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Zusammenfassung: In dieser Arbeit werden zwei Linearisierungsmethoden zur Bes-
timmung von Strahlungskopplungen in Klimaänderungssimulationen verglichen. Die
individuellen Feedbackparameter werden mit der Partial Radiative Perturbation (PRP)-
Methode und der Kernel Methode basierend auf CMPI6 Daten des Max-Planck-Instituts
Earth System Model in Low Resolution (MPI-ESM-LR) mit vierfacher CO2-Konzentra-
tion berechnet. Für die Berechnung der Feedbacks wurde das eigenständige ECHAM6
Strahlungsmodul genutzt. Neben regionalen Besonderheiten der einzelnen Rückkop-
plungsparameter, zeigen sich die größten Unterschiede im Oberflächenalbedo Feed-
back. Wasserdampf, Lapses-Rate und Planck Feedback weisen eine vergleichsweise
geringe Methodenabhänigkeit auf. Dies kann auch im Vergleich mit vorherigen Stu-
dien verifiziert werden. Zusätzlich wird gezeigt, dass die Verwendung von mehrjähri-
gen Monatsmittelwerten den Rechenaufwand bei nur geringem Genauigkeitsverlust re-
duziert.

Summary: In this paper two linearization methods for the determination of radiation
couplings in climate change simulations are compared. Individual feedback parame-
ters are calculated using the partial radiative perturbation (PRP) method and kernel-
technique based on CMIP6 data of the Max Planck Institute Earth System Model at Low
Resolution (MPI-ESM-LR) model with quadrupled CO2 concentration. The applied ker-
nels were computed separately for two directions using the same radiation module as for
the PRP method, providing the opportunity to compare both based on the same data
basis. The largest disagreements between methods were found for the surface albedo
feedback, followed by the water vapor feedback, lapse-rate feedback and Planck feed-
back, whereas the differences of the last three mentioned are minor. Nevertheless, the
found results are within the range of former studies. Beside regional features of the in-
dividual feedback parameters, an overall good agreement between the PRP and kernel
approach is observed. Additionally, it is shown that the use of multiyear monthly aver-
ages reduces the computational expense with only a small loss in accuracy, compared to
calculations based on yearly monthly averages.

1 Introduction

Climate and the earth’s atmospheric composition are continuously changing. Thus, the
analysis and simulation of changes in atmospheric composition is of great importance
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to obtain possible impacts on the global climate. In this context, the fraction of green-
house gases in the atmosphere plays a significant role. Consequently, many studies have
been conducted on the effect of increased CO2 levels and their impact on global sur-
face temperature. The change in mean global surface temperature due to a doubling in
CO2 within the atmosphere is the so-called equilibrium climate sensitivity. Currently,
the fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC
AR5) estimates the equilibrium climate sensitivity (ECS) in the range of 3.2 ± 1.3°C
(Flato et al. 2013). The variability of the ECS is strongly related to physical adjustment
processes, so-called climate feedbacks. The characterization of those climate feedbacks,
in terms of order of magnitude and sign are especially relevant for global climate model
evaluations. In the following the PRP method and the radiative kernel technique are
applied to identify possible method dependent biases in the determination of radiation
couplings.

2 Feedbacks and data description

2.1 Feedbacks

Feedback mechanisms are described as responses to changes in the radiative budget at
the top of the atmosphere (TOA) due to external forcing processes (Thorsen et al. 2018).

In general the climate system can be visualized as a box, with TOA as box edge, in
which physical laws like energy conservation apply. Observed long enough, the climate
system reaches equilibrium, when the TOA net radiation flux Rnet(t→ ∞) reaches zero.
Considering smaller time scales, the radiation flux differs from zero. This can be due
to several external forcing processes ∆F , which increase or dampen energy transport
in and out of the system. External forcings are for example changes in greenhouse
gas concentration, surface albedo, aerosol composition or a changing solar radiation
(Bony et al. 2006). The changes of the TOA radiative flux due to changes in surface
temperature TS, resulting in variation of processes depending on temperature, are defined
as climate feedbacks, which occur to restore the equilibrium state within the climate
system, leading to ∆R = ∆F + λ∆TS (Thorsen et al. 2018). They can be quantified
using a climate feedback factor λX, where X stands for a certain physical property of the
climate system, like surface albedo A, temperature T, water vapor WV or clouds CL.
The total feedback factor λ is the sum of all specific feedback factors, with additional
separation of λT into the lapse-rate feedback λLR, describing the rate of temperature
decrease with height and the Planck feedback λPL, depending on surface longwave (LW)
emission (Klocke, Quaas, and Stevens 2013):

