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ABSTRACT Unintentional falls can cause severe injuries and even death, especially if no immediate assis-
tance is given. A fall detection system aims to detect a fall as soon as it occurs, therefore issuing an automatic
assistance request. Wearable embedded sensors are emerging as the most viable solution for continuous mon-
itoring since they are more effective, less intrusive and less expensive than other systems. Tailoring a deep
learning method to the requirements of microcontrollers entails matching very stringent constraints in terms
of both memory and computational power. In addition, datasets acquired with wearable devices are relatively
scarce and not necessarily devised for supervised learning. In this work, we discuss the design of a software
architecture based on recurrent neural networks which can be effective for fall detection while running
entirely onboard a wearable device. The well-known and publicly-available SisFall dataset was adopted and
extended with fine-grained temporal annotations to cope with the supervised training of recurrent neural net-
works. We then show that an appropriate process of architectural minimization together with accurate hyper-
parameters selection leads to a workable model which compares favorably with other detection techniques.

The embedding of the resulting architecture has been validated using a state-of-art hardware device.

INDEX TERMS C.3.d real-time and embedded systems, 1.2.6.g machine learning, J.3.b health, 1.2.9.]

sensors, 1.2.m.d wearable Al

I. INTRODUCTION
Unintentional falls are the leading cause of fatal injuries and
the most common cause of non-fatal trauma-related hospital
admissions among elderly people. More than 25 percent of
people over 65 years old fall every year [1]. This percentage
increases up to 42 percent for those over 70. Moreover, 30-50
percent of people living in long-term care facilities fall each
year, with almost half of them experiencing recurrent falls.
Falls lead to 20-30 percent of mild to severe injuries and to 40
percent of all injury-related deaths. Elderly people are not the
only demographic that is heavily affected by unintentional
falls: any person with some sort of fragility, such as mild dis-
ability or a post-operative situation, experiences similar risks.
The situation is worsened when people live alone, as they
might not receive immediate assistance in case of accident [2].
The main objective of Fall Detection System (FDS) is to
implement online (i.e., continuous) monitoring of vulnerable
subjects in order to detect occurring falls, hence issuing

automatic assistance requests so that timely aid can be pro-
vided. From both a practical and psychological standpoint [3],
an effective FDS can drastically improve the quality of life
for patients. Wearable embedded sensors based on specific
hardware are gaining momentum in the literature [4], since
they are considered less intrusive and more cost-effective
than ambient sensors-like video cameras—and are more
power-efficient than using smartphones [5].

Generally, application-specific wearable devices for fall
detection make use of tri-axial accelerometers and/or gyro-
scopes. While data collection and filtering is always per-
formed on the wearable device, in the line of principle Fall
Detection (FD) could be performed either on-board or
remotely, in cloud (via a gateway of some sort) or on a smart-
phone. Typically, the communication module is the most
power-consuming one in any wireless wearable device [6],
even with low-energy standards such as Bluetooth Low
Energy (BLE). For this reason, the trend in recent literature
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is to move the entire detection infrastructure on a smart wear-
able device, that is a device that is capable to perform as
much signal processing as possible onboard.

An online FD method that runs continuously on an embed-
ded device must obey stringent constraints due to the limited
resources available. In particular, any such method must fit
the limited memory—typically in the range of tens of kilo-
bytes—and computational power available on microcontrol-
lers. Overall, the techniques adopted must have an ultra-low
power-consumption footprint, to achieve the longest battery
duration possible and lessen the need to switch devices.

Several embedded solutions have been proposed for online
FD, using simple statistical indicators and/or classic machine
learning. In addition, several offfine methods for fall detec-
tion using Deep Learning (DL) techniques have been pro-
posed in the literature (Section II-A). Nevertheless, to the
best of our knowledge, no study currently exists about the
applicability of DL techniques to online fall detection, except
for the preliminary work published by the present authors.

The main contribution of this paper is an in-depth discus-
sion of the design and implementation of a deep learning
architecture for fall detection, which can run continuously on
a wearable device while still obeying the stringent constraints
dictated by the embedding on small microcontrollers. The
main design goal of the method presented is to find a work-
ing trade-off among detection performance, power consump-
tion and architectural complexity.

In particular, we focus on Long Short-Term Memory
(LSTM)-based architectures, a well-known kind of Recurrent
Neural Network (RNN) that is typically employed for time
series analysis [7]. Due to the adoption of RNN as the method
of reference, the dataset used for supervised training needs to
be temporally annotated, meaning that each occurrence of a
relevant event—falls in particular—in sequences of sensor
readings must be marked by a temporal interval. After a care-
ful analysis of publicly available fall datasets (Section II-B),
we found that none of them contained the temporal annota-
tions required. For this reason, we selected SisFall [8], [9] as a
dataset of reference and extended it by manually adding event
markers. Such extension has been made publicly-available.'

In this work, several architectural variants based on stacked
LSTM cells were considered and trained on the annotated Sis-
Fall dataset to detect the best performing one (Section III). In
Section V we show that a simple network configuration can
achieve high detection accuracy on all three classes in the test
set, outperforming the statistical indicators of reference, while
respecting the design constraint discussed above. We also
show that the proposed network reaches comparable perfor-
mance to a state-of-art SVM implementation.

Finally, to validate the proposed approach, we discuss
the actual embedding of a LSTM architecture of reference on
a state-of-art hardware device. Specifically, we chose the
SensorTile miniaturