission Computed Tomography (SPECT): scan used to identify altered blood
flow in the brain.

This research is limited only to EEG and ECoG recording techniques, consequently only those
will be further described.

Electroencephalography EEG is a non-invasive measurement of the electrical activity of the
brain from the surface of the scalp by means of electrodes. This activity is generated by the exci-
tation of the dendrites of several groups of pyramidal neurons in the cerebral cortex [SC13]. The
first human EEG recording was performed by German psychiatrist Hans Berger in 1929 [BCP16].
EEG allow an overview of the generalised activity of the underlying brain region. It is possible
to record the brain’s electrical potential at the scalp because tissues of the brain, skull, and scalp
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Figure 2.6: Spatial and temporal resolutions of different brain imaging techniques. Adapted from [Hit15].
In red: strong invasiveness, in yellow: medium invasiveness, in green: non invasive.

passively conduct the electrical currents produced by the synaptic activity. In general, EEG
scalp amplitude range varies between 10 and 100 µV [Nie05; SM10]. EEG provides an excellent
time resolution, but a limited spatial resolution (cf. Fig. 2.6) [KSD09]. The maximal number of
electrodes in any EEG recording is currently limited to 256 [GIM18].

To generate an EEG signal big enough to be seen, it necessitates the activation of many
thousands of underlying neurons. The number and synchronicity of these neurons contribute
to the amplitude of the obtained EEG signal. Fig. 2.8 illustrates the generation of an EEG signal.
Synchronous activity of neurons underneath an electrode generate large EEG signals, while
asynchronous cell responses produce small EEG amplitudes [BCP16].

To allow reproducibility and comparison between different experiments, a standardised EEG
location system called the 10-20 system has been developed. It uses anatomic landmarks of the
brain such as F (frontal), C (central), P (parietal), and O (occipital). In addition, EEG channels
located in the left side of the brain are identified by odd numbers while those located on the
right side are represented by even numbers, and channels located in the midline are represented
by z (midline sagittal). For example, Fz is located in the midline of the frontal area. Along with
channel Cz commonly used as reference, it is often used as ground [Rei05; Jas58; BCP16; Sub19].
Referencing can also be performed using contralateral channels located in the left and right
mastoids A1 and A2 (A as in auricle (ear)), since their potentials are close to zero [NS06]. The
10 and 20 in 10-20 system represent the distance as the percentage of the total distance between
the nasion and the inion (cf. Fig. 2.9). The later developed 10/10 system is an extension of the
10/20 system that includes more channels [Nuw+98].
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(a) EEG (self-recorded).

(b) fNIRS. From Wikipedia (CC BY-SA 4.0)

(c) MEG. From Wikipedia (Public domain)

(d) fMRI. From Source

Figure 2.7: Most common brain recording techniques used to regulate a BCI.

Electrocorticography (ECoG) ECoG or intraoperative cortical electroencephalogram is an invasive
method of brain recording. Hans Berger introduced it in the 1940s to map the location and
extent of epileptogenic brain tissue before surgically removing it to treat partial epilepsy [QN05].
ECoG electrodes measure electrical signals before they pass through the scalp and skull. The
only difference between EEG and ECoG recordings is that, for the latter, the electrodes are
placed directly on the surface of the brain, either outside the dura or beneath it (cf. Fig 2.8).
There is consequently far less signal distortion compared with EEG [GIM18]. ECoG also has a
much higher spatial resolution than EEG (millimetres vs. centimetres), a higher characteristic
amplitude (50-100 µV vs 10-20 µV), and is less vulnerable to artefacts [SM10]. The recordings are
usually performed using strip and grid electrodes. One disadvantage of this type of recording
is that these strips and grids tend to curve and pull slightly away from the cortex, resulting
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Figure 2.8: EEG signal generation. The EEG electrodes measures the averaged activity of a large population
of neurons through different tissue layers. The signal will only be detected if the pyramidal neurons
are firing synchronously. From [BCP16]. Copyright © 2016 by Wolters Kluwer. Used with permission
from the copyright owner.

in weak contact connection to some contacts [QN05]. Fig. 2.10 shows the implanted ECoG
electrodes of one of the CLIS patients in this work.

2.2.1.2 Modalities of recordings

Brain electrical activity can be categorised into two groups: spontaneous EEG and Evoked Poten-
tials (EPs) or Event-Related Potentials (ERPs).

Spontaneous brain recordings Spontaneous EEG is obtained when there are no specific sensory
stimulus [NS06]. Brain recordings oscillate at different frequencies that are named after different
Greek letters and indicate the state of the brain [GIM18]. Typically, high frequencies manifest
themselves during alertness, waking states, but also during dreaming state of sleep (Rapid
Eye Movement (REM) sleep). On the other hand, low frequencies are dominant during non-
dreaming stages of sleep and the pathological state of coma [BCP16]. Fig. 2.11 displays four
canonical frequency bands of a healthy subject extracted from an EEG signal x(t). No tasks
were performed during the recording.
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Figure 2.9: 10-20 system for EEG signal recording. The figure shows the spacing between the different
recording channels. If d represents the distance from the nasion to the inion, channel Fpz at the forefront
is located at 10%d. Fz, in turn is located at 20%d of Fpz, and so on (transversal channels). The same
goes for the lateral electrodes (right figure). From [SC13]. Copyright © 2013. Reprint with permission
from John Wiley & Sons.

Alpha rhythm α rhythms were first introduced by Hans Berger in 1929. They are associ-
ated with quiet but waking states, i.e. when the subject is awake but do not perform any
task [SC13]. They were best obtained with eyes closed and attenuates with high degree of
alertness. Fig. 2.11b illustrates such a frequency band. The International Federation of Societies
for Electroencephalography and Clinical Neurophysiology (IFSECN) defines it as a:

“Rhythm at 8-13 Hz occurring during wakefulness over the posterior regions of the head,
generally with higher voltage over the occipital areas. Amplitude is variable but is mostly
below 50 µV in adults. Best seen with eyes closed and under conditions of physical relaxation
and relative mental inactivity. Blocked by attenuated attention, especially visual, and mental
effort.” [aut74].

µ rhythms are similar in frequency to the α rhythms, except that they are larger over the
motor and sensorimotor areas. Mu rhythms are greatly related to functions of the motor
cortex, involving mostly the channels C3 and C4. It is reduced with movement or imagination
of movement of the opposite upper limb, also referred as de-synchronisation [Nie05; BCP16;
GIM18].

Beta rhythm β rhythms (Fig. 2.11e) were also introduced by Hans Berger and indicate an
activated cortex. Its frequencies lie between 13 and 30 Hz [BCP16]. When the brain is engaged
in information processing, the cortical neurons are highly activated and relatively asynchronous.
This low synchrony in turn produces EEG with low amplitudes [GIM18; Nie05]. Beta activity
is usually observed in the frontal and central areas, with an amplitude of 30 µV at most [SC13].
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Figure 2.10: ECoG electrodes surgically implanted in a CLIS patient. The grid contains 128 channels in
total, but only 64 of them were effectively usable. Image courtesy of the Universitätsklinikum of the
University of Tübingen, Germany.

Theta rhythm θ rhythms (Fig. 2.11c) were introduced by Walter and Dovey in 1944 and
denote frequency ranges between 4 and 8 Hz [BCP16]. The name comes from the belief that
these waves originate in the thalamic region. They appear during deep sleep, during which
cortical neurons are not involved in any information processing. Many of them are phasically
excited by a common, slow, rhythmic input leading to a high synchrony. This will then result
in high EEG amplitude. θ waves can also occur during waking states, for example during
mental activity such as problem solving, and are larger over the frontal midline region in this
case [GIM18; Nie05].

Delta rhythm δ rhythms (Fig. 2.11b) are slow rhythms with frequencies below 4 Hz [BCP16].
They occur mostly during deep sleep states and are characterised by large amplitudes. Theta
waves are related to the level of arousal and represent the boundary between consciousness
and drowsiness [SC13]. They were introduced by Walter in 1936, and designated at first all
frequency below the α frequencies. Later however, Walter also introduced the previously
described θ rhythms [GIM18; Nie05].

Other brain rhythms Gamma rhythms (γ) are high frequencies oscillating between 30 and
70 Hz. Other EEG frequency components also exist but are rarely used. For example, ω waves
with frequency between 60 and 120 Hz that have retinal origin, or ρ waves that are around 250

Hz [Dro06].

Evoked and Event-related potentials As opposed to spontaneous potentials, an evoked poten-
tial is a brain potential obtained as a direct response to some external stimulus. This can be
an auditory tone or a flashing light for example. Evoked-potentials have very low amplitudes
that are difficult to detect from a single trial. They are embedded in the ongoing EEG signal.
Thus, a large number of single trials needs to be averaged to extract the signal related to the
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(a) Raw EEG

(b) δ waves

(c) θ waves

(d) α waves

0 1 2 3 4 5
Time (s)

(e) β waves

Figure 2.11: Normal EEG brain waves at location FP2 recorded from one healthy person (myself). (a) raw
data, (b) δ : 0.5− 4 Hz, (c) θ : 4− 8 Hz, (d) α : 8− 12 Hz, and (e) β : 12− 30 Hz. Waveform with
time on the x-axis and voltage expressed in µV on the y-axis. It oscillates between a positive and a
negative voltage. Usually an increase in the θ band indicates that the subject is engaged in a cognitively
demanding task. On the other hand, an increase of α marks a reduced state of attention.

event that evoked it. Evoked potentials that occur after an auditory stimulus are called Auditory
Evoked Potentials (AEPs), while those who appear after a visual stimulus are called Visual Evoked
Potentials (VEPs). They are mostly studied to detect abnormalities in the auditory and visual
systems [GIM18; NS06]. In particular, in a Steady-State Visual Evoked Potential (SSVEP) experi-
ment, the stimulus consists of a continuous sinusoidal modulated signal delivered through a
computer screen. Its effects in the brain are measured by analysing the signals in the stimulus
frequency. ERPs have been used as a diagnosis tool in neurology and psychiatry, and have been
also widely employed in BCIs [SC13].

Event-related potentials (ERPs) are also evoked by external stimulus, but additionally they
are also linked to endogenous brain states. Furthermore, they occur at a relatively much longer
latency. The ERP components are named after the combination of the polarity (Positive (P) or
Negative (N)) of the waveform and the time of appearance of the waveform after the stimulus
onset. For example, P300 is a positive wave that appears around 300 ms after a stimulus. Many
ERPs are linked to specific psychological processes. Sensory processing usually occurs 50 to
100 ms after the stimulus onset. Attentional states normally produce potentials after 100 ms of
the stimulus onset. N100 and P100 are examples of potentials related to selective attention. A
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typical latency of 150-250 ms is observed after the onset of an unexpected auditory stimulus in
the N200 or Mismatched Negativity (MMN) [GIM18].

2.2.2 EEG signal pre-processing

During an EEG recording, the signal is exposed to other noises or artefacts coming from
physiologic or non-physiologic sources. Physiologic sources can be electrooculagraphic (EOG),
electromyographic (EMG), electrocardigraphic (EKG) or movement executed by the patient for
example. As non-physiologic sources, noises caused by the environment, the instruments or
the electrodes can be named [DHI05; SC13]. Some pre-processing steps are then necessary in
order to remove or reduce them before analysing the signal.

Artefacts caused by muscle movement can be reduced or rejected by using a band-pass filter
with cut-off frequencies between 1 and 20 Hz, since muscle movements cover the spectral range
of around 20 to 300 Hz [DHI05; Mut13]. Another method would be to simultaneously record
the signals potentially inducing these noises, such as EKG or EOG, and then subtraction them
from the EEG signal [DHI05]. Low frequency noise such as breathing can be reduced by using
a high-pass filter with a cut-off frequency of 0.5 Hz or less. Noises generated by the power
supply can be attenuated using a Notch filter with a null frequency of 50 Hz [SC13].

It is also common to perform a baseline correction, i.e. demeaning the signal, before further
analysis to remove linear trends [Dro06]. Depending on the application, the EEG signal could
also be filtered into frequency bands of interest (cf. Fig. 2.11). Some analysis methods require
that the data is stationary, which is not the case of EEG signals. To ensure this stationarity, the
signal is divided into smaller segments of a few seconds.

To analyse ERP, an averaging of several trials is necessary to remove the background EEG
and only retain the signal of interest [Dro06].

2.2.3 Brain-computer interfaces

A Brain-Computer Interface (BCI) is a system that uses brain activity to operate a computer-
controlled device [PN05; SM10]. It has the potential to particularly improve the lives of
people with conditions that affect their ability to move voluntarily [GIM18]. BCI has also been
implemented to assist LIS patients in communicating with their relatives, offering them a better
quality of life with greater autonomy [Sub19].

There are several types of BCIs. A BCI that uses brain activity that is directly and consciously
controlled by the user is called active BCI. When the brain activity arises as a result of an
external stimulation, it is called reactive BCI. Passive BCI on the other hand does not necessitate
any voluntary control from the user and make use only of the spontaneous brain signal [ZK11].
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Figure 2.12: EEG-based Brain-Computer Interface designed for motor rehabilitation in stroke and Parkin-
son disease patients. Slow Cortical Potentials (SCPs: electrical brain activity usually oscillating at less
than 1 Hz [HMB03]) are extracted from the recorded EEG signal to detect the subject’s intention to
move. Once a movement intention is detected or a tremor predicted, the targeted muscle is electrically
stimulated to help the subject produce the movement, or to counter the effect of the tremor [AB18].

A BCI system is composed of four components: a signal acquisition unit, a signal processing
unit, an output device and an operating protocol [PN05; SM10]. The acquired brain signals
or features extracted from it are processed and translated into device commands [ZK11]. The
output devices can be a spelling device, a robotic arm or other systems that need to be controlled,
which makes BCI a very convenient tool for patients who have highly compromised motor
functions. The operating protocol guides all operations by regulating their onsets, offsets and
timing [SM10]. Fig. 2.12 illustrates a BCI system designed for motor rehabilitation of stroke
and Parkinson’s disease patients. The EEG signals were acquired when stimuli were presented
on the computer screen using a g.tec gUSBamp amplifier13 and BCI2000.14 The stimuli directed
the subjects to perform imaginary left or right hand movements. The features extracted from
the data would then be used to trigger a VisionBody suit15 to deliver an electrical stimulation
in the chosen hand and help the production of hand movement [AB18]. In this particular
instance, motor imagery was used. However, the control of the BCI can also be done using
self-regulated SCPs [Bir+99; Bir+00]. Furthermore, the command signal can be obtained after
the features of interest are elicited by a mental task (e.g. motor imagery, mental arithmetic, etc.)

13https://www.gtec.at/product/gusbamp-research/
14The BCI2000 project aims at providing researchers with a software that facilitates the development of BCI applications

that necessitate real-time data acquisition, processing and feedback [SM10]. It can be downloaded at https:
//www.bci2000.org/mediawiki/index.php/Main_Page

15https://www.vision-body.com/en/start
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or after presentation of a visual or auditory stimulus [KN05]. Different brain responses such
as event-related potentials and sensorimotor rhythms (SMR) also known as µ rhythms are also
frequently used [K+̈01].

Apart from enabling patients with spinal cord injury to control a neuroprosthesis, one of the
most important applications of BCI is certainly the establishment of communication with LIS
patients [PN05]. In this context, BCI has been successfully employed to communicate with the
patients. They were able for example to control a cursor or use a speller to communicate using
EEG or ECoG signals [KN05; Fre+19]. Later on, it has also been proven that BCI could also
be used to communicate with some CLIS patients [Sch+09; Gug+17]. Applications of BCI for
communication with LIS and CLIS patients are more thoroughly discussed in Section 3.1.

2.3 Machine learning

Machine learning is a branch of Artificial Intelligence (AI), which is “the science and engineer-
ing of making intelligent machines, especially intelligent computer programs” [McC04]. As
illustrated in Fig. 2.13, machine learning can be classified into three categories: supervised,
unsupervised and reinforcement learning.

Machine learning

Supervised
learning

Unsupervised
learning

Reinforcement
learning

ClusteringClassification Regression

Figure 2.13: Types of Machine Learning. Machine learning can be partitioned into three categories:
supervised learning, unsupervised learning and reinforcement learning. Supervised learning in turn
can be broken down into two sub-categories: classification and regression, while unsupervised learning
deals with clustering. In a classification task, the classes are predefined, while during clustering, the
clusters are determined according to the similarities of the data points. Reinforcement learning is about
learning the optimal behaviour of a system that maximises a reward signal.

Supervised learning Given a data set X with p features X1, X2, ..., Xp measured on n observa-
tions, there is an associated response vector Y for each of the n observations. The goal is to train
an algorithm that provides the best predictions of Y using X. In other words, the intention is to
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fit a model that relates Y to X in order to correctly predict the response for future data in case
of a prediction, or to understand the relationship between the predictors and the response vector
in case of an inference [NS05; Jam+13]. There are two types of supervised learning algorithms.
Typically, when the response vector Y is quantitative, i.e. has numerical values, it is referred to
as a regression problem while if Y is qualitative or categorical, it is designated as a classification
problem [Jam+13; Bis06].

Unsupervised learning No response vector associated with the data set X is available to the
learning algorithm. In this case, the purpose is to discover hidden patterns in the data. The
data points are grouped into clusters depending on how similar they are in what is called
cluster analysis [Bis06; Jam+13]. As opposed to a classification problem, in which the number of
clusters are known a priori and is used to predict new data, clusters represent the partition of
the data into natural groups [Wit+17]. Their numbers can either be fixed or determined.

Reinforcement learning In this case, the goal is to determine what actions should be taken
in a given situation so that a reward signal is maximised [SB18]. Similar to unsupervised
learning, no response vector is provided to the learning algorithm that must determine it by
a process of trials and errors instead [Bis06]. Consequently, the output of such system is a
sequence of actions that yields the most reward [Alp09; SB18]. The learning algorithm gathers
information by interacting with its environment, and for each action, receives an immediate
reward. Nonetheless, the environment does not provide long term feedback. Thus, the learning
algorithm faces an exploration (gain more information to see how effective each action is) versus
exploitation (use already gathered information to obtain a high reward) dilemma [Bis06].

The work in this thesis makes use of clusters analysis, which is the focus of the next section,
to evaluate the levels of consciousness of several patients with DoC and CLIS.

2.3.1 Clusters analysis

Clustering is a method that consists of discovering unknown subgroups in a data. These
subgroups can be determined using either a hierarchical or a partitive cluster analysis [SS12].

A hierarchical clustering can be executed using one of two approaches: an agglomerative or
a divisive one. The agglomerative method is the most used of the two. It starts with n clusters,
each cluster containing one point. The clusters are combined, one at a time, based on distinct
similarities, until all points are contained within a single cluster [SS12]. Fig. 2.14 illustrates a
dendrogram representing the results of a hierarchical analysis performed on the Iris dataset.16

The most popular partitive clustering method, especially in biomedical signal analysis, is
K-means clustering [NS05]. The algorithm attempts to establish a set of rules to group the data

16Fisher’s Iris data set, data set containing 3 classes of Iris plants, introduced by the British statistician, eugenicist, and
biologist Ronald Fisher in 1936 [Fis36].
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Figure 2.14: Dendrogram representing clustering of Fisher’s Iris dataset. A much higher root node
compared to the remaining nodes is observed. The figure also shows that there are two distinct groups
of observations. When smaller distances are considered, different levels of groups emerge.

without the help of examples, by partitioning it into K distinct and non-overlapping clusters
(hard clustering, see Fig. 2.16a). It is therefore imperative to provide the number of clusters.
The general algorithmic structure of a partitive clustering is summarised in Algorithm 2.1.
The details of the needed parameters and the computation of new clusters centres for each
clustering method used in this work will be developed in Section 2.3.2.

Algorithm 2.1: Partitive clustering.

Initialisation:;
Set number of clusters K and further parameters where applicable;
Assign the objects to the K clusters;
Iteration:;
1. Compute new cluster centres;
2. Assign the objects to the new clusters.;
3. Converged? Yes: stop / No: goto 1;

In order to assign a specific cluster to the observations, K-means clustering algorithm ran-
domly assign a number, from 1 to K, to each of them first. These act as initial cluster assignments
for the observations. The objective is to minimise the distance between the observations and
the centres of these clusters (objective function). New cluster centres are computed using that ob-
jective function, and each object is assigned to the cluster whose centroid is the closest (defined
using Euclidean distance). This is repeated until its convergence [Pet+13].

Fig. 2.15b illustrates the results of a K-means clustering applied to Fisher’s Iris dataset
represented in Fig. 2.15a. When comparing these results to the actual classes, it can be concluded
that the algorithm clearly separates the Setosa (characterised by smaller petal lengths and
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widths) from the other two groups. There are some overlapping in terms of petal lengths and
widths between Versicolor and Virginica, leading to a few incorrect grouping by the algorithm
(circled points in Fig 2.15b). Hence, the algorithm correctly identified all Setosa types, 96% of
the Versicolor and 88% of the Virginica.
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Figure 2.15: Grouping objects in clusters using K-means. Given the Fisher’s Iris data in (a), the algorithm
partitions the data into K=3 clusters relative to their position and distance from each other. The clusters
are mutually exclusive and are characterised by their respective centre point or centroids, represented
by black crosses in (b). Data points belonging to each cluster are shown in different colours. There is
an overlapping between Versicolor and Virginica from the K-means clustering. The circled points in (b)
are the ones misclassified by the clustering analysis.

It can also happen that the membership degrees are not bivalent, in which case the cluster
analysis is known as soft clustering [Pet+13]. This approach is elaborated in the following
section.

2.3.2 So�-clustering

Two soft clustering approaches are used in this work, namely fuzzy c-means (FCM) and
Gaussian Mixture Models (GMM).

2.3.2.1 FCM clustering

FCM is a soft-clustering approach that allows each data point to belong to multiple clusters
with varying degrees of membership. In other words, as opposed to hard-clustering approach
such as K-means in which the membership degrees are bivalent, a data point is assigned a
membership grade ranging from 0 to 1 for each cluster as can be observed in Fig. 2.16b. On
one hand, a data point which membership degree to a cluster equals 1 represents that cluster
perfectly; on the other hand, a membership degree of 0 means that it is not "representative" of
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(a) Hard clustering (b) Soft clustering

Figure 2.16: Cluster membership for hard and soft clustering. (a) Hard membership, obtained using
K-means. Each data point belongs to only one cluster. (b) Soft clustering, using fuzzy c-means. Each
data point belongs to a cluster to a certain degree. The sum of cluster membership equals 1.

the cluster at all [Chi94; Pet+13]. This technique was first introduced in [Bez81] with the goal
to improve earlier clustering methods, and has been well established since.

Similarly to hard-clustering, the goal in soft-clustering is also to minimise an objective
function:

Jm =
D

∑
i=1

N

∑
j=1

µm
ij ||xi − cj||2 (2.1)

where D represents the number of data points and N the number of clusters. m, (m > 1),
is a fuzzy partition matrix that defines the cluster’s fuzziness. In other words, it determines
the number of data points that have significant membership in more than one cluster. Larger
values indicate a higher degree of overlap. m = 1 corresponds to a hard-clustering analysis. cj
designates the centre of the j-th cluster and is obtained by applying Eq. 2.2:

cij =
∑D

i=1 µm
ij xi

∑D
i=1 µm

ij
(2.2)

where xi is the i-th data point. The degree of membership of xi in the j-th cluster is given by
µij in Eq. 2.3, and the sum of the membership values for all clusters is 1 [Pet+13]. To measure
the dissimilarity between data points and the cluster centre, the algorithm uses the squared
Euclidean distance [Bis06].

µij =
1

∑N
k=1

( ||xi−cj ||
||xi−ck ||

) 2
m−1

(2.3)
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For any given data point, the objective function expresses the distance to a cluster centre
weighted by that data point’s membership grade. The fuzzy c-means algorithm is implemented
as follows [Bez81; Chi94; Pet+13]:

1. First, the number of clusters is specified and the cluster membership values µij is ran-
domly initialised.

2. Then, the cluster centres are computed using Eq. 2.2.

3. The cluster membership values µij are subsequently updated according to Eq. 2.3.

4. Finally, the objective function Jm is calculated using Eq. 2.1.

5. The steps 2-4 are repeated until the objective function improves by less than a specified
minimum threshold or until a given maximum number of iterations is achieved.

Fig. 2.17 illustrates the results of a FCM clustering applied to the Fisher’s Iris dataset intro-
duced in Fig. 2.15a. The colorbar on the right of the figure represents the degree of membership
of the objects to the Versicolor group. The previously reported K-means clustering results
showed that it was able to perfectly cluster the Setosa group. So, unsurprisingly, the degree
of membership of this group is quasi null. As the boundary between Versicolor and Virginica
is unclear, the degree of membership of the latter to the former decreases as the values of the
petal lengths and width increases.
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Figure 2.17: Soft-clustering of the Iris dataset using FCM. The colorbar represents the degree of member-
ship of each data point to the Versicolor group (in red). Data points belonging to the Virginica group
have great degree of membership to the Versicolor group, illustrating the overlapping mentioned earlier,
as opposed to those from the Setosa group that are clearly separated (degree of membership ≈ 0). The
circled points have degrees of membership between 0.4 and 0.6 (have relatively strong affinity to both
groups).
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2.3.2.2 Gaussian Mixture Model

A GMM is a model-based cluster analysis approach that uses a Gaussian mixture distribution
f
(
xi|zig = 1, θg

)
∼ N

(
µg, Σg

)
as a model. The assumption is that the data is generated by a

random statistical model that the clustering method attempts to recover [FG20]. Simply put,
a Gaussian mixture model is a simple linear superposition of several Gaussian components
(Eq. 2.4) that gives a richer class of density models than a single component [Bis06]. Given
x = (x1, x2, ..., xn) ∈ Rp, the random vector xi is assumed to arise from a finite mixture of
probability density functions:

f (xi, Θ) =
K

∑
g=1

πgΦ
(
xi|µg, Σg

)
(2.4)

where:

• K: number of components (clusters);

• πg > 0, (g = 1, ..., K) and ∑ g = 1Kπg = 1: mixing proportions;

• Φ = (π1, ...πg−1, µ1, ...µg, Σ1, ..., Σg): parameter vector;

• Φ
(
xi|µg, Σg

)
: underlying component-specific density function with parameters µg, σg, g =

1, ..., K.

Each mixture component density is associated to a specific parametric class and represents
a cluster. The parameters in Φ are estimated by the maximum likelihood optimisation, more
precisely by using the iterative Expectation-Maximization (EM) algorithm [FG20]. K-means is a
particular non-probabilistic limit of EM applied to mixtures of Gaussian [Bis06]. The model in
Eq. 2.4 generates ellipsoidal clusters centred at the mean vector µg, and σg controls the other
geometrical properties of each cluster. Difference of means in the different component models
suggest that the model distinguishes among the K classes [MP00].

The EM algorithm consists of two steps:

1. The E-step, during which the algorithm calculates posterior probabilities17 of cluster
memberships. The result can be thought as an n-by-k matrix, where element (i, j) contains
the posterior probability that observation i is from cluster j.

2. The M-step, during which it estimates the cluster parameters by applying maximum
likelihood and using the cluster-membership posterior probabilities as weights.

