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Abstract

Neural networks show intrinsic ongoing activity even in the absence of
information processing and task-driven activities. This spontaneous activ-
ity has been reported to have specific characteristics ranging from scale-free
avalanches in microcircuits to the power-law decay of the power spectrum
of oscillations in coarse-grained recordings of large populations of neurons.
The emergence of scale-free activity and power-law distributions of observ-
ables has encouraged researchers to postulate that the neural system is oper-
ating near a continuous phase transition. At such a phase transition, changes
in control parameters or the strength of the external input lead to a change
in the macroscopic behavior of the system. On the other hand, at a criti-
cal point due to critical slowing down, the phenomenological mesoscopic
modeling of the system becomes realizable. Two distinct types of phase
transitions have been suggested as the operating point of the neural system,
namely active-inactive and synchronous-asynchronous phase transitions. In
contrast to normal phase transitions in which a fine-tuning of the control
parameter(s) is required to bring the system to the critical point, neural sys-
tems should be supplemented with self-tuning mechanisms that adaptively
adjust the system near to the critical point (or critical region) in the phase
space.

In this work, we introduce a self-organized critical model of the neural
network. We consider dynamics of excitatory and inhibitory (EI) sparsely
connected populations of spiking leaky integrate neurons with conductance-
based synapses. Ignoring inhomogeneities and internal fluctuations, we first
analyze the mean-field model. We choose the strength of the external ex-
citatory input and the average strength of excitatory to excitatory synapses
as control parameters of the model and analyze the bifurcation diagram of
the mean-field equations. We focus on bifurcations at the low firing rate
regime in which the quiescent state loses stability due to Saddle-node or
Hopf bifurcations. In particular, at the Bogdanov-Takens (BT) bifurcation
point which is the intersection of the Hopf bifurcation and Saddle-node bi-
furcation lines of the 2D dynamical system, the network shows avalanche
dynamics with power-law avalanche size and duration distributions. This
matches the characteristics of low firing spontaneous activity in the cortex.
By linearizing gain functions and excitatory and inhibitory nullclines, we
can approximate the location of the BT bifurcation point. This point in the
control parameter phase space corresponds to the internal balance of exci-
tation and inhibition and a slight excess of external excitatory input to the
excitatory population. Due to the tight balance of average excitation and
inhibition currents, the firing of the individual cells is fluctuation-driven.
Around the BT point, the spiking of neurons is a Poisson process and the
population average membrane potential of neurons is approximately at the
middle of the operating interval [VRest, Vth]. Moreover, the EI network is
close to both oscillatory and active-inactive phase transition regimes.
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Next, we consider self-tuning of the system at this critical point. The
self-organizing parameter in our network is the balance of opposing forces
of inhibitory and excitatory populations’ activities and the self-organizing
mechanisms are long-term synaptic plasticity and short-term depression of
the synapses. The former tunes the overall strength of excitatory and in-
hibitory pathways to be close to a balanced regime of these currents and
the latter which is based on the finite amount of resources in brain areas,
act as an adaptive mechanism that tunes micro populations of neurons sub-
jected to fluctuating external inputs to attain the balance in a wider range of
external input strengths.

Using the Poisson firing assumption, we propose a microscopic Mar-
kovian model which captures the internal fluctuations in the network due to
the finite size and matches the macroscopic mean-field equation by coarse-
graining. Near the critical point, a phenomenological mesoscopic model
for excitatory and inhibitory fields of activity is possible due to the time
scale separation of slowly changing variables and fast degrees of freedom.
We will show that the mesoscopic model corresponding to the neural field
model near the local Bogdanov-Takens bifurcation point matches Langevin’s
description of the directed percolation process. Tuning the system at the
critical point can be achieved by coupling fast population dynamics with
slow adaptive gain and synaptic weight dynamics, which make the system
wander around the phase transition point. Therefore, by introducing short-
term and long-term synaptic plasticity, we have proposed a self-organized
critical stochastic neural field model.
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1. Introduction

Neuronal networks show diverse activity patterns in different spatiotem-
poral scales such as oscillations, propagating waves and fronts, stable spa-
tial Turing patterns, and avalanches. Based on the method of probing the
activity, different aspects of the dynamics can be investigated in the pres-
ence or the absence of task-driven stimuli.

Experiments have shown that in the absence of stimuli, the cortical pop-
ulation of neurons shows rich dynamical patterns, called spontaneous activ-
ity, which do not look random and entirely noise-driven but are structured in
specific spatiotemporal patterns. Spontaneous activity is assumed to be the
substrate or background state of the neural system which is crucial for its
function, i.e. processing information. This intrinsic brain activity has been
recorded and analyzed in different spatial and temporal resolutions. Large-
scale MRI recordings reveal highly coherent functional networks called
resting states corresponding to spontaneous (not task-driven) brain activity.
Micorelectrode recordings, on the other hand, track the intrinsic activity in
a small population of neurons. Altogether, experimental findings on differ-
ent temporal and spatial resolutions highlight the scale-free characteristic
of the spontaneous activity which we will discuss in detail.

Dynamic and functional characteristics of the spontaneous activity are
connected to the structural architecture of the brain as well as the ongo-
ing self-organization process. Through multi-scale neural modulations and
plasticity, the dynamics of the neural network affects and shapes its struc-
ture and vice versa, the network structure coordinates the dynamics. The in-
terplay of dynamics and structural organization on different spatiotemporal
scales is coordinated and framed by multi-scale self-organization mecha-
nisms that emerged in the organism during evolution. There exist opposing
forces that shape the structure and activity such as excitation and inhibition
currents produced by excitatory and inhibitory neuron types, depression and
potentiation of the connection between neurons, modulation of the concen-
tration of chemicals, and homeostatic consideration on energy consumption
and information processing performance. As we will see later in this intro-
duction, balancing and coordinating these opposing forces are considered to
be one explanation for the scale-free characteristic of spontaneous activity.

Even micro-level local populations of neurons are never completely
silent but are located in the state close to the phase transition from an inac-
tive to an active state. Therefore, it is hypothesized that the brain organizes
itself to be close to such a phase transition and spontaneous activity is the
signature of this dynamical state. There exist several motivations besides
experimental findings on the scale-free characteristic of spontaneous activ-
ity that makes this hypothesis appealing. On one hand, close to the edge
of an active-inactive phase transition, local populations of neurons in the
cortex would be in an idle state ready for processing information, but at the
same time away from overactivation. On the other hand, close to the phase
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transition, order parameter, a macroscopic state different from the inactive
state, came into existence. The emergence of a macroscopic mode of ac-
tivity acts as the coordinator of individual neurons which are enumerated
in quantity and prone to various kinds of noise to produce a cooperative
large-scale activity. Macroscopic states of activity, in turn, enslave the indi-
vidual neurons. These active states in the spontaneous mode in the absence
of meaningful information processing tasks can be seen as either a random
sequence of active neurons or activation of a sequence of already inscribed
patterns of co-activity in the connectivity map.

Being at the edge of an active-inactive phase transition requires a mech-
anism that prohibits the system from overloading. The presence of in-
hibitory currents that maintains a balance in the local neural populations
besides general regulatory mechanisms that control the gain of the network
can perform this job. The hypothesis is that the system is locally tuned to
be in a specific dynamic range in local populations of neurons.

In this introduction, we try to shed light on three main questions. Firstly,
what are the characteristics of the background activity in different spatio-
temporal scales? Secondly, what model parameters or organizing mecha-
nisms are responsible for the specific patterns of spontaneous activity? And
finally, how and why the system is self organized to this regime of parame-
ters and the corresponding patterns of activity?

We will start by presenting the experimental result in parallel with some
of the most important modeling approaches which try to explain the cor-
responding phenomenon. Afterward, we present the idea of self-organized
criticality and its relevance to brain dynamics. We present the canonical
model of phase transitions from active to a single inactive state in non-
equilibrium systems, namely the directed percolation universality class, and
discuss how mesoscopic models of brain activity match the continuum field
description of the directed percolation process close to the critical point. Fi-
nally, we discuss the self-tuning mechanism that is responsible for bringing
the system close to the transition point.

1.1. Scale-free Spontaneous Activity. There exist different methods
of recording activity with distinct resolutions and applications. Early inves-
tigations were conducted by surface electrodes known as electroencephalog-
raphy (EEG) which record large-scale brain activity from the surface of the
scalp. Similarly, in magnetoencephalography (MEG), magnetic fields pro-
duced by neuronal currents are recorded, which is known to produce ac-
tivity maps with higher spatial sensitivity compared to EEG. Moreover, the
Functional Magnetic Resonance Imaging (fMRI) method detects changes
and contrasts in the blood flow to different regions of the brain by using
blood-oxygen-level-dependent (BOLD) signals to probe the neural activ-
ity. Although it suffers from a poor temporal resolution, fMRI enables us
to noninvasively record the activity of deeper areas of the brain which has
been used excessively for studying brain functional maps. Researchers also
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use thin microelectrodes or microelectrode arrays to record the activity of
a single neuron or a group of them by tracking voltage change in the extra-
cellular environment. Local Field Potential (LFP) recordings by implanted
micro-electrodes arrays track the electric potential in the extracellular re-
gion within the cortical tissue. Besides, more recent optical methods such
as calcium imaging are being used to record the activity or inhibit/activate
a selected number of neurons. Experiments are either conducted in vivo or
in cultured slices of brain tissue in vitro. Spontaneous activity is recorded
and analyzed through all these methods. In the following, we will present
some of the most relevant experiments and modeling approaches.

1.1.1. Nested Oscillations in the Macro-scale Collective Activity. When
recorded by coarse-grained methods like EEG and MEG, spontaneous brain
activity shows nested oscillations with a power spectrum that indicates scale-
free properties, i.e. P (f) ∝ 1/fβ . In the paper by Linkekaer-Hansen
et al. [1], amplitude modulation of alpha oscillation was shown to have
1/fβ power spectra with β ≈ 0.5, reflecting the lack of a characteristic
time scale for the duration of oscillation, see Fig.1. Furthermore, the auto-
correlation of the MEG and EEG signals are reported to decay by power-
law AC(t) ≈ t−γ . In Miller et al. [2], a power-law spectral density with
exponent−2.5 below 80 Hz and with a transition to 1/f 4 scaling above this
frequency is reported.

Moreover, the scale-free character of neuronal oscillations, i.e. self sim-
ilarities in time series of neural activity, has been studied by Detrended
Fluctuation Analysis (DFA) of EEG/MEG data in Hardstone et al. [3]. Self-
similarity can be seen as power-law scaling of fluctuations. Consider that
the mean standard deviation of the signal calculated in the time window of
∆t scales as σ(Lδt) = LHσ(δt). Here, H is called the Hurst exponent and
it indicates the strength and type of correlation in the time serie. The value
of H = 0.5, in this case, means that the process has no memory and it
has neither correlation nor anticorrelation in time. Values of 0 < H < 0.5
indicate anti-correlation and 0.5 < H < 1 is associated with the process
having memory and temporal correlations. DFA applied to the envelop of
the alpha band (8-13 Hz) filtered EEG signal, shows long-range temporal
correlations with H ≈ 0.71 [3] [1]. It implies that at the crirical point,
correlations extend over long distances and decay more slowly.

Neural oscillations spontaneously generated by the brain show large
frequency, amplitude, and duration variabilities. To investigate this fact,
Kitzbichler et al. [4] obtained approximations for the probability density of
phase lock intervals (PLI) between pairs of fMRI and MEG signals. The
phase difference of two time series is calculated by using Hilbert trans-
forms. Locking intervals are defined as periods where this phase difference
is lower than a threshold. The authors have found that P (PLI) ≈ PLI−α

with α ≈ 3. The variability of the synchronization in the spatial domain can
also be calculated by considering the distribution of the difference in the
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FIGURE 1. The grand averaged (n = 10) power spectral
density of alpha rhythm amplitude fluctuations are plotted
in double-logarithmic coordinates for MEG (A) and EEG
(B) data.Circles, Eyes-closed condition. Crosses, Eyes-open
condition. The dots represent the reference recording and
the surrogate data for the MEG and EEG power spectra, re-
spectively. Arrowheads mark the interval used for the esti-
mation of slopes. From Linkenkaer et. al Linkekaer-Hansen
et al. [1].

number of phase-locked time series at two distinct points in time. Oscilla-
tions in the coarse-grained data reflects an optimal level of synchrony in the
population of neurons, a scale-free behavior, a high variability in the level
of synchrony, and long-range correlations both in time and space through
local interactions. These can be taken as signs for being close to the onset
of synchronization, i.e. a critical phase transition separating synchronized
and non-synchronous states. Medium level of synchrony has been shown to
play a crucial role in the information transmission and processing [5]. For
example, the level of synchrony in the gamma band (20-80Hz) is higher
during task-driven activity [6]. On the other hand, a high level of synchrony
can cause persistence of activity and epileptic seizures. Therefore, being
at the threshold of synchronization enables the network to switch between
synchronized and desynchronized states.

One way to model synchronization in the brain is by identifying local
populations of excitatory and inhibitory neurons as nonlinear oscillatory
building blocks which are connected to each other to form a larger network
of coupled oscillators. Each interconnected population of inhibitory and
excitatory neurons can generate oscillations due to delay in synaptic transi-
tions between inhibiotry and excitatory feedbacks or even, in the absence of
delay, through the Hopf bifurcation of the quiescent state. Considering peri-
odic activity at each local EI block, one can define φi as the phase of the ith
oscillator with uncoupled intrinsic frequency ωi. A phase model for coupled
oscillators would assume that the connection strength among oscillators de-
pends on their phase difference. Considering the case that the strength of
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the connection between oscillators is homogenous, one can write down the
evolution of the phase of the ith oscillator as :

φ̇i = ωi +
R

N

∑
k

J(φk − φi) (1.1)

This is the Daido model for weak coupled oscillators [7, 8]. R denotes
the strength of connections between oscillators and intrinsic frequencies, ωi,
are drawn from a probability density function, g(ω), with the mean value
ω̄. Moreover, suppose J is an odd function with Fourier expansion J(θ) =∑

n ansin(nθ). A synchronous state would emerge if R is strong enough
and if there is a positive an. In this case, an asynchronous state destabalizes

at Rc =
2

πg(ω̄)an
. When the intrinsic frequency distribution is uni-modal,

at R = Rc, the system shows a second order phase transition.
The Kuramoto model with a simple sinusoidal coupling function (J) is

the simplest model for coupled oscillators. Meisel et al. [10] showed the
Kuramoto model to have s PLI power-law probability density at R = Rc.
Moreover, fluctuations in the Kuramoto order parameter peak at this point.
Gong et al. [9] and Meisel et al. [10], have reported the same power-law
PLI distribution in the awake brain.

1.1.2. Up and Down States Transitions. Another phenomenon observed
in the spontaneous activity is the alternation between low rate firing states
(Up-states) and periods of quiescence (Down-states). In Steridae, et al. [11]
intra-cellular and EEG recordings in cats during slow-wave sleep(SWS),
awake, REM sleep, and anesthetized states showed patterns of oscillations
of the membrane potential between these up and down states. The SWS
state is distinguished from both waking and REM sleep by the presence of
cyclic, long-lasting (0.3–0.5 s), and high-amplitude (8–20 mV) hyperpolar-
izations during which neurons do not fire. In another in-vivo experiment,
Hahn. et al [12] showed that hippocampus interneurons membrane poten-
tial in anesthetized mice shows≈ 0.5−Hz up-down state oscillations. This
slow oscillation occurs in cortical slices in vitro as well [13], which suggests
cortical EI populations are intrinsically able to generate slow oscillations.

In Compte et al. [14], authors have proposed that the competition be-
tween the buildup of outward conductances, such asCa2+ andNa+-activated
K+ currents and positive feedback of excitatory neurons is responsible for
the Up-down state transition. The transition from Up-state to down-state is
attributed to the opening up of slow Na-dependent K+ conductance which
generates slow negative activity-dependent feedback. Therefore, the peri-
odicity of the slow oscillation is determined largely by the balance between
the recurrent excitation and inhibition inherent in cortical networks, and
the time course of the outward currents which generate the slow hyper-
polarization. Recurrent excitation produces bi-stability in the network in
response to current injection to the cell and k+ current switches the state
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FIGURE 2. (A)5 second local field potential(LFP) signal
(B)Raster plot for activity of 96 single neurons (C) Instanta-
neous population rate.From Jercog et.al [19].

of the system. In another in-vitro experiment on cortical slices using two-
photon calcium imaging, Cossart et.al. [15] found that the Up-state happens
as synchronized activity in an ensemble of neurons. In asleep and awake
animals in-vivo the Up-state resembles a synchronous firing state with con-
stant population activity and irregular single neuron firings. It has been
known that low-frequency oscillations are related to sleep or inattentive
states while high-frequency oscillations are usually attributed to informa-
tion processing. Therefore, in the absence of stimuli, neural circuits should
have the capacity of low-frequency oscillations and up-down states transi-
tions. Kenet et al. [16] showed that spontaneous activity in the part of the
cat visual cortex responsible for the orientation selectivity is composed of
spontaneously occurring states that correspond to cortical representations
of orientations. This leads to the hypothesis that during Up-states, cortical
populations wander around established activity patterns. Although experi-
mental studies presented so far reported rhythmical oscillatory alternations
of up-down states, there exist other studies which indicate that during light
anesthesia or awareness these transitions are much more variable and ran-
dom, [17, 18] (see Fig.2).

There exist many computational models for Up-Down states transitions
mostly based on either network bistability of quiescent and low (or high)
firing states, [19–22], or bistability of voltage based current to individual
neurons [23]. In the first case, the network switches between the men-
tioned states either by finite-size internal fluctuations or by the slow change
of a model parameter mainly due to depression of synapses or both of
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these mechanisms. In Milman et.al [21], short-term plasticity of excita-
tory synapses leads to a switch between high firing fixed point and quies-
cent state in a population of excitatory neurons. In this model, during the
Up-state, the branching parameter is close to one and the firing rate is ap-
proximately 80 Hz. Therefore, the Up-state is critical and the Down-state
is sub-critical. Tartaglia et al. [22] investigated the bi-stability of the low
firing state and quiescent state in an Excitatory-Inhibitory population in a
balanced network and showed that adaptive excitatory current leads to a
switch between these two fixed points. Similarly, Jercog et al. [19] studied
EI networks in the inhibition-dominated regime with a focus on external
input fluctuations as the source for irregular transitions of Up and Down
states.

In summary, Up-down transitions might indicate that the system resides
near a bi-stable regime. On the other hand, without a self-regulating mech-
anism, bi-stable states should be close to each other in phase space so that
stochastic transition or minimal regulatory effects cause the switch among
them. This can serve as another motivation to consider neural systems close
to a critical point, i.e. a saddle-node bifurcation that generates separate fixed
points close to each other.

1.1.3. Avalanches in Local Neuronal Populations. Apart from oscilla-
tory and wave-like activity patterns, in microcircuits of the brain during
spontaneous activity, we observe avalanche dynamics. This mode of activ-
ity was first closely investigated by Beggs and Plenz [24] in cultured slices
of the rat cortex by using a multi-electrodes array with an inter-electrode
distance of 200 µm to record local field potentials(LFP). An avalanche is
defined as almost synchronized epochs of activity usually separated by long
periods of inactivity. At higher temporal resolutions, these seemingly syn-
chronized patterns appear as cascades of activity in micro-electrodes array
initiated from one (or few) local sites that propagate through the network
and finally terminate. To define avalanche from LFP data, they have binned
the signals of the whole electrode. Avalanches are identified as the cascade
of events between quiescent time bins. The size of an avalanche is then mea-
sured as the total number of micro-electrodes with LFP peaks during that
avalanche. It must be noticed that activity does not spread in a wave-like
manner, i.e. activity in one site is not necessarily preceded by the activity of
nearest neighbors. The main finding of this seminal experimental paper is
the power-law scaling of the probability density function of size and dura-
tion of avalanches, see Fig.3. Furthermore, they have found that the appli-
cation of excess excitatory-inhibitory provoking drugs destroys the power-
law scaling. Further studies approve these results in different setups such as
awake monkeys (Petermann.et.al. [25]), cerebral cortex and hippocampus
of anesthetized, asleep, and awake rats(Ribeiro et al. [26]) and visual cortex
of anesthetized cat ( Hahn et al. [27]). Besides LFP data, several studies
reported the scale-free avalanche size distribution based on the spike data
such as Friedman et al. [28], Hahn et al. [27], Mazzoni et al. [29]. Friedman
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FIGURE 3. (Black) The size of avalanche is defined by the
total number of activated electrodes during avalanches and
in (Blue) size measures from LFP amplitude. From Beggs
and Plenz,2003. [24]

et al. [28] analyzed cultured slices of the cortical tissue and collected data
at individual neurons with different spacings. Besides power-law scaling of
size and duration of avalanches with exponents τ ∼ −1.5 and α ∼ −2, re-
spectively, they showed that the temporal profile of avalanches is described
by a single universal scaling function. The average size versus average du-
ration of avalanches is also a power-law with< s >=< T >δ with a scaling

relation between critical exponents as
τ − 1

α− 1
= δ. Besides, the mean tem-

poral profile of avalanches follows a scaling form as in non-equilibrium
critical dynamics :

S(t, T ) ∼ T δ−1F (t/T ) (1.2)

They showed that their data sets collapse to the above scaling function,
see Fig.4. Scaling relations suggest stronger evidence for critical dynamics
as an explanation for the power laws observed in the observables of the
system. In another paper by Klaus et al. [30], it has been shown that power
law is the best fit for neural avalanches collected from in vivo and in vitro
experiments.

Karimpanah et al. [31] investigated how stimulus might change the
scale-free behavior in vivo experiments in the primary visual cortex of mice
during visual stimulation. They found out that avalanche size and duration
distributions, under three different stimuli conditions, show the same crit-
ical exponents. However, spatiotemporal patterns of activity as measured
by pairwise cross-correlation are different among these stimulation setups.
This study suggests that the system operates near criticality even in the pres-
ence of the stimulus. Spontaneous activity is modulated negligibly by stim-
ulus, although it is responsible for the observed variability in the response.
Tetzlaff et al. [32] analyzed how synaptic modification in developing neu-
ral networks in vitro tunes the system close to the critical regime. In the
synaptic growth phase, activity will increase, new synapses appear and the
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FIGURE 4. (Left) Average avalanche shape for avalanches
of three different durations.(Right) Scaled avalanche shape
collapses to the scaling function of equation (1.2). From
Friedman et al.2012 [28].

system shows supercritical behavior, however by pruning of synapses the
system will reach a critical state at a low firing rate state.

The appearance of power laws, scaling relations among their exponents,
data collapse, and sensitivity to the imbalance of excitation and inhibition
led to the hypothesis that the brain is somehow poised near criticality by a
self-organization mechanism with the balance of excitatory and inhibitory
rates as the self-organizing parameter. In the following, we will discuss
the concept of self-organizing to a critical state in physical systems and
introduce the canonical universality class of phase transitions to a single
absorbing state, namely directed percolation.

1.2. Criticality and Self-organized Criticality in Systems out of Equi-
librium.

1.2.1. Sandpile Models. Self-organized criticality in sandpile models
was first introduced by Bak and Tang [33]. Consider a system of n threshold
elements on a d-dimensional lattice, for example, a sand pile with a discrete
number of sand grains on discrete sites. We assign a parameter like height
at each point which has discrete values 0 ≤ hi ≤ m. Dynamics on the
lattice is driven by two mechanisms, external driving in the form of adding
sand grains to an arbitrary randomly chosen site and internal relaxations,
i.e. when the height of sand column at a site becomes greater than a thresh-
old value then it would release one grain to each of its neighbors. Consider
an open boundary, which means sand relaxation at the boundary leads to the
dissipation of sands. Self-organized criticality hypothesizes that if we start
the dynamics on the lattice from any initial configuration of heights, the in-
terplay of loading and relaxation will self-organize the system to a critical
state. At this state, upon adding external sand to arbitrary sites, cascades of
relaxations occur in the neighboring sites, i.e. avalanches. They reported
power-law distributions of size and duration of avalanches. Numerical sim-
ulation in 2D resulted in D(s) ≈ s−τ ,τ ≈ 1 and D(t) ≈ t−α ,α ≈ 1.
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After relaxation, the system lands in one of the meta-stable inactive con-
figurations. The important point is that the critical state is independent of
the initial configuration and no fine-tuning is needed for critical behavior.
The authors originally introduced this model as a mechanism to generate
1/f noise and claimed that in case that the time scale of the driven force
is much larger than the time scale of relaxation dynamics, superposition
of random events generates a 1/f power spectrum. However, this claim
was refuted in Jensen et al. [34]. There, it has been shown that the linear
superposition of signals from avalanches starting at random times leads to
spectrum falling off like 1/f 2. In Manna(1991) [35], critical exponents for
sandpile models based on height and slope in two dimensions are obtained
on larger data sets and with smaller errors.

In the sandpile models discussed above, avalanches are deterministic. In
another viewpoint, avalanches can be produced as realizations of a branch-
ing process with a stochastic dynamics. In a branching process each active
node(ancestor) reproduces n number of descendants with probability p(n).
The average number of descendants of a single active node is called branch-
ing ratio, σ =

∑
n np(n). When σ > 1, the probability of an infinite size

avalanche is non-zero. On the other hand, for σ < 1, avalanches are finite
and for the marginal value σ = 1, avalanche size is power-law distributed
with P (s) = s−3/2 and P (t) = t−2. In Zapperi et al.(1995) [36], a sim-
ple self-organizing branching process is introduced in which the branch-
ing parameter is self tuned to critical value with update dynamics for σ by
counting the number of descendants reaching an arbitrary boundary at the
k generation of avalanches.

In Bak et al.(1998) [37], the authors derived exponents analytically for
a mean-field model of sandpile dynamics which matches critical branching
process exponents. It has been shown that for cellular automata of sandpile
models to show scale invariance, two ingredients are necessary: time scale
separation between load and relaxation and local conservation law, i.e. no
dissipation of sands during avalanches [38–40].

The relation of the self-organizing of BTW and Manna models to nor-
mal forms of critical dynamics, especially to absorbing state phase transi-
tions has been explored in recent years. The absorbing state is a quiescent
state that the system settles in and cannot escape from because internal fluc-
tuations are zero in the absorbing state. Directed percolation is the canonical
universality class for phase transitions into a single absorbing state which
we will discuss briefly later. The sandpile model of BTW resembles a sys-
tem with an infinite number of micro-state absorbing states to which the
system relaxes after producing an avalanche. Avalanches occur by an ex-
ternal drive that transfers the system from one absorbing state to another.
However, at first sight, there is a fundamental difference between ordinary
absorbing state phase transitions and SOC. For a system to show absorb-
ing phase transitions, we need fine-tuning of control parameters, however,
in SOC models like BTW sand pile, there is a self-tuning mechanism that
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brings the system to a critical point implicit in the description of the dynam-
ics of the system. Based on this fact SOC in BTW or Manna model was not
automatically categorized in the DP universality class. Several types of re-
search have been conducted to study the relation of self-organized criticality
to well-established dynamical criticality models.

Vespignani et al. [41] introduced a model of absorbing state phase tran-
sition coupled to a conservation field with separation of time scales that
shows self-tuning to criticality. There exists a critical density of sands, ρc,
above which the active state survives, while below this critical level, the
system’s activity would decay and it reaches a stable inactive configuration.

Similarly, Dickman et al. [42] linked SOC with DP by equipping a
model of absorbing-state phase transitions, with the method for forcing the
model to its critical point, by adding (removing) particles when the sys-
tem is frozen (active). They concluded that in the limit of slow drive and
slow removal (i.e. time scale separation), the system shows SOC behavior.
Therefore, the SOC mechanism in sandpile models is not inherently distin-
guished from well-known continuous absorbing state phase transitions in
the sense that likewise in the BTW sandpile model there is a fine-tuning of
the order parameter which in this case is the vanishing rate of an external
drive(h→ 0+). Following this line, one can formally write down conserva-
tive sandpile models as the mesoscopic Langevin equation of DP coupled
with conserving energy field. In this case, the universality class of this SOC
type dynamic is of C-DP (conserving directed percolation) type [43].