λ = λT︸︷︷︸
=λPL+λLR

+λWV +λCL +λA. (1)

λ (in units of W m−2 K−1) is defined as the change of radiation ∆R depending on
surface temperature change ∆TS and can be approximated as follows:

λ =
∂R
∂TS

= ∑
X

∂R
∂X

∂X
∂TS

+φ(∂ 2)≈∑
X

λX = ∑
X

∂R
∂X

∂X
∂TS

, (2)
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with indicated interactions between different feedbacks φ(∂ 2) and individual feed-
back parameters λX (Klocke, Quaas, and Stevens 2013). The new equilibrium is reached
when ∆R= 0, with ∆TS for the equilibrium state is referred to as equilibrium climate sen-
sitivity (ECS). In the following study particularly the surface albedo, Planck, lapse-rate
and water vapor feedback are analyzed to determine potential biases between the PRP
and kernel method.
Surface albedo The albedo of a specific surface is generally defined as its fraction
of incoming radiation, reflected by the surface. It strongly depends on land use, snow
cover or ice shield thickness and extent. Those soil and water surface properties are cou-
pled to atmospheric and oceanic dynamics due to latent heat or freshwater transports. A
change in the outgoing surface radiation and, thus a change in surface albedo, occurs by
transformation of the surface properties. Apart from changes in land use, this is mostly
associated with changes in snow cover and ice shield thickness in the high latitudes, due
to temperature changes. Surface properties can vary on a locally small scale, making
the parametrization of the surface albedo a challenging factor within GCMs (Bony et al.
2006). The surface albedo feedback is considered to be the weakest one compared to the
others listed below, with a model mean of 0.3± 0.1Wm−2 K−1, estimated by the IPCC
AR5 (Flato et al. 2013). It is a positive feedback, leading to rising surface temperature,
due to increased CO2 concentration (Cess et al. 1991; Randall et al. 1994) and hence
intensifies polar amplification (Bony et al. 2006).
Planck The Planck feedback is a component of the temperature feedback and often
referred to as ’zero feedback’, since it represents the earth’s LW emission to space only
depending on TS. The earth’s emission can be described using the Planck blackbody
radiation law where R = εσT 4

S with emissivity ε and the Stefan-Boltzmann constant
σ . Using this formulation, the Planck feedback parameter for the global mean surface
temperature of 288 K can be obtained by λPL =−4εσT 3

S =−3.4Wm−2 K−1. It follows
that for an increase in incoming radiation of 1Wm−2, the surface temperature increases
by 0.294K. For the multi-model mean of the IPCC AR5 the Planck feedback was esti-
mated as 3.2 ± 0.1Wm−2 K−1 (Flato et al. 2013). It is the strongest negative feedback
reducing the effect of global warming.
Lapse-rate The lapse-rate describes the negative temperature change with altitude. It
strongly affects the LW emission of the earth’s atmosphere. The lapse-rate in tropical re-
gions can be approximated by the moist adiabatic profile, since it is driven by convective
processes (Boucher et al. 2013). In those regions, rising saturated air parcels condensate
and release latent heat, which is partly compensated by adiabatic cooling. This leads
to a small change of temperature with altitude, less energy absorption within the atmo-
sphere and thus a strongly negative lapse-rate feedback. In extra tropical regions (or
areas of sinking motion) the lapse-rate change is harder to approximate (Boucher et al.
2013), also because of larger temperature decrease with altitude. Hence, more energy
is absorbed within the atmosphere compared to the Tropics, leading to a positive lapse-
rate feedback resulting in an amplification of the greenhouse effect. The IPCC AR5
multi-model mean of the global lapse-rate feedback is −0.6± 0.4Wm−2 K−1, thus it
is dominated by the tropical responses and reduces the effect of global warming due to
increased CO2 emission (Flato et al. 2013).
Water vapor The water vapor feedback estimated by the IPCC AR5 multi model mean
to 1.6± 0.3Wm−2 K−1 is the strongest positive climate feedback (Flato et al. 2013). In-
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creased CO2 emission enhances the earth’s greenhouse effect, and thus global warming.
Consequently, rising temperatures increase specific humidity and the ability of water
uptake within the atmosphere. This physical process is based on the Clausius-Clapeyron
equation which relates the saturation vapor pressure to temperature for fixed relative hu-
midity. If constant relative humidity is supposed, it is assumed that changes in relative
humidity are much smaller than changes in the saturation mixing ratio for water va-
por. Therefore, changes in the specific humidity are predominantly driven by changing
saturation water vapor mixing ratio (Boucher et al. 2013). For example, the saturation
mixing ratio for water vapor increases almost exponentially with temperature depending
on altitude with 6 to 10%K−1 close to the surface and up to 17%K−1 in higher altitudes
(Boucher et al. 2013). An increased amount of water vapor in the earth’s atmosphere,
means an increased greenhouse gas concentration and consequently rising temperature.