The EM algorithm iterates over these steps until convergence to a local optimum. Once it
reaches it, the soft partition is obtained by assigning each data point to the cluster with the
highest posterior probability. This local optimum depends on the initial conditions which can
be chosen randomly or selected using the k-means++ algorithm (see Appendix A).
17conditional probability that is assigned after the relevant evidence is taken into account
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Fig. 2.18 represents the results of GMM clustering applied to the Fisher’s Iris dataset intro-
duced in Fig. 2.15a. The colobar on the right of the figure illustrates the degree of membership
of the objects to the Versicolor group. Same as for FCM clustering, the degree of membership of
all Setosa to Versicolor is very close to zero, and for Virginica the value decrease as the values of
the petal lengths and width increases. In addition, the results obtained in this case differ from
those from FCM in that there are less intermediate values of the membership degree (circled
points in the figure).
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Figure 2.18: Soft-clustering of the Iris dataset using GMM. The colorbar on the right side of the figure
represents the degree of membership of each data point to the Versicolor group (in red). Data points
belonging to the Virginica group have high degree of membership to the Versicolor group, but decreases
as one move away from its centroid. The Setosa group is clearly separated from the other two groups.
The circled points have degrees of membership between 0.4 and 0.6 (have relatively strong affinity to
both groups).

2.4 Summary

This chapter introduced a few principles necessary for the understanding of the contents of the
following chapters. It started by defining what consciousness is, at least in the context of this
thesis. In particular, it dived into states known as disorders of consciousness. The main group
of interest of this thesis is however completely locked-in syndrome patients. It then provided
the foundations of brain signals and the recording process as well as brain-computer interfaces.
The chapter ends with some notions of machine learning, especially of clustering analysis that
will be specifically used to infer the patients’ consciousness levels. The details of how it goes
about is presented in Chapter 5.
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After a brain injury, the state of the patient is usually evaluated using standardised neurobe-
havioural assessment measures such as the Coma Recovery Scale - Revised (CRS-R) presented in
the previous chapter in Table 2.2. These assessments evaluate the patient’s eye, motor and verbal
responses [Pos+07]. The behavioural assessments are however not appropriate for LIS and CLIS
patients since they cannot move and that the tests mostly rely on motor response [Hei+18]. This
often causes misdiagnosing them as DoC patients. Generally, the first diagnosis is made several
months after the injury, normally around 2.5 months after onset. But for a lot of them, it was
only detected after several years [LCERDM02; KN05]. An extreme case being a patient that was
believed to be in an UWS/VS for 20 years. It was later discovered, after a series of behavioural
and neuroimaging assessments, that the patient was in an incomplete LIS state instead [Van+18].
The misdiagnosis of LIS as a DoC may be due to the fact that outwardly, LIS patients look
like patients in VS or in MCS [KN05; Pos+07]. In addition, in the way to recovery, patients go
through a functional LIS state which combines motor dysfunction and preserved higher cortical
functions that can only be detected using functional imaging techniques [FDC13]. Anyhow, the
patient’s conscious state is usually discovered by family members [Pos+07]. Fig. 3.1 illustrates
the rate of discovery of the patients’ conscious states in [LCERDM02], where more than half
the time a family member notices that the patient is conscious. This state is discovered by the
physician in only 22.7% of the cases.

54.4%

22.7%

18.2%

4.5%

Family member
Physician
Nurse
Other

Figure 3.1: LIS patient’s awareness discovery. Most of the time, family member are the first to observe
signs of awareness from the patient [LCERDM02].
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Living in a state of LIS appears to be a very challenging situation. Patients that experienced
pharmacologically induced LIS during anaesthesia reported an anxious desire to move and
speak while being unable to do so [Gos+09]. Moreover, a glimpse at the life of LIS patients
can be imagined by reading some books written by such patients. A few examples of these
books can be found in Table 2.3. Surprisingly, most patients report a rather fulfilling life,
especially when they have the ability to communicate with their family or somewhat interact
with their surroundings. The survey in [LCERDM02] also reported that 73.2% of the patients
enjoyed going out, and 81% of them actually meet their friends at least two times monthly.
Most of the time, communication are performed using lateral or vertical eye movements, or
blinking [Lau+05]. In addition to that, a 6-year longitudinal study of the quality of life18 of
patients with LIS also revealed that the majority of them were relatively satisfied with their
quality of life and still enjoyed social interaction [Rou+15]. For this reason, patients’ desire to
end their life is relatively rare [KN05]. It is therefore crucial that the patients have someone to
communicate with since their quality of life heavily depends on that [Bir+00; K+̈01]. Besides,
it also appears that the ability for CLIS patients to communicate and interact with others
are highly correlated with a positive state of mind [Rou+15]. Misdiagnosis of such patients
could therefore lead to wrongful termination of their life, which is tragic given that most LIS
patients lead meaningful life despite their state. Furthermore, it delays every opportunity for
the patients and their family to communicate and accordingly decreases their mood and quality
of life.

On one hand, BCIs offer the potential to reveal hidden brain signal patterns that indicate
conscious states, independently of external motor functions responses. On the other hand, they
provide a direct connection between the brain and a computer, allowing the control of other
devices. This in turn permit people, especially those with no motor control, to communicate
using only their brain signals. This chapter gives an overview of the state of current researches
in communication in the completely locked-in state using EEG or ECoG signals before reporting
on those involving consciousness detection in such patients.

3.1 BCI-based communication for CLIS patients

The first speller for LIS patients with ALS was developed by Birbaumer et al. in the late 90s,
and uses self-regulated SCPs to command a speller device. Comparable to healthy subjects,
two patients were able to learn to regulate their brain responses in order to operate the device,
allowing them to select letters of the alphabet using a cursor on a video screen [Bir+99; HMB03].
The speller has been expanded into a Thought Translation Device (TTD), providing the patients
with a system in which they can also select words and pictograms in addition to letters [HMB03].
The system was tested with five LIS patients and demonstrated the usefulness of such system
to communicate with completely paralysed patients [Bir+00]. These communication systems
were further improved granting the patients with an adapted web browser and an e-mail

18World Health organisation (WHO) defines quality of life (QoL) as “an individual’s perception of their position in
life in the context of the culture and value systems in which they live and in relation to their goals, expectations,
standards and concerns” [WHO12].
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interface [Ben+07]. The system was called Nessi (Neural signal surfing interface) and allowed
patients to chose any selectable item on the web page using their brain signals, SCPs in
particular, and to read and write e-mails using a virtual German keyboard.

This represents an encouraging development in the quest of developing communication
systems for such patients. Nonetheless, BCIs using SCPs (and also SMR) are relatively slow
given that the brain responses can take around 5 seconds [Ben+07]. In addition, training
can be rather time-consuming since the patients need to go through a sophisticated learning
procedure to be able to regulate their SCPs [K+̈01], inducing patients’ fatigue. This prompted
the investigation of other faster brain responses such as the ERPs, in particular the P300.

Relatively fast BCIs are based on VEPs, which are less demanding for patients than SCPs.
In [Oke+14], a rapid serial visual presentation (RSVP) paradigm was implemented to control a
keyboard part of a system that incorporates a statistical language model for letter prediction
using machine learning. The system was tested with nine LIS patients along with nine healthy
controls and the experiment consisted of five levels of difficulty of different spelling tasks. The
experiment resulted in all of the patients being able to use the spelling at level 1, but only one
of them was able to complete level 5 compared to six participants from the healthy control
group. Another study used SSVEP-based BCI to provide a binary communication device to six
patients in locked-in state after a stroke or a TBI. To answer yes, the patients were instructed to
focus on yellow flashes (at frequency 10 Hz), and to answer no, they were asked to concentrate
in red flashes (with frequency 14 Hz) [Les+14]. Latent Discriminant Analysis (LDA) was used
afterwards to classify yes and no answers using spectral features extracted from the brain signal.
A comparison of spellers using visual P300 and those employing SSVEPs to communicate with
seven patients showed that SSVEP induced less mental workload compared to P300, thus is
more advantageous in terms of patients’ fatigue. It is also faster, exhibiting a transfer rate of
25 bits/min as opposed to 9 bits/min for the P300 ERP [Com+13]. A major drawback of such
systems is that it is not practical for subjects that have no gaze control. Moreover, patients
reported fatigue after a prolonged use.

Due to the progressive visual impairment of LIS patients as the condition develops, auditory
P300-based BCI were developed to continue communication with them. The achievability of
such enterprise was investigated in [K+̈09] with four LIS/CLIS patients. A 5x5 spelling matrix
with all letters of the alphabet except Z were presented on a monitor to the patients, which
could select a letter by attending to number words presented in an audible manner. Each
character’s position in the matrix was coded by two numbers representing the row (1 to 5)
and the column (6 to 10). The patients were able to achieve accuracy above 70% and even 90%
using a visual P300-based speller, but reliable communication could not be achieved using an
auditory speller for the same task. Healthy control also performed slightly better in the visual
ERP BCI compared to the auditory one.

Most of the time, non-invasive BCIs are used, but in certain cases, the patients can also be
implanted with ECoG. The LIS patient with ALS in [Van+16] was implanted with electrode
strips in the left motor cortex and left prefrontal region to investigate the usability of an
independent communication system for home use. The system uses motor imagery of the right
hand to allow the patient to control a pointer. She completed two training sessions weekly,
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and was able after some time to achieve a 89% (±6%) accuracy for spelling, with an increasing
speed as she became more familiar with the system (the spelling speed of 52 seconds at the
beginning improved to 33 seconds later). The motivation as well as the patient’s mood were
evaluated, and the results showed that she was always highly motivated except in days with
health-related issues, her mood improved as her capacity to communicate developed. This
study was part of a larger one, the Utrecht NeuroProsthesis (UNP) study that also included
another LIS patient in locked-in state caused by stem stroke and other subjects that are able-
bodied used as controls [Fre+19]. Differences in the power spectral responses were observed
between both LIS patients, suggesting that patient’s aetiology should be taken into account
during the development of BCI-based communication system.

All of these research only involve LIS patients and attempts to communicate with CLIS
patients using their EEG signals have failed at first, begging the question whether the brain
control learned during LIS could be transferred to CLIS [KB08]. Nonetheless, several research
have since then reported successful communication with such patients. In [Gug+17], vibro-
tactile P300 and motor imagery were tested with nine LIS and three CLIS patients with ALS.
Vibratory stimulation of the hands or the foot with two (VT2) or three (VT3) stimulators were
employed to elicit a P300 response. Additionally, motor imagery (MI) of left or right hand
movement, along with the P300, were also investigated to permit a binary communication with
these patients. One one hand, nine out of the twelve patients were able to successfully use the
vibro-tactile P300, with an average of 8 out of 10 correct answers. On the other hand, three of
them were able to communicate using MI. Only one CLIS patient was unable to communicate
using VT3, and the successful two were able to achieve 90% and 70% accuracy respectively. This
research constitutes the first study that reports a successful communication of CLIS patients
using EEG-based BCI. It is also the first that achieved such high accuracy. After 5 to 20 min of
MI training, it takes around 8 seconds to answer each question with a yes or a no. Furthermore,
this constitutes one of the rare researches that evaluates the patient’s consciousness level before
initiating communication.

A few years later, an EEG-based endogenous BCI was developed to communicate with a
totally locked-in patient with ALS [Han+19]. The patient presented no remaining muscle move-
ment, her ALS Functional Rating Scale-Revisited (ALSFRS-R) was zero, but her hearing and
cognitive functions were preserved. To distinguish between yes and no answers from the patient,
a combination of motor imagery and mental subtraction was used, and brain responses were
classified using Riemannian geometry (RG), LDA and Support Vector Machines (SVM). The
patient was able to achieve an average offline accuracy of 95% with RG, 87.5% with LDA, and
85% with SVM. RG gave the best offline accuracy, it was therefore used for the online classifica-
tion of the yes and no answers. The patient was able to achieve an online average accuracy of
87.5%. Unfortunately, due to patient’s health state, no follow-up experiments were performed.
But when the experiments were resumed several months later, no signs of consciousness were
found. This underlines the importance of maintaining a regular schedule of experiments and
communication with the patients. It was found to delay cognitive decline [Sec+21].

Another study reported the case of a CLIS patient in his early thirties suffering from a
clinical variant of non-bulbar ALS. To communicate with the patient, his family developed a
custom-made speller on paper in which the patient could select letters with eyes movements:
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any visible eye movement represents a yes while none means no [Cha+20]. As it became more
difficult for the patient to move his eyes, his ability to communicate decreased. He and his
family were then looking for other means of communication. Two intra-cortical microelectrode
arrays were implanted into his primary motor cortex areas and in the supplementary motor
area (SMA), 8x8 electrodes each. The same custom-made spelling system as before was used,
and the patient was able to form sentences by modulating his neural firing rates by the means
of an auditory-guided neurofeedback-based strategy to select the letters.

Almost none of these studies performs a preliminary assessment of the patients’ conscious-
ness before performing the tasks. Agreed that the capability of following commands in itself
can be considered as proof of consciousness [Les+15], however it seems more logical to first
determine if the patient is in fact apt to complete the tasks. Studies assessing LIS/CLIS patients’
consciousness levels are reported in the following section.

3.2 Patients’ consciousness assessment

The previous sections demonstrate the importance of a correct diagnosis to allow an optimal
medical care for the patients, especially to offer them the opportunity to communicate with
their relatives despite the state they are in. This section gather some important research dealing
with the assessment of patients’ conscious states. Most of the literature assessing consciousness
after a TBI involve MCS and UWS/VS patients. Only a handful of them include LIS patients,
and still, in a very limited number (usually only one per study). This low number of researches
is certainly due to the rarity of the disease. According to OrphaNet,19 the prevalence of LIS
is below 1/1000000. Furthermore, the goal of these studies was not to evaluate if the patient
is conscious per se, rather to differentiate between MCS, VS and/or healthy subjects. Only
the studies comprising at least one LIS or CLIS patient will be addressed in this section. The
methods normally used to assess patients’ consciousness can be categorised into two groups:
event-related potentials in response to some sensory stimulation, and features extracted from
resting state data [JR20].

3.2.1 Assessment using brain sensory responses

Sensory-based stimuli include auditory, tactile, visual and olfactory stimulations. This type of
experiment generally necessitate the patient’s engagement to the task to evaluate his ability
to follow commands as such capacity is seen as proof of consciousness [Les+15]. P300 is
undoubtedly the most used brain potential to assess patients’ consciousness, used in conjunction
with auditory-based stimuli. Other than audio tones, the subject’s own name (SON) is also
often used in this case [Ser+17; Ann+20; Gao+19; Pan+18].

In [Per+06], a P300 auditory paradigm is used to attempt to discriminate between 5 VS,
6 MCS and 4 LIS patients. For the analysis, they were instructed to passively listen to the
19OrphaNet is a database for rare disease and orphan drugs. https://www.orpha.net/
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stimuli with their eyes closed. Their results determined that P300 were elicited for all of them
after SON, except for 2 VS patients. Moreover, no difference were observed by the authors
between the different groups, leading them to conclude that P300 responses could be used to
differentiate between them. A similar paradigm was applied to 18 DoC patients consisting
of 2 coma, 9 VS and 7 MCS patients along with 2 LIS patients [Zha+17]. The SON said by a
familiar voice was used as the deviant stimulus, and a 1000 Hz tone and the subject’s derived
name (sdn) as the standard stimulus. In both cases, intact P300 responses were observed for
all LIS patients. It was also the case for all MCS and 4 of the 9 VS patients, but only with one
or the other paradigm. Follow-ups were carried out 2, 6 and 12 months after recording, and
it determined that patients that displayed P300 response in both paradigms woke up after 12

months. Consequently justifying the usability of P300 as a recovery predictor for DoC patients.

P300 can also be combined with SSVEP in a visual hybrid BCI. In [Pan+14], four healthy
controls, four VS patients, three MCS patients, as well as one LIS patient participated in the
experiment. The task consisted on focusing on one photo containing the Subject’s Own Face
(SOF) or another unfamiliar photo. They were flashed at 6 and 7.5 Hz respectively. The BCI
should detect which photo the patient was focusing on. The goal is evidently to ascertain if the
subjects are able to follow instructions, suggesting an underlying consciousness. The results
showed that all controls and the LIS patient, in addition to one MCS and one UWS patients,
were able to attend to the photo they were instructed to concentrate on. Moreover, the obtained
accuracy for both groups of DoC patients were comparable, although the CRS-R of the UWS
patients were lower (4 to 7) than those of the MCS patients (10 to 12).

Other methods not relying on eye movement control have also been investigated. The
feasibility of using vibro-tactile stimulation to evoke P300 responses was examined in [Lug+14],
with the participation of 6 chronic LIS patients. The experiment consisted of two tasks: a vibro-
tactile oddball paradigm during which the patients are asked to count a target stimulus, and a
binary communication in which patients answer yes by counting vibrations on their right wrist,
and no by counting those on their left wrist. The results showed that 5 out of the 6 patients
were able to elicit P300 responses, with an accuracy of 100% for 4 of them. In addition, 1 out
the 6 patients obtained an accuracy of 100% during questions answering while the accuracies
achieved by the other patients vary from 20 to 60%. In the end, the study proved that it was
possible to evoke P300 responses in LIS patients using somatosensory stimulation. The same
method was used in [Gug+17] to assess LIS and CLIS patients’ consciousness before completing
the binary communication (see previous section).

On the other hand, the use of motor imagery (MI) in evaluating consciousness states have
also been explored. One study implicating a LIS patient and two MCS patients concluded
that EEG power spectral analysis could be used as a tool to detect patients’ awareness at the
bedside [Gol+11]. During the experiment, the patient was instructed to imagine "swimming"
(motor imagery) or imagine "walking through their house" (spatial imagery). The LIS patient and
one of the MCS patients displayed consistent patterns of spectral changes depending on the
task. However, these variations differ from the expected results from healthy subjects. LIS
patients usually show levels of consciousness comparable to that of healthy subjects [JR20].
However this depends on what has caused the condition. In [Hei+18] for instance, two groups
of LIS patients (one group as a result of stroke, and another as a transition from ALS) were
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instructed to count some rare stimuli delivered to one wrist. Two stimulators called VT2 were
place on their left and right wrists. Results show that higher difference in the P300 amplitude
were observed with ALS patients compared to the stroke patients, reflecting the pathological
mechanisms difference in each group of patients and pinpointing the reduced tactile sensitivity
in patients with LIS following a stroke.

All of those researches involve LIS patients. One of the few studies involving a CLIS patient
was performed with patient GR (introduced in Section 5.1.2.1) who is in late stage ALS. He was
implanted with ECoG and a longitudinal analysis of his attention and cognitive processing was
carried out 1, 2, 3 and 6 months after the grid electrodes were implanted [Ben+14]. Auditory
stimuli consisting of standard and deviant tones were used to evoke brain responses. In
addition, frequency powers of δ, θ, α, β and γ were also analysed. The patient was 40 years old
at the time of the study [Soe+13]. The goal of the study was to investigate the progression of
the disease and eventually find an alternative communication pathway that could be used for
BCI. The results revealed that during the course of the study, N1 and P2 potentials were always
detectable, implying moderately intact attention and cognitive functions. On the other hand,
the P3 responses decreased until they were no longer discernable three months after the last
communication with the patient. Moreover, a gradual session to session increase of the δ power
along with a clear drop in γ between the penultimate and last sessions were observed, possibly
indicating transition to CLIS [Ben+14].

In general, LIS patients display significant P300 brain responses to sensorimotor stimuli.
However, the response of this potential decreased for the CLIS patient as his condition evolved.
Nonetheless, the presence of attention-related brain responses (N1 and P2) are still noted. This
indicates the usefulness of evoked brain potentials to assess LIS and CLIS patients’ conscious-
ness level. The type of tasks that elicits them usually requires the patients to engage to them.
Nevertheless, in the previous section detailing researches in communication with these patients,
it was pointed out that they tend to be easily fatigued. This is why resting state data is used
in this thesis to assess the levels of consciousness of principally CLIS patients instead of the
evoked potentials. This way, less energy is spent during the consciousness detection part of
the experiment, hopefully allowing for a more efficient communication afterwards, provided
the patient is conscious enough to initiate it. The following section presents studies evaluating
patients’ consciousness using resting state data.

3.2.2 Assessment using resting state data

Consciousness level following a brain injury can also be assessed using resting state data. This
type of recording provides useful information about the patients’ spontaneous neural activity,
without requiring them to perform any specific task. Accordingly, features such as the power
spectral analysis of δ, θ, α, and β frequency bands or complexity measures such as the Lempel-
Ziv complexity or derivate metrics are employed [Mal+13; G+́21; Gos+14b]. Additionally,
entropy-based approaches and functional connectivity are also used [JR20].
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An investigation of the presence or absence of consciousness in LIS and DoC patients along
with healthy controls using Perturbational Complexity Index (PCI) is performed in [Gos+14b].
PCI is a measure derived from LZC. Higher complexity values are usually associated with
conscious states. Their method combined high density EEG with Transcranial Magnetic Stim-
ulation20 (TMS) to discriminate MCS from VS patients. The brain activation generated by the
TMS was preserved in the long-range and high values of PCI were observed during conscious-
ness, and the opposite is detected during unconsciousness. Besides, the method was able to
discriminate between MCS and VS patients. In addition, the PCI values obtained by the LIS
patients were comparable to those of the healthy controls.

Another study involving 89 DoC, 11 eMCS, 4 LIS patients and 26 healthy subjects utilised
spectral connectivity to determine their consciousness [Che+17]. The data consisted of a
combination of high density EEG and PET. Moreover, the mean relative power over all channels,
the median connectivity as well as different graph theory characteristics computed in the δ,
θ and α bands. Strong brain networks connectivity were observed for patients misdiagnosed
as unresponsive but later revised as being in a MCS. This finding may be used to reduce
misdiagnosis rates since it was able to detect consciousness in incorrectly diagnosed patients.

Preliminary studies to detect consciousness in the same patient as in [Ben+14] were performed
in [Ada+19b; Ada+21] using the imaginary part of the coherency, multi-scale entropy and
Granger causality separately. Sample entropy was also applied to the same data in [WNB20].
Each method produce one possible consciousness state of the patient and sometimes the results
are overlapping. Similarly, these methods were also applied to assess consciousness in the CLIS
patients presented in Section 5.1.2.2 [AB21b; WB21].

There are considerably less researches that assess LIS/CLIS patients using resting state data.
Different EEG signal characteristics were examined: connectivity and complexity measures as
well as spectral features, each of them showing effectiveness at discriminating conscious and
unconscious states to some extent. Nevertheless, in each study, only one or two features are
used. Using a unique measure only brings a single facet of the signal to light. Several features
are thus used in this thesis to collect as much signal characteristics related to conscious states
as possible and maximise the chances of determining the correct state of the patients.

3.3 Summary

In this chapter, the relevant sources regarding consciousness assessment in patients in the
locked-in state were presented. There exists a relatively extensive literature on communication
with LIS/CLIS patients, considering the rarity of the condition. P300 ERP appears to be the
most popular brain response used to regulate a BCI in this context and seems quite efficient.
However, most of the studies get straight to the point without assessing if the patient is even
conscious. On the other hand, the number of studies actually probing for consciousness are
20type of non-invasive brain stimulation that uses a changing magnetic field to generate electric current in a particular

area of the brain through electromagnetic induction. Source: https://en.wikipedia.org/wiki/Transcranial_
magnetic_stimulation
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3.3 Summary

somewhat limited, especially those using resting state data. The usage of evoked potentials
often requires some participation of the patients’ part. Furthermore, each of the methods
to detect consciousness in the current literature only uses a few features. On that account,
this thesis aims at estimating the levels of consciousness of CLIS patients before engaging in
communication with them. More precisely, this latter is to be initiated only when the patient is
predisposed to do so. Moreover, a set of different EEG features is used to increase the chances
of accurately determining their states of consciousness. No such research direction has ever
been carried out as of yet. An overview of how the proposed approach operates is presented in
the next chapter.
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4.1 Aims and scope of the work

In one of the CLIS dataset studied in this work and described in Section 5.1.2.1, only one of
the 170 attempts to communicate with the patient was successful. This patient was trained in
using BCI since he was in the early stages of ALS. One hypothesis would be that during the
unsuccessful attempts, the patient was either unconscious or not in the mood, and that the
one successful experiment occurred at a time when he was actually conscious and willing to
perform the tasks. It is therefore critical to determine the periods of time during which the
patient’s level of consciousness is high enough to allow communication. Given the importance
of being able to communicate for these patients, it is vital to offer them the opportunity to
do so. The goal of the present research is to introduce a system that evaluates CLIS patients’
consciousness levels in order to identify the optimal time for a communication using several
sets of features including frequency, complexity and connectivity characteristics. Previous
researches suggest that the brain waves of locked-in syndrome patients are nearly similar to
those of healthy subjects [Van+18], and that their cognitive functions are mostly intact [KB08].
For that reason, we hypothesise that CLIS patients’ brain rhythms would to some extent liken
that of healthy subjects’.

4.2 Design of the approach

The proposed method makes use of a set of features to assess CLIS patients’ level of conscious-
ness (defined in Section 2.1) as a preceding step before an eventual communication attempt.
The features were chosen so that they comprise different characteristics extracted from the
pre-processed EEG or ECoG signal. The first set of features consists of spectral features, namely
the relative powers of θ and β bands, and the spectral edge frequency at 95% (SEF95). In nor-
mal circumstances, the values of the different frequency powers provide information about the
brain states [GIM18]. The second set of features comprises complexity measures that evaluate
the randomness of a signal. The more random the signal is, the higher its complexity. This
high value symbolises an activated cortex and consequently, a higher level of consciousness.
For example, Poincaré plots are a geometry-based approach frequently used to assess levels
of consciousness in anaesthesia research [HMS14]. LZC is a complexity measure that uses
symbolic representation of the signal, and is mostly used for data compression [LZ76]. But it
has also been employed recently to analyse biomedical data such as EKG and EEG [Abo+06].

41



4 Modus operandi

The last set of features employed involves brain functional connectivity. One fundamental
characteristic of the brain is its inter-connectivity that provides information on how one brain
region is connected to another. Two different measures were used in this case: the imaginary
part of the coherency (iCOH), which is a linear approach and a non-linear method termed
weighted Symbolic Mutual Information (wSMI). The imaginary part of the coherency has been
used in conjunction with artificial neural networks (ANNs) to evaluate consciousness level of
CLIS patients [Ada+19a; Ada+19b; AB21b], and both methods have also been employed with
the same goal with DoC patients [KSF13; Imp+19]. As the frequency-based and the complexity
measures are calculated in single electrodes, the connectivity metrics are computed between
pairs of channels. Table 4.1 details all the features extracted from the EEG or ECoG signals.

Table 4.1: List of features extracted from the EEG/ECoG signals.

Feature Type Additional infos Reference

Relative power (RP) Spectral In θ and β bands Section 5.2.1.1
Spectral Edge Frequency
(SEF)

Spectral 95% Section 5.2.1.2

Poincaré ERR Complexity
Time delay τ = 2 sam-
ples.