In the following subsection, we introduce the DP model and its critical
behavior which is of particular importance for our upcoming neural critical
models.

1.2.2. Directed Percolation. The directed percolation universality class
has been claimed to describe many non-equilibrium systems showing dy-
namic criticality. DP belongs to a larger class of critical open systems called
absorbing state phase transitions. An absorbing state is a steady state in
which there are no internal fluctuations and therefore, the system can not
escape from it. Continuous phase transitions to a unique absorbing state
fall generically in the universality class of directed percolation. To be more
precise, the existence of more than one absorbing state does not automati-
cally destroy the DP conjecture. Non-DP critical behavior appears only if
there is symmetry among different absorbing states.

The simplest microscopic model of DP is a binary creation, annihilation
and diffusion on a lattice. Particles diffuse with rate D to neighboring site,
A + 0 → 0 + A , coagulate with rate κ, A + A → A , reproduce with rate
λ , A→ A+ A and spontaneously decay with rate σ , A→ 0 .

The mean field equation for the average density of particles correspond-
ing to the above reaction-diffusion process, ignoring spatial inhomogeneties
in the field and considering the average field as a(t) can be written as fol-
lows:
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da(t)

dt
= (λ− σ)a(t)− κa2(t)

Considering diffusion and defining a(x, t) as the local mean density of
activity and ignoring fluctuations around this mean value, the density field
obeys:

∂a(x, t)

∂t
= (λ− σ)a(x, t)− κa2(x, t) +D∆a(x, t)

As can be seen already from the above mean field equation at σ = λ a
phase trasnition occurs. For σ < λ, the system aproaches the inactive state
with the trend a(t) ∼ e−(λ−σ)t . For σ > λ, there would be an active state

of density a∞ =
σ − λ
κ

. At the balanced state, when production and decay
rates are equal, the equation reads as :

da(t)

dt
= −κa2(t)

and initial state of a0 will decay as a0t
−1.

Including reaction noise to the above field, the equation would require
careful integration of microscopic fluctuations. One possible way is through
the functional representation of the microscopic master equation through
the coherent state path integral formalism [44, 45]. This procedure ends up
in an effective action describing the directed percolation universality class
also known as Reggeon Field Theory. Reggeon Field theory can be inter-
preted as the Janssen-De Dominics response functional, which is formally
equivalent to the following Langevin description of directed percolation
close to the absorbing phase transition [46, 47]:

∂a(x, t)

∂t
= ra(x, t)− κS2(x, t) +D∆S(x, t) + ψ(x, t) (1.3)

< ψ(x, t)ψ(x′, t′) >= 2na(x, t)δ(x− x′)δ(t− t′)

where r := λ− σ .
The variance of the noise is proportional to the field strength. This re-

flects that the number of creations and annihilations of particles at any point
are Poisson random variables. To investigate the relevance of the noise in
large-scale dynamics we have to study the scaling behavior of the system
under coarse-graining of space and time. In the renormalization process, we
adjust the parameters of the system under coarse-graining of length scales
to keep the physical description of it unchanged. Applying coarse-graining
and renormalizing parameters leads to a flow in parameter space which is
called renormalization flow. Fixed points of the renormalization flow are
critical points of the system in which the system is unchanged by scaling
transformation and therefore shows scale invariance. Based on the scale
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FIGURE 5. Directed bond percolation in 1(spa-
tial)+1(temporal) dimensions starting from a random
initial configuration of active sites (top) and from a single
active seed (bottom). From Hinrichsen 2000, [48]

transformation of parameters, which themselves are coefficient of inter-
action or noise terms, close to renormalization fixed point, we can define
the relevance of the corresponding terms in the dynamics. Suppose upon
coarse-graining by x → Γx and t → Γzt a coefficient scales as c → Γηt ,
then the corresponding dynamic term would be relevant, irrelevant or mar-
ginal if η > 0 , η < 0 or η = 0, respectively.

In the mean field approximation, the Langevin equation (1.3) might be
renormalized by a scaling transformation x → Γx, t → Γzt, a(x, t) →
Γ−ξa(Γx,Γzt) where z denotes the dynamic exponent. Under these trans-
formations, the parameters of the model scale as:

r → Γzr, κ→ Γz−ξκ D → Γz−2D, n→ Γz+ξ−dn

Therefore, at the critical point, r = 0, the Langevin equation(1.3) is scale-
invariant by assigning z = 2 and ξ = 2. Thus, the noise amplitude n scales
as n → Γ4−dn, where d is the spatial dimension. Approaching the fixed
point, the noise amplitude may diverge, vanish or stay finite, correspond-
ing to d < 4 , d > 4 and d = 4 , respectively. we refer to the value of d
where the noise becomes marginal as the upper critical dimension, dc. For
the directed percolation model, the upper critical dimension is dc = 4. Fur-
thermore, higher-order interaction terms like a3 and ∆2a are irrelevant at
the critical point under coarse-graining.

In a non-equilibrium system showing scale invariance at a continuous
phase transition, universal scaling laws emerge. In the mean-field DP anal-
ysis, the density in the active phase close to the critical point, r0 = 0,
reaches astat = |r − r0|β , where β is a universal exponent and in our case
βMF = 1. In the inactive phase, the density would decay as a = e−|r−r0|t ∼
e−tξT where ξT is correlation length of temporal dimension and scales as
ξT = |r − r0|νT . In the mean field approximation of DP , νMF

T = 1. In
contrast to equilibrium critical phenomena, in non-equilibrium phase tran-
sitions two independent correlation lengths for temporal(ξT ) and spatial(ξS)
dimensions are present in the system. These values are respectively propor-
tional to average lifetime and lateral size of an avalanche started from a
single seed at time t = 0. Close to the critical point, correlation lengths
diverge with different exponents for spatial and temporal dimensions which
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are related to the dynamic exponent z as νT/νS = z. Therefore, νMF
s =

1

2
for DP.

Scale invariance and divergence of spatial and temporal correlation lengths
can be used to derive general scaling laws for observables of the system.
Critical exponents for other observables can be derived by aforementioned
independent exponents (β, νT , νs). For example, the mean size of an avalanche
(total number of activated sites) in the inactive phase scale as < S >=
(r− rc)−(σ−νT ) with σ = (z+d)vs−β or the stationary density in response
to external field of creation of particles with rate h scales as astat = hβ/σ.
Moreover, the avalanche size density obeys a power-law as P (s) = s1−τ

with τ = 2 +
β

σ
. In the mean-field approximation of DP , σ = 2 and

τ = 5/2. Furthermore, the mean field power spectrum follows a power-law
decay, f(ω) = ω−2. It is worth noting that the mean field exponents of
self-organized sand pile models and the critical branching process coincide
with the critical exponents of the mean-field DP.

In d ≤ 4 where noise is relevant, critical exponents differ from the mean
field exponents and the fluctuation effect is strong enough to affect power-
laws near critical point. To investigate critical behavior, in d < 4 we have to
follow the renormalization process. With the simple re-scaling, S(x, t) =√
κ

σ
a(x, t), and introduction of u =

√
σκ , Langevin equation(1.3) can be

rewritten as:

∂S(x, t)

∂t
= −D(r −∆)S(x, t)− uS2(x, t) + ψ(x, t)

< ψ(x, t)ψ(x′, t′) >= 2uS(x, t)δ(x− x′)δ(t− t′)

Integrating fluctuation and nonlinear interaction terms proportional to u
produces infrared divergent terms in one-loop corrections to two-points and
three points vertex functions at the critical point for d < dc. Same terms
produce ultraviolet divergence in the perturbation expansion at d > dc.
Therefore, at d = dc both UV and IR divergences are combined in the
logarithmic singularities. The standard approach of renormalization is to
absorb artificial UV singularities of the model(in the limit that lattice spac-
ing goes to zero) into renormalized parameters and study their flow under
coarse-graining to obtain a renormalization group equation. Fixed points of
RG flow equations are the critical points and linearizing RG flow near this
fixed point determines critical exponents. For d < 4 defining ε = 4 − d,
critical exponents are as follows :

β = 1− ε

6
+O(ε2), νS =

1

2
+

ε

16
+O(ε2), νT = 1 +

ε

12
+O(ε2)

1.3. Critical Neural Models.
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1.3.1. Self-Organizing Neural Automata. Neural avalanches might re-
semble sandpile models with the burst-like sudden release of energy and
transmission of activity to neighboring sites when their membrane poten-
tial is being raised above a certain threshold. Neurons play the role of site
elements that receive both external and internal input. The membrane po-
tential of the neuron is usually taken as the energy variable. Upon reaching
a voltage threshold, the neuron resets and sends input to its neighboring
neurons. [49–51]. Eurich et al. [51] modeled globally coupled threshold
elements driven by external noise with time scale separation between the
internal relaxation and the driven force. Internal input to all elements is

proportional to the number of active neurons, Ii(t) =
αV

N
M(t− 1), where

α is the coupling strength, V is the threshold above which neuron fires and
M(t − 1) is the number of active neurons at time t − 1. At critical cou-
pling strength, αc ≈ 1−N−µ, which corresponds to a conservative model,
the avalanche size obeys a power-law, P (L, αc) = L−ηexp(−L/γ) with
η = −3/2, with system-size dependent cut-off. Here, the avalanche dy-
namic is deterministic and the only stochasticity in the model arises from
the random arrival of the external input at a randomly selected site. Lar-
remore et al. [52] investigated avalanches in a stochastic binary network by
assigning matrix element, Anm, to the probability that node m becomes ac-
tivated at time t+1 if node n is active at time t. They have shown that if the
largest eigenvalue of A is exactly one, the size and duration distributions of
avalanches are power-laws with branching process exponents.

To tune the system at the critical point, many modeling approaches and
adaptive mechanisms have been suggested during the decades of research
on critical brain hypothesis. A SOC model for a non-conservative neuronal
model that attracted much attention is introduced by Levina et al. [53, 54].
They have claimed that self-organization by short-time synaptic plasticity
drives the system to the critical regime. They used excitatory neurons with
separation of time scale for the external drive and the membrane potential
dynamics. Dynamics of globally coupled integrate and fire neurons with
0 ≤ Vi ≤ 1 as the internal state parameter and synaptic strength Jij between
neurons i and j follow:

dVi
dt

=
∑
j

uJij
N − 1

δ(t− tjs) + IExtδ(t− tiEx) (1.4)

dJij
dt

=
1

τj
(
α

u
− Jij)− uJijδ(t− tjs)

Here, IExt is the external input to cell i at random moments tiEx. Each
neuron upon firing at the threshold value V = 1 resets to V = 0 while
increasing membrane potential of other N − 1 neurons by the amount of
uJij
N − 1

. After each spike of neuron j, the weight of outgoing synapses
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is depressed by the amount of uJij , which recovers toward the value
α

u
with the time constant τj . In the static regime (τj → 0) , Jij reaches its
maximum value

α

u
. The average size of the avalanche is calculated to be

< s >=
1

1− uJ
. Defining uJ = αstatic , at value αstatic = 1 in the static

limit, which corresponds to the conservative dynamic, system shows scale
free avalanches as a sign for critical dynamics.

In the case of dynamical synapses (i.e. slow synaptic recovery time),
they showed that the population average of synaptic strength, uj̄, is self
tuned by the coupled dynamics of equation (1.4) to values around one,
which makes the system critical for any α > 1. Therefore, using the mean-
field equation for self-consistency for the average firing rate and the average
synaptic strength, they showed that STP can cause the average utility to be
close to the critical point for a wide range of maximum utility α and it leads
to a branching ratio very close to 1 in a large area of phase space.

In addition to self-organization by short-term depression in synapses
which is also used in Peng et.al. [55] and di Santo et al. [56], self-organization
by other control parameters like degree of connectivity or synaptic strength
has been studied. Adaptive rewiring of asymmetric synaptic connections
with fixed strength (Jij = ±1) by the average input correlation was intro-
duced in the spin models of neural networks [57, 58]. In these works, the
authors have claimed that insertion and deletion of the links based on adap-
tive rewiring regulate the network toward criticality by tuning the branching
ratio to unity.

In line with the methods used in mentioned articles, Meisel and Gross
[59] introduced a self-organizing neural network by STDP. In Brochini et
al., [60] self-organization in stochastic spiking neuron model by short term
plasticity of the gain function instead of synaptic weights is introduced. Be-
nayoun et al. [61] proposed a model composed of stochastic single neurons
which shows avalanche dynamics in the regime of closely balanced input.

Despite the success of some of the aforementioned works to produce
and explain power-law distributed observables, there are two fundamental
differences between neural SOC models and sandpile models that cast doubt
on the truly generic scale invariance of these models. Firstly, the BTW SOC
model obeys conservation law, i.e. sands will not be eliminated and energy
level is conserved, however, the neural network is dissipative due to leaky
currents. Secondly, in the SOC model of sandpiles, separation of time scales
is critical for the power-law behavior, but the neuronal system is constantly
stimulus-driven without separation between internal mechanism and exter-
nal noise, i.e. there can be additional driving while the system producing an
avalanche. In general, for nearly every well-known nonconservative SOC
model, there exist counterarguments on the nature and truth of their scale
invaraince [38, 40]. The Olami Feder Christensen(OFC) model [62] and
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the Drossel-Schwable forest fire [63] are among the most studied noncon-
servative models that are claimed to show SOC dynamics mainly based on
computer simulations. However, it has been shown that in non-conserving
regions they do not show generic scale invariance but instead they wander
around the absorbing phase transition point [64, 65].

In general, in systems with dissipation, a loading mechanism is required
to bring the system close to the critical point and compensate for the loss
of energy. Another approach to model neural networks close to the criti-
cal point is by constructing field equations for population activity rates. In
the next subsection, we follow this path to build a mesoscopic model of
neural activity which captures the coarse-grained dynamic of average ac-
tivity fields and takes into account the relevant internal noise originating
from finite-size effects. We will show how neural population models can
be mapped to the directed percolation model of critical dynamics at the bi-
furcation points of mean-field equations. Afterward, we discuss tunning
or loading mechanisms that bring the system close to this phase transition
point.

1.3.2. Criticality in the Mesoscopic Models of Cortical Activity. Up un-
til now, we have discussed neural models based on automata dynamics re-
sembling sandpile models. Another approach to critical dynamics in the
neural network is by constructing and analyzing the mesoscopic model of
the neural activity which accounts for internal fluctuations in coarse-grained
field equations. In general, it is not straightforward to bridge from micro-
scopic dynamics to a mesoscopic phenomological description. However, it
is possible in systems which show criticality and scale invariance to arrive at
a phenomological mesoscopic model close to the critical point. Due to time
scale separation and scale invariance, we can track the temporal evolution
of the system by the evolution of a few slow mesoscopic degrees of freedom
and model the effect of fast microscopic variables as noise. However,in sys-
tems out of equilibrium, in the absence of detailed balance, internal noise
of the system cannot be deduced from a fluctuation-dissipation equation.
Therefore, one cannot simply add a noise term to macroscopic mean-field
equations because noise correlations cannot be determined.

However, studying macroscopic mean-field equations is still beneficial.
Critical points are the bifurcation points of the mean-field equations and
close to these points system dynamics can not be well described by mean-
field equation because of amplification of internal noise and finite-size ef-
fect which were neglected in building mean-field model. Internal fluctua-
tions in the system caused by stochasticity of each element and finite-size
effects have to be included in the noise term which can be determined ap-
plying either a heuristic approach or systematic integration using a path
intagral representation of the stochastic process close to the critical point.

In the following, we first introduce rate models for a single excitatory-
inhibitory population which describes the evolution of population’s average
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activity based on external drive to the cells, and then present continuum
neural field equation as an interconnected network of EI units.

Modeling population activity by the dynamics of the average activity of
neurons defined as rate r(t) = limN→∞

nactiv
Nδt

is called rate models. Con-
sider an interconnected network consisted of multiple homogeneous sub-
networks with all to all connections between neurons of population i and
population j with synaptic strength denoted by Wij . Further, assume that
identical neurons fire asynchronously in each sub-network. There are two
ways of writing rate dynamics depending on the magnitude of membrane
potential and synaptic current decay time constants.

The first method is by modeling synaptic input to population i , Ii(t),
and its dynamic based on nonlinear gain function F which gives instan-
taneous population rate in terms of the synaptic current it receives, i.e.
rj = Fj(Ij). Here, the main assumption is that the synaptic current rise
and decay time constants are much smaller than the membrane potential
decay time constant, and therefore, output firing rate can be written as an
instantaneous function of the input current. In this case, the evolution of the
current to population i can be written as:

dIi
dt

= −Ii(t)
τI

+
∑
j

wijFj(Ij(t))

If the input to the cell only depends on presynaptic parameters then we
can write down the activity model as follows:

dri
dt

= −ri(t)
τi

+ Fi(
∑
j

wij(rj(t))) (1.5)

In case of either fully connected or sparsely connected network, one
can explicitly determine the gain function F . Suppose τm is the membrane
potential decay time constant, τr and τd are the syanaptic current rise and
deacy time constants,then if τm >> τd, τr, the first model with τI = τm
and if τd >> τr, τm, the second model with τi = τd are approporiate rate
models. In most cases, the activity-based model (equation (1.5)) is more
suitable.

Rate models can accurately describe neural networks in all-to-all or
sparsely connected networks. The appropriateness of mean-field solutions
for the all-to-all network in the limit of large size should be clear by the
above-mentioned assumptions. In a sparsely connected network, correla-
tions among the input to two different neurons, beyond the average pop-
ulation rate, are assumed to be negligible, and correspondingly also the
magnitude of cross-correlation between spike trains of neurons is small.
Therefore, in the population of neurons in low firing regimes and in the
sparsely connected network in which neurons fire with Poisson statistics
but asynchronously, the total population rate dynamics can be modeled by

18



a mean-field equation. The asynchronous state of population rate in the
EI population can itself be oscillatory. In Brunel and Hakim [66, 67], a
sparsely connected network with synaptic delay between inhibitory feed-
back and the excitatory rate has been studied using a Fokker Planck formal-
ism for the evolution of the membrane voltage in the asynchronous state.
By finding the membrane potential stationary probability distribution and
probing its linear stability, they identified saddle-node bifurcation lines and
bistable regions and Hopf bifurcation lines separating oscillatory and non-
oscillatory asynchronous states. SI (Synchronous Irregular) with oscilla-
tion in population-level but irregular firing and AI (Asynchronous Irreg-
ular) states in the region of strong inhibition are of most relevance as the
operating region of phase space for the cortical activity. In general, oscil-
latory instability occurs by increasing average external input. On the other
hand, an increase in the variance of the input moves the system towards a

stationary firing state. Oscillations of order ωc ∝
√
τ

δ
appear at the Hopf

bifurcation line where δ is the synaptic delay between inhibitory and excita-
tory population rates and τ is the membrane potential time constant.On the
other hand, sub-threshold oscillation of the membrane voltage can lead to a
resonance amplification of the input at a sub-threshold frequency. For a low
amplitude signal this would be more evident when the average mean input
is close to the threshold. Brunel and Hakim [68] also studied fast global
oscillations in neural networks operating at a low rate.

The above-mentioned rate equations, also called Neural Mass Mod-
els, can be extended to the continuum limit. The cortical organization of
the brain suggests that there are cortical columns of thickness 50µm to
10mm which are densely interconnected with sparser connectivity between
columns. It has been suggested that these columns can be taken as units of
information processing [69]. In this case, the average activity of the pop-
ulation of neurons and not the activity pattern of single neurons are taken
as a dynamic parameter in the modeling. Continuum neural field models as
nonlinear integrodifferential equations with the integral kernel representing
the connectivity strength between different neural populations have been
introduced by Wilson and Cowan [70, 71].

Neural field models can show wave propagation in terms of a front so-
lution in a bistable network (see Amari (1977) [72,77]), propagating pulses
in an excitable medium ( see [73]), and spatially localized oscillations and
spiral waves in the oscillatory regime of a local EI population( [74]). They
can also have localized bump solution [75] and spatially periodic patterns
called Turing patterns [76]. Weakly nonlinear analysis, singular perturba-
tion methods, symmetric bifurcation theory, homogenization theory, and
stochastic process are the analytic tools for investigating these patterns of
activity. (See Bressloff (2011) [78], for a comprehensive review.)
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Mean-field solutions can only exist in the limit ofN →∞ and are based
on neglecting correlations among neurons and finite-size effects. Stochas-
tic neural networks have been proposed to account for fluctuations in the
asynchronous state of firing and studying their correlations and finite-size
effects in different studies [79, 82–84]. These networks model microscopic
neural dynamics as a Markov process based on the assumption that neural
dynamics is Markovian. Truncation at the first moment of the mentioned
Markov process is compatible with the mean-field equation. By trunca-
tion of the higher moments based on the assumption that pairwise correla-
tions are of order 1/N and p-moments are of order 1/Np−1, we can derive
closed-form equations for higher moments of activity of neurons or sub-
populations of neurons. The main assumption is that in the asynchronous
state auto-correlations are of order 1/N . Bressloff [87] utilized system size
expansion of master equation to systematically truncate moment hierarchy
based on the system size.

Moreover, the stochastic version of the continuum neural field has been
discussed in Buice et al. [85] and Bressloff [87]. In general, the mesoscopic
description of dissipative systems in which the flow of energy and fluctua-
tions of energy is not based on the equilibrium fluctuations, such as general
reaction-diffusion systems, is very complicated. The absence of detailed
balance in microscopic dynamics and the fluctuation-dissipation theorem
would make a straightforward phenomenological mesoscopic approach like
the Langevin dynamics for systems close to equilibrium impossible. How-
ever, for the non-equilibrium system which has a steady-state close to a
critical point and shows generic scale invariance, effective dynamical de-
scription in terms of mesoscopic field equation is in general possible. In the
critical state, the perturbation in the system spread in all length and time
scales of the system with power-law distributions of size and duration.

In this case, we can write down the dynamics of the system out of equi-
librium in terms of the microscopic master equation, like for interacting par-
ticle systems. Using the well-known coherent path integral procedure first
introduced in the context of reaction-diffusion equation by Doi and Peliti
[44, 45] to form non-hermitian bosonic Hamiltonian and continuum field
representation, internal fluctuations are automatically taken into account.
By using the perturbation approach and renormalization group method, we
can study the scale invariance and critical behavior of the model. Subse-
quently, the field theory representation in terms of path integral over sto-
chastic paths can be translated to the Langevin equation with appropriate
noise term using Janssen-Dedominic functional representation.

Buice and Cowan [85] used coherent path formalism named as Doi-
Peliti functional representation [44, 45] to translate the microscopic master
equation to a path integral representation for activity fields. One advantage
of their method is that the study of scale invariance at criticality in the func-
tional representation is possible. They proposed that the stochastic neural
field equation for the excitatory system at a critical point can be written
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in the form of Langevin’s description of directed percolation. Cowan et
al. [88] used the method of path integral representation in the stochastic
model of spiking neurons supplemented by anti-Hebbian synaptic plasticity
as the self-organizing mechanism. Their network possesses bistability close
to the saddle-node bifurcation point which is the origin of the avalanche be-
havior in the system.

In the next section, we introduce the balance of inhibition and excitation
as the control parameter that tunes the system near the critical point.

1.4. Balance of Inhibition and Excitation. The role of feedback in-
hibitory currents and tuning the strength of this feedback in the EI popula-
tion is of significant importance for studying spontaneous activity. Inhibi-
tion is generated by a specific type of neurons called inter-neurons which
comprise only about 20% of the total number of neurons and are generally
forming short-ranged connections in comparison with excitatory synapses.
Local inhibitory feedback shapes the activity of the excitatory population
by restricting the spatial propagation and prohibiting the persistence of a
high level of activity in the local population of neurons.

There must be a balance of excitation and inhibition which prohibits the
network from high firing synchronized active state while poising the system
close to the edge of the activity. At this dynamical regime, neurons show
rapid response to the change in the input.

Inhibitory-Excitatory balance can lead to the oscillatory or the avalanche-
type activity in local populations and the emergence of waves and fronts in
larger scales of cortical activity. At the level of individual neurons, this
balance leads to a highly irregular firing of neurons with a coefficient of
variation (CV) of the inter-spike intervals being close to one resembling
Poisson point process [89]. Studies using the voltage clamp method that
track conductance of excitatory and inhibitory synapses on neurons both in
vivo and in vitro, confirmed that there exist proportionality and balance of
inhibitory and excitatory currents during Up-state [91], sensory input [90]
and spontaneous activity [93].

Van Vrewsjik and Simpolinski [80, 81] introduced a sparsely balanced
network with strong synapses in which in a balanced state (time and population-
) average excitatory and inhibitory inputs cancel each other and the neu-
rons’ firings are fluctuation driven with excitatory and inhibitory rates lin-
early related to the external input strength. In their model, each neuron is
connected to k other presynaptic neurons and synaptic connections are of
order O(1/

√
k) which means that the mean inhibitory and excitatory cur-

rents are of order O(
√
k). Synaptic strengths are selected, so that only

√
k

number of excitatory spikes are needed to cross the threshold. In order
to have solutions for the mean population activity, i.e. RE = F (IE) and
RI = F (II), apart from zero(inactive) and one(saturated), the total input
to excitatory population IE = EExt + mE − JEmI = O(1/

√
k) and ac-

cordingly inhibitory neurons should vanish to leading order in k. In the
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large k limit, both mE and mI depend linearly on the external input to the
cell. They argue that for the network to reach a balanced state, saturated
and quiescent states have to be unstable, which is satisfied by certain con-
ditions on weights. Previously mentioned works of Brunel and Hakim on
sparsely connected networks also pinpoint a balanced regime for excitatory
and inhibitory current strengths [66, 67]. Because the network is settled in
a balanced state, a small deviation from the balanced input leads to a lo-
cal change in firing rate. Therefore, the system is highly sensitive to input
while maintaining a low firing rate and highly variable spike trains at the
individual neuron level.

Organizing principles that cause the balanced state and conditions on
weights and external input that give rise to it are of particular importance.
The main hypothesis is that activity-dependent synaptic plasticity rules,
which change the connection strengths of both inhibitory and excitatory
synapses according to the activation of their presynaptic or/and postsynap-
tic neurons, are the regulating mechanisms for reaching the balanced state.
Using only inhibitory plasticity, Vogels et al. [94] investigated how Synaptic
Time-dependent Plasticity, balances excitation and inhibition in local sub-
populations of an EI-interconnected network. This will lead to a receptive
field counterpart for the inhibitory subpopulation that is of the same shape
as an excitatory one. Detailed balance of excitation and inhibition leads to
a sparse and low amplitude output for stimuli, which is in agreement with
experimental results. In the network architecture they have used, excitatory
stimuli reach the target region through an excitatory pathway and an indirect
inhibitory pathway, therefore, the inhibitory signal in each sub-population
is a delayed shadow of excitation. In contrast, in this work, we consider the
case of local inhibitory connections, and therefore the inhibitory feedback
is originated from the target population activity and not the stimuli. Deco
et al. [18] investigated that strong local feedback can compensate longer-
range excitatory excess in input and lead to a stable asynchronous state at
the EI sub-population. Furthermore, combining both balanced states and
up and down transitions Kumar et al. [95] investigated the clustering ef-
fect in a balanced network which introduces a bi-stability in local clusters
with a discrete transition between low and high firing rates. Here, dynamic
fluctuation causes transitions between these states.

Neurons can still be in a fluctuation-driven state at which total aver-
age currents set the average stationary membrane potential to a value less
than the threshold, but fire with a high rate. To speculate on the regime
of parameters that would match characteristics of spontaneous activity, we
hypothesize that the spontaneous activity results from being close to the
bifurcation point of the mean-field equation from the quiescent state to a
balanced low activity state. In this state, neuron firing has high variabil-
ity and the balance of inhibition and excitation causes the network to show
avalanche dynamics. Near the phase transition of the macroscopic model,
due to the time scale separation of slow dynamic on the center manifold and
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fast modes of activity, the nonlinear Langevin equation with noise term that
is activity-dependent can be a plausible mesoscopic model for the neural
network. Critical slowing down near the bifurcation point of the mean-field
equation results in the separation of time scale between critical degrees of
freedom and fast parameters, the emergence of the order parameter, and crit-
ical fluctuations. The hypothesis is that the neural system is poised at the
critical point separating active and inactive states with noise intensity that is
proportional to the activity rate. Once choosing the noise term heuristically
and constructing the Langevin type mesoscopic equation, we can use field
theoretical representations of Langevin equation using Janssen-Dedominic
response functional make it possible to investigate scaling properties of the
model in the critical regime. Perturbation theory and renormalization group
methods can be used to study critical dynamics.

As we stated before, for the system to show absorbing phase transitions,
we need to fine-tune the coefficient of the linear term, i.e. r := λ − σ =
0 in equation (1.3). We have suggested that synaptic plasticity for both
inhibitory and excitatory synapses and also short-term synaptic plasticity
which operates on much longer time scales than rate dynamics, can bring
the system close to this bifurcation point. However, the region of the param-
eter space corresponding to the critical behavior can be enlarged if we con-
sider the inhomogeneity and modular structure of the neural network. As
we know, the anatomical structure of the brain influences critical dynamics
and vice versa. As structure and dynamics have reciprocal relations, self-
organization of the structure into the hierarchical modular structure can be
an important ingredient for the critical dynamic that we observe. In mod-
ular self-similar networks, specialized neural clusters contain smaller and
more specialized neural clusters at many spatial scales. In systems with
generic scale invariance, criticality appears over a region of the parameter
space with nonzero measure.

Moretti and Munoz [96] showed that hierarchical modular structure in
neural networks extends the region of criticality. Below the critical point
and in the sub-critical region of the mean-field equation there is a region of
the parameter space that shows scale-invariance and power laws called the
Griffith phase. Heterogeneity brings about regions that are more connected
and accordingly more active. In the Griffith phase, while the whole network
is in a quiescent state, activity in regions with more connectivity decay with
a longer time constant. Wang et al. [97] showed that modularity in the SOC
model of Levina et al.(Eq.(1.4)) can widen the range of coupling strength
that leads to criticality. Similarly, Massobrio et al. [98] showed that the
scale-free network architecture (i.e. power-law distribution of degree) and
larger standard deviation of weights will widen the region for the critical
state. Robinov et al. [99] investigated in a simulation analysis the interplay
of modular connectivity, synaptic plasticity, and the emergence of power
laws. As in previous studies, they have asserted that hierarchical modularity
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enables a broader critical regime while STDP tunes the system to reach the
critical regime.

Being at a critical regime, besides explaining the scale-free character-
istic activity of the neural network, may be seen as serving functional and
computational purposes. In the next section, we review some of the most
important works in this direction.

1.5. Functional Benefits of Being in the Critical State. Criticality
has been claimed to be an optimal state for computation and information
processing. Shew et al [101] showed that the cultured cortex slice which op-
erates in the avalanche regime possesses maximum dynamic range. More-
over, an imbalance of excitation and inhibition would cause the network
to respond weaker to the input. They used the following indicator for the
dynamical range :

∆ = log(
S0.9

S0.1

)

where S0.9 is the input amplitude that leads to the output firing rate of value
0.9Rmax. In another work, Shew et al. [102], show that information capac-
ity measured as the entropy of binary LFP patterns (defined by assigning 1
to active sites and 0 to inactive ones) of spontaneous and stimulus-evoked
states, and information transmission capability defined as mutual informa-
tion of input and output are maximized when the EI system resides in the
balanced regime with avalanche dynamics. Yang et al. [103] reported max-
imized variability of synchrony at the onset of synchronization. They used
Hilbert transform to obtain the phase trace for LFP signals and defined Ku-
ramoto order parameter as a synchrony measure during bursts. The entropy
of this random variable is maximized at the regime of the balance of inhibi-
tion and excitation. This indicates a moderate level of synchrony with high
variability at the critical point.

Poil et al. [104] used DFA analysis to study long-range temporal cor-
relations and show that in the regime of the balance of excitation and in-
hibition, oscillations have scale-free amplitude modulation. Lombardi et
al. [105] showed that the power spectral density s(f) = F (C(τ)) scale
as S(f) ∝ f−βG(f/L−γ) with β = 1.1 and γ = 0.2. In Timme et
al. [106], authors utilized the Tononi measure of complexity considering
sub-sampling effects in both a simplified cortical branching model and cul-
ture data and find out that complexity is maximized in the critical systems.
Yang et al. [5] showed that maximal information capacity is achieved in
the region of the dynamical space that shows the excitation and inhibition
balance, oscillation, and avalanche patterns. Dynamical balance of excita-
tion and inhibition leads to irregular firing, which results in high accuracy
and speed of information relay in terms of firing rate. On the other hand,
synchrony reduces redundant spikes. Although strong or weak synchrony is
pathological, a moderate level of synchrony is crucial for information trans-
fer. Moreover, neural avalanches are shown to be the state which optimizes

24



the response range of stimulus intensities, the amount of information that
can be transferred, and the variability of spontaneous synchrony. Therefore,
in an avalanche oscillatory regime, a low firing rate and maximal energy ef-
ficiency can be achieved simultaneously. The neural firing rate correspond-
ing to maximal energy efficiency is constrained in the range of 1− 10Hz.

1.6. Arguments Against the Critical State of the Brain. It should be
noted that despite mentioned experimental results there exist reports which
claim that power-law distributions might not be the best fit for neural data.
In a paper by Priesemann et al. [107] by parallel spike recording and LFP
signal analysis in vivo found out that the avalanche distribution matches a
log-normal distribution better than power-laws. Even by considering the ef-
fects of sub-sampling, simplified critical models fail to match the empirical
data. They found that simplified SOC models would fit the data if they are
in a slight sub-critical regime and are subject to a sufficient external drive,
which allows a melange of avalanches and destroys the separation of time
scales. Priesemann et al. [108] investigated the case in which a neural model
driven by an inhomogeneous Poisson process can show pseudo power laws
without being at criticality. In this case, inhomogeneous Poisson process
produces avalanches with statistics of the sum of exponential which leads
to a power-law size distribution with exponential cut-off.

Martinello et al. [109] proposed a model for casual avalanches based
on a simple contact process for avalanches. In this model, each active site
is assigned to an avalanche Ak. The dynamics of a just created avalanche
in their setting follows ρ̇k =

√
ρkξk(t), which is the Langevin equation for

mean-field description of a branching process.
In another work, Villegas et al. [110] argued that power laws can be an

artifact of time series thresholding. Touboul et al. [111] claimed that spiking
neural networks in the asynchronous irregular state can show scaling and
power-laws of avalanche size and time distribution without being critical.
Destexhe and Touboul [112] in a recent work summed up arguments against
some methods of collecting and interpreting the experimental results. These
arguments should be taken into account in the study of critical dynamics
both in experiments and modeling. In general, scaling relations between
exponents are stronger indications of critical state than power laws.

1.7. Organization of the Current Work. The majority of self-organizing
critical neural models are based on an excitatory population of neurons with
slow drive accompanied by adaptive weight or degree of connectivity which
tunes the non-conservative system close to the critical point. In this work,
we investigate a network of both excitatory and inhibitory neurons and also
abandon the time scale separation between internal dynamics and external
drive. We start by studying mean-field equations for the dynamic of average
excitatory and inhibitory rates. Supplementing the EI population dynamics
with long-term and short-term plasticity rules, we observe that the system
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is self-tuned to the region corresponding to the balance of average excita-
tion and inhibition arriving at each neuron. This state is very close to the
Bogdanov-Takens bifurcation point of the mean-field equations for EI pop-
ulation rates. We observe that the activity pattern in this region of the pa-
rameter space is in the form of irregular bursts of activity (i.e. avalanches).
Close to the BT bifurcation point, the avalanche size and time distributions
are of the power-law form with exponents matching those from the branch-
ing process. Therefore, in summary, the self-organizing parameter in our
system is the balance of excitation and inhibition, and the self-organizing
principle is the long-term and short-term synaptic plasticity. Furthermore,
reduced dynamics for an excitatory population close to the BT bifurcation
point and the balanced regime are of the form of the Langevin equation for
directed percolation.

In chapter 2, we will introduce the conductance-based model neuron
and its response to the impulse and Poisson input. Using the Fokker-Planck
equation for the dynamics of membrane potential and the first passage time
distribution, we approximate the neuron’s gain function in the limit of low
firing rate and at the point where the stationary average membrane poten-
tial is near the firing threshold. We have investigated the condition for the
output spike train to be of Poisson point process type in response to Poisson
input. Linear Poisson approximation is introduced as a linearization of the
gain function at values of (E, I) input rates that puts the stationary aver-
age membrane potential at an optimal value VOPT . At this level of average
membrane potential close to the middle of the membrane potential range,
[Vrest, Vth], which is reached by the balance of average excitatory and in-
hibitory currents, the firing of the neurons by the fluctuations in the input
shows the highest variability.

In chapter 3, we consider a population of excitatory and inhibitory neu-
rons both sparsely and all-to-all homogenously connected, i.e. network of
identical neurons with the input to all neurons having the same statistics.
Considering homogeneity in the spatial domain and neglecting temporal
fluctuations, one can write down mean-field dynamics for the average exci-
tatory and inhibitory rates. Analyzing bifurcations of the coupled equation
for population rates by selecting the external drive to excitatory population
and strength of average excitatory connections as control parameters, we
focus on the region in parameter space that allows a low firing rate of sin-
gle neurons. Therefore, in this regime in which average input currents are
canceling each other, neurons’ firing is due to fluctuations in the input, and
therefore, interval times between spikes show high variability. It is impor-
tant to note that the external drive alone does not lead to the firing of the neu-
rons. Instead it is the internal synaptic connections among neurons which
are tuned to deliver a balance of excitation and inhibition input that cause
the firing. Low firing rate state and quiescent state can coexist and form
a bi-stable system that shows stochastic jumps between these states due to
internal or external fluctuations. On the other hand, the quiescent state in
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the absence of bi-stability may also lose stability through Hopf bifurcation
and low amplitude and slow oscillations emerge in the system. Saddle node
bifurcation producing the low firing fixed point and Hopf bifurcation line
destabilizing quiescent state meet each other at the BT bifurcation point.
We will discuss both by simulation and analytic discussion that close to
this point, avalanches with power-law size distribution besides oscillations
emerge in the system. We will discuss that the BT point coincides with
the condition on the balanced input to excitatory and inhibitory cells and
condition on Poisson firing statistics.

For the neural network to operate in a balanced regime, there must be
a mechanism that adaptively tunes connection strengths. In chapter 4, we
propose a mean-field synaptic dynamics based on Long-term Synaptic Time
Dependent Plasticity(STDP) for both inhibitory and excitatory synapses
that delivers the network close to the BT bifurcation point of the mean-
field equation. Plasticity occurs in a very slow time scale compared to the
synaptic dynamic and this enables us to apply averaging on the input and
output spike trains. Furthermore, we discuss how short-term synaptic(STP)
depression of excitatory synapses can broaden the region of the phase space,
here the external excitatory input and the average connection strength be-
tween excitatory neurons, in which avalanche dynamics occur. Therefore,
even at higher input rates, STP acts as a homeostasis mechanism that self-
tunes the network in a shorter time scale compared to long-term plasticity.
On the other hand, STP can cause bi-stable alternation between the quies-
cent and active state as a mechanism to produce Up-Down states transition.

In chapter 5, we introduce the Wilson-Cowan model and study condi-
tions on Turing instabilities and Local Hopf bifurcation.

To study the finite-size effect as the internal noise which can make the
system show behavior different than mean-field solutions especially near
bifurcation points, we either have to heuristically specify noise characteris-
tics near a mean-field solution, or start from a description of the system at
a microscopic level which is compatible with the mean-field equation upon
coarse-graining. In the former case, the fact that in a sparsely connected
network, neurons’ spike trains are weakly correlated and the spiking pro-
cess is Poisson, leads us to assume that the fluctuations are local and the
magnitude of them is proportional to the activity rate. Therefore, heuristi-
cally, we can model the internal noise by a white noise with a variance of
R(x, t)√

N
and add this fluctuating term to the mean-field equation for the av-

erage population rate of activity. In Chapter 6, we introduce a microscopic
model based on Poisson neurons and derive fluctuations in the stationary
state which depend linearly on the activity rates. Afterward, we present a
mesoscopic model for the neural activity near phase transition that includes
a noise term and a loading mechanism that regulate it near to BT bifurcation
point. The hypothesis is that the neural system wanders around this phase
transition point.
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2. Single Neuron Model

We start by introducing and analyzing the single neuron model as the
basic computational element in the neural network and its response to var-
ious patterns of input. Neurons are the elementary information processing
units in the nervous system. They are enormous in quantity with a density
of 104 per 1mm3 and connected to eachother in a complex way. They are
located in a sea of ions and when at rest(not active), they maintain a po-
tential difference between internal and external ion concentrations through
numerous ion gates on their membranes. Membrane voltage, the differ-
ence of electric potential between inside and outside of the cell, has the rest
value around Vrest = −65mv. Ion channels maintain concentration gradi-
ents with a higher concentration of Na+ and Ca2+ outside the cell and a
higher concentration of K+ inside the cell. In most neurons, three main
components can be distinguished: dendrite, soma, and axon. Input from
other neurons in from of ion currents is collected by dendrite and transmit-
ted to soma, if the total input is larger than a threshold then the neuron goes
through a process called spiking and sends a signal to other neurons via the
axon. Spikes are immediate depolarization that is generated by depolariz-
ing synaptic input which gradually activates sodium channels and causes an
inflow burst of sodium ions leading to a spike, at this high potential level,
K+ ion channels will open, and with an outflow of K+ neuron’s membrane
potential decrease toward rest values.

Integrating input and producing the spike is conducted in a compli-
cated nonlinear way. The process of generation of a spike can be well de-
scribed by the Hodgkin-Huxley model which is a set of coupled equations
for voltage-dependent k+ andNa+ channels and leak current which models
other ion channels activity. This model based on the ion current flow is very
complicated to work with in the case we want to investigate the network of
spiking neurons. Therefore, many simplifications have been presented to
model spiking behavior. Here, we discuss one of them, namely integrate
and fire model neuron in which the change in the membrane voltage of the
neuron receiving time dependent synaptic current i(t) follows :

C
dv(t)

dt
= gLeak(vLeak − v(t)) + i(t), (2.1)

for v(t) < vth . When the membrane voltage reaches vth = −50mv
neuron spikes and immediately its membrane voltage resets to vrest which
is equal to vLeak = −65mv.

There are two main types of neurons called excitatory and inhibitory.
Thus, currents to each cell may have inhibition or excitation effects depend-
ing on the type of the presynaptic neuron. The incoming signal from other
neurons is in the form of diffusive ions called neurotransmitters. These
molecules would bind to receptors on the postsynaptic neuron which through
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some intermediate molecular mechanism causes voltage-dependent ion chan-
nels on the membrane to open up by changing the conductance of them.
Inhibitory currents would ultimately cause to open up k+ or cl− channels
and therefore have hyper-polarization effect (when the membrane potential
of the neuron is above −80mv), vice versa excitatory input current leads
to depolarization through opening up of Na+ and Ca+2 channels. Time
coarse of opening and closing these channels can be modeled as the evo-
lution of the conductances and is dependent on the type of synapses with
their specific type of neurotransmitters and receptors. Mainly there exist
two types of Inhibitory synaptic currents, fast GABA-A synapse with very
short rise time and relatively small decay time of 5ms and slow GABA-B
synapses working through secondary messenger ions, with a rise time of
about 30ms and much longer decay times around 100− 300ms. Similarly,
based on receptors existing in an excitatory synapse two types of excitatory
synaptic currents exists, fast AMPA current with negligible rise time and de-
cay constant of around 3− 5ms and slower NMDA receptor acting mainly
through the inflow of Ca+2 which have a much longer rise(∼ 10ms) and
decay(40− 100ms) time constants [113]. Slow excitatory synapses are be-
lieved to have effects on long-term potentiation and depression of synapses
through Ca+2 influx and probably are less important in models of spiking
activity.

In the following, we would concentrate on a model with just one type
of inhibitory and one type of excitatory synapses, which can be seen as
the average effect of the two types of synapses. We can write the synaptic
inhibitory and excitatory current as :

i(t) = ginh(t) ∗ (VRinh − v(t)) + gexc(t) ∗ (VRexc − v(t)) (2.2)

VRinh and VRexc are reverse potentials of excitatory and inhibitory ion
channels and based on experimental studies we choose values of −80mv
and 0mv for them, respectively [113]. ginh(t) and gexc(t) are the conduc-
tances of inhibitory and excitatory ion channels respectively. These con-
ductances are changing by the inhibitory and excitatory input to the cell.
Each spike of a presynaptic inhibitory or excitatory neuron j to a postsy-
naptic neuron k that is received by the neuron k at time t0 , will change the
inhibitory or excitatory ion channels’ conductance of postsynaptic neuron
for t > t0 according to :

gkInh(t) = wkj ∗ ginh0 ∗ exp(−t− t0
τ inhsyn

) (2.3)

gkExc(t) = wkj ∗ gexc0 ∗ exp(−t− t0
τ excsyn

)

Here, we assumed that the rise time of synaptic conductances are very
small compared to other time scales in the model and therefore, we have
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modeled the synaptic current by a decay term with the synaptic decay time
constant, τsyn, which we assume to be the same value of 5ms for both in-
hibitory and excitatory synapses.

The fact that effect of presyanptic spikes on the membrane voltage of the
postsynaptic neuron is dependent on the membrane voltage of the postsy-
naptic neuron makes neuron behavior different than integrate and fire model
with passive membrane , in which:

i(t) = wkj ∗ q0 ∗ exp(−
t− t0
τsyn

)

As can be seen from equation (2.2), when the membrane potential is
close to Vrest, the effect of excitatory input will be stronger than when the
neuron membrane potential is close to Vth. Vice versa, close to Vth effect
of an inhibitory input would be more profound. As VRexc is much greater
than the interval [VRinh, Vth], the excitatory ion channels’ conductance will
depend minimally on the membrane potential. With the mentioned values

for reverse potentials, an excitatory spike will cause a
VRexc − Vrest
VRexc − Vth

= 30%

higher change in the postsynaptic potential when V is close to the reset
value compared to being at the threshold. On the other hand, the inhibitory
input leads to a two times greater membrane potential change when it ar-
rives at a neuron whose membrane potential is near Vth :

VRinh − Vth
VRinh − Vrest

= 200%

In the case of feedforward inhibition to the cell which arrives after ex-
citatory input with a transition delay, the mentioned fact makes inhibition
more effective and can compensate for the delay to an extent and sharpen the
time window for the excitation. This would eliminate late excitations and
facilitate synchronization of the neurons in the excitatory pool. A longer
decay time for inhibition such as GABA-B receptor type would also elimi-
nate further excitations. In the next section, we consider the response of the
neuron to impulse input and investigate the role of the strong dependence
of inhibitory current on the membrane potential and the delay between ex-
citatory and inhibitory inputs.

2.1. Impulse Response of the Neuron. In this section, we consider
the response of the neuron to synchronous excitatory and inhibitory input.
We know that usually synchronous arrival of 20 − 30 presynaptic excita-
tory spikes are needed for activation of the target neuron. On the other
hand, as we described before, network activity of avalanche type resembles
relatively synchronous excitatory which is followed by an inhibitory syn-
chronous input. This motivates us to consider the firing condition of the
target neuron receiving impulse input.
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First, we present the necessary condition that an inhibitory and an ex-
citatory impulse input at time t0 namely, I0

inh and I0
exc lead to an action

potential. Suppose at time t0 the postsynaptic neuron membrane potential
is V0 and it receives simultaneous spikes from inhibitory and excitatory af-
ferents of total magnitude wI and wE , respectively. The neuron would spike
if the maximum of the potential curve v(t) would reach a higher value than
Vth. Suppose this maximum occurs at time tm, then from equating the right
side of equation(2.1) to zero using equations (2.2) and (2.3) we have:

v(tm) =
gleakvleak + e

−
tm
τ (ginh0 wIVRinh + gexc0 wEVRexc)

gleak + e
−
tm
τ (ginh0 wI + gexc0 wE)

(2.4)

This is a monotonically decreasing function of tm. Therefore, the nec-
essary condition of firing is that v(tm = 0) > v(th) . This leads to the
following constraint for the amplitude of excitation impulse in terms of the
inhibitory one:

wE >
gleak
gexc0

(
Vleak − Vth
Vth − VRexc

) + wI
ginh0

gexc0

(
VRinh − Vth
Vth − VRexc

) (2.5)

For this boundary-value of excitatory input, the time of firing tm would
be obtained by setting the right hand side of Eq(2.4) to Vth and solving
for tfire = tm. Higher the value of wI , the minimum value of wE that
causes firing would lead to a smaller first firing time. Fig.6 shows minimum
excitation impulse needed for firing with V0 = Vrest. Minimum excitation
increases semi linearly while the corresponding firing time decreases when
we change the inhibition strength. The latter effect can not be seen in the
non-conductance current-based LIF model.

A simple argument can show why the firing time decreases by increas-
ing both inhibitory and excitatory impulse strengths. As wI increases, the
minimum value of wE required for action potential would also increase ac-
cording to the equation (2.4). It guarantees that at the time of firing, when
V (tm) = Vth, the drift of potential by excitation and inhibition approxi-
mately cancel each other, therefore, at tm :

gminexc (tm) = ginh(tm)
VRinh − Vrest
VRexc − Vth

Considering the same synaptic decay time constants for the inhibition
and the excitation input, we have :

gminexc (t0)

ginh(t0)
=
gminexc (tm)

ginh(tm)

which results in the following drift at t0 :
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FIGURE 6. (Left) Minimum amplitude of the excitation im-
pulse needed for the firing of the neuron vs. various in-
hibitory impulse strengths. The red line is the simulation re-
sult and the black one is the necessary constraint of Eq.(2.5).
(Right) The first time of firing of the neuron receiving the
minimum excitation impulse for each inhibitory impulse, for
higher magnitude impulses neurons fire faster. The red curve
is the simulation result and the black one is the approxima-
tion based on Eq.(2.4) and Eq.(2.5).

dv(t)

dt
(t0) = ginh(0)(VRinh − Vrest) + gexc(0)(VRexc − Vrest)

= ginh(0)[(VRinh − Vrest) +
VRinh − Vrest
VRexc − Vth

(VRexc − Vrest)]

= ginh(0)(Vrest − VRinh)[
VRexc − Vrest
VRexc − Vth

− 1]

Clearly this drift will increase by increasing wI which increases ginh(0).
This leads to a higher net drift at t = 0 and higher average curvature of
the potential curve and lower firing time. It is clear that applying higher
excitation than the minimum excitation would decrease the firing time.

When a neuron resides closer to the threshold, the minimum excitatory
current that activates the neuron would be smaller. Suppose that constant
inhibitory and excitatory currents set the stationary membrane potential at
the value Vst and at time t = 0 excitatory impulse of magnitude wE arrives
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at the neuron. We can write down membrane potential dynamics for t > 0
as :

C
dv(t)

dt
= −k(v(t)− Vst) + gexcwE ∗ e

−t
τ (VRexc − Vst) (2.6)

Here, k is the drift coefficient that drags the neuron to the potential level
Vst which stems from the overall effect of the background input.

For the value of minimum excitation at the time of firing, we would have
dv

dt
= 0. Taking ∆V = Vth − Vst and approximating time of firing as :

tm ≈
∆V

<
dv

dt
>[0,tf ]

=
2∆V

dv

dt 0

we can solve for for wminE from equating the write hand side of equa-
tion(2.6) to zero at tm which results in :

wminE =
∆V (1− 0.5kτ)

0.5(VRexc − Vth)gexc
(2.7)

Fig.7 shows that the minimum excitation required for firing in the ab-
sence of inhibition increase linearly with the increase of the distance of the
neuron stationary state membrane potential to the threshold. The blue line
is the approximation of equation (2.7).

So far, we have considered the simultaneous arrival of both excitatory
and inhibitory impulses. Relative delay of inhibitory impulse changes the
balance condition. Suppose again an inhibitory impulse of magnitude wI
arrives after an excitatory impulse with the time delay td. For high values
of inhibitory feedback, minimum excitation would be the value that sets the
neuron to the firing threshold before the arrival of the inhibitory signal at
td. Neurons receiving greater excitatory current will fire faster,i.e before td,
and neurons receiving weaker excitatory current fail to fire.

For lower values of wI , a sufficient amount of excitation leads to firing
time larger than td. In this case, the minimum excitatory impulse should
be higher than their counterpart in simultaneous cases but is lower than the
amount that makes the cell fire before td.

Therefore, for weak inhibitory and excitatory currents, delayed inhibi-
tion increase the minimum excitation for firing but reduces the time of firing
(compare green curves in Fig.8 related to the case with the delay with black
ones related to the case with no delay between excitation and inhibition).
However medium to high amplitude of delayed inhibition would set mini-
mum excitation to a value that corresponds to firing right before the arrival
of inhibitory current. This means that for the value of excitation more than
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FIGURE 7. Minimum excitation necessary for firing versus
the steady level of neuron potential. The red curve is the
simulation result and the blue curve is approximation by
Eq(2.7).

this value neurons will fire before the arrival of inhibition and for value be-
low that neurons will not fire at all. Therefore, delayed strong inhibition set
a time window for firing.

2.2. Response of the Neuron to the Constant Input. Suppose the tar-
get neuron receives a constant number of excitatory and inhibitory spikes
per unit time, respectively denoted by ρE and ρI . Further, let us assume all
the excitatory spikes to have the same strength, wE , and all the inhibitory
spikes are of magnitude wI . Conductance of the excitatory channels gexc(t)
is modified by excitatory spikes arrived at times s < t :

gexc(t) =

∫ t

−∞
g0
excwEρEexp(−

t− s
τ excsyn

)ds = g0
excwEρEτ

exc
syn

The same formula applies to the constant inhibitory current. The po-
tential of the target neuron fed by this current will reach a stationary value.
If this stationary limit is greater than Vth, then the target neuron will fire
periodically. This constraint reads as :

ρI <
gleak ∗ (Vth − Vrest) + g0

exc ∗ wE ∗ ρE ∗ τ ∗ Vth
g0
inh ∗ wI ∗ τ(Vinh − Vth)

(2.8)
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FIGURE 8. Inhibiton current to the neuron arrives with four
different values of delay after excitation. (td = 0 black
curves, td = 0.5ms green curves , td = 1ms blue curves,
and td = 2ms red curves.) .(Top)The minimum excitatory
current that makes the neuron fire for different strengths of
inhibitory input. (Middle) Membrane potential tracks for the
value of inhibition impulse WI = 20. (Bottom) Firing time
of the neuron in response to the minimum excitatory current
associated with each inhibitory input.

The stationary limit of the potential is a weighted average of reverse
potentials as follows:

Vst =
gleakVleak + g0

excwEρEτVRexc + g0
inhwIρIτVRinh

gleak + g0
excwEρEτ + g0

inhwIρIτ
(2.9)

If input rates satisfy equation (2.8), the output firing rate would be :

ρout = (gleak + g0
excwEρEτ + g0

inhwIρIτ)(ln
Vrest − Vst
Vth − Vst

)−1 (2.10)

Fig.9 shows the output firing rate for three different fixed values of ex-
citatory input rates versus a range of inhibitory input rates.

