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Humans invest a substantial amount of time in the creation of artworks. For gen-
erations, humans around the world have learned and shared their knowledge and
skills on artistic traditions. Albeit large experimental settings or online databases
have brought considerable insights on the evolutionary role and trajectory of art,
why humans invest in art, what information artworks carry and how art functions
within the community still remain elusive. To address these unresolved questions,
this present thesis integrates ethnographic accounts with data governance and statis-
tical approaches to systematically investigate a large corpus of art. This thesis specif-
ically focuses on a large corpus of Tamil kolam art from South India to provide an
exemplary case study of artistic traditions. The foundation for the projects presented
in this thesis was the design and construction of a robust data infrastructure that
enabled the synthesis of raw data from various sources into one database for sys-
tematic analyses. The data infrastructure on the kolam artistic system enabled the
development of complex statistical methods to explore the substantial investments
and information complexity in art. In the first chapter, I examine artists’ strategic
decisions in the creation of kolam art and how they strive to optimize the complexity
of their artworks under constraints using evolutionary signaling theory and theoret-
ically guided statistical methods. Results revealed that artists strive to maintain a
stable and invariant complexity measured as Shannon information entropy, regard-
less of the size of the artwork. In order to achieve an optimal artistic complexity
“sweet spot”, artists trade-off two standard measures of biological diversity in ecol-
ogy: evenness and richness. Additionally, results showed that although kolam art
arises in a highly stratified and multi-ethnic society, artistic complexity is strategi-
cally optimized across the population and not constrained by group boundaries. In-
stead, the trade-off can most likely be explained by aesthetic preferences or cogni-
tive limitations. While artistic complexity in kolam art can be strategically optimized
across the population, distinct styles and patterns can still be employed by artists.
Thus, in the second chapter, I focus on how artistic styles in kolam art covary along
cultural boundaries. I employ a novel statistical method to measure the mapping be-
tween styles onto group boundaries on a large corpus of kolam art by decomposing
the system into sequential drawing decisions. In line with Chapter 1, results demon-
strate limited group-level variation. Distinct styles or patterns in kolam art can only
be weakly mapped to caste boundaries, neighborhoods or previous migration. Both
chapters strongly suggest that kolam art is primarily a sphere where artists differenti-
ate themselves from others by displaying their unique skill set and knowledge. Thus,
variability in kolam art is largely dominated by individual-level variation and not re-
flective of group boundaries or narrow socialization channels. This thesis contributes
to an emergent understanding of how artists conceptualize what they are doing and
how art functions within the community. Taken together, this thesis serves as an ex-
ample approach that demonstrates an optimized workflow and novel approaches for
the evolutionary study of a large corpus of artistic traditions.
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“But maybe being their child simply means that I will always feel the weight of their past.
Nothing that happened makes me special. But my life is a gift that is too great - a debt I can
never repay.”

Thi Bui, The Best We Could Do

Cho Ba Mẹ
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1

Summary

Theoretical Background

Complex material culture is one of the many unique achievements that made hu-
mans so ecologically successful (Boyd and Richerson, 1985; Cavalli-Sforza and Feld-
man, 1981; Laland, Odling-Smee, and Feldman, 2000) and thus profoundly shaped
human evolution (Ambrose, 2001; Foley and Lahr, 2003). While non-human animals
possess cultural traditions (e.g., avian nest construction or stone-tool-aided foraging,
see Barrett et al., 2018; Breen, 2021), humans uniquely accumulate knowledge and
skills over successive generations (Mesoudi and Thornton, 2018; Boyd and Richer-
son, 1996). Changes and improvements in human cultural traditions are accumu-
lated over generations. Thus changes in the spatial and temporal coherence of cer-
tain material culture attributes have been viewed as indicative of underlying shifts
in environmental conditions and population dynamics (Henrich, 2004; Lycett and
Norton, 2010).

In the pursuit to better understand the mechanisms underlying cultural persistence
and change in ceramic, textile, and lithic traditions documented in the material cul-
ture record (Tehrani and Collard, 2009; Roux, 2015; Bettinger and Eerkens, 1999),
researchers have implemented tools from population biology and developed theo-
retical models that drew from cultural evolution and transmission (Boyd and Rich-
erson, 1985; Cavalli-Sforza and Feldman, 1981). An extensive literature has concen-
trated on understanding the continuities and discontinuities as well as the spatial
and temporal distribution of material culture products to classify assemblages and
discern (past) identities (Eerkens and Lipo, 2007; Lipo, 2001; O’Brien, 2005). Since
educational investments from adults into young novices can be substantial (Shennan
and Steele, 1999; Tehrani and Riede, 2008), researchers have further conducted exten-
sive ethnography on how knowledge and skills on material culture productions are
learned, taught, and shared among communities and how these mechanisms lead
to meaningful variability in material culture productions (Bowser and Patton, 2008;
Helbich and Dietler, 2008; Wallaert-Pêtre, 2008).

Until recently, artistic assemblages or traditions have only received limited attention,
mostly constrained to specific motifs or designs used as decorations in ceramics or
textiles (Tehrani and Collard, 2009; Bowser and Patton, 2008; Wiessner, 1984). Re-
searchers have primarily focused on artifacts contingent on functional sufficiency
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(e.g., arrowheads, pottery, rugs). In contrast, art is not constrained to satisfy func-
tional requirements, but can be modified in a direction of open-ended complexity
and novelty (Mesoudi and Thornton, 2018; Tinits and Sobchuk, 2020). Thus, under-
standing the standalone creation and appreciation of aesthetics and artistic traditions
might be fundamental in understanding what makes humans unique.

In recent years, the availability of large datasets has given rise to the quantitative
study of art beyond focusing only on a small number of cases (Sigaki, Perc, and
Ribeiro, 2018; Liu et al., 2018). A quantitative and evolutionary approach using pop-
ulation thinking (Mayr, 1959) can be fundamental to explain patterns in artistic pro-
duction on vast scales, allowing for inferences on population-level cultural dynamics.
Access to large scale databases coupled with computational methods has enabled
substantial insights into how patterns in art change over time (Youngblood, 2019;
Müller and Winters, 2018; Tinits and Sobchuk, 2020) and what information is carried
in art (Brand, Acerbi, and Mesoudi, 2019; Pavlek, Winters, and Morin, 2019; Morin
and Miton, 2018). Even though online databases and experimental settings have al-
lowed significant advances in understanding the evolutionary role of art, studying
artistic traditions in the wild still remain a challenge due to difficulties in systematic
quantification on a large scale.

Geometric artistic traditions with their systematic rules amenable to quantification
provide an opportunity to investigate a large corpus of art. From Angolan sand draw-
ings (Gerdes, 1988; Gerdes, 1990), Celtic art (Bain, 1973), Vanuatuan sand drawings
(Lind, 2017) to Tamil loop patterns (Layard, 1937) — they all display structural prop-
erties (i.e., a grammar) that allow for systematic quantification. While geometric
artistic traditions arise in different communities worldwide, they are unique and in-
triguing to study because they enable researchers to synthesize current ethnographic
information with novel computational methods to create a high-resolution database
of an artistic tradition. A high-resolution database of an artistic tradition would sub-
sequently allow for a systematic study of human investments into art and advance
our understanding of communication and the materialization of information in art.

Kolam art is a geometric art form and a Tamil tradition primarily practiced by women
in Tamil Nadu, South India (Laine, 2013). In a morning ritual, women would wash
the thresholds of their homes and draw intricate kolam patterns with rice powder or
chalk before sunrise to start the day (Nagarajan, 2018). Women would carefully draw
loop patterns around an initial grid of dots, so that the lines do not intersect with the
dots, but elegantly and smoothly circle around them (Layard, 1937; Laine, 2013). The
presence or absence and the level of simplicity or complexity of kolam drawings can
communicate various information about the artist, their household, and the commu-
nity (Nagarajan, 2018, p.37, 52–55, 75–81, 149, 273). Significant time is invested not
only on a daily basis to showcase these ephemeral kolam artworks, but also to learn,
teach and practice them. At a very young age, before menarche occurs, girls typically
start to learn and practice kolam-making (Nagarajan, 2018, p. 8, 12, 15). Knowledge
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and expertise are most often transmitted from (grand-)mothers to (grand-)daugh-
ters. However, the kolam tradition is considered community knowledge, and thus
artists frequently share and discuss their kolam designs (Nagarajan, 2018, p. 69).

From an evolutionary perspective, the kolam tradition provides an intriguing case
study to investigate why individuals spent a substantial amount of time learning,
practicing, and teaching artistic traditions and what information is embedded in
artistic traditions. Importantly, the society in South India is segregated along mul-
tiple dimensions that include caste, class, language, region, and religion (Dumont,
1980). Thus, kolam art arises in a highly stratified and multi-ethnic society (Waring,
2012a). Since societal partitions have been shown to be displayed in material culture
(Kramer and Douglas, 1992; Degoy, 2008; Granito et al., 2019), kolam art might also
be a venue where social identity is showcased and thus provide interesting insights
on how information on group boundaries can be reflected in artistic traditions.

Aims of the present research

The overall objective of this research is to establish a robust data infrastructure and
to develop and apply novel approaches to study human behavioral ecology and cul-
tural evolution in an artistic domain. To systematically and quantitatively analyze
artistic traditions, careful attention to the specific details of the artistic system cou-
pled with ethnographic background is fundamental. Thus, the overarching goal of
this research is to synthesize data governance and statistical knowledge with ethno-
graphic accounts to develop and implement a database and methods to understand
the evolutionary role of artistic traditions and what information is entailed in artis-
tic traditions. This thesis is structured as two interconnected projects that strive to
deepen our understanding of how artists conceptualize what they are doing and how
art functions within the community. To do this, this thesis focuses explicitly on Tamil
kolam art. Concomitantly, both chapters are developed to serve as an example case
study on kolam art for workflows optimized for studying geometric artistic traditions.

In the first chapter, I investigated aggregated structural and informational patterns in
kolam art to understand the strategic investments made by artists and potential con-
straints operating on them. This paper is published in Evolutionary Human Sciences:
Tran, N.-H., Waring, T., Atmaca, S., & Beheim, B. (2021). Entropy trade-offs in artis-
tic design: A case study of Tamil kolam. Evolutionary Human Sciences, 3, E23. DOI:
https://doi.org/10.1017/ehs.2021.14.

In the second chapter, I focus on a novel approach to quantify covariation of artistic
styles along ethnic or cultural boundaries to elucidate the role of kolam art for group
coordination. The results are published in Frontiers in Psychology:
Tran, N.-H., Kucharský, Š., Waring, T. M., Atmaca, S., & Beheim, B. A. (2021) Lim-
ited Scope for Group Coordination in Stylistic Variations of Kolam Art. Frontiers in
Psychology, 12, 742577. DOI: https://doi.org/10.3389/fpsyg.2021.742577.

https://doi.org/10.1017/ehs.2021.14
https://doi.org/10.3389/fpsyg.2021.742577
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Methods

The detailed data on kolam art was collected by Dr. Timothy M. Waring and local
research assistants in Kodaikanal, Tamil Nadu in South India in 2009. I designed and
created a high-resolution database to synthesize this rich and raw data, including in-
terview surveys, GPS data, kolam drawings, network data and practice notebooks. I
further developed a robust data pipeline to enable the transcription of kolamdrawings
using a lexicon of gestures (the lexicon was developed by Waring, 2012b). Addition-
ally, I developed and programmed a kolam R package (Tran, Waring, and Beheim,
2020) for data consolidation and to specifically import the kolam data in a readable
format into the software R for analysis. This data infrastructure created the funda-
mental basis for the novel methods developed and applied in Chapter 1 and Chapter
2. In both chapters, I used a data set of 3, 139 kolam drawings from 192 artists.

In the first chapter, I used signaling and optimization theory to investigate individu-
als’ strategic investments into kolam art and how constraints might determine behav-
ioral strategies. Since kolam drawings can be encoded using a lexicon of gestures, this
geometric art system lends itself to focusing on standard ecological and information-
theoretic measures: entropy, evenness, and richness distributions. Using a variety of
aggregated measures derived from information theory to describe artworks, I inves-
tigated whether artistic complexity could be a target of optimization and whether a
trade-off model could explain patterns of variations among kolam artworks. To under-
stand kolam art from the perspective of evolutionary signaling theories of constrained
optimization, I employed Shannon information entropy as a measure of artistic com-
plexity. I further applied numerical simulations to show a systematic relationship
between Shannon information entropy, richness and evenness that allowed me to
detect entropy trade-offs between evenness, and richness. Building on this trade-
off model, I subsequently constructed Bayesian hierarchical regression models to in-
vestigate how variations in structural and information-theoretic properties of kolam
drawings can be accounted for by variation in artists, age, years of practice, and caste
membership. Additionally, I employed agent-based simulations to validate the sta-
tistical models before model fitting and to check model predictions.

However, focusing merely on the artistic complexity of artistic designs is only an
incomplete picture of how art can be linked to social identity, groups, and individu-
als. Albeit artists may optimize their artistic displays towards a specific complexity
“sweet spot”, artists can widely differ in how they do it. Specifically, artists could
strategically use distinct styles or patterns of designs to, on the one hand, optimize
their artwork, while on the other hand, communicate their uniqueness, aesthetic pref-
erences or social identity.

Thus, in the second chapter, I focus on styles or patterns in kolam art. Specifically, I
systematically investigate how styles in art can be mapped onto ethnic and cultural



5

boundaries. As some mapping between stylistic variations and groups can be con-
sidered a prerequisite for ethnic markers (see Bell, Richerson, and McElreath, 2009),
quantifying the covariation of artistic styles in kolam art along cultural boundaries
could shed light on the extent to which kolam art could function as an ethnic marker.
To describe and partition the variation in sequential drawing styles, I developed and
applied a state-based Markov approach. I exploited the Markovian nature of the art
system by decomposing sequential behavior (i.e., gestures) into states in a Markov
chain to build a Bayesian hierarchical model that is able to map styles or patterns
in art onto group boundaries. The statistical models were validated prior to model
fitting and model predictions were checked using agent-based simulations.

Results

The results from the first chapter reveal an optimization sweet spot in terms of Shan-
non information entropy. Regardless of the size of the kolam drawing, most kolam
drawings center around an entropy “sweet spot” and thus, the variation in their com-
plexity is limited. To maintain this relatively invariant entropy in increasingly large
kolam drawings, artists strategically increase the richness in gestures, while decreas-
ing the evenness in gestures. The apparent trade-off between richness and evenness
further suggests that entropy is the target of optimization, in the same way that, re-
productive fitness is the optimization target in the trade-offs between maintenance
and reproduction, or offspring number vs. offspring survival, in life-history theory.
Thus, individuals strategically decide to invest in kolam art and optimize the com-
plexity of their displays to maximize returns. Additionally, results show that kolam
art does not primarily communicate social stratification or individual-level differ-
ences in age or practice. Properties of kolam artworks are only weakly associated
with underlying social constraints operating on individual artists, indicating a rel-
atively egalitarian information flow of kolam knowledge that is not constrained by
information networks or social hierarchies.

Results from the second chapter are consistent with the results in Chapter 1 in that
it shows minimal variation in styles of kolam drawings by social boundaries. Styles
or patterns in kolam art can only be weakly mapped to caste boundaries, neighbor-
hoods or previous migration. Instead, findings revealed that most of the variation in
patterns or styles of kolam art is largely dominated by artist-level variations. While
the findings do not provide a functional argument about whether kolam art actually
functions as an ethnic marker (like for example, Smaldino, Flamson, and McElreath,
2018), I make the case that group-level variation and the covariation between pat-
terns or styles of kolam art and group boundaries are very limited. Thus, the scope
for styles to become embedded in artwork as ethnic markers to signify group bound-
aries is limited.
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Conclusion

From an evolutionary perspective, the substantial investments of humans into artis-
tic traditions is puzzling and intriguing. For generations, humans learn, teach and
share their knowledge and skills on the creation of simple to intricate artworks. The
operations underlying the creation of artworks are considerably complex, ranging
from strategic decisions and manipulations that can include the artwork’s size, de-
signs, complexity, or originality. Thus, recurrent patterns in the creation process as
well as similarities and differences in artworks are often meaningfully constituted by
narrow channels of socialization and strategic decisions of the artist to conform or
deviate from the group. To advance understanding of the role of artistic traditions in
the community, the information they carry and how artists conceptualize their invest-
ments in art, we need systematic approaches to quantify and analyze large corpora
of artistic traditions.

As first steps in this direction, this thesis presents a data infrastructure pipeline and
two novel empirical approaches to study artistic traditions on a large corpus of data.
My work contributes to an emerging picture of the evolutionary role of artistic tradi-
tions and the information complexity in artistic traditions. Using state-of-the-art unit
tests, version control, and continuous integration to maintain data quality coupled
with ethnographic accounts, I was able to extract and lead a team of transcribers to
record raw data from various sources collected in Tamil Nadu in 2009 on kolam art
to build a robust data pipeline. Digital access to a large corpus of art, allowed me
to systematically quantify the artistic products and enabled me to develop and ap-
ply complex statistical models that are explicit about assumptions and hypothesized
processes underlying the creation of the artworks.

In the first chapter, I have presented a comprehensive analysis of artists’ strategic
investments into art and how the flow of information within an artistic community
might be constrained. Artists strategically optimize the complexity of their kolam art-
works, regardless of their size and unconstrained by group boundaries. This finding
is an important step towards understanding individuals’ strategic decision-making
processes in creating art.

In the second chapter, I demonstrated with a novel approach how covariation of dis-
tinctive styles or patterns in kolam artworks along cultural boundaries could be sys-
tematically investigated. By analyzing sequential drawing decisions, I show that ko-
lam artworks only carry limited information on underlying group boundaries. The
limited evidence of group-level variation is notable because even in the absence of ex-
plicit operationalization of caste-, neighborhood or region-marking in styles in kolam
art, the various kinds of ’in-group viscosity’ mechanisms like caste endogamy, kin-
based migration, neighborhood segregation, combined with standard social learning
models, would predict structured variation in our data. Thus, this finding further
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contributes to an emergent picture that the creation of art is not constrained by group
or social boundaries.

Both chapters strongly suggest that art is primarily a venue where artists strive to
showcase their uniqueness and aesthetic preferences. In contrast to previous find-
ings on material culture (Bowser and Patton, 2008; Helbich and Dietler, 2008; Degoy,
2008; Tehrani and Collard, 2009), narrow information networks or socialization chan-
nels are only very weakly displayed in artistic traditions. In conclusion, this thesis
provides evolutionary insights into artists’ strategic decisions and the information
embedded in the creation of artworks. These insights coupled with the novel data
infrastructure pipeline and the statistical approaches pave the way towards future
applications to other large corpora of visual and geometric artistic traditions, such as
Angolan sand drawings (Gerdes, 1988), Vanuatuan sand art (Lind, 2017) or Islamic
geometric art (Abdullahi and Embi, 2013). Taken together, this thesis serves as a
roadmap-type approach that illustrates workflows optimized for the study of a large
corpus of artistic traditions.
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Zusammenfassung

Theoretischer Hintergrund

Komplexe materielle Kultur ist eine der vielen einzigartigen Errungenschaften, die
den Menschen ökologisch so erfolgreich gemacht haben (Boyd and Richerson, 1985;
Cavalli-Sforza and Feldman, 1981; Laland, Odling-Smee, and Feldman, 2000) und
damit die menschliche Evolution tiefgreifend geprägt haben (Ambrose, 2001; Fo-
ley and Lahr, 2003). Während nicht-menschliche Tiere kulturelle Traditionen be-
sitzen (z.B. Vogelnestbau oder steinwerkzeuggestützte Nahrungssuche, siehe Bar-
rett et al., 2018; Breen, 2021), akkumulieren Menschen in einzigartiger Weise Wis-
sen und Fertigkeiten über aufeinanderfolgende Generationen (Mesoudi and Thorn-
ton, 2018; Boyd and Richerson, 1996). Veränderungen und Verbesserungen in men-
schlichen kulturellen Traditionen werden über Generationen hinweg akkumuliert.
So wurden Veränderungen in der räumlichen und zeitlichen Kohärenz bestimmter
Attribute der materiellen Kultur als Hinweis auf zugrunde liegende Veränderungen
der Umweltbedingungen und der Bevölkerungsdynamik angesehen (Henrich, 2004;
Lycett and Norton, 2010).