Section 5.2.2.1

Lempel-Ziv Complexity
(LZC)

Complexity Section 5.2.2.2

imaginary Coherence
(iCOH)

Connectivity
Absolute value in θ

band
Section 5.2.3.1

weighted Symbolic Mutual
Information (wSMI)

Connectivity τ = 16 ms Section 5.2.3.2

Fig. 4.1 illustrates the signal processing and analysis pipeline of the approach proposed in
this thesis. We theoretically introduced the modus operandi implemented here in [Ada+21].
Three different features were initially used to introduce the system: the imaginary part of the
coherency, multi-scale entropy and Granger causality. More features are however used in this
thesis. The idea is to maximise the chances to identifying the actual patient’s consciousness
level by combining them, since each of the methods extracts particular signal characteristics.
Assuming that the CLIS patients’ cognitive functions in this study are still intact, a conscious
state is determined using the following hypothesis:

• An increase of θ power combined with an increase of β power. Relative power as a
potential marker for consciousness for patients with disorders of consciousness has been
investigated and results showed that θ and α in particular are among the best features
that could distinguish MCS from UWS patients. Moreover, verbal and spatial memory
tasks induce an increase of θ power [Bor+13] and the recovery of consciousness after
anaesthesia is indicated by a global increase of the θ power and also the γ power and
coherence [Pal+15].

• A higher value of Spectral Edge Frequency at 95% (SEF95). SEF95 is frequently used
in anaesthesia research to assess the depth of anaesthesia in healthy subjects. Its value
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4.2 Design of the approach

represents the frequency below which 95% of the EEG signal power is contained. Research
show that the deeper the anaesthesia level, the lower the frequency value [Ram+80]. Light
anaesthesia is characterised by SEF95 higher than 15 Hz (in the β band). For moderate
anaesthesia, the values lie between 8 and 13 Hz (α band). Frequencies lower than 7 Hz
(in the δ and θ bands) indicate deep anaesthesia [Tou+19]. Accordingly, a larger SEF95

value indicates a higher level of consciousness.

• A higher Ellipsoid Radius Ratio (ERR) of the Poincaré plots. ERR is the ratio SD1/SD2

of the standard deviation of the points of the ellipse along the line of identity by that
of those perpendicular to the line of identity. An increased depth of anaesthesia is
symbolised by a reduced randomness of the EEG signal and the short-term variability
SD1, and by extension ERR [HMS14]. A rounder shape of the ellipsoid (ERR ≈ 1)
corresponds to randomness, thus more complex signals. Consequently, the closer to 1

the value is, the higher the consciousness level is.

• A higher LZC value. A normalised version of LZC, on the other hand, has only been
used recently to assess consciousness levels of different types of patients compared to
healthy control [LBMM15]. In principle, a higher level of consciousness is portrayed by a
increase of signal complexity, and inversely [G+́21; Gos+14b].

• A higher iCOH in the θ band. During periods of unresponsiveness in healthy subjects
under anaesthesia, a decrease of δ coherence, especially across hemispheres in frontal
and central electrodes, are observed [Pul+20]. In addition, global coherence is reduced
for example during ketamine-induced unconsciousness, and power and coherence in
high frequencies increases during recovery of consciousness [Pal+15]. Given the type
of task presented to the patient and that θ band plays an important part in working
memory [Bor+13], only the coherence in this frequency band will be used.

• A higher wSMI in the θ band. Consciousness is normally detected by the characteristics
of the brain signal in the higher frequencies. Research suggest that the long-range con-
nectivity patterns theoretically related to consciousness are most robustly and accurately
assessed by the wSMI in the θ band [Eng+18]. It has been determined that higher values of
this metric in that frequency band correspond to higher levels of consciousness [Bou+20].
This is why only its values in the θ band will be used.

At first, the raw EEG signal is pre-processed. This is done by filtering it into specific frequency
bands. Each of the features were computed on short overlapping segments of the filtered signal.
Afterwards, the results are averaged over all recording channels, leading to one value for each
feature and for each segment. This is done to obtain a global estimate of each measure. For
the connectivity metrics in particular, the average is computed as the mean of the lower part
of the connectivity matrix representing the couplings between the pairs of channels, excluding
the diagonal.

The global value of each metric is considered instead of the distinctive channels to highlight
characteristics shared by the whole brain, instead of localised peculiarities. The averaged results
are gathered into an n-dimensional matrix, where n denotes the number of features used, and

43



4 Modus operandi

EEG/ECoG 
data Features extractionSignal pre-

processing Clustering Decision 
rules

Level of 
consciousness

Filtering 
and

Segmentation

Fuzzy c-means
+

GMM

Relative power

SEF

Poincaré index

wSMI

iCOH

Lempel-Ziv 
complexity

Ch
an

ne
ls 

av
er

ag
e

Figure 4.1: Signal processing and analysis pipeline. The recorded signal is filtered and segmented, before
extracting the different features. Each feature is then averaged across all channels before performing
the clustering analysis. The patient’s consciousness level is subsequently determined by applying a
decision rule presented in Section 4.2.

cluster analysis is performed to partition the data into two clusters: conscious and unconscious.
Rather than using a hard-clustering approach, a soft-clustering analysis is preferred in that an
output that expresses a degree of how likely a patient is conscious is desired. In this case, data
points can belong to multiple clusters and the sum of membership to all clusters equals one
[Pet+13]. The method provides a very convenient way to reach a final decision by analysing the
different available variables. Two well established methods are used in this case: fuzzy c-means
(FCM) [Bez81] and Gaussian mixture models (GMM) [SS12]. The cluster membership value ([0, 1])
corresponding to the conscious-cluster is then used as the estimated level of consciousness and
is determined by combining the results of these two soft-clustering methods. The closer to 1

the value is, the higher the probability that the patient is conscious.

The proposed approach is initially applied to a DoC data-set containing EEG recordings of
VS and MCS patients. Different scoring associated with the DoC patients’ eyes states (open or
closed) are available and are thus used to evaluate the approach. In the end, the approach is
applied to ECoG and EEG data recorded from CLIS patients to assess their consciousness levels.
The details of the computation of each measure and the parameters used to do so are reported
in Chapter 5.

4.3 Thesis contributions and significance of the study

In this thesis, a new set of features is used to analyse EEG/ECoG signals recorded from CLIS
patients in order to assess their levels of consciousness. The usage of different features allows
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the extraction of distinctive meaningful information from the data. This in turn can reduce mis-
diagnosis rate and possibly allows an early diagnosis in that a consciousness signature detected
by one method could be missed or ignored by another. In other words, each measure capture
a different phenomena. Consequently, combining several measures maximise the chances of
getting the correct state of the patient. This can subsequently be used as a supplementary
diagnosis tool for the physicians. By using cluster analysis to associate all those features, an
index that estimates the patient’s consciousness is derived and will be used to identify the
optimal time to communicate with the patient. Such information would reduce the time wasted
on unsuccessful communication attempts and would be beneficial for all parties.
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5 Data analysis

The previous chapters defined the problem at hand, discussed the state-of-the-art of studies in
consciousness detection and communication with LIS patients and introduced the proposed
approach to solve the problem. This chapter starts with introducing the different datasets that
will be used, and proceeds by describing in more details the different methods employed to
obtain the features that will serve as input to the clusters analysis systems. This is followed
by the description of how the patients’ levels of consciousness is deduced from the clustering
results.

5.1 Data description

5.1.1 Disorders of consciousness data

The dataset is composed of polysomnograms21 (PSG) obtained from the Laboratory for Sleep,
Cognition and Consciousness, and Centre for Cognitive Neuroscience (CCNS) of the University
of Salzburg in Austria. In addition to EEG, other physiological signals were also recorded along
with scores representing the patients’ eyes states: eyes open (O) or eyes closed (C). When the eyes
repeatedly switched between opening and closure, the state was scored "O/C". Furthermore, the
data was divided into night (period of darkness) and day (period of lightsomeness) [Wis+17].

The original dataset contains data from 11 MCS and 12 UWS patients [Wie+18]. However,
six patients were excluded from the analysis performed in this thesis since the time stamps for
their eyes scoring were unavailable. The demographic information of the remaining patients
are presented in Table 5.1 and more information about the complete dataset can be found
in [Wis+17]. For 58.82% of the patients, the condition was caused by TBI. For the rest of them, it
was caused either by a cerebrovascular accident (CVA) or by anoxia22 (17.67% each). A unique
patient’s state was induced by subactute sclerosing panencephalitis23 (SSPE). The period since
injury varies between 1 and 120 months, and the CRS-R between 3 and 14.

21Polysomnography: technique to assess sleep and its disorders by recording several physiologic attributes such as
EEG, EMG, EOG and EKG.

22Condition characterised by an absence of oxygen supply to an organ or a tissue
23SSPE: progressive neurological disorder of children and young adults that affects the central nervous system (CNS).

It is a slow, but persistent, viral infection caused by defective measles virus. Source: https://www.ninds.nih.gov/
Disorders/All-Disorders/Subacute-Sclerosing-Panencephalitis-Information-Page
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Table 5.1: Demographic information of patients with disorders of consciousness.

Patient Age Gender
Clinical As-
sessment

Aetiology
Period since in-
jury (months)

CRS-R
total

L1 21 M UWS TBIa
7 6

L3 16 F UWS TBI 1 7

L13 74 F UWS TBI 1 3

S12 52 M UWS TBI 13 4

S13 58 F UWS CVAb
28 4

S14 61 M UWS anoxiac
32 4

S16 50 F UWS CVA 45 4

S17 19 M MCS/VS SSPEd
24 3

L4 48 M MCS TBI 8 11

L7 66 M MCS CVA 3 10

L8 62 M MCS TBI 2 8

L9 61 M MCS anoxia 2 10

L16 43 F MCS TBI 6 21

S2 45 M MCS TBI 12 8

S5 21 M MCS anoxia 28 13

S6 50 F MCS TBI 113 14

S7 30 M MCS TBI 120 13

a TBI: Traumatic Brain Injury
b CVA: Cerebrovascular Accident
c anoxia: Condition characterised by an absence of oxygen supply to an organ or a tissue
d SSPE: Subacute Sclerosing Panencephalitis

The number of recording channels depends on where the patient was located: Salzburg
(Austria) or Liege (Belgium). Patients from Salzburg were identified with an ’S’ and those from
Liege, with an ’L’. The EEG data was recorded from 18 channels (resp. 12 channels) placed
according to the 10-20 system [Jas58] for the Austrian (resp. Belgian) group. Only the common
channels illustrated in Fig. 5.1 are used for further analysis.

5.1.2 CLIS data

Although a locked-in state could result from a coma following a brain injury (cf. Fig. 2.3), all
CLIS states in the dataset used in this work resulted from ALS. The data consists of ECoG
and EEG recordings obtained from the Universtitätsklinikum of the University of Tübingen in
Germany.
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5.1 Data description

Figure 5.1: Illustration of the common recording channels for all DoC patients. The sampling rate is 500

Hz. Patients were based in Austria (Austrian group) and in Belgium (Belgian group) [Wie+18]. The 12

channels highlighted in the figure represent the common channels for both groups.

5.1.2.1 ECoG data

The 24-hour long data was obtained from a 40-year-old male in a totally locked-in state, which
was first diagnosed with ALS in 1997 at age 29 and entered CLIS 11 years later [Mur+11;
Soe+13]. The data was acquired with a BrainAmp amplifier from Brainproducts GmbH (Munich,
Germany) at a sampling rate of 500 Hz. For this patient, an ECoG grid of 128 platinum
electrodes from Ad-Tech Medical Instruments Corporation (Wisconsin, USA) was surgically
placed and covered the left frontal, temporal and parietal lobes [Ben+14; Soe+13]. The specific
locations of the recording channels, as well as the locations of the ground and reference
electrodes, are shown in Fig. 5.2. Due to recurrent signal failures, the electrodes in the middle
were not used, leaving a total of 64 usable channels [Ben+14]. These channels are shown in
green in Fig. 5.2. This data recorded from 16/03/2008 00:34 to 17/03/2008 00:34 consists of the
last successful communication session with this patient denoted as GR [Mur+11].

An experiment during which the patient was performing an auditory paradigm task was
performed from 14:50 to 17:00. He was asked questions requiring yes or no answers. The
questions are of general knowledge, or are personal questions which answers are known by the
family members and/or the caregiver. The question can be for example: "Is Paris the capital of
Germany?" or "Are you German?". The questions are also paired, meaning that for each question
with a positive answer, there is a matching question that answers negatively. The equivalent
paired questions for the previous examples would be: "Is Berlin the capital of Germany?" or "Are
you Dutch?". At first, during training sessions, these paired questions with known answers
are used to train a classifier. Motor imagery, specifically µ rhythms were used to distinguish
between both answers. To answer yes, the patient has to imagine movement of his right hand,
and to answer no, he has to imagine movement of his foot. Afterwards, the trained classifier is
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Figure 5.2: Implanted ECoG electrodes in a CLIS patient, showing the 128 channels and emphasising the
64 recording channels (in green). S032: ground, and G102: reference (in yellow). Image courtesy of the
Universitätsklinikum, University of Tübingen in Germany.

used in a feedback session during which the patient is also asked paired questions with known
answer, but after each question, the patient is given an assessment of his answer. An example
of such feedback is illustrated in Fig. 5.4. When the classifier’s accuracy is satisfying (above
70% [K+̈09]), it is subsequently used to classify answers to open questions. Open questions
covered topics such as the patient’s mood and feelings, and also his physiological status, for
example: "You feel good today?"/"You feel bad today?". The questions asked during the experiment,
as well as the experimenter’s notes and comments are reported in Table C.2 in Appendix C.

The data from this patient is exceptional in the sense that first, the patient has been trained to
use BCI since the time he was diagnosed with ALS. And secondly, to the best of our knowledge,
this is the only dataset in which the experimenter confirmed that during a specific time frame,
the patient was undoubtedly conscious: he was able to correctly answer all the questions that
were asked to him. This was also the first successful communication out of 170 attempts for
this patient.

5.1.2.2 EEG data

The EEG data were recorded from 2015 to 2019 from nine CLIS patients (mean age (±SD) = 48.1
(±21.26) years) during rest and while accomplishing the same auditory paradigm described
in the previous subsection. The states of the patients reported here are as of 2019 and more
information about them can be found in Table 5.2. A detailed description of each patient is
also provided in Appendix D. All of them are ALS patients and no brain disease unrelated to
that were discovered. In addition, all of them present almost normal sleep patterns [Mal+19].
All patients’ information as well as the dates of recordings and the recording channels are
summarised in Table 5.2. More information can also be found in [Mar+21; Mal+19]. It is
important to note that this dataset was involved in a controversy after the legitimacy of the
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results obtained by Chaudhary et al., in their now retracted publication [Cha+17] asserting a
successful communication with several CLIS patients using fNRIS and EEG, were questioned
in [Spu19]. The researchers were accused of scientific misconduct related to the manipulation
of the data [Rij19; Fin19], which in turn were denied by the accused [Cha+18]. The validity of
the raw data itself and the circumstances of its recordings were never questioned and this study
make use only of the raw data of the patients.

Figure 5.3: Overall list of electrodes from which the EEG signals were recorded for the CLIS patients.
Electrodes were placed over the frontal lobe, the motor and sensorimotor cortices, and over the central
sulcus.

The experimental setup is similar to the one reported in the previous subsection. Particularly,
a binary communication is attempted using an EEG-based BCI. Fig. 5.4 illustrates the structure
of the BCI system developed to communicate with the CLIS patients. They were asked a series
of questions with known answers, a classifier was trained, and used afterwards to classify their
answers during a feedback session. In this case, the classification results are provided to the
patients.

The sampling rates and electrodes sites were different for each patient and/or session. Overall,
the sampling rates used were 200, 250 and 500 Hz and the number of EEG channels varies
from 4 to 8, except for patient P6 (22 channels). This inconsistency across patients, even across
sessions for the same patient, is due to the difficulty to record data from CLIS patients and
other external factors. Fig. 5.3 shows the overall channels positions for all patients. Each session
lasted about 10 minutes, during which the patient was asked 10 pairs of questions. This means
that 10 of them requires a positive answer and 10, a negative one.

51



5 Data analysis

Table 5.2: CLIS patients information.

Patient Age Gender ALSd Recording dates Fsa Labels

P1 75
b F 10

18/05/15

200

FC5, FC1, FC6, CP5, CP1, CP6

20/05/15 FC5, FC1, FC6, CP5

24/01/17 FCC5, FCC3, FCC4, FCC6, Cz
11/04/19 500 FFC3h, FCC3H, CCP3H, Cz, FFC4h,

FCC4h, CCp4h

P2 65
c M 4 22-26/06/15 200 FC5, FC1, FC6, CP5, CP1, CP6, AF3,

AF4

P3 80 F 7 13-16/07/17 500 FC4, FC5, FC3, FC6, Cz

P4 29 F 4

18-22/01/16 200 FC5, FC1, FC2, FC6, CP5, CP1, CP2,
CP6

27-28/03/19

500

FFC3h, FCC3H, CCP3H, Cz, FFC4h,
FCC4h, CCp4h

08(-11)/07/19 AF3, F3, Cz, F4, AF4

P5 58 M 7

27-31/07/15

200 FC5, FC1, FC2, FC6, CP5, CP1, CP2, CP6

27-28/01/16

P6 37
c M 8

29/05-
01/06/17

500

FC5, FC6, C5, C6, Cz, T9, T10

02-03/06/17 FC5, FC6, C5, C6, Cz
15-17/04/18

Cz, C1, C2

21-25/05/18

26-29/05/18 C2, Cz, C1, Fz, P4, Pz, P3

17-18/01/19 AF3, F3, F5, FC3, FC5, C5, C3, T7, CP5,
CP3, CP1, C1, Fz, FCz, F4, Cz, FC4, C4,
C2, CP2, CP4, CPz

11-13/02/19 FP1, Fz, F3, F7, FT9, FC5, FC1, C3, T7,
TP9, CP5, CP1, Pz, P3, P7, O1, Oz, O2,
P4, P8, TP10, CP6, CP2, Cz, C4, T8,
FT10, FC6, FC2, F4, F8, Fp2

P7 56
b F 7

14-17/11/16 250 FC3, FC4, FC5, FC6, Cz
18,20-21/04/17 500 T9, T10, FC5, FC6, C5, C4, Cz

P9 33 F 6

12/06/17

500

F3, F4, C3, C4, Cz
13/03/19 Cz, C3, C4, Fz, F3, F4, AF3, AF4

14/03/19 FFC3h, FCC3H, CCP3H, Cz, FFC4h,
FCC4h, CCp4h

P10 25 M 5 29-30/06/17

500

C5, C6, FC5, FC6

09-10/07/18 Cz, C1, C2

a Sampling frequency in Hz.
b Deceased in 2019.
c Deceased in 2018.
d Years since ALS.
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Figure 5.4: Experimental setup of the BCI-based communication with the CLIS patients. The EEG, EOG,
as well as NIRS signals were acquired and pre-processed before extracting the features to classify the
yes and no answers. The questions were provided in an audible manner. From [CMKB21] (CC BY 4.0).

5.2 Methods description

The following sections describe in more details the approach illustrated in Fig. 4.1. All analysis
except stated otherwise were performed using MATLAB R2018b (Massachusetts, Texas, USA),
the Fieldtrip toolbox [Oos+01] and custom written codes. Prior to any other processing
and analysis, the data was re-referenced to the mean and band pass filtered at frequencies 0.5
to 45 Hz using a third order Butterworth filter using the MATLAB commands butter and
filtfilt [Coh14]. The signal was subsequently partitioned into segments of 3-seconds length
sliding 1-second at a time. Given the states of the patients, no artefacts removal were performed
on the data.

5.2.1 Spectral analysis

A transformation of the signal from time into frequency domain can be done using Fourier
transformation [Dro06]. This does not change the signal, only its representation. For a time
series x(t), the frequency representation is obtained by:
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X( f ) =
1
T

T

∑
t=1

x(t)ei2π f (t−1)/T (5.1)

where f is the set of discrete frequencies [− T
2 , T

2 ] and T is the window length [BZ11]. The
Fast Fourier algorithm is usually used to analyse a signal in the frequency domain. It outputs
complex values and to interpret them, it is common to employ the power spectrum of the
signal [Nie05]. Spectral analysis is commonly used to evaluate the different frequency bands (δ,
θ, α, and β) of the EEG signal [Dro06]. High-frequency contents of a signal are often interpreted
as a measure of rapid variation in the signal [NS05].

5.2.1.1 Relative power

For a signal x(t), the relative power of the δ (0.5-4 Hz), θ (4-8 Hz), α (8-12 Hz) and β (12-30 Hz)
were calculated using Eq. 5.2 [BCP16; Wan+15].

RP =
∑

f2
f= f1

Sx( f )

∑
fh
f= fl

Sx( f )
(5.2)

where: f1 and f2 specify respectively the lower and upper limits of the frequency band of
interest. fl = 0 Hz and fh = 45 Hz (upper limit of the cut-off frequency during filtering) in
this particular case, and Sx( f ) is the power spectral density of the signal x(t) at the frequency
f [SM05]. A commonly used method to estimate Sx( f ) is based on the Fourier transform of the
signal x(t) [BZ11]:

Sx( f ) = lim
N→∞

X( f )X∗( f ) (5.3)

where X( f ) is the Fourier transform of the signal x(t) obtained from Eq. 5.1. Practically, the
PSD was estimated using the MATLAB function pwelch with a Hamming window of 1/8 size
of the data segment and a 50% overlap, using the Welch method [Wel67].

5.2.1.2 Spectral edge frequency

Spectral Edge Frequency (SEF) is a commonly used feature for sleep analysis and classification.
It consists of computing the r-th percentile of the total power that was obtained from the power
spectral density [Nak+17]. In other words, it is the frequency below which a certain fraction
of the signal power is contained. It is expressed as SEFr where r represents the fraction of the
signal power for which the edge frequency is calculated [IRV14; AMK09].
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The most common r values for the SEF are 50% and 95%. SEF50 corresponds to the median
frequency of the signal [IRV14; AMK09]. SEF95 is computed using Eq. 5.4, where f is the
frequency, Fs represents the sampling frequency and r = 0.95. The obtained value was further
normalised by dividing it to the upper limit of the critical frequency during filtering, which
equals 45 Hz.

SEFr

∑
f=0

Sx( f ) = r
Fs/2

∑
f=0

Sx( f ) (5.4)

5.2.2 Complexity analysis

Complexity measures quantitatively assess how sophisticated the structure of a biological
system is. Signals with a certain regularity do not have a too large complexity and in con-
trast, irregular signals have higher complexity. An activated brain produces largely complex
signals [NS05].

5.2.2.1 Poincaré plots

A Poincaré plot is a non-linear analytic method to analyse the variability of time series signals.
It describes the behaviour of the signal in the phase space. For a given signal X of length N, it is
constructed by plotting the signal so that the x-axis represents the EEG voltage at a specific time
xk and the y-axis represents the EEG voltage xk+τ after a constant time delay τ. Specifically,
the Poincaré plot is the scatter plot representing the set S of points in Eq. 5.6 [Hen+15]. This
time delay τ should be carefully chosen since too small time delays may produce near-linear
reconstructions with high correlations between consecutive phase space points, and too large
delays might neglect any deterministic structure of the series [SC13]. An optimum value of τ

is 1/5 to 1/4 of the dominant cycle period [HMS14]. For example, a time delay value of one
sample is equivalent to 4 ms at a sampling rate of 256 Hz.

X = x1, x2, ..., xN (5.5)

S = (x1, x1+τ) , (x2, x2+τ) , ... (xN−τ , xN) (5.6)

Fig.5.5 illustrates one such plot with the descriptors SD1 and SD2 that can be used to
geometrically quantify it. On one hand, SD2 represents the standard deviation (SD) of the
points along the line of identity. It represents the variability over the entire recording period,
namely the long term variability. On the other hand, SD1 is perpendicular to the line of identity
and represents the variability from one point in the time series to the next, namely the short
term variability of the signal. Both SD are computed using Eq. 5.7 and 5.8 [Gol13; HMS14].
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Figure 5.5: Poincaré plot showing the descriptors SD1 and SD2 with τ = 1. Statistically, SD2 and SD1

represent the standard deviation of the points from the long axis (line of identity) and the short axis
(perpendicular to the line of identity) respectively. A round oval pattern of the plot represents a random
signal, while an elongated shape represents signals with linear features.

SD1 =

√
2

2
SD(xn − xn+τ) (5.7)

SD2 =

√
2SD(xn)2 − 1

2
(xn − xn+τ)2 (5.8)

The SD1/SD2 ratio also known as Ellipsoid Radius Ratio (ERR) [Eag+18] can also be used
to evaluate signal randomness. A round oval pattern corresponds to a random signal, while
a more elongated shape represents signal with linear features [HMS14]. The values of SD1

and SD2 for all datasets were computed using the extended Poincaré plot algorithm developed
in [Sat+19].

5.2.2.2 Lempel-Ziv complexity

This complexity measure developed by Abraham Lempel and Jacob Ziv [LZ76] evaluates
repetitiveness in binary sequences. Before computing the LZC, the data should be transformed
into a binary sequence (see Fig. 5.6). An analytic signal is related to a real signal x(t) by:

xa(t) = x(t) + ixh(t) (5.9)

where xh(t) is the Hilbert transform of x(t) [BZ11].
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ai(t) = |xh(t)| (5.10)

bi(t) =

{
0, if ai(t) ≤ mean(ai)

1, otherwise
(5.11)

A binary vector bi : ...01010010001... is then obtained. For a given binary sequence S =

s1s2...sn of length n, LZC counts the number of distinct patterns in the data. Let c(n) be the
complexity counter, which value increased by one unit every time a new sequence of characters
is encountered. In addition, let P and Q be two sub-sequences of S. At the beginning, P = S(1)
and c(n) = 1. Q is then set to extract all sub-strings starting from position 1 (Q = S(2)) until
the further possible to the right. Q can be thought as a delimiter. Every encountered new
word is added to a dictionary if it did not occur before (c(n) = c(n) + 1). During the next step,
P = S(2) and the same process as before is repeated. LZC is the number of different sub-strings
encountered as the binary sequence is streamed from the left to the right. The greater the
degree of randomness, the greater the number of different sub-sequences that will be present,
thus the higher the Lempel-Ziv complexity [Sch+15; Abo+06].

(a) Raw EEG signal x(t) (b) abs(hilbert(x(t))) (c) Obtained binary signal

Figure 5.6: Signal binarisation for the computation of the Lempel-Ziv complexity. (a) Raw EEG signal. (b)
Hilbert transformation of the signal. The binary values in (c) are obtained by using the mean of the
absolute value of the transformation as a threshold, and assigning 1 to values higher than the threshold,
and 0 to lower values.

In practice, xh(t) is extracted from the analytic signal using the MATLAB function hilbert.
The binary sequence is obtained by taking the mean of the absolute value of the Hilbert
transform of the signal as a threshold, as expressed in Eq. 5.11 [Sch+15]. LZC is then computed
on each binarised EEG data segment using the MATLAB toolbox calc_lz_complexity [TR15;
BR15].