2.3. Response of the Neuron to the Poisson Input. In this section,
we analyze the response of the neuron to a specific type of current, namely
Poisson input. The reason to consider this input is that in an asynchronous
firing state neurons receive Poisson input from other neurons. To see this,
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FIGURE 9. Firing rate of a neuron receiving three different
values of constant excitation versus different values of con-
stant inhibitory input. Simulation and equation (2.10) match
and the cutoff is determined by equation (2.8).

assume number of afferents to each neuron is high and the average pop-
ulation firing rate, r, is approximately constant. Considering homogene-
ity in the number of connections and weights , then at any time interval
∆t, the probability distribution that a neurons have k presynaptic active
neurons out of the total n presynaptic neurons is binomial f(n, k, r) =[
n
k

]
(r∆t)k(1 − r∆t)n−k, which in the regime of large n and small r∆t

agrees with a Poisson distribution with parameter nr∆t.
In the rest of this section, we take the input to the neuron as station-

ary homogeneous poissonian inhibitory and excitatory spike trains. In this
case, the number of spikes in a time interval ∆t is stochastic and poissonly
distributed with following distribution :

p(k[t,t+∆T ]) = (λ∆T )k
e−λ∆T

k!

The output firing rate of the neuron is depicted in Fig.10(Left). In
comparison to the output curve of the constant input (Fig.9), this curve is
smoother and the transition from the silent state to the active state does not
show a sharp jump. Sufficiently below the critical inhibition value, in the
drift-dominated regime, the neuron output for Poisson and constant input
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FIGURE 10. (Left)Firing rates of a neuron receiving three
excitatory Poisson input with different rates (Red curve cor-
responds the highest) vs. the Poisson inhibitory input rate.
Dashed lines are the response of the neuron to the constant
input with a magnitude equal to Poisson rates. (Right) Co-
efficient of variation of the spike intervals of a neuron re-
ceiving Poisson inputs of the same rates as in the left graph.
Near cutoff, neuron fires with CV close to one.

matches, however, close to this point the fluctuation effect caused by sto-
chastic arrival of spikes is more evident. Moreover, the stochasticity in the
input leads to stochastic firing at the output. Fig.10(Right) shows how the
coefficient of variation (CV) of the firing time intervals of the output spike
train changes by changing inhibitory input. This quantity is defined as:

CV (δt) =
σδt
〈δt〉

where δt is the set of firing time intervals of the target neuron subjected
to a stationary Poisson input. When excitatory input is much stronger than
the inhibitory one, the output firing pattern becomes more regular and the
CV value is small. However, close to the inhibition cutoff, CV is getting
close to unity, which is a characteristic of the Poisson point process.

2.3.1. Potential Distribution of a Neuron Receiving Poisson Input. The
Poisson input in the limit of high firing rate and small synaptic weights
can be approximated by a diffusion process. Suppose, in the time interval
[t, t+dt], N(t, t+dt) excitatory spikes arrive at the cell each with synaptic
strength we. As the spike arrival is a Poisson process with the rate λ, the
distribution of N(t, t + dt) is Poisson and all the cumulants of the random
variable N would be equal to λdt. This leads to the following cumulants
for I(t, t+ dt) = weN(t, t+ dt) :
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κ1 =〈It,t+dt〉dt = weλdt

κ2 =V ar(It,t+dt) = w2
eλdt

κ3 =w3
eλdt

Higher cumulants can be ignored if we assume that w3
eλ goes to zero

in the limit of a high number of afferents. In theory, this can be achieved

by assuming weights to scale as we =
W√
k

in which k is the number of

presynaptic neurons. In this case, λ ∼ O(k) and the average excitatory and
inhibitory currents are each of order O(

√
k), the variance of the current is

of O(1) and higher cumulants vanishes in the limit of large k. In this case,
one can consider I(t, t + dt) to be a Gaussian random variable with the
mean and variance according to the above equation. It can also be written
as follows:

I(t)dt = weλdt+ we
√
λdWt

where Wt is a Wiener process.
It should be noted that with the aforementioned scaling of the synaptic

weights both the inhibitory and excitatory rates diverge in the limit of k →
infty. Therefore, a nontrivial output firing requires a balance of the average
inhibition and excitation.

In the conductance based model, the input to the cell causes a change
in the conductance. As the input is stochastic, the conductance is also a
stochastic variable which can be written as :

g(t) =

∫ t

− inf

g0e
−
t− s
τ I(s)ds (2.11)

=

∫ t

− inf

e
−
t− s
τ g0weλds+

∫ t

− inf

e
−
t− s
τ g0we

√
λdWs

The second term is the integral of a Wiener process with an exponential
kernel. For the stochastic process Yt =

∫ t
− inf

f(s)dWs, we can easily verify
that:

〈Yt〉 =0

〈Y 2
t 〉 =

∫ t

− inf

f(s)2ds

If we consider a stationary and homogeneous Poisson process as the
input, g(t) would also attain a stationary probability distribution. Using the
above equation, mean and variance of g(t) would reach following limits :
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FIGURE 11. From Top-left to Bottom-right: Mean,
Variance, stationary probability distribution, and auto-
correlation of the conductance g(t) of a neuron receiving
Poisson input, respectively. The red lines are the values cal-
culated by the diffusion approximation and the red curve
in the bottom left plot is the Gaussian distribution with
the mean and variance as derived in the text. The auto-
correlation matches equation (2.13). This figure shows dif-
fusion approximation is valid.

〈g〉 =τg0weλ (2.12)

V ar(g) =
τg2

0w
2
eλ

2

The same argument as before justify that higher cumulants would vanish
and one can assume g(t) to reach a stationary Gaussian probability distribu-
tion with the mean and variance as above. Covariance of this process can be
derived by direct multiplication of g(t) and g(t′) and averaging over noise
term from equation (2.11). when t′ > t we have:

〈g(t)g(t′)〉 − 〈g(t)〉〈g(t′)〉 = var(g)e
−

(t′ − t)
τ (2.13)

The same procedure applies to the inhibitory currents. Fig.11 shows sta-
tistics of the conductance g(t) and the applicability of the diffusion approxi-
mation. If we assume the synaptic time scale, τ , is very small in comparison
to the membrane potential time scale, one can ignore the cross-correlation
at different time points and consider Yt = g(t) − 〈g〉 as Gaussian white
noise. In this limit :
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lim
τ→0
〈YtYs〉 = 2τvar(g) lim

τ→0

e
−

(s− t)
τ

2τ
= 2τvar(g)δ(t− s)

This leads to a stochastic differential equation for the membrane poten-
tial evolution in the conductance-based model, when v(t) < Vth :

C
dv(t)

dt
=[gLeak(vLeak − v(t)) + g0weλeτ(vRexc − v(t)) + g0wiλiτ(vRinh − v(t))]

(2.14)

+ξexc(t)(vRexc − v(t)) + ξinh(t)(v(t)− vRinh)
≡ [a− bv] + ξexc(t)(vRexc − v(t)) + ξinh(t)(v(t)− vRinh)

Where ξexc(t) and ξinh(t) are purely random Gaussian process :

〈ξexc(t)〉 = 〈ξinh(t)〉 = 0

〈ξexc(t)ξexc(t′)〉 = τ 2g2
0w

2
eλeδ(t− t′) ≡ Deδ(t− t′)

〈ξinh(t)ξinh(t′)〉 = τ 2g2
0w

2
i λiδ(t− t′) ≡ Diδ(t− t′)

The first line of this equation is the deterministic evolution of the po-
tential. We have defined a and b as coefficients of the drift term. When
the fixed point of the deterministic term , vinf

det = Vst =
a

b
as defined by

equation (2.9) is greater than Vth , the effect of fluctuations is marginal and
the firing of neuron is governed by the drift term. However, when Vst is
below the threshold fluctuations in the input can result in the firing of the
neuron. Fokker-Planck equation corresponding to Eq.(2.14) in Ito interpre-
tation reads as,

∂p(v, t)

∂t
=− 1

C

∂

∂v
[(a− bv)p(v, t)] +

1

C2

De

2

∂2

∂v2
(vRexc − v(t))2p(v, t)+

(2.15)

1

C2

Di

2

∂2

∂v2
(vRinh − v(t))2p(v, t) ≡ − ∂

∂v
J(v, t)

with the boundary condition p(Vth, t) = 0. Density current at v = Vth
is equivalent to the firing rate. This current is fed back to the equation at
v = Vr which can be written as a discontinuity in the membrane potential
derivative,

J(v+
r , t)− J(v−r , t) = J(vth, t− tref ) ≡ r(t− tref )

Stationary probability distribution and firing rate would be obtained by
solving the following equation:
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Jst(v) = r0Θ(v − Vr)

which is of follwoing form :

1

C
{a− bv +

1

C
De(vRexc − v) +

1

C
Di(vRinh − v)}p(v) (2.16)

− 1

C2
{De

2
(vRexc − v)2 +

Di

2
(vRinh − v)2)}dp(v)

dv
= r

for Vr < v < Vth.
Together with the normalization requirement

∫ Vth
−∞ p(v)dv+r0∗tref = 1

one can solve equation (2.16) for both stationary probability distribution
and stationary firing rate. When Vst is sufficiently smaller than Vth , i.e. in
the low firing rate regime, we can ignore the non-linearity caused by the
threshold and write down the evolution of the mean and variance of the
membrane potential as follows:

d〈v(t)〉
dt

=
1

C
(a− b〈v(t)〉)

dV ar(v, t)

dt
= −2b

C
V ar(v, t) +

1

C2
[De〈(VRexc − v(t))2〉+Di〈(v(t)− VRinh)2〉]

= (−2b

C
+
De +Di

C2
)V ar(v, t) +

1

C2
[De(VRexc − 〈v〉)2 +Di(VRinh − 〈v〉)2]

This leads to the stationary value for the average and the variance of the
membrane voltage :

〈v〉st =
a

b
(2.17)

V ar(v)st =
1

2bC − (De +Di)
[De(VRexc − 〈v〉st)2 +Di(〈v〉st − VRinh)2]

As it can be seen from Fig.14-Bottom and Fig.15-Right, the station-
ary standard deviation of membrane potential in the case of the Poisson
input does not show high sensitivity to the input rates when the station-
ary mean potential is fairly away from the threshold. In Fig.14-Bottom,
increasing excitatory input rate by 60% causes 2% increase of σ(V )st on
average for different values of 〈v〉st. This can be speculated from equation
(2.17) as both the input noise and drift term in the numerator and the de-
nominator depend linearly on input rates. Suppose 〈v〉st is fixed for a set of
inhibitory and excitatory rates, which means there is a linear relation of the
form ρE = κρI + c originating from the condition on the fixed stationary
average membrane potential. In the limit of high rates, stationary variance
approaches a constant value:
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V ar(v)st =
σ2

2bC
=
α− β

λE

γ − η

λE

(2.18)

α

γ
=
w2
Eτ

2g2(VRexc − 〈Vst〉)2 + wEwiτ
2g2(VRexc − 〈Vst〉)(〈Vst〉 − VRinh)

wEτg + weτg
VRexc − 〈Vst〉
〈Vst〉 − VRinh

=
τg0(VRexc − 〈Vst〉)(〈Vst〉 − VRinh)[wE(VRexc − 〈Vst〉) + wI(〈Vst〉 − VRinh)]

VRexc − VRinh
β

η
=
wiτg0(〈Vst〉 − VLeak)(〈Vst〉 − VRinh)2

〈Vst〉 − Vleak
= wiτg0(〈Vst〉 − VRinh)2

when
α

γ
>

β

η
, the stationary membrane potential’s variance and out-

put rate would increase by proportianl increase of both inhibitory and ex-
citatory rates and reaches a constant value

α

γ
. This condition translates to

wE(VRexc−〈Vst〉)2 > wI(VRinh−〈Vst〉)2. As far as 〈Vst〉 is adequately lower
than Vth, wE(VRexc − 〈Vst〉) ≈ wI(VRinh − 〈Vst〉) and the condition men-
tioned above holds because (VRexc − 〈Vst〉) is greater than (VRinh − 〈Vst〉)
by a factor of value around 2.

One has to consider that Gaussian approximation is only legitimate in
the case of small τ and low firing rate regime. We want to consider cases in
which these two conditions are not satisfied. Firstly, in higher values of τsyn
and at the stationary values of the average membrane potential lower than
the threshold(low firing regime), there is an inversion to the mentioned sce-
nario. In this case, at sufficiently high values of the input rates, conditioned
on constant average membrane potential, the variance of membrane poten-
tial and accordingly the output rate decrease. (Fig.14-Top). This is due to
the filtering effect of the input by the gradual decay of the synaptic conduc-
tances. At the end of this section, using the method of τ -expansion, we will
consider autocorrelation in synaptic conductance and give more insight into
this observation. The filtering of the high-frequency signal by the slow con-
ductances is a mechanism of gain control. In general, the decay and the rise
time of the inhibitory synapses are longer than the excitatory ones which
would highlight the inhibitory input as the overall strength of it increases
through temporal persistence. Besides, the voltage-dependent inhibitory
current is higher at higher values of the membrane potential. The balanced
average membrane potential is somewhere in the mid-range. Longer synap-
tic decay time constant, higher synaptic strength, delay, and potential de-
pendence of the inhibitory synapses increase the overall inhibition strength
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and compensate for the smaller number of them in comparison with excita-
tory synapses. This should be noted that output rates on the constant voltage
level line with balanced input at V = −57mv, vary linearly with the input
rates at moderate values of rates corresponding to low firing rate regime
(Fig.14-Top).

On the other hand, when the stationary average membrane potential lo-
cates right at the threshold value, in conflict with the low firing regime as-
sumption, equation (2.17) does not hold and higher rates of balanced input
lead to a higher output rate independent of the value of τsyn (Figure.14-
Middle).Moreover, output rate varies in

√
Iin trend. For analyzing the low

firing rate regime, in subsection (2.3.3), we would linearize the output rate
around the midpoint of the neuron potential range, i.e. at V = −57mv.

In the low firing regime, the stationary probability distribution can be
approximated as:

Pst(V ) =
1√

2πσV (st)

exp(−(V − 〈V 〉)2

2σ2
) + cδ(V − VRest) V < Vth

Pst(V ) = 0 V ≥ Vth

Stationary firing rate is derived from equation (2.16) by plugging in the
Gaussian approximation for stationary potential probability density P (V, t→
∞) = N(〈V 〉, σV (st)):

r =
1

C2

1

2
D(Vth)

2dp(V )

dV |V=Vth

= − b

C

D(Vth)
2

D(〈V 〉)2
∗ (Vth − 〈V 〉)
σV (st)

√
2π

exp(−(Vth − 〈V 〉)2

2σ2
V (st))

)

(2.19)

≈ b√
πC

(Vth − 〈V 〉)√
2σV (st)

(1− (Vth − 〈V 〉)2

2σV (st)2

)

It should be clear that at fixed value of < V > , higher stationary vari-
ance leads to higher output rate in the Gaussian approximation. Fig.12 and
Fig.13 show thr Gaussian approximation for the membrane potential prob-
ability density and the firing rate approximation based on equation (2.19).

We can improve the approximation for the statistics of potential distri-
bution (equation 2.17) and the firing rate (equation 2.19) by considering the
autocorrelation in the conductance. We can use the τ expansion method to
account for the first-order corrections to the Fokker-Planck equation. The

equation
dv(t)

dt
= f(v) + η(t)g(v) where η(t) is colored Gaussian noise

with the correlation,

〈η(t)η(t′)〉 =
H

τ
e

−(t− t′)
τ

corresponds to the following Fokker-Planck equation derived by the ex-
pansion with respect to τ :

43



FIGURE 12. Membrane potential distribution and Gauss-
ian approximation (Blue lines) for two different sets
of inhibitory and excitatory Poisson inputs. The aver-
age membrane potential values are −0.59mv(Left) and
−0.56mv(Right)
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FIGURE 13. Firing rate approximation by Gaussian as-
sumption of equation (2.19) (blue) and by near-threshold
high firing assumption(red) of Eq.(2.25) in the next sub-
section (2.3.2) are compared with simulation result (black
curve). Here, we fix inhibitory input and select a value of
excitatory input rate that leads to a specific mean stationary
membrane potential shown in the x-axis.

∂p(v, t)

∂t
=− ∂

∂v
[f(v)p(v, t)] +H

∂

∂v
g(v)

∂

∂v
{g(v)[1 + τg(v)(

f(v)

g(v)
)′]p(v, t)}

=− ∂

∂v
[(f(v) +Hg(v)g′(v))p(v, t)] +H

∂2

∂v2
{g(v)2p(v, t)}

− τH ∂

∂v
{g′(v)(g(v)f ′(v)− g′(v)f(v))P (v, t)}

+ τH
∂2

∂v2
{g(v)(g(v)f ′(v)− g′(v)f(v))p(v, t)}
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In our case He =
τ 2g2

0w
2
eλe

2
=
De

2
,which results in:

∂p(v, t)

∂t
=− 1

C

∂

∂v
{(a− bv + F (v))p(v, t)}

+
De

2C2

∂2

∂v2
{Ge(v)p(v, t)}+

Di

2C2

∂2

∂v2
{Gi(v)p(v, t)}

where:

F (v) =
De

2C
[−2(vRexc − v(t))− τ

C
(a− bVRexc)] +

Di

2C
[−2(vRinh − v(t))− τ

C
(a− bVRinh)]

Ge(v) =(vRexc − v(t))2 +
τ

C
(vRexc − v(t))(a− bVRexc)

Gi(v) =(vRinh − v(t))2 +
τ

C
(vRinh − v(t))(a− bVRinh)

With these corrections to the drift and the diffusion terms, we can in a simi-
lar approach find the corresponding equations for the firing rate and station-
ary potential distribution similar to equation (2.19) and stationary value of
mean and variance of the potential distribution in a low firing rate regime
similar to equation (2.17). Fig.14 (Bottom) shows that these corrections
lead to a better approximation of the stationary membrane potential vari-
ance in a low firing rate regime. Stationary variance of the membrane po-
tential decreases in higher values of τsyn. From above equation it can also
be seen that at fixed value of stationary average potential, higher rates in ex-
citatory and inhibitory input would lead a to lower stationary variance and
lower rates.

Fig.15 shows the evolution of mean and variance of the membrane po-
tential of a population of neurons each receiving an inhibitory Poisson input
with rate λi and different excitatory input with rate λe with τ - expansion ap-
proximation and without.

2.3.2. Firing Rate and Interspike intervals’ CV Near the Threshold.
When excitatory and inhibitory currents are matched in a way that station-
ary membrane potential Vst would be close to the firing threshold Vth, ap-
proximations in the previous section would not be correct. Here, we calcu-
late the mean and the variance of the interspike intervals when the neuron
receives Poisson input. We use the approximation that fluctuations in the
input are weekly dependent on the voltage level. Therefore, our problem is
reduced to the well known problem of the first passage time of a Brownian

particle evolving as
dx

dt
= −kx + ξ(t) to reach the threshold a . In which

ξ is white noise with variance σ. We want to approximate results for first
passage time moments when the stationary membrane potential is close to
the threshold. The goal here is to obtain approximate analytical results for
the firing rate and the CV of interspike intervals to identify the conditions
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FIGURE 14. (Top-Left and Top-Right) Stationary variance
of the membrane potential and the output firing rates, when
the excitatory rate(x-axis) and inhibitory rates are balanced
so that average membrane potential is at −57mv for three
different values of τsyn = [1 (Blue), 3 (Red), 5 (Black)] ms.
(Middle) Same with average membrane potential tuned at
the threshold value −50mv. (Bottom) Stationary potential
variance for a neuron receiving two different excitatory in-
put rates, 1000Hz(red) and 1600Hz (blue), and correspond-
ing inhibitory input, which places the average potential at a
specific value shown in the x-axis. Solid lines are simulation
results, dashed lines correspond to low firing regimes with
tau approximation, and fine dashed lines show Gaussian ap-
proximation. (τsyn = 2.5ms)
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FIGURE 15. Evolution of the mean and the variance of the
potential distribution of a population of neurons each receiv-
ing a fixed equal value of inhibitory input rate but differ-
ent excitatory rates. Dashed lines are the trajectories de-
termined from Gaussian noise approximation and the dot-
ted lines are derived from the tau expansion method. The
approximation by tau expansion improves the estimation of
variance.(τsyn = 2.5ms)

for the output Poisson firing and the optimal linearization of the output rate
in the low firing rate regime.

For the case of the Poisson current to the cell, the voltage fluctuates
around the mean value 〈V 〉. We assume that this mean value is close to
the threshold and the magnitude of fluctuations is constant. Taking x =
V (t)−〈V 〉, we model the voltage dynamic by the aformentioned Ornstein-
Uhlenbeck process with :

σ2 =
1

C2
{De

2
(vRexc − 〈V 〉)2 +

Di

2
(vRinh − 〈V 〉)2)} (2.20)

k =
1

C
(gLeak + g0weλeτ + g0wiλiτ)

a = Vth − 〈V 〉
k is the drift and a is the first passage time threshold. To determine

first passage time(FPT) statistics let us first review the recursive formula
for FPT moments as discussed in Siegert [114]. Suppose stochastic process
Yt with the conditional probability density P (y, t|y0) satisfies the following
Fokker-Planck equation :

∂p(y, t|y0)

∂t
= − ∂

∂y
[A(y)p(y, t|y0)] +

1

2

∂2

∂y2
(B(y)p(y, t|y0))

with the initial and the boundary conditions P (y, t0|y0) = δ(y−y0) and
P (±∞, t|y0) = 0,respectively .
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First passage time probability density ,ρ(Θ|t, x0) of the stochastic pro-
cess following the above Fokker-Planck equation would satisfy:

ρ(Θ|t, s) = −2
∂

∂t

∫ s

−∞
P (Θ, t|y)dy

Based on this equation, we can write recursion formula for moments of
FPT with diffusion strength B(y) and drift term A(y) as follows:

tn(Θ|y0) = n

∫ Θ

y0

2dz

B(z)W (z)

∫ z

−∞
W (x)tn−1(Θ|x)dx (2.21)

t0 = 1 and W (x) is the stationary probability distribution:

W (x) =
C

B(y)
exp[

∫
dy

2A(y)

B(y)
]

Specially for the first moment we have :

t1(Θ|y0) =

∫ Θ

y0

2dz

B(z)W (z)

∫ z

−∞
W (x)dx (2.22)

We want to apply this last formula in our case. Let us take x = V − a

b
, x0 = V0 −

a

b
and xth = Vth −

a

b
where

a

b
= 〈V 〉st as in equation (2.17).

Then random variable x evolves as
dx

dt
= −bx+ σ(x)ξ(t) where ξ is white

noise with unit variance and :

σ2(x) =
1

C2
{De(vRexc −

a

b
+ x)2 +Di(vRinh −

a

b
+ x)2)} (2.23)

b =
1

C
(gLeak + g0weλeτ + g0wiλiτ)

For the case of the Poisson current to the cell, if the mean value is close
to the threshold, the magnitude of fluctuation does not vary much in the
interval [Vrest, Vth] , therefore in the following we neglect dependence of σ
on x. Using equations (2.21) and (2.22), the average first passage time can
be written as :

t1(xth|x0) =

√
π

b

∫ xth

√√√√ b

σ2

x0

√√√√ b

σ2

ez
2

(1 + erf(z))
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Where erf(.) is the Gauss error function. Writing x0 = (Vleak − Vth) +

(Vth −
a

b
) = −Θ + xth in which Θ := Vth − VLeak, we have:

t1(xth|x0) =

√
π

b
[

∫ xth

√√√√ b

σ2

0

ez
2

(1 + erf(z))−
∫ (−Θ+xth)

√√√√ b

σ2

0

ez
2

(1 + erf(z))]

Taking y := xth

√
b

σ2
and θ := Θ

√
b

σ2
and using the following series

expansions in y ,∫ y

0

ez
2

dz = y +
y3

3
+
y5

10
...∫ y

0

ez
2

erf(z)dz =
1√
π

(y2 +
y4

3
+

4y6

45
...)∫ −θ+y

0

ez
2

(1 + erf(z))dz =

∫ −θ
0

ez
2

(1 + erf(z))dz + y(e−θ
2

(1 + erf(−θ))

≈
∫ −θ

0

ez
2

(1 + erf(z))dz ≡ κ

we can write down the approximation for the mean passage time as:

t1(xth|x0) = −
√
π

b
κ+ (

a

b
− Vrest)

√
b

σ2
]

√
π

b
+

√
π

b
[(Vth −

a

b
)]

√
b

σ2

(2.24)

+
1

b
[(Vth −

a

b
)

√
b

σ2
]2

Where κ is the last integral in the approximations mentioned above.

It can be seen from equation (2.18) that the factor

√
b

σ2
in regime of large

balanced rates of excitatory and inhibitory inputs asymptotically approaches
a constant value. Therefore, we can approximate the κ to be very weakly
dependent on input rates and take it as a constant factor. Altogether, we

can write down the average rate of firing ,r =
1

t1(xth|x0)
, in the case that

average stationary potential is close to threshold as :

r =
b√
π

(
1

κ+ (Vth −
a

b
)

√
b

σ2

) (2.25)

In Fig.13, we have plotted this rate approximation which is of minimal
error when average potential is near threshold. From equations (2.24) and
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(2.25), we can see if 〈v〉 =
a

b
is constant for balanced inhibitory and excita-

tory input rates, the output rate of the neuron would be linearly proportional
to the input rates via the factor b. Moreover, the output rate would decrease

as
1

xth
with the increase of the distance of the stationary average potential

from the threshold.
Next, we want to write down the variance of the first passage time. From

the recursion formula (2.21), we have :

t2(xth|x0) =
2π

b2

∫ xth

√√√√ b

σ2

−∞
ez

2

(1 + erf(z))2

∫ xth

√√√√ b

σ2

z

drer
2

Θ(r − x0

√
b

σ2
)

After some straightforward calculations we arrive at:

t2(xth|x0) =
2
√
π

b
t1(xth|x0)[

∫ xth

√√√√ b

σ2

0

ez
2

(1 + erf(z))]

+
2
√
π

b2
ln(2)[

∫ xth

√√√√ b

σ2

0

ez
2 −

∫ x0

√√√√ b

σ2

0

ez
2

]

−2
√
π

b2
[φ(xth

√
b

σ2
)− φ(x0

√
b

σ2
)]

−2
√
π

b2
[ψ(xth

√
b

σ2
)− ψ(x0

√
b

σ2
)]

where functions φ and ψ are multi-variable integrals containing powers
of erf and ex2 in the integrand with following series expansion :

φ(y) =
∞∑
n=0

y2n+3

(n+ 1)!(2n+ 3)

n∑
k=0

1

2k + 1

ψ(y) =
∞∑
n=0

2ny2n+4

(n+ 2)(2n+ 3)!!

n∑
k=0

1

k + 1
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Rewriting the first term in the bracket in terms of first passage time
average and considering only the terms of the first order in xth we arrive at:

t2(xth|x0) =2t1(xth|x0)[t1(xth|x0) +

√
π

b

∫ (−Θ+xth)

√√√√ b

σ2

0

ez
2

(1 + erf(z))]

+
2
√
π

b2
ln(2)[

∫ xth

√√√√ b

σ2

0

ez
2 −

∫ x0

√√√√ b

σ2

0

ez
2

]

−2
√
π

b2
[φ(xth

√
b

σ2
)− φ(x0

√
b

σ2
)]

−2
√
π

b2
[ψ(xth

√
b

σ2
)− ψ(x0

√
b

σ2
)]

≈ 2t1(xth|x0)2 +
2xth
√
π

b
√
bσ

ln(2) + C(xth = 0)

Where C is a negative number which is the sum of integrals at xth = 0.
Therefore, the expression for the CV of the time interval between spikes is
:

CV 2 =
V ar(t)

< t >2
≈ 1 +

C

t1(xth|x0)2
+ 2
√
πln(2)

xth

b
√
bσ

t1(xth|x0)2

The second term is a negative number that monotonically goes to zero
as xth increases. In the limit of large xth, both second and third terms go to
zero, and CV approaches the value of one. However, in the near-threshold
approximation, maximum of the third term is where CV is approaching the
value one. Expanding this term in the powers of xth, and equating the first
derivative to zero, the maximum of this term is at :

xoptth := Vth − 〈V 〉st =
πσ

2
√
b

(2.26)

As we have discussed in the following paragraphs after equations (2.18)
and (2.24),

σ√
b

reaches a constant value in high input rates from equation

(2.18). This can be used to determine the value of 〈V 〉st that leads to max-
imum CV. Fig.16 shows the CV of interspike interval for different sets of
excitatory and inhibitory pairs of input. As can be seen, at the threshold,
neurons’ firing time intervals have lower variance, however, the CV ap-
proaches value one far away from the threshold. The value of the stationary
membrane potential corresponding to the maximum value of the CV from
the equation (2.26) is shown in the right diagram and it matches well with
the actual values from the simulation. At VP := 〈V 〉optst ≈ −0.56mv, CV
for different input rates show maximum indpendent of the rate values.
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FIGURE 16. (Left) Interspike intervals CV for four differ-
ent excitatory input rates and their corresponding inhibitory
rates, which set the average membrane potential at each
specified value shown in the x-axis. (Middle) Inhibitory
rate vs. excitatory rate at the value of the maximum of
CV .(Right) Membrane potential value at the value of the
maximum of CV .