In dem Bestreben, die Mechanismen besser zu verstehen, die der kulturellen Per-
sistenz und dem Wandel der in der materiellen Kultur dokumentierten keramis-
chen, textilen und lithischen Traditionen zugrunde liegen (Tehrani and Collard, 2009;
Roux, 2015; Bettinger and Eerkens, 1999), haben Forscher Werkzeuge aus der Pop-
ulationsbiologie eingesetzt und theoretische Modelle entwickelt, die sich auf die kul-
turelle Evolution und Übertragung stützen (Boyd and Richerson, 1985; Cavalli-Sforza
and Feldman, 1981). Eine umfangreiche Literatur hat sich auf das Verständnis der
Kontinuitäten und Diskontinuitäten sowie der räumlichen und zeitlichen Verteilung
von materiellen Kulturprodukten konzentriert, um Assemblagen zu klassifizieren
und (vergangene) Identitäten zu erkennen (Eerkens and Lipo, 2007; Lipo, 2001; O’Brien,
2005). Da die Bildungsinvestitionen von Erwachsenen in junge Novizen beträchtlich
sein können (Shennan and Steele, 1999; Tehrani and Riede, 2008), haben Forscher
darüber hinaus umfangreiche ethnografische Untersuchungen durchgeführt, wie Wis-
sen und Fertigkeiten in Bezug auf die Produktion materieller Kultur erlernt, gelehrt
und zwischen Gemeinschaften geteilt werden und wie diese Mechanismen zu einer
bedeutsamen Variabilität in der Produktion materieller Kultur führen (Bowser and
Patton, 2008; Helbich and Dietler, 2008; Wallaert-Pêtre, 2008).
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Bis vor kurzem wurde künstlerischen Assemblagen oder Traditionen nur begrenzte
Aufmerksamkeit geschenkt, meist beschränkt auf spezifische Motive oder Designs,
die als Verzierungen in Keramiken oder Textilien verwendet wurden (Tehrani and
Collard, 2009; Bowser and Patton, 2008; Wiessner, 1984). Die Forscher haben sich
in erster Linie auf Artefakte konzentriert, die von funktionaler Suffizienz abhängig
sind (z. B. Pfeilspitzen, Töpferwaren, Teppiche). Im Gegensatz dazu ist Kunst nicht
auf die Erfüllung funktionaler Anforderungen beschränkt, sondern kann in Richtung
offener Komplexität und Neuartigkeit modifiziert werden (Mesoudi and Thornton,
2018; Tinits and Sobchuk, 2020). Daher könnte das Verständnis der eigenständi-
gen Schaffung und Wertschätzung von Ästhetik und künstlerischen Traditionen von
grundlegender Bedeutung für das Verständnis dessen sein, was Menschen einzigar-
tig macht.

In den letzten Jahren hat die Verfügbarkeit großer Datensätze zu einer großangelegten,
quantitativen Untersuchung von Kunst geführt, die sich nicht mehr nur auf eine
kleine Anzahl von Fällen konzentriert (Sigaki, Perc, and Ribeiro, 2018; Liu et al.,
2018). Ein quantitativer und evolutionärer Ansatz, der sich auf das Populations-
denken stützt (Mayr, 1959), kann von grundlegender Bedeutung für die Erklärung
von Mustern in der künstlerischen Produktion in großem Maßstab sein und Rück-
schlüsse auf die kulturelle Dynamik auf Bevölkerungsebene zulassen. Der Zugang
zu großen Datenbanken in Verbindung mit dem Zugang zu komplexen Berechnungs-
methoden hat wesentliche Erkenntnisse darüber ermöglicht, wie sich Muster in der
Kunst im Laufe der Zeit verändern (Youngblood, 2019; Müller and Winters, 2018;
Tinits and Sobchuk, 2020) und welche Informationen in der Kunst enthalten sind
(Brand, Acerbi, and Mesoudi, 2019; Pavlek, Winters, and Morin, 2019; Morin and Mi-
ton, 2018). Auch wenn Online-Datenbanken und Experimente erhebliche Fortschritte
beim Verständnis der evolutionären Rolle der Kunst ermöglicht haben, bleibt die Un-
tersuchung von künstlerischen Traditionen in der freien Natur aufgrund der Schwie-
rigkeiten bei der systematischen Quantifizierung in großem Maßstab eine Herausfor-
derung.

Geometrische Kunsttraditionen mit ihren systematischen Regeln lassen sich quan-
tifizieren und ermöglichen daher die Untersuchung eines großen Kunstkorpus. Von
angolanischen Sandzeichnungen (Gerdes, 1988; Gerdes, 1990), keltischer Kunst (Bain,
1973), vanuatuanischen Sandzeichnungen (Lind, 2017) bis hin zu tamilischen Schlei-
fenmustern (Layard, 1937) — sie alle weisen strukturelle Eigenschaften (d.h. eine
Grammatik) auf, die eine systematische Quantifizierung ermöglichen. Geometrische
Kunsttraditionen entstehen zwar in verschiedenen Gemeinschaften auf der ganzen
Welt, aber sie sind einzigartig und faszinierend zu untersuchen, weil sie es Forschern
ermöglichen, aktuelle ethnografische Informationen mit neuartigen Berechnungsme-
thoden zu synthetisieren, um eine hochauflösende Datenbank einer künstlerischen
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Tradition zu erstellen. Eine hochauflösende Datenbank einer künstlerischen Tradi-
tion würde in der Folge eine systematische Untersuchung der menschlichen Investi-
tionen in die Kunst ermöglichen und unser Verständnis von Kommunikation und
der Materialisierung von Informationen in der Kunst verbessern.

Die Kolam-Kunst ist eine geometrische Kunstform und eine tamilische Tradition, die
hauptsächlich von Frauen in Tamil Nadu, Südindien, ausgeübt wird (Laine, 2013).
In einem morgendlichen Ritual beginnen Frauen vor Sonnenaufgang die Schwellen
ihrer Häuser zu waschen und zeichnen daraufhin komplizierte Kolam-Muster mit
Reispulver oder Kreide auf den Boden (Nagarajan, 2018). Die Frauen zeichnen sorg-
fältig Schleifenmuster um ein anfängliches Raster aus Punkten, so dass sich die Lin-
ien nicht mit den Punkten überschneiden, sondern elegant und glatt um sie herum
kreisen (Layard, 1937; Laine, 2013). Das Vorhandensein oder Fehlen und der Grad
der Einfachheit oder Komplexität von Kolam-Zeichnungen kann verschiedene Infor-
mationen über die Künstlerin, ihren Haushalt und die Gemeinschaft vermitteln (Na-
garajan, 2018, S.37, 52–55, 75–81, 149, 273). Es wird nicht nur täglich viel Zeit in-
vestiert, um diese flüchtigen Kolam-Kunstwerke zu präsentieren, sondern auch, um
sie zu lernen, zu lehren und zu üben. In einem sehr jungen Alter, noch vor der Menar-
che, beginnen Mädchen typischerweise, die Herstellung von Kolam zu erlernen und
zu üben (Nagarajan, 2018, S. 8, 12, 15). Wissen und Erfahrung werden meist von
(Groß-)Müttern an (Groß-)Töchter weitergegeben. Die Kolam-Tradition wird jedoch
als Gemeinschaftswissen betrachtet, und so tauschen sich die Künstlerinnen häufig
über ihre Kolam-Entwürfe aus (Nagarajan, 2018, S. 69).

Aus einer evolutionären Perspektive bietet die Kolam-Tradition eine interessante Fall-
studie, um zu untersuchen, warum Individuen viel Zeit damit verbringen, künst-
lerische Traditionen zu lernen, zu üben und zu lehren, und welche Informationen in
künstlerischen Traditionen eingebettet sind. Außerdem ist die Gesellschaft in Südin-
dien entlang mehrerer Dimensionen wie Kaste, Klasse, Sprache, Region und Reli-
gion segregiert (Dumont, 1980). Deshalb entsteht die Kolam-Kunst in einer stark
geschichteten und multiethnischen Gesellschaft (Waring, 2012a). Da gesellschaftliche
Trennungen nachweislich in der materiellen Kultur abgebildet werden (Kramer and
Douglas, 1992; Degoy, 2008; Granito et al., 2019), könnte die Kolam-Kunst auch ein
Schauplatz sein, an dem die soziale Identität abgebildet wird, und somit interes-
sante Erkenntnisse darüber liefern, wie Informationen in künstlerischen Traditionen
widergespiegelt werden können.

Ziele dieser Arbeit

Das übergeordnete Ziel dieser Forschung ist der Aufbau einer robusten Datenin-
frastruktur und die Entwicklung und Anwendung neuartiger Ansätze zur Unter-
suchung der menschlichen Verhaltensökologie und kulturellen Evolution in einem
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künstlerischen Bereich. Um künstlerische Traditionen systematisch und quantita-
tiv zu analysieren, ist eine sorgfältige Beachtung der spezifischen Details des künst-
lerischen Systems in Verbindung mit ethnographischem Hintergrund von grundle-
gender Bedeutung. Das übergreifende Ziel dieser Forschungsarbeit ist daher die Syn-
these von Datenmanagement und statistischem Wissen mit ethnografischen Berichten,
um eine Datenbank und Methoden zu entwickeln und zu implementieren, die es er-
möglichen, die evolutionäre Rolle künstlerischer Traditionen zu verstehen und her-
auszufinden, welche Informationen in künstlerischen Traditionen enthalten sind. Die-
se Arbeit ist in zwei miteinander verbundene Projekte gegliedert, die darauf abzie-
len, unser Verständnis dafür zu vertiefen, wie Künstlerinnen ihre Arbeit konzeptu-
alisieren und wie Kunst innerhalb der Gemeinschaft funktioniert. Zu diesem Zweck
konzentriert sich diese Arbeit explizit auf die tamilische Kolam-Kunst. Beide Kapitel
dienen als Fallstudien am Beispiel von Kolam-Kunst. Sie stellen exemplarisch einen
Workflow dar, der für die Untersuchung geometrischer Kunsttraditionen optimiert
wurde.

Im ersten Kapitel untersuchte ich aggregierte, strukturelle und informationelle Muster
in der Kolam-Kunst, um die strategischen Investitionen der Künstlerinnen und die
potenziellen Einschränkungen zu verstehen, die auf sie einwirken. Diese Arbeit ist
in Evolutionary Human Sciences veröffentlicht:
Tran, N.-H., Waring, T., Atmaca, S., & Beheim, B. (2021). Entropy trade-offs in artis-
tic design: A case study of Tamil kolam. Evolutionary Human Sciences, 3, E23. DOI:
https://doi.org/10.1017/ehs.2021.14.

Im zweiten Kapitel konzentriere ich mich auf einen neuartigen Ansatz zur Quan-
tifizierung der Kovariation künstlerischer Stile entlang ethnischer oder kultureller
Grenzen, um die Rolle der Kolam-Kunst für die Gruppenkoordination zu verstehen.
Die Ergebnisse wurden in Frontiers in Psychology veröffentlicht:
Tran, N.-H., Kucharský, Š., Waring, T. M., Atmaca, S., & Beheim, B. A. (2021) Lim-
ited Scope for Group Coordination in Stylistic Variations of Kolam Art. Frontiers in
Psychology, 12, 742577. DOI: https://doi.org/10.3389/fpsyg.2021.742577.

Methoden

Die detaillierten Daten zur Kolam-Kunst wurden von Dr. Timothy M. Waring und
lokalen Forschungsassistenten in Kodaikanal, Tamil Nadu in Südindien im Jahr 2009
gesammelt. Ich entwarf und erstellte eine hochauflösende Datenbank, um diese re-
ichhaltigen Rohdaten zu synthetisieren. Diese Rohdaten enthielten Interviewum-
fragen, GPS-Daten, Kolam-Zeichnungen, Netzwerkdaten und Übungshefte. Darüber
hinaus habe ich eine robuste Datenpipeline entwickelt für die Transkription von Ko-
lam-Zeichnungen mithilfe eines Gestenlexikons (das Lexikon wurde entwickelt von
Waring, 2012b). Außerdem entwickelte und programmierte ich ein kolam R-Paket

https://doi.org/10.1017/ehs.2021.14
https://doi.org/10.3389/fpsyg.2021.742577
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(Tran, Waring, and Beheim, 2020) zur Datenkonsolidierung und zum gezielten Im-
port der Kolam-Daten in einem lesbaren Format in die Software R zur Analyse. Diese
Dateninfrastruktur bildete die grundlegende Basis für die neuartigen Methoden, die
in Kapitel 1 und Kapitel 2 entwickelt und angewendet wurden. In beiden Kapiteln
habe ich einen Datensatz von 3.139 Kolam-Zeichnungen von 192 Künstlern verwen-
det.

Im ersten Kapitel habe ich die Signalisierungs- und Optimierungstheorie verwen-
det, um die strategischen Investitionen von Individuen in die Kolam-Kunst zu unter-
suchen und um herauszufinden, wie mögliche Einschränkungen die Verhaltensstrate-
gien bestimmen könnten. DaKolam-Zeichnungen mit Hilfe eines Lexikons von Gesten
kodiert werden können, eignet sich dieses geometrische Kunstsystem für den Fokus
auf ökologische und informationstheoretische Standardmaße: Entropie, Äquität und
Vielfalt. Unter Verwendung einer Vielzahl von aus der Informationstheorie abgeleit-
eten, aggregierten Maßen zur Beschreibung von Kunstwerken habe ich untersucht,
ob künstlerische Komplexität ein Ziel der Optimierung sein könnte und ob ein Trade-
Off-Modell die Variationsmuster zwischen Kolam-Kunstwerken erklären könnte. Um
Kolam-Kunst aus der Perspektive der evolutionären Signaltheorie der eingeschränk-
ten Optimierung zu verstehen, habe ich die Shannon’sche Informationsentropie als
Maß für die künstlerische Komplexität verwendet. Durch numerische Simulationen
konnte ich eine systematische Beziehung zwischen der Shannon’schen Information-
sentropie, der Äquität und der Vielfalt aufzeigen, die es mir ermöglichte, Trade-offs
in Entropie zwischen der Äquität und der Vielfalt zu erkennen. Auf der Grundlage
dieses Trade-off-Modells habe ich anschließend Bayes’sche hierarchische Regression-
smodelle erstellt, um zu untersuchen, inwieweit Variationen in den strukturellen und
informationstheoretischen Eigenschaften von Kolam-Zeichnungen durch Variationen
in Bezug auf Künstlerinnen, Alter, Jahre der Übung und Kastenzugehörigkeit erklärt
werden können. Zusätzlich habe ich agentenbasierte Simulationen eingesetzt, um
die statistischen Modelle vor der Ausführung zu validieren und die Modellvorher-
sagen zu überprüfen.

Der ausschließliche Fokus auf die künstlerische Komplexität vermittelt jedoch nur
ein unvollständiges Bild davon, wie Kunst mit sozialer Identität, Gruppen und Indi-
viduen verbunden sein kann. Auch wenn Künstlerinnen ihre künstlerischen Darstel-
lungen auf eine bestimmte Komplexität hin optimieren können, können sie sich in der
Art und Weise, wie sie dies tun, stark unterscheiden. Insbesondere können Künst-
lerinnen strategisch verschiedene Stile oder Muster von Designs verwenden, um ein-
erseits ihr Kunstwerk zu optimieren und andererseits ihre Einzigartigkeit, ästhetis-
chen Vorlieben oder soziale Identität zu kommunizieren.

Im zweiten Kapitel konzentriere ich mich daher auf Stile oder Muster in der Kolam-
Kunst. Konkret untersuche ich systematisch, wie Stile in der Kunst auf ethnische und
kulturelle Grenzen abgebildet werden können. Da eine gewisse Zuordnung zwis-
chen stilistischen Variationen und Gruppen als Voraussetzung für ethnische Marker
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angesehen werden kann (siehe Bell, Richerson, and McElreath, 2009), könnte die
Quantifizierung der Kovariation künstlerischer Stile in der Kolam-Kunst entlang kul-
tureller Grenzen Aufschluss darüber geben, inwieweit dieKolam-Kunst als ethnischer
Marker funktionieren könnte. Zur Beschreibung und Unterteilung der Variationen in
sequenzielle Zeichenstile habe ich einen zustandsbasierten Markov-Ansatz entwick-
elt und angewendet. Ich nutzte die Markov’sche Natur des Kunstsystems, indem
ich sequenzielles Verhalten (d.h. Gesten) in Zustände einer Markov-Kette zerlegte,
um ein Bayes’sches hierarchisches Modell zu erstellen, das in der Lage ist, Stile oder
Muster in der Kunst mit Gruppengrenzen zu verbinden. Die statistischen Modelle
wurden vor der Ausführung validiert, und die Modellvorhersagen wurden anhand
von agentenbasierten Simulationen überprüft.

Ergebnisse

Die Ergebnisse des ersten Kapitels zeigen einen Optimierungs-Sweetspot in Bezug
auf die Shannon’sche Informationsentropie. Unabhängig von der Größe der Kolam-
Zeichnung zentrieren sich die meisten Kolam-Zeichnungen um einen ”Sweet Spot”
der Entropie und somit ist die Variation ihrer Komplexität begrenzt. Um diese rel-
ativ konstante Entropie in immer größeren Kolam-Zeichnungen beizubehalten, er-
höhen die Künstlerinnen strategisch die Vielfalt an Gesten, während sie die Äquität
der Gesten verringern. Der scheinbare Kompromiss zwischen Vielfalt und Äquität
deutet darauf hin, dass die Entropie das Ziel der Optimierung ist, so wie in der The-
orie der Lebensgeschichte die reproduktive Fitness das Optimierungsziel bei der Ab-
wägung zwischen Erhaltung und Fortpflanzung oder der Anzahl der Nachkommen
gegenüber dem Überleben der Nachkommen ist. Die Individuen entscheiden sich
also strategisch für Investitionen in die Kolam-Kunst und optimieren die Komplex-
ität ihrer Darbietungen, um den Ertrag zu maximieren. Darüber hinaus zeigen die
Ergebnisse, dass dieKolam-Kunst nicht in erster Linie eine soziale Schichtung oder in-
dividuelle Unterschiede in Bezug auf Alter oder Übungsjahre vermittelt. Die Eigen-
schaften von Kolam-Kunstwerken sind nur schwach mit den zugrunde liegenden
sozialen Zwängen verbunden, die auf die einzelnen Künstler wirken, was auf einen
relativ egalitären Informationsfluss von Kolam-Wissen hinweist, der nicht durch In-
formationsnetzwerke oder soziale Hierarchien eingeschränkt wird.

Die Ergebnisse des zweiten Kapitels stimmen insofern mit den Ergebnissen aus Kapi-
tel 1 überein, da sie zeigen, dass sich die Stile vonKolam-Zeichnungen nur geringfügig
durch soziale Grenzen unterscheiden. Stile oder Muster in der Kolam-Kunst lassen
sich nur schwach auf Kastengrenzen, Nachbarschaften oder frühere Migration zurück-
führen. Stattdessen haben die Ergebnisse gezeigt, dass die meisten Variationen in
den Mustern oder Stilen der Kolam-Kunst weitgehend von Variationen auf Künst-
lerinnenebene dominiert werden. Die Ergebnisse liefern zwar kein funktionales Ar-
gument dafür, ob die Kolam-Kunst tatsächlich als ethnischer Marker fun-



15

giert (wie beispielsweise in Smaldino, Flamson, and McElreath, 2018), aber ich lege
dar, dass die Variation auf Gruppenebene und die Kovariation zwischen Mustern
oder Stilen der Kolam-Kunst und Gruppengrenzen sehr begrenzt sind. Daher ist
der Spielraum für die Einbettung von Stilen in Kunstwerke als ethnische Marker zur
Kennzeichnung von Gruppengrenzen begrenzt.