2.2 Data

The Coupled Model Intercomparison Project (CMIP) is a collection of experimental data
generated by different global climate models in a standardized format. The current phase
6 contains the Diagnostic, Evaluation and Characterization of Klima (DECK) experi-
ments and the CMIP historical simulations, whereby the DECK experiments are done
using specific forcings, boundary conditions, initialization procedures, minimum length
of runs and provide a baseline for performing many of the CMIP6 experiments (Eyring
et al. 2016). The selected model MPI-ESM-LR is a combination of the atmospheric gen-
eral circulation model ECHAM6 (Stevens et al. 2013), the land model JSBACH (Reick
et al. 2013) and the ocean general circulation model MPIOM (Jungclaus et al. 2013)
including the model for marine biogeochemistry HAMOCC (Ilyina et al. 2013) in low
resolution (LR). Compared to ECHAM5, ECHAM6 provides a new radiation scheme
and albedo calculation, in which the short-wave (SW) scheme has been replaced by the
SW rapid radiation transfer model GCMs depending on solar zenith angle over open
water, melt points on sea ice and snow cover (Roeckner et al. 2012). The horizontal
resolution of the used ECHAM6 is T63/1.9 ° and it is vertically divided in 47 hybrid
sigma pressure levels. The multi-century Pre-Industrial Control simulation (piControl),
a coupled atmosphere- and ocean circulation DECK experiment, is used as a control
run. The CO2 concentration is prescribed and the minimum period of calculation is 500
years, starting from 1850, representing the conditions before the industrial revolution.
The abruptly quadrupling CO2 simulation (abrupt4xCO2) is used as the perturbed run.
It is developed to characterize the climate system’s response to greenhouse gas forcing
and also part of the DECK experiments in CMIP6 (Eyring et al. 2016). Therefore, only
the CO2 concentration is abruptly quadrupled in 1850 compared to the piControl simu-
lation and then held constant, while all other parameters stay the same as in the control
run. Preprocessing of the CMIP6 data was done by calculating the monthly averages
of the daily data associated with cloud forcing (CFday) and combining them with the
remaining required variables from monthly atmospheric data (Amon) and monthly at-
mospheric chemistry and aerosol data (AERmon) in one data file, including a land-sea
mask, a glacier mask, surface pressure and geopotential data.
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3 Partial radiative perturbation method