5.2.3 Connectivity analysis

Brain connectivity assesses the interaction between two brain regions or between signals
recorded from two channels. The different brain regions communicate with one another during
mental tasks. Investigating this may shade some lights on the underlying brain processes.
Generally, high connectivity values indicate high cooperation and more information sharing
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between the two underlying brain regions or channels. The temporal coherence between the
activities of different brain areas is known as functional connectivity [SC13]. It represents the
statistical relationship between measures from both regions. Two connectivity measures were
utilised in this thesis: the iCOH and the wSMI.

5.2.3.1 Coherency

Coherency is a linear method that was designed to identify the relative timing of brain activity
between two regions as well as their phase consistency [KSD09; Sak+16; Nol+04; BZ11]. It
is based on the Fourier analysis of the time series signal. The signal is transformed from
the time domain to the frequency domain, allowing the separation of the amplitude from the
phase information. The latter allows the computation of the phase delay, which can be used
to determine the temporal offset between the time series. An increased functional interaction
between the underlying neuronal networks leads to a higher value of coherency [Sil05]. At
frequency f , the coherency Cxy of two signals x and y is defined as the ratio:

Cxy( f ) =
Sxy ( f )√

Sxx ( f ) · Syy ( f )
(5.12)

where Sxy( f ) is the cross power spectral density of the signals obtained using Eq. 5.13 [BZ11],
and Sxx( f ) and Syy( f ) are the auto power spectral density of x and y respectively [Pri81].

Sxy( f ) = lim
T→∞

1
T

X( f , T)Y∗( f , T) (5.13)

where Y∗( f ) is the complex conjugate of Y( f ). Sxy( f ) is a complex value with a distinct
magnitude and a distinct phase, which represents the relative phase i.e. the average phase
difference between x and y [NS06]. Consequently, the coherency Cxy is a complex quantity:

Cxy( f ) = |Cxy( f )|eiφ (5.14)

|Cxy( f )| =
√
<(Cxy( f ))2 +=(Cxy( f ))2 (5.15)

φ = arg(Cxy) (5.16)

|Cxy( f )|2 is known as the magnitude-squared coherence or simply coherence. φ represents
the phase angle between x and y. A possible determination of the direction of information
flow can be inferred from the sign of the phase. Two independent EEG channels have a
random phase difference, in which case, the coherency is zero [Sak+16]. A deterministic signal
yields a coherence value of one, since the amplitude and phase are fixed on every signal
observation [NS06].
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The electrical brain activity generated by one source spreads across the cortex. Hence, it can
be measured in many channels. This is called volume conduction. Volume conduction can
cause false brain interaction to be detected. It is accepted that "an observed scalp potential
have no time lag to the underlying source activity". Since the imaginary part of coherency is
only sensitive to two processes that are time-lagged to each other, it is not affected by volume
conduction. Consequently, using only the imaginary part of coherency =(Cxy( f )) solve this
volume conduction problem [Nol+04]. In general, a positive value of the imaginary part of
the coherence between x and y implies that they are interacting and that x precedes y. This
suggests that information is flowing from x to y [Sak+16; Nol+04].

Since this study is concerned with the degree of relationship between two channels and not
its direction, the absolute value |=(Cxy( f ))| of the imaginary coherence is employed. It is then
calculated between all pairs of recording channels using custom written MATLAB scripts. Thus,
for each data segment, a connectivity matrix representing the coupling between all pairs of
channels is obtained.

5.2.3.2 Weighted Symbolic Mutual Information (wSMI)

The wSMI is another method that evaluates the functional connectivity between signals from
two channels or brain regions. It can estimate both linear and non-linear relationships by
evaluating the extent to which the two signals present non-random joint fluctuations that
suggest sharing of information.

(a) Symbolic Transform (b) Non-linear coupling (c) Weights

Figure 5.7: weighted Symbolic Mutual Information. (a) The signal is transformed into a series of symbols.
Symbol length k is equals to 3 in this case, which gives 3! = 6 possible symbols. (b) Non-linear coupling
identification by checking of increase or decrease in the signal. (c) The weights are assigned such that
it is 0 for symbols that are identical or of the opposite sign. Otherwise, its value is set to 1. Adapted
from [KSF13]. Copyright © 2013. Reproduced with permission from Elsevier.

First, the time series x and y are converted into sequences of discrete symbols (x̂, ŷ) depending
on amplitudes trends of a specific predefined number k of consecutive time points separated
by a temporal separation of elements τ [LBMM15]. Using symbolisation of the data reduces
the sensitivity to measurement noise and increases the efficiency of numerical computations
[KSF13]. In general, the symbols are constituted of k = 3 elements, leading to a total of 3! = 6
different potential symbols (a, b, c, d, e, f ) [LBMM15] (cf. Fig. 5.7a). The value of τ is chosen in
a way to sensitise wSMI to specific frequency ranges: wSMI is sensitive to higher frequency
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bands when smaller values of τ are used [KSF13]. For instance, with τ = 4 ms, the analysis
captures patterns of relatively high frequency. Although, with that value, it is impossible to
estimate wSMI when the sampling frequency is 250 Hz or 125 Hz. The value of τ is determined
depending on the frequency of interest according to:

fmax =
fs

k.τ
(5.17)

where fmax is the maximum resolved frequency and fs is the sampling frequency [Imp+19;
KSF13]. The wSMI value between two signals x and y is determined by computing the joint
probability of each pair of symbols co-occurring in the two time series using Eq. 5.18.

wSMI(x, y) =
1

log(k!) ∑
x̂∈X̂

∑
ŷ∈Ŷ

w(x̂, ŷ)p(x̂, ŷ) log
(

p(x̂, ŷ)
p(x̂)p(ŷ)

)
(5.18)

where p(x̂, ŷ) is the joint probability of co-occurrence of symbol x̂ and symbol ŷ, p(x̂) and p(ŷ)
are the probabilities of those symbols in each respective signal.

The method checks symbolic patterns of increase or decrease in the signal in order to rapidly
and robustly evaluates the signal entropy, which in turn estimates non-linear couplings (cf.
Fig. 5.7b). Moreover, on one hand, wSMI neglects co-occurrences of identical or opposite-sign
symbols, which could likely come from common-source artefacts, by setting the weights w(x̂, ŷ)
in Eq. 5.18 to zero [KSF13]. This will eliminate volume conduction artefacts (cf. Fig. 5.7c).
Furthermore, wSMI quickly decreased to zero as the distance between channels decreases given
that the measure was designed to eliminate common source artefacts. On the other hand, it
favours non-trivial pairs of symbols. As a result, wSMI is less susceptible to traditional EEG
artefacts [KSF13].

This approach was introduced in [KSF13] as a potential consciousness signature by measuring
the global information sharing across brain areas, under the hypothesis that “conscious content
that we experience is defined by the global communication between distant cortical areas”.
Essentially used in disorders of consciousness research, it successfully distinguished between
patients in UWS, MCS, and conscious healthy subjects. In the meanwhile, results from sleep
research showed that significant levels of connectivity were observed in all electrodes during
wakefulness and that the highest values were detected in the posterior brain areas. In addition,
the connectivity values were reduced during N3-sleep [Imp+19]. In [Roh+17], wSMI was further
used to correctly diagnose a trauma patient that was initially diagnosed with UWS, to be in a
total locked-in state instead.

To reduce the computational cost during the analysis, the patients’ data were down-sampled
from 500 Hz to 200 Hz when necessary. Subsequently, wSMI was computed using custom
written MATLAB scripts. Similarly to iCOHθ , a connectivity matrix is obtained for each data
segment.
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5.2.4 Consciousness level assessment

Based on the hypothesis presented in Section 4.2, the following features were extracted to
evaluate the patient’s level of consciousness: relative powers in the θ and β bands, SEF95, ERR,
LZC, iCOHθ , and wSMI in the θ band. The recordings were performed from different channels
for the CLIS patients, but in general the channels were located in the central and frontal areas.
Thereupon, the results obtained for each session were averaged over all channels or pairs of
channels, leading to a feature vector of size n− by− p, where n represents the data samples
and p is the dimension of the feature vector. The average for iCOHθ and wSMI were obtained
by computing the mean of the lower part of the respective connectivity matrices without the
diagonal. So that each feature has equal weight during the clustering analysis, the feature
vector was normalised so that the values in each dimension range from 0 to 1.

The feature vector is in turn analysed using two soft-clustering approaches, namely the fuzzy
c-mean clustering (FCM) and Gaussian Mixture Model (GMM) already introduced in Section 2.3.1.
Soft-clustering gives a membership degree to each cluster. In this case, the goal is to separate
the features into two clusters corresponding to conscious and unconscious respectively. The
consciousness level is determined as the value of the degree of membership of each data
point to the cluster corresponding to a conscious state. The characteristics of this cluster are
determined according to the hypothesis mentioned in Section 4.2.

On one hand, to implement the FCM clustering approach, the MATLAB function fcm was
applied to the data with the specified parameters: N = 2 clusters, the fuzzifier parameter m was
set to 2 as recommended by previous research [Pet+13], the maximum number of iterations was
fixed at 1000 and the minimum improvement in objective function between two consecutive
iterations ε at 1e−5. The algorithm then returns N = 2 clusters centres for each dimension of
the feature vector. On the other hand, the MATLAB function fitgmdist was used to fit GMMs
to the data using the EM algorithm presented in Section 2.3.2.2 and the same parameters as
with the FCM clustering analysis. In addition, MATLAB posterior function of the Statistics
and Machine Learning Toolbox was used to estimate the component-membership posterior
probabilities [SS12].

From an algorithmic point of view, FCM uses Euclidean distance to evaluate the distance
between the objects and the cluster centres, which is more susceptible to outliers, while GMM
relies on Mahalanobis distance. Moreover, FCM assumes that the shape of the clusters are
more or less spherical with approximately the same size. This corresponds to a Gaussian
mixture distribution with a single covariance matrix that is shared across all components, and
is a multiple of the identity matrix. Furthermore, GMM is more flexible by allowing unequal
variance for the variables [Mat21].

Results obtained from both clustering methods are subsequently combined to get a consensus
probability. Several methods exist to undertake such task. However, most of them are only
applicable to hard clustering, and thus only produce binary results [Wan+13]. Soft-voting
allows the use of different soft clustering results (also called based clustering results) obtained
from different clustering methods or from the same method using different parameters. In
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this situation, a consensus between the results obtained from FCM and GMM is desired. The
final clustering result is determined by averaging the based clustering results (Eq. 5.19) or by
computing their product (Eq. 5.20) [ANV20; SBL21]. Specifically, if the probability that the
object i is a member of the cluster c in partition m1 is P(c, m1), and the probability that the
same object belongs to the cluster c in partition m2 is P(c, m2), the probability that it is member
of both partitions simultaneously is:

Pavg(c, m1m2) = average (P(c, m1), P(c, m2)) (5.19)

Pprod(c, m1m2) = prod (P(c, m1), P(c, m2)) (5.20)

The new degree of membership is then the value located at the same position in the matrix.

For example, if m1 =

0.8 0.2
0.3 0.7
0.1 0.9

 and m2 =

0.7 0.3
0.1 0.9
0.2 0.8

 respectively, the new degree of mem-

bership for the first object would be [0.8 ∗ 0.7, 0.2 ∗ 0.3] = [0.56, 0.06]. The results need to be
normalised afterwards so that the degree of membership sum up to 1 [Wan+13]. In this case,
the final result would be [0.56/(0.56 + 0.06), 0.06/(0.56 + 0.06)] = [0.903, 0.097].

5.2.5 Statistical analysis

All statistical tests are performed using MATLAB R2018b Statistics and Machine Learning
Toolbox. A t-test (MATLAB: ttest) is performed on normally distributed data, which normality
is assessed using ztest. In case the data comes from an unknown probability distribution,
non-parametric tests such as Wilcoxon rank sum test (MATLAB: ranksum) or Friedman’s test
(MATLAB: friedman) are performed. On one hand, a Wilcoxon rank sum test checks if two
independent samples come from identical continuous distributions with equal medians, against
the alternative that they are not. On the other hand, a Friedman’s test assesses if the column
effects in a two-way layout are all the same, against the alternative that they are not [HWC14;
BZ11; CF14].

5.3 Summary

This chapter introduced the different groups of patients as well as the details of the approach
used to evaluate their levels of consciousness. First, the data from patients with disorders of
consciousness were described followed by the data of the CLIS patients. This is then followed
by the description of the different approaches used to extract the features from the EEG/ECoG
signals. Selected features were afterwards analysed by the means of two clustering methods,
which results were combined using an ensemble method and a consensus result is obtained.
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The chapter ends with a comprehensive description of the clustering analysis as well as the
parameters used to determine the clusters. The results of all analysis are presented in the
following chapter.
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6 Results and discussions

The goal of this thesis is to evaluate the levels of consciousness of CLIS patients using EEG.
To do so, several measures based on the signal frequency power, complexity and connectivity
were computed. Then the group of selected features were analysed using two cluster analysis
algorithms, and an estimation of consciousness level is output. The patients and methods
used to assess their levels of consciousness were introduced in Chapter 5. In this chapter,
the corresponding results are presented and discussed. First, the results for the DoC patients
are presented, followed by those of CLIS patient GR. After evaluating the performance of the
presented approach on both datasets to show that it is working, it is finally applied to the EEG
data of the remaining CLIS patients.

6.1 Patients with disorders of consciousness

The approach is initially applied and evaluated with data recorded from patients with disorders
of consciousness, which results will be presented first. The hypothesis being that since their
levels of consciousness are relatively lower than that of CLIS patients, and that CLIS patients
brain signals are comparable to that of healthy subjects.

Results from UWS patient L1 and MCS patient S7 in particular will be showcased in the
following subsection. As presented in Table 5.1, patient L1 is 21 years old and in a VS following
a TBI, with a CRS-R score of 6. The injury occurred 7 months prior the data recording. This is
the only patient which EEG features produced practically concurring results as will be shown
in Section 6.1.1. In addition, patient L1 also possesses the most eyes scoring information (see
Table B.1 in Appendix B). Patient S7, on the other hand, is a 30 years old MCS patient, which
condition also results from a TBI and with a CRS-R score of 13. At the time of the recording, 120

months have passed since the injury. This is the longest time since injury across all patients in
this group. Apart from that, patient S7 also exhibited the lowest centroid linkage distance24 in
the clustering results. The results for the rest of the DoC patients are presented in Appendix B.

24distance between two objects belonging to two different clusters, computed as the Euclidean distance.
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6.1.1 Results of individual measures

6.1.1.1 Spectral features

The spectral features consisted of the relative powers of θ and β bands, as well as the SEF95. An
increase of θ power can be observed during drowsiness, but also during mental task, especially
when associated with an increase of β power [Nie05; BCP16; GIM18]. Consequently, conjoined
increases of both frequency power suggest an increase of the consciousness level. On the other
hand, a value of SEF95 above 13 Hz is considered as definitely conscious [Ram+80; Tou+19].

Patient L1 Fig. 6.1 illustrates the relative powers of the β and θ bands averaged across all
channels for this patient. The shaded area between 21:26 and 07:10 represents the night time.
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Figure 6.1: Average relative power for UWS patient L1. Only the frequency bands of interest are presented:
θ in blue and β in red. A simultaneous increase of power on both frequencies indicates an increased
consciousness level, and vice versa. The shaded area between 21:26 and 07:10 represents the night time.

Some variations are observed during the course of the recording. For instance, there is a
particularly noticeable decrease of the powers of both θ and β between 20:15 and 21:11 (with
an average value of 0.0797 and 0.0211 for θ and β respectively). This drop is more pronounced
between 21:50 and 22:50 with an average value of 0.0470 and 0.0126 respectively. Besides, the
average values of the relative powers in both frequency bands are slightly higher before night
time, with 0.1128 and 0.0479 respectively, versus 0.092 and 0.035 after night time. These values
suggest that on one hand, the patient’s level of consciousness was higher before night time and
decreased during the night throughout the following day. On the other hand, they also imply
that it was markedly reduces particularly between 20:15 and 22:50.
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6.1 Patients with disorders of consciousness

Fig. 6.2 shows the average SEF95 for UWS patient L1. Similar to the relative powers, fluctua-
tions are also observed throughout the recording. For example, SEF95 drops to less than 5 Hz
between the same time frames as before: from 20:15 to 21:11 and from 21:50 to 22:50. This small
value means that 95% of the total power was attained in the δ band, which is mostly the case
during deep sleep states. SEF95 values are also essentially below the θ band. Since that band
represents the frontier between consciousness and unconsciousness [SC13], this indicates that
the patient was most likely unconscious during that time. Outside these time frames, the values
are oscillating between 8 and 30 Hz, with a mean value of 18 Hz. This indicates that patient
L1 was conscious most of the time but that his consciousness level was oscillating between low
and high. In other words, he was most likely slipping in and out of consciousness.
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Figure 6.2: Average SEF95 for UWS patient L1. SEF95 represents the frequency below which 95% of the
signal power is contained. Night time is represented by the shaded area between 21:26 and 07:10.

Generally speaking, the average values of the θ and β relative powers are higher during the
day (0.0391 and 0.0977, respectively) compared to the night (0.0376 and 0.0942, respectively).
A Wilcoxon rank sum test performed on the data revealed that the differences between night
and day are significant at a 5% significance level for both frequency bands. Hence, the level
of consciousness of the patient was significantly lower during the night. The corresponding
p-values for all features can be found in Table B.18 of Appendix B. In the same manner as with
the relative power, night and day values of the SEF95 also differ between night and day with
a mean value of 12.42 Hz versus 19.31 Hz respectively. A Wilcoxon rank sum test indicates
that these differences are also significant with a p < 0.05. These values imply, equally as
with the relative power, that the patient was definitely conscious during daytime and that his
consciousness level was lower at night.
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Patient S7 The relative powers of θ and β bands for patient S7 are illustrated in Fig. 6.3. Night
time started at 23:00 and ended at 05:00 (shaded area in the figure). Relative β power increases
between 22:25 and 00:30 with a mean value of 0.2035 and is higher than θ (mean = 0.1592). The
same trend is also observed right before 08:00, after 10:16, and around 17:23. This surge of β

power indicates an increased brain activity, signifying an heightened consciousness level during
those times. Contrarily, a simultaneous decrease of both relative powers is observed from 02:48

to 02:59 with a mean value of 0.1210 for θ and of 0.0719 for the β band. This is also the case
from 03:59 until 04:15 with mean values of 0.1120 for θ and 0.0915 for β.
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Figure 6.3: Average relative power for MCS patient S7. Only the frequencies of interest are presented:
θ in blue and β in red. A simultaneous increase of power on both frequencies indicate an increased
consciousness level, and vice versa. Night time is represented by the shaded area between 23:00 and
05:00. The blank areas represent times when no data were recorded.

Likewise, the overall SEF95 for patient S7 is above the β band as illustrated in Fig. 6.4. At the
beginning of the recording, more precisely from 19:48 to 22:30, the value of the edge frequency
is 25.15 Hz. This value further increases to an average of 30.04 Hz between 22:30 and 00:30.
Thus, 95% of the EEG power was attained in the β bands. Consequently, the patient was
certainly conscious during these moments. On the other hand, in some short time segments no
longer than 10 minutes, the SEF95 lies in the α or θ bands. This occurs for instance between
02:52 and 02:58 with a mean value of 9.94 Hz, and between 04:03 and 04:11 with 5.92 Hz. These
low values imply that the patient was surely unconscious during these time frames. These
observations are analogous to the results obtained from the relative power. All of this suggests
that, on one hand the patient was mostly conscious given that 95% of the signal power were
only achievable above 20 Hz. On the other hand, he was definitely unconscious on short time
frames, specifically between 02:52 and 02:58 as well as from 04:03 to 04:11.
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Figure 6.4: Average SEF95 for MCS patient S7. SEF95 represents the frequency below which 95% of the
signal power is contained. Night time is represented by the shaded are between 23:00 and 05:00. The
blank areas represent times when no data were recorded.

The relative powers of the θ and β frequency bands are generally higher during night-time as
opposed to day time. The mean values are respectively 0.1833 vs 0.1715, and 0.1452 vs 0.1429.
Statistical analysis performed on the relative powers to compare night/day differences using
a Wilcoxon rank sum test determined that they were significant at the 5% level for the two
frequency bands. This implies that the patient’s consciousness level was higher during the
night.

6.1.1.2 Complexity features

Geometry-based Poincaré plots and Lempel-Ziv complexity symbolic approach were used to
assess the EEG signals complexity. Typically, highly complex signals are associated with an
activated brain, hence a high level of consciousness [NS05; Sch+15; Abo+06]. Practically, a value
of 0 corresponds to unconsciousness. The higher the complexity value is, the higher the level of
consciousness. More specifically, a value of 1 or above indicates that the patient is definitely
conscious for both methods.

Patient L1 Fig. 6.5 and Fig. 6.6 illustrate the obtained EEG complexity for patient L1 using the
ERR of the Poincaré plots and the LZC respectively. On both figures, the shaded area represents
night-time.
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Figure 6.5: Average ERR of the Poincaré plots with τ = 2 data points for UWS patient L1. A value of 0
means definitely unconscious. The larger the value, the higher the level of consciousness. Night time is
represented by the shaded area between 21:26 and at 07:10.

On one hand, the values of the ERR are low, especially before 05:55, and increase afterwards
with an average value of 0.7877. In addition, the persistent low values (mean = 0.45) between
20:20 and 21:21 as well as from 21:44 to 23:00 (mean = 0.42) suggest a reduced consciousness
level, and fit the observations in Figs. 6.1 and 6.2 of the relative powers and the SEF95 respec-
tively. The mean values of ERR before, during and after night time are respectively 0.5613,
0.5368 and 0.7936. The first two values are approximately equivalent but comparatively less
than the mean value after night time. One may conclude then that the level of consciousness is
much higher the second day of recording.

On the other hand, the highest values of the averaged Lempel-Ziv complexity were detected
prior night time. Moreover, a decreasing trend is noted from the start to the end of the
recording, except between 20:00 and 23:00 (mean = 0.62). These distinguishable drops in values
are consistent with previously presented results. The mean values of LZC before, during and
after night time (from 21:26 to 07:10) are respectively 1.024, 0.8699, and 0.8669. This latter is
indeed low compared to the value before night time, but it is high enough to still indicate a
moderate level of consciousness.

In both cases, the average EEG signal complexity of the patient during the day was higher
(0.7014 for ERR and 0.9291 for LZC) than during the night (0.5368 for ERR and 0.8699 for LZC).
Wilcoxon rank sum tests applied to the values of ERR and LZC during both times showed a
significant difference at the 5% level for both complexity measures.
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Figure 6.6: Average LZC for UWS patient L1. A value of 0 means definitely unconscious. The larger the

value, the higher the level of consciousness. Night time is represented by the shaded area between
21:26 and 07:10.

Patient S7 The average ERR of the Poincaré plots for this patient is illustrated in Fig. 6.7.
Three notable intervals featuring surge of the ERR values were observed, namely from 22:30

and 00:40 (mean = 0.4752), between 05:30 and 07:55 (mean = 0.5638), and from 15:08 to 16:50

(mean = 0.6385). Those values are considerably higher than the ERR value before 22:30, which
amounts to 0.4390. From these values, it can be concluded that the patient was at least in a
moderate level of consciousness during the night, but also between 10:16 and 15:08. Apart from
this time frame and during the day, the values of the ERR suggest a higher consciousness level,
meaning that the patient was plausibly conscious.

Fig. 6.8 illustrates the LZC during the course of the recording. The lowest values are observed
at the beginning of the recording, from 19:48 to 22:30 with a mean value of 1.0183. An increasing
trend is afterwards detected throughout the night until day time at around 06:12. The LZC
slightly decreases starting at 10:16, but ultimately its value increases starting at 15:08. Finally,
its value drops in the last part of the recording beginning at 19:24.

It was determined that in average, the values of ERR were lower during the night compared
to daytime (0.6291 vs 0.6483) for patient S7. However, a Wilcoxon rank sum test indicated that
these differences were not statistically significant with p = 0.88793. Contrarily, the values of
LZC during day and night-time differ significantly, with an average value of 1.4438 and 1.264
respectively (p < 0.05).
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Figure 6.7: Average ERR of the Poincaré plots with τ = 2 data points for MCS patient S7. A value of 0
means definitely unconscious. The larger the value, the higher the level of consciousness. The shaded
are between 23:00 and 05:00 represents the night time. The blank areas represent times when no data
were recorded.
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Figure 6.8: Average LZC for MCS patient S7. A value of 0 means definitely unconscious. The larger the
value, the higher the level of consciousness. Night time is represented by the shaded areas between
23:00 and 05:00. The blank areas represent times when no data were recorded.
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6.1 Patients with disorders of consciousness

6.1.1.3 Connectivity measures

Connectivity measures determine the association between brain regions or channels [KSD09;
Sak+16]. On one hand, linear connections between two entities can be determined using the
iCOH. On the other hand, both linear and non-linear relationships can be identified with
the wSMI measure. Both methods neglect the effects of the volume conduction in the brain,
allowing the avoidance of false connectivity in the results [Nol+04]. The connectivity was
computed between all pairs of channels and then averaged across all of them. Connectivity in
the θ band was specifically computed with both methods given the role of this frequency band
in working memory and mental task [Bor+13].

Patient L1 Looking into Fig. 6.9 that illustrates the variation of the averaged imaginary part
of θ coherence for patient L1, no distinguishable variations like in the case of the previous
features are observed. There is however a slight increase between 19:00 and the start of night
time at 21:26 (mean = 0.058). The average wSMI with τ = 16 ms for this patient is shown
in Fig. 6.10. This temporal lag corresponds to the θ frequency band. An apparent decrease
between 20:10 and 23:45 is observed, with a mean value of 0.0488. This indicates that patient
L1 was probably unconscious during that time frame, comparable to the results obtained from
the frequency-based features.
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Figure 6.9: Average iCOH in the θ band for UWS patient L1. An increased iCOH value in the θ band
implies a higher consciousness level, and vice versa. The shaded area between 21:26 and 07:10 represents
the night time.

The two connectivity measures give conflicting results regarding the average value during
the day compared to the night. On one hand, iCOHθ values are larger during night-time with
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Figure 6.10: weighted Symbolic Mutual Information with τ = 16ms for patient L1 (UWS). An increased
wSMI with this value of τ imply a higher consciousness level, and vice versa. The shaded are between
21:26 and 07:10 represents the night time.

a mean of 0.0577 as opposed to 0.0483 during daytime. In contrast, wSMI values are lower
at night with a mean of 0.0557; its mean value during the day is 0.0682. Wilcoxon rank sum
tests applied to each case determined that: first, the differences of iCOHθ were not significant
(p = 0.5496) and second, they were statistically significant in the case of wSMI at 5% significance
level. A decrease in overall brain connectivity is considered a reduced consciousness level and
vice versa.

Patient S7 Fig. 6.12 displays the wSMI averaged across all channels for MCS patient S7.
Between the start of the recording and 22:20, the mean wSMI connectivity value attains 0.0395.
It decreases to 0.0363 between 22:20 and 00:05, and also after 06:00 up until 08:03 droping to
0.0329. This indicates a decrease of the level of consciousness, relative to the time outside this
time interval. On the other hand, the last part of the recording starting at 19:34 exhibits a
larger connectivity than during 10:16-18:19, with a mean value of 0.0380, suggesting a higher
consciousness level in the last part of the recording. These results are in contradiction to those
found previously and illustrated in Figs. 6.3, 6.4, 6.7 and 6.8.