In the middle plot, we see the inhibitory rate that satisfies CV = CVmax
vary linearly with the excitatory rates. As can be seen, when the stationary
membrane potential is approximately below VP , CV of interspike intervals
approaches the value of one, independent of values of inhibitory and exci-
tatory rates. This is an indicator that output firing in response to Poisson
Input is itself a Poisson point process when 〈V 〉st lies below VP . For a
more conclusive result, one has to calculate higher moments or investigate
the limit of FPT probability density when xth is very large.

2.3.3. Linear Poisson Neuron Approximation. In this section, we want
to show that linearizing the response curve of a neuron receiving Poisson
current near VP , introduced in the last subsection, leads to a good approx-
imation for the firing rate of the neuron in a wide range of input rates.
The linearization is around the line characterized by equation (2.9) with
Vst = VP in the ρexc − ρinh plane. This line corresponds to the balance
of mean excitation and inhibition at VP . On this balance line from equa-
tion (2.19), the output rate would depend linearly on the excitatory and
inhibitory input rates (see Fig.17).

We want to linearize the output rate around VP . For this purpose let
us write equation of the plane passing through the line of current balance
at VP (Eq.(2.27)) and the tangent line in the (ρE, ρout) plane at some point
(ρ0
I , ρ

0
E, ρ

0
out). Balance condition line for an excitatory neuron connected to

kEE excitatory neurons and kIE inhibitory neurons each firing with the rate
ρE and ρI , respectively, and receiving external excitatory rate ρExt is of the
following form:
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FIGURE 17. Response of a population of neurons receiving
excitatory and inhibitory inputs balanced in a way that the
drift term has a fixed point at VP = −0.56mv. (Left) Output
firing rate for different values of balanced inhibitory and ex-
citatory input rates. The output rate changes semi-linearly on
this line and firing in this regime that is driven by the fluc-
tuation in the input causes the neuron to fire with Poisson
point process statistics. (Right)The stationary potential dis-
tribution of the population of neurons, as can be seen, there
is a reservoir of neurons close to the threshold while the av-
erage firing rate is about 20 Hz. Parameters used: wE =0.5
,wI = 0.75 , NE = 7000 , NI = 0.25 ∗NE

ρeE ∗ kEE =
(VRinh − VP ) ∗ g0

inh ∗ wEI
g0
exc ∗ wEE ∗ (VP − VRexc)

ρI ∗ kEI +
gleak(Vrest − VP )

τ ∗ g0
exc ∗ wEE ∗ (VP − VRexc)

− ρeExt
wEE

(2.27)

Let us rewrite this in a simpler form as ρeE = kρI + C. Equation of the
balance line and the other tangent line in (ρE, ρout) plane would be of the
following form,respectively:

(ρE − ρ0
E)

k
= ρI − ρ0

I =
ρout − ρ0

out

αOI

ρO − ρ0
O

βOE
= ρE − ρ0

E

Therefore, the equation of the plane passing through these lines is of the
form:
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FIGURE 18. (Top left) Firing rate of a neuron w.r.t differ-
ent values of constant inhibitory and excitatory input. (Top
right) The same for the Poisson input. (Bottom Left) The
linear approximation for the output on the critical line of
Eq.(2.27). (Bottom right) The error of the linear neuron ap-
proximation.

(ρout − ρ0
out) = βOE(ρE − ρ0

E) + (αOI − βOEk)(ρI − ρ0
I) (2.28)

βOE is derivative of the nonlinear response at the selected point in direc-
tion of ρE and αOI is proportional to the change of output rate by changing
inhibition and accordingly excitation on the balance line. These derivatives
do not vary much on the balance line, therefore, the choice of the lineariza-
tion point does not matter for us at this stage. This suggests that the plane
of equation (2.28) is tangent to the ρout surface.This linear approximation
would fail for very high excitatory input where neuron’s saturation causes
non-linearity. The linearization point is where the output firing curve has
the lowest curvature, second derivative vanishes, which makes the approx-
imation error minimal. Fig.18 shows the output firing rate of the target
neuron and the linear approximation presented above.

In the next section, we want to investigate the homogeneous firing state
of a network. For this purpose we will look at self consistency solutions
ρout = ρE(in) = ρ∗E for an arbitrary value of inhibitory current. From
equation (2.28) :

(1− βOE)ρ∗E = (αOI − βOEk)(ρI − ρ0
I) + ρ0

O − βOEρ0
E

By putting in kρ0
I − ρ0

E = −C and dividing the above equation by βOE ,
we arrive at :
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(
1

βOE
− 1)ρ∗E = −kρI − C +

αOI
βOE

(ρI − ρ0
I) +

1

βOE
ρ0
O

βOE depends on the number of excitatory input to the cell,KEE , and
is related to the proportional change of output firing at the balance line
to the change in the firing rate in each excitatory neuron. On the other
hand, αOI , proportional to change in the firing rate while fixing the balance
condition, is much smaller than βOE . Therefore, when KEE is large, the
self-consistency equation matches the balance line of equation (2.27) with
a minimal error.
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3. Interconnected Homogeneous Population of Excitatory and
Inhibitory Neurons

In this section, we want to analyze the dynamics of a homogenous pop-
ulation of excitatory and inhibitory neurons. Like in the previous section,
we will start by writing down FPE for membrane potential probability den-
sity. Assuming that neurons receive Poisson input, the equation for the
membrane potential dynamic of an excitatory neuron in a homogeneously
connected EI population is :

∂p(vE, t)

∂t
=− 1

C

∂

∂vE
[(a− bvE)p(vE, t)] +

1

C2

De

2

∂2

∂vE2
(vRexc − vE(t))2p(vE, t)+

(3.1)

1

C2

Di

2

∂2

∂vE2
(vRinh − vE(t))2p(vE, t) ≡ − ∂

∂v
J(vE, t)

In which :

a = gleakVleak + g0
excτVRexc(kEEwEEρE + λEE) + g0

inhτVRinh(kEIwEIρI + λEI)

b = gleak + g0
excτ(kEEwEEρE + λEE) + g0

inhτ(kEIwEIρI + λEI)

De = τ 2g2
0[kEEw

2
EEρe + λEE]

Di = τ 2g2
0[kEIw

2
EIρI + λEI ]

With boundary condition for excitatory population as :

P (vE = Vth, t) = 0

J(v+
Leak, t)− J(v−Leak, t) = J(vth, t− tref ) ≡ r(t− tref )

In the above equations, wEE and wEI are average synaptic weights from
an excitatory or inhibitory neuron to an excitatory neuron, respectively. kEE
and kEI are the number of excitatory and inhibitory presynaptic neurons
connected to each neuron in the excitatory population, respectively. λEE
and λEI are external excitatory and inhibitory currents to the excitatory pop-
ulation which is supposed to be Poisson as well.

Stationary potential distribution and firing rates, if exist, are solutions
to the following equations:

JstE (vE) = ρstEΘ(vE − VLeak)
JstI (vI) = ρstI Θ(vI − VLeak)

The self consistency equation for excitatory rate can be written as:
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ρE(t) = − 1

C2
{De

2
(vRexc − Vth)2 +

Di

2
(vRinh − Vth)2)}dp(v, t)

dv
|v=Vth := f(ρE, ρI , λEE, λEI)

The same sets of equation holds for P (vI , t) with ρI(t) := g(ρe, , ρI , λIE, λII)
.

Solving for the above-mentioned gain functions f and g is not analyti-
cally tractable for the EI population. These equations may have multiple so-
lutions and changing control parameters can lead to Hopf and Saddle-node
bifurcations, which in turn produce/destroy oscillation or produce/destroy
pairs of fixed points. Solutions of the self-consistency equations for the fir-
ing rates are the stationary limits of the EI population rates, which are of
the following form:

ρstE = f(kEEρ
st
E , kEIρ

st
I , λEE, λEI) (3.2-a)

ρstI = g(kEIρ
st
E , kIIρ

st
I , λIE, λII) (3.2-b)

for ρexc, ρinh ∈ [0, ρmax] .
Depending on the strength of the connections and the external inputs,

equation (3.2) can have multiple solutions. Dynamics to the stationary limit
can be phenomenologically approximated by the following mean field equa-
tions:

dρE
dt

= − 1

τm
(ρE(t)− f(kEEρE(t), kEIρI(t), λEE, λEI)) (3.3)

dρI
dt

= − 1

τm
(ρI(t)− g(kEIρE(t), kIIρI(t), λIE, λII))

Although it is possible to numerically investigate the FPE for EI popula-
tions and its bifurcation diagram, in the next subsections, we follow another
approach by using linearized nullclines approximation and logistic function
approximation for functions f and g. We will show that studying these mod-
els is appropriate for the bifurcation analysis and agree with the simulation
results.

In the remaining of this work, in the simulations, we consider popula-
tion of NExc = 2 ∗ 104 and NInh = 0.25 ∗NExc inhibitory spiking neurons
with conductance-based currents introduced in section (1). Each excitatory

neuron in the population is randomly connected to kEE =
NExc

100
= 200

excitatory and KEI =
kEE

4
inhibitory neurons and each inhibitory neu-

ron is connected to kIE = kII =
kEE

4
excitatory and inhibitory neurons.

57



Weights of excitatory synaptic connections are in a range that 10− 20 syn-
chronous excitatory spikes are enough to depolarize the target neuron to the
level of firing threshold when it is initially at rest at the time of the input ar-
rival. Weights are being drawn from a log-normal probability density with
low variance. Therefore, approximately, O(

√
kEE) spikes are adequate for

the firing. By assuming homogeneity in the population which means each
neuron receives input with the same statistics, as we have discussed in the
introduction, we can build a mean-field equation for the excitatory and in-
hibitory population in this sparse network.

3.1. Linearized Nullclines and Different Dynamic Regimes. Because
function f in equation (3.2a) for stationary excitatory rate has a sigmoidal
shape, this equation would have one or three solutions based on the value
of the inhibitory rate. This is shown in Fig.19(Top-left) for three different
total inhibitory currents. In a low to a moderate value of inhibition there ex-
ist three fixed points, i.e. intersections of the linear line with the sigmoidal
gain function, at the quiescent state, the semi-linear section, and the high
firing state. Increasing inhibitory input rate causes the nonlinear gain func-
tion to move to the right and at the point specified in the graph by a blue
dot, the middle saddle and high fixed point annihilate each other through
Saddle-node bifurcation. On the other hand, increasing external excitatory
input will move the graph upward, which leads to the annihilation of the
low fixed point and the saddle through another SN bifurcation. Fig.15(Top-
right) shows the solutions to equation (3.2-a) for different values of total
inhibitory current to the excitatory population. This is plotted for two dif-
ferent values of WEE with the dashed curve corresponds to higher WEE .

Similarly, Fig.19(BL) is the plot corresponding to the equation (3.2-b).
Here, nonlinear Sigmoid function g is plotted for three different values of
excitatory currents. There exist a single intersection point between the line
passing through the origin and these curves, which means equation (3.2-b)
has a unique solution for the stationary inhibitory rate at each specific exci-
tatory input. Fig.19(BR) is the plot of the location of these intersections for
different values of inhibitory input. As it can be seen in Fig.19, there exist a
semi linear section in the nullcline graphs corresponding to solutions in the
linear Poisson section of gain function. Based on linear Poisson approxi-
mation of the last section, equations for these lines in both excitatory and
inhibitory nullcline graphs are :

ρeE ∗ kEE =
(VRinh − VP ) ∗ g0

inh ∗ wEI
g0
exc ∗ wEE ∗ VP

ρI ∗ kEI +
gleak(Vrest − VP )

τ ∗ g0
exc ∗ wEE ∗ VP

− λEE
wEE

(3.4-a)

ρiE ∗ kIE =
(VRinh − VP ) ∗ g0

inh ∗ wII
g0
exc ∗ wIE ∗ VP

ρI ∗ kII +
gleak(Vrest − VP )

τ ∗ g0
exc ∗ wIE ∗ VP

− λIE
wIE

(3.4-b)
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FIGURE 19. (Top-Left) Excitatory neuron output rate vs.
excitatory input rate at three fixed values of inhibitory cur-
rents. (Middle-Left) Linearized excitatory gain function.
(Bottom-Left) Inhibitory neuron output rate vs. inhibitory
input at three different values of excitatory currents. (Right)
Excitatory (Top and middle) and Inhibitory(bottom) null-
clines of Eq.(3.3) and their linearization based on Eq.(3.4).
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Where kαβ are the number of excitatory/inhibitory synapse to an ex-
citatory/inhibitory neuron. In remaining of this work we assume external
inhibitory currents to be zero which refelcts the fact that inhibition is local

in our model. We also take
kEI
kEE

=
kII
kIE

, which simplifies our analysis.

In the ρinh − ρexc plane the slope and the y-intercept of two lines in the
equation (3.4) determine the intersection of the two nonlinear nullclines and
can be investigated to analyze approximate locations of bifurcation points
of equation (3.3). We choose < WEE > and ρExt = λEE as control param-
eters of our model . Therefore, we first discuss how their change would af-
fect nullclines of equation (3.3). Increasing ρExt moves the Sigmoid graph
in Fig.19(TL) upwards causing low and middle fixed points to move to-
wards each other. For a sufficiently high value of excitatory rate, these
fixed points will disappear by a saddle-node bifurcation. In the excitatory
nullcline graph (Fig.19-TR), increasing ρExt leads to a shift of the graph
to the right. Increasing WEE will both reduce the y-intercept of excitatory
nullcline and the slope of the linear section as it is shown in Fig.19(TR).
Nullcline for inhibitory rate equation stays intact by change of control pa-
rameters.

Intersections of the inhibitory and excitatory nullclines are solutions to
the set of rate equations (3.2). Based on the number of fixed points and their
stability, system can show bi-stability of quiescent and high firing, oscilla-
tory dynamics, avalanches, high synchronized activity, and quiescent state.
Investigating the linearized section of the graphs can help us to identify dif-
ferent regimes of activity. The slope and y-intercept of the linear sections
of nullclines can be compared for this purpose. Based on Poisson neuron
approximation there exist a point in thr control parameter space at which
the y-intercept and slope of two nullclines are equal. This is the solution to
the following linear constraints:

sexc :=
WEIkEI
WEEkEE

=
WIIkII
WIEkIE

:= sinh (3.5-a)

yexc :=
d− ρExt
WEEkEE

=
d− λIE
WIEkIE

:= yinh (3.5-b)

where d is a constant equal to
gleak(Vrest − Vth)

τ ∗ g0
exc ∗ (Vth − VRexc)

.

Fig.20(TL) shows the case in whichWEEWII > WEIWIE and y-intercept
of the excitatory nullcline is lower than the inhibitory one. This occurs in
the regime of a low to moderate imbalance of the excitatory and the in-
hibitory external input and high excitatory synaptic weight. In this case,
there exist bistability of the quiescent and the high firing fixed point which
are separated by a saddle. Increasing external excitatory input, the excita-
tory nullcline would be shifted to the right and the middle saddle and qui-
escent node would disappear by the Saddle-node bifurcation and only the
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high firing synchronous state would remain(Fig.20(TR)). Increasing WEE

would also have the same qualitative effect. However, decreasing external
input or WEE drives the system to a quiescent state through different sets
of bifurcations based on the initial state of the system and in general of
other parameters of the model. This intermediate transition state involves
the appearance of a fixed point in the linear section.

When sexc > sinh while yexc < yinh, there is a fixed point in the linear
section as depicted in Fig.20(BL). We will discuss the stability of the fixed
point on the linear segment in the following sections. By increasing exter-
nal input, the quiescent fixed point and the low saddle moves closer to each
other while the fixed point on the linear section ascends to higher values
of the rates. After Saddle-node bifurcation at the low rate, only the fixed
point on the linear section survives as shown in Fig.20(BR). These two ar-
rangements in which the fixed points are close to low firing regimes are of
importance for us because of the avalanche dynamics that appear near this
region. The intersection point of nullclines in the semilinear regime can be
approximated by the intersection point of the linearized nullclines which is:

ρcE =
τg0(V R

E − Vth)(cIIρExt − cEIλEI) + gL(VL − Vth)(cII − cEI)
τ(cIEcEI − cEEcII)

(3.6)

ρcI = −τg0(V R
E − Vth)(cIEρExt − cEEλEI) + gL(VL − Vth)(cIE − cEE)

τ(cIEcEI − cEEcII)

where cxy = kxywxygy(V
R
y − Vth) .

As discussed previously, in the intermediate range of the parameters, the
high fixed point might become unstable through either Andronov-Hopf or
Saddle-node bifurcations. Figures (21 and 22) show the nullclines graphs
and the population activity when the high fixed point loses stability by Hopf
bifurcation. Fig.21(TL) shows nullclines of a system that has stable high
and quiescent fixed points with a saddle-node at low rates. By decreasing
WEE , sexc is approaching sinh while sufficient external input guarantees
that yexc < yinh during this parameter change. In this particular setup, the
inhibitory nullcline is semi-linear and it is straightforward to speculate that
the high fixed point goes through Hopf bifurcation when the return point
of excitatory nullcline touches the inhibitory nullcline which takes place
at some value w∗EE ∈ [0.55, 0.75]. Decreasing wEE further, high saddle
fixed point descends through linear segment and gets closer to the lower
saddle point, the limit cycle becomes unstable by the saddle separatrix loop
bifurcation preceding by the saddle-node annihilation of low and high sad-
dles and the system will end up in the quiescent state for low values of
WEE(Fig.21-Bottom). Population activity in these three regimes is shown
in Fig.22. Neurons are firing synchronously with high rates in three differ-
ent sub-populations in the first case. The high oscillatory activity appears in
the second regime where the unstable saddle, which is encircled by a stable
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FIGURE 20. From Top-Left to Bottom-Right: Nullclines di-
agrams corresponding to the regimes of bistabilty, the high
synchronized firing, the avalanches and the oscillatory dy-
namics. Red curves are the excitatory nullclines (Eq.3.2a)
and blue curves are the inhibiotry nullclines (Eq.3.2b).
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FIGURE 21. The nullclines for the excitatory and the in-
hibitory neuron populations and their corresponding linear
approximations of Eq.(3.4-a) and (3.4-b). Values of pa-
rameters are wEE = [0.75 (Top-Left), 0.55 (Top-Right), 0.4
(Bottom)], wEI = 2, wII = 1.5, wIE = 0.6.

FIGURE 22. Simulation of populations of NE = 10000 ex-
citatory and NI = 0.25NE neurons connected by the av-
erage synaptic weights same as those in Fig.21. (Left) The
number of active excitatory neurons(dark blue) and active in-
hibitory neurons(light blue) in each time slot of (0.1ms) for
three different values of wEE .(Right) The stationary mem-
brane potential distribution is shown correspondingly. In the
Asynchronous state, the distribution has higher variance.

limit cycle, lies close to the high activity region. Membrane potential distri-
bution, in this case, has a higher variance, and neurons fire asynchronously.

On the other hand, Fig.23 shows the case in which a high fixed point
loses stability through colliding with the saddle that ascends along the linear
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FIGURE 23. Nullclines for the excitatory (red curve) and
the inhibitory (blue curve) population rates.The parameters
used are wEE = 0.6, wEI = 1.2, wII = 0.6 , wIE = 0.6
and wEE = [0.8, 0.6, 0.4, 0.2]. decreasing wEE changes the
intersections of two curves. (The lowest value of wEE corre-
sponds to the top-left plot and the highest is for the bottom-
right plot).

section. This situation occurs in a lower level of the external input, in which
decreasing WEE makes yexc to pass above yinh before the slopes become
equal. In this case, the high activity fixed point is annihilated by the saddle
fixed point.

In addition to oscillatory activity in the middle range of rates, the EI-
population can exhibit non-oscillating asynchronous activity which corre-
sponds to a stable fixed point in the linear regime. Fig.24 is the simulation
result of excitatory population rate similar to the setup of the Fig.22 with
higher WII , which, as we will see later, makes the fixed point on linear
section stable.

Fig.25 shows the transition from low firing asynchronous state to high
firing synchronous state by decreasing WIE with WEE = 0.5.

3.2. Logistic Function Approximation of Gain Functions. In this
section, we approximate gain functions in equation (3.3) by logistic func-
tion to analyze bifurcations diagram and approximate locations of bifur-
caion points. For this purpose, we consider the following form of gain
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FIGURE 24. Simulation results of the network with same
parameters as in Fig.22 except for new value of wII = 2.4.
EI population shows asynchrnous firing in medium range of
WEE . This suggest that there is a stable fixed point at inter-
section of linear segments of excitatory and inhibitory null-
clines.

0.45 0.5 0.55 0.6 0.65 0.7

WIE

0

50

100

150

200

250

300

350

S
in

g
le

 n
e
u
ro

n
 a

v
e
ra

g
e
 r

a
te

0.45 0.5 0.55 0.6 0.65 0.7

WIE

0

50

100

150

200

250

FIGURE 25. Average firing rate of an excitatory (Left) and
an inhibitory neuron(Right) in an EI interconnected popula-
tion with wEE = 0.5, wEI = 2, wII = 2.4.

function for both excitatory and inhibitory populations :

gx(ρInh, yx) =
ρmax

1 + α(ρInh)e−kyx
− z0 (3.7)

yx = gsynτwxIρInh(VRinh − Vth)
+ gsynτ(wxEρexc + ρxExt)(VRexc − Vth) + gL(VLeak − Vth)

z0 =
ρmax

1 + α(0)e−kgL(VLeak−Vth)
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Here, x stands for either excitatory(E) or inhibitory(I) gain functions, which
have the same form but different input arguments. ρxExt is the external ex-
citatory input to the population x. In the following, we fix the excitatory
external input to the inhibitory population at a fixed value and set the ex-
ternal excitatory input RE := ρEExt as one of the control parameters besides
WEE . As in the previous section, we assume inhibitory synapses to be local
and set the external inhibitory currents to zero. Bifurcation analysis for the
EI population with sigmoidal gain functions has been done in Borisyuk et
al. [115]. Here, we take slightly different gain functions and different sets
of control parameters.

At yx = 0, the balanced input sets the membrane potential at the thresh-
old value and output rate would be approximately gth =

ρmax
1 + α(ρinh)

. De-

pendence of the output rate on inhibitory input, when balanced condition at
threshold holds, is represented by the function α. At y = 0, the output rate
is proportional to the standard deviation in the input and it can be written as
a function of inhibitory input rate as(see Fig.26):

gth = b0 + b1
√
ρinh

which fixes function α(ρinh).
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FIGURE 26. Output rate as a function of the input inhibitory
rate, when the excitatory rate is selected in a way that the
average membrane potential of the neuron is Vth. The neuron
is operating near a saddle-node bifurcation point at which
F (Isyn) = k

√
Isyn − I∗.

At the equilibrium, population rates satisfy the following equations:

ρI = gI(ρI , cieρE + ciiρI + dρIExt)− z0 (3.8)

ρE = gE(ρI , ceeρE + ceiρI + dRE)− z0

Where cxy = kxywxy(VRy − Vth) and d = (VRExc − Vth). Same as
before, we take wEE and RE as control parameters. Therefore, solution of
the first equation is independent of the control parameters and gives a curve
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in the ρInh − ρExc plane. Taking into account that inverse of g(ρInh, y)

is g−1(ρInh, z) =
1

k
(log(

z

ρmax − z
) + log(α)), equation for the inhibitory

nullcline can be written as :

ρE =
1

cie
(
1

k
[log(

(ρI + h0)

ρmax − (ρI + h0)
) + log(α)]− ciiρI − dRE − gL)

(3.9)

The term in the bracket accounts for non-linearity in low and high values
of ρI . Derivative of this term w.r.t ρI is

ρmax
ρI(ρmax − ρI)

, which is very small

in middle range of ρI at values close to 0.5ρmax. This is consistent with the
fact that nullclines are approximately linear in the middle range of the rates.
To analyze linear stability of the fixed points, let us write down derivatives
of gain function in the following format:

∂gx

∂ρE
= kcxeg

x(1− gx

ρmax
)

∂gx

∂ρI
= kcxig

x(1− gx

ρmax
)− 1

α
gx(1− gx

ρmax
)
∂α

∂ρI

Here gx stands for gI or gE . One can substitute ρI + h0 and ρE + h0

from equation(3.8) for gI and gE , respectively. Therefore, Jacobian matrix
at the fixed point is of the following form :

J =

−1 + ceeρ
E(1− ρE

ρmax
) ceiρ

E(1− ρE
ρmax

)− 1

α
ρE(1− ρE

ρmax
)
∂α

∂ρI

cieρ
I(1− ρI

ρmax
) −1 + ciiρ

I(1− ρI
ρmax

)− 1

α
ρI(1−

ρI
ρmax

)
∂α

∂ρI


(3.10)

Hopf bifurcation occurs at fixed point solutions at which trace of the
Jacobian(Eq.(3.10)) vanishes and its determinant is positive. On the other
hand, at the saddle-node bifurcation points determinant vanishes. Fig.27
shows the arrangement of the excitatory and inhibitory nullclines at the
Hopf and the saddle-node bifurcation points. We proceed to approximate
local bifurcation lines in the parameter space.

Condition on zero trace, Tr(J) = 0, parameterized by the inhibitory
nullcline curve(Eq.(3.9)) results in the value for WEE at which Hopf bifur-
cation can occur. Ignoring terms related to α, which are relatively small,
from equating the trace of the Jacobian to zero, we have:

wHEE =

2− cii ∗ ρI(1−
ρI
ρmax

)

cee0ρE(1− ρE
ρmax

)
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FIGURE 27. Inhibitory (blue) and Excitatory nullclines for
three different sets of control parameters (WEE, RE) at the
Hopf bifurcation (A) and the saddle-node bifurcation points
(B). Parameters were chosen to illustrate positions of null-
clines at the parameter values in which bifurcation happens
in the lower nonlinear, the semi-linear, and the high nonlin-
ear sections of the nullclines.

where cee0 :=
cEE
wEE

. For each (ρE, ρI) point on the inhibitory nullcline

(Eq.(3.9)), the above equation gives a value of wEE which sets the trace of
Jacobian to zero at this point. The second equation in (3.8) which corre-
sponds to the excitatory nullcline determines external excitatory input, RE ,
parameterized by ρInh. Next, we should check the condition on positivity
of determinant to sketch the Hopf bifurcation line in the wEE − RE plane.
Neglecting non-linearities caused by α, determinant of the Jacobian condi-
tioned on zero trace is :

det(J)|Tr(J)=0 = −(1− ciiρI(1−
ρI
ρmax

))2 − cieceiρI(1−
ρI
ρmax

)ρE(1− ρE
ρmax

)

At extremely low values of the rates (near zero), the determinant is neg-
ative because of the −1 in the above formula. Conditioned on a sufficient
amount of inhibitory feedback’s strength, which is proportional to |ciecei|,
determinant becomes positive at some point by increasing rates and the low
fixed point losses stability through Hopf bifurcation. The point that both
determinant and trace of J are zero, is called Bogdanov-Takens(BT) bifur-
cation point.