Schlussfolgerungen

Aus evolutionärer Sicht sind die erheblichen Investitionen der Menschen in künst-
lerische Traditionen rätselhaft und faszinierend zugleich. Über Generationen hin-
weg lernen, lehren und teilen die Menschen ihr Wissen und ihre Fähigkeiten bei der
Schaffung einfacher bis komplizierter Kunstwerke. Die Vorgänge, die der Schaffung
von Kunstwerken zugrunde liegen, sind sehr komplex und umfassen strategische
Entscheidungen und Manipulationen, die sich auf die Größe, das Design, die Kom-
plexität oder die Originalität des Kunstwerks auswirken können. Wiederkehrende
Muster im Schaffensprozess sowie Ähnlichkeiten und Unterschiede in Kunstwerken
werden daher oft sinnvoll konstituiert durch enge Sozialisationskanäle und strate-
gische Entscheidungen der Künstlerinnen, sich der Gruppe anzupassen oder von ihr
abzuweichen. Um die Rolle künstlerischer Traditionen in der Gemeinschaft besser
zu verstehen, die Informationen, die sie enthalten, und die Art und Weise, wie Kün-
stlerinnen ihre Investitionen in die Kunst konzeptualisieren, benötigen wir systema-
tische Ansätze zur Quantifizierung und Analyse großer Korpora künstlerischer Tra-
ditionen.

Als erste Schritte in diese Richtung stellt diese Arbeit eine Dateninfrastruktur-Pipeline
und zwei neuartige empirische Ansätze vor, um künstlerische Traditionen anhand
eines großen Datenkorpus zu untersuchen. Meine Arbeit trägt dazu bei, ein Bild
von der evolutionären Rolle künstlerischer Traditionen und der Informationskom-
plexität in künstlerischen Traditionen zu zeichnen. Durch den Einsatz modernster
Unit-Tests, Versionskontrolle und kontinuierlicher Integration zur Aufrechterhaltung
der Datenqualität in Verbindung mit ethnografischen Berichten war ich in der Lage,
ein Team von Transkriptionisten zur Datenextrahierung zu leiten. Das Team von
Transkriptionisten zeichnete unter meiner Anleitung Rohdaten aus verschiedenen
Quellen auf, die 2009 in Tamil Nadu zur Kolam-Kunst gesammelt wurden. Unter
meiner Führung wurde dadurch eine robuste Datenpipeline aufgebaut. Der digitale
Zugang zu einem großen Kunstkorpus ermöglichte es mir, die künstlerischen Pro-
dukte systematisch zu quantifizieren. Zudem ermöglichte mir der großangelegte
Datensatz komplexe statistische Modelle zu entwickeln und anzuwenden, die ex-
plizit auf die Annahmen und hypothetischen Prozesse eingehen, die der Entstehung
der Kunstwerke zugrunde liegen.

Im ersten Kapitel habe ich eine umfassende Analyse der strategischen Investitionen
von Künstlerinnen in die Kunst präsentiert und dargelegt, wie der Informationsfluss
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innerhalb einer Künstlerinnengemeinschaft eingeschränkt werden kann. Künstlerin-
nen optimieren strategisch die Komplexität ihrer Kunstwerke, unabhängig von deren
Größe und unabhängig von Gruppengrenzen. Diese Erkenntnis ist ein wichtiger
Schritt zum Verständnis der strategischen Entscheidungsprozesse des Ein-
zelnen bei der Schaffung von Kunst.

Im zweiten Kapitel habe ich mit einem neuartigen Ansatz gezeigt, wie die Kovaria-
tion von charakteristischen Stilen oder Mustern in Kolam-Kunstwerken entlang kul-
tureller Grenzen systematisch untersucht werden kann. Durch die Analyse sequen-
zieller Zeichenentscheidungen zeigte ich, dass Kolam-Kunstwerke nur begrenzte In-
formationen über die zugrunde liegenden Gruppengrenzen enthalten. Der begren-
zte Nachweis von Variationen auf Gruppenebene ist bemerkenswert, denn selbst
wenn es keine explizite Operationalisierung von Kasten-, Nachbarschafts- oder Re-
gionsmarkierungen in den Stilen der Kolam-Kunst gäbe, würden die verschiedenen
Arten von ”gruppeninternen Viskositäts”-Mechanismen wie Kastenendogamie, ver-
wandtschaftsbasierte Migration, Nachbarschaftssegregation in Kombination mit Stan-
dardmodellen des sozialen Lernens strukturierte Variationen in unseren Daten vorher-
sagen. Somit trägt dieses Ergebnis zu dem sich abzeichnenden Bild bei, dass die
Schaffung von Kunst nicht durch Gruppen- oder soziale Grenzen eingeschränkt wird.

Beide Kapitel deuten stark darauf hin, dass Kunst in erster Linie ein Ort ist, an dem
Künstlerinnen ihre Einzigartigkeit und ihre ästhetischen Vorlieben zur Schau stellen
wollen. Im Gegensatz zu früheren Erkenntnissen zur materiellen Kultur
(Bowser and Patton, 2008; Helbich and Dietler, 2008; Degoy, 2008; Tehrani and Col-
lard, 2009) sind enge Informationsnetzwerke oder Sozialisationskanäle in künstleri-
schen Traditionen nur sehr schwach ausgeprägt. Zusammenfassend lässt sich sagen,
dass diese Arbeit evolutionäre Einblicke in die strategischen Entscheidungen von
Künstlern und die in die Schaffung von Kunstwerken eingebetteten Informationen
liefert. Diese Erkenntnisse in Verbindung mit der neuartigen Dateninfrastruktur-
Pipeline und den statistischen Ansätzen ebnen den Weg für künftige Anwendungen
auf andere große Korpora visueller und geometrischer Kunsttraditionen, wie z. B.
angolanische Sandzeichnungen (Gerdes, 1988), vanuatuanische Sandkunst (Lind,
2017) oder islamische geometrische Kunst (Abdullahi and Embi, 2013). Insgesamt
dient diese Arbeit als Roadmap-ähnlicher Ansatz, der Arbeitsabläufe veranschaulicht,
die für die Untersuchung eines großen Korpus an künstlerischen Traditionen opti-
miert sind.



17

Chapter 1

Entropy Trade-offs in Artistic
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Abstract
From an evolutionary perspective, art presents many puzzles. Humans invest sub-
stantial effort in generating apparently useless displays that include artworks. These
vary greatly from ordinary to intricate. From the perspective of signaling theory,
these investments into highly complex artistic designs can reflect information about
individuals and their social standing.

Using a large corpus of kolam art from South India (N = 3,139 kolam from 192 women),
we test a number of hypotheses about the ways in which social stratification and in-
dividual differences affect the complexity of artistic designs.

Consistent with evolutionary signaling theories of constrained optimization, we find
that kolam art tends to occupy a “sweet spot” at which artistic complexity, as mea-
sured by Shannon information entropy, remains relatively constant from small to
large drawings. This stability is maintained through an observable, apparently un-
conscious trade-off between two standard information-theoretic measures: richness
and evenness. Although these drawings arise in a highly stratified, caste-based so-
ciety, we do not find strong evidence that artistic complexity is influenced by the
caste boundaries of Indian society. Rather, the trade-off is likely due to individual-
level aesthetic preferences and differences in skill, dedication, and time, as well as
the fundamental constraints of human cognition and memory.

Keywords: Art, Signaling, Entropy, Skill, Material Culture, Bayesian inference
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1.1 Introduction

From the perspective of human evolution, art is mysterious. People in all known
populations invest substantial time, energy, and effort into generating abstract pat-
terns and performances (Brown, 1991), to no obvious benefit. In biology, the study
of seemingly non-functional traits in social communication relies on the evolution-
ary theory of signaling, a framework for understanding how reproductive trade-offs
produce phenomena such as warning displays, mating calls, and specialized adapta-
tions such as bright, colorful plumage (Zahavi, 1975). It is currently unclear whether
human art is comparable to signaling behaviors, what features they have in common
with each other, or if art is even something that can be usefully understood using an
evolutionary approach.

In recent years, the availability of large art datasets has enabled large-scale quanti-
tative analysis (Müller and Winters, 2018; Liu et al., 2018; Sigaki, Perc, and Ribeiro,
2018), which is the cornerstone of the “population thinking” approach characteristic
of evolutionary thinking in modern biology (Mayr, 1959). Here we present such an
analysis of a large corpus of material art from South India: the kolam drawings cre-
ated by the women of Tamil Nadu in South India. Because this long-standing artistic
tradition follows systematic rules amenable to quantification, statistical models allow
us to characterize the strategies pursued by individual artists, detect the existence of
a theoretically derived entropy trade-off between richness and evenness, and weigh
the importance of particular constraints on the flow of information within an artistic
community.

1.1.1 Theoretical Background

In evolutionary theory, signals can successfully coordinate behavior between organ-
isms by reliably indicating skill (Hawkes and Bird, 2002), commitment (Bulbulia and
Sosis, 2011; Soler, 2012), social status (Smith, Bird, and Bird, 2003), strength (So-
sis, Kress, and Boster, 2007) and cooperativeness (Gintis, Smith, and Bowles, 2001;
Granito et al., 2019). Courtship behaviors, such as the ornate nest structures built
by bowerbirds, often have no practical use, but their great cost itself is a signal of
underlying phenotypic quality and potential mate value (Zahavi, 1975; Schaedelin
and Taborsky, 2009; Madden, 2003). Some human behaviors, such as inefficient and
unnecessarily difficult spearfishing in Meriam communities (Bliege Bird and Dou-
glas, 2002), have been nominated as having a similar purpose, to enhance a sig-
naler’s social status and thus mating success (Bird, Smith, and Bird, 2001). More
generally, costly public signals can lead to improved status and reputational stand-
ing (Power, 2017), reproductive success (Smith, Bird, and Bird, 2003), or increased
social support (Bird et al., 2012). Beyond latent properties of the individuals, signals
can evolve to indicate persistent group memberships, which become the basis for co-
operative assortments. Especially in multi-ethnic populations, ethnic marker theory



20 Chapter 1. Entropy Trade-offs in Artistic Design: A Case Study of Tamil Kolam

has become substantial to understand how individuals coordinate their norms and
behaviors with others using identity or group membership signals (Boyd and Rich-
erson, 1987). These signals, referred to as ethnic markers, have evolved to prevent
individuals from interacting with others with different norms in coordination games
(McElreath and Boyd, 2007; Moffett, 2013; Granito et al., 2019).

As a medium of communication, human art might reflect fitness-relevant qualities
and capacities (e.g., preferences, skills, or personality traits such as patience, cre-
ativity, commitment) as well as promote social standing and mating qualities (e.g.,
health and fertility) (Davies, 2012; Grasseni, 2018). The signal is manifested as the
aesthetic appeal or value of the artwork, and as such, it makes sense to see artists
compete with each other in producing the most appealing and aesthetically pleasing
artwork (Varella and Fernández, 2015; Gustafsson, 2018; Grasseni, 2018) that reflects
their qualities and social status. Information on an artist’s capacities, social standing,
or mating qualities is judged by the apparent costs of the artistic production reflected
in its complexity (Varella and Fernández, 2015; Grasseni, 2018).

A number of quantitative approaches have been used to measure cultural diversity on
some distribution of traits. In economics and anthropology, a popular distributional
measure is the Gini index of inequality (Zoli, 1999; Ravallion, 2014). A Gini index
value of 0 represents a state of total equality, while a value of 1 represents total in-
equality. In ecology, three common methods of biological diversity are richness (the
number of unique variants present), evenness (the relative abundance of variants),
and Shannon information entropy, which weights richness by the relative abundance.
For a low-entropy, low-diversity state, the representation of alternative variants is
highly unequal, and in the limiting case in which only one variant is present, en-
tropy is 0. At the other extreme, all n variants are represented equally, maximizing
evenness, and so the entropy is also maximized to the value of log(n) (Jost, 2006; Jost,
2009). Entropy has also been used in several recent papers quantifying artistic diver-
sity, where an artwork can be represented by an empirical probability distribution of
variants (Pavlek, Winters, and Morin, 2019; Müller and Winters, 2018; Winters and
Morin, 2019).

Although the Gini index in economics and diversity in ecology quantify the relative
abundance in a very similar way, to our knowledge no systematic relationship has
been described between the Gini index and Shannon information entropy, richness,
or evenness. If we define evenness as v = 1 − g, for a given Gini index g, numerical
simulations show the relationship between Shannon information entropy, richness
and evenness is quite strict, so that the maximum entropy Ĥ is given by evenness v

and richness n as

exp(Ĥ) ≈ n− (n− 1)v1+
2

2+a
+ a

a+n (1.1)
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where a = exp(0.51390628) (see the derivation A.5 in Appendix A for more details).
This approximation allows us to detect entropy trade-offs between evenness and rich-
ness, which we use as analog to fitness trade-offs and can be applied to the study of
any well-defined artistic system.

1.1.2 Kolam Art of South India

Kolam drawings are geometric art practiced by women in the Kodaikanal region of
Tamil Nadu, Southern India (Layard, 1937). A kolam consists of one or more loops
drawn around a grid of dots (in Tamil called pulli). On a typical morning, a Tamil
woman will prepare a grid of dots on the threshold of her home and then draw a kolam
with rice powder or chalk. During the day, the drawing weathers away, and a new
kolam is created the next day. Kolam drawings are historically a tradition of matrilines,
but more recently are also a topic of cultural education in Tamil schools. Girls in
Tamil Nadu begin practicing kolam-making from an early age, and competency in
this art is considered necessary for the transition into womanhood (Nagarajan, 2018).
Although the primary medium is the threshold of the home, women practice kolam-
making in notebooks, and it is common for artists to share, copy and embellish each
other’s kolam designs. Such unrestrained artistic exchange is fostered by the fact that
kolam designs are not considered to belong to any one person, but rather to be a type
of community knowledge (Nagarajan, 2018). However, the ability to successfully
draw aesthetically pleasing (i.e., diverse, complex, large) kolam drawings is said to
reflect certain qualities of a woman (e.g., her degree of traditionalness or patience),
and as such, her capacity to run a household and become a good wife and mother
(Nagarajan, 2018; Laine, 2013).

Kolamdrawings further broadcast meaningful information about a household to neigh-
bors and visitors. Nagarajan, 2018 argues that the presence or absence of kolam draw-
ings help mark important events and the emotional or physical state of the artist and
its household. Auspicious events, such as weddings or community festivals, war-
rant unusually large and complex kolam drawings, while inauspicious events such as
death or illness are marked by the absence of kolam drawings, and might communi-
cate the inability to receive or host visitors or the need for social support (Nagarajan,
2018; Laine, 2013).

Overall, kolam-making plays an integral role in the Tamil community and is deeply
embedded in the Tamil culture with playful or even large-scale competitions among
women (Nagarajan, 2018, p. 179-203). Women often come together to carefully ex-
amine and critique each other’s kolam drawings in terms of aesthetic qualities (e.g.,
geometric complexity or density Nagarajan, 2018, p. 189) or consult each other on
designs to optimally showcase their skills (Nagarajan, 2018, p. 182). Contemporary
interpretations of the kolam in Tamil movies even use “the motif of the heroine’s beau-
tiful kolam in attracting the male gaze of the hero. The romance is either initiated by
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a strikingly beautiful kolam or sustained during the nocturnal hours when a kolam
is being made by the heroine [....].”, (Nagarajan, 2018, p. 179-267)

1.1.3 Current Study

Kolam drawings are highly diverse and contain multiple distinct artistic families.
Here we study the ner pulli nelevu or sikku kolam family because of its unique form.
Because sikku kolam drawings represent an unusually strict system of artistic expres-
sion, kolam drawings can be mapped onto a small identifiable set of gestures and
are therefore well-suited to systematic, quantitative analyses as a naturalistic model
system of cultural evolution. A given kolam’s gesture sequence can be characterized
by a number of informative summary statistics which capture aspects of kolam it-
self: the sequence length (i.e., the total number of gestures), the discrete canvas size
(measured by the grid of dots, or pulli), the gesture density per unit canvas area,
and gesture diversity as measured by evenness (here, the Gini index), richness, and
Shannon information entropy.

With the ability to calculate standard measures and properties to describe artworks
derived from information theory, we can explore the possible functions of signaling
in kolam drawing. Specifically, we wish to understand better the social and strategic
landscape within which artists work. Moreover, we seek to understand how realized
kolam drawings result from the conflicting pressures of the need to communicate so-
cial signals, and various constraints on artistic production, among them the skill and
experience of the artist and the social system she lives within.

Since these trade-offs are properties of the design space of the art itself, a substantial
amount of variation may be explained simply by understanding strategic decisions,
conscious or unconscious, made by the artist. Thus, two major research questions
arise: first, can a trade-off model explain the pattern of variation among kolam draw-
ings, as is commonly done in behavioral ecology? And second, can we relate struc-
tural and information-theoretic properties of kolam designs to underlying social and
cognitive constraints operating on individual artists?

1.2 Methods

1.2.1 Kolam Dataset

We (TW) interviewed 312 artists in the Kodaikanal region in Tamil Nadu in 2009,
collecting a total of 6,393 kolamdrawings from the ner pulli nelevu or sikku kolam family,
along with details of each woman’s education, kolam-making experience, place of
origin, and household demographic background, including caste.

Using the lexicon of 29 kolam gestures developed in Waring, 2012b, each kolam was
digitally transcribed into a sequence of gestures and transferred into a database using
the kolam R package (see http://github.com/nhtran93/kolam for more details).

http://github.com/nhtran93/kolam
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An example of transcribed kolam drawings can be seen in Figure 1.1. The geometry
of the kolam can be divided into three geometric spaces (orthogonal, diagonal, transi-
tional) with their specific corresponding gestures. Each set of gestures is represented
by a letter (O, D, T, respectively), while special variations of these moves are given
special letters (C, H, P). Topologically, diagonal and transitional gestures are chiral
with distinct left and right versions because rotations of these gestures in space can-
not yield their exact mirror image (Waring, 2012b). The detailed lexicon of gestures
can be consulted in Figure A.2 in Appendix A.

We excluded 674 kolam drawings that could not be matched to an artist, 695 kolam
drawings because they included non-lexical gestures and another 17 kolam drawings
due to transcription errors. We further excluded 120 women because their survey
data was incomplete, with substantial missing data in key variables: age, GPS, dura-
tion of practice, or caste membership. In total, 3, 139 kolam drawings (on average 16
kolam per woman) from 192 artists were included in the analysis (age: M = 31.83, sd
= 9.93 years, range = 15− 60; married: 75%). The artists are from 19 different castes,
spanning from low-, middle- to high-castes. Of the 3, 139 kolam drawings, 1801 ko-
lam drawings came from artists of a low-caste, 593 kolam drawings from artists of a
middle-caste, and 745 kolam drawings from artists of a high-caste.

sequence: 

o4 o1 o4 o1

o4 o1 o4 o1

sequence 1:

o4 o1 o3 o2 o3 o2 o3 o2 o3 o1
sequence 2:

o2 o1 o2 o1 o2 o1 o2 o1

Figure 1.1: Example of two orthogonal kolam drawings and their cor-
responding encoding using a lexicon of gestures.

1.2.2 Information-theoretic Measures

We use Shannon information entropy H(p)j as a measure of artistic complexity or
diversity for each kolam drawing j and probabilities pi for each possible, discrete ges-
ture i, computed as the average log-probability: H(p)j = −

∑n
i pi log(pi). Entropy

as a measure for complexity is continuous, additive and increases as the number of
possible gestures increases. While the lexicon of 29 gestures (Waring, 2012b) decom-
posed the diagonal and transitional gesture types into distinct left and right versions,
we did not distinguish between them because they are a property of the transcription
and not of the artist. Thus, information-theoretic measures were computed based on
18 distinct gestures (with each chiral pair counted as only one) and the theoretical
upper bound of the entropy in our analyses is

∑18
i

1
18 log( 1

18)) = 2.89 log units. In
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Entropy = 1.16
Total Gestures = 625

Richness = 7
Evenness = 0.27
Density = 1.18

Canvas Size = 23

Entropy = 0
Total Gestures = 16

Richness = 1
Evenness = NaN

Density = 1
Canvas Size = 4

Entropy = 1.48
Total Gestures = 96

Richness = 7
Evenness = 0.42
Density = 1.19

Canvas Size = 9

Entropy = 2.23
Total Gestures = 34

Richness = 11
Evenness = 0.65
Density = 0.42

Canvas Size = 9

Figure 1.2: Structural and information-theoretic properties of kolam
drawings. The Figure shows four kolam examples and their respective

information-theoretic measures and structural properties.

contrast, the theoretical lower bound of entropy is 0 for a kolam that consists only of
one gesture (see Figure 1.2).

Richness represents the number of unique gestures (accounting for chirality) present
in a kolam drawing and evenness represents the relative abundance of each gesture.
We computed evenness v using the Gini index of inequality g: v = 1 − g, where
g(n)

∑n
i=1

∑n
j=1 |pi−pj |

2(n−1) , where n is the richness and p the frequency of specific variants
or gestures. Figure 1.2 illustrates how these properties or information-theoretic mea-
sures correspond to specific kolam drawings.



1.2. Methods 25

1.2.3 Statistical Analysis

To investigate the scope for viewing kolam art as a signaling system for aesthetic value,
we modeled five information measures of each kolam in our sample using a variety
of predictor variables. The five properties used as dependent variables to describe a
kolam drawing were the canvas size, the gesture density per unit canvas area, even-
ness, richness, and Shannon information entropy. The canvas size of a kolam is a
discrete count variable measured by the grid of dots, or pulli, and captures the di-
mension of the kolam. Since kolam drawings always start with an initial square grid
of dots, the canvas size is equal to the width or length of this initial dot matrix, re-
gardless of whether the resulting kolam is not maximally spanning both the width
and length of this grid. The gesture density reflects the number of gestures by canvas
area: density =

sequence length
canvas size2 . Age, duration of practice, and caste were used as pre-

dictor variables to explain individual variation. Age and duration of practice were
standardized to be centered on zero with a standard deviation of one.

Since our data contains repeated observations for artists and castes (i.e., multiple
kolam drawing from an artist or from any given caste), we partially pooled infor-
mation across these two units using hierarchical modeling in order to account for
imbalances in sampling and to yield more reliable and precise estimates (Efron and
Morris, 1977). While information was pooled across artists to avoid over-dispersed
parameter estimates, we estimated a random intercept (i.e., offset) for each artist.
Caste is comprised of 19 different categories and was modeled as a varying effect to
estimate individual offsets for each caste category.

Evenness and richness are related to entropy by a mathematical identity (shown in
the derivation A.5 in Appendix A) and subject to an optimization process. This the-
oretical guide motivates the specific choice of predictor variables in our statistical
models, which is why we would not include, e.g., canvas size as predicted by rich-
ness. Including these predictors would not address our larger question of modeling
information entropy or mapping its potential trade-offs, nor would such an analysis
add an adequate potential alternative explanation of the invariance in entropy and
the richness/ evenness trade-offs because the system does not prevent artists from
drawing kolams with minimal or maximum entropy.

The statistical models were implemented in the probabilistic programming language
Stan (v2.18) (Carpenter et al., 2017), using 6000 samples in four independent chains.
We applied an iterative process of model building, inference, model checking and
evaluation, and model expansion to ensure a principled and robust Bayesian work-
flow (Gabry et al., 2019; Talts et al., 2018). Prior predictive simulations and fitted
models to simulated data were used to determine reasonable and regularizing pri-
ors for the parameters that respects the parameter type’s bounds. We present a com-
plete description of the statistical models and the priors in Appendix A. Analyses
were performed in R (Team, 2019). Data and analyses can be found here: http:

http://github.com/nhtran93/kolam_signaling
http://github.com/nhtran93/kolam_signaling
http://github.com/nhtran93/kolam_signaling
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//github.com/nhtran93/kolam_signaling. All R̂ values were less than 1.01, and
visual inspection of trace plots, rank histograms and pairs plots indicated conver-
gence of all models. Visual MCMC diagnostics can be found in Appendix A.

1.3 Results

Figure 1.3: Trade-off between the Evenness and the Richness. The
grey lines measure maximum entropy isoclines. The raw kolam data
are jittered and illustrated in blue (light blue = low density, dark blue
= high density). The (90%, 75%, 50%) kernel-density of the average
richness and evenness for each canvas size of the data are depicted in

the orange area (light orange to dark orange).

Consistent with the entropy trade-offs implied by equation 1.1, we find that as kolam
drawings concentrate around an entropy of 1.17 log units regardless of their size,
they systematically vary in evenness and richness as they increase in size (see Figure
1.3). Larger kolam drawings employ a greater richness of gestures, on average, but
also have greater inequality between gestures in such a way that entropy remains
tightly bounded between 1.1 and 1.4. As illustrated further in Panel A and C in Figure
1.4, evenness decreases with increasing canvas size, while richness increases with
increasing canvas size.

http://github.com/nhtran93/kolam_signaling
http://github.com/nhtran93/kolam_signaling
http://github.com/nhtran93/kolam_signaling
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In characterizing the artist-level variation, we also find similar patterns. Figure 1.4
illustrates artist’s offsets on the different structural and information-theoretic prop-
erties on kolam drawings. Artist means cluster between an entropy of 1.1 and 1.4
log-units. Thus, very plain (entropy < 1) as well as highly complex kolam drawings
(entropy > 1.5) are very rare. Individuals who draw larger kolam drawings tend to
use more different gestures but, in turn, repeat a few gestures disproportionately
(Figure 1.4, panel B).

As indicated by Figure 1.5, there is also some small distinct variation between artists
on the average entropy of their kolam drawings σartist = 0.04, 90% CI [0.02, 0.05]).
This between-artist variability is most pronounced in canvas size (σartist = 0.15, 90%
CI [0.13, 0.17]) and in density (σartist = 0.10, 90% CI [0.08, 0.11]) with individuals
showing differences in the average canvas size and density of their kolam drawing.
Between-individual variation the evenness (σartist = 0.05, 90% CI [0.04, 0.06]) and in
the richness (σartist = 0.01, 90% CI [0.00, 0.03]) were estimated with high certainty
to be non-zero, but very small (see right panel in Figure 1.5).

We detected very small effects of caste membership on density, evenness, richness,
and entropy, with varying-effect deviations estimated near zero with high certainty
as illustrated in Figure 1.5 (density σcaste = 0.02, 90% CI [0.00, 0.04]; evenness σcaste =
0.03, 90% CI [0.02, 0.05]; and richness σcaste = 0.01, 90% CI [0.00, 0.03]; entropy σcaste

= 0.03 90% CI [0.01, 0.05] respectively). However, evidence for caste differences in
canvas sizes of kolam drawings was more pronounced (σcaste = 0.11, 90% CI [0.06,
0.16]).

Evidence for an effect of age and an effect of duration of practice on the five outcomes
is also very weak. Figure 1.5 shows that both predictor variables have a very small
effect on the five outcome variables. Age and the duration of practice are estimated
with high uncertainty to be close to zero across the five models.

Only a small amount of variation in the information statistics we employed can be
accounted for by variation in artists, their age, years of practice, and caste member-
ship: about 15% for canvas size, 13% of the evenness, 11% of the variation in the
gesture density, 0.01% for the richness and 0.03% for entropy as measured by the In-
terclass Correlation Coefficient (Gelman and Hill, 2006) (see Appendix A for more
details). Residential proximity and regional origin of artists hardly account for any
variation in the structural and information-theoretic properties (see Appendix A for
more details). In contrast, the residual variance of the outcomes is large and dom-
inates model inference more than the variation explained by our fixed and random
effects combined.
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Figure 1.4: Scatter plot of posterior estimates of individual intercepts
(sum of individual offsets and population mean). The posterior esti-
mates of individual variation of two models are plotted against each
other to illustrate the correlation between outcomes. The blue colour
gradient reflects the posterior estimates of individual variation of en-
tropy. Pearson’s correlation r between the posterior estimates of the
two variables is shown on the upper left for each panel. A. The canvas
size and the evenness model. B. The evenness and the richness model.

C. The canvas size and the richness model.
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Figure 1.5: Prior-Posterior Coefficient Plots. All panels have the same
y-axis indicating the five models. The left panel (beta coefficients)
illustrates the estimated beta coefficients for the two predictors, dura-
tion of practice (dark blue) and artist’s age (light blue) for each model.
The right panel (variation) illustrates the estimated population level
standard deviation for the effect of caste (dark green) and the esti-
mated individual variation (light green) for each model. The 90%
Highest Posterior Density Interval (HPDI) was computed for each

posterior.

1.4 Discussion

Viewed at the population scale, the complexity of kolam drawings is quite invari-
ant, suggesting the existence of an entropy “sweet spot” at which most artists and
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most kolam drawings center around, regardless of the design’s size or gesture rich-
ness. The observed increase in gesture richness in bigger kolam drawings is compen-
sated for almost exactly by a corresponding decrease in gesture evenness, such that
as kolam drawings increase in size, richness is traded off against evenness so as to
maintain nearly constant entropy. Our findings are consistent with the general view
of signaling in behavioral ecology as an attempt at optimization under constraints
and lend support that entropy is optimized through an observable and apparently
unconscious trade-off between richness and evenness (shown theoretically and em-
pirically).

In this interpretation, kolam drawings that are generally more diverse are more valu-
able art products (Nagarajan, 2018, p. 189). For this reason, we see very few kolam
drawings with an entropy below one, which would be unusually simplistic or repet-
itive, regardless of their size. Conversely, artists seem to hit an upper entropy con-
straint around 1.5 log units, regardless of the size of the kolam, which suggests some
form of constraint on more complex (and more valuable) artwork.

Although the nature and origin of these constraints are unclear, our analysis can rule
out a few possibilities. Almost no meaningful information about caste stratification is
visible in the information metrics we employ. Members of different caste categories
tended to create distinct kolam drawings of different canvas sizes, but no clear dif-
ferences in other major structural or information-theoretic properties. Indeed, our
findings are consistent with ethnographic accounts of kolam as a form of commu-
nity knowledge and suggest that, as a public art form drawn on a home’s threshold,
kolam drawings enjoy a relatively egalitarian information flow even in a stratified,
multi-ethnic society (Waring, 2012a).

Based on the above, we believe that complexity in kolam design is more likely con-
strained by aesthetic preferences and cognitive limitations, rather than by informa-
tion networks or social hierarchies. Although we were able to observe variation in
average entropy between artists, with some highly complex kolam above an entropy
score of 1.5 log units, we were not able to map this variation to patterns of age or expe-
rience. This could reflect cultural selection pressures to make traditional practices of
artistic ornamentation and design, such as kolam art, more learnable or transmissible
(Müller and Winters, 2018; Tamariz and Kirby, 2015; Ravignani, Delgado, and Kirby,
2017; Kirby, Cornish, and Smith, 2008; Tylén et al., 2020) or limitations in procedural
and working memory capacities (Oberauer and Kliegl, 2006; Oberauer, 2010) unre-
lated to the action of experiential memory or cognitive senescence (Gurven et al.,
2017).

An overly complex and large kolam with rich and diverse gestures might be too dif-
ficult, time-consuming, or too risky to execute successfully because options for revi-
sions and corrections are limited. Artists might want to avoid highly complex kolam
drawings because they draw them in front of their house, and hesitation, pauses, or
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corrections could be interpreted by the audience as imperfection or as a lack of skill
(Nagarajan, 2018, p. 53, p.156). This avoidance of maximally complex artistic de-
signs due to increased risk of deficiency and failure might also be relevant to other
practices of ornamentation or decorations where mistakes often last and cannot be
rectified easily (e.g., polychrome bowl designs, Bowser, 2000 or Angolan sona draw-
ings, Gerdes, 1990). Alternatively, it might also be that more diverse kolam drawings
are simply not as aesthetically appealing to artists and their audience because indi-
viduals often tend to prefer a certain extent of regularity and repetition rather than
complete randomness and thus highly complex kolam drawings (Voloshinov, 1996;
Huang et al., 2018). Other artistic designs, such as loop patterns for decorations in
Japan or Angolan sand drawings have already been known to be influenced by the as-
piration for symmetry (Nagata, 2015; Gerdes, 1990). Therefore, the artist’s aesthetic
preferences are the final constraint.

In fact, geometric art like kolam displays structural properties (e.g., symmetry, ro-
tation, and repetition) and can correspond to distinct complexity measures (Sigaki,
Perc, and Ribeiro, 2018). Aesthetic preferences can determine these distinct struc-
tural properties and reflect shared attention and learning (Tomasello, Kruger, and
Ratner, 1993). Artists can deliberately choose to impose structural constraints ac-
cording to their and consumers’ preferences on an artwork. For instance, artists can
strive for symmetry, only use the same type of variants (i.e., gesture types), or de-
cide to primarily use the same two variants (i.e., gestures) and only add very low
frequencies of other special variants as decoration. All these decisions underlie the
time, skills, and aesthetic preferences of the artist and can profoundly shape the dis-
tribution of information-theoretic properties of the resulting artwork (Grasseni, 2018;
Gustafsson, 2018). Beyond measures of entropy, we do not have direct ratings of the
aesthetic quality of kolam drawings or whether the artist has employed a particularly
appealing style. Other information metrics, such as bilateral or rotational symmetry,
or fractal scaling, might reveal specific details beyond diversity or complexity and
should be an endeavor for future studies.

While the observed patterns in kolam art imply a certain degree of invariance in com-
plexity across different canvas sizes and only small traces of individual variation and
social stratification, they exhibit what has been called “equifinal” behavior (Barrett,
2018; Bertalanffy, 1969). Equifinality means that inferring the generative processes
that might have given rise to the observed cultural frequency data is difficult because
we only have cross sectional data (Kandler and Powell, 2015; Barrett, 2018). Tempo-
ral data could allow us to narrow the subset of causal mechanisms that underlie the
observed distribution of information-theoretic properties. Generative simulations
could approximate temporal data and provide a more in-depth understanding of
how artistic traditions could have theoretically evolved, specifically in regards to the
diversity or the complexity and the stability of the kolam in the population across
time. In order to infer the underlying generative processes, a probabilistic model,
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in which the hypothesized causal mechanisms (i.e., cognitive constraints, aesthetic
preferences, or other potential constraints) are explicitly defined, needs to be built
(Kandler and Powell, 2015). Such a probabilistic model can allow us to repeatedly
simulate datasets with known parameters and compare the resulting distribution
with observed data to infer the most likely hypothesized causal mechanisms. Fur-
thermore, measuring the signaling value of specific kolam motifs for coordinating us-
ing classification tasks (Bell, 2020) could be a promising endeavor to explain the role
of kolam art for social coordination. A comparison of the signaling value of cultur-
ally salient kolam motifs between the Tamil population in South India and the Tamil
diaspora in the U.S. could further reveal divergent functions of kolam art for differ-
ent communities. Another promising future endeavor could be to focus specifically
on how kolam drawings are perceived and whether the processing efforts of kolam
drawings (visual complexity measured by perimetric complexity or algorithmic com-
plexity) (Miton and Morin, 2019; Pelli et al., 2006) are in alignment with the actual
production efforts (e.g., gesture complexity measured by Shannon entropy) invested
in kolams. These perception and processing efforts of a consumer or learner of ko-
lams could even have implications on the transmission of kolam knowledge in terms
of learning and reproduction (Tamariz and Kirby, 2015).

Our results on entropy trade-offs and various constraints on complexity operating
on kolam art encourage us to distance ourselves from underspecified and vague at-
tempts to explain the evolution of art (Pinker, 2003; Miller, 2011) and think deeply
about artistic traditions in terms of evolutionary signaling theories of constrained
optimization. Further investigations of how evolutionary signaling theories of con-
strained optimization could be applied to other art forms in other communities, such
as Vanuatuan sand art (Lind, 2017; Zagala, 2004), Angolan sand drawings (Gerdes,
1993; Gerdes, 1988), or Islamic geometric art (Abdullahi and Embi, 2013), could ad-
vance our evolutionary understanding of investments in and constraints on art. A
careful synthesis of evolutionary signaling theory with ethnography can help us un-
derstand individual’s strategic investments into mastery of specific artistic skills and
how they optimize their artistic displays (e.g., size, novelties, color diversity) within
certain constraints (e.g., aesthetic preferences, cognitive constraints or motor con-
straints), allowing us to elucidate properties of art. Importantly, evaluating evolu-
tionary constraints on cultural productions beyond functional sufficiency is integral
to understanding how cultural productions have evolved (e.g., motor constraints in
music production Miton et al., 2020). All these future directions will be time con-
suming and computationally challenging, but we believe that the long-term gains for
an evolutionary understanding of artistic traditions will make this enterprise worth-
while.



32 Chapter 1. Entropy Trade-offs in Artistic Design: A Case Study of Tamil Kolam

1.5 Conclusion

Using quantitative measures to systematically study material art in a large-scale an-
thropological dataset, our findings inform discussions on entropy trade-offs and var-
ious constraints on complexity operating on artistic traditions.

In the case study of the hand-drawn Tamil artistic tradition, our findings are consis-
tent with evolutionary signaling theories of constrained optimization and lend sup-
port that artistic complexity, measured by Shannon information entropy, is optimized
through an observable, apparently unconscious trade-off between two standard eco-
logical and information-theoretic measures: richness and evenness. This trade-off
between richness and evenness can potentially be explained by cognitive constraints
and aesthetic preferences. Variation in structural and information-theoretic proper-
ties of kolam drawings are small, and evidence of social structures reflected in the
information measures we employ, are weak. This corroborates our understanding
of kolam art as a signal that does not primarily communicate social stratification or
individual differences in age or practice, but rather aesthetic preferences, dedication,
time and skill, as well as constraints of human cognition and memory.
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Abstract
In large, complex societies, assorting with others with similar social norms or behav-
iors can facilitate successful coordination and cooperation. The ability to recognize
others with shared norms or behaviors is thus assumed to be under selection. As a
medium of communication, human art might reflect fitness-relevant information on
shared norms and behaviors of other individuals, thus facilitating successful coordi-
nation and cooperation.

Distinctive styles or patterns of artistic design could signify migration history, dif-
ferent groups with a shared interaction history due to spatial proximity, as well as
individual-level expertise and preferences. In addition, cultural boundaries may be
even more pronounced in a highly diverse and socially stratified society. In the cur-
rent study, we focus on a large corpus of an artistic tradition called kolam that is
produced by women from Tamil Nadu in South India (N = 3, 139 kolam drawings
from 192 women) to test whether stylistic variations in art can be mapped onto caste
boundaries, migration, and neighborhoods. Since the kolam art system with its se-
quential drawing decisions can be described by a Markov process, we characterize
variation in styles of art due to different facets of an artist’s identity and the group
affiliations, via hierarchical Bayesian statistical models.

Our results reveal that stylistic variations in kolam art only weakly map onto caste
boundaries, neighborhoods, and regional origin. In fact, stylistic variations or pat-
terns in art are dominated by artist-level variation and artist expertise. Our results
illustrate that although art can be a medium of communication, it is not necessarily
marked by group affiliation. Rather, artistic behavior in this context seems to be pri-
marily a behavioral domain within which individuals carve out a unique niche for
themselves to differentiate themselves from others. Our findings inform discussions
on the evolutionary role of art for group coordination by encouraging researchers to
use systematic methods to measure the mapping between specific objects or styles
onto groups.

Keywords: Art, Material Culture, Ethnic Markers, Coordination, Cooperation, Bayesian
inference
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2.1 Introduction

Cooperation in humans requires groups of individuals to successfully coordinate and
work together toward common or mutually beneficial goals. With the transition to
agricultural societies, populations have become larger and more complex (Moffett,
2013; Richerson and Boyd, 1999). Thus, in these large, multi-ethnic societies, assort-
ing with others with similar social norms or behaviors can facilitate successful coor-
dination and cooperation (Axelrod and Hamilton, 1981; Hamilton, 1964b; Hamilton,
1964a). In evolutionary biology, an abundance of research has focused on mecha-
nisms that allow individuals to interact preferentially with each other, showing that
cooperation can evolve and stabilize when individuals preferentially interact with
close kin or have a recognition mechanism to interact with other individuals with
cooperative traits or shared norms (McElreath, Boyd, and Richerson, 2003; Gintis,
2014). Thus, the ability to recognize others with similar social norms or behaviors
is presumably under selection (Riolo, Cohen, and Axelrod, 2001; Jansen and Van
Baalen, 2006).

As a medium of communication, human art might reflect fitness-relevant informa-
tion on shared norms and behaviors of other individuals, thus facilitating successful
coordination and cooperation. Distinctive styles or patterns of artistic design could
signify migration history, different groups with a shared interaction history (e.g., kin,
neighbors, or members of the same caste), or individual-level variation and exper-
tise (i.e., duration of practice). To investigate the long standing and growing interest
in quantitative detection of ethnic markers across disciplines, we present a Bayesian
analysis of a large corpus of material art created by women from Tamil Nadu in South
India, called kolam drawings. Using this corpus of kolam art, we test whether stylis-
tic variations in art can be mapped onto caste boundaries, migration and neighbor-
hoods, and how much variation in styles can actually be accounted for by these fac-
tors. Specifically, we illustrate how we can exploit the Markovian nature of the art
system to our advantage to build a hierarchical model that is able to describe and
partition the variation in the complex, sequential drawing compositions in order to
better understand the role of art for social coordination.

2.1.1 Theoretical Background

In ethnic marker theory, it is assumed that human groups have developed distinct
and overt ethnic markers or tags to signal group membership to preserve cultural
boundaries (Moffett, 2013; McElreath, Boyd, and Richerson, 2003; Barth, 1969). The
use of ethnic markers can help solve coordination and collective action problems be-
cause they communicate interaction norms. Ethnic markers can be manifested in
various forms, from sartorial cues, dialectic variations, special adornments to dis-
tinct styles in production (Wobst, 1977). Thus, mastering different styles of weav-
ing (Tehrani and Collard, 2009), arrowhead production (Wiessner, 1983), or pottery
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(Bowser, 2000) could be fundamental for social interaction because of the fitness-
relevant information about with whom, when, and how to interact. For instance,
in the Ecuadorian Amazon, women’s pottery style reflects their social identity and
group membership as part of their political strategies (Bowser and Patton, 2008).
Learning to identify, create, and modify stylistic symbols in pottery play a funda-
mental role in women’s lives and social standing with Achuar and Quichua society.

While theoretical models and experiments in the laboratory demonstrate the map-
ping between group membership and objects for the purpose of social coordination
(Efferson, Lalive, and Fehr, 2008; McElreath and Boyd, 2007; McElreath, Boyd, and
Richerson, 2003), evidence from the field has been more ambiguous about the link
between objects or styles and groups for social coordination (Wiessner, 1984; Hodder,
1977; Moya and Boyd, 2016). Thus, Bell (2020) have pointed out the need for a sys-
tematic method that is able to measure the mapping between a specific object or style
onto groups because such a statistical measure of an object’s role in social coordina-
tion has been largely elusive. In fact, Bell and Paegle (2021) presented a three-step
ethnographic field method, consisting of scans, surveys, and classification tasks, to
assess the role of motifs for social coordination. Specifically, the triad classification
task was demonstrated to systematically measure whether motifs have information
content as a result of population-specific socialization. This approach from Bell and
Paegle (2021) is well-suited for systems with a finite set of motifs. A complementary
approach to the field methods from Bell and Paegle (2021) — however, still elusive
— would be a quantitative approach on the corpus of artistic productions that is able
to identify styles or patterns that are salient de novo, not constrained by functional
requirements and associated with groups or individuals.

2.1.2 Kolam Art

Kolam designs are ritual patterns that Tamil women draw with rice powder or chalk
on the threshold of their houses in South India (Layard, 1937; Durai, 1929). Each
morning before sunrise, women typically clean the thresholds of their homes and
then start to draw kolam loop patterns by initializing a grid of dots (Laine, 2013).
Subsequently, continuous lines are drawn around the dots to form intricate loop pat-
terns.

While Hindu women draw threshold designs throughout India (e.g., rangoli in Uttar
Pradesh or mandana in Rajasthan; Kilambi, 1985; Saksena, 1985), kolam designs are
specific to Tamil Nadu (Laine, 2013; Layard, 1937). As a symbol of generosity, kolam
drawings are a ritual offering to animals “to feed a thousand souls” (Nagarajan, 2018,
p. 56, 243–255). Most importantly, the kolam communicates the state of the artist and
its household, and marks important events within the household as well as in the
village (Nagarajan, 2018, p. 37, 52–55, 75–81, 267). On the one hand, kolam designs
communicate to neighbors and visitors that the household is healthy with sufficient
food and able to host guests and be hospitable. Thus, especially large and complex
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kolam loop patterns are drawn on auspicious events, such as weddings or births. In
contrast, the absence of kolam drawings typically indicates inauspicious events, such
as death or menstruation, and thus signifies the inability to host visitors. On the
other hand, kolamdesigns are further understood to convey information on the artist’s
personality (e.g., womanliness, traditionalness, and patience) and their competency
to run a household and become a good wife and mother.

Kolam-making is not formally taught in school or training institutions, but knowledge
is mostly transmitted from (grand-)mothers to (grand-)daughters and accumulated
through practice and exposure over time (Nagarajan, 2018, p. 67-69). Since kolam-
making and mastery are considered necessary for the transition into womanhood,
women start to learn and practice kolam-making from an early age of about six years
(Nagarajan, 2007, p. 8, 12, 156). Diligent practice in private notebooks would be
required until a kolam design is finally showcased on the threshold of the household.
It takes approximately six years to master the ability to draw a beautiful and complex
kolam with continuous lines that do not intersect with the dots, uniform line widths,
and invisible starts and stops of loops (Nagarajan, 2007, p. 128, 156). While hand-
drawn kolam designs are never for sale (Nagarajan, 2018, p. 36), women can buy
design books that display a variety of printed example kolam designs. Since the kolam
traditions and the designs are considered community knowledge (Nagarajan, 2018,
p. 69), women would often come together to share their designs with each other. In
anticipation of an auspicious event, women in the household would share their ideas
and carefully plan the especially complex kolam pattern of that day. At the same
time, women would compete with each other to draw the most innovative, dense,
and geometrically complex pattern during festivals or contests (Nagarajan, 2018, p.
179-203).

2.1.3 Current Study

In the current study, we focus on Tamil kolam art to demonstrate a novel approach to
quantify covariation of artistic styles along cultural boundaries. The kolam system is
well-suited to study social coordination because kolam art is observable (e.g., women
display kolam drawings on their thresholds), recognizable (e.g., kolam art is specific to
Tamil Nadu and has a specific grammar) and plays an important role in Tamil culture
with an abundance of artists (and their multitude of group identities) learning and
producing kolam drawings from a young age. Social learning and the accumulation
of kolam knowledge across generations could have led to the covariation of styles or
patterns in kolam art along certain cultural boundaries. Since kolam drawings arise in
a highly stratified, caste-based society, the question arises whether different styles in
kolam art may communicate group membership for social coordination.

Kolam designs actively broadcast information about the household to neighbors and
visitors. For instance, a consistent absence of kolam patterns on the threshold indi-
cates that the household is not Hindu (Nagarajan, 2018, p. 75). Furthermore, caste
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distinctions are reported among kolam designs with, for example, certain styles dom-
inating between different subgroups of the Brahmin caste (Saroja, 1988; Nagarajan,
2018). According to Nagarajan (2018, p. 149), “regional variations are recognized
and regularly discussed among women”. Thus as predicted by ethnic marker the-
ory (McElreath, Boyd, and Richerson, 2003), the mapping between kolam styles and
group identities should become more salient at these cultural boundaries. However,
a concrete quantification whether and to what extent differences in kolam styles are
associated with caste, region, or other variables is still elusive (Nagarajan, 2018, p.
273) and requires a systematic investigation.

Kolam drawings cannot only be mapped onto a small identifiable set of gestures1

“with systematic procedures and techniques” to create them (Ascher, 2002, p. 5),
but their beauty is also characterized by continuous lines and loops with smooth
transitions between gestures (Nagarajan, 2018, p. 128, 156). Thus, this naturalistic
art system can be described by a state-based Markov process due to its series of se-
quential and dependent decisions. This Markovian nature of the art system allows us
to build hierarchical statistical models that are able to account for variation in styles
in art (i.e., the complex composition of gesture sequences that result in motifs, pat-
terns, or styles in artistic design) due to different facets of an artist’s social identity or
their group membership, thus elucidating the role of the complex composition of ges-
tures in social coordination. In the current study, we describe (1) the general styles
or patterns of kolam designs, and further investigate (2) whether stylistic variations
in artistic design can be linked to caste boundaries, migration and groups of indi-
viduals with a shared interaction history due to spatial proximity (neighborhood),
and (3) how much of the stylistic variations in artistic design can be accounted for
by artist-level variation and group affiliations relative to each other.

2.2 Methods

2.2.1 Data

We used a data set of 3, 139 kolam drawings (on average 16 kolam per woman) from
192 artists (age: mean = 31.88 years, sd = 10.08 years, range = 15 − 60 years;
married: 73%, non-native ≈ 18%) that were collected in Kodaikanal, Tamil Nadu in
South India in 2009 by TMW and local research assistants. A survey was conducted
on artists’ kolam drawing abilities and behavior and other demographic information,
such as their age, marital status, caste membership, number of children, the years of
kolam practice, and their migration background (i.e., nativity). Artists in our data set
self-identify with a total of 19 different caste categories. These caste categories are

1Nagarajan (2018, p. 53) describes kolam-making in the following way: “While the woman is creating
it [kolam], she exhibits a set of gestures as a visual art form — a sequence of bodily movements requiring
a quality of attentiveness akin to dance or yoga.”
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Figure 2.1: The Lexicon of Kolam Gestures. The Figure illustrates the
gestures and the corresponding code to encode kolamdrawings. Taken

and adapted with permission from Waring (2012b).

associated with varying privileges and include local and migrant caste groupings.
Additionally, the spatial proximity of each artist to each other was measured.

A kolam drawing can be constituted of one or more closed loops. Each loop can be
decomposed into a sequence of gestures using a lexicon of gestures (Waring, 2012b).



42 Chapter 2. Limited Scope for Group Coordination in Stylistic Variations of Kolam Art

A complete description of the lexicon can be found in Figure 2.1. The lexicon of ges-
tures contains 29 gestures, denoting the geometric space of the gestures as well as the
chirality of gestures with distinct left and right versions since rotations of these ges-
tures in space cannot yield their exact mirror image (see Figure 2.1, lower row right).
The gestures that constitute a loop and the kolam drawings can be categorized into
three different geometric spaces with distinct characteristics: orthogonal, diagonal,
and transitional (each set of gestures represented by O, D, T, respectively). Addition-
ally, there are three special single gestures that serve as decoration and are not part
of a loop. We transcribed the kolam data using the lexicon.

2.2.1.1 Geometric Spaces in Kolam Art

Kolam patterns have a grammar that contains many mathematical principles
(Siromoney, Siromoney, and Krithivasan, 1974; Ascher, 2002; Waring, 2012b). Specif-
ically, we refer to three geometric spaces that determine the starting and ending po-
sitions of a loop as well as the orientation of the loops: orthogonal, diagonal, and
transitional space. Figure 2.2 illustrates orthogonal and diagonal spaces with exam-
ple kolam drawings each. While orthogonal loops (i.e., loops in orthogonal space)
start and end between two neighboring dots, diagonal loops (i.e., loops in diagonal
space) start and end in the center of four dots. Furthermore, orthogonal gestures are
oriented towards 45◦, 135◦, 225◦, or 315◦ angles, and diagonal are oriented towards
0◦, 90◦, 180◦, 270◦ angles. Gestures that start in orthogonal space, end in orthogonal
spaces. Gestures that start in diagonal space, end in diagonal space. Thus, orthog-
onal and diagonal gestures are disjoint, but can be connected with each other using
transitional gestures. Transitional gestures can either start in diagonal space and end
in orthogonal space or they start in orthogonal space and end in diagonal space.
Since orthogonal and diagonal gestures have distinct starting and ending positions
and orientations, and transitional gestures share orthogonal and diagonal positions
and orientations, switching between these different geometric spaces requires prac-
tice in order to still maintain smooth transitions, continuous loop closures, and uni-
form line-widths. Thus, kolam designs in only one geometric space tend to be easier
to create, especially if the kolam design only consists of orthogonal gestures.

2.2.1.2 Kolam Art as a Markov System

Since each kolam loop pattern2 can be decomposed into a sequence of gestures and
artists strive to form uniform and smooth loops, the system can be described by a
state-based Markov process, whereby the conditional probability distribution for the
system at the next step depends only on the current state of the system, and not on
the state of the system at a previous step (Gagniuc, 2017).

2Note: For the purpose of our analysis, we neglected the three special, single gestures: c1, c2 and c3.
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Figure 2.2: Explanation of the geometric spaces in kolam art. Taken
and adapted with permission from Waring (2012b). Panel A shows
the orthogonal geometric space with an example kolam drawing and
Panel B shows the diagonal space with an example kolam drawing. In
Panel A, the dashed arrows illustrate the possible orthogonal start-
ing and ending positions of gestures (blue dots) and loops as well as
the orthogonal orientations of gestures: 45◦, 135◦, 225◦, 315◦ angles.
In Panel B, the dashed arrows illustrate the possible diagonal starting
and ending positions of gestures (green circles) and loops as well as
the diagonal orientations of gestures: 0◦, 90◦, 180◦, 270◦ angles. Se-
quence: The sequence of gestures that the specific kolam designs can

be decomposed into (see lexicon in Figure 2.1).

Each gesture within a geometric space can be considered a state and thus, each loop
and kolam drawing can be described by a probabilistic state transition matrix m×m

where the row vector m× 1 describes the state (i.e., gesture) and column vector the
transition to the next state (i.e., gesture). Every gesture is accessible from itself. Fur-
thermore, the gestures in this Markov system can be partitioned into communicating
classes such that gestures of the same geometric space communicate with each other
(accounting for chirality), and gestures of orthogonal and diagonal space are only
connected via gestures of transitional space (see Figure B.2 in Appendix B for more
details). Figure 2.3 illustrates the transition count matrix for kolam drawings from
two example artists.
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Figure 2.3: Example of a transition (count) networks for kolam draw-
ings. Each row (Panel A and B) corresponds to an example ko-
lam drawing from an artist. The edge width represents the count,
whereby an increased width implies a higher transition count. The
three colours represent the different geometric spaces: orthogonal
(blue), diagonal (green) and transitional (orange). Each node rep-
resents a gesture used by the artist from the lexicon of gestures (see

Figure 2.1).

We computed the transition counts for each loop of a kolam drawing across all the
kolam drawings of an artist. The three special, single gestures were not considered
because they are not part of a loop. Since each of the sequences of gestures represents
a loop and the artists’ starting location of a loop or kolam drawing is unknown, we
further counted the transition from the last gesture in the sequence to the first gesture
in the sequence. These transition counts not only reflect the distribution of gestures
for each artist, but further artists’ preferences or biases towards specific patterns or
motifs (i.e., specific sequence of gestures). We first computed an aggregated transi-
tion count matrix yi for each artist i of size 14× 14. In order to fit our full model, we
further computed four transition matrices y — one for each of the different geomet-
ric spaces and one for the transitions between geometric spaces: transitions between
geometric spaces of size 3× 3, transitions within orthogonal space of size 6× 6, tran-
sitions within diagonal space of size 4×4 and transitions within transitional space of
size 4× 4. These transition matrices yijk represent the count of transitions from state
(i.e., gesture) j to state (i.e., gesture) k for artist i. Thus, distinct patterns of kolam
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drawings can arise from different transition probabilitieswithin geometric spaces and
between geometric spaces — if any transition between geometric spaces occurs at all.

2.2.2 Statistical Analyses

To investigate the variation in kolam patterns and motifs due to individual variation,
social stratification reflected by caste membership, nativity or neighborhood (i.e.,
place of residence), and expertise measured by the years of practice, we fitted a to-
tal of seven Bayesian statistical models. Here, we will only focus on the full model,
but the interested reader can see the details of all the models in the supplementary
information. For each artist, we modeled four transition matrices. The statistical
model reflects the process of how the kolam drawings arise; the probability of the
next state (gesture in a geometric space) is conditional on the current state. In the
current model, the conditional probability of the next state given another state is
factored into two components. One component encodes the probability of transi-
tioning between geometric spaces; the other encodes the probability of transitioning
between gestures within a geometric space. For instance, given that the current state
is the gesture o1, then the probability that the next gesture will be o2 is comprised
of the probability of staying in the current orthogonal geometric space O times the
conditional probability of choosing gesture o2 given being currently in gesture o1:
P (o2|o1) = P (O|O)× P (o2|o1, O|O).

Each row of each transition matrix is probabilistic and modeled on the logit scale
using the softmax link (i.e., multinomial logistic regression). Caste was modeled
as a varying effect with 19 categories to estimate individual offsets for each caste
category. Since there are multiple kolam drawings for each individual, caste group
and neighborhood, information across individuals, castes and neighborhoods was
partially pooled using hierarchical modeling to account for imbalances in sampling
and yield more reliable and precise estimates (Efron and Morris, 1977). The duration
of practice was standardized to be centered on zero with a standard deviation of
one. The native place was a binary indicator predictor variable (0 = native, 1 = non-
native). A geodesic distance matrix was computed between the GPS coordinates and
subsequently hierarchically clustered with a distance threshold of 500m, resulting in
8 neighborhood clusters. The neighborhood clusters were modeled as a varying effect
with 8 categories to estimate individual offsets for each neighborhood.

The models can be parameterized differently by including or excluding predictors as
well as setting equality constraints for various parameters between rows of the transi-
tion matrices. We used leave-one-out cross-validation (Vehtari, Gelman, and Gabry,
2017) and computed Pseudo-Bayesian model averaging3 and stacking weights (Yao
et al., 2018) using the log-likelihood evaluated at the posterior simulations and the R

3Pseudo-Bayesian model averaging computes the relative model weights using Bayesian bootstrap.
(For more details, see the manual, Vehtari et al., 2020).
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package loo (Vehtari et al., 2020) to estimate and compare out-of-sample prediction
accuracy of our fitted models.

The statistical models were implemented in the probabilistic programming language
Stan (v2.18) (Carpenter et al., 2017), using 4000 samples in four independent chains.
All R̂ values were less than 1.01, and visual inspection of trace plots, rank histograms
and pairs plots indicated convergence of all models (see Appendix B for more de-
tails). A principled and robust Bayesian workflow with an iterative process of model
building, inference, model checking and evaluation, and model expansion was used
(Gabry et al., 2019; Talts et al., 2018). Prior predictive simulations were used to deter-
mine weakly informative priors for the parameters. Thus, there were no indication of
convergence issues and the models were optimally calibrated. We present a complete
description of the statistical models and the priors in Appendix B. Data and analyses
can be found at http://github.com/nhtran93/kolam_coordination.

2.2.3 Intraclass Correlation (ICC)

The intraclass-correlation coefficient (ICC) can be calculated to determine the pro-
portion of the total variance explained by random and fixed effects (Nakagawa, John-
son, and Schielzeth, 2017). We calculated a modification of the ICC using variance
decomposition of the model predictions4. We drew predictions of the transition
probabilities on the logit scale using the posterior samples for each of our fixed (i.e.,
migration, duration of practice) and random (i.e., neighborhood, caste, individual
variation) terms separately, using the estimates from the full model. Thus, for each
fixed or random term, we obtain the transition probabilities (on the logit scale) im-
plied by that term in isolation for each individual. The ICC is then the ratio be-
tween the variance of the predictions across individuals from a single term divided
by the sum of the variances of predictions across individuals for all terms (ICCi =
V ar(predictionsi)∑
V ar(predictionsj)

). This calculation was done per each MCMC iteration and each cell
of the transition matrix separately. The final estimates are based on the average over
the MCMC iterations and all cells in the transition matrix.5 The value of ICC corre-
sponds to the proportion of total variance of the model’s transition probabilities on
the logit scale that is accounted for by a particular term in the model. By construc-
tion, the coefficient cannot be smaller than 0 and the sum of all ICCs is equal to 1.
Thus, the ICC quantifies the proportion of the total variance explained and is suit-
able to compare relative strength of the model terms. However, the absolute strength
of each predictor is dependent on all other terms in the model.

4For more details, see icc and variance_decomposition functions in the performance R package
(Lüdecke et al., 2021)

5Note that we have four transition matrices, so we computed the ICC separately according to the
above described procedure for each of the transition matrices: across geometric space, orthogonal space,
diagonal space and transitional space.

http://github.com/nhtran93/kolam_coordination
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2.3 Results

According to Pseudo-Bayesian model averaging and stacking weights in leave-one
out cross-validation, our full model has the best predictive performance (see Ap-
pendix B for more details).

Table 2.1: Population-level Estimated Posterior Transition Matrix
across Geometric Spaces

orthogonal transitional diagonal
orthogonal 0.99 0.01 0.00
transitional 0.51 0.30 0.19

diagonal 0.00 0.51 0.49

On the population-level, our results illustrate that although artists are unconstrained
in their patterns or stylistic variation in kolam drawings and they can freely transition
back and forth between geometric spaces and gestures, artists have evident prefer-
ences and biases towards certain gestures and geometric spaces. Kolam patterns that
arise in orthogonal geometric space are predicted to stay in orthogonal geometric
space with a probability of 0.99, and transitioning to a different geometric space from
orthogonal space to access a greater diversity of gestures hardly occurs with a prob-
ability of 0.01 (see Table 2.1). As seen in Table 2.1, if an artist draws a kolam artwork
in diagonal space, they are predicted to equally likely switch to transitional space
(probability of 0.51) or remain in the current diagonal space (probability of 0.49),
while artists that draw a kolam artwork in transitional space are predicted to remain
in the current space with a probability of 0.30 and switch to orthogonal or diago-
nal space with a probability of 0.51 and 0.19, respectively. Therefore, when an artist
draws kolam patterns in orthogonal space, they are unlikely to transition between
different geometric spaces and only draw patterns with different gestures within the
orthogonal space. However, if artists draw kolam patterns in diagonal or transitional
space, they tend to use a diverse set of gestures that span across multiple different
geometric spaces. For a more in-depth analysis of the population-level tendencies
in gesture compositions that result in specific gesture equilibria and styles in artistic
design, please consult Appendix B.

Figure 2.4 shows the estimated individual-level transitions between orthogonal, di-
agonal, and transitional gestures from two artists and an example kolam artwork each
from their repertoire. As seen in Figure 2.4, artists’ styles in drawing kolam artwork
can be very divergent between artists. While the artist corresponding to the estimated
transitions and example kolam artwork in Panel A of Figure 2.4 would draw kolam
artworks that arise and remained in orthogonal space with a probability of 0.846 at
equilibrium, she would only occupy diagonal (0.041) and transitional (0.113) spaces
at equilibrium. The artists corresponding to Panel B would create kolam artworks that
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Artist 1 Artist 2

A B

Figure 2.4: Estimated individual-level transitions between orthogo-
nal, diagonal and transitional gestures for two example artists. Each
panel represents an example artist (Panel A: artist 1, Panel B: artist
2) with her corresponding estimated transition probabilities between
gestures. The width of the edges reflects the probability of transition,
whereby a wider or bolder edge implies an increased probability of

transition. Self-loops are not displayed.

occupy orthogonal (0.53), diagonal (0.35), and transitional (0.12) spaces at equilib-
rium. Furthermore, in contrast to the artist corresponding to Panel A, the artist cor-
responding to Panel B draws diagonal gestures in isolation without connecting their
gestures to gestures from other geometric spaces. In fact, the kolam designs displayed
in Figure 2.3 correspond to the artists from Panel A and B in Figure 2.4 respectively.
Thus, the vastly different transition probabilities between gestures among artists can
thus give rise to diverse patterns or motifs in kolam artwork.

Even though the estimated population-level transition matrices reveal a tendency in
how kolam patterns arise, our results show that there is substantial variation in kolam
drawing styles and patterns between artists. Whether styles in kolam drawings com-
prise of one or more transitions between geometric spaces or only arise and remain
in the same geometric space, our results reveal that most of the variation in styles or
patterns of kolam artwork is driven by individual differences and their expertise (see
Figure 2.5 and Table 2.2). Figure 2.5 shows the size of the variance estimates (i.e., ran-
dom effects) in transitioning to the next gesture from a given geometric space (Panel
A) or gesture (Panel B, C, D). The variance parameters for the transition probabili-
ties in kolam artwork are dominated by artist-level variation, whereby the artist-level
variation has consistently the largest estimate on all four transition matrices. As il-
lustrated in Figure 2.5, caste membership and neighborhood have smaller estimates
on the four transition matrices. The duration of practice shows large estimates on
the gesture transitions within diagonal and transitional space and moderately large
estimates in transitions between diagonal and transitional space (see Appendix B for
more details). Former migration history further only shows small estimates on the
transition between geometric spaces, while the estimates for within orthogonal and
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Figure 2.5: Posterior Coefficient Plots displayed as the 90% Highest
Posterior Density Interval (HPDI) of the posteriors of sigma estimates
(i.e., standard deviation of the random effects) associated with varia-
tion due to artists, caste, and neighborhood. Transitions from geomet-
ric spaces (Panel A) and from individual gestures (Panel B, C, D) are

shown on the y-axis.

transitional space transitions are moderately large (see Appendix B for more details).

According to the computed ICCs, kolam drawing styles with one or more transitions
between different geometric spaces largely map onto individual variation (63%), so
that the variance of predictions from a model with just individual artists’ intercepts
make up 63% of the total variance; the expertise of the artist accounts for additional
25% of the total prediction variance (see Table 2.2). In other words, on average 63%
of the variation in the predicted transition patterns between geometric spaces can be
attributed to the variation between distinct artists unexplained by other predictors,
and a further 25% can be attributed to their expertise, measured as the duration of
practice. Individual variation (62%) paired with artist’s expertise (20%) further pri-
marily accounts for styles of kolam artwork that arise and remain in orthogonal space
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Table 2.2: Explained Variation (Intraclass Correlation)

individual expertise nativity caste residence
across geometric spaces 0.63 0.25 0.06 0.03 0.04

orthogonal 0.62 0.20 0.05 0.03 0.10
diagonal 0.83 0.07 0.02 0.05 0.03

transitional 0.60 0.16 0.06 0.12 0.06

(see Table 2.2). Caste membership can account for 12% of the variation in transitions
between transitional gestures in kolam artwork, but can only account for very little
variation in the rest of the estimated transition probabilities (see Table 2.2). Simi-
larly, previous migration history or the neighborhood of the artist can explain 10% of
the variation in transitions between orthogonal gestures, but only little in the rest of
the estimated transition probabilities in kolam artwork (see Table 2.2).

2.4 Discussion

Our statistical model revealed that styles or patterns in kolam artwork can only be very
weakly mapped onto group affiliations, such as caste boundaries, neighborhoods, or
previous migration. Styles or patterns in kolam artwork show group-level variation;
however, the group-level variation is limited. Hence, it is unlikely that styles or pat-
terns in this artistic tradition operate as ethnic markers. Albeit artists can relatively
freely choose their styles or patterns in a kolam artwork, at the population-level, artists
prefer and are biased towards specific (sequences of) gestures and prefer to remain
in orthogonal gesture space. While a general tendency for specific gestures and ge-
ometric spaces exists on the population-level, artists can still widely differ in their
stylistic variations or patterns in kolam art. In fact, the variation in styles and patterns
in kolam art is dominated by artist-level variation and expertise. Thus, styles and
patterns in kolam art can be mapped onto artists and their expertise and presumably
their preferences.

Group-level variation can emerge naturally and become embedded in art through
strategic decisions to communicate group affiliations and even through an uncon-
scious population-level process of iterative learning and performance (McElreath,
Boyd, and Richerson, 2003). In contrast to predictions from ethnic marker theory
that ethnic markers should be most prominent along cultural boundaries (McElreath,
Boyd, and Richerson, 2003), we show that kolam artworks only weakly covary along
caste, neighborhood, or migration boundaries using a statistical approach. While
the mapping between styles in kolam artworks and group affiliations is very limited,
we still provide empirical evidence that there is scope for styles to become embed-
ded in artwork as ethnic markers to signify group boundaries (for more details, see
Bell, Richerson, and McElreath, 2009). However, how much group-level variation is
actually needed to function as an ethnic marker in a population is still unresolved.
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Although art is a medium of communication and assorting with others with similar
social norms or behaviors can facilitate successful coordination and cooperation, we
believe that styles in art in this context do not play a coordinating role. One possible
reason for the lack of covariation of artistic styles along cultural boundaries is that
artists might have grown more similar to each other over time due to increased in-
teractions (Healey et al., 2007; Granito et al., 2019). Due to the cross-sectional nature
of our data, we might have not been able to see such a change over time. However,
since the kolam tradition is considered community knowledge and artists share their
designs with each other (Nagarajan, 2018), the development of styles might have
been influenced by frequent intergroup contact, and shared attention and learning
(Granito et al., 2019; Tomasello, Kruger, and Ratner, 1993). Precisely, the notion of
kolam art as community knowledge might have led to pressures to make artistic styles
accessible and transparent to any potential audience.

The lack of migration history reflected in styles in kolam artwork could further in-
dicate a pressure to conform to the dominant style in the region and the pressure
to conform to the patrilocal style in the household. (Postmarital) Relocated kolam
artists might adopt stylistic choices that are dominant in the region to communicate
their belonging and similarity for successful group cooperation (Helbich and Dietler,
2008; Wallaert-Pêtre, 2008). Furthermore, the Tamil community in South India has a
strongly patrilocal system of postmarital residence, thus relocated kolam artists might
want to avoid communicating dissimilarity by adopting the local dominant style from
their in-laws.

Avoiding conflicts with dissimilar others might be yet another reason why art, specif-
ically styles in kolam art, have not developed to strongly map onto group boundaries
and only show a limited scope for group coordination. Since individuals from dif-
ferent castes are often forced to cooperate with each other in the domain of farming
in South India (Waring, 2012a), foreclosing valuable partnerships by using overt sig-
nals might not be desirable for successful cooperation (Smaldino, 2016). Art, specifi-
cally kolam art, might not be the preferred domain for ethnic markers to signal group
membership since individuals have a multitude of (social) identities and group af-
filiations. Different situations and audiences might require different social identities
that the artist can deliberately choose to occupy and display when suitable.

Instead, art might be a stage specifically reserved to promote artists’ knowledge and
expertise as well as their aesthetic preferences for symmetry, specific motifs, or ges-
ture sequences through individual patterns and styles. Albeit artists may optimize
their artistic displays towards a specific complexity “sweet spot” (Tran et al., 2021),
our findings illustrate that they additionally strive to leave their individual mark on
the artwork using their unique and distinct style for optimal distinctiveness (Brewer,
1991; Pickett et al., 2011). In fact, research in music has already shown that the proba-
bility of adopting a specific style disproportionately can be determined by frequency-
based biases like conformity and novelty or prestige, success, and content biases
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(Youngblood, 2019; Brand, Acerbi, and Mesoudi, 2019). Since kolam art is culturally
transmitted between artists, patterns or motifs might be subject to these transmis-
sion biases in social learning. For example, a novelty bias towards favoring unique
patterns or motifs in kolam art could explain the substantial variation in kolam draw-
ing styles between artists. Specifically, counter-dominance signaling could be a driv-
ing mechanism behind the cross-sectionally observed distinct styles between artists,
since this mechanism posits that lower-status artists use highly unique styles to counter
the currently dominating styles (Klimek, Kreuzbauer, and Thurner, 2019). In order
to investigate the cultural transmission of artistic traditions like kolam art and to dis-
entangle the different biases at play, longitudinal data, explicit generative models,
and careful consideration of the cost of adoption are required. Thus, our current
data and analyses are insufficient to draw conclusions about cultural transmission
processes and future research should explore this avenue in more detail.

How art can be mapped onto ethnic and cultural boundaries for the purpose of group
coordination, and how much group-level variation is necessary to function as an eth-
nic marker are still vital questions to elucidate the coordinating role of art, and they
require further investigations. Certainly, art and different aspects of art can actually
play a crucial coordinating role depending on the context and the community. How-
ever, in Tamil Nadu, kolam designs might not be used as ethnic markers because there
are already a variety of other ethnic markers that signify group membership. For in-
stance, clothing, grooming, names, or the pottu (also known as bindi; see Davis, 1992,
p. 25, for more information) can signify a woman’s caste, religion, regional origin,
class, and marital status (Mosse, 2018; Nagarajan, 2018). Furthermore, kolam designs
might not be preferred as visual ethnic markers because their primary audiences are
neighbors and visitors who most likely already know each other. This factor could
explain a limited utility of kolam artwork serving as ethnic markers and further ex-
plain the lack of group mappings onto styles in kolam art. Another important con-
sideration would be whether the groups are sufficiently distant to entail information
about ethnic and cultural boundaries in the present sample. While we collected data
from three different neighborhoods, the maximum distance between households was
only slightly above 3 km. Additionally, caste endogamy persists, and thus women of-
ten still stay in the same caste community after postmarital relocation, even though
artists in our sample migrated from different villages or cities of the states Karnataka,
Kerala and Tamil Nadu to Kodaikanal. Furthermore, although our sample consists of
a mix of Scheduled Castes, Backward Castes and Forward Castes, some caste groups
within each of these categories are closely associated with each other or branches of
the same caste community. Thus, our research only serves as an example of a sys-
tematic investigation of how styles in art can be mapped onto ethnic and cultural
boundaries for group coordination by decomposing sequential behavior into states
in a Markov chain. We demonstrate how describing a cultural system as a Markov
chain can help us partition variation in styles to gain new evolutionary insights on
the role of art for social coordination.
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Certainly, loop patterns and motifs in kolam art are not limited to a sequential de-
scription using Markov chains, since ethnomathematicians have been intrigued by
the many mathematical properties in kolam art (Ascher, 2002; Nagata, 2015; Layard,
1937). Kolam loop patterns are often structured by bilateral symmetry (i.e., vertical
or horizontal symmetric) and rotational symmetry (see kolam drawings in Figures
2.2 and 2.3). Furthermore, some complex kolam designs even exhibit fractal scal-
ing by continuously repeating specific patterns. Symmetry, fractal scaling, geometric
complexity, canvas size as well as the density of a kolam are all appreciated aesthetic
qualities by Tamil women (Nagarajan, 2018, p. 165-167, 189), but not considered in
the current analyses using Markov models. While the relation between complexity,
density, and canvas size to individual and group-level variation has already been in-
vestigated (Tran et al., 2021), the relation between symmetrical and fractal properties
of kolam designs to individual and group-level variation is still elusive and requires
future explorations.

Future research should focus more on a synthesis between theoretical and statistical
models and ethnographic methods in the field. For instance, classification tasks can
be applied to motifs in art to gain a better understanding of the (cultural–historical)
significance of specific motifs in art for social coordination (Bell, 2020). Bell (2020)
demonstrated how triad classification tasks could be used to measure the signaling
value of specifically selected Tongan motifs that are not constrained by functional
sufficiency and thus elucidate their role for social coordination and the implied sig-
naling dynamics. Similarly, specific kolam motifs with specific meaning, such as the
“temple lamp” (see Figure 2, Panel A; Waring, 2012b) or auspicious symbols like
the swastika (see Figure 1, left; Thomas, 1880) could be selected to measure their
signaling value using the triad classification tasks. Our statistical approach and the
methods proposed by Bell and Paegle (2021) could complement each other in future
investigations of the coordinating roles of other art forms and material culture prod-
ucts. Another promising future avenue would be to expand ethnic marker theory
and fieldwork to explain the dynamics between costly investments and ethnic mark-
ers. Since complex kolam designs require years of learning and practice, they can be
considered costly. Similarly, Polynesian tattoos are markers of identity and political
status, but costly due to their permanent and painful nature (Gell, 1993; Schildkrout,
2004). In these ritual examples, the evolutionary dynamics and trajectory of ethnic
markers could deviate from current predictions of ethnic marker theory, and thus
future research needs to consider costly ethnic markers.

In archaeology and evolutionary anthropology, a substantial amount of research has
been dedicated to study the step-by-step production of lithics (e.g., stone tools) and
pottery (chaîne opératoire; Sellet, 1993). Our state-based Markov analysis could
be extended and applied to investigate the technical processes and operational se-
quences involved in the production of material culture. Stylistic variations in kolam
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art and other artistic traditions can transcend specific motifs and patterns, and mani-
fest themselves in methodological and technical processes of the art production. For
instance, kolam artists can systematically differ in their use of rice powder or chalk or
their sequence of loop additions with the potential aid of applying scaffolding tech-
niques. According to Gosselain (1999), different technological stages in pottery pro-
duction can be associated with different stylistic displays of groups of Bafia potters in
Cameroon. Thus, different sequences or stages of the production can further reflect
stylistic expressions along ethnic or cultural boundaries due to shared learning. In
the context of art, methodological and technological differences, such as brushstroke,
pigment or contouring sequences and technique could be investigated by describing
the different behavioral sequences as states in a Markov system to elucidate whether
stylistic variations follow cultural and ethnic boundaries. We believe that the po-
tential application of our state-based Markov approach to material culture and art is
vast and could lead to compelling new insights into the evolutionary importance and
coordinating role of art and other cultural artifacts.

2.5 Conclusion

Using a state-based Markov approach to systematically study the link between styles
or patterns in art and group affiliations, our findings inform discussions on the evolu-
tionary role of art for group coordination by encouraging researchers to use system-
atic methods to measure the mapping between specific objects or styles onto groups.

We show on a Tamil artistic tradition case study that although art can be a medium of
communication, it is not necessarily dominated by group affiliation. While distinc-
tive styles or patterns of artistic design are not apparently linked to caste boundaries,
neighborhoods, or previous migration, they are linked to artist-level variation, such
as expertise and presumably preferences. Our findings corroborate our understand-
ing that artistic traditions and behavior in this context are primarily a domain where
individuals carve out a unique niche for themselves to differentiate themselves from
others.
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Appendix A

Supplementary Information for
Chapter 1: “Entropy Trade-offs in
Artistic Design: A Case Study of
Tamil Kolam”

A.1 Approximation of Entropy using Richness and the Gini
Index

For any discrete probability distribution with n possible outcomes, each i of which
occurs with probability pi, we can calculate a number of information measures. In
ecology, Shannon information entropy is a popular measure of biological diversity
because it contains two different aspects: richness and evenness. The Shannon infor-
mation entropy is a measure of the expected “surprise” or uncertainty, given in the
discrete case by

H(p) = −
n∑

i=1

pi log(pi) (A.1)

for each outcome i. In economics, the Gini index (Zoli, 1999; Ravallion, 2014) is used
to describe relative inequality in the probability distribution, calculated as the mean
absolute difference between all pair of variants,

g(n) =

∑n
i=1

∑n
j=1 |pi − pj |

2(n− 1)
(A.2)

where n is the richness (the number of unique variants) and p the frequency of spe-
cific variants.

Entropy and the Gini index capture variation in the relative abundance of each out-
come following the focal probability distribution. That is, when one outcome pj → 1
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Figure A.1: High-resolution simulations showing the entropy distri-
bution of a given richness and evenness. The black lines show the
maximum entropy for a given number of variant. The differently
coloured points represent the entropy distribution corresponding to
the different number of variants. Equation A.3 defines the curve for

n = 2.

and all pj → 0, the Shannon entropy goes to its lower asymptote of 0, and the Gini
index goes to its upper asymptote of 1. Likewise, when pj =

1
n for all j, the entropy

is maximized at log(n) and the Gini index is minimized at 0.

In the special case of n = 2 with two variant frequencies p and q = 1 − p, such that
p > q, the Gini index simplifies to g2 = p − q. Using the fact that p + q = 1, we can
rewrite each as: p = 1−g2

2 , q = 1+g2
2 . Thus, there is an exact relationship between H2

and g2, such that entropy is maximized when the Gini index is minimized, and vice
versa.

H2 =

(
1 + g

2

)
log
(

2

1 + g

)
+

(
1− g

2

)
log
(

2

1− g

)
(A.3)

.