The partial radiative perturbation PRP method is based on the assumption that the TOA
radiation R can be calculated depending on several atmospheric variables that have a
significant feedback on the earth’s energy budget such as water vapor WV , temper-
ature T , surface albedo A and cloud properties CL, leading to R = R(WV,T,CL,A)
(Wetherald and Manabe 1988). The TOA radiation is calculated in two directions us-
ing the ECHAM6 standalone radiation model developed by the Max Planck Institute
for Meteorology (MPI-M) in Hamburg and the Deutsche Wetterdienst (DWD) in Ger-
many. To derive the TOA radiative imbalance ∆R, R is calculated for two different
climate states, a control climate simulation (piControl) and a perturbed climate state
(abrupt4xCO2). For the forward direction R is calculated using all variables, except
the one of interest from the control run. The variable of interest is instead taken from
the perturbed run. For example the difference in TOA radiation for water vapor can
be written as δRWVfwrd = R(WVpert,Tctrl,CLctrl,Actrl)−R(WVctrl,Tctrl,CLctrl,Actrl). Like-
wise, the backward PRP TOA radiation can be obtained by using only the variable of
interest from the control run and the remaining variables from the perturbed run leading
to δRWVbwrd = R(WVctrl,Tpert,CLpert,Apert)−R(wvpert,Tpert,CLpert,Apert) for water vapor.
To minimize biases due to the assumption of temporal uncorrelation between all fields,
the TOA radiation is averaged over both directions (forward and backward) leading to
the two-sided PRP results (Eq. 3) (Colman and McAvaney 1997; B. Soden, Broccoli,
and Hemler 2004).

δRX2sides =
δRXfwrd−δRXbwrd

2
. (3)

With ∆TS, the temporally and spatially averaged surface temperature change between
both runs λX can be estimated as:

λX =
∂R
∂X

∂X
∂TS
≈ δRX

δX
δX
∆TS

, (4)

With ∆TS = 〈TS4xCO2(x,y, t)−TSpiCrtl(x,y, t)〉 = 4.65K. The PRP method has the ad-
vantage of estimating the responses of specific variables on the TOA radiative imbalance
leading to straightforward interpretable results. However, this method is highly compu-
tational expensive, since it requires a large amount of processing and memory capacity
(B. Soden, Broccoli, and Hemler 2004; Block and Mauritsen 2013).

4 Radiative kernel method

Radiative kernels are implemented comparably to the PRP method. Instead of taking the
relevant variable from the perturbed climate simulation, only an incremental change of
the variable is implemented, depending on the direction of the radiative flux calculation
(Held and Brian Soden 2000; Brian Soden and Held 2006). The radiative kernels KX are
defined as:

KX =
∂RX(x,y)

∂X
≈ δRX(x,y)

δX
, (5)
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Whereby δRX = R(X + δ X ,Y )−R(X ,Y ), depending on the incremental change in
the variable of interest δ X . For the water vapor kernel the amount of water vapor corre-
sponding to a positive temperature change of 1 K is used to perturb the specific humidity
of the control climate state and the amount of water vapor corresponding to a negative
temperature change of 1 K is used to perturb the specific humidity of the perturbed cli-
mate state (B. J. Soden et al. 2008; Klocke, Quaas, and Stevens 2013). The surface
albedo kernel is calculated using a change of 1% in the surface albedo, and the tem-
perature kernels are computed by changing the Temperature by 1 K (B. J. Soden et al.
2008; Klocke, Quaas, and Stevens 2013). The different feedback parameters can then
be calculated by multiplying the kernel with ∆X and dividing by ∆TS (Sec. 3):

λX =
δRX(x,y)

∆TS
=

KX(x,y) ·∆X(x,y)
∆TS

, (6)

with ∆X(x,y,z, t)=X4xCO2(x,y,z, t)−XpiCrtl(x,y,z, t), representing the respective change
in X between the perturbed and control climate. Vertical resolved variables (e.g. water
vapor or temperature) need to be perturbed in each altitude level and the results are
vertically integrated, which is done by summing over the model levels:

δRX(x,y,z, t) = ∑
z

δRX(x,y,z, t)
δX(x,y,z, t)

·∆X(x,y,z, t) = ∑
z

KX(x,y,z, t) ·∆X(x,y,z, t). (7)

In the case of temperature, this is done only within the troposphere, to mask out the
effect of stratospheric adjustment (Tomassini et al. 2013). The pressure at tropopause
level depending on latitude lat was approximated as p(ztrop) = 100hPa+200hPa · |lat| ·
90°−1.