Inserting ρE(1 − ρE
ρmax

) from det(J)|Tr(J)=0 = 0 into the denominator

of the formula for wHEE and introducing parameter γ = ρI(1 −
ρI
ρmax

), the

BT point in the low rate regime is located at the following strength of WEE

:

wBTEE =
γciecei(2− cii ∗ γ)

(1− ciiγ)2

At moderate value of ciiγ :
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wBTEE ≈
wiewei
wii

. (3.11)

On the semi-linear part of the inhibitory nullcline, we have approximate
relation between rates in the form of

ρI
ρE
≈ wIE

wII
. Determinant on the line

of zero trace when ρE = wII
wIE

:= βρI is :

det(J)|Tr(J)=0 = −1 + 2cIIγ + (c2
ii − βciecei)γ2

Function γ(ρI) has a maximum at
ρmax

2
. With this in mind,condition

for positive determinant at potential Hopf Bifurcation fixed point in lower
rates of linear regime will be :

det(J)L|Tr(J)=0 ≈ −c2
iiρ

2
I − cieceiρEρI = |cii|ρ2

I(|cei| − |cii|) > 0

Therefore, if |cei| > |cii|, Hopf bifurcation line continues to survive

on the linear regime. On this line, wHopfee ≈ 2− ciiγ
cee0βγ

, which has negative

derivative
−2

βγ2
. Thus, Hopf bifurcation on the linear regime occurs at lower

values of wEE compared to wBTEE . On the other hand, RE should increase
to satisfy the fixed point condition of equation (3.8) for the excitatory rate.
Altogether, in the (wEE−RE) plane, Hopf bifurcation line extends to lower
wEE and higher RE from the low BT point to the high BT point.

Ascending on inhibitory nullcline, we would reach the nonlinear high
branch of the curve, where linear relation between rates no longer holds
and second derivative of ρ∗E(ρI) will increase. Besides, γ(ρinh) decreases
towards zero. Taking into account both of these facts, on high branch
det(J)L|Tr(J)=0 decreases and passes through zero at another Bogdanov Tak-
ens point at high values of rates. If inhibitory feedback is not strong enough
conditions for Hopf bifurcation are not satisfied.

To sketch the saddle-node bifurcation line, we should look at solutions
to det(J) = 0 . Inserting ρE(ρI) from equation (3.9) to det(J), for each
point on the inhibitory nullcline, there exist a wEE which is the solution
to det(J) = 0. The only condition to check is wEE > 0. Again the con-
dition on the excitatory nullcline to intersect the inhibitory one at the fixed
point determinesRE . Alongside the semi-linear section of the nullcline, the
condition det(J) = 0 translates to the alignment of the slopes of linearized
nullclines. Therefore, along this section wEE varies very little.

Fig.28 shows Hopf and Saddle-Node bifurcation lines with parameters
written in the caption. As can be seen, there exists two Bogdanov -Takens
bifurcation points at low and high values of the external input correspond-
ing to the intersection of the nullclines in the low and the high firing rate
regimes.
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FIGURE 28. Local Bifurcation diagram in the control pa-
rameter plane (WEE, ρExt). Red curve is the Hopf bifur-
cation line and the blue curves are Saddle-node bifurcation
lines. Free parameters of the model ρInhExt = 300Hz,WII =
1,WEI = 1.8 and WIE = 0.6.

Fig.29 is the bifurcation diagram at the low rates. Different regimes of
the phase space corresponding to different numbers and/or types of fixed
points have been labeled. The system has a minimum of one to a maximum
of five fixed points. Region (1) in the low values of WEE and the external
input strength is the quiescent state with only one stable fixed point solution.
In region (2), there is only an unstable fixed point surrounded by a stable
limit cycle corresponding to the intersection of the nullclines in the semi-
linear sections. In regions (3) and (4) near the BT point, two other fixed
points exist in the low firing rates. The type of solution in these regions will
be discussed in section (3.3). Region (5) corresponds to the case in which
there exist 5 intersection points on the nullcline map and the bi-stability of
the quiescent and high state which survives after the annihilation of unstable
nodes on the middle section of nullcline to the region (6). Finally, in region
(7), at a high level of the external input and the synaptic weight, the only
existing fixed point is the high firing one.

Dashed lines in this figure are the constraints of equations (3.5-a) and
(3.5-b) corresponding to equal slope and y-intercept of the linearized null-
clines. The vertical line is the value of W ∗

EE that matches the slopes, for
WEE < W ∗

EE the inhibitory feedback is getting stronger. The oblique line
shows values of RE for each WEE that equalize y-intercepts of linearized
nullclines. In the region below this line yinh < yexc and vice versa.

3.3. Dynamics Near the BT Bifurcation Point. Exact location of the
BT points in the parameter space (cBTee , R

BT
E , ρBTE , ρBTI ) are the solutions to

det(J) = Tr(J) = 0 and gE(iE) = gI(iI) = 0.
Fig.30 shows nullcline arrangements near the low BT point and the

global saddle separatrix loop bifurcation line which annihilates the limit
cycle solution of the region (3), shown in the same figure.
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FIGURE 29. Zoom in on the local bifurcation diagram at
low firing rates and the corresponding regimes of the phase
space with different numbers of fixed points. The dashed
line is the condition on the equal slope of linearized null-
clines and the semi-dashed line is the condition on equal y-
intercepts. BT point (black dot) is close to the intersection
of these lines. In the labeling of regions, (Q) denotes quies-
cent state fixed point, (L) is the fixed point in low firing rate,
(M)is the fixed point in linear section, and (H) is the high
firing fixed point.

In the previous section, we showed that the low BT point is located close
to the matching condition for y-intercept and slopes of linearized nullclines,
which are rewritten below:

c∗ee =
ciecei
cii

R∗E =
c∗ee
cie

(ρIExt − d) + d

Where d is a constant defined in equation (3.5). The condition on zero
trace at low values of rates leads to the approximate relation between the
inhibitory and excitatory rates at the BT point in the Logistic function ap-
proximation of rates:

ρBTE
ρBTI

≈ − cii
cee

(3.12)

Altogether, at the BT point the linearized matrix would be of the fol-
lowing form :
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FIGURE 30. Nullclines’ arrangements near the BT point.
Black dashed line is saddle-separatrix loop bifurcation and
the blue dotted-dashed is saddle-node on limit cycle(SNLC)
bifurcation line.

JBT =

(
a −b
a2

b
−a

)
(3.13)

where
b

a
=
cei
cee

=
cii
cie

.

At the BT point, Jacobian have a double zero eigenvalue and with proper
coordinate transformation, it can be written in the following form:

J =

(
0 1
0 0

)
To write down the dynamic in the normal form in the vicinity of BT

bifurcation point, consider the system:

ẋ = f(x, µ) = Ax+ F (x), x, µ ∈ R2

Assume at µ = 0 system has a fixed point at x0 and its Jacobian at this point
has zero eigenvalue of multiplicity two. AT the BT point, there exist two
generalized eigenvectors q0 and q1 such that:

Aq0 = 0, Aq1 = q0
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Also for AT , we select vectors p0,1 such that:

ATp1 = 0, ATp0 = p1

which satisfy following normalizations:

< p0, q0 >=< p1, q1 >= 1, < p0, q1 >=< p1, q0 >= 0

By a linear change of coordinates with the transformation matrix T =
(q0, q1) ,i.e x = Ty , our system can be written as :(

ẋ1

ẋ2

)
=

(
0 1
0 0

)(
x1

x2

)
+

(
f(x1, x2)
g(x1, x2)

)
(3.14)

By Taylor expansion of the nonlinear part as
(
f(x1, x2)
g(x1, x2)

)
=

(∑
m+n≥2 amnx

m
1 x

n
2∑

m+n≥2 bmnx
m
1 x

n
2

)
, the critical center manifold can be parameterized as x = h(y1, y2) =
y1q0 + y2q1 +

∑
hmny

m
1 y

n
2 . To obtain the normal form, we insert this

ansatz in the dynamic equation (3.14) to arrive at:

ẏ1 = y2 (3.15)

ẏ2 = ε1 + ε2y2 + a2y
2
1 + b2y1y2 +O(||y1y2||3)

Here, ε1,2(µ) are transformed bifurcation parameters , a2 = gxx/2 and b2 =
gxy + fxx . Fixed points of the normal form of equation (3.15) are y±0 =

(±
√

(
−ε1
a2

, 0). Taking a2 > 0 for the moment, when ε1 < 0, there exist two

fixed points. Jacobian at these points are of the following form : 0 1

±2

√
−ε1
a2

ε2 ± b2

√
−ε1
a2


By computing the trace and the determinant of the Jacobian, we see that

y+
0 is a saddle when ε1 < 0 for all ε2, while y−0 is a sink for ε2 < b2

√
−ε1
a2

and a source for ε2 > b2

√
−ε1
a2

. When b2 > 0, the line of ε2 = b2

√
−ε1
a2

is a sub-critical Hopf bifurcation line and when b2 > 0 the same line is a
supercritical Hopf bifurcation. A reverse scenario happens when a2 < 0.To
summarize, defining σ = sgn(a2∗b2), if σ is negative then a stable limit cy-
cle appears and the Hopf bifurcation is supercritical (Fig.31(right)), other-
wise, if σ is positive, we have a sub-critical Hopf bifurcation (Fig.31(left)).
As shown in Fig.31, near the BT point apart from the local bifurcations,
i.e Hopf and saddle-node, there is a saddle-node separatrix loop bifurca-
tion which annihilates stable or unstable limit cycle that are produced by
supercritical or sub-critical Hopf bifurcations, respectively.

Linearization near the BT point can help us to identify dynamical regimes
surrounding it without calculation of the σ parameter. Nullclines’ map of
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FIGURE 31. (Left) Dynamic flow near the high BT point.
(Right) The same for the low BT point. Blue lines are
saddle-node bifurcation, red lines are Hopf bifurcation, and
dashed lines are saddle-node separatrix loop bifurcation.

regions (2) and (3) in Fig.30 shed light on the type of BT bifurcation. In the
plot corresponding to the region (3), wEE is higher which means the Jaco-
bian at the fixed point has a lower determinant and a higher trace w.r.t the
corresponding values in the region (2). Of the two fixed points in regions
(2) and (3) at the semi-linear section, the one in the higher WEE regime
(region (3)) is the unstable point. Therefore, in our case near the low BT
point, the phase space resembles the one in Fig.31(Right). Increasing WEE

from the region (2) will result in the loss of stability of the fixed point in
the linear branch by the Hopf bifurcation as the value of the trace of the
Jacobian at the fixed point becomes zero. However, as we increase wEE
the slope of the linearized approximation of nullclines which are tangent to
the stable and the unstable manifolds of the saddle point that separate the
quiescent fixed point and the limit cycle solution get closer to each other.
At some point, these manifolds cross over and therefore, destroys the limit
cycle solution through saddle-node separatrix loop bifurcation. This ends
up in a source in the linear firing regime of the region (4) of Fig.30. The
position of the Hopf bifurcation line and the saddle-node at the semilinear
regime determines the region of oscillatory solution. The Limit cycle can
be itself the only solution or it can coexist with another fixed point.

For our EI system, we can write down the normal form and analyze
the type of the BT point from explicit linearization. For the case of JBT
in equation (3.13), generalized eigenvectors are q0 =

(
1 a/b

)
and q1 =(

1 (a− 1)/b
)

. Therefore, new parameterized coordinates are y1 = E/b−
a/b(E − I) and y2 = E − I .
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Using Logistic gain function second derivatives can be written as:

gEE ∝ W 2
IEgI(1− gI)(1− 2gI)

gEI ∝ −|WII ||WIE|gI(1− gI)(1− 2gI)

fEE ∝ W 2
EEfE(1− fE)(1− 2fE)

where gEI < 0 ,fEE > 0 and gEE > 0. At the BT point, |WII |gI(1 −
gI) = WEEfE(1− fE) , therefore:

sgn(σ) := sgn(gEE ∗ (fEE + gEI)) = sgn(WEE(1− 2fE)− |WIE(1− 2gI)|) < 0

which is satisfied in the case of adequately strong inhibitory feedback.

3.4. Avalanches in the Region Close to the BT Point. We assume that
the external input to both excitatory and inhibitory neurons are dominated
by the excitatory type and also connections among excitatory populations
have a longer range. Therefore, the external excitatory input to the exci-
tatory population is higher than to the inhibitory one. On the other hand,
inhibitory connections are local and therefore, following the dynamics of
the adjacent excitatory population. Strong local feedback provided by the
inhibition prevent the excitatory network to be overloaded. However, it is
very closely balanced to set the network near the threshold of activation so
that system can respond efficiently to the external input. In the substrate
regime of spontaneous activity, the EI population does show avalanche pat-
tern dynamics and oscillatory behavior. Synchronization of oscillations and
the scale-free avalanche dynamics are characteristic behaviors experimen-
tally validated. In the following, we will show that close to the BT point at
a low firing rate regime, we can observe both phenomena.

In the parameter space enclosed by the Hopf and the saddle-node bifur-
cation lines, i.e. region (4-QLM(u)) in Fig.29, there exist regions with both
oscillatory and medium-range Poisson firing states. Decreasing WEE while
changing ρEExt accordingly, so that the Low and medium fixed points move
closer to the origin, the system moves towards the Bogdanov-Takens bifur-
cation point, where the saddle-node bifurcation and Hopf bifurcation lines
intersect. In this regime, we see avalanche dynamics in our population.
Close to the BT point, the basin of attraction of the quiescent fixed point
shrinks, and the noise level is high enough for escaping from it. This is in
the adjacency of both the saddle-node bifurcation, which creates unstable
low and weekly stable medium firing fixed point, and the Hopf bifurcation
of the quiescent fixed point. This region corresponds to strong inhibitory
feedback and a sufficient imbalance in the external excitatory input to the
excitatory and inhibitory population. In the nullcline graph, this translates
to the state where the y-intercept of the excitatory graph is lower than the
y-intercept of the inhibitory graph and the slope of excitatory is larger than
the slope of inhibitory one. Increasing WEE causes the middle fixed point
to move to the higher rates and to have a larger basin of attraction. On
the other hand, the saddle and the quiescent fixed point move towards each
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FIGURE 32. Nullclines configuration around avalanche dy-
namic region. Red curves are excitatory nullclines and blue
curves are inhibitory nullclines.

other in the phase diagram and annihilate each other by the saddle-node
bifurcation.

Fig.32 shows nullcline arrangements in the region that we observe avalanche
patterns. The top-left diagram is the general position of nullclines indicating
the fixed point in the linear regime. The other three diagrams correspond to
the two distinct regimes near the BT point and the transition between these
two. The top-right diagram belongs to the section to the right of the BT
point (Fig.30) in which there exists a quiescent fixed point with a weakly
unstable saddle in the linear section. Here, noise causes the system to escape
from the basin of attraction of the fixed point which then relaxes toward the
origin in the direction of the nullclines. As nullclines lie on top of each
other decay time is large and the system shows high synchronous activity
while returning to a quiescent state. An increase of external drive or de-
crease of WEE leads to a saddle-node annihilation which leaves the system
with a fixed point at the middle section. Fig.31 (Bottom-left) belongs to the
state on the left side of the BT point in the vicinity of the Hopf bifurcation
of the origin. In this case, there is a limit cycle around the saddle point
in the linear branch. Similar to the previous case, adjacency of fixed point
at the origin to the saddle shrinks the basin of attraction of the quiescent
state. Therefore, noise can bring the system to the limit cycle which itself
is sensitive to internal and external noise. Finally, Fig.31 (BR) shows how
saddle-nodes of the last two diagrams are annihilated by the saddle-node
on limit cycle and the saddle-node bifurcations, respectively. In these two
cases, a limit cycle solution emerges. However, close to origin this limit
cycle stays for a longer time in the lower section of very low firing because
of the slow flow in this region. The outcome is again a quasi-periodic burst
of avalanches followed by a quiescent state.
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FIGURE 33. Avalanches close to the BT point. WII =
WEI = 2,WIE = 0.75 , ρinhExt = 150Hz in both panels.
In the top figures WEE = 0.66 and ρexcExt = 209Hz and in
lower panel WEE = 0.63 and ρexcExt = 225Hz.

Fig.33 (Bottom) shows avalanche characteristics of the activity in the
parameter regime on the left of BT point with the limit cycle solution very
close to the origin(same as Fig.31(top-right)).In Fig.33 (Top),WEE is higher
and ρEExt is slightly lower than the previous case and the system is located
in the region with a fixed point in low firing regime which is stable because
of the high value of WII . Fig.34 shows avalanche dynamics on the right
side of the BT point. The bottom panel corresponds to the case in which
the limit cycle is very close to the origin. In both sets of figures increasing
WEE moves the system out of the avalanche region with the difference that
the fixed point at the linear section is stable in the first case and unstable in
the second. Therefore, the nearby regime of the activity in the first case is
a non-oscillatory inhomogeneous Poisson firing state while the correspond-
ing regime near the second case is oscillatory.

3.5. Stability Analysis of the Fixed Points in the Linear Regime. As
we have seen in the last section, close to the BT point there exist regions
in which there is a low firing fixed point at the intersection of semi-linear
sections of the nullclines. The stability of this fixed point is determined by
the Jacobian matrix of the linearized system:

A =

−1 +
∂f

∂E
−|∂f
∂I
|

∂g

∂E
−1− |∂g

∂I
|


Linear segments would intersect if yinh < yexc and sexc > sinh or

yinh > yexc and sexc < sinh . When the slope and y-intercepts are equal, the
Jacobian at the point of intersection is:
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FIGURE 34. Same as Fig.33 but with new parameters:
WEI = 2,WII = 1.5,WIE = 0.75 , ρinhExt= 150Hz , ρexcExt

= 280Hz ,WEE = 0.53 (Top) and 0.48 (Bottom).

A =

(
a− µ −(b− b

a
µ)

a −b

)
(3.16)

with µ = a
ρEExt − ρIExt
c− ρIExt

.

a =
∂g

∂E
= α′WIEKIE = αWEEkEE − 1 + µ

b = 1 + | ∂g
∂E
| = 1 + β′WIIKII = (1− µ

a
)−1[βWEIkEI ]

α = g0
excτexc

(Vth − VRexc)√
2πσExV

α′ = g0
excτexc

(Vth − VRexc)√
2πσInhV

β = g0
inhτinh

(Vth − VRinh)√
2πσExcV

β′ = g0
inhτinh

(Vth − VRinh)√
2πσInhV

α ∗ β′ = β ∗ α′

Because external excitatory input to the excitatory population is greater
than the external input to the inhibitory population and inhibitory connec-
tions are assumed to be local, µ is slightly positive.

At µ = 0, the eigenvalues ofA are 0 and a−bwith corresponding eigen-

vectors, u1 = (
b

a
, 1) and u2 = (1, 1) . By the coordinate transformation to
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FIGURE 35. Stability of fixed points in the linear regime
based on the values of trace and determinant of the Jacobian.

u1 and u2 coordinates, we can write down the dynamics in the decoupled
system as follows:

u =

(
b

a
1

1 1

)−1 [
E
I

]
=

a

a− b

[
I − E

E − b

a
I

]

u̇ =

(
0 0
0 a− b

)
u

With the transformed initial condition :

u0 =
a

a− b

[
I0 − E0

E0 −
b

a
I0

]
Which has the following solution in the u coordinates:

u(t) =
a

a− b

[
I0 − E0

(E0 −
b

a
I0)e(a−b)t

]
(3.17)

Back into (E, I) coordinates:[
E(t)
I(t)

]
=

a

a− b
(I0 − E0)

[
b

a
1

]
+

a

a− b
(E0 −

b

a
I0)e(a−b)t

[
1
1

]
(3.18)

So for this linear system, when a − b < 0, initial imbalance of the
excitatory and inhibitory rates leads to a stationary relation of the form E =
b

a
I .

Now, consider the case in which linearized nullcline slopes are slightly
different with the following Jacobian:

A =

(
a− µ −(b+ ε)
a −b

)
Here, TR = λ1 +λ2 = (a−b)−µ and det = λ1λ2 = aε+µb. Based on

the sign of determinant and trace of the Jacobian at the fixed point, stability
type is determined (see Fig.35).
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Under the condition that b+ µ > a and ε > − b
a
µ, both eigenvalues are

negative : λ1 =
bµ− aε
b− a

and λ2 = (a − b) +
2a(ε− µ)

a− b
. We also have

|λ1| << |λ2| for small differences in the slopes.
Eigenvectors corresponding to these eigenvalues are :

u1 = (
b

a
+ λ1, 1)

u2 = (1 + λ2, 1)

Therefore, the dynamics in the linear regime would be projected to the
slow stable manifold u1. One can approximately write down the evolution
of the rates as in equation (3.18).

ε > − b
a
µ corresponds to the case in which the slope of the excitatory

nullcline is higher than the inhibitory nullcline (stronger inhibitory feed-
back WEIWIE > WIIWEE ) and y-intercept of the excitatory nullcline is
slightly lower, i.e sufficient external input. Moreover, this is the case when
WII is high enough to guarantee b > a condition. When all these require-
ments are met, the fixed point in the linear segment is stable and we observe
an asynchronous low to medium firing state as in Fig.24 and Fig.33. Around
this regime, an increase inWEE will increase µ, and a change in ρEExt moves
the fixed point along the linear section. The intersection in the linear regime
transcends to higher rates by increasing WEE . This decreases the determi-
nant while the trace increases, which eventually destabilizes the fixed point.
In the vicinity of the low BT point, based on the value of WII , in the linear
section either a weakly stable or a weakly unstable fixed point surrounded
by a limit cycle appears. In both cases, the eigenvalue close to zero with the
eigenvector u1 governs the slow dynamics around this point.

Consider the case of imaginary eigenvalues of the Jacobian, λ± = σ±iω
with eigenvectors v± = vr ± vi, which satisfy:

A[vrvi] = [vrvi]

(
σ ω
−ω σ

)
By defining the tranformation matrix T = [vrvi], the linearized matrix

is Q = T−1AT =

(
σ ω
−ω σ

)
and the solution of the linear system is of the

form:

eAtx0 = Teσt
(
cos(ωt) sin(ωt)
−sin(ωt) cos(ωt)

)
T−1x0

By using the coordinate transformation u = T−1x , we can write down
the evolution of u̇ = Qu with u0 = T−1x0. Linearized dynamic predicts
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damped oscillation of frequency ω =

√
det− Tr2

4
when σ < 0. At the

Hopf bifurcation point when σ = 0, frequency of oscillation will be ω =√
detH . At the nullcline intersections on the linear segments close to the

Hopf bifurcation, oscillation frequency is close to the imaginary part of the

eigenvalues,

√
det− Tr2

4
.

Along the slow manifold, inhibitory and excitatory rates vary linearly

as I =
a

b
E ≈ keeWee

keiWei

. This relation balances the average current to each

population. Therefore, near the BT bifurcation point, dynamics of the slow
field, E − I , can be written as :

d(E − I)

dt
= ε(E − I) + c(1− a

b
)−1(E − I)2 +

1√
N

(1− a

b
)

1

2 (E + I)

1

2η(t)

(3.19)

In which, ε is close to zero, the first nonlinear term of Taylor expansion
has been taken into account and η(t) is a white noise added to the micro-
scopic equation based on the Poisson firing assumption. This Langevin
equation for the slow field matches the one for the directed percolation if
we add a simple diffusive term to it. We will have a closer look at this
equation in section (6).

3.6. Charachteritics of Avalanches. For the values of WEE near the
BT point at the low firing rate, there exists a range of external input strength
for which the firing pattern is quasi-periodic with the excitatory avalanches
followed by the inhibitory ones. Mean escape time from the basin of attrac-
tion of the quiescent fixed point reduces when the external input increases,
thus, the frequency of avalanches increases. Further increase of external in-
put leads to the stability loss of the quiescent state and appearance of higher
frequency oscillations in the medium range of rates.(see Fig.36)

In the avalanche regime, membrane potential shows sub-threshold os-
cillations as can be seen in Fig.33 and Fig.34. In the down phase of the
cycle, neurons stay near resting potential while at the Up-state they reside
closer to the threshold, but in a distance from it that permits high variability
of firing. The membrane potential of a single neuron is depicted in Fig.37,
which shows aperiodic firing and up-down states of membrane potential.

While avalanches occur quasiperiodically, in most of them only a frac-
tion of neurons fire. As shown in (Fig.38 and Fig.39) neurons fire with the
CV close to one in the lower WEE regime, close to the BT point. Variabil-
ity in the size of avalanches is another interesting factor to investigate. The
size distribution of avalanches has a longer tail approaching the BT point. It
follows power-law distribution of size of avalanche P (S) ∝ S−τ with slope
τ = −1.5 close to the BT point, see Fig.38 and Fig.39(Top-left). Further
away from the critical point, avalanches have characteristic average size and
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tivity increase by increase in the input strength. In the
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FIGURE 37. Membrane potential track of a single neuron
during the avalanche dynamic of Fig.33.

their size probability density moves away from the power-law distribution.
Furthermore, the probability distribution of duration of avalanches follows
power-law with an exponent close to η = −2 near the BT point.

Branching ratio can be an indicator of the scale-free avalanche dynam-
ics. When inhibition and excitation are balanced and the system resides
near a quiescent state, the branching parameter stays close but below one
which is an indicator of a stronger inhibitory feedback. As can be seen in
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Fig.38 and Fig.39, this value is lower in the paramter regime close to the
BT point and becomes higher than one further away from it.

Branching ratio can be defined as the average number of postsynaptic
neurons of a specific neuron that fire by receiving the synaptic current from
that neuron. Here, we assume that by synchronous activation of nE neurons,
the postsynaptic neurons which are connected to these neurons will receive
both excitation and inhibition currents caused by the synchronous input.
Each neuron receives a fraction kEE of excitatory and kEI of inhibitory cur-
rents produced by active neurons in the populations. The average potential
change among neurons will be:

〈∆V 〉 = 〈kEEnE〉
1

C
g0wEEτ(VRexc − VE) + 〈kEInI〉

1

C
g0wEτ(VRexc − VE)

Close to the bifurcation point, there exists a tight dynamic balance be-
tween excitatory and inhibitory rates, following equation (3.18), which sets
〈∆V 〉 = 0. Based on the assumption that neurons fire with Poisson statis-
tics, we can write down variance of the potential change in the postsynaptic
neuron pool as:

〈∆V 2〉 = τ 2g2
0(〈kEEnE〉w2

EE(vRexc − Vth)2 + 〈kEInI〉(wEI)2(vRinh − Vth)2).
(3.20)

On the other hand, the number of postsynaptic neurons that fire by re-
ceiving an increase in voltage of value ∆V would be :

σ = NExc

∫ Vth

Vth−∆V

P (V, t =∞) ≈ −Nexc∆V
2

2

∂p(vE, t =∞)

∂v
|vE=Vth

(3.21)

From equation (2.16) for the stationary probability density we have :

∂p(vE, t =∞)

∂v
|= −

2C2ρexc
De(vRexc − Vth)2 +Di(vRinh − Vth)2

(3.22)

Inserting equation (3.22) in eqation (3.21) and averaging σ over differ-
ent realizations of the synchronous firing using equation (3.20) and dividing
by 〈nE〉 leads to :

σE ≈
τ 2g2

0[w2
EEρ

st
exc(vRexc − Vth)2 + ρstexc

〈nI〉
〈nE〉

w2
EI(vRinh − Vth)2]

De(vRexc − Vth)2 +Di(vRinh − Vth)2

(3.22)

Average number of active inhibitory and excitatory neurons 〈nI〉 and

〈nE〉, relates to stationary rates as
〈nI〉
〈nE〉

=
ρI
ρE

. Inserting this relation to

equation (3.22), we find out that the branching ratio is close to one near the
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BT point. Because of a slightly stronger inhibitory feedback, it would be
slightly below one.
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population vs. WEE at a fixed value of ρExt = 250Hz. Other
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FIGURE 41. Excitatory population rate (Right plots) and
average membrane potential (Left plots) corresponding to
states slightly below the Hopf bifurcation point (Top),
slightly above Hopf bifurcation point (Middle), and af-
ter saddle-node bifurcation point (Bottom) with the same
paramteres as in the Fig.40.