Night versus day connectivity values are different for this patient. No changes can be visually
observed from Fig. 6.11, which shows the averaged iCOHθ for said patient. Its mean value is
0.0614 during the night as opposed to 0.0621 during the day. An additional Wilcoxon rank sum
test performed to assess the night versus day differences indicate that they were no significant
variation (p = 0.6064) although the consciousness level of the patient was higher during the
day. Mean wSMI values, on the other hand, are higher during the night with a mean value
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Figure 6.11: Average iCOHθ for MCS patient S7. An increased iCOH value in the theta band implies a
higher consciousness level, and vice versa. The shaded area between 23:00 and 05:00 represents the
night time. The blank areas represent times when no data were recorded.
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Figure 6.12: weighted Symbolic Mutual Information with τ = 16ms for MCS patient S7. An increased
wSMI with this value of τ implies a higher consciousness level, and vice versa. The shaded area between
23:00 and 05:00 represents the night time. The blank areas represent times when no data were recorded.
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of 0.0387. The mean value during the day amounts to 0.0368. The night/day differences are
statistically significant at p < 0.05 according to a Wilcoxon rank sum test.

6.1.1.4 Inferences from individual features

This part recapitulates the results obtained in the previous section of the individual features for
patients L1 (UWS) and S7 (MCS). Patient L1’s results were among the best in terms of clustering
analysis outcomes, while those of patient S7 were not so good.

Patient L1 All features gave comparable results, i.e. their values increased or decreased during
roughly the same time frames. As outlined in Section 4.2, higher values of each specific feature
corresponds to conscious state, and vice versa. Therefore, it can be deduced that the patient
was certainly unconscious between 20:15 and 21:11 up to 23:00 given the drop observed in
all features during that time interval. On the other hand, the values of the features before
20:15 and also during daytime the next day were higher than the remaining of the recording,
except for ERR. Therefore, patient L1 was certainly conscious especially from 19:48 until 20:15,
and after 07:10. The values of the different features during night time are varying greatly, but
overall they are lower during night-time. Wilcoxon ranksum tests revealed that, except for
iCOH, the difference between these two time periods are significant at the 5% significance level.
This suggests that the patient’s consciousness level is significantly lower during the night. This
instance exemplifies the perfect case in which all results are mostly consistent with one another.

Patient S7 In most cases, the outcomes of the distinctive signal characteristics may diverge.
For example, for this patient, results obtained from the spectral features and the complexity
measures are similar, but are differing from those of the connectivity measures. When an
increase is observed on the former group, a decrease is detected in the latter, and inversely.
For example, while an increase of the θ and β relative powers, SEF95, and ERR was observed
between 22:25 and 00:40, LZC and wSMI values were dropping. Applying a simple majority
vote, it can be deduced that, on one hand, the consciousness levels of patient S7 heightened
particularly between 22:25 and 00:30, 05:00 and 08:00, and between 15:00 and 16:00. On the
other hand, values of all features except iCOHθ and wSMI decreased between 02:48 and 03:00

as well as between 03:59 and 04:15. The low values suggest a reduction of the consciousness
level to the point of unconsciousness. Overall and except for these short time intervals, the
values of the features were high, implying that the patient was certainly conscious the whole
time. Furthermore, daytime mean complexity values (ERR and LZC) along with iCOHθ values
were higher than during night time. However, the differences were significant only for LZC.
The values were significantly smaller during the day for the other features.
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6.1 Patients with disorders of consciousness

6.1.2 Consciousness level assessment

Now that the results of the different features are obtained, they are analysed by the means of
two different clustering approaches: fuzzy c-means (FCM) and Gaussian mixture models (GMM)
that were introduced in Section 2.3.2. These soft-clustering methods are used in particular
since the goal in the present work is to infer patients’ states using the selected features at
any given time with the maximum certainty, and these methods allow that. The membership
value to the cluster corresponding to consciousness is considered as an assessment of the level
of consciousness of the patient and is determined according to the hypothesis mentioned in
Section 4.2. Afterwards, an ensemble approach is used to deduce the level of consciousness by
combining results from the two clustering methods.

6.1.2.1 Patient L1

The two clusters obtained from the clustering analysis are labelled Cluster 1 and Cluster 2. The
values of their centres are summarised in Table 6.1. The cells in blue represent the value that
identifies with the higher level of consciousness for each feature. The cluster corresponding to
the conscious state is the one containing the most features that verifies the conditions reported in
Section 4.2. Essentially, higher values correspond to higher levels of consciousness. Therefore,
Cluster 1 contains the data points corresponding to conscious states. Table 6.1 also reveals that
results from all features correspond, i.e. all "high" values are in the same cluster (Cluster 1).

Table 6.1: Clusters centroids for UWS patient L1. Values displayed here are the real values reconverted
from the normalised values. Cluster 1 represents the first cluster and Cluster 2 represents the second
one. For each feature, the higher centroid value is highlighted in blue. The cluster corresponding to a
conscious state is the one with the most cells in blue. So, for both cases, it is Cluster 1.

Real values

L1

Cluster 1 Cluster 2 Cluster 1 Cluster 2
Ptheta 0,1107 0,0820 0,1111 0,0764
Pbeta 0,0531 0,0236 0,0507 0,0200
SEF95 24,64 10,63 23,69 8,82
ERR 0,7331 0,5328 0,7237 0,5079
LZC 1,0226 0,7878 1,0113 0,7536
iCOHtheta 0,0504 0,0500 0,0516 0,0498
wSMI 0,0676 0,0623 0,0674 0,0616

L3

Cluster 1 Cluster 2 Cluster 1 Cluster 2
Ptheta 0,1234 0,2418 0,2243 0,1132
Pbeta 0,0112 0,0409 0,0382 0,0071
SEF95 6,1560 11,6325 11,4705 5,1300
ERR 0,5345 0,9378 0,8764 0,5032
LZC 1,0259 1,1774 1,1847 0,9907
iCOHtheta 0,0631 0,0634 0,0639 0,0646
wSMI 0,0377 0,0370 0,0646 0,0373

L13

Cluster 1 Cluster 2 Cluster 1 Cluster 2
Ptheta 0,1016 0,1022 0,1486 0,0708
Pbeta 0,0085 0,0085 0,0136 0,0051
SEF95 5,4990 5,517 7,3305 4,2930
ERR 0,3639 0,3637 0,3838 0,3504
LZC 0,7742 0,7729 0,8229 0,7408
iCOHtheta 0,0649 0.0655 0,0676 0,0636
wSMI 0,0473 0,0473 0,0489 0,0462

S12

Cluster 1 Cluster 2 Cluster 1 Cluster 2
Ptheta 0,4075 0,2682 0,4163 0,2790
Pbeta 0,0611 0,1367 0,0591 0,1159
SEF95 14,1705 32,2515 13,5405 28,0125
ERR 0,5845 1,8422 0,4762 1,792

Real values

Real values

Real values

Real values

Features
FCM GMM

Features
FCM GMM

Features
FCM GMM

Features
FCM GMM

The assessment of the centroids values indicates a high level of consciousness for Cluster 1
compared to Cluster 2 in both clustering cases. For instance, for FCM, the SEF95 values are
centred at 24.64 Hz that is in the β band. Signal complexity were also high: the ERR is 0.7331,
and LZC is above 1. The connectivity values are also significant. In Cluster 2, SEF95 values are
centred around 10.63 Hz, right in the middle of the α band. The complexity values are low,
amounting to 0.5328 and 0.7878 respectively for ERR and LZC.
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Furthermore, the overall inter-clusters differences, computed on the normalised values of the
features, are significant, 0.4809 for FCM and 0.5177 for GMM. Large values of inter-clusters
difference suggest that the clusters are well separated, i.e. as far away from each other as
possible [KC16; MP00]. Figs. 6.13 and 6.14 illustrate the inter-clusters distance between LZC
and SEF95, as well as between wSMI and iCOHθ for patient L1. In an ideal case, the lower
left corner of the plot would gather the data points corresponding to unconscious states, while
the upper right corner will contain those identifying conscious states. Additionally, the points
in-between will have increasing values of consciousness levels.
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Figure 6.13: FCM clusters plots for UWS patient L1 for the pair of features displaying (a) the highest and
(b) the lowest centroid linkage distance. The barplot on the right side of each figure represents the
degree of membership to the conscious cluster. 0: unconscious, 1: conscious.

On one hand, SEF95 exhibits the largest inter-clusters distance with the other features,
especially with LZC for both clustering approaches with dFCM(SEF95, LZC) = 0.4024, and
dGMM(SEF95, LZC) = 0.4302. Figs. 6.13a and 6.14a respectively illustrate these cases. A
smooth transition between unconscious and conscious states is observed, i.e. the degree of
membership of the objects progresses evenly from low (in blue) to high (in red) as one moves
from the bottom left to the top right of the figure. This validates the hypothesis presented in
Section 2.2 regarding the values of these features relative to the level of consciousness. On the
other hand, both connectivity measures show the smallest centroid linkage distance, except
with SEF95 as previously stated. Figs. 6.13b and 6.14b illustrate the clustering results of wSMI
and iCOHθ that displayed the lowest inter-cluster differences: dFCM(wSMI, iCOH) = 0.095 and
dGMM(wSMI, iCOH) = 0.1060. As opposed to the previous case, data points with different
degree of membership values to the conscious cluster are intermingled. The lower part of the
figures mostly contain objects with low degree of membership, as it should be. However, the
upper part contain objects with different degrees of membership values.

From these results, it can be concluded that LZC and SEF95 constitute the best features for
patient L1, while both connectivity measures, wSMI and iCOHθ , yield non-distinguishable
clusters for both clustering analysis methods.
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Figure 6.14: GMM clusters plots for UWS patient L1 for the pair of features displaying (a) the highest
and (b) the lowest centroid linkage distance. The barplot on the right side of each figure represents the
degree of membership to the conscious cluster. 0: unconscious, 1: conscious.

Fig. 6.15 illustrates the estimated consciousness level (alias the degree of membership to the
conscious cluster) obtained from both clustering methods for patient L1. The values range from
0 (unconscious) to 1 (conscious). Figs. 6.15a and 6.15b display the results of FCM and GMM
clustering analysis respectively. As opposed to the estimated consciousness levels obtained with
GMM that covers the entire [0, 1] interval, its values for FCM rarely attain the lower or the upper
limit. Distinctive low values of the degree of membership are observed between 20:15 and 23:00,
indicating extremely low levels of consciousness. The patient was undoubtedly unconscious in
most of that time, except during the sharp increase around 21:26. In addition, the degree of
membership is predominantly high before 20:15 and after 07:10, with values close to or equal
to 1. This implies that the patient was certainly conscious. Additionally, intermittent phases of
low consciousness level are detected after 23:00 until 07:10. These estimations are confirmed
by the inferences made from the values of the individual features based on frequency, signal
complexity and connectivity in Section 6.1.1.4. Definite low values are also observed between
06:00 and 06:25, and from 11:25 to 12:23. This reflects the trend observed in the same time frame
of the relative powers, the SEF95, the ERR, the LZC, and more clearly with the wSMI. Results
obtained from GMM appear notably drastic as opposed to that of FCM, as already mentioned
previously.

Fig. 6.15e shows the eyes scoring of the patient. O represents open eyes and C denotes closed
eyes. When the patient’s eyes are intermittently open and closed, it was scored O/C. Some
of the scoring were not available due to some technical or visibility problems and were thus
labelled as NA/nv [Wie+18]. Moreover, blank areas in the figure represent times when it was
unavailable. At first glance, high levels of consciousness obtained with the presented approach
seem to coincide with open eyes, while eyes closed correspond to low levels of consciousness.

Table 6.2 recapitulates the results of the Spearman correlation analysis between all the features
and the obtained levels of consciousness using FCM and GMM. The values of the coefficients
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(d) Average ensemble
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Figure 6.15: Estimated consciousness level for UWS patient L1 using (a) FCM, (b) GMM, (c) product
ensemble, and (d) average ensemble of FCM and GMM. The closer to 1 the curve is, the higher the
probability that the patient is conscious, and inversely. The blank areas in (e) represent the time frames
during which no eyes scoring were recorded. O: eyes open, C: eyes closed, Na/nv: scoring unavailable
due to some technical problems. Shaded areas between 21:26 and 07:10 delimit the night time.
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6.1 Patients with disorders of consciousness

range from −1 to +1, with 0 meaning that no association exists [SBS18]. For this specific
patient, all features are highly and positively correlated with the obtained estimations of the
consciousness level, except for the iCOHθ . Consequently, its values only slightly influence
the final result. The largest centroid linkage distance was obtained for the pair SEF95,and
LZC, while the lowest was for wSMI and iCOHθ . The table shows that the estimated level of
consciousness is more heavily determined by the former than the latter. For example, the values
of the correlation coefficients for SEF95 are CorrFCM(SEF95) = 0.8928 and CorrGMM(SEF95) =
0.9579, compared to CorrFCM(iCOHθ) = 0.7254 and CorrGMM(iCOHθ) = 0.8003 for iCOHθ .

Table 6.2: Spearman correlation coefficients for UWS patient L1 between all features and estimated levels
of consciousness. The cells in green represent the correlation coefficients with p > 0.05.

FCM GMM Product ens. Average ens.
Ptheta 0,5016 0,6331 0,6321 0,5159
Pbeta 0,8407 0,9449 0,9438 0,8571
SEF95 0,8928 0,9579 0,9588 0,9039
ERR 0,5391 0,5433 0,5485 0,5350
LZC 0,7254 0,8003 0,8012 0,7385
iCOHtheta 0,0062 0,0197 0,0191 0,0058
wSMI 0,2963 0,2782 0,2851 0,2888

FCM GMM Product ens. Average ens.
Ptheta 0,8615 -0,8036 0,8266 0,8627
Pbeta 0,8299 -0,9717 0,9412 0,8439
SEF95 0,7900 -0,9555 0,9290 0,8059
ERR 0,7780 -0,7568 0,7547 0,7752
LZC 0,3736 -0,4113 0,4386 0,3803
iCOHtheta 0,0144 0,0064 -0,0043 0,0082
wSMI -0,0978 -0,0773 0,0334 -0,0866

FCM GMM Product ens. Average ens.
Ptheta 0,4933 -0,5122 0,5123 0,5354
Pbeta 0,4556 -0,8997 0,8978 0,8270
SEF95 0,5011 -0,9091 0,9081 0,8481
ERR 0,0481 -0,3973 0,3951 0,3046
LZC -0,2004 -0,2662 0,2630 0,1242
iCOHtheta 0,5246 -0,0680 0,0718 0,2032
wSMI 0,2718 -0,3499 0,3495 0,3227

FCM GMM Product ens. Average ens.
Ptheta -0,6193 0,5232 -0,6566 0,4908
Pbeta 0,4830 0,7516 0,5118 0,6979
SEF95 0,6922 0,8228 0,7371 0,7358
ERR 0,7307 0,4314 0,8068 0,5019

Features
Spearman correlation

Features
Spearman correlation

Features
Spearman correlation

Features
Spearman correlation

Overall, the estimated level of consciousness of patient L1 retrieved from the clustering anal-
ysis of the different EEG features concur the outcomes of the individual features summarised
in Section 6.1.1.4. In addition to correctly "translating" the increases and decreases of this level,
it accurately evaluate its extent (conscious versus unconscious). Moreover, the obtained results
are also consistent with the eyes scoring when it is available. This means that the estimated
levels of consciousness correlate with the patient’s eyes states, namely eyes open corresponding
to conscious state, and vice versa. Unfortunately, the scoring was mostly unavailable during
night time (designated by NA/nv). Figs. 6.15c and 6.15d represent the results of the product and
average ensembles respectively. The average ensemble seem to produce a reasonable consensus
between FCM and GMM, while the product ensemble tend to favour the outcomes of GMM.

These observations demonstrate that the proposed approach is working perfectly in this case,
proving its potential. It is therefore the reason of choosing the clustering parameters of this
patient for later use.

6.1.2.2 Patient S7

As mentioned previously, the clusters obtained from the clustering analysis are labelled Cluster
1 and Cluster 2. Table 6.3 displays the clusters centroids for patient S7. The cells in colour
represent the larger centroid centre. The column with the most blue cells corresponds to the
conscious cluster, in this case Cluster 1 for FCM and Cluster 2 for GMM. As opposed to the
results obtained from patient L1, the results of the different features for this patient diverge and
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6 Results and discussions

the highest centroid value for Ptheta and wSMI are in Cluster 2 for the FCM clustering method,
and in Cluster 1 for GMM. These divergence are marked by the cells in orange in the table.

Table 6.3: Clusters centroids for UWS patient S7. Values displayed here are the real values reconverted
from the normalised values. Cluster 1 represents the first cluster and Cluster 2, the second one. For
each feature, the higher centroid centre value is highlighted. The cluster corresponding to a conscious
state is the one with the most cells in blue. In this case, it is Cluster 1 for FCM and Cluster 2 for GMM.
The cells in orange signify that for that feature, the values contradict that of the other features (in blue).

S6

Cluster 1 Cluster 2 Cluster 1 Cluster 2
Ptheta 0,1357 0,0921 0,0890 0,1299
Pbeta 0,1079 0,0482 0,0392 0,1044
SEF95 22,06 12,66 11,12 21,70
ERR 0,3384 0,1629 0,1435 0,3208
LZC 0,3984 0,3851 0,3375 0,4462
iCOHtheta 0,0594 0,0614 0,0627 0,0595
wSMI 0,0301 0,0306 0,0309 0,0300

S7

Cluster 1 Cluster 2 Cluster 1 Cluster 2
Ptheta 0,1745 0,1753 0,1906 0,1435
Pbeta 0,1439 0,1433 0,1357 0,1594
SEF95 25,11 25,02 24,07 27,06
ERR 0,6441 0,6415 0.6405 0,6474
LZC 1,3947 1,3903 1,3820 1,4136
iCOHtheta 0,0620 0,0618 0,0591 0,0674
wSMI 0,0373 0,0374 0,0386 0,0347

Real values

Real values

Features
FCM GMM

Features
FCM GMM

The values of the cluster centres obtained from FCM are very close to each other, with a
global inter-cluster difference of 0.0067. GMM on the other hand exhibits a much larger value
of 0.2908. The dissimilarities were computed on the normalised features. Figs. 6.16a and 6.16b
represent the FCM clustering results for the features displaying the largest and lowest centroid
linkage distances respectively. The clustering analysis results show that wSMI and Ptheta have
the highest inter-clusters difference with dFCM(wSMI, Ptheta) = 0.0052. Furthermore, iCOHθ

and LZC display the lowest inter-clusters difference with dFCM(iCOH, LZC) = 0.0019. Both
of these values are extremely low. So, as can be seen in the figures, the centroids of the two
clusters are quasi overlapping. In addition, the degree of membership value to the conscious
cluster appear to be around 0.5 for all data points, with a mean value of 0.4979.
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Figure 6.16: FCM clusters plots for patient S7 for the pair of features displaying (a) the highest and (b) the
lowest centroid linkage distance. The barplot on the right side of each figure represents the degree of
membership to the conscious cluster.
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Figure 6.17: GMM clusters plots for patient S7 for the pair of features displaying (a) the highest and (b) the
lowest centroid linkage distance. The barplot on the right side of each figure represents the degree of
membership to the conscious cluster.

The degrees of membership obtained from the GMM clustering analysis cover more range
of values. As previously stated and can be seen in Table 6.3, clustering results of Ptheta and
wSMI contradict those of the other features. It is also illustrated in Fig. 6.17a. Particularly, low
values of wSMI and Ptheta belong to the conscious cluster, and inversely. These observations
are also contradicting the hypothesis in Section 4.2. wSMI and Ptheta also display the largest
inter-clusters distance with dGMM(wSMI, Ptheta) = 0.2662 for the GMM clustering approach.
The lowest distance is observed between LZC and ERR with dGMM(LZC, ERR) = 0.0125 (see
Fig. 6.17b). The cluster centres are practically overlapping and objects with different degrees
of memberships to the conscious cluster are all mixed. There is no smooth transition from
unconscious to conscious states as in Fig. 6.14a.

Fig. 6.18a shows the results of FCM cluster analysis for patient S7. The estimated level of
consciousness is essentially constant, with a mean value of 0.49. All data points are centred to
roughly the same point. Indeed, the values of the clusters centres for both Cluster 1 and Cluster
2 in Table 6.3 correspond to conscious states. The output of the GMM clustering analysis is
presented in Fig. 6.18b. The results suggest that patient S7 was unconscious from 19:48 to 22:30,
as well as during night-time from 00:40 to 05:00 in particular. In terms of signal behaviour, the
estimated levels of consciousness are conform to the inferences made in Section 6.1.1.4. The
values are however inaccurate.

Table 6.4 recapitulates the results of the correlation analysis between all the features and the
obtained levels of consciousness using FCM and GMM for MCS patient S7. Consistent to the
observations made in Section 6.1.2, Ptheta and wSMI are highly but negatively correlated with
the obtained estimations of the consciousness level. It also revealed that the other features are
positively but only moderately correlated with the estimated consciousness levels. This also
confirms the inferences made in Section 6.1.1.4. Moreover, LZC and iCOHθ for FCM, and ERR
and LZC are the features that contribute the less to the final estimated consciousness levels.
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(b) Gaussian Mixture Model
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(c) Product ensemble
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(d) Average ensemble
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Figure 6.18: Estimated consciousness level for MCS patient S7 using (a) FCM, and (b) GMM, (c) product
ensemble, and (d) average ensemble of FCM and GMM. The closer to 1 the curve is, the higher the
probability that the patient is conscious, and inversely.The blank areas represent the times during which
no EEG data were recorded ((a), (b), (c) and (d)) or no eyes scoring were made (e). Shaded areas
between 23:00 and 05:00 delimit the night time.
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6.1 Patients with disorders of consciousness

Those were respectively the pairs of features with the lowest inter-clusters distances for both
clustering analysis.

Table 6.4: Spearman correlation coefficients for MCS patient S7 between all features and estimated levels
of consciousness. The p-value < 0.05 in all cases.

FCM GMM Product ens. Average ens.
Ptheta -0,5660 -0,7500 -0,7496 -0,7181
Pbeta 0,3920 0,3223 0,3228 0,3550
SEF95 0,5771 0,4907 0,4915 0,5294
ERR 0,3611 0,1181 0,1195 0,1655
LZC 0,3113 0,0547 0,0558 0,0910
iCOHtheta 0,1535 0,1283 0,1286 0,1330
wSMI -0,7443 -0,7511 -0,7515 -0,7432

Features
Spearman correlation

6.1.2.3 Overview of the results for the remaining of the DoC patients

The median values of the individual features used in this work are generally lower for MCS
patients compared to the UWS patients, except for LZC and wSMI. The differences were
assessed by the means of a Wilcoxon ranksum test performed on each EEG measure between
both group of patients. It revealed that the difference were significant. The p-values are
recapped in Table B.2 of Appendix B. These results are a bit surprising since first, the CRS-R
of the UWS are mostly lower than those of the MCS patients (cf. Table 5.1). And second, a
handful of researches indicated that the levels of consciousness of UWS patients are lower than
those with MCS. On the other hand, this is probably due to the fact that average results are
used here instead of individual electrodes.

The estimated levels of consciousness of the DoC patients except L1 and S7 (Figs. B.1 to
B.15) as well as the clusters centres obtained from the clustering analysis (Tables B.3 to B.17)
are reported in Appendix B. In general, analogous to a majority vote, the estimations of
consciousness levels from both FCM and GMM are positively correlated with the majority of
the individual features. In other words, the approach was able to convey the increases and
decreases of the patients’ levels of consciousness from them. On the other hand, the accuracy
of these estimations depends on the overall inter-clusters differences. First of all, the levels
of consciousness values are highly influenced by the features with the largest inter-clusters
distance and vice versa. The correlation coefficients between the features and the estimated
levels of consciousness for all patients are reported in Appendix B. The results showed that
there is no common best or worst feature shared by all patients. Each individual is different,
and so are the most and less performant features for each of them. In addition, when the
dissimilarities are large enough, the estimated levels of consciousness are remarkably accurate
when matched with the outcomes of each individual measure (as is the case of patient L1).
However, when it is not the case i.e. the inter-clusters distances are small, the estimations are
not correctly conveyed. This latter case was observed for patients L13 and S13 in addition to
patient S7 which case was presented in the following section.
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Furthermore, the evaluation of night and day differences of the individual features deter-
mined that the values at night are lower, except for UWS patient S14 and MCS patients L4,
L7 and L16. For all of them, a Wilcoxon rank sum test performed to assess the differences
determined that they are significant. The implications of this observation are further discussed
in Section 6.1.3.

6.1.3 Performance of the approaches

The primary purpose of recording the DoC patients’ EEG signal was to study their sleep
patterns and investigate the night and day variations [Wie+18; Wis+17]. Researches show that
for DoC patients, eyes opening and closing are manifestation of periods of circadian sleep-
wake [Wan+18]. A circadian rhythm can be defined as the innate internal process that regulates
the sleep–wake cycle and repeats approximately every 24 hours [BCP16]. For this particular
dataset, high-to-low frequency power ratio of the EEG as well as permutation entropy were used,
and results showed that their values were significantly higher during the day for MCS patients,
but no changes were observed for UWS patients [Wis+17]. In addition, a hierarchical clustering
analysis using permutation entropy computed on the EEG signals revealed that MCS patients’
sleep behaviour are analogous to that of healthy subjects. Particularly, patterns resembling
healthy REM were detected during night-time. However, this complexity difference between
night and day value were negligible for UWS patients. This suggests that day-night variations
are impaired for these patients. In addition, as opposed to MCS, only small inter-clusters
differences were observed for them [Wie+18].

Now in this work, as already mentioned in Section 6.1.2.3, a Wilcoxon ranksum test was
performed on the results obtained from the clustering ensemble approaches to assess the
night versus day differences. Except for four patients, the dissimilarities are significant at
the 5% level with higher values during the day. The p-values for all patients are gathered in
Table B.18 in Appendix B. Eyes closed do not necessarily mean unconscious, and vice versa.
Nonetheless, taking all of the above into consideration, it is most likely the case during the
night. Furthermore, since most eyes scoring were recorded at night, it could be assumed that
eyes closed correspond to unconscious state, while open eyes indicate conscious state.

Consequently, the performance of the clustering methods are now evaluated by computing
the accuracy between the clustering results using the patients eyes scoring as "ground-truth".
Since, it is unlikely that 0.5 represent the bound between conscious and unconscious states, the
cluster membership values were defuzzified by converting them into binary numbers using
several threshold ranging from 0.3 to 0.7 with a 0.1 increment. Accordingly, the values below
the threshold were appointed to 0 (low level of consciousness), and those above threshold were
set to 1 (high level of consciousness). Likewise, the eyes scoring "O" corresponds to 1, while "C"
corresponds to 0. Only the scoring indicating eyes open and eyes closed, and the corresponding
data were use for the evaluation [Wie+18]. The performance of the approach is then determined
by computing the accuracy as:
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6.1 Patients with disorders of consciousness

Accuracy =
TP + TN

TP + TN + FP + FN
(6.1)

where TP: True Positive, TN: True Negative, FP: False Positive, and FN: False Negative.