Equation A.3 defines the curve for n = 2 in Figure A.1.
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However, the relationship between a Gini index and an entropy is indefinite if n > 2

because multiple distributions with the same n with different entropy could take the
same Gini index value. Figure A.1 illustrates the relationship between the entropy
and Gini index calculated for 100,000 simulated probability distributions.

To understand the relationship between entropy, the Gini index and the richness fur-
ther, the location of the minimum and maximum entropy within this wing-shaped
“envelope” are important. Given any particular value of g, and number of variants
n, we can describe the range of possible distributions between a maximum and min-
imum entropy. Although analytic solutions for the minimum or maximum entropy
are elusive for n > 3, numerical solutions are readily available using simulation
and non-linear optimization algorithms. In the supplementary codebase, we use the
Rsolnp package to run the non-linear optimization algorithm and find maximum-
entropy solutions for the cases in Figure A.1.

The lower “tips” of each distribution in Figure A.1 represent the minimum-entropy
limits at which the least-common non-zero variant tends to a zero frequency. In the
case of n = 3, the minimum-entropy boundary can be approximated by noting that
the minimum entropy (i.e., the “tip”) occurs when g = 1

2 . At a closer look at Figure
A.1, the minima of the entropy distribution lie at { 0

n−1 ,
1

n−1 , . . . ,
n−1
n−1}, following a

limiting boundary described by the equation:

Hmin = log (n− (n− 1)g) . (A.4)

More precisely, the minimum entropy boundaries can be defined by generalizing
the entropy equation for n = 2 in equation A.3 to: p = y−a

b−a , q = b−y
b−a , where v =

1 − g in the special case of n = 2, a = 0 and b = 2. Empirical exploration of the
entropy envelope by the simulation of 100,000 gesture distributions indicates that no
distribution can occupy a lower entropy than defined by this boundary. This can be
used to decompose entropy using g and n because if g is known, Hn,g varies between
boundaries defined by the equation:

exp(Ĥ) ≈ n− (n− 1)v1+b = n− (n− 1)v1+
2

2+a
+ a

a+n , (A.5)

where evenness is v = 1 − g. If b = 0, this equation gives the lower theoretical
boundary on entropy for any given g and n described by equation A.4 and the “tips”
in Figure A.1. The numerically-calculated maximum entropy values are described by
the equation b = 2

2+a +
a

a+n with a ≈ exp(0.5139). Thus, if we assume that a distribu-
tion tends towards maximum entropy (Frank, 2009), we can calculate a distribution’s
entropy knowing only its richness n and the evenness v = 1− g.

As evenness and richness are now related to entropy by a mathematical identity (and
so have no single causal direction to their relationship), we can aspire to understand
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what actually could explain why the observed kolam patterns follow the entropy iso-
clines.

A.2 Kolam Data

A.2.0.1 Lexicon of Gestures

One specific class of kolam are those with loop patterns, called square loop kolam
drawings (i.e., the ner pulli nelevu or sikku kolam family) (Waring, 2012b). These kolam
drawings are composed of an initial grid of dots (pulli) that reflect the canvas size.
Lines consisting of multiple gestures are sequentially drawn around the dots to form
loops. We only focus on these square loop kolam drawings because the patterns can
be mapped onto a small identifiable set of gestures which is suitable for analyses.

The geometry of the kolam can be divided in two fundamental geometric spaces and a
transitional geometric space with their specific corresponding positions, orientations
and gestures. All gestures are always located in relation to the neighboring dots,
called pulli. For a detailed description of the sequential encoding of kolam drawings
with the gestural lexicon, please consult Waring (2012b).
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Figure A.2: The Lexicon of Kolam Gestures. The Figure illustrates the
gestures and the corresponding code to encode kolamdrawings. Taken

and adapted with permission from Waring (2012b)

A.2.1 Database

A.2.1.1 Survey Information

Information on individuals’ kolam drawing abilities and behavior were gathered as
well as demographic information. Demographic information entailed data such as
GPS data of the current residency, marriage status, native places and measures of
socio-economic status. To investigate individual’s kolam practice, survey questions
included information on individual’s frequency of drawing kolam drawings in front
of their doorstep or in their practice book and the age of initial learning.
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A.2.1.2 GPS

The geographical position of each individual’s current residency was measured. A
GPS tracker of type Garmin GPSmap 60 CSx was used. The interviewer only asked
for the name of the native place and during data pre-processing the name of the na-
tive place and if needed other demographic information was then used to manually
map the name of the native place to a GPS position. All GPS positions of the current
residency and the native place were recorded allowing distances between points to
be calculated by applying the distance formula to the x-y-z coordinates of the two
points.

A.2.1.3 Kolam Drawings

A corpus of kolam drawings was compiled by soliciting individual’s to draw kolam
drawings as part of the survey. Each individual was asked to draw a minimum of a
total of 20 kolam drawings.

A.3 Statistical Analyses

A.3.1 Random Intercept Models

A.3.1.1 Statistical Model

Density ∼ Log-Normal(µi, σ)

µi = αdensity + αj + βcaste + βage × age + βpractice duration × practice duration

βcaste = σcaste × zcaste

αj = σartist × zartist

αdensity ∼ Normal(1, 2)

σcaste ∼ Normal(0.5, 1)

σartist ∼ Normal(0, 0.5)

σ ∼ Normal(0.5, 0.5)

βcaste ∼ Normal(0, 1)

βage ∼ Normal(0, 1)

zcaste ∼ Normal(0, 1)

zartist ∼ Normal(0, 1)

(A.6)
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Evenness ∼ Truncated Normal(µi, σ)[0, 1]

µi = αevenness + αj + βcaste + βage × age + βpractice duration × practice duration

βcaste = σcaste × zcaste

αj = σartist × zartist

αevenness ∼ Normal(1, 2)

σcaste ∼ Normal(0.5, 1)

σartist ∼ Normal(0, 0.5)

σ ∼ Normal(0.5, 1)

βcaste ∼ Normal(0, 1)

βage ∼ Normal(0, 1)

zcaste ∼ Normal(0, 1)

zartist ∼ Normal(0, 1)
(A.7)

Richness ∼ Poisson(λi)

log(λi) = αrichness + αj + βcaste + βage × age + βpractice duration × practice duration

βcaste = σcaste × zcaste

αj = σartist × zartist

αrichness ∼ Normal(1, 2)

σcaste ∼ Normal(0.5, 1)

σartist ∼ Normal(0, 0.5)

βcaste ∼ Normal(0, 1)

βage ∼ Normal(0, 1)

zcaste ∼ Normal(0, 1)

zartist ∼ Normal(0, 1)
(A.8)
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Canvas Sizei ∼ NegBinom(µi, φ)

log(µi) = αsize + αj + βcaste + βage × age + βpractice duration × practice duration

βcaste = σcaste × zcaste

αj = σartist × zartist

αsize ∼ Normal(1, 2)

σcaste ∼ Normal(0.5, 1)

σartist ∼ Normal(0, 0.5)

φ ∼ Normal(1.5, 3)

βcaste ∼ Normal(0, 1)

βage ∼ Normal(0, 1)

zcaste ∼ Normal(0, 1)

zartist ∼ Normal(0, 1)
(A.9)

Entropyi ∼ Truncated Normal(µi, σ)[0, 1]

µi = αentropy + αj + βcaste + βage × age + βpractice duration × practice duration

βcaste = σcaste × zcaste

αj = σartist × zartist

αentropy ∼ Normal(1, 2)

σcaste ∼ Normal(0.5, 1)

σartist ∼ Normal(0, 0.5)

φ ∼ Normal(1.5, 3)

βcaste ∼ Normal(0, 1)

βage ∼ Normal(0, 1)

zcaste ∼ Normal(0, 1)

zartist ∼ Normal(0, 1)
(A.10)

A.3.1.2 Visual MCMC Diagnostics
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Figure A.3: Traceplot for the random intercept model on density
showing mixing across chains and convergence.

Figure A.4: Traceplot for the random intercept model on evenness
showing mixing across chains and convergence.

Figure A.5: Traceplot for the random intercept model on richness
showing mixing across chains and convergence.



66 Appendix A. Supplementary Information for Chapter 1

Figure A.6: Traceplot for the random intercept model on canvas size
showing mixing across chains and convergence.

Figure A.7: Traceplot for the random intercept model on entropy
showing mixing across chains and convergence.
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Figure A.8: Pairs plot for the random intercept model on density
showing correlation among parameters and no sampling problems.

Figure A.9: Pairs plot for the random intercept model on gini showing
correlation among parameters and no sampling problems.
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Figure A.10: Pairs plot for the random intercept model on richness
showing correlation among parameters and no sampling problems.

Figure A.11: Pairs plot for the random intercept model on canvas size
showing correlation among parameters and no sampling problems.



A.3. Statistical Analyses 69

Figure A.12: Pairs plot for the random intercept model on entropy
showing correlation among parameters and no sampling problems.
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A.3.1.3 Intraclass Correlation (ICC)

The intraclass-correlation coefficient (ICC) can be calculated for Gaussian models
to determine the variance explained by random and fixed effects (Gelman and Hill,
2006, p.258). Since our five models are non-Gaussian, we approximated the ICC us-
ing variance decomposition based on the posterior predictive distribution. We first
drew from the posterior predictive distribution not conditioned on our fixed (i.e.,
age and duration of practice) and random effect (i.e., caste and individual variation)
terms and then drew from the posterior predictive distribution conditioned on all
fixed and random effects. Subsequently, we calculated the variances for both draws.
The pseudo-ICC is then the ratio between these two variances. Occasionally, the vari-
ance ratio can be negative due to very large variance of the posterior predictive dis-
tributions.

Figure A.13: Intraclass Correlation Coefficients (ICC) for individual
random-effect variances for the four outcome variables. The variance
decomposition is based on the posterior predictive distribution, which

is the correct way for Bayesian non-Gaussian models.
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A.3.1.4 Illustration of Random Effect Estimates for Caste
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Figure A.14: Caste random effect offsets for each outcome variable.
The red line reflects zero offset. Each violin probability density plot
displays the variation within each caste on the corresponding outcome
variable (i.e., richness, canvas size, density, evenness and entropy).
The posterior mean offset is illustrated in blue. The range of the violin

plots reflect the 90% HPDI.

A.3.2 Gaussian Process Models

To investigate whether the observed variation in structural and information-theoretic
properties of kolamdrawings is structured by the residential or native place proximity
between individuals, we used a Gaussian process (GP) model to estimate a function
for the covariance between pairs of individuals at different spatial distances of their
residency as well as their native place. We fit the GP model on the five outcome
variables entropy, canvas size, gesture density, richness and evenness. To foreshadow
the conclusions drawn from the GP model, results from the GP model are in line with
our main results from the random-intercept models. The GP model further indicates
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no major differentiation between artists originally from the community and those
who emigrated from other parts of India, and no spatial association between artist’s
kolam drawings.

A.3.2.1 Statistical Model

We estimated unique intercepts for each individual with a varying effects approach
to continuous categories using a Gaussian process (GP) model. A GP can be seen as
a distribution of nonlinear functions. Placing a GP prior over the covariance, allows
us to estimate a function for the covariance between pairs of individuals at different
variable distances (McElreath, 2016). The individual-level covariance matrix αi was
modeled using an exponentiated quadratic kernel. This covariance function implies
that the covariance between any two individuals j and k declines exponentially with
the squared distance between them. No variation between individuals would cor-
respond to a covariance of zero or close to zero. The parameter ρ2, also referred to
as length scale, determines the rate of decline. If ρ2 is large, then the covariance de-
creases slowly with squared distance, while if ρ2 is small it decreases rapidly with
squared distance. This length-scale ρ2 prior is constrained to be between zero and
one because the distances were normalized to be between zero and one. η2 is the
maximum covariance between any two individuals. Automatic relevance determi-
nation (Neal, 1996) was performed where multiple predictors with corresponding
length-scale parameters for each dimension were merged into the GP.

Statistical models on the five structural and information-theoretic properties of ko-
lam drawings were implemented. The predictor variables to investigate the parti-
tion of variation across individuals and the population was the same in all models.
Age, duration of practice, caste, and residential and native place proximity between
individuals were used as predictor variables to explain individual variation on the
structural and information-theoretic properties. The residential and native place dis-
tances as well as age and practice duration were normalized, such that the minimum
value was zero and the maximum value was one. The pairwise Euclidean distances
between each pair of individuals along each predictor variable dimension was then
computed for age, duration of practice and residential and native place proximity
between individuals. GPS coordinates were used to compute residential and native
place distance matrices between individuals. Distances correspond to Euclidean dis-
tance between individuals for the specific variable dimension. For example, the res-
idence or native place distance matrix are spatial distances. Caste was modeled as a
hierarchical non-centred categorical variable with 19 categories.
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Density ∼ Log-Normal(µi, σ)

µi = αdensity + αj + βcaste

αj ∼ MVNormal(0,K(x))

Kjk = η2exp
[
−

(
Residence2

2× ρ2R
+

Native Place2

2× ρ2N
+

Age2

2× ρ2A
+

Duration2

2× ρ2D

)]
+ δjk × 0.001

βcaste = σcaste × z

η2 ∼ Normal(5, 2)

ρ2R ∼ Beta(1, 2)

ρ2N ∼ Beta(1, 2)

ρ2A ∼ Beta(1, 2)

ρ2D ∼ Beta(1, 2)

σ ∼ Normal(0.5, 0.5)

αdensity ∼ Normal(0.5, 1)

σcaste ∼ Normal(0.5, 0.5)

Evenness ∼ Truncated Normal(µi, σ)[0, 1]

µi = αevenness + αj + βcaste

αj ∼ MVNormal(0,K(x))

Kjk = η2exp
[
−

(
Residence2

2× ρ2R
+

Native Place2

2× ρ2N
+

Age2

2× ρ2A
+

Duration2

2× ρ2D

)]
+ δjk × 0.001

βcaste = σcaste × z

η2 ∼ Normal(5, 2)

ρ2R ∼ Beta(1, 2)

ρ2N ∼ Beta(1, 2)

ρ2A ∼ Beta(1, 2)

ρ2D ∼ Beta(1, 2)

σ ∼ Normal(0.5, 0.5)

αevenness ∼ Normal(0.5, 1)

σcaste ∼ Normal(0.5, 0.5)
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Richness ∼ Poisson(λi)

log(λi) = αrichness + αj + βcaste

αj ∼ MVNormal(0,K(x))

Kjk = η2exp
[
−

(
Residence2

2× ρ2R
+

Native Place2

2× ρ2N
+

Age2

2× ρ2A
+

Duration2

2× ρ2D

)]
+ δjk × 0.001

βcaste = σcaste × z

η2 ∼ Normal(5, 2)

ρ2R ∼ Beta(1, 2)

ρ2N ∼ Beta(1, 2)

ρ2A ∼ Beta(1, 2)

ρ2D ∼ Beta(1, 2)

αrichness ∼ Normal(0.5, 1)

σcaste ∼ Normal(0.5, 0.5)
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Canvas Sizei ∼ NegBinom(µi, φ)

log(µi) = αsize + αj + βcaste

αj ∼ MVNormal(0,K(x))

Kjk = η2exp
[
−

(
Residence2

2× ρ2R
+

Native Place2

2× ρ2N
+

Age2

2× ρ2A
+

Duration2

2× ρ2D

)]
+ δjk × 0.001

βcaste = σcaste × z

η2 ∼ Normal(5, 2)

ρ2R ∼ Beta(1, 2)

ρ2N ∼ Beta(1, 2)

ρ2A ∼ Beta(1, 2)

ρ2D ∼ Beta(1, 2)

φ ∼ Normal(1.5, 3)

αsize ∼ Normal(0.5, 1)

σcaste ∼ Normal(0.5, 0.5)

Entropy ∼ Truncated Normal(µi, σ)[0, ]

µi = αentropy + αj + βcaste

αj ∼ MVNormal(0,K(x))

Kjk = η2exp
[
−

(
Residence2

2× ρ2R
+

Native Place2

2× ρ2N
+

Age2

2× ρ2A
+

Duration2

2× ρ2D

)]
+ δjk × 0.001

βcaste = σcaste × z

η2 ∼ Normal(5, 2)

ρ2R ∼ Beta(1, 2)

ρ2N ∼ Beta(1, 2)

ρ2A ∼ Beta(1, 2)

ρ2D ∼ Beta(1, 2)

σ ∼ Normal(0.5, 0.5)

αentropy ∼ Normal(0.5, 1)

σcaste ∼ Normal(0.5, 0.5)

A.3.2.2 Estimation of Variation

The five statistical models were implemented in the probabilistic programming lan-
guage Stan 2.18 (Carpenter et al., 2017), using 6000 samples from four chains. Anal-
yses were performed in R (Team, 2019). Data and analyses can be found here: http:

http://github.com/nhtran93/kolam_signaling
http://github.com/nhtran93/kolam_signaling
http://github.com/nhtran93/kolam_signaling
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//github.com/nhtran93/kolam_signaling. All R-hat values were less than 1.01,
and visual inspection of trace plots and rank histograms indicated convergence of all
models.

Between-individual variation in entropy (η2 = 0.00, 90% CI [0.00, 0.00]), density (η2

= 0.01, 90% CI [0.01, 0.01]), the evenness (η2 = 0, 90% CI [0, 0]), and in the richness
(η2 = 0.00, 90% CI [0, 0.01]) were estimated with high certainty to be very small and
close to zero (see left panel in Figure A.15). The between-artist variability is most pro-
nounced in canvas size ((η2 = 0.03, 90% CI [0.02, 0.03]), while kolam drawings show
only small distinct variation between artists in the other structural and information-
theoretic properties. Our results further show no evidence that variation in structural
and information-theoretic properties of kolam drawings covary with the spatial struc-
ture, age or practice duration (see Figure A.15).

Prior-posterior plots of all five models show that the priors updated for all param-
eters except the length scale parameters ρ because there is barely any information
to explain individual variation with no individual variation present. We detected
very small effects of caste membership on the entropy, density, evenness, and rich-
ness, with varying-effect deviations estimated near zero with high certainty (entropy:
σcaste = 0.03, 90% CI [0.01, 0.05]; density: σcaste = 0.04, 90% CI [0.01, 0.07]; evenness:
σcaste = 0.03, 90% CI [0.01, 0.04]; and richness: σcaste = 0.01, 90% CI [0.00, 0.03] re-
spectively). We detected more pronounced effects of caste membership on canvas
size (canvas size: σcaste = 0.09, 90% CI [0.05, 0.14]) as illustrated in Figure A.15.

http://github.com/nhtran93/kolam_signaling
http://github.com/nhtran93/kolam_signaling
http://github.com/nhtran93/kolam_signaling
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Figure A.15: Prior-Posterior Coefficient Plots of Individual variation
and Caste Variation. All panels have the same y-axis indicating the
five models. The left panel (eta squared) illustrates the estimated in-
dividual variation (dark blue) in comparison to the prior (light blue)
for each model. The right panel illustrates the estimated population-
level standard deviation for the effect of caste (dark blue) in compari-
son to the prior (light blue) for each model. The 90% Highest Posterior
Density Interval (HPDI) was computed for each posterior; however,

the interval is very narrow.
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Appendix B

Supplementary Information for
Chapter 2: “Limited Scope for
Group Coordination in Stylistic
Variations of Kolam Art”

B.1 Kolam Data

B.1.0.1 Background Information and Description of Sample and Variables

Between 2007 and 2009, TMW lived in Kodaikanal, Tamil Nadu in India and investi-
gated kolam drawings to study human cultural evolution in an artistic domain. This
included the development of an expanded gestural lexicon to describe kolam draw-
ings and an interactive software for transcribing kolam drawings (Waring, 2012b). In
spring 2009, TMW and local research assistants collected data according to a snow-
ball sampling procedure on kolam drawings from mainly three neighborhoods of Ko-
daikanal, Tamil Nadu: Anna Nagar, Naidupuram and Munjikal. Kodaikanal is a mu-
nicipality city in district of Dindigul, Tamil Nadu. According to Census India (2011),
Kodaikanal with an area of 21.45 km2 has a population of 36,501. 48.84% of the pop-
ulation are Hindus, 12.00% are Muslims, 38.69% are Christians and the remaining
under 1% follow other religions.