Excitatory neurons stay in a low firing regime with the average mem-
brane potential close to the middle point of firing threshold and resting-state
potentials, i.e. at V ∼ −57mv. At this point, sufficient fraction of neurons
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are close to the threshold, whose activation can cause a series of firing. On
the other hand, inhibitory neurons, which have a lower stationary membrane
potential beacuse of lower external input, provide negative feedback with a
delay that depends on the resting initial state and the strength of the connec-
tion between inhibitory and excitatory sub-networks. The dynamic balance
of excitation and inhibition in the linear Up-state leads to the critical be-
havior. As the average currents to the cells are balanced far from the firing
threshold, fluctuations in these currents have a larger effect and therefore,
the size of events and their durations would have higher variabilities.

Moreover, let us consider the onset of avalanche dynamics in the EI
population receiving external input with fixed rates by selecting WEE as
the only dynamic parameter, see Fig.40 . By increasing WEE , a second-
order phase transition happens at the Hopf bifurcation. Around this value,
normalized variance of the population rate is maximized and oscillation ap-
pears in the system. In Fig.40, this happens at value WEE ≈ 0.57 . Further
increase of WEE results in a saddle-node bifurcation which produces a sta-
ble high firing rate state at values around WEE ≈ 0.67. Fig.41 shows the
firing state of the network in these three distinct regimes.

Although the activity is noise-driven, the state of the system depends on
the synaptic weights, which determines the response to the external input.
There must be a self-organizing mechanism, which in a wider range of the
input strengths and initial configuration of synaptic weights tune the system
close to the BT point.

86



4. Long Term and Short Term Synaptic Plasticity rules Tune the EI
Population Close to the BT Bifurcation Point

4.1. Long Term Synaptic Plasticity by STDP Tunes Synaptic Weights
Close to the Balanced State. A typical neuron in the cortex has 103 − 104

synaptic connections with 80% of them of the excitatory type and 20% of
the inhibitory type. On the other hand, even in the resting state, neurons
on average have a non-zero firing rate with an average rate of 1Hz and
their spike trains are very noisy with exponential inter-spike interval dis-
tribution indicating the spiking of individual neurons to be a Poisson point
process. Yet another experimental fact about synaptic strength between neu-
rons states that usually, 10− 20 presynaptic synchronous spikes are enough
to set a typical neuron to the firing threshold. If we take τm = 20ms as
the membrane potential decay time constant, then during this time window
a typical neuron receives 20− 200 excitatory spikes, which are enough for
the neuron to periodically spike with a very high rate. To avoid this, the
inhibitory input in this time window should cancel the excitatory current to
a large portion. Therefore, for the average currents to maintain the aver-
age membrane potential below the threshold in order to avoid a high firing
state and produce high variability in the spike trains, inhibitory and exci-
tatory currents should be balanced. Dynamical balance of excitation and
inhibition ensures a low level of activity,i.e. asynchronous firing state. In
the following, we present a synaptic plasticity rule which tunes the average
synaptic weights to the balanced state. We will analyze and simulate a net-
work in which neurons will adapt their connections according to the Synap-
tic Time-Dependent Plasticity (STDP) paradigm, which is at the foundation
of temporal coding [116]. We derive an equation for the evolution of the
average and the variance of weights between excitatory and inhibitory neu-
rons during the plasticity period.

In STDP, the weight of a connection is modified depending on the time
interval between pairs of pre-and post-synaptic spikes. For every pair, the
weight of the synapse changes according to the following equations:

∆w(∆t) =

{
f+(w)K+(∆t) if∆t ≥ 0

−f−(w)K−(∆t) if∆t < 0
(4.1)

where ∆t = tpost−tpre is the time difference between the postsynaptic spike
and the presynaptic one. The functions f+ and f− model the dependence
of the weight change on the current value of the synaptic weights. K+ and
K− are called STDP kernels which are usually decaying functions of time
which reflects the fact that closer pre and post-synaptic spikes generate a
stronger change in the weights. Usually, we model the kernels by a sin-

gle exponential such as K+ = A+e
− |∆t|
τs+ and K− = e

− |∆t|
τs− . As it is evident

from equation (4.1) when the postsynaptic neuron fires after the presynaptic
neuron the strength of the connection increases and vice versa. We assume
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the same type of the STDP rule for both inhibitory and excitatory connec-
tions although with different kernels. In the following, we suppose that the
dependence of STDP on the synaptic weight is negligible and therefore re-
placing functions f+ and f− by a constant which is then absorbed to the
kernels. In this case, we have to assume saturation level for the maximum
strength of the synapses, wEmax and wImax.

STDP changes synaptic weights on a very slow time scale compared to
firing dynamics of the neurons, therefore, during a time period of [t, t+ ∆t]
where ∆t is long in comparison with inter-spike time interval but small
enough that the change in the weight wij of the synapse from neuron j to
neuron i is infinitesimal, one can write down:

∆wij =

∫ t+∆t

t

∫ inf

0

Sj(s)Si(s+ δ)f+(wij)K+(δ)dδds

+

∫ t+∆t

t

∫ inf

0

Si(s)Sout(s− δ)f−(wij)K−(δ)dδds

Where Si(t) and Sout(t) are the presynaptic and the postsynaptic neu-
rons’ spike trains. Assuming that during this period, the firing rate of the
output neuron is constant on average and there exist many pre and post
synaptic spikes, we can write down the mean change in the incoming synap-
tic weights to the neuron i as:

〈∆wij〉j
∆T

=

∫ inf

0

〈Sj(s)Si(s+ δ)〉jK+(δ)dδ

−
∫ inf

0

〈Sj(s)Si(s− δ)〉jK−(δ)dδ

We want to investigate the evolution of the synaptic weights in the EI
population in an asynchronous irregular state. Therefore, we assume that in
the regime of the spontaneous activity neurons are firing as a Poisson pro-
cess. Moreover, to estimate the cross-correlation of pre and post-synaptic
spike train we would argue that the excitatory input to the cell has a positive
correlation with preceding spikes in the target neuron. The magnitude of
this excess correlation would depend on the weight of the synapse and it is
restricted to the time window before the firing of the postsynaptic neurons.
With this in mind, we use the following approximation introduced in Luz
et al. and Van Rossum et al. [117, 118] for the cross-correlations of spike
trains to account for the causal contributions of presynaptic spikes to the
postsynaptic ones:
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〈SEpre(s)SEpost(s+ δ)〉 = rEprerpost + rEprewiγ
E(δ) (4.2)

〈SIpre(s)SEpost(s+ δ)〉 = rIprerpost − rIprewiγI(δ)

As second terms in both equations encode the excess correlation(anticorrelation)
of the presynaptic excitatory(inhibitory) input preceding the firing at the
postsynaptic neuron, we set γI = γE(δ) = 0 for δ < 0. For positive values
of δ, this function which is independent of the rates and the weights of the
synapses encodes the causal effect of the presynaptic spike which arrives
δ unit of time before firing of the postsynaptic neuron. Therefore, it is a
decaying function of δ. Moreover, we have assumed the dependence on the
weight of the synapse to be of a linear form, which is a good approximation
in the regime of small synaptic weights.

Inserting the above approximation and labeling STDP kernels of EE and
IE synapses as KE and STDP kernels of II and EI synapses as KI , we can
write down the evolution of the average excitatory and inhibitory synaptic
strength to the neuron i as:

d〈wEij〉
dt

= 〈rEj 〉ri(K
E

+ −K
E

−) + 〈rEj 〉〈wEij〉KE
+γ

E

d〈wIik〉
dt

= 〈rIk〉ri(K
I

+ −K
I

−)− 〈rIk〉〈wIik〉KI
+γ

I

Here, bars denote integrals of the kernels on the positive or negative real
lines. In the population of sparsely connected and sufficiently homogeneous
neurons, in terms of the number of connections of each neuron, and the
regime of asynchronous homogeneous firing state, i.e all the neurons fire
with the same average rate but with a random phase of firing among them,
average weights evolve as :

dwEE
dt

= r2
EK̂

E + rEwEE
¯KE

+γ
E (4.3)

dwEI
dt

= rErIK̂I − rIwEI ¯KI
+γ

I

dwIE
dt

= rErIK̂E + rEwIE
¯KE

+γ
E

dwII
dt

= r2
IK̂

I − rIwII ¯KI
+γ

I

From the above equations, it is straightforward to see when K̂E :=

K
E

+−K
E

− < 0 and K̄I := K
I

+−K
I

− > 0 , the stationary solutions satisfy :
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FIGURE 42. Effect of the synaptic plasticity on the network
with three different initial weight configurations. (Left plots)
Evolution of the average synaptic weights by STDP. (Top-
Right) Change in the balance condition by STDP. Slopes of
the Exc. and the Inh. nullclines approach each other un-
der STDP in all three configurations. (Middle right) The
final state of the average neuron firing rates for these three
networks lies below 1Hz. (Bottom-right) Network activity
for different clusters of neurons with different overall aver-
age inward synaptic weights. STDP results in clusters with
different overall connectivity strengths and correspondingly
different average rates.

wstEI
wstEE

=
K̂IKE

+γ
E

K̂EKI
+γ

I
=
wstII
wstIE

(4.4)

The above condition brings the slopes of the excitatory and the in-
hibitory nullclines close to eachother leading to intersection in the semi-
linear regime and proportionality of the excitation and the inhibition.

rstI
rstE
≈ kEEwEE

kEIwEI

As the system lies around the BT point, a high amount of the synap-
tic plasticity occurs when neurons are in a higher (here the linear) firing
regime. At this state, rates vary co-linearly as the above equation. On
the other hand, synaptic plasticity rules for wII and wEI , i.e. second and
fourth lines in equation (4.3), lead to a relation for stationary weights in

the form of:
wII
wEI

=
rstI
rstE

. Comparing these last two equations, we arrive at

kEEw
st
EE = kEIw

st
II . Assuming kII = kEI , the mentioned relation adjusts
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the trace of the Jacobian at the fixed point in the linear section to be near
zero. Therefore, the plasticity rule in addition to the dynamics near-linear
regime stabilizes the system near the BT point.

Fig.42 shows that STDP brings the network of EI populations to the
avalanche regime. As STDP leads to an increase in the variance of weight
distribution, some groups of the neurons become highly connected to the
others while other groups show less overall connectivity strength. These
groups of neurons will have different average rates as can be seen in Fig.42(Bottom
Right).

4.2. Short-term plasticity and Up-Down states transition. Neurons’
membrane potential in the spontaneous regime show transitions between up
and down levels of depolarization. In the low state, the potential is close
to the resting potential of the neuron and the firing rate is very low. On
the other hand, in the up-state, the membrane potential stays closer to the
threshold, and the neuron fires with rates of the order of few Herz to few
tens of Herz. The mechanism that generates this bi-stability can be of an
intrinsic and internal type such as non-linearity in the voltage-dependent
synaptic current or can be originated from network dynamics. The switch
between these bi-stable regimes might be due to the internal or the external
noise or an adaptive mechanism that regulates the gain of the network. In
the following, firstly, we discuss the adaptive role of short-term synaptic
plasticity in bringing the network of EI population to the avalanche regime.
Afterward, we will discuss how internal or external noise close to the BT
point can also cause the switch between the quiescent(Down) and the low
firing(UP) states. We will discuss that the Up-Down states’ transition by
short-term depression can be achieved either through a switch between bi-
stable states or bringing the system close to the BT point by dampening the
overall excitation.

In our model, short-term depression of the excitatory synapses reduces
outgoing synaptic efficacy of excitatory synapses to an excitatory neuron
in case of a high rate of presynaptic activity. To model the STP effect, we
consider that the effective utility of the excitatory synapses of neuron j to
the other neurons is proportional to the fraction of the available synaptic
resources u. Decrease of neurotransmitters at the synapses and depression
in release probability due to consecutive uses of neurotransmitters in pre-
vious spikes of the presynaptic neuron is the source of STP. We assume by
each spike of presynaptic neuron u would reduce by the factor qu and then
recovers with time constant τSTP which is of order 100ms to few seconds.
Therefore, synaptic efficacy of the postsynaptic synapse of neuron j evolves
as:

duj
dt

=
1

τSTP
(1− uj)− quj

∑
k

δ(t− tjk) (4.5)
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Here, we just consider the short-term plasticity of synapses between ex-
citatory to excitatory neurons. This type of plasticity might occur in other
types of synapses as well, however, we would not discuss it here. Because
there exist numerous input synapses and we have assumed homogeneous
connectivity, each neuron senses a large sample of the network activity and
is connected with an overall average weight with a small variance to the
excitatory neuron pool. Based on these assumptions and structural homo-
geneity, we can write down the dynamic of the average synaptic weights
to the neuron i in the state of the network with excitatory and inhibitory
population firing rates of the magnitude ρE and ρI , respectively, as:

dwEE
dt

=
w0
EE − wEE(t)

τSTP
− wEEqρE (4.6)

Rate equations for the EI population are of the following form:

dρE
dt

= − 1

τm
(ρE(t)− f(ρE(t), ρI(t), wEE))

dρI
dt

= − 1

τm
(ρI(t)− g(ρE(t), ρI(t)))

Taking the time scale of short term plasticity to be much larger than the
EI-network activity decay time constant, i.e. τSTP >> τm, we can rewrite
the dynamic in terms of fast,d/dtf and slow time d/dts evolution. Here,

tf = t/τm and ts = t/τSTP . Defining µ = ts/tf and ρ =

(
ρE

ρI

)
, we arrive

at:

dρ

dtf
= −(ρ− f(ρ, wEE)) (4.7)

dwEE
dtf

= µ(w0
EE − wEE)− qτmwEEρE

This set of equations can have a stable fixed point or an oscillatory behavior.
Average synaptic efficacy in the stationary state with the average exci-

tatory rate ρ∗E would be :
.

〈WEE〉St =
w0
EE

1 + τqρ∗E
(4.8)

In case that there exist a fixed point or a stable limit cycle solution
around this point in the (ρE, ρI , 〈WEE〉st) phase space, system might set-
tle down at this solution (Fig.43-left). Dynamics of the EI population near
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FIGURE 43. Output excitatory rates as a function of WEE

and the corresponding graphs for the average synaptic effi-
cacy 〈WEE〉St at three values of q (dashed red curve belongs
the largest and dashed green curve is for the lowest value).
Based on the value of W 0

EE , two different scenarios can hap-
pen. In the left plot by decreasing q, through saddle-node bi-
furcation stable and unstable fixed points appear at low and
high values of the rates. In the right plot, with higher W 0

EE ,
by decreasing q after the Hopf bifurcation of low firing rate
fixed point, oscillatory solution for (u, ρout) emerges.

this region ,(with slow-fast assumption) can be written as:

ρstE = f(kEEρ
st
E , kEIρ

st
I , λ

Ex
E , λExI ,

w0
EE

1 + τq〈ρst〉
) (4.9)

ρstI = g(kEIρ
st
E , kIIρ

st
I , λ

Ex
E , λExI )

This mechanism is shown to be effective to bring the system close to the BT
point. Short synaptic plasticity is a method of gain control that can bring
the system from a wide range of input and initial states to the low activity
background state. In Fig.44, STP brings the system initially away from the
BT point close to the avalanche regime. The average synaptic efficacy 〈u〉
in these cases does not oscillate significantly. In Fig.44, the network is in the
parameter regime similar to the Fig.34 with W 0

EE = 0.56 and four different
values of ρExt. Without STP, the system in the first three cases show a high
firing rate oscillatory activity with an average rate of around 300Hz.

STP brings all of them closer to the avalanche regime. Fig.45 shows
excitatory and inhibitory stationary rates of the EI population subjected to
external rates in the range [200-500]Hz. As it can be seen, STP leads to low
firing rate states and prevents overactivation.

Fig.46(Left) shows avalanche size distribution in a log-log plot for the
final state in the Fig.44 which shows avalanche. The slope of the linear
regression line is very close to −1.5. The branching ratio for the final state
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FIGURE 44. EI population with short term plasticity.
WEI = 2,WII = 1.5,WIE = 0.75 ,W 0

EE = 0.55 ρinhExt=
150Hz and ρexcExt = [380 ,280 , 240 , 180]Hz. STP parameters
are: q = 0.3 , τSTP = 10 ∗ τsyn. Top panel is the system
with the highest external input rate and the bottom panel is
the one with the lowest. Left plots are the excitatory popula-
tion rates, middle plots are the population average membrane
potential and right plots are the average excitatoty synaptic
efficacy 〈u〉.
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FIGURE 45. The final excitatory(red) and inhibitory(blue)
output rates for the system in Fig.44. STP works as a gain
control mechanism.

of the system is shown in Fig.46(Right). For ρExt = 240, the branching
ratio is slightly less than one which is in agreement with our prediction in
the avalanche regime.
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FIGURE 47. Solid curves are the output rates for three dif-
ferent external input strengths vs. WEE: Blue (400Hz),
red (310Hz), and black (220Hz). Dashed curves are aver-
age stationary synaptic weight, 〈WEE〉, in the network with
STP with different maximum synaptic efficacies: W 0

EE =1.3
(red) , 0.9 (blue), 0.7 (green), and 0.65 (magnet). Intersec-
tions of the dashed and the solid curves are the fixed points
of the EI network with STP for the corresponding control
parameters. These fixed points are located in the low firing
rate regime close to the avalanche region(see Fig.40).

Moreover, Fig.47 shows final output rates in the case of a stable fixed
point for u for three different values of the external Excitatory rates and
W 0
EE .
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FIGURE 48. EI population with short term plasticity. Net-
work parmeters are : WEI = 2,WII = 2,WIE = 0.75
,W 0

EE = 0.74 , ρinhExt= 150 Hz, ρexcExt =[ 400 ,330 , 270, 225]
Hz and STP parameters are: q = 0.4 , τSTP = 10∗τsyn . Left
plots are the excitatory rates , middle plots are the average
membrane potential and right plots are the average synaptic
efficacy 〈u〉.

Another way that STP can cause a switch between two distinct firing
states is in the EI population which possesses bi-stability. In this case
change of u can make each of the bi-stable nodes unstable while the system
resides near them. Decrease of u in the up-state makes the Up-state fixed
point unstable at some value of u(t) (and accordingly wEE). Therefore, the
system will jump to the remaining stable fixed point in a low or quiescent
state. In the very low firing regime (the quiescent state), u will recover to
its asymptotic value, and average synaptic weight increases towards w0

EE .
If the quiescent state is unstable when u approaches its maximum value, we
observe a transition to the high state. Moreover, if the volume of the basin
of attraction of the quiescent fixed point is small, external and internal noise
can also induce the transition to the high rate fixed point and the quiescent
fixed point doesn’t need to become unstable at w0

EE . For high values of u,
the up-state fixed point is the stable point of the fast system but an unstable
point of the slow one. Therefore, following the slow path up-state loses
stability and the fast system remains with only a stable low fixed point. The
trajectory of the slow u would be oscillatory in this case.

Fig.48 shows both ways that STP can produce synchronous avalanche
behavior in the system. When WEE = w0, the system is close to the con-
straints on the alignment of the semi-linear segments of the EI-nullclines
which results in the presence of a high firing state as a unique fixed point
of the system. In the high input rate case,(rhoExt = 400Hz, correspond-
ing to the top panel of Fig.48 and Nullcline diagram of Fig.49(Left), due to
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STP, the system moves from a high state of activity to a limit cycle solu-
tion in lower firing rates. This final state is shown in Fig.48 top panel and
nullclines arrangements in this state are depicted in Fig.49(Right). Here,
there is an unstable source in the linear branch sector which is surrounded
by a limit cycle. Moreover, oscillations in 〈u〉 have a low amplitude be-
cause of the temporal averaging. On the other hand, the two bottom panels
in Fig.48 are related to the situation of switch between the high fixed point
and the quiescent node. As it is shown in nullclines graphs in Fig.50, at
high synaptic efficacy in the left diagram, high firing state is the only stable
fixed point, however, high firing rate results in a fast decline of the synaptic
efficacy which brings the system to the state with nullcline map of the right
plot in Fig.50 which has a stable quiescent fixed point. The final state activ-
ity, in this case, is composed of avalanches with a high rate of firing in the
short window of an avalanche. Decreasing the q factor can result in a longer
up-state period. Also, 〈u〉 oscillates between two limits in these cases.

In this particular case, necessary conditions for up to down transition
are:

kEEW
0
EE > kEIWEI (4.10)

kEE
w0
EE

1 + τqρH
< kEIWEI

The first condition is related to the slope of the excitatory nullcline be-
ing smaller than the inhibitory one, which indicates a stable high firing fixed
point. The second condition states that at this high firing state the station-
ary weight is not accessible before a stability loss. The slope of nullcline
increases by the decrease of effective WEE which causes the high state to
lose stability either through Hopf bifurcation or saddle-node bifurcation.

Finally, the second top panel in Fig.48 is related to the case where STP
brings the system close to the BT point that shows low to medium size
avalanches with higher variability.

To sum up, transition from a quiescent state to a high firing state can
be of two distinct nature. One way is that by increasing WEE , the LF fixed
point and the unstable saddle move toward each other and in this way the
basin of attraction of the LF fixed point shrinks and noise can initiate the
escape from this fixed point to the high firing state. The other way is that
fixed point losses stability through Hopf bifurcation either before or after
the emergence of a saddle-node in the middle branch.
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FIGURE 49. Nullclines plot for the system with the param-
eters same as Fig.48 top panel. (Left) Corresponding to the
system before STP with WEE = 0.74. (Right) The null-
cline map after STP makes the high fixed point unstable and
lower down average effective Exc.-Exc. synaptic weights
(〈WEE〉).
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FIGURE 50. Nullclines plot for the system with parameters
same as in Fig.48-Bottom. (Left) Here, WEE = 0.74 which
corresponds to the system being at the Up-state when the
synaptic efficacy is fully recovered. (Right) The nullcline
map in the Down-state with low synaptic efficacy.

5. Interconnected network of EI populations :Wilson-Cowan Neural
Field Model

The model of Wilson and Cowan for the dynamics of the Spatio-temporal
mean fields of the excitatory and the inhibitory population rates,E(x, t) and
I(x, t) in a 2D model of the cortex was introduced in the ’70s. In this
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model at each point x, E(x, t) is the density of the active neurons at time
t in a sphere of radius Γ around x. Take a as the average distance between
a neuron and its neighbors and ξ as the correlation length of the activity of
neurons. Selecting a << Γ < ξ guarantees that E(x, t) is well defined and
the number of neurons in each block is large enough to take the limit over
the size of local population. E(x, t) is defined as :

E(x, t) = lim
N→∞

nactive(x, t)

N

Considering a high number density of neurons, we assume that fluctuations
in the number of the active neurons around this mean value are negligible.
Furthermore, to derive the dynamics of this field we have to write down the
input-output relation for each population of neurons at position x. In the
mean-field approximation, we assume that each neuron receives the same
input, which implies that each neuron is connected to all other neurons, and
the weights of connections depend only on the distance x − x′ between
two neurons. This can be a valid approximation if the connections between
adjacent neurons are dense and the heterogeneity in the network structure
is minimal. Now, assuming that neurons in each population would relax
to the non-active state in the absence of input with relaxation constant τ , in
general one can consider the following equation for the activity fieldE(x, t)
:

τ
dE(x, t)

dt
= −E(x, t) + (ke − reE(x, t)) ∗ Se(iE(x, t)) (5.1)

iE(x, t) is the input to the excitatory population at x at time t which
consists of both inhibitory and currents from both the self-activity of neu-
rons in the population and other neurons in the adjacent population. Se is
a nonlinear input-output function that generally would depend on the re-
sponse of the individual neurons, distribution of the membrane voltage, and
the heterogeneity in weights.

In the following just as in Landau Ginzburg modeling for phase transi-
tion, we will assume the field E(x, t) and I(x, t) are very small so we can
perform an expansion in form of power series. Furthermore, since these
are average fields, we would assume that they vary slowly and smoothly in
space, therefore, we neglect fast fluctuations and write down a phenomeno-
logical model for the current to excitatory population as :
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iE(x, t) =

∫
V

E(x′, t)wEE(|x′ − x|) + I(x′, t)wEI(|x′ − x|)dV + iextE

=E(x, t)

∫
wEEdV +∇E.

∫
(x′ − x)wEE(|x′ − x|)dV

+
1

2

∫
(x′ − x)HE(x)(x′ − x)wEE(|x′ − x|)dV

+ I(x, t)

∫
wEIdV +∇E.

∫
(x′ − x)wEI(|x′ − x|)dV

+
1

2

∫
(x′ − x)HI(x)(x′ − x)wEI(|x′ − x|)dV

= 2πE(x, t)

∫
rwEE(r)dr + 2πI(x, t)

∫
rwEI(r)dr

+ π∇2E

∫
r3wEE(r)dr + π∇2I

∫
r3wEI(r)dr + iextE

we can expand SE around Ie0 = 2πE(x, t)rwEE + 2πI(x, t)rwEI + iextE

and write down :

τ
∂E(x, t)

∂t
= −E(x, t)+ (5.2)

(ke − reE(x, t))[SE(Ie0) + πSE
′

|IE0
(∇2E〈r3wEE〉+∇2I〈r3wEI〉]

The same equation holds for the inhibitory field by expanding SI around
I i0 = 2πE(x, t)rwIE + 2πI(x, t)rwII + iextI :

τ
∂I(x, t)

∂t
= −I(x, t) (5.3)

+ (ki − riI(x, t)) ∗ (SI(I i0) + πSI
′

|Ii0
(∇2E < r3wIE > +∇2I < r3wII >))

Equations (5.2) and (5.3) are of the reaction-diffusion type for the in-
hibitory and the exciatory fields in a two dimensional space. Defining

V (x, t) =

(
E(x, t)
I(x.t)

)
,D as the diffusion matrix and f : R2 → R2 as the

gain function, one can rewrite above equations in this form:

τ
∂V (x, t)

∂t
= D∇2V (x, t) + f(V (x, t)) (5.4)

The ODE part of this equation is the dynamic of a single EI popula-
tion. The corresponding low firing fixed point (E0, I0) is stable in a spe-
cific parameter regime. It usually loses stability either via a saddle-node or
Hopf bifurcation which leads to either a region of bi-stability of low and
high firing state or the emergence of oscillations. However, still far away
from the bifurcation point since the diffusion matrix is not a scalar multiple
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of identity the Turing instabilities can occur in the system. It means that
the homogeneous state of [E(x, t), I(x, t)] = [E0, I0] can become unsta-
ble. In other words, when the diffusion coefficients of the inhibition and the
excitation are sufficiently different, the homogenous steady state becomes
unstable because of the diffusion.