The accuracy was computed for all threshold values. The obtained values for the 17 DoC
patients (8 UWS and 9 MCS) are reported in Table B.19 in Appendix B. The accuracy obtained
for both ensemble methods are slightly distinct for the different threshold values, except when
its value is 0.5, in which case both ensemble method have the same accuracy.

The best results for the MCS patients are illustrated in Fig. 6.19a. Patient S17 achieved the
lowest accuracy with 22.22% (threshold = 0.6) and was the only patient with an accuracy below
50%. The highest accuracy for the whole group was achieved by patient S14, with up to 85.2%
(threshold = 0.3) on the average ensemble. Similarly, the best performance results for UWS/VS
patients are presented in Fig. 6.19b. The highest accuracy for this group was achieved by patient
L8 with 70.11% for both ensemble methods (threshold = 0.6 for the product ensemble and 0.7
for the average ensemble). 5 out of the 8 UWS patients also attained an above 50% accuracy. The
performances of almost all MCS patients appear better compared to that of UWS/VS patients.

(a) MCS patients (b) UWS/VS patients

Figure 6.19: Performance of the ensemble clustering methods for (a) MCS patients and (b) UWS patients.
For two MCS patients, accuracy was above 70%. Only one of the UWS patient achieved a 70% accuracy.

Considering the patients’ sleep patterns as well as the performance of the clustering analysis
using different values of threshold, it can be assumed that the boundary delimiting conscious
and unconscious states depends on the patient. The idea behind this work is to determine
patients’ consciousness states in order to initiate communication. It is therefore crucial to detect
this minimum value at which the level of consciousness is enough for that to happen. An input
from the family members or caregiver is therefore necessary.
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6.1.4 Discussion I

The different features used in this work were weighted equally and their values were normalised
so to not favour any of them for the clustering analysis. Each of the features extracts a particular
characteristic of the EEG signal. The hypothesis in Section 4.2 stipulate that conscious states
are defined by an increase of each of these signal attributes. However, the features may also
contradict each other to some extent. In this group of DoC patients, the results of one or more
measures contradict the others, except for patient L1 (UWS).

When the results of the features or somewhat conflicting, a consensus appear to be found by
the cluster analysis methods. Moreover, the proposed approach in this work (using FCM and
GMM) was able to convey the variations of the levels of consciousness that match the outcomes
of the different features. At least, this is the case when the inter-cluster distances between the
clusters are important enough as it is the case for patient L1 (cf. Section 6.1.2.1). Otherwise,
FCM is monotonous with a value around 0.5, meaning that all the data points belong more
or less equally to both clusters (cf. Fig. 6.18a). This can be interpreted as the two clusters
representing the same thing as in Fig. 6.16b. GMM on the other hand still reflects the variations
observed on the individual features in terms of increase and decrease, but the values of the
levels of consciousness are actually invalid. Looking back to the observations made for patient
S7 in Section 6.1.2.2, for example, the two resulting clusters both represent a conscious state.
Nevertheless, the results of GMM, and consequently those of the ensemble methods, defined
the lower values as an unconscious and the higher values as a conscious states (cf. Fig. 6.18b).

Given these observations, this clustering approach works best when the data is diversified.
In other words, the analysed data should cover all the possible states of consciousness of
the patient. For a number of reasons, one being the difficulty to record patients data, this
is mostly impractical. Consequently, another solution would be to use pre-defined centroids.
Since patient L1 displayed high inter-cluster difference, and that all features and cluster centres
values verified the conditions defined in Section 4.2, his clustering parameters will be used for
the CLIS patients.

6.2 CLIS patients

This part reports the results for the CLIS patients. Those of patient GR are first introduced. The
same procedure as for the DoC patients is first followed to determine the consciousness level of
the patient. Afterwards, the results of the remaining of the CLIS are presented and discussed.

6.2.1 ECoG data

The data of patient GR consists of a 24-hour ECoG brain recordings from 64 channels. Channels,
which signal amplitudes were larger than ±200µV were excluded. Consequently, channels
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6.2 CLIS patients

G008, G012, G028, G034, and G080 were removed (cf. Fig. 5.2), leaving 59 channels for further
analysis.

This patient’s data is singular since, to the best of our knowledge, it is the only one in which
the experimenters were able to pinpoint one time frame when the CLIS patient was indeed
conscious. Besides, he was trained to use BCI since his being diagnosed with ALS. Hence, the
experimenter is familiar with his demeanour. The experiment described in Section 5.1.2 was
conducted from 14:50 to 17:00. It is delimited by the red lines in Fig. 6.20, which illustrates
the results of the ensemble methods regarding the estimated consciousness level. These results
were obtained by applying the proposed clustering approach to the features extracted from
GR’s data without any prerequisite.
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Figure 6.20: Estimated consciousness level for patient GR (a) product ensemble, (b) average ensemble. The
experiment was performed between 14:50 and 17:00 (red vertical lines). The red area from 15:34 to 16:14

represent the time during which the experimenter reported that the patient was correctly answering the
questions he was asked. The values of the estimated consciousness level at these times were definitely
different than the values the rest of the time.

The experimenter asserts that patient GR was correctly answering the questions in the time
frame 15:34 to 16:14. During the experiment, the patient was asked 18 questions. To make
sure that the classifier correctly identified his answer, each question was asked in pairs. This
means that for each question requiring a positive answer, the same question was reformulated
so that the same answer is expressed by a negative answer. The entire course of the interaction
between the patient and the experimenter is reported in Table C.2 in Appendix C. Out of the
18 questions, answers for two questions were unclear, but 16 of them were clearly answered by
the patient thus correctly determined by the classifier, resulting in a 88.89% correct answer rate.
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Table 6.5: Average estimated consciousness level for patient GR during different time frames. The esti-
mated consciousness level were definitely slightly higher during the experiment.

Time Interval FCM GMM Product 
ensemble

Average 
ensemble

all (24h) 00:34 - 00:34+1 0,4978 0,2679 0,2601 0,3829
day time 08:00 - 20:00 0,4756 0,3355 0,3205 0,4055
night time 20:00 - 08:00 0,5200 0,2005 0,1998 0,3603
before experiment 00:34 - 14:50 0,5244 0,2514 0,2481 0,3879
during experiment 14:50 - 17:00 0,4558 0,3598 0,3408 0,4078
after experiment 17:00 - 00:34+1 0,4598 0,2784 0,2598 0,3663

"conscious" time 15:34 - 16:14 0,4574 0,3594 0,3400 0,4084

The degrees of membership obtained from FCM are relatively steady throughout the entire
recording, with a average of 0.4978, analogous to the results obtained for DoC patient S7. Some
variations are however observed in the results of GMM, notably an increase in the afternoon,
and the average score during the entire recording is 0.2679. This then resulted in what can
be seen in Fig. 6.20. Table 6.5 summarises the average values of the estimated consciousness
level during different time intervals using FCM, GMM and the two ensemble methods. The
mean FCM and GMM degrees of membership during the experiment are 0.4574 and 0.3594
respectively. While the values are significantly higher than the average value for the entire
recording for GMM, it is the opposite for FCM. Differences were also observed between the
average values during day and night times. Times between 08:00 to 20:00 are labelled as day
and 20:00 to 08:00 as night [Soe+13]. FCM membership degrees are higher during the night and
outside the experiment time. Contrariwise, low values are observed during the night and the
highest values occur during the experiment. In case of GMM clustering in particular, other time
intervals also depict a higher value of the membership degree, namely between 07:21 and 08:06,
and intermittently between 11:51 and 13:16. Additionally, it remains high after the experiment
up until 19:42, with an average of 0.49.

Table 6.6: Clusters centroids for CLIS patient GR. Cluster 1 and Cluster 2 represent the two clusters. The
cluster corresponding to conscious is the one containing the most blue cells. In this case, Cluster 1 for
both FCM and GMM. Values are the real values reconverted from the normalised ones. Cells in orange
contain high value corresponding to higher consciousness level, but is not in the same cluster as the
majority (blue cells).

Cluster 1 Cluster 2 Cluster 1 Cluster 2
Ptheta 0,1344 0,1263 0,1243 0,135
Pbeta 0,3211 0,3105 0,333 0,3188
SEF95 26,199 25,6050 25,803 26,2035
ERR 0,6441 0,6415 0,6405 0,6474
LZC 0,6767 0,6833 0,6913 0,6754
iCOH_theta 0,0613 0,0614 0,0616 0,0612
wSMI16 0,0311 0,0314 0,0338 0,0308

Features FCM GMM

90



6.2 CLIS patients

Table 6.6 presents the values of the clusters centres obtained using FCM and GMM. The
inter-clusters distances for FCM is dFCM = 0.1284 and equals dGMM = 0.0797 for GMM. The
values are somewhat low compared to those of patient L1, but are comparable to those of
patient S7. For example, akin to patient S7’s results, less than 2 Hz separates the SEF95 in both
clusters for both clustering approaches. In addition, the complexity values are essentially in the
same value range. This is illustrated in Fig. 6.21 that displays the FCM degree of membership to
the conscious cluster of each data point from SEF95 and LZC. The two centroids are practically
overlapping. Most objects are located in the upper right part of the figure corresponding to
high LZC and high SEF95, which in turn denote high levels of consciousness [G+́21; Tou+19].
No clear clusters are visible although the data points have different degrees of membership.
Consequently, the lower limits of the degree of membership in Fig. 6.20 could not be interpreted
as unconscious, akin to the results of Patient S7 in Section 6.1.1.2.
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Figure 6.21: Illustration of the clusters using FCM clustering for patient GR with the SEF95 and LZC
features. The centroid linkage distance is very low, the centroids are close to each other. The barplot on
the right side of the figure represents the degree of membership to the conscious cluster. On one hand,
the two clusters are basically overlapping; on the other hand, the majority of the data points are located
at the upper right of the plot, which means high complexity and high SEF95. This indicates a high level
of consciousness.

The data of GR is furthermore partitioned using pre-defined FCM cluster centres and the
same Gaussian mixture model as patient L1, as declared in Section 6.1.4. The outcomes of the
average ensemble are presented in Fig. 6.22 and Table 6.7 summarises the average values of
the estimated consciousness levels during different time intervals using FCM, GMM and the
average ensemble methods. The estimated values are high, with an overall mean of 0.9998 and
0.7638 for the product and average ensemble respectively. The values were also slightly higher
during and after the experiment. To summarise all of the above, the clustering analysis of
GR’s ECoG data allowed to determine that the resulting centroids for both clusters are almost
undistinguishable and represent high consciousness level. In addition, an undeniable increase
of the consciousness level is observed especially in the time of and following the experiment.
Moreover, the use of predefined cluster centres determined that patient GR was conscious
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during the entire 24-hour recording. Consequently, the patient was assuredly conscious during
the whole recording, but also that his level of consciousness increased during the experiment.
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Figure 6.22: Estimated consciousness level for patient GR using the pre-defined cluster centres obtained
in Section 6.1.3 (average ensemble). The estimated level of consciousness is constantly high. The
experiment was performed between 14:50 and 17:00 (red vertical lines). The red area from 15:34 to 16:14

represent the time during which the experimenter reported that the patient was correctly answering
the questions he was asked.

These observations not only confirm the observations of the experimenter regarding the state
of consciousness of the patient during part of the experiment, but are also corroborated, at
least partly, by the separately obtained results using the imaginary part of coherency, Granger
causality and sample entropy in [Ada+19b]. Namely, patterns suggesting a conscious state
were observed in the imaginary coherence from 15:15 to 15:30 and from 16:00 to 16:10, in the
multi-scale sample entropy between 15:24 and 16:14, and with Granger causality between the
frontal and posterior channels from 15:34 until 16:14. A multi-scale approach analysis of patient
GR’s data involving sample entropy, permutation entropy and Poincaré plots also revealed that
the patient was conscious between 16:04 and 16:10 [WNB20].

Table 6.7: Average estimated consciousness level for patient GR during different time frames using pre-
defined clustering parameters.

Time Interval FCM GMM Product 
ensemble

Average 
ensemble

all (24h) 00:34 - 00:34+1 0.5277 0.9998 0.9998 0.7638
day time 08:00 - 20:00 0.52689 0.99975 0.99975 0.76332
night time 20:00 - 08:00 0.52858 0.99988 0.99988 0.76423
before experiment 00:34 - 14:50 0.5272 0.99984 0.99984 0.76352
during experiment 14:50 - 17:00 0.52797 1,0000 1,0000 0.76399
after experiment 17:00 - 00:34+1 0.52867 0.99971 0.99971 0.76506

"conscious" time 15:34 - 16:14 0.52772 1,0000 1,0000 0.76386

The clustering analysis employing pre-determined cluster centres argues that there is a
high probability that the patient was conscious during these 24 hours, but to a lesser extent
than during the experiment. This argument is not inconceivable, since as mentioned in Sec-
tion 2.1.2, ALS-LIS patients suffer from an increased manifestation of insomnia as the condition
evolves [Pos+07]. An investigation of this patient sleep/wake characteristics revealed the pres-
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6.2 CLIS patients

ence of increase SWS fragmentation [Soe+13]. It is therefore highly probable that this day was
an instance of such case.

6.2.2 EEG data

The same procedure using pre-defined cluster centres is now applied to the EEG data of the
remaining CLIS patients introduced in Section 5.1.2.2. This section reports the results of the
product and average ensembles. The mean level of consciousness of all patients is illustrated
in Fig. 6.23. The figure shows that as opposed to patients P6, P7 and P10 in particular, who
displayed extremely low consciousness levels, patients P1, P2 and P5 exhibited the highest
estimated levels of consciousness, with 0.627, 0.764 and 0.587 respectively (product ensemble).
The values for patient P6, P7 and P10 were always low during all available recordings.
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Figure 6.23: Average and standard deviation values of the estimated consciousness level for all sessions
and all CLIS patients obtained from the ensemble methods. The obtained estimations of the levels of
consciousness were always low for patients P6, P7 and P10.

The patients can therefore be categorised into three groups, depending on the results obtained
from the clustering analysis during all recording sessions. First, the estimated consciousness
level for patient P1 was consistently high, except for the very last recording. Patient P2 also
showed high levels of consciousness, except for one day. The experimenters affirmed that
those two patients achieved the highest performance among all the CLIS patients during the
experiments. This implies that they were conscious in almost all sessions. Then, there are
patients whose estimated consciousness level were highly variable from one session to the other.
Patients P3, P4 and P5 belong to this category. Finally, patients P6, P7, P9 and P10 always
showed low consciousness levels. The experimenters reported patient P10 as being brain dead,
and they observed only a few irregular good sessions with patient P9. Only results with notable
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particularities will be presented in details in this section. The results that are not displayed here
will be presented in Appendix D.

6.2.2.1 Patient P1

This female patient was diagnosed with sporadic bulbar ALS in May 2007 and as locked-in in
2009. She transitioned into a completely locked-in state in May 2010. The patient died in 2019

(see Appendix D.1).
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Figure 6.24: Estimated consciousness level for CLIS patient P1. The x-axis represents the dates and times of
recording. Estimated levels of consciousness are high enough, except in 2019, to allow communication
with the patient.

Three years of EEG recordings from 2015, 2017 and 2019 are available for analysis. The
number of sessions is variable, ranging from 2 to 7. The estimated level of consciousness of
patient P1 is highly consistent through the years except for the last, as illustrated in Fig. 6.24,
with an overall mean exceeding 0.6/0.55 (product / average ensemble). Both methods produce
results with the same trend, only their value differ, the average ensemble being lower in general.
There are nonetheless changes, particularly on 20/05/2015 during the session starting at 14:57,
as can be seen in the figure. Although a sharp drop is observed, the consciousness level
remains high to still suggest that the patient was conscious the entire day. Consequently,
communication with the patient can be initiated for all these sessions. The above-mentioned
findings substantiate the experimenters’ report that patient P1 was almost always successful
in yes and no communication, especially using fNRIS. In 2019, the estimated value of the
consciousness level dropped considerably, approaching 0 for the product ensemble and around
0.2 for the average ensemble, suggesting that the patient was undoubtedly unconscious. For
that reason, all communication attempts will definitely fail.

Let’s take a closer look at the first two dates for patient P1: 18/05/2015 and 20/05/2015.
The estimated consciousness level for this patient on 18/05/2015 is illustrated in Fig. 6.25a
for all sessions. That day’s experiment comprises six sessions including five task sessions and
one rest session. The patient was instructed not to think of anything during the rest sessions.
As described in Section 5.1.2, the tasks consist of yes and no questions that the patients need
to answer using their brain signals. The overall consciousness level during all sessions is
high. However, the highest level is observed during the fourth task session (d1b4) beginning at

94



6.2 CLIS patients

14
:4

4
14

:5
8
15

:0
0

15
:1

0
15

:1
1

15
:2

5
15

:3
2

16
:0

2
16

:0
5

16
:1

4
16

:2
5

16
:3

6
0

0.2

0.4

0.6

0.8

1

E
st

im
at

ed
 c

on
sc

io
us

ne
ss

 le
ve

l

P1 (18/05/2015)

d1
b1

d1
b2

d1
b3

re
st

in
g1

d1
b4

d1
b5

(a)

14
:1

8
14

:2
8

14
:2

8
14

:4
0

14
:4

1
14

:5
4

14
:5

7
15

:0
0

15
:0

0
15

:1
4

15
:1

7
15

:2
7

15
:2

8
15

:3
8

Time (HH:MM)

0

0.2

0.4

0.6

0.8

1

E
st

im
at

ed
 c

on
sc

io
us

ne
ss

 le
ve

l

P1 (20/05/2015)

re
st

in
g2

d3
b1

d3
b2

re
st

in
g3

d3
b3

d3
b4

re
st

in
g4

(b)

Figure 6.25: Estimated consciousness level for patient P1 (product ensemble) on (a) 18/05/2015 (day 1)
and (b) 20/05/2015 (day 2). Shaded areas represent period during which no data were recorded. The
dotted lines delimit the start and end of the experiment. Plain vertical lines mark the start of each
session. The name of each of them is marked on the top left of each experiment part.

16:05 with a mean value of 0.7628/0.647 (product/average ensemble). The high values suggest
that the patient was conscious overall, but with an increased level during session d1b4. The
experiments on 20/05/2015 are composed of seven sessions: rest sessions at the beginning and
the end, and four task sessions separated by another brief rest session as shown in Fig. 6.25b.
The level of consciousness of the patient increased during the first and the second session
(d3b1 and d3b2, with an average consciousness level estimate at 0.8112 and 0.8192, respectively).
A slight decrease is observed for the remaining sessions, but mostly during the rest session
resting3 with an average of 0.5196. These results are in accordance to those obtained in [AB21b]
in which it was established that the levels of consciousness of this patient were highly variable
and that it can also happen that during a specific experiment, it consistently decreased. Such
decline is probably due to patient’s fatigue.

No critical differences across the sessions were observed. Consequently, as already stated
previously, the patient’s performance in answering the questions should be high. In the study
reported in [AB21a], patient P1 achieved the highest accuracy among a group of 4 CLIS patients
to classify yes/no answers. An analysis of her EEG data during these experiments revealed that
she was able to achieve an accuracy of 67.94% using Random Forest with the SEF95 feature. This
is probably due to the fact that she spent the most time in ALS condition (see Appendix D.1).
During the experiment, the patients were asked to "think" yes or no to answer the questions. It
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is hypothesised that given these instructions, each patient possibly finds a way to convey their
answer. It is then likely that she has the most experience in accurately expressing her answers.

6.2.2.2 Patient P2

This male patient was diagnosed with non-bulbar ALS in May 2011. He first used a speech
device in his throat to communicate beginning of December 2011. When this failed, it was
replaced by MyTobii eye tracking device from April 2012 until December 2013. The response
using this system was variable and communication was no more possible from August 2014

(see Appendix D.1).
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Figure 6.26: Average estimated consciousness level for CLIS patient P2 during the different recording days.
The x-axis represents the dates and times of recording.

Fig. 6.26 illustrates the estimated consciousness level obtained from the approach proposed
in this thesis. The EEG data consists of 5 days of recordings from 2015 with from 4 to 7

sessions each. Similar to patient P1’s results, both ensemble methods follow the same trend.
The estimated consciousness levels are also high for patient P2 except on 23/06/2015 (average
ensemble: 0.3361, product ensemble: 0.1503). No information about what may have caused
such decrease was obtained from the experimenters. In [Van+16] for instance, the decrease of
performance and motivation on the patient’s part during some days was due to health issues.
Since nothing specific was reported that day for this patient, it can be speculated that he was
simply not conscious, possibly asleep. This result constitutes an example of unfavourable time
to start communication with the patient.

6.2.2.3 Patient P3

This female patient was diagnosed with bulbar ALS in 2010. She lost speech and capability
to walk by 2011. Starting February 2013, she started using assistive communication devices
using one finger to communicate, until it failed. Afterwards, in early 2014, an attempt has been
made to use eye tracking for communication, which was stopped in August 2014. After that,
the patient was tried to communicate using subtle twitch of eyelid. Unfortunately, this was not
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reliable and the husband and caretakers declared no communication with her since then (see
Appendix D.1).

There is only one year of EEG recordings available for this patient, consisting of 4 days in
2017. The number of sessions ranges from 4 to 5. The obtained estimations of her consciousness
levels are highly variable from day to day, but also from session to session. This can be seen for
example in Fig. 6.27, which illustrates its mean values for each session. The mean value across
all sessions is 0.457 (product ensemble). It can be seen however that this comparatively low
value is due to the low values on some days. Indeed, the estimated consciousness levels are
high on 13/07/2017 and 14/07/2017 attaining up to 0.8356/0.6649 (product/average ensemble).
Nevertheless, for the first two sessions on 14/07/2017, the estimated values of the patient’s
consciousness level is 0.4839/0.4743 (product/average ensemble) and 0.2046/0.3209 (product
/ average ensemble) respectively. These levels of consciousness are possibly not enough to
perform a communication task. Afterwards, the values increased throughout the last 3 sessions,
with mean values of 0.7895 and 0.6470 for the product and average ensemble respectively. In
this case, communication can be initiated with the patient has high chances of being successful.
On the other hand, the estimated levels of consciousness are consistently low on 15/07/2017,
indicating that no fruitful communication can be undertaken then.
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Figure 6.27: Daily average of the estimated consciousness levels for CLIS patient P3. The x-axis represents
the dates and times of recording.

Fig. 6.28a presents the estimated level of consciousness for patient P3 throughout the experi-
ments on 14/07/2017. The experiment started with two training sessions during which it can
be observed that despite a noticeable surge at the end of the first training session, the level of
consciousness remains low, below 0.4. After an half hour break, three feedback sessions (cf.
Section 5.1.2.1) were performed during which higher consciousness levels were estimated. Then,
on 15/07/2017, the values of the estimated consciousness levels for patient P3 are consistently
low, with a mean value of 0.1170/0.2594 (product/average ensemble). The results for this
specific day are illustrated in Fig. 6.28b. The low values suggest that it is highly probable that
all experiments carried out that day were unsuccessful. This demonstrates the importance of
evaluating the level of consciousness of the patients before attempting to communicate with
them.

Table 6.8 summarises the mean values of the estimated consciousness levels during each
session on 14 and 15/07/2017 for this patient. The rows in green represent the sessions during
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Figure 6.28: Estimated consciousness level for patient P3 (product ensemble) on (a) 14/07/2017 (day 2)
and (b) 15/07/2017 (day 3). Blank areas represent period during which no data were recorded. The
dotted lines delimit the start and end of the experiment. Plain vertical lines delimit each session.

which the patient is assessed as being conscious according to the outcomes of the proposed
ensemble approach. The values are significantly lower compared to 15 July.

The experimenters declared that this patient was only successful in yes and no communication
using fNRIS from 2014 to 2015, which data were not available, thus not analysed in this research.
From the results obtained using the approach presented in this work, it can be concluded that
on one hand, patient P3 was mostly conscious on the first two days of experiments (13/07/2017

and 14/07/2017). On the other hand, it can also be inferred that he was possibly unconscious
the rest of the time, especially on 15/07/2017.

6.2.2.4 Patient P4

This female patient represents a particular case given the rapid evolution of the condition
in addition to her young age. She is 29 years old and was diagnosed with juvenile ALS in
December 2012. She was completely paralysed within half a year after diagnosis. She was
able to communicate with the eye-tracking device from early 2013 but was unable to use it
after she lost some control of her eyes in August 2014. She was also trained to communicate
with her family members using eye movements: moving to the right to answer yes and to the
left to answer no. This method was used until the complete loss of eye control in December
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6.2 CLIS patients

Table 6.8: Mean values of the estimated consciousness level per session on 14 and 15 July 2017 for patient
P3. The highlighted rows represent the sessions with a high level of consciousness, during which the
patient was undoubtedly conscious. The values obtained on 15 July suggest that he was unconscious
that day during the experiment.

2017-07-14 Product 
ensemble

Average 
ensemble 2017-07-15 Product 

ensemble
Average 

ensemble
bci1.day2 0,4839 0,4743 rest1.day3 0,1753 0,2970
bci2.day2 0,2046 0,3209 feedback2.day3 0,1529 0,2816
feedback1.day2 0,8240 0,6649 feedback3.day3 0,0776 0,2328
feedback2.day2 0,7800 0,6419 feedback4.day3 0,0651 0,2267
Rest1.day2 0,7644 0,6342 rest2.day3 0,1139 0,2587

2014. Subsequently, she attempted to twitch the right corner of her mouth to answer yes, but
this was not reliable, leaving no other alternative for her parents to communicate with her (see
Appendix D.1).
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Figure 6.29: Average estimate of the consciousness level of CLIS patient P4. The x-axis represents the dates
and times of recording.

The EEG data from patient P4 were recorded in 2016 and 2019. Each day of recording
comprises 2 to 7 sessions. Fig. 6.29 illustrates the estimates of her levels of consciousness.
At first sight, high values of the consciousness levels are observed on 2016. However, the
values decreased in 2019, especially for the product ensemble. Accordingly, it can be deduced
that patient P4 was mostly conscious in 2016, but the probability that she was also conscious
in 2019 is very low. Communication attempts when the estimated consciousness levels are
high would undoubtedly be successful. In point of fact, the experimenters declared that she
was only able to communicate using fNRIS from 2014 to 2016. Nonetheless, variations in the
estimated consciousness level in 2016, imply that the patient was undoubtedly unconscious
during some sessions. For example, on 19/01/2016 and 20/01/2016 both during the first
session. Coincidentally, these two sessions are rest sessions. This means that this patient was
actually "resting" during these periods.
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6 Results and discussions

6.2.2.5 Patient P6

CLIS patient P6 was diagnosed with bulbar ALS in 2009. He lost speech and was unable to
move from 2010. He is in home care. No communication with whatever means was possible
since 2012. This patient died in 2019 [Mal+19; Sec+21] (also see Appendix D.1).