5 Results and discussion

In the following chapter, the results of the feedback determination using the PRP and ker-
nel method are presented, discussed and compared to former studies (tab. 1). First, the
results of the differently performed temporal averages are analyzed to justify the appli-
cation of a multiyear monthly average mean dataset. Backward calculations for the PRP
as well as the kernel method are generally multiplied with−1 to make them comparable
to calculations in forward direction. Fig. 1 shows the feedback factor results obtained for
yearly data of monthly averages λPRP (green) and the multiyear monthly averages over
39 years λPRP39yrs (orange). The zonal distributions are similar and the largest differences
can be obtained for the water vapor feedback with ∆λ2sides ≈ 0.022 Wm−2 K−1 (fig. 1d).
Since the found differences are assumed to be small compared to the feedback factor
results, the simplification was applied and the kernels were calculated using multiyear
monthly averages.
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(a) (b)

(c) (d)

Figure 1: Zonal averages of the individual feedback parameters for each year (green)
and multiyear monthly averages (orange) using the PRP method and the results of
the kernel method (blue), based on multiyear monthly averages. Including the surface
albedo (a), Planck (b), lapse-rate (c) and water vapor (d) feedback in Wm−2 K−1 based
on multiyear monthly averages.
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Table. 1: Comparison of resulting feedback parameters in Wm−2 K−1 for the PRP and
kernel method based on CMIP6 data and the MPI-ESM-LR model. Additionally, values
of former studies of Klocke, Quaas, and Stevens (2013) based on ECHAM5 data, Rieger,
Dietmüller, and Ponater (2017) and the IPCC AR5 kernel results for CMIP5 data and
the MPI-ESM-LR model (Flato et al. 2013).
Method Direction λA λPL λLR λWV ∑λ

forward 0.51 -3.693 -0.894 2.089 -1.988

PRP backward 0.475 -3.203 -0.882 2.092 -1.518

two-sided 0.493 -3.448 -0.888 2.091 -1.752

forward 0.199 -3.368 -0.804 1.701 -2.272

Kernel backward 0.096 -3.541 -1.116 2.681 -1.88

two-sided 0.148 -3.454 -0.96 2.191 -2.075

forward 0.22 -3.23 -0.61 1.76 -1.86

PRP
Klocke et al. (2013)

backward 0.16 -3.17 -0.23 1.79 -1.45

two-sided 0.19 -3.23 -0.42 1.78 -1.68

Kernel
Klocke et al. (2013)

forward 0.17 -3.08 -0.68 2.08 -1.51

PRP
Rieger et al. (2017)

two-sided 0.23 -3.11 -0.86 2.01 -1.73

Kernel
IPCC AR5 (2013)

forward 0.3 -3.3 -0.9 1.8 -2.1

5.0.1 Surface albedo feedback

The results of the 39-year average albedo feedback parameter (λA) calculations are
shown as global distributions and zonal averages in fig. 1a and fig. 2. For both meth-
ods λA in units of Wm−2 K−1 reaches its maximum value over land and sea ice in the
polar regions. In lower latitudes and oceanic regions λA is close to zero. For the PRP
method the forward calculation λfwrd with global averages of 0.51Wm−2 K−1 is slightly
larger than the backward calculation λbwrd with 0.475Wm−2 K−1 (tab. 1). The two-sided
PRP method yields a total albedo feedback of 0.493Wm−2 K−1. Forward and backward
runs agree well. The kernel method with increased surface albedo of 1 % in the con-
trol run leads to a global average feedback parameter λfwrd of 0.199Wm−2 K−1. For
decreased of surface albedo in the perturbed run, λbwrd is 0.096Wm−2 K−1, leading to
a global average λ2sides of 0.148Wm−2 K−1, which is displayed in fig. 5b. Comparing
both methods as in fig. 1a, stronger results are retrieved with the PRP method than with
the kernel approach. The kernel results are within the range of former studies, as listed in
tab. 1, while the PRP results are larger than the outcomes of for example Klocke, Quaas,
and Stevens 2013 and Rieger, Dietmüller, and Ponater 2017. Those disagreements could
be due to differences in ECHAM6 compared to ECHAM5, used by Klocke, Quaas, and
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Figure 2: Comparison of the surface albedo feedback factor λA in Wm−2 K−1 calculated
using the PRP method (a) and the Kernel method (b). Spatially resolved as global
distributions and based on multiyear monthly averages.