To see this, consider the above ODE has a homogeneous solution at
V0 = [E0, I0], by linearization of the equation around the fixed point , i.e.
V (x, t) = V0 + v(x, t) and plugging in the ansatz v(x, t) = eikx+λ(k)tψ we
arrive at :

(
−DEEK

2 + ∂E|V0fE,−DEIK
2 + ∂I|V0fE

−DIEK
2 + ∂E|V0fI ,−DIIK

2 + ∂I|V0fI

)
ψ = λψ (5.5)

AssumeL to be the Jacobian of an isolatedEI population rate equations
at K = 0, then the condition for the stability of the fixed point reads as :

∂EfE + ∂IfI < 0 (5.6)

det(L) = ∂EfE∂IfI − ∂IfE∂EfI > 0

For the occurrence of Turing instability at a critical kcthe eigenvalues
λ(k) which satisfies the characteristic equation below should become posi-
tive for some real value of k:

λ2 + ((DEE +DII)k
2 − (∂EfE + ∂IfI)λ+R(k2) = 0 (5.7)

with R(k2) defined as:

R(k2) = αk4 − k2(DEE∂IfI +DII∂EfE −DIE∂IfE −DEI∂EfI) + det(L)
(5.8)

In which α := DEEDII − DEIDIE . Since the coeficient of λ in the
equation (5.7), i.e minus the sum of eigenvalues, is positive, the necessary
condition for the turing instability is thatR(k2) < 0 for some k . When α >
0 ,which is a fair assumption as the inhibitory connections are more local
than excitatory ones, if β := DEE∂IfI+DII∂EfE−DIE∂IfE−DEI∂EfI >

0 then R(K2) can become negative . In general
β

α
should be positive and

instability of the homogenous state occurs at value k2
0 =

β

2α
for whichR(k)

becomes zero for the first time. In the following, we consider the case of
the local inhibitory connection and therefore, we take DII and DEI to be
very small. Furthermore, we assume to be in the regime of positive α , i.e
DEE > DIE and DII ≈ DEI � DEE . With these assumptions, which
are intuitively valid based on the connectivity structure in the cortex,the
condition on positive β converts to :
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FIGURE 51. STDP changes values of connections’
strengths in a way that sufficient conditions for emergence of
Turing patterns, i.e. Eq.(5.10), are satisfied. (Left) 〈WEE〉,
(Middle) 〈WII〉 and (Right) WEE | WII | −WIE | WEI |,
for three different initial sets of values. Network’s
paramteres evolve by STDP and at their final states satisfy
conditions of Eq.(5.10).

DEE∂IfI −DIE∂IfE > 0

This holds when DIE and | ∂IfE | are sufficiently large which means
the excess inhibition will produce a larger effect on the excitatory connec-
tion than the inhibitory one. This happens when the average stationary state
potential distribution for neurons is close to the threshold, at which the ef-
fect of inhibition is larger than excitation. Therefore, conditions for Turing
instability to occur are :

| ∂IfE |>
DEE

DIE

| ∂IfI | (5.9)

| ∂IfI |> ∂EfE

∂EfI >
∂EfE | ∂IfI |
| ∂IfE |

Considering the fact that DEEand DIE are proportional to WEE and WIE

and the partial derivatives in the first approximations are equal to the aver-
age strength of connection, the necessary conditions for the Turing instabil-
ity reduce to :

WIE | WEI |> WEE | WII | (5.10)

WEE− | WII |< 0
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FIGURE 52. Simulation result of 20 interconnected EI pop-
ulations each of size NE = 10000 arranged on a ring. Aver-
age synaptic weights between two different EI subnetworks
decays with the phase difference of them. Parameters of
synaptic weights in each EI population are : WEE = 0.6
, WEI = 2,WII = 2,WIE = 0.75 ,ρEExt = 230Hz
and ρIExt = 150Hz. (Top-Left) The average firing rate of
the whole network. (Middle-Left) Raster plot of the sub-
population of 50 neurons in one single EI subnetwork. Al-
though neurons fire at avalanche times, they don’t fire in all
of them, which leads to high variability in their interspike
interval times. (Bottom-Left) The membrane potential of a
single neuron, which is in a constant transition between a
state closer to the threshold and a state close to the resting
potential. (Top-Right) The average membrane potential of
an EI-population(red for Exc. and blue for Inh.). (Middle
and Bottom-right) The activity of two distinct EI subpopu-
lation which shows high variability in sizes of avalanches in
both of them.

As can be seen in Fig.51 and discussions at the end of section(4.1),synaptic
placticity rule of section (4.1) lead to the regime where above mentioned
conditions are satisfied.

Moreover, taking ∂EfI ∝ WIE and ρext as the free parameters, one can
obtain the boundary of the Turing instability region defined bymin(R(k2)) =
0 at some value k = kc . In this Turing instability region, stripe-like station-
ary patterns of activity with spatial frequencies close to k = kc appears in
the system and the homogeneous solution becomes unstable.

Besides Turing instabilities, it can also happen that the fixed point itself
loses its stability at k = 0 through Hopf bifurcation, where real part of the
eigenvalues of L become zero:
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∂EfE + ∂IfI = 0

det(L) = ∂EfE∂IfI − ∂IfE∂EfI > 0

Furthermore, exactly at the BT point, we would also have det(L) = 0.
Fig.52 shows the activity of 20 interconnected EI-populations each operat-
ing close to the BT point. Overall activity in this system is of synchronous
avalanches type. Up-down state transitions also become synchronized. We
can model weakly interconnected EI populations in the avalanche regime
which shows oscillation of frequency ωi as pulse-coupled oscillators and
therefore investigate conditions on synchronization and traveling wave so-
lutions. This analysis is out of the scope of the current work. Another
approach is supplementing the macroscopic field equation with appropriate
noise term to derive the mesoscopic equation. As can be seen from Fig.52,
the overall network activity is of avalanche style. It is another evidence that
avalanches are scale-free and occur in different temporal and spatial scales.
However, our neural field model still lacks the internal finite-size fluctuation
effects, inhomogeneities, and cross-correlation between individual neurons,
and also inter-populations correlations.

104



6. Stochastic Neural Field

6.1. Finite size fluctuations in a single EI population. So far we have
analyzed mean-field models which were based on neglecting finite system
size, inhomogeneities in the synaptic connections, and stochastic effects.
Far from bifurcations of the mean-field equations, the behavior of the av-
erage rates of the stochastic system follows predictions of MF accurately.
In this case, basins of attractions of the fixed points are separated enough
and stochastic effects do not lead to a change in the macroscopic behavior
of the system. However, close to the bifurcation points of the macroscopic
system, internal and external fluctuations can make the stochastic system
evolve differently than predictions of MF models. For example, it can cause
transitions between different fixed points.

Let us consider a homogeneous network in which temporal and spatial
variances in the firing rates of neurons would be minimal. In this network,
fluctuations in the finite system firing rates in the steady-state will be pro-

portional to O(
1√
N

). To model the finite-size stochastic effects, we need

to write down dynamics of micro-states evolution that match the mean-field
upon coarse-graining. As we have seen, the operating region of the EI pop-
ulation is around a low firing state where neurons fire with high variability
of inter-spike intervals indicating that we can model neurons’ spiking as a
Poisson process. In this regime of activity, the Poisson neuron assumption
enables us to write down the microscopic evolution of a model neuron with
two active and inactive states. Rate of active to inactive transition,α would
model vanishing of the postsynaptic potentiation, and the rate of inactive to
active transition depends on the input and is denoted by f(i). We want to
model the system in the statistical homogenous state, in which the probabil-
ity that one neuron fires depend only on the number of active neurons and
it is the same for every neuron in the population.

In the following, we consider population of NE excitatory and NI in-
hibitory neurons, in which neurons change their states independently. Let
us take P (E, I, t) as the probability density of the EI population being in a
state with E number of active excitatory and I number of active inhibiotry
neurons at time t. The following master equation describes the microscopic
evolution of the system :

∂P (E, I, t)

∂t
=− α[(EP (E, I, t) + IP (E, I, t)] (6.1)

+ α[(E + 1)P (E + 1, I, t) + (I + 1)P (E, I + 1, t)]

+ (NE − E + 1)f(κEEwEE(E − 1), κEIwEII)P (E − 1, I, t)

− (NE − E)f(κEEwEEE, κEIwEII)P (E, I, t)

+ (NI − I + 1)g(κIEwEEE, κIIwEI(I − 1))P (E − 1, I, t)

− (NI − I)g(κEEwEEE, κEIwEII)P (E, I, t)
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In which κxy =
Kxy

Nx

, with Kxy being the number of incoming con-

nections to a neuron in the population x from the population y. In the fol-
lowing, we write down cxy = κxywxy. We use the system size expansion
method [119] for truncating moment hierarchy based on taking an ansatz on
the order of the finite size fluctuation in the system. Assuming fluctuations
around the deterministic (average field) trajectory to be of order O(N), we
can rewrite our stochastic variables in terms of a deterministic and a fluctu-
ating term as:

E = NEρE +N
1/2
E ε (6.2)

I = NIρI +N
1/2
I i

Defining P (E, I, t) = Q(ε, i, t), we can rewrite the l.h.s of the master
equation in terms of the new parameters as :

∂P (E, I, t)

∂t
=
∂(ε, i, t)

∂t
−N1/2

E

dρE(t)

dt

∂Q

∂ε
−N1/2

I

dρI(t)

dt

∂Q

∂i

Defining ladder operators ZEf(E) = f(E+ 1) and Z−1
E f(E) = f(E−

1) and expanding them in powers of ε , we arrive at:

ZE = 1 +N
−1/2
E

∂

∂ε
+

1

2
N−1
E

∂2

∂2ε
+ ...

Z−1
E = 1−N−1/2

E

∂

∂ε
+

1

2
N−1
E

∂2

∂2ε
+ ...

We define the same ladder operators for the inhibitory population states.
Plugging all these equations into the master equation(6.1), we have:

∂Q(ε, i, t)

∂t
−N1/2

E

dρE(t)

dt

∂Q

∂ε
−N1/2

I

dρI(t)

dt

∂Q

∂i
= (6.3)

α(ZE − 1)[(NEρE +N
1/2
E )ε)Q(ε, i, t)]

+ (Z−1
E − 1)[NE(1− ρE −N−1/2

E ε)f(cEENE(ρE +N
−1/2
E ε), cEINI(ρI +N

−1/2
I i))Q(ε, i, t)]

+ α(ZI − 1)[(NIρI +N
1/2
I i)Q(ε, i, t)]

+ (Z−1
I − 1)[NI(1− ρI −N−1/2

I i)g(cIENE(ρE +N
−1/2
E ε), cIINI(ρI +N

−1/2
I i))Q(ε, i, t)]

Expanding the inactive to inactive transition rates as :

f(cEENE(ρE +N
−1/2
E ε), cEINI(ρI +N

−1/2
I i)) = f(cEENEρE, cEINIρI)+

N
−1/2
E

∂f

∂ρE
ε+N

−1/2
I

∂f

∂ρI
i+ ...
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Using the same expansion for ladder operators, we can sort the right and
the left sides of (6.3) in powers of NE and NI . Equating terms of the order
O(N

1/2
E ) and O(N

1/2
I ) leads to the macroscopic equation:

− dρE(t)

dt
= αρE(t)− (1− ρE(t))f(κEEwEENEρE, κEIwEIρI)

− dρI(t)

dt
= αρI(t)− (1− ρI(t))g(κIEwIENIρI , κIIwIIρI)

Equating terms of order O(N0) leads to a linear FPE for Q(ε, i, t) of the
following form:

∂Q(ε, i, t)

∂t
=(α− (1− ρE)

∂f

∂ρE
+ f)

∂

∂ε
εQ

+(α− (1− ρI)
∂g

∂ρI
+ f)

∂

∂i
iQ

−(1− ρE)
∂f

∂ρI

∂

∂ε
iQ

−(1− ρI)
∂g

∂ρE

∂

∂i
εQ

+
1

2
(1− ρE)f

∂2

∂ε2
Q+

1

2
(1− ρI)g

∂2

∂i2
Q

Defining matrices A and B as :

(
A11 A12

A21 A22

)
=

−α + (1− ρE)
∂f

∂ρE
− f (1− ρE)

∂f

∂ρI

(1− ρI)
∂g

∂ρE
−α + (1− ρI)

∂g

∂ρI
− g


B =

(
(1− ρE)f 0

0 (1− ρI)g

)
The amplitude of fluctuating term evolves as :

∂

∂t

(
〈ε〉
〈i〉

)
=

(
A11 A12

A21 A22

)(
〈ε〉
〈i〉

)
(6.4)

And the covarianc matrix C =

(
〈〈ε2〉〉 〈〈εi〉〉
〈〈εi〉〉 〈〈i2〉〉

)
satisfies :

∂

∂t
C = AC + CAt +B (6.5)

If the determinant of matrix A is positive and its trace is negative at the
stationary point of the macroscopic equation (i.e. A has two negative eigen-
values), then the averages of fluctuation terms go to zero. At the stationary
point of the macroscopic equation, we woulf have :
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A11 0 A12

0 A22 A21

A21 A12 A11 + A22

〈〈ε2〉〉st〈〈i2〉〉st
〈〈εi〉〉st

 = −α
2

ρstEρstI
0


which has the following solution :

〈〈ε2〉〉st ≈ c((A11A22 − A21A12 + A2
22)ρE + A2

12ρI) (6.6)

〈〈i2〉〉st ≈ c((A11A22 − A21A12 + A2
11)ρI + A2

21ρE)

〈〈εi〉〉st ≈ −c(A11A12ρI + A21A22ρE)

with c =
−α

2(A11 + A22)(A11A22 − A21A12)
.

Average population rate and fluctuation arround the macroscopic state
are as follows:

〈 E
NE

〉 = ρE 〈〈 E
NE

〉〉 =
〈〈ε2〉〉
NE

(6.7)

〈 I
NI

〉 = ρI 〈〈 I
NI

〉〉 =
〈〈i2〉〉
NI
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FIGURE 53. Nullclines graphs for the system with param-
eters: WEI = 2,WII = 1.5,WIE = 0.75, ρIExt =
150Hz, ρEExt = 280Hz ,wEE = 0.53(red) and 0.48(black).
Blue curve is the inhibitory nullcline and dashed lines are
linear approximations of the corresponding nullclines. Both
excitatory nullclines have intersection with the inhibitory
nullcline in the semi-linear section.
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From equation (6.7), it can be seen that close to the bifurcation of the
macroscopic equation, i.e. the BT point, where both trace and determi-
nant of the Jacobian are close to zero, magnitudes of fluctuations increase.
Exactly at the bifurcation point, the mentioned system size expansion fails
because the average of the noise term is unbounded, therefore, we cannot
assume fluctuating term in equation (6.2) to be of order N1/2. Figures (53-
55) show characteristics of an EI population activity in the Poisson regime.
Fig.53 is the nullcline graph related to two different strengths of WEE both
of them adjusting the system to have a stable fixed point on the semi-linear
part of the nullclines. The one with a higher WEE has a higher firing rate
fixed point. Fig.54 shows how the average and the variance of the mem-
brane potential, the average rates, and the inter-spike intervals’ CV follow
the prediction that neurons fire with Poisson statistics, asynchronously and
independently. Dashed lines in Fig.54 are the approximation based on con-
sidering neurons to fire with Poisson statistics and independently with the
same rates that we observe in the simulation of the network. Dashed lines in
the bottom-left plot show the rate approximation based on considering the
membrane potential distribution as Gaussian with the mean and the variance
as predicted in the top panel. Fig.55 shows the variance and the covariance
of the excitatory and the inhibitory rates in the simulation match the values
derived from the microscopic model discussed above, i.e. equations (6.6)
and (6.7).
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FIGURE 54. Characteristics of the network activity for sys-
tems with weight parameters as in Fig.42 with WEE ∈
[0.41, 52]. Red curves show excitatory quantities and blue
is for inhibitory ones. Dashed lines are the prediction from
the Poisson assumption and solid lines are the simulation
results.(Top-Left) Average membrane potential. (Top-Right)
The standard deviation of the membrane potential. (Bottom-
Left) Output rates. Here, dashed lines are the firing rates
derived from the Gaussian approximation of the potential
distribution based on values of the average and the vari-
ance of the membrane potential in the top panel of this
figure.(Bottom-Right) Interpike intervals’ CV in the simu-
lation.

6.2. Stochastic Neural Field with a Tuning Mechanism to the Crit-
ical State. We have considered that the inhibition effect in the network is
local and we have seen that the system is tuned in a way that the inhibitory
feedback in the local EI population balances the average excitatory current
in a way that neurons’ firing is fluctuation driven. Consider the effect of the
inhibitory current to be instantaneous, we can use proportionality of exci-
tatory and inhibitory current to write down rate dynamics of the excitatory
population in terms of stochastic field equation when both inhibitory feed-
back and fluctuations are local. From equation (3.18), we know that near

the BT point, there is a linear relation between rates,i.e I ≈ kEEWEE

kEIWEI

E.

Therefore, the average current to the excitatory population close to the BT
point can be written as ε = kEEWEEE − kEIWEII ≈ 0. Second deriv-
ative in the expansion of gain function for the excitatory population from
equation (5.4) in the region of low activity is :

1

2

∂2f

∂E2
E2 +

∂2f

∂EI
EI +

1

2

∂2f

∂I2
I2
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FIGURE 55. (Top) ratio of var(E) to var(I) (red) and var(EI)
to var(I)(black) in the stationary state of the above mentioned
systems. Dashed lines are the approximation derived from
the Poisson assumption and solid lines are the simulation re-
sults of the spiking neuron network.(Bottom) The ratio of the
excitatory to the inhibitory stationary rates varies vs. WEE .

Dashed line is
kEIWEI

kEEWEE

and the solid line is the simulation

result.

With following approximations for the gain function derivatives:

∂2f

∂I2
∝ W 2

EI

∂2f

∂E2
∝ W 2

EE

∂f

∂I∂E
∝ −WEEWEI

Using the proportionality relation of inhibitory and excitatory rates in
the above equations and the fact that fluctuations in the average popula-
tion activity, Eq.(6.7), is linearly dependent on the rate, we can write down
stochastic field equation for excitatory rate in the region of small ε :

∂E(x, t)

∂t
= εE(x, t) +D∆E(x, t)− |u|E2(x, t) + ψ(x, t) (6.8)

< ψ(x, t)ψ(x′, t′) >= 2σ

√
1

N
E(x, t)δ(x− x′)δ(t− t′)

Here u < 0 is the coefficient related to synaptic weights that can be
explicitly derived by assuming a certain form of the gain function and pro-
portionality of the rates. This stochastic partial differential equation after
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appropriate rescaling E(x, t) =
σ

|u|τ
S(x, t) agrees with the Langevin de-

scription of directed percolation introduced in the introduction and is rewrit-
ten below:

∂S(x, t)

∂t
= (−ε′ +D′∆)S(x, t)− u′S2(x, t) + ψ(x, t) (6.9)

< ψ(x, t)ψ(x′, t′) >= 2u′S(x, t)δ(x− x′)δ(t− t′)

At ε′ = 0, the above system shows an absorbing state phase transition.
Thus, from any active state system relaxes by avalanches with a power-law
size distribution to an inactive state.

In an isolated EI population, external drive to the inhibitory and the
excitatory population should be present to counterbalance the dissipation
by the leaking currents and therefore, sets average membrane potential in
these neurons at a state above the resting threshold. The aforementioned
Taylor expansion is performed around this point. External excitatory input
to the excitatory population is slightly higher than the external drive to the
inhibitory population which leads to slightly higher average membrane po-
tential in the excitatory population. Furthermore, we can assume that the
external spike train to each neuron is Poisson as well. The external drive
itself would not lead to significant firing in the individual neurons but the
strengths of the internal connections between them are tuned in a way that
bursts of activity occur in the excitatory population which is then followed
by the inhibitory ones. The internal feedback inhibition is strong enough to
kill the excitatory burst. In a slightly inhibition-dominated regime, we have
sharp synchronous responses to the external input in a short time window.
On the other hand, the network has a safe margin from an overly active
state. In the absence of the input distinguished from random external noise,
the system shows scale-free avalanches because of the maintenance of the
inhibition-excitation balance.

However, the external drive must compensate for the dissipation for the
system to be at the critical point. Without mechanisms like short-term plas-
ticity, the external drive should be fine-tuned for the system to show critical-
ity. However, short-term plasticity in a network in which synaptic weights
are already near slightly inhibition dominated regime broadens the range of
the external drive strength which leads to critical avalanches. We can extend
the model in the section (4.2) to a continuum field equation by defining a
field of excitatory synaptic efficacy Ω(x, t) ∝ 〈WEE〉(x, t) with local dy-
namics of equation (4.6) :
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τm
∂E(x, t)

∂t
= (−α + Ω(x, t))E(x, t) +D∆E(x, t)− |u|E2(x, t) + ψ(x, t)

(6.10)

∂Ω(x, t)

dt
=

1

τSTP
(Ω0 − Ω)− qΩE(x, t)

< ψ(x, t)ψ(x′, t′) >= 2σ

√
1

N
E(x, t)δ(x− x′)δ(t− t′)

Here α represents both the decay of the activity by leaky currents of the
cells and the inhibition feedback which varies linearly with the excitatory
rate. Dynamic excitatory synaptic strength brings the coefficient of the lin-
ear term to a value near zero. To see this, assume this set of equations have
a stationary synaptic efficacy solution of the following value:

Ωst =
Ω0

1 + qτSTPEst
On the other hand in the active phase, stationary homogeneous rate is:

Est =
−α + Ωst

|u|
Assuming |u| is a very small quantity and Est is also small in the low

firing rate regime then −α + Ωst ≈ 0 and Est =
1

qτSTP
(
Ω0

α
− 1).

Long-term synaptic plasticity tune Ω0 so that the coefficient of the lin-
ear term is close to zero and moderate value of short-term depression would
be adequate to bring the system to the critical point. Altogether, equation
(6.10) is the description of an EI interconnected spiking neurons network
tuned to the critical point of balancing inhibition and excitation both by
long-term synaptic plasticity and short-term synaptic depression. System
wanders around the phase transition point and shows avalanche dynamics
with scale-free size and time distributions, the proportionality of inhibition
and excitation, up and down states transition of membrane potential and
population activity rates, and oscillation of order of 10Hz resembling ubiq-
uitous alpha-band oscillation.
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7. Conclusion

In this work, we have proposed a self-organizing model for the corti-
cal dynamics which tunes the system to the regime of low firing avalanche
dynamics corresponding to the ongoing intrinsic activity in the cortex. We
have seen that in a large sparse network of spiking neurons the input to the
cells in the state of asynchronous firing is Poisson and investigated condi-
tions on Possion firing at the single neuron level. We chose the conductance-
based leaky integrate and fire model to take the strong dependence of in-
hibitory postsynaptic current on voltage level into consideration. Next, we
introduced linearization of the neuron gain function in the Poisson firing
regime and presented a linear Poisson neuron model which we used to ana-
lyze interconnected networks of the excitatory and the inhibitory neurons.

The network of spiking neurons with the assumption of homogeneity,
large size, and sparse connectivity can be modeled by the dynamics of the
mean fields. Excitatory and Inhibitory mean-field equations are a set of
nonlinear equations with free parameters among them the average synap-
tic strength between different types of neurons. Taking a set of these free
parameters as control parameters of the model one can analyze the bifur-
cation patterns in the system. We took the excitatory external drive and
the synaptic weight between excitatory to excitatory neurons as control pa-
rameters. The latter regulates the strength of the inhibitory feedback in the
local population and the former controls the level of forced activity from
other populations. The qualitative picture of the bifurcation patterns does
not change by the choice of different synaptic weights as the control param-
eter. In analyzing the bifurcation diagram, our interest is mainly focused
on the loss of the stability of the quiescent state. This can happen through
saddle-node or Hopf bifurcation by either increasing external drive orWEE .
At a certain point called Bogdanov-Takens point, saddle-node and Hopf bi-
furcation lines meet each other. We have seen that near this point there is
a tight balance of the inhibitory and the excitatory average currents to the
cells. This balance cancels out the high amplitude excitatory and inhibitory
currents to each cell to a great portion and results in the average membrane
potential of the neurons in the population being adequately away from the
threshold. In this regime, the activity of the spiking neurons is fluctuation
driven which makes the firing time intervals highly variable. In this case, the
statistics of the firing would be close to the Poisson Point process matching
the experimental findings. On the other hand, the balance of excitation and
inhibition leads to the avalanche style dynamics near the BT point. Slow
oscillations emerge at the Hopf bifurcation line and through saddle-node
bifurcation, a pair of low firing stable and unstable fixed points come into
existence. We showed that long-term synaptic plasticity tunes the synaptic
weights to achieve the internal balance of inhibition and excitation. On the
other hand, short-term synaptic depression would lead to tuning the system
for the wide range of the strength of the external drive.
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In the vicinity of the bifurcation point, fluctuation effects are manifested
strongly and mean-field solutions would not adequately describe the dy-
namics. Especially internal and external noises which were neglected in the
mean-field analysis would lead to state transitions in the proximity of the
saddle-node line. On the other hand, in the vicinity of the Hopf bifurcation
line, fluctuations lead to higher variability in the amplitude of avalanches.
In the vicinity of the BT point, by analyzing the linear stability of the qui-
escent fixed point, slow dynamics can be projected to the nonlinear stable
manifold. We wrote down dynamics in terms of the excitatory field only
by assuming a fast linear inhibitory feedback. The dynamical equation for
the excitatory field matches the description of directed percolation. At the
balance line, the coefficient of the linear term in the field equation vanishes
which puts the system at the critical point of the percolation phase tran-
sition. In a system with dissipation external load has to be fine-tuned to
compensate for the dissipation to be at the critical point. Short-term depres-
sion of excitatory synapses allows this tuning for a wider range of external
drives.
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[23] Néstor Parga, and Larry F. Abbott. Network Model of Spontaneous Activity Exhibiting
Synchronous Transitions Between Up and Down States, Front Neurosci. 2007

[24] John M. Beggs and Dietmar Plenz. Neuronal Avalanches in Neocortical Circuits,
Journal of Neuroscience,2003.

[25] Thomas Petermann, Tara C. Thiagarajan, Mikhail A. Lebedev, Miguel A. L.
Nicolelis. Spontaneous cortical activity in awake monkeys composed of neuronal
avalanches, PNAS September 15, 2009.

[26] Tiago L. Ribeiro,Mauro Copelli,Fábio Caixeta,Hindiael Belchior,Dante R.
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[43] Ronald Dickman , Miguel A. Muñoz , Alessandro Vespignani and Stefano Zapperi
Paths to Self-Organized Criticality, Brazilian Journal of Physics 30, 27 (2000).

[44] M. Doi, Second quantization representation for classical many-particle systems, J.
Phys. A, 9 (1976), pp. 1465–1477.

[45] L. Peliti, Path integral approach to birth-death processes on a lattice, J. Phys., 46
(1985),

[46] H.K. Janssen, Renormalized Field-Theory of Dynamical Percolation, Z. Phys. B:
Cond. Mat. 58, 311 (1985).

[47] H.K. Janssen, On the Non-Equilibrium Phase-Transition in Reaction-Diffusion Sys-
tems with an Absorbing Stationary State,
Z. Phys. B: Cond. Mat. 42, 151 (1981).

[48] H Hinrichsen, Non-equilibrium critical phenomena and phase transitions into ab-
sorbing states, Advances in physics, 2000
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Spike avalanches in vivo suggest a driven, slightly subcritical brain state, Front Syst
Neurosci . 2014

[108] Viola Priesemann ,Oren Shriki Can a time varying external drive give rise to ap-
parent criticality in neural systems?, PLoS Comput Biol . 2018

[109] Matteo Martinello, Jorge Hidalgo, Amos Maritan, Serena di Santo, Dietmar Plenz,
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