29
/0

5/
17

 1
4:

18
14

:3
3

14
:4

7
15

:0
0

15
:1

4
30

/0
5/

17
 1

5:
38

15
:4

9
16

:0
0

16
:1

7
16

:4
8

17
:0

2
31

/0
5/

17
 1

8:
06

18
:2

0
18

:3
6

19
:0

5
01

/0
6/

17
 1

8:
56

19
:0

5
19

:2
0

19
:3

7
19

:5
3

20
:0

9
20

:2
0

20
:2

6
02

/0
6/

17
 1

5:
06

15
:2

1
15

:4
1

15
:5

9
16

:3
2

03
/0

6/
17

 0
9:

57
10

:1
3

10
:2

7
10

:4
1

10
:5

5
11

:2
1

11
:3

7
15

/0
4/

18
 1

3:
25

13
:3

7
13

:5
1

14
:0

6
14

:2
6

16
/0

4/
18

 1
4:

42
14

:5
7

15
:1

7
15

:4
4

17
/0

4/
18

 1
0:

33
10

:4
8

21
/0

5/
18

 1
2:

54
13

:0
1

13
:2

3
13

:3
8

13
:5

1
14

:0
7

14
:1

7
22

/0
5/

18
 1

2:
20

12
:2

6
12

:4
8

13
:0

0
13

:1
7

14
:0

4
14

:1
9

23
/0

5/
18

 1
2:

47
12

:5
4

13
:1

8
13

:3
4

13
:5

0
14

:0
6

14
:2

5
24

/0
5/

18
 1

2:
29

12
:3

9
13

:0
1

13
:1

3
13

:1
6

13
:3

0
13

:4
5

14
:0

2
25

/0
5/

18
 1

0:
57

11
:1

0
11

:2
6

11
:4

1
12

:0
3

26
/0

9/
18

 1
2:

54
13

:0
7

13
:2

7
13

:4
1

13
:5

8
14

:1
5

27
/0

9/
18

 1
2:

16
12

:2
8

12
:5

0
13

:0
7

13
:2

0
13

:5
3

13
:5

4
14

:2
0

28
/0

9/
18

 1
2:

06
12

:2
2

12
:4

6
13

:0
3

13
:1

9
13

:3
6

14
:0

2
29

/0
9/

18
 1

3:
35

13
:5

0
14

:1
6

14
:2

9
14

:4
4

14
:5

7
15

:1
1

17
/0

1/
19

 1
3:

27
13

:3
8

13
:4

9
14

:1
5

14
:3

5
18

/0
1/

19
 1

3:
22

13
:3

8
13

:5
3

14
:1

9
14

:4
7

11
/0

2/
19

 1
3:

18
13

:3
3

13
:3

9
13

:4
9

14
:0

4
14

:1
9

14
:2

5
12

/0
2/

19
 1

2:
53

13
:0

3
13

:1
2

13
:4

8
13

:5
2

13
:5

3
13

:5
4

13
:5

5
13

:5
6

14
:0

7
14

:2
2

14
:3

0
14

:4
0

14
:5

7
15

:0
5

15
:1

0
13

/0
2/

19
 1

2:
55

13
:1

3
13

:2
5

13
:3

5
13

:5
2

14
:0

8
14

:1
6

14
:3

2
14

:4
9

Date

0

0.2

0.4

0.6

0.8

1

E
st

im
at

ed
 c

on
sc

io
us

ne
ss

 le
ve

l

Patient P6

Product
Average

Figure 6.30: Daily average of the estimated consciousness level for CLIS patient P6. The x-axis represents
the dates and times of recording.

Three years of recordings were available for this patient, from 2017 to 2019. Fig. 6.30 shows
the patient’s consciousness level determined as a result of the clustering analysis presented in
this thesis. The values are very small for both ensemble methods. Additionally, a substantial
drop is observed starting in 2018 with the product ensemble but the changes do not appear
so drastic for the average ensemble. Nonetheless, these low values imply that there is a high
probability that patient P6 was actually never conscious during these recordings. However, the
experimenters reported a successful yes/no communication using fNRIS in 2017. The clustering
analysis determined mean values of 0.1313 for the product ensemble and 0.2188 for the average
ensemble that year. Nevertheless, these seemingly low values may probably be enough for the
patient to perform the tasks.

6.2.2.6 Patient P10

This patient is in locked-in state and on the verge of CLIS. He is also the youngest patient
in this group (25 years old). Patient P10 was diagnosed with familial juvenile ALS with
ALS 6-FUS gene mutation25 in December 2012. He was completely paralysed within a year
after the diagnosis. He used an eye-tracking device to communicate starting at the beginning
of 2014 until he lost eye control in August 2016. The patient was unable to communicate
afterwards [Mal+19] (also see Appendix D.1).

The daily average of the estimated level of consciousness for patient P10 is illustrated in
Fig. 6.31. The analysed data were from 2017 and 2018, with 2 days of recordings comprising
5 to 6 sessions each. Among all the CLIS patients, patient P10 displayed the lowest level of

25In 10% of the cases, ALS neurodegenerative disease that is familial. This is caused by a missense mutation in the
FUS (Fused in Sarcoma) gene encoding. This mutation causes familial ALS type 6 [Van+09].
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6.2 CLIS patients

consciousness according the method presented in this thesis. These values are extremely low
undoubtedly indicating that patient P10 was unconscious during the course of all recordings.
It is hypothesised that the patient’s performance in answering the questions increases with a
higher level of consciousness. Consequently, the results suggest that no successful commu-
nication could ever established with this patients. Indeed, the experimenters reported that
this patient was brain dead. Unsurprisingly, he was also never successful with the yes and no
communication using fNRIS.
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Figure 6.31: Estimated consciousness levels for CLIS patient P10. The x-axis represents the dates and times
of recording.

6.2.3 Discussion II

The results obtained by the soft-clustering approach proposed in this thesis were compared
to the performances of the patients using fNRIS (reported by the experimenters) when avail-
able. While EEG measures the electrical activity of the brain, fNRIS determines the cortical
haemodynamic response of the brain to a neural activity [GIM18; Sub19]. An investigation
using TMS in the cortex of cats revealed that the fluctuations in oxygen concentration in the
brain are correlated with brain electrical activity [Mil07; All+07]. It can be assumed then that
this also applied to human brain, justifying the legitimacy of the comparison. Overall, the
obtained results are validated by the report of the experimenters regarding the patient’s per-
formance with the fNRIS-based BCI. For patient P6 in particular, although the experimenters
reported that he was able to communicate using fNRIS until 2017, the obtained estimations
of his consciousness levels were less than 0.3. Considering the evaluation of the performance
of the clustering approach on data from the DoC patients in Section 6.1.3, either the patient
was unconscious or the minimum threshold for him to be able to perform the task was already
achieved. This, combined with the previously obtained results from patient GR, consequently
prove the effectiveness of the proposed approach and validate the hypothesis introduced in
Section 4.2.

Sadly, patients P1 and P7 passed away in 2019, and patients P2 and P6 in 2018. The results
of the clustering analysis determined that the consciousness levels of P1, P6 and P7 patients
decreased shortly prior their death (cf. Figs. 6.24 and 6.30, and Fig. D.2 in Appendix D).
Unfortunately, only data from 2015 was available for the patient P2, so no such finding could be
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substantiated. Nonetheless, the quasi similar behaviour of the estimated levels of consciousness
of the three patients begs the question whether this decrease could be an indicator of patients’
decline and/or predict their death. To get a definite answer, a study in that direction should be
extended to a larger number of patients.

On one hand, an increase of consciousness level was detected when feedback are provided to
the patients. This was for instance the case for patients P3, P6, P7 and P9. This tendency may
be explained by the fact that feedback is among the key factors of a successful experience since
it boosts the patient’s motivation and engagement [vWL15]. Nevertheless, as the patients tran-
sition from locked-in to completely locked-in states, a decrease of the EEG power is observed,
shifting it toward the δ and θ bands [Sec+21]. This decrease also apply to other characteristics
such as the brain signal complexity [Ada+20]. The more time the patient spends in CLIS, the
more important this decline is, although it can be delayed by providing them with means of
communication, especially using BCIs [Sec+21]. Subsequently, this stresses the importance of
continuously communicating and interacting with the patients.

6.3 Summary

This chapter reported the results of the soft-clustering approaches used to estimate different
patients’ consciousness level. When applied to the data of DoC patients, the proposed approach
was able to convey the characteristics of most of the features, although some of them are
contradictory. Some limitations of the method were found, but were overcome using pre-
defined centroids on the CLIS patients’ data. The results obtained this time were corroborated
by the experimenters’ observations and/or the patients’ performance using another brain
imaging technique (fNRIS). What’s more, it also estimated low values indicating the absence of
consciousness for one of the patient that was brain dead. In the end, keeping these different
results in mind, the proposed approach was able to achieve the aim that was established at the
beginning of this thesis. Its limitations, implications as well as possible future works will be
briefly introduced in the next chapter before concluding this thesis.
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There is no real ending. It’s just the place
where you stop the story.

Frank Herbert

7.1 Summary

In the present work, the task of assessing the levels of consciousness of completely locked-in
patients was undertaken. Patients with this condition are entirely paralysed but retain their
cognitive abilities. A major problem with this state is that there is no ground-truth relating
to the patients’ actual states of consciousness. This means that there is no definite way to be
sure if they are conscious or not at a given time since on one hand, no behavioural responses
can be detected and on the other hand, the patients themselves cannot overtly voice their
states. CLIS patients are often misdiagnosed as in a vegetative state, which subsequently
leads to inappropriate care. A proper care not only improves their quality of life by allowing
them to express themselves, but also enhances their prognosis. The ability to communicate
constitutes a crucial factor of this improvement, and is made possible by the use of brain-
computer interfaces. Nonetheless, the majority of existing studies attempted communicating
with the patients without taking into account if they are conscious and/or willing to do so.

In this thesis, the determination of the consciousness levels comes into play to determine the
optimal time to communicate with the patients instead of randomly starting the experiments.
In order to maximise the probability of detecting the patients’ actual state, a group of diverse
signal characteristics including spectral and complexity measures as well as connectivity metrics
were used. The idea behind the combined use of these different features was because each of
them may extract additional information that can not be obtained from the others. The features
were computed for each channel or pair of channels and subsequently averaged across all of
them. The obtained results were then input to two soft-clustering methods, Fuzzy c-means
and Gaussian mixture models, which outputs were later combined using their product and/or
average to obtain a unique outcome. The use of soft-clustering was preferred to hard-clustering
since instead of a binary decision regarding the patient’s consciousness state, a probability of
the patient being conscious was desired.

The proposed approach was first applied to data from DoC patients since according to
previous studies, their levels of consciousness are lower than that of LIS and CLIS patients,
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which levels are assumed to be comparable to those of healthy subjects. The approach was
subsequently evaluated using eyes scoring recorded along the EEG signal of the same DoC
patients. It was also applied to data from one CLIS patient which is unique since it is the
only one where the experimenter could identify one time frame during which said patient was
actually conscious. Consequently, if the method manages to correctly estimate the patients’
level of consciousness in these two cases, it is highly probable that it can correctly estimate that
of the remaining CLIS patients in this work.

The obtained results revealed that the method proposed in this thesis was able to emulate
the collective increases and decreases of the different EEG measures reflecting the patients’
consciousness levels. However, this level was accurately determined under the condition that
the clusters centroids are distant from each other. This means that there should be enough
data so that all possible states (from unconscious to conscious) are represented. Given the rarity
of EEG data acquired from CLIS patients, this condition is certainly difficult to fulfil. So, to
remedy to this situation, pre-determined parameters were subsequently employed to cluster the
data from the remaining CLIS patients. By comparing these results to informations provided by
the experimenters, the proposed approach was again capable of determining the possible levels
of consciousness of the patients. Furthermore, the results appear to presage patient’s death, in
which case a decrease of their levels of consciousness was observed in the months preceding
their death. These observations were detected in all except one patient that passed away due to
data unavailability. Nonetheless, more data are needed to corroborate these observations.

One major limitation of the presented work is evidently the lack of data from CLIS patients,
leading to the use of these pre-defined centroids for the clustering analysis. In addition, no
features selection were performed, i.e. all the EEG measures were used regardless if they
positively or negatively influence the results. Despite these restrictions however, the proposed
approach was able to accurately determine the patients’ levels of consciousness for the majority
of the DoC patients and all the CLIS patients. This approach can be used as an additional tool to
the traditional behavioural tests to help clinicians reduce the misdiagnosis rate of (completely)
locked-in patients. Furthermore, given the importance of communication to such patients
and to avoid unnecessary fatigue, it can also be used as a preliminary step before initiate
communication with the patient. That way, it can be established only when the patient is
conscious enough.

The method proposed in this thesis was able to correctly evaluate the levels of conscious-
ness of different group of patients in vegetative and minimally conscious states, but more
importantly in completely locked-in patients, using a combination of different EEG signal char-
acteristics. This thesis constitutes a step toward improving the lives of CLIS patients. To the
author’s knowledge, no such investigation to detect CLIS patients’ consciousness levels using
the different features used in this work, as well as the soft-clustering analysis exist at this time.
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7.2 Outlook

In the approach proposed in this thesis, all features are weighted equally and no selection were
performed. However, every patient is different and some features may be more relevant than
others for each individual. Future work will primarily focus on tailoring the features to each
CLIS patient. The list of features employed in this research are not exhaustive. Additional EEG
characteristics can be added in view of gathering more hidden patterns and ameliorate the
system. Furthermore, since levels of consciousness are provided as output of the clustering
analysis and that in Section 6.1.3, it was reported that the performance of the cluster analysis
depended on the value of the threshold chosen to separate unconscious and conscious states,
an automatic and personalised detection of this threshold will be developed. As mentioned
in Section 3.1, family members are primarily the ones that first discover that the patient was
conscious. They are familiar with them and are consequently more likely to know how they
appear when they are conscious. Therefore, all future works will involve and require their
contributions. Their input will be used to adaptively select useful features for each patient in
the first case, and to determine the optimal threshold in the second case.

Since the principal goal was to assess consciousness of the patients before any attempt to
communicate with them, the next step will be an online implementation of the system. This
requires of course a continuous recording of the patient’s EEG. Since the computation of LZC
and wSMI are time consuming, an output of the patient’s state can be provided by the system
every few minutes to allow time for calculation. A duration of five to ten minutes alike the
length of the sessions during the experiments with CLIS patients seems appropriate.
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A Appendix: K-means++ algorithm

GMM uses the k-means++ algorithm to determine the initial parameters of the clustering
analysis [Mat21]. Given a number k of clusters, they are chosen like so:

1. First, the component mixture probability is chosen as the uniform probability pi =
1
k ,

where i = 1, ..., k.

2. Then, the covariance matrices are set to be diagonal and identical, where σi =

diag(a1, a2, . . . , ak) and aj = var(Xj).

3. Afterwards, the first initial component centre µ1 is uniformly determined from all data
points in X.

4. To obtain centre j:

a) The Mahalanobis distances from each observation to each centroid is calculated,
and each observation is assigned to its closest centroid.

b) For m = 1, ..., n and p = 1, ..., j− 1, a centroid j is randomly selected from X with
probability

d2 (xm, µp
)

∑h;xh∈Mp
d2
(
xh, µp

) (A.1)

where d(xh, µp) is the distance between observation m and µp, and Mp is the set of
all observations closest to centroid µp and xm belongs to Mp. i.e., each subsequent
centre is selected with a probability proportional to the distance from itself to the
closest centre already selected.

5. Step 4 is repeated until the k centroids are chosen.
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B Appendix: Additional information about
DoC patients

Table B.1: Data and eyes scoring length.

Patient EEG data 
length 

Eyes scoring 
length

L1 2891 2170
L3 2881 1920
L13 2881 2150
S12 2691 1229
S13 2665 1620
S14 2536 1559
S16 2622 1700
S17 1865 960
L4 2883 2150
L7 2881 2150
L8 2968 2160
L9 2910 2160
L16 2881 2150
S2 2180 1170
S5 2894 720
S6 2593 1430
S7 2522 720

Table B.2: Results of the Wilcoxon ranskum statistical analysis comparing the values of each feature
between MCS and UWS patients.

Features p-value zval

Ptheta 0 -56,46
Pbeta 0 -42,96
SEF95 1,80E-206 -30,66
ERR 3,11E-73 -18,1
LZC 1,61E-206 30,67
iCOH 3,48E-06 4,64
wSMI 1,75E-99 21,17
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B Appendix: Additional information about DoC patients

Table B.3: Clustering analysis results UWS patient L3. (a): Clusters centroids. Values displayed here are
the normalised values. (b): Spearman correlation coefficients between the features and the estimated
levels of consciousness.

Cluster 1 Cluster 2 Cluster 1 Cluster 2 FCM GMM Product ens. Average ens.
Ptheta 0,1234 0,2418 0,2243 0,1132 Ptheta 0,8615 -0,8036 0,8266 0,8627
Pbeta 0,0112 0,0409 0,0382 0,0071 Pbeta 0,8299 -0,9717 0,9412 0,8439
SEF95 6,1560 11,6325 11,4705 5,1300 SEF95 0,7900 -0,9555 0,9290 0,8059
ERR 0,5345 0,9378 0,8764 0,5032 ERR 0,7780 -0,7568 0,7547 0,7752
LZC 1,0259 1,1774 1,1847 0,9907 LZC 0,3736 -0,4113 0,4386 0,3803
iCOHtheta 0,0631 0,0634 0,0639 0,0646 iCOHtheta 0,0144 0,0064 -0,0043 0,0082
wSMI 0,0377 0,0370 0,0646 0,0373 wSMI -0,0978 -0,0773 0,0334 -0,0866
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Figure B.1: Estimated consciousness level for UWS patient L3 using (a) a product of the results obtained
from , and (b) an average ensemble of FCM and GMM. The blank areas represent the times during
which no eyes scoring were made in (c). Shaded area represents night time.
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B Appendix: Additional information about DoC patients

Table B.4: Clustering analysis results UWS patient L13. (a): Clusters centroids. Values displayed here are
the normalised values. (b): Spearman correlation coefficients between the features and the estimated
levels of consciousness.

Cluster 1 Cluster 2 Cluster 1 Cluster 2 FCM GMM Product ens. Average ens.
Ptheta 0,1016 0,1022 0,1486 0,0708 Ptheta 0,4933 -0,5122 0,5123 0,5354
Pbeta 0,0085 0,0085 0,0136 0,0051 Pbeta 0,4556 -0,8997 0,8978 0,8270
SEF95 5,4990 5,517 7,3305 4,2930 SEF95 0,5011 -0,9091 0,9081 0,8481
ERR 0,3639 0,3637 0,3838 0,3504 ERR 0,0481 -0,3973 0,3951 0,3046
LZC 0,7742 0,7729 0,8229 0,7408 LZC -0,2004 -0,2662 0,2630 0,1242
iCOHtheta 0,0649 0.0655 0,0676 0,0636 iCOHtheta 0,5246 -0,0680 0,0718 0,2032
wSMI 0,0473 0,0473 0,0489 0,0462 wSMI 0,2718 -0,3499 0,3495 0,3227
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Figure B.2: Estimated consciousness level for UWS patient L13 using using (a) a product of the results
obtained from , and (b) an average ensemble of FCM and GMM. The blank areas represent the times
during which no eyes scoring were made in (c). Shaded area represents night time.
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Table B.5: Clustering analysis results UWS patient S12. (a): Clusters centroids. Values displayed here are
the normalised values. (b): Spearman correlation coefficients between the features and the estimated
levels of consciousness.

Cluster 1 Cluster 2 Cluster 1 Cluster 2 FCM GMM Product ens. Average ens.
Ptheta 0,4075 0,2682 0,4163 0,2790 Ptheta -0,6193 0,5232 -0,6566 0,4908
Pbeta 0,0611 0,1367 0,0591 0,1159 Pbeta 0,4830 0,7516 0,5118 0,6979
SEF95 14,1705 32,2515 13,5405 28,0125 SEF95 0,6922 0,8228 0,7371 0,7358
ERR 0,5845 1,8422 0,4762 1,792 ERR 0,7307 0,4314 0,8068 0,5019
LZC 0,2395 1,1007 0,2182 0,8519 LZC 0,5034 -0,0451 0,4330 -0,0058
iCOHtheta 0,0625 0,0608 0,0634 0,0610 iCOHtheta -0,0026 0,3858 -0,0309 0,4479
wSMI 0,0307 0,0547 0,0299 0,0485 wSMI 0,4503 0,2183 0,3932 0,3042
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Figure B.3: Estimated consciousness level for UWS patient S12 using using (a) a product of the results
obtained from , and (b) an average ensemble of FCM and GMM. The blank areas represent the times
during which no eyes scoring were made in (c). Shaded area represents night time.

128



B Appendix: Additional information about DoC patients

Table B.6: Clustering analysis results UWS patient S13. (a): Clusters centroids. Values displayed here are
the normalised values. (b): Spearman correlation coefficients between the features and the estimated
levels of consciousness.

Cluster 1 Cluster 2 Cluster 1 Cluster 2 FCM GMM Product ens. Average ens.
Ptheta 0,1280 0,1283 0,1229 0,1401 Ptheta 0,4820 0,2183 0,2189 0,3042
Pbeta 0,0276 0,0277 0,0200 0,0452 Pbeta 0,5345 0,8942 0,8944 0,8551
SEF95 10,2330 10,26 7,4070 16,7085 SEF95 0,4645 0,9380 0,9381 0,8732
ERR 0,1722 0,1724 0,1395 0,2468 ERR 0,3159 0,8638 0,8637 0,7653
LZC 1,0285 1,0273 0,8300 1,4783 LZC -0,0988 0,7039 0,7033 0,4809
iCOHtheta 0,0590 0,0591 0,0594 0,0583 iCOHtheta 0,1504 -0,0375 -0,0375 0,0237
wSMI 0,0330 0,033 0,0329 0,0333 wSMI 0,6432 0,0865 0,0877 0,2793
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Figure B.4: Estimated consciousness level for UWS patient S13 using using (a) a product of the results
obtained from , and (b) an average ensemble of FCM and GMM. The blank areas represent the times
during which no data were recorded in (a) and (b), or no eyes scoring were made in (c). Shaded area
represents night time.
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Table B.7: Clustering analysis results UWS patient S14. (a): Clusters centroids. Values displayed here are
the normalised values. (b): Spearman correlation coefficients between the features and the estimated
levels of consciousness.

Cluster 1 Cluster 2 Cluster 1 Cluster 2 FCM GMM Product ens. Average ens.
Ptheta 0,0608 0,0696 0,0706 0,0628 Ptheta -0,0744 -0,0742 0,0609 -0,0307
Pbeta 0,2017 0,1248 0,1091 0,204 Pbeta 0,8034 -0,9272 0,9253 0,8274
SEF95 36,35 27,01 24,72 36,81 SEF95 0,8454 -0,9667 0,9659 0,8713
ERR 0,4643 0,2672 0,2278 0,4665 ERR 0,7785 -0,9244 0,9215 0,8046
LZC 1,2839 0,7793 0,7776 1,2303 LZC 0,4942 -0,3605 0,3809 0,4553
iCOHtheta 0,0623 0,0600 0,0580 0,0639 iCOHtheta 0,0416 -0,0924 0,0901 0,0483
wSMI 0,0441 0,0391 0,0384 0,0442 wSMI 0,4954 -0,5486 0,5491 0,4988
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Figure B.5: Estimated consciousness level for MCS patient S14 using using (a) a product of the results
obtained from , and (b) an average ensemble of FCM and GMM. The blank areas represent the times
during which no eyes scoring were made (c). Shaded area represents night time.
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B Appendix: Additional information about DoC patients

Table B.8: Clustering analysis results UWS patient S16. (a): Clusters centroids. Values displayed here are
the normalised values. (b): Spearman correlation coefficients between the features and the estimated
levels of consciousness.

Cluster 1 Cluster 2 Cluster 1 Cluster 2 FCM GMM Product ens. Average ens.
Ptheta 0,1105 0,1703 0,1137 0,1780 Ptheta -0,4848 -0,7251 -0,7236 -0,4893
Pbeta 0,1044 0,0154 0,0853 0,0116 Pbeta 0,8016 0,8008 0,8074 0,8273
SEF95 25,2495 6,4800 21,582 5,4990 SEF95 0,8004 0,7701 0,7747 0,8269
ERR 0,6927 0,5659 0,6717 0,5639 ERR 0,3968 0,3170 0,3274 0,3861
LZC 1,5211 0,8293 1,4122 0,7754 LZC 0,6407 0,7669 0,7555 0,6729
iCOHtheta 0,0594 0,0575 0,06 0,0578 iCOHtheta 0,0738 0,0423 0,0483 0,0719
wSMI 0,0267 0,0302 0,0267 0,0307 wSMI -0,4714 -0,7052 -0,6993 -0,4821

(a) (b)

Features
Spearman correlation

Features
FCM GMM

06:43 09:29 12:14 15:00 17:45 20:31 23:16 02:02 04:47 07:33

0

0.2

0.4

0.6

0.8

1

E
st

im
at

ed
 le

ve
l o

f c
on

sc
io

us
ne

ss

Patient S16

23
:0

0

04
:4

5

12
-A

ug
-2

00
9 

06
:4

3:
46

12
-A

ug
-2

00
9 

14
:1

0:
02

12
-A

ug
-2

00
9 

15
:0

6:
48

12
-A

ug
-2

00
9 

19
:1

1:
43

12
-A

ug
-2

00
9 

21
:1

3:
49

13
-A

ug
-2

00
9 

07
:3

3:
15

(a) Product ensemble

06:43 09:29 12:14 15:00 17:45 20:31 23:16 02:02 04:47 07:33

0

0.2

0.4

0.6

0.8

1

E
st

im
at

ed
 le

ve
l o

f c
on

sc
io

us
ne

ss 23
:0

0

04
:4

5

12
-A

ug
-2

00
9 

06
:4

3:
46

12
-A

ug
-2

00
9 

14
:1

0:
02

12
-A

ug
-2

00
9 

15
:0

6:
48

12
-A

ug
-2

00
9 

19
:1

1:
43

12
-A

ug
-2

00
9 

21
:1

3:
49

13
-A

ug
-2

00
9 

07
:3

3:
15

(b) Average ensemble

09:30 11:00 12:30 14:00 15:10 16:40 18:10 23:00 00:30 02:00 03:30
Time (HH:MM)

NA/nv

C

O/C

O

E
ye

s 
sc

or
in

g

(c) Eyes scoring

Figure B.6: Estimated consciousness level for UWS patient S16 using using (a) a product of the results
obtained from , and (b) an average ensemble of FCM and GMM. The blank areas represent the times
during which no data were recorded in (a) and (b), or no eyes scoring were made in (c). Shaded area
represents night time.
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B Appendix: Additional information about DoC patients

Table B.9: Clustering analysis results UWS patient S17. (a): Clusters centroids. Values displayed here are
the normalised values. (b): Spearman correlation coefficients between the features and the estimated
levels of consciousness.