Stevens 2013. Stevens et al. (2013) point out that in the radiation scheme of ECHAM6,
the couplings between melt ponds and sea ice are not properly implemented, leading
to and error dampening the effect of melt ponds. This artificially downsizes the sur-
face albedo feedback. The results of Rieger, Dietmüller, and Ponater (2017) based on
ECHAM6 data and the ECHAM6 radiation module retrieved a two-sided surface albedo
feedback of 0.23Wm−2 K−1, which is closer to the feedback obtained in this study.
The IPCC AR5 presents a surface albedo feedback of 0.3Wm−2 K−1 for a forward
kernel calculation based on MPI-ESM-LR data, which is larger than the forward ker-
nel results in this work (0.199Wm−2 K−1). The same can be stated for the results of
Block and Mauritsen (2013) with 0.48±0.03Wm−2 K−1. This leads to the assumption
that the kernel method in this study generally underestimates the surface albedo feed-
back, which could be due to its high local variability or the implementation bug in the
ECHAM6 radiation module, as described in Stevens et al. (2013), which strengthening
the underestimation of the surface albedo feedback. The kernel method uses additionally
a stronger linearization than the PRP method, assuming a linear change of the surface
albedo with ∆TS by 1%. Since the surface albedo depends on several factors, such as ge-
ometric pattern of the snow surface, solar zenith angle or snow characteristics, its change
is strongly non-linear (Pirazzini 2004). Small changes in surface temperature around the
freezing point of water can lead to huge differences in albedo, while changes beyond
this range won’t cause such great difference. Difficulties in the parametrization of small
scale differences in the surface properties as described in Sec. 2.1, causing large model
differences lead to an uncertainty in the magnitude of the surface albedo feedback. Nev-
ertheless, studies agree in its positive sign (Bony et al. 2006), which is also observed in
this study.

5.0.2 Planck feedback

Fig. 3 shows the global distribution of the Planck feedback parameter λPL and fig. 1b
the zonal averages resulting from both methods. The two-sided PRP result λ2sides is
−3.448Wm−2 K−1 with λfwrd = −3.693Wm−2 K−1 and λbwrd = −3.203Wm−2 K−1

(tab. 1). The kernel method yields a λ2sides of −3.454Wm−2 K−1.
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Figure 3: Comparison of the Planck feedback factor λP in Wm−2 K−1 calculated using
the PRP method (a) and the Kernel method (b). Spatially resolved as global distributions
and based on multiyear monthly averages.

The forward calculation, with an incremental increase of 1 K in the control run, gives
slightly weaker results of −3.368Wm−2 K−1 than the backward calculation, with a de-
crease of 1 K in the perturbed run −3.541Wm−2 K−1 (tab. 1). The global distributions
agree well with smallest values at the low latitudes where the surface temperature is
lowest (fig. 3a and 3b). Comparing the two-sided PRP results to the results of Klocke,
Quaas, and Stevens (2013) with −3.23Wm−2 K−1 and Rieger, Dietmüller, and Ponater
(2017) with −3.11Wm−2 K−1, both show slightly weaker values for the Planck feed-
back. The same can be observed for the forward kernel results. The IPCC AR5 esti-
mates the Planck feedback to −3.3Wm−2 K−1 and Klocke, Quaas, and Stevens (2013)
to −3.08Wm−2 K−1. Although the results of the Planck feedback calculated using the
PRP and kernel technique are slightly stronger than the Planck feedback estimated in
former studies, they agree well with each other and the Planck feedback according to
the Stefan-Boltzmann law. It is confirmed that the Planck feedback is the strongest neg-
ative feedback. Hence, it contributes significantly to LW cooling.