The data set includes interview surveys, which contained demographic details on
kolam-making practice, questions about kolam learning, and spatial location of artists’
homes (GPS). A GPS tracker of type Garmin GPSmap 60 CSx was used. Furthermore,
a structured sample of kolam drawings using pens in notebooks was collected. The
survey further contains information on who artists learn from and who they were
helping to learn or have taught kolam-making. TMW and the local research assistants
asked women to share their personal and purchased practice notebooks.

Artists in our data set self-identify with a total of 19 different caste categories. These
caste categories are associated with varying privilege and include local and migrant
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caste groupings. There were on average 10 women in a caste group. Scheduled Castes
include Aathi Dravidar, Dhobi, Pariyar, Pallar and Asariyar. Chettiyar, Koundar,
Mannadiyar, Mudaliyar, Naidu and Brahmin are Forward Castes. Nambothiri and
Iyar are branches of the Brahmin community. All other castes are Backward Castes.
We constructed 8 neighborhood clusters with on average 24 women in a neighbor-
hood cluster. Further details on the samples and variables can be found in Tables B.1
and B.2.

Table B.1: Descriptive statistics of the sample and variables used in
the models.

Mean SD Median Min Max Levels
Age 31.88 10.08 30 15 60

Duration of Practice 19.46 10.73 18 1 52
Caste - - - - - 19

Nativity 34 Yes, 158 No 2
Residence Distance (in metres) 864.72 686.63 618.42 0 3005.82
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Figure B.1: The frequency of kolam drawings by artists. Each bar on
the y-axis represents one artist. The x-axis shows the number of kolam
drawings by an artist. Median = 16 and Mean = 16.3 kolam drawings

per woman.
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Table B.2: Caste

Caste Artists
Aathi Dravidar 8

Asariyar 2
Ayyaraka 1
Brahmin 3

Chettiyar 2
Dhobi 39

Iyar 3
Koundar 1

Mannadiyar 2
Mudaliyar 24

Nadar 21
Naidu 34

Naiyakar 4
Nambothiri 1

Pallar 26
Pariyar 1
Thevar 11

Vanniyar 4
Vellalar 5

B.1.0.2 Kolam Drawings and the Lexicon of Gestures

The square kolam drawings that we are focusing on have the advantage that we can
map the drawings on a small identifiable set of gestures suitable for analyses. For this
purpose, a lexicon of gestures was developed (Waring, 2012b). We transcribed the
kolam drawings using the lexicon and subsequently transferred them into a database
using the kolam R package (Tran, Waring, and Beheim, 2020).

The gestures that constitute a loop and the kolam drawings can be categorized into
three different geometric spaces with distinct characteristics: orthogonal, diagonal,
and transitional (each set of gestures is represented by O, D, T, respectively). Fig-
ure B.2 illustrates the three different geometric spaces in distinct colors and all the
theoretically possible transitions between gestures and geometric categories. Each of
these categories contains four gestures. The orthogonal gestures further contain two
special variations (H and P). Every gesture is accessible from itself. Gestures from
the same geometric category are transient and fully connected; thus, gestures can
transition from or to other gestures of the same geometric category as well as remain
in the same gesture (i.e., repeat the same gesture again). Transitions between ges-
tures from different geometric categories are constrained: Diagonal gestures cannot
transition to orthogonal gestures and vice versa. Orthogonal and diagonal gestures
are only connected to each other via transitional gestures. Thus, transitional gestures
can not only transition within their category, but can transition between categories
to or from orthogonal and diagonal gestures. Self-loops are possible on the gesture
level and the geometric space level. Furthermore, there are three special, decorative
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gestures that are merely single, stand-alone gestures and cannot be connected to any
other gesture.

Figure B.2: Transitions between orthogonal, diagonal and transitional
gestures. Both transition networks depict 14 nodes corresponding to
the 14 gestures and three clusters that correspond to the three geomet-
ric spaces: orthogonal (blue cluster), diagonal (green cluster), and
transitional (orange cluster) spaces. The left transition network em-
phasizes the conditional probability of switching from a current geo-
metric space to a different one (e.g., transitioning from orthogonal to
transitional space) and illustrates that there are no direct transitions
between orthogonal and diagonal gestures. The right transition net-
work shows all the possible transitions gesture by gesture. The prob-
ability of remaining in the same geometric space or repeatedly using
the same gesture is not depicted by a self-loop; however, conceptually,

self-loops are possible for all gestures and geometric spaces.

B.2 Statistical Models

The transition count matrix yi of size 14 × 14 representing the count of transitions
from state (i.e., gesture) j to state (i.e., gesture) k for artist i was used in the statistical
models 2 to 5. Four transition count matrices yi were used in the statistical models 6
and 7 with a transition matrix for transitions between geometric spaces of size 3× 3,
a transition matrix for transitions within orthogonal space of size 4 × 4, a transition
matrix for transitions within diagonal space of size 4 × 4 and a transition matrix for
transitions within transitional space of size 4× 4.

B.2.1 Model 1: Null Model

In the null model, we did not model the effect of duration of practice and assumed
no variation between individuals and castes on the transition count matrices.
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yij ∼ Multinomial(πj)

πj ∼ Dirichlet(1, ..., 1︸ ︷︷ ︸
14

) (B.1)

B.2.2 Model 2: Fixed Individual Variation Model

In the fixed individual variation model, we only modeled the individual variation in
the transitions from j to k, but the extent to which the individual variation influences
the transition probabilities to k is fixed across the rows j of the transition matrix yi as
well as individuals.

yij ∼ Multinomial(πij)

πij = softmax(θij)

θijk = µjk + σ × zijk

µjk ∼ N (0, 1)

zijk ∼ N (0, 1)

σ ∼ Gamma(2, 5)

(B.2)

B.2.3 Model 3: Full Individual Variation Model

In the full individual variation model, we allowed the individual variation to vary
across the rows j of the transition matrix yi.

yij ∼ Multinomial(πij)

πij = softmax(θij)

θijk = µjk + σj × zijk

µjk ∼ N (0, 1)

zijk ∼ N (0, 1)

σj ∼ Gamma(2, 5)

(B.3)

B.2.4 Model 4: Fixed Variation Model with Predictors

The fixed variation model with predictors extends the previous model with duration
of practice as a predictor and caste variation fixed across the rows j of the transition
matrix yi.
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yij ∼ Multinomial(πij)

πij = softmax(θij)

θijk = µjk + βjk × durationi + σind × zijk + σcaste × zcjk

µjk ∼ N (0, 1)

zijk ∼ N (0, 1)

zcjk ∼ N (0, 1)

σind ∼ Gamma(2, 5)

σcaste ∼ Gamma(2, 5)

βjk ∼ N (0, 1)

(B.4)

B.2.5 Model 5: Full Individual Variation Model with Predictors

In the full variation model, we allowed the individual variation to vary across the
rows j of the transition matrix yi and extended the previous model with duration of
practice as a predictor and caste variation further allowed to vary across the rows j

of the transition matrix yi.

yij ∼ Multinomial(πij)

πij = softmax(θij)

θijk = µjk + βjk × durationi + σindj
× zijk + σcastej × zcjk

µjk ∼ N (0, 1)

zijk ∼ N (0, 1)

zcjk ∼ N (0, 1)

σindj
∼ Gamma(2, 5)

σcastej ∼ Gamma(2, 5)

βjk ∼ N (0, 1)

(B.5)
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B.2.6 Model 6: Conditional Transition Model with Main Predictors

For each of the four matricesm = {geometric spaces, orthogonal, diagonal, transitional},
the model includes predictor of duration, and includes individual variation that itself
varies across the rows of the matrices, as well as the caste variation that also varies
across the rows of the matrices.

ym
ij ∼ Multinomial(πm

ij )

πm
ij = softmax(θm

ij )

θm
ijk = µm

jk + βm
jk × durationi + σm

indj
× zm

indijk
+ σm

castej × zm
castecjk

µm
jk ∼ N (0, 1)

zm
indijk

∼ N (0, 1)

zm
castecjk ∼ N (0, 1)

σm
indj

∼ Gamma(2, 5)

σm
castej ∼ Gamma(2, 5)

βm
jk ∼ N (0, 1)

(B.6)
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B.2.7 Model 7 - Full Model: Conditional Transition Model with All Pre-
dictors

This is our full model and best-performing model according to leave-one-out cross
validation presented in the main text.

For each of the four matricesm = {geometric spaces, orthogonal, diagonal, transitional},
the model includes predictors of duration and migration (i.e., nativity), and includes
individual variation that itself varies across the rows of the matrices, as well as the
caste and neighborhood variations that also vary across the rows of the matrices.

ym
ij ∼ Multinomial(πm

ij )

πm
ij = softmax(θm

ij )

θm
ijk = µm

jk + βm
durationjk

× durationi + βm
nativejk × nativei

+ σm
indj

× zm
indijk

+ σm
castej × zm

castecjk + σm
residencej × zm

residencerjk

µm
jk ∼ N (0, 1)

zm
indijk

∼ N (0, 1)

zm
castecjk ∼ N (0, 1)

zm
residencerjk ∼ N (0, 1)

σm
indj

∼ Gamma(2, 5)

σm
castej ∼ Gamma(2, 5)

σm
residencej ∼ Gamma(2, 5)

βm
durationjk

∼ N (0, 1)

βm
nativejk ∼ N (0, 1)

(B.7)
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B.3 Model Comparison

Table B.3: Pseudo-Bayesian Model Averaging Weights with Bayesian
bootstrap

weights
Null Model 0.00

Fixed Individual Variation Model 0.00
Full Individual Variation Model 0.00

Fixed Variation Model with predictors 0.00
Full Individual Variation Model with predictors 0.00

Conditional Transition Model with main predictors 0.21
Full Model: Conditional Transition Model with all predictors 0.79

Table B.4: Stacking weights of predictive distributions

weights
Null Model 0.26

Fixed Individual Variation Model 0.01
Full Individual Variation Model 0.01

Fixed Variation Model with predictors 0.01
Full Individual Variation Model with predictors 0.00

Conditional Transition Model with main predictors 0.27
Full Model: Conditional Transition Model with all predictors 0.44

B.4 Full Model (Model 7) Results

B.4.1 Visual MCMC Diagnostics

All R̂ values were less than 1.01, and visual inspection of trace plots, rank histograms
and pairs plots indicated convergence of all models. We have added the trace plots
of the estimated parameters for the transition matrix across geometric spaces to illus-
trate that our model converged. However, since our model estimates many param-
eters and multiple transition matrices, we refrain from plotting over 100 traceplots.
Our open repository provides the data and code to fit all of the Bayesian transition
models in order to reproduce our results and further contains code to produce trace,
rank histogram and autocorrelation plots.
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Figure B.3: Traceplot of the population-level mean transition matrix of
transitioning between geometric spaces showing mixing across chains

and convergence.
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Figure B.4: Traceplot of the individual variation in the transition ma-
trix of transitioning between geometric spaces showing mixing across

chains and convergence.
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Figure B.5: Traceplot of the caste variation in the transition matrix of
transitioning between geometric spaces showing mixing across chains

and convergence.

sigma_residence_cross[1] sigma_residence_cross[2] sigma_residence_cross[3]

1000 2000 3000 4000 1000 2000 3000 4000 1000 2000 3000 4000

0.0

0.5

1.0

1.5

0.0

0.1

0.2

0.3

0.4

0.0

0.5

1.0

chain

1

2

3

4

Figure B.6: Traceplot of the neighborhood variation in the transi-
tion matrix of transitioning between geometric spaces showing mixing

across chains and convergence.
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Figure B.7: Traceplot of the effect of the duration of practice in the
transition matrix of transitioning between geometric spaces showing

mixing across chains and convergence.
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Figure B.8: Traceplot of the effect of the migration history (nativity) in
the transition matrix of transitioning between geometric spaces show-

ing mixing across chains and convergence.
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B.4.2 Population-level Results

Figure B.9: Estimated population-level transitions between gestures.
The left state transition diagram emphasises the probability of transi-
tioning between orthogonal, diagonal, and transitional gestures. The
right state transition diagram illustrates all transitions between ges-
tures within the same geometric space and between different geomet-
ric spaces. The width of the edges reflects the probability of transi-
tion, whereby a wider or bolder edge implies an increased probability
of transition. The colours represent the three different geometric cat-
egories. The self-loops for each gesture are not depicted. Self-loops
for the geometric categories on the right transition network are not

depicted.

The ability to describe kolam art as a Markovian system further allows us to compute
the stationary distribution after a sufficiently long time. The stationary distribution
or the state distribution of the system at equilibrium describes the proportion of time
that the Markov chain (sequence of gestures) is in any given state (i.e., gesture within
a geometric space). The stationary distribution π can be found using the transition
matrix T and by setting an initial distribution for π (π is a row vector of probabilities
over the state space S), so that π = πT.

On the population-level, our results illustrate that although artists are unconstrained
in their patterns or stylistic variation in kolam drawings, and they can freely transition
back and forth between geometric spaces, artists have evident preferences and biases
towards certain gestures and geometric spaces. As seen in Figure B.9, kolam patterns
that arise in orthogonal geometric space are predicted to stay in orthogonal geomet-
ric space with a probability of 0.985 and transitioning to a different geometric space
to access a greater diversity of gestures hardly occurs (probability of 0.015). There-
fore, when an artist draws kolam patterns in orthogonal space, they are unlikely to
transition between different geometric spaces and only draw patterns with different
gestures within the orthogonal space. However, if artists draw kolam patterns in diag-
onal or transitional space, they tend to use a diverse set of gestures that span across
multiple different geometric spaces. Considering that transitioning away from or-
thogonal space hardly occurs and concomitantly transitioning into orthogonal space
occurs relatively frequently, the probability of orthogonal gestures at equilibrium is



B.4. Full Model (Model 7) Results 93

very high with 0.96. Thus, kolam artworks predominantly arise and remain in orthog-
onal space. Conversely, kolam patterns with gestures from transitional and diagonal
space are very rare (0.03 and 0.01 respectively). Viewed at the population-level, our
results show that transitions within geometric spaces are not equal, but there are ev-
ident biases for certain transitions. For instance, in orthogonal space, there are no
transitions between h3 and o4 or p4 and o3, and in diagonal space there are no tran-
sitions between d1 and d2.

B.4.3 Estimated Population-level Transition Matrices

Table B.5: Estimated Posterior Transition Matrix within Orthogonal
Space

o1 o2 o3 o4 h3 p4
o1 0.41 0.30 0.10 0.18 0.01 0.00
o2 0.68 0.16 0.11 0.05 0.01 0.00
o3 0.61 0.28 0.03 0.08 0.00 0.00
o4 0.84 0.09 0.06 0.00 0.00 0.00
h3 0.53 0.46 0.00 0.01 0.00 0.00
p4 0.82 0.15 0.02 0.00 0.00 0.00

Table B.6: Estimated Posterior Transition Matrix within Diagonal
Space

d1 d2 d3 d4
d1 0.08 0.05 0.09 0.78
d2 0.03 0.69 0.01 0.27
d3 0.76 0.15 0.05 0.04
d4 0.25 0.27 0.00 0.47

Table B.7: Estimated Posterior Transition Matrix within Transitional
Space

t1 t2 t3 t4
t1 0.03 0.95 0.02 0.01
t2 0.81 0.18 0.00 0.01
t3 0.63 0.10 0.04 0.22
t4 0.08 0.76 0.11 0.05

B.4.4 Estimated Effects of Migration and Duration of Practice
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Figure B.10: Estimated coefficients of the duration of practice on the
transition matrix across geometric spaces. On the x-axis, the red in-
terval shows the 90% HPDI interval and the black interval shows the

80% HPDI interval around the posterior mean.
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Figure B.11: Estimated coefficients of the duration of practice on the
transition matrix within orthogonal space. On the x-axis, the red in-
terval shows the 90% HPDI interval and the black interval shows the

80% HPDI interval around the posterior mean.
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Figure B.12: estimated coefficients of the duration of practice on the
transition matrix within diagonal space. On the x-axis, the red interval
shows the 90% HPDI interval and the black interval shows the 80%

HPDI interval around the posterior mean.
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Figure B.13: estimated coefficients of the duration of practice on the
transition matrix within transitional space. On the x-axis, the red in-
terval shows the 90% HPDI interval and the black interval shows the

80% HPDI interval around the posterior mean.
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Figure B.14: Estimated coefficients of the migration history (nativity)
on the transition matrix across geometric spaces. On the x-axis, the red
interval shows the 90% HPDI interval and the black interval shows the

80% HPDI interval around the posterior mean.
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Figure B.15: Estimated coefficients of the migration history (nativity)
on the transition matrix within orthogonal space. On the x-axis, the
red interval shows the 90% HPDI interval and the black interval shows

the 80% HPDI interval around the posterior mean.
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Figure B.16: Estimated coefficients of the migration history (nativity)
on the transition matrix within diagonal space. On the x-axis, the red
interval shows the 90% HPDI interval and the black interval shows

the 80% HPDI interval around the posterior mean.

beta_native_trans[1,1]

beta_native_trans[1,2]

beta_native_trans[1,3]

beta_native_trans[1,4]

beta_native_trans[2,1]

beta_native_trans[2,2]

beta_native_trans[2,3]

beta_native_trans[2,4]

beta_native_trans[3,1]

beta_native_trans[3,2]

beta_native_trans[3,3]

beta_native_trans[3,4]

beta_native_trans[4,1]

beta_native_trans[4,2]

beta_native_trans[4,3]

beta_native_trans[4,4]

−2 −1 0 1 2

Figure B.17: Estimated coefficients of the migration history (nativity)
on the transition matrix within transitional space. On the x-axis, the
red interval shows the 90% HPDI interval and the black interval shows

the 80% HPDI interval around the posterior mean.
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B.4.5 Equilibrium State Vectors

Over time Markov chains automatically find their equilibrium distribution. The equi-
librium is the position where there is no more change in the distributions.

B.4.5.1 Population-level

Table B.8: Equilibrium State Vector for the Between Geometric Space
Transitions

orthogonal transitional diagonal
0.96 0.03 0.01

Table B.9: Equilibrium State Vector for the Within Orthogonal Space
Transitions

o1 o2 o3 o4 h3 p4
0.54 0.24 0.09 0.12 0.01 0.00

Table B.10: Equilibrium State Vector for the Within Diagonal Space
Transitions

d1 d2 d3 d4
0.15 0.41 0.02 0.42
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Table B.11: Equilibrium State Vector for the Within Transitional Space
Transitions

t1 t2 t3 t4
0.45 0.53 0.01 0.01

B.4.5.2 Caste

Table B.12: Equilibrium State Vector for the Between Geometric Space
Transitions by Caste

Caste orthogonal transitional diagonal
1 0.961 0.026 0.012
2 0.964 0.026 0.010
3 0.960 0.029 0.011
4 0.960 0.029 0.011
5 0.959 0.030 0.011
6 0.960 0.030 0.010
7 0.963 0.027 0.010
8 0.961 0.029 0.010
9 0.959 0.030 0.011

10 0.969 0.022 0.008
11 0.959 0.030 0.011
12 0.960 0.029 0.012
13 0.956 0.032 0.011
14 0.959 0.030 0.011
15 0.959 0.031 0.010
16 0.956 0.032 0.012
17 0.958 0.030 0.012
18 0.959 0.031 0.011
19 0.960 0.028 0.012
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B.4.5.3 Neighborhood

Table B.13: Equilibrium State Vector for the Between Geometric Space
Transitions by Neighborhood

Neighborhood orthogonal transitional diagonal
1 0.939 0.044 0.017
2 0.962 0.027 0.011
3 0.950 0.037 0.012
4 0.979 0.015 0.006
5 0.959 0.029 0.012
6 0.967 0.025 0.009
7 0.967 0.024 0.009
8 0.967 0.024 0.009

B.4.5.4 Native

Table B.14: Equilibrium State Vector for the Between Geometric Space
Transitions by Nativity

Nativity orthogonal transitional diagonal
native 0.961 0.029 0.011

non-native 0.943 0.044 0.012
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