Cluster 1 Cluster 2 Cluster 1 Cluster 2 FCM GMM Product ens. Average ens.
Ptheta 0,1674 0,0672 0,0682 0,1571 Ptheta -0,6990 0,7421 -0,7495 -0,6779
Pbeta 0,0687 0,1043 0,1116 0,0645 Pbeta 0,5480 -0,6529 0,6464 0,5850
SEF95 13,9590 24,741 25,614 13,7250 SEF95 0,8449 -0,8931 0,8925 0,8583
ERR 0,3036 0,4422 0,4517 0,2999 ERR 0,5551 -0,6222 0,6239 0,5681
LZC 0,7619 1,8324 1,804 0,8143 LZC 0,7808 -0,7316 0,7390 0,7612
iCOHtheta 0,0621 0,0603 0,0602 0,0632 iCOHtheta -0,0219 0,0338 -0,0336 -0,0205
wSMI 0,0346 0,0271 0,0270 0,0343 wSMI -0,7970 0,7950 -0,7972 -0,7971
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Figure B.7: Estimated consciousness level for UWS patient S17 using using (a) a product of the results
obtained from , and (b) an average ensemble of FCM and GMM. The blank areas represent the times
during which no data were recorded in (a) and (b), or no eyes scoring were made in (c). Shaded area
represents night time.
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B Appendix: Additional information about DoC patients

Table B.10: Clustering analysis results MCS patient L4. (a): Clusters centroids. Values displayed here are
the normalised values. (b): Spearman correlation coefficients between the features and the estimated
levels of consciousness.

Cluster 1 Cluster 2 Cluster 1 Cluster 2 FCM GMM Product ens. Average ens.
Ptheta 0,1289 0,1821 0,1401 0,1789 Ptheta 0,6894 0,5700 0,5967 0,6204
Pbeta 0,0230 0,0503 0,0237 0,0591 Pbeta 0,8503 0,9447 0,9470 0,8673
SEF95 8,3880 15,93 8,4015 18,729 SEF95 0,8212 0,9506 0,9501 0,8519
ERR 0,4063 0,4918 0,4273 0,4862 ERR 0,4857 0,4242 0,4510 0,4528
LZC 1,1144 1,6139 1,1279 1,7756 LZC 0,7665 0,9396 0,9302 0,8038
iCOHtheta 0,0603 0,0591 0,0614 0,0586 iCOHtheta -0,0261 -0,0589 -0,0512 -0,0282
wSMI 0,0383 0,0414 0,0586 0,0448 wSMI 0,1958 0,3729 0,3620 0,2592
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Figure B.8: Estimated consciousness level for MCS patient L4 using using (a) a product of the results
obtained from , and (b) an average ensemble of FCM and GMM. The blank areas represent the times
during which no data were recorded in (a) and (b), or no eyes scoring were made in (c). Shaded area
represents night time.
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B Appendix: Additional information about DoC patients

Table B.11: Clustering analysis results MCS patient L7. (a): Clusters centroids. Values displayed here are
the normalised values. (b): Spearman correlation coefficients between the features and the estimated
levels of consciousness.

Cluster 1 Cluster 2 Cluster 1 Cluster 2 FCM GMM Product ens. Average ens.
Ptheta 0,1638 0,1323 0,1311 0,1645 Ptheta -0,2871 0,2455 -0,2466 -0,2858
Pbeta 0,0387 0,0921 0,0951 0,0391 Pbeta 0,8024 -0,9249 0,9255 0,8042
SEF95 15,4485 33,93 34,866 16,0020 SEF95 0,8626 -0,9847 0,9844 0,8638
ERR 0,6047 0,5710 0,5639 0,6093 ERR 0,0587 0,0849 -0,0827 0,0585
LZC 1,2622 1,97 1,9987 1,2648 LZC 0,7572 -0,9060 0,9054 0,7583
iCOHtheta 0,0591 0,0571 0,0571 0,0603 iCOHtheta -0,0283 0,0630 -0,0615 -0,0282
wSMI 0,0472 0,0659 0,667 0,0474 wSMI 0,7688 -0,8472 0,8490 0,7685
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Figure B.9: Estimated consciousness level for MCS patient L7 using using (a) a product of the results
obtained from , and (b) an average ensemble of FCM and GMM. The blank areas represent the times
during which no eyes scoring were made in (c). Shaded area represents night time.

134



B Appendix: Additional information about DoC patients

Table B.12: Clustering analysis results MCS patient L8. (a): Clusters centroids. Values displayed here are
the normalised values. (b): Spearman correlation coefficients between the features and the estimated
levels of consciousness.

Cluster 1 Cluster 2 Cluster 1 Cluster 2 FCM GMM Product ens. Average ens.
Ptheta 0,0753 0,0850 0,0887 0,0748 Ptheta -0,1053 0,2060 -0,2199 -0,1166
Pbeta 0,0748 0,0189 0,0150 0,0646 Pbeta 0,8685 -0,9443 0,9275 0,8758
SEF95 22,49 7,34 6,04 20,14 SEF95 0,8782 -0,9440 0,9291 0,8866
ERR 0,3297 0,1150 0,0986 0,2906 ERR 0,8664 -0,9556 0,9417 0,8773
LZC 1,5441 0,6743 0,6045 1,3941 LZC 0,8440 -0,9398 0,9252 0,8553
iCOHtheta 0,0577 0,0568 0,0578 0,0587 iCOHtheta 0,0566 -0,0348 0,0446 0,0504
wSMI 0,0437 0,0418 0,0417 0,0433 wSMI 0,1601 -0,2636 0,2469 0,1621
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Figure B.10: Estimated consciousness level for MCS patient L8 using using (a) a product of the results
obtained from , and (b) an average ensemble of FCM and GMM. The blank areas represent the times
during which no eyes scoring were made in (c). Shaded area represents night time.
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B Appendix: Additional information about DoC patients

Table B.13: Clustering analysis results MCS patient L9. (a): Clusters centroids. Values displayed here are
the normalised values. (b): Spearman correlation coefficients between the features and the estimated
levels of consciousness.

Cluster 1 Cluster 2 Cluster 1 Cluster 2 FCM GMM Product ens. Average ens.
Ptheta 0,0891 0,0769 0,0901 0,0748 Ptheta 0,3046 0,3232 0,3206 0,3032
Pbeta 0,0461 0,0211 0,0476 0,0157 Pbeta 0,8251 0,9502 0,9439 0,8546
SEF95 15,6825 7,7670 15,831 6,1830 SEF95 0,8565 0,9599 0,9544 0,8855
ERR 0,3699 0,3322 0,372 0,3239 ERR 0,3153 0,3876 0,3790 0,3142
LZC 1,3687 0,9533 1,3739 0,8724 LZC 0,7810 0,8463 0,8398 0,8053
iCOHtheta 0,0557 0,0575 0,0561 0,0594 iCOHtheta -0,0385 -0,0733 -0,0663 -0,0447
wSMI 0,0555 0,0494 0,055 0,0491 wSMI 0,4238 0,3470 0,3494 0,4008
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Figure B.11: Estimated consciousness level for MCS patient L9 using using (a) a product of the results
obtained from , and (b) an average ensemble of FCM and GMM. The blank areas represent the times
during which no eyes scoring were made in (c). Shaded area represents night time.
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B Appendix: Additional information about DoC patients

Table B.14: Clustering analysis results MCS patient L16. (a): Clusters centroids. Values displayed here are
the normalised values. (b): Spearman correlation coefficients between the features and the estimated
levels of consciousness.

Cluster 1 Cluster 2 Cluster 1 Cluster 2 FCM GMM Product ens. Average ens.
Ptheta 0,1834 0,1840 0,1829 0,1834 Ptheta -0,0147 0,0305 0,0305 -0,0143
Pbeta 0,1283 0,0577 0,1257 0,0483 Pbeta 0,8654 0,9810 0,9800 0,8722
SEF95 30,897 18,1800 30,7935 16,2855 SEF95 0,8661 0,9584 0,9589 0,8705
ERR 0,6242 0,5798 0,62 0,5701 ERR 0,1263 0,2056 0,2052 0,1275
LZC 1,8859 1,2149 1,8601 1,1312 LZC 0,8244 0,9042 0,9051 0,8294
iCOHtheta 0,0665 0,0659 0,0677 0,0661 iCOHtheta 0,0120 0,0253 0,0246 0,0119
wSMI 0,0505 0,0440 0,0501 0,0440 wSMI 0,5141 0,4868 0,4900 0,5077
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Figure B.12: Estimated consciousness level for MCS patient L16 using using (a) a product of the results
obtained from , and (b) an average ensemble of FCM and GMM. The blank areas represent the times
during which no eyes scoring were made in (c). Shaded area represents night time.
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B Appendix: Additional information about DoC patients

Table B.15: Clustering analysis results MCS patient S2. (a): Clusters centroids. Values displayed here are
the normalised values. (b): Spearman correlation coefficients between the features and the estimated
levels of consciousness.

Cluster 1 Cluster 2 Cluster 1 Cluster 2 FCM GMM Product ens. Average ens.
Ptheta 0,1122 0,1254 0,0972 0,1518 Ptheta -0,0914 -0,4109 -0,4149 -0,1643
Pbeta 0,0468 0,0220 0,0444 0,0168 Pbeta 0,6822 0,6946 0,6936 0,7423
SEF95 18,522 9,2430 18,315 6,9975 SEF95 0,7918 0,8513 0,8505 0,8359
ERR 0,4533 0,3456 0,4441 0,3267 ERR 0,4830 0,2671 0,2695 0,4760
LZC 1,2811 0,9875 1,2479 0,9265 LZC 0,4236 0,3742 0,3807 0,4545
iCOHtheta 0,0602 0,0597 0,0582 0,0628 iCOHtheta 0,0025 -0,0740 -0,0696 -0,0088
wSMI 0,0340 0,0361 0,0329 0,0384 wSMI -0,3249 -0,5361 -0,5450 -0,4002
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Figure B.13: Estimated consciousness level for MCS patient S2 using using (a) a product of the results
obtained from , and (b) an average ensemble of FCM and GMM. The blank areas represent the times
during which no data were recorded in (a) and (b), or no eyes scoring were made in (c). Shaded area
represents night time.
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B Appendix: Additional information about DoC patients

Table B.16: Clustering analysis results MCS patient S5. (a): Clusters centroids. Values displayed here are
the normalised values. (b): Spearman correlation coefficients between the features and the estimated
levels of consciousness.

Cluster 1 Cluster 2 Cluster 1 Cluster 2 FCM GMM Product ens. Average ens.
Ptheta 0,2131 0,1927 0,0728 0,2221 Ptheta 0,1436 -0,5158 0,5587 0,2113
Pbeta 0,1751 0,1323 0,0261 0,1733 Pbeta 0,4884 -0,9269 0,8335 0,5399
SEF95 30,69 22,84 8,54 29,61 SEF95 0,8262 -0,6649 0,6630 0,8544
ERR 0,64 0,6162 0,3050 0,6721 ERR 0,0440 -0,6656 0,5917 0,1264
LZC 1,2261 0,6025 0,5785 0,9983 LZC 0,7650 -0,1689 0,2199 0,7277
iCOHtheta 0,0644 0,0624 0,0587 0,0646 iCOHtheta 0,0573 -0,0629 0,0695 0,0631
wSMI 0,0340 0,0368 0,0386 0,0347 wSMI -0,4952 0,3101 -0,2706 -0,4814
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Figure B.14: Estimated consciousness level for MCS patient S5 using using (a) a product of the results
obtained from , and (b) an average ensemble of FCM and GMM. The blank areas represent the times
during which no eyes scoring were made in (c). Shaded area represents night time.
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Table B.17: Clustering analysis results MCS patient S6. (a): Clusters centroids. Values displayed here are
the normalised values. (b): Spearman correlation coefficients between the features and the estimated
levels of consciousness.

Cluster 1 Cluster 2 Cluster 1 Cluster 2 FCM GMM Product ens. Average ens.
Ptheta 0,1357 0,0921 0,0890 0,1299 Ptheta 0,4876 -0,4458 0,4546 0,4740
Pbeta 0,1079 0,0482 0,0392 0,1044 Pbeta 0,8475 -0,9155 0,9174 0,8595
SEF95 22,06 12,66 11,12 21,70 SEF95 0,8241 -0,8996 0,9011 0,8379
ERR 0,3384 0,1629 0,1435 0,3208 ERR 0,7944 -0,8146 0,8195 0,7930
LZC 0,3984 0,3851 0,3375 0,4462 LZC -0,1260 0,0128 -0,0214 -0,1033
iCOHtheta 0,0594 0,0614 0,0627 0,0595 iCOHtheta -0,0385 0,0537 -0,0525 -0,0458
wSMI 0,0301 0,0306 0,0309 0,0300 wSMI -0,1309 0,1367 -0,1360 -0,1457
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Figure B.15: Estimated consciousness level for MCS patient S6 using using (a) a product of the results
obtained from , and (b) an average ensemble of FCM and GMM. The blank areas represent the times
during which no data were recorded in (a) and (b), or no eyes scoring were made in (c). Shaded area
represents night time.
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B Appendix: Additional information about DoC patients

Table B.19: Performance of the cluster analysis for different threshold values for the binarisation of the
degrees of membership (cf. Section 6.1.3). The cells in green represent the values of the threshold
corresponding to the highest accuracy.

Patient Threshold Average 
ensemble

Product 
ensemble Patient Threshold Average 

ensemble
Product 

ensemble
0,3 63,89% 65,15% 0,3 54,52% 59,76%
0,4 62,55% 63,89% 0,4 54,05% 54,52%
0,5 61,88% 61,88% 0,5 53,33% 53,33%
0,6 61,06% 59,72% 0,6 52,38% 51,90%
0,7 60,09% 56,52% 0,7 51,90% 51,19%
0,3 44,91% 44,26% 0,3 63,56% 62,05%
0,4 45,46% 44,81% 0,4 64,03% 63,47%
0,5 46,11% 46,11% 0,5 64,50% 64,50%
0,6 46,39% 49,17% 0,6 65,16% 65,63%
0,7 46,94% 55,37% 0,7 65,63% 66,95%
0,3 55,66% 52,52% 0,3 69,77% 69,89%
0,4 56,36% 55,66% 0,4 69,89% 69,89%
0,5 57,20% 57,20% 0,5 69,77% 69,77%
0,6 57,48% 58,53% 0,6 70,11% 69,66%
0,7 58,53% 60,49% 0,7 69,89% 70,11%
0,3 44,80% 44,34% 0,3 72,81% 73,60%
0,4 44,80% 44,80% 0,4 72,44% 72,87%
0,5 44,80% 44,80% 0,5 71,76% 71,76%
0,6 44,80% 44,80% 0,6 71,70% 70,96%
0,7 44,80% 44,80% 0,7 71,15% 68,32%
0,3 56,23% 56,23% 0,3 34,57% 32,64%
0,4 57,30% 56,23% 0,4 35,26% 34,57%
0,5 57,65% 57,65% 0,5 36,64% 36,64%
0,6 57,30% 58,01% 0,6 37,47% 39,12%
0,7 58,01% 58,36% 0,7 38,98% 41,32%
0,3 83,27% 85,20% 0,3 52,08% 50,94%
0,4 82,63% 83,27% 0,4 53,12% 52,08%
0,5 82,24% 82,24% 0,5 53,43% 53,43%
0,6 81,66% 80,57% 0,6 53,85% 54,78%
0,7 80,76% 78,64% 0,7 54,16% 57,59%
0,3 53,38% 53,57% 0,3 54,63% 54,63%
0,4 53,20% 53,29% 0,4 54,63% 54,63%
0,5 53,20% 53,20% 0,5 54,63% 54,63%
0,6 53,20% 53,20% 0,6 54,63% 52,78%
0,7 53,10% 51,88% 0,7 54,63% 50,93%
0,3 21,79% 21,57% 0,3 60,81% 59,62%
0,4 22,00% 21,79% 0,4 61,64% 60,69%
0,5 22,00% 22,00% 0,5 62,00% 62,00%
0,6 22,22% 22,22% 0,6 62,23% 62,83%
0,7 22,22% 22,00% 0,7 62,83% 63,90%

0,3 30,55% 37,14%
0,4 29,67% 30,55%
0,5 28,79% 28,79%
0,6 27,69% 26,15%
0,7 26,15% 23,30%
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C Appendix: Additional information about
CLIS patient GR

C.1 Recording channels

Table C.1 lists all recording channels numbers corresponding to the labels of the ECoG grid
illustrated in Fig. 5.2

Table C.1: ECoG channels list and labels for CLIS patient GR.

Channel # Label Channel # Label Channel # Label
1 G034 17 G059 49 G089
2 G035 18 G060 50 G090
3 G036 19 G064 51 G096
4 G037 20 G065 52 G097
5 G038 21 G066 53 G098
6 G042 22 G067 54 G099
7 G043 23 G068 55 G100
8 G044 24 G072 56 G105
9 G045 25 G073 57 G107
10 G049 26 G074 58 G108
11 G050 27 G075 59 G109
12 G051 28 G080 60 S007
13 G052 29 G081 61 S008
14 G053 30 G082 62 S014
15 G057 31 G083 63 S015
16 G058 32 G088 64 S016

C.2 Experimental setup

Table C.2 presents the questions that were asked during the experiment as well as the answers.
It is reported as it was written by the experimenter. The experiment started at 14:50 and ended
at 17:00. This is the first and only successful communication attempt out of 170. 18 questions
were asked. 16 of them were correctly answered. One question was not correctly answered
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C Appendix: Additional information about CLIS patient GR

(Question ) and the answer for Question 13 is unclear. In the answer column, + means that the
patient’s answer was classified as "yes", and - means that it has been identified as a "no".

Table C.2: Experimental setup for patient GR.

No. Paired questions Answer
Date: 2008-03-16

Session:
Present: Femke
Arrive: 14.50

Leave:

Time:
Heart rate: 98

Oxygen saturation: 97

Lying on side: back/left
Respiration BPM: 15

Ground: S032

Reference: G102

Initial eye movement looked much stronger than previous days. I asked him questions
(without video).

0.1
You feel good today? +
You feel bad today? -

0.2
Are you happy that I’m here? +
Would you prefer to be alone and to watch TV? -

The responses were so strong that I though a conversations was possible. I turned on
the video. The following questions were asked. Someone should check the video to
check me.

1

You feel good today? +
You feel bad today? -

2

Are you German? +
Are you Dutch? -

3

Do you feel pain? -
Are you free of pain? +

4

Are you satisfied by the health care at BS (city in Ger-
many)?

+

Are you unsatisfied by the health care at BS? -
Are you unsatisfied by the health care at BS? -
Are you satisfied by the health care at BS? +

5

Are you still happy to have decided for the operation? +
Are you sorry for having decided to do the operation? -

6

Do you think, you have feedback control over sound? +
Do you think the feedback is not controllable? -

7

Are the sounds loud enough for you? +
Should we turn the speaker louder? -
Should we turn down the speaker?
Are the speakers o.k.? +

Continued on next page
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C.2 Experimental setup

Table C.2 – continued from previous page
No. Paired questions Answer

"We would like to know about your psychological status. We want to know how your
mood is."

8

Are you positive regarding the future? +
Do you not know exactly what future will bring for you,
so, are you neutral for your future?

-

Are you negative for the future? -
"I will ask you now a question, that have to be asked to you somewhen."

9

Do you wish sometimes, you were dead? -
You never wished to be dead? +##

10

Can you enjoy your life under these circumstances? +
You don’t enjoy your life any more? -

11

Was it a good decision to bring you to BS? +
Do you prefer to go back to Vohenstrauss (his home
town)?

+ & - (not clear)

Do you prefer to go back to Vohenstrauss? -

12

Do you want to stay at BS in the future? -
Do you want to stay at BS in the future? -
Do you prefer to go into another nursing home? +
Do you prefer to go into another nursing home? +

13

You want to go back to Vohenstrauss in some later period?
Do I understand you correctly?

+ (no clear answer)

You want in another nursing home than Vohenstrauss? + (no clear answer)
"I have been informed, that our political contacts we have engaged to convince the
health insurance regarding your care costs will publish a report about you in the
SPEIGEL (very renown German journal). Unfortunately, I don’t know more than that,
neither about the content of the article. I will inform myself to tell you."

14

Shouldn’t we go to public with the heath insurance? -
Shouldn’t we fight we the health insurance? -
Should we fight with the health insurance? -

15

For long term schedule: You want to go to Vohenstrauss? +
For long term schedule: You want to stay at BS? +

"It’s not clear to me what you want to say, GR."
16 You don’t care where you will be in future? -
"I ask you a different way now."
17 For long term schedule, are you Prefer Vohenstrauss be-

fore BS?
-

I see a NO in your eyes, is this correct?
+, including corner of the mouth, I tried letting him repeat the mouth twitch but it
didn’t always work. Instructed him to use whatever he could or both

17

Do you prefer, for long term, to stay at BS before Vohen-
strauss?

-

You want another nursing home than those 2?
You want to spell something?

GR then spelled the word "AMBERG".
Continued on next page

145



C Appendix: Additional information about CLIS patient GR

Table C.2 – continued from previous page
No. Paired questions Answer

This was a long process where I repeatedly double checked (verified "correct?" and
"wrong?") if I got all letters correct. I also asked him for confirmation or declination of
the final word "AMBERG". Someone should CHECK the video and check me.
I, then suspected that he wanted to go to Amberg instead of staying in BS or going
back to Vehenstrauss.

18

You mean, you want to go to Amberg in the future?
Did I understood you wrong, that you want to go to
Amberg in the future?

-

VIDEO lost power. We take a break and I type up this conversation.
Time: 17.00

Heart rate: 94

Oxygen saturation: 98

Lying on side: back/left
Respiration BPM: 15

Ground: ?
Reference: ?
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D Appendix: Additional information about
the CLIS patients

D.1 Detailed description of the CLIS patients (except GR)

The following descriptions of the patients were obtained directly from the experimenters. None
of them showed any brain disease unrelated to ALS. Descriptions of patients P5, P6, P7, P9 and
P10 can also be found in [Mar+21] and [Mal+19]. In addition to EEG, fNRIS were also recorded.
All patients were in home care.

Patient P1 P1 is a female CLIS patient that was diagnosed with sporadic bulbar ALS in May
2007 and as locked-in patient in 2009. She transitioned into a completely locked-in state in May
2010 according to the diagnosis of experienced neurologists. The patient has been artificially
ventilated since September 2007 and fed through a percutaneous endoscopic gastrostomy tube
since October 2007. No communication with eye movements, other muscles, nor assistive
devices was possible with this patient. She was however successful in communicating using
fNRIS. She passed away in 2019 at the age of 75.

Patient P2 P2 is a male CLIS patient diagnosed with non-bulbar ALS in May 2011. He has
been artificially ventilated since August 2011 and fed through a percutaneous endoscopic
gastrostomy tube since October 2011. He started communicating with a speech device in his
throat from December 2011 which ultimately failed. He then started using a MyTobii eye-
tracking device in April 2012 and was successful until December 2013. Subsequently, the family
members attempted to communicate by training him to use eyes movements: to the right for
yes and to the left to answer no. The response was variable and no communication was possible
since August 2014. Nonetheless, he was able to use a binary communication using fNRIS from
2014 to 2016. The patient passed away in 2018 at the age of 65.

Patient P3 P3 is a 80 years old female CLIS patient diagnosed with bulbar ALS in 2010. She
lost speech and capability to walk by 2011. She has been fed through a percutaneous endoscopic
gastrostomy tube since September 2011 and artificially ventilated since March 2012. She started
using assistive communication devices using one finger to communicate in February 2013 until
it failed. Later, in September 2013, she was diagnosed with degeneration of vision due to cornea
defects. Afterwards, an attempt was made to communicate with her using eye tracking from
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early 2014 until August 2014. No communication was possible with her since then according to
the husband and caretakers. She was then introduced to BCI and the experimenters reported
successful Yes/No communication from 2014 to 2015 using fNRIS.

Patient P4 P4 is a 29 years old female CLIS patient diagnosed with juvenile ALS in December
2012. She was completely paralysed within half a year after diagnosis. She has been artificially
ventilated since March 2013 and fed through a percutaneous endoscopic gastrostomy tube since
April 2013. She was able to communicate with the eye-tracking device from early 2013 until
August 2014 when she lost some eye control. Her family members also trained her to use eye
movements to communicate: to the right to answer yes to questions and to the left for no. This
was possible until December 2014. So when the patient completely lost the control of her eyes in
January 2015, she attempted to answer yes by twitching the right corner of her mouth. That too
varied considerably so the parents lost reliable communication contact since. She was however
able to successfully communicate using fNRIS from 2014 to 2016.

Patient P5 P5 is a 58 years old male CLIS patient diagnosed with bulbar sporadic ALS in May
2008 and as locked-in in 2009. According to the diagnosis of neurologists and to the recordings
of the experimenters, he transitioned into a completely locked-in state in May 2010. He has
been artificially ventilated since September 2009 and fed through a percutaneous endoscopic
gastrostomy tube since October 2009. No communication with eye movements, other muscles,
or assistive devices was possible since 2010. Moreover, the patient was also never successful
with fNRIS.

Patient P6 P6 is a male CLIS patient diagnosed with bulbar ALS in 2009. He lost speech
and capability to move by 2010 and has been artificially ventilated since September 2010. No
communication with eye movements, other muscles, or assistive devices was possible since
2012. However, the patient was able to communicate successfully using fNRIS in 2017. He died
in 2019 at 38.

Patient P7 P7 is a female CLIS patient diagnosed with Mills’ syndrome26 of ALS with atypical
progression at the beginning of 2010. She lost speech and capability to walk in 2011. She has
been fed through a percutaneous endoscopic gastrostomy tube since June 2010 and artificially
ventilated since June 2010. The patient started using assistive communication devices using
eye movement in 2011 which ultimately failed at the beginning of 2015. She then used thumb-
movements to communicate with her family and caretakers since the middle of 2015, and this
became unreliable after a year. She was also never successful in using binary communication
with the fNRIS and passed away in 2019 at the age of 56.

26an idiopathic, slowly progressive, spastic hemiparesis.
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D.1 Detailed description of the CLIS patients (except GR)

Patient P9 P9 is a 23 years old male CLIS patient diagnosed with juvenile ALS with FUS
mutation heterozygote on Exon 14: c.1504delG in 2013. He has been artificially ventilated since
August 2014. He started communication using MyTobii eye-tracking device from January 2015

and was able to do so until December 2015. Afterwards, the family members attempted to
communicate by training him to move his facial muscles near the nose to answer yes but the
response was unreliable. No communication was possible since June 2016. Moreover, only few
irregular good sessions were observed using fNRIS.

Patient P10 P10 is a 25 years old male LIS patient on the verge of CLIS. He was diagnosed with
familial juvenile ALS with ALS 6-FUS gene mutation in December 2012. He was completely
paralysed within a year of the diagnosis. The patient has been artificially ventilated since
November 2013. He was able to communicate with eye-tracking from early 2014 to August
2016 but was unable to use the eye-tracking device after he lost eye control in August 2016.
No communication with eye movements, other muscles, or assistive devices was possible since
2016. In addition, no successful communication using fNRIS was ever recorded.
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D Appendix: Additional information about the CLIS patients

D.2 Estimated consciousness levels for CLIS patients
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Figure D.1: Average values of the estimated consciousness level for CLIS patient P5. The x-axis represents
the dates and times of recording.
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Figure D.2: Average values of the estimated consciousness level for CLIS patient P7. The x-axis represents
the dates and times of recording.
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Figure D.3: Average values of the estimated consciousness level for CLIS patient P9. The x-axis represents
the dates and times of recording.
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