5.0.3 Lapse-rate feedback

Fig. 4 displays the global distribution of the lapse-rate feedback λLR. The geograph-
ical distributions of the Kernel and PRP calculations are generally similar and show
minimal values for low latitudes and maximal values for high latitudes ranging from
−2.0Wm−2 K−1 to 4.0Wm−2 K−1 for the PRP method (fig. 4a) and −2.0Wm−2 K−1

to 3.0Wm−2 K−1 for the kernel method (fig. 4b) with minimal values around Green-
land. The zonal average for the forward PRP λfwrd of −0.894Wm−2 K−1 is slightly
larger than the average for the backward PRP λbwrd of −0.882Wm−2 K−1 leading to
the two-side PRP average λ2sides of −0.888Wm−2 K−1 as listed in tab. 1 . λfwrd for the
temperature kernel with increased air temperature by 1 K gives an lapse-rate feedback
of−0.804Wm−2 K−1 and−1.116Wm−2 K−1 for the perturbed climate state λbwrd with
decreased Tair by 1 K. This yields to λ2sides of −0.96Wm−2 K−1. The comparison of
both method results (fig. 1c) shows higher absolute values of the PRP technique com-
pared to the kernel technique.
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Figure 4: Comparison of the lapse-rate feedback factor λLR in Wm−2 K−1 calculated
using the PRP method (a) and the Kernel method (b). Spatially resolved as global
distributions and based on multiyear monthly averages.

The strongest variability is found in the polar regions using the kernel technique, lead-
ing to the assumption of more complex processes in those areas. Positive values of
λLR, as observed in the extratropics (or areas of sinking motion) amplify the effect of
global warming, due to an increased greenhouse effect (Held and Brian Soden 2000).
Negative values of λLR, as observed in the Tropics, indicate a stronger decrease of tem-
perature with height resulting in an increased LW emission back to space. The global
average indicates a stronger tropical response than extra-tropical response, resulting in
an overall negative lapse-rate feedback. Although the results of the PRP and kernel tech-
nique in this study agree well, there are slight differences to Klocke, Quaas, and Stevens
(2013) with results of with −0.42Wm−2 K−1 (tab. 1). A good agreement can be found
for the PRP results of Rieger, Dietmüller, and Ponater (2017), who estimated λ2sides to
−0.86Wm−2 K−1. Since Rieger, Dietmüller, and Ponater (2017) used the same dataset
as in this study, this finding is not unexpected. For the forward kernel, the difference
between Klocke, Quaas, and Stevens (2013) with an lapse-rate feedback parameter of
−0.68Wm−2 K−1 and this work with −0.804Wm−2 K−1 is lower and comparable to
the results of the IPCC AR5 with −0.90Wm−2 K−1. Overall, the lapse-rate feedback
compared to former studies using the same dataset, is slightly weaker for the kernel
method and slightly stronger for the PRP method (tab. 1). The difference between both
methods is largest in the high latitudes with stronger kernel results. This could be due
to differences in surface warming and stronger coupling between the surface and free
troposphere in the low latitudes compared to the high latitudes (Brian Soden and Held
2006). Since the temperature change with altitude within the troposphere can be approx-
imated by 6.5Kkm−1 (Held and Brian Soden 2000), a linearization is reasonable within
the Tropics but needs further investigation for the extra Tropics.

5.0.4 Water vapor feedback

The water vapor feedback is displayed in fig. 5 with consistently positive values. The
PRP and kernel global distribution do not differ much and have their maximum values
in the equatorial region declining towards the poles, with minimal values in the Southern
Hemisphere. The forward PRP yields to a feedback parameter of 2.089Wm−2 K−1 and
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Figure 5: Comparison of the water vapor feedback factor λLR in Wm−2 K−1 calculated
using the PRP method (a) and the Kernel method (b). Spatially resolved as global
distributions and based on multiyear monthly averages.

the backward PRP to 2.092Wm−2 K−1 resulting in the two-sided PRP of 2.091Wm−2 K−1

(tab. 1). For the kernel method, the forward calculation, for which the specific humid-
ity was increased by the amount corresponding to 1 K warming, differ more than the
backward calculation, with decreased specific humidity corresponding to 1 K cooling.
The global average for λfwrd gives 1.701Wm−2 K−1 and for λbwrd 2.681Wm−2 K−1,
resulting in a two-sides kernel feedback parameter λ2sides of 2.191Wm−2 K−1 (tab. 1).
Since λ2sides of the kernel method is similar to the PRP λ2sides the decorrelation be-
tween both climate states by averaging over both directions seems reasonable. The
current IPCC AR5 estimates the water vapor feedback factor to 1.8Wm−2 K−1 and
Block and Mauritsen (2013) to 1.79± 0.08Wm−2 K−1 for the MPI-ESM-LR and the
forward kernel. These values are close to the forward kernel estimated in this study with
1.701Wm−2 K−1. The PRP results are within the same range as Rieger, Dietmüller,
and Ponater (2017), as seen in tab. 1, but stronger than the results of Klocke, Quaas,
and Stevens (2013). The water vapor feedback is the second strongest feedback. Fur-
thermore, based on the Clausius-Clapeyron equation, the water vapor feedback is driven
by changes in the saturation vapor pressure depending on temperature. An increase in
global CO2 concentration leads to rising global mean temperature, which in turn, en-
hances the ability of the atmosphere to take up water vapor. Since water vapor is a trace
gas, more solar radiation is absorbed and the greenhouse effect is enhanced (Flato et al.
2013). Changes in specific humidity can be approximated by the change of saturation
vapor pressure if relative humidity stays constant (Boucher et al. 2013). This yields to
an exponential relationship between specific humidity and TS according to the Clausius-
Clapeyron relation. Even though the relation between surface temperature change and
specific humidity change is not exactly linear, both linearizations (kernel and PRP) give
reasonable results, compared to each other and to former studies.

6 Conclusion

Within this study, the determination of radiation couplings in climate change simulations
has been analyzed using the PRP and kernel method based on MPI-ESM-LR data. The
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results of the surface albedo, Planck, lapse-rate and water vapor feedback are within the
range of previous studies and, hence, provide an example for the potential linearization
of the feedback quantification. They also provide a general overview of regions strongly
affected by an increased global CO2 concentration. Furthermore, the effect of differ-
ently performed temporal averages has been investigated. It was found that the feedback
factors calculated using a multiyear mean show only minimal differences to the results
based on yearly data. This achievement provides the possibility to minimize computa-
tional expense. The strongest disagreement between both methods can be observed for
the surface albedo feedback which is positive and the weakest among feedbacks (tab. 1).
Since the surface albedo change is a strongly nonlinear process, especially in the tem-
perature range of 260 K to 293 K in which the transition from ice covered surface to
water takes place, the kernel technique generally underestimates the effect of the sur-
face albedo feedback. This leads to less reliable model results compared to the more
complex calculations of the PRP method. Regarding the Planck feedback, the strongest
negative feedback, both methods agree well. It is slightly larger compared to former
studies but corresponds to the Planck feedback of −3.4Wm−2 K−1 for a global mean
surface temperature of 288 K estimated from the Stefan-Boltzmann law. The lapse-rate
feedback, which is on average negative, shows a fluctuation in polar regions using the
kernel method. Apart from those, the PRP and kernel method results agree well and
correspond to the IPCC AR5 results. It contributes to weakening of surface warming
due to increased global CO2 concentration. Both water vapor feedback results agree
well with former studies. It is the strongest positive feedback, contributing to a temper-
ature increase due to the strong greenhouse effect of water vapor. Despite the non-linear
relationship between specific humidity and surface temperature, both methods give sim-
ilar results and, thus, they are acceptable tools to determine the water vapor feedback.
The disagreements between the forward and backward calculations for both methods are
mostly compensated by the two-sided average. Thus, the application of both directions
to minimize biases due to correlation within fields are found to be reasonable also for the
kernel method. Once the kernels are calculated, they can be utilized for different climate
perturbations without renewed radiative transfer calculations. This is a clear advantage
of the kernel method. However, this advantage may compromise accuracy, as observed
for the surface albedo and the lapse-rate feedback in polar regions. Decreasing compu-
tational effort due to the usage of multiyear monthly averages is possible. To receive
more reliable results, the implementation bug in radiation scheme of ECHAM6 reported
by (Stevens et al. 2013) needs to be corrected. Also, Polar regions must be given special
attention, due to several complex coupling processes affecting the lapse-rate feedback.
To confirm the results of this study further investigations are needed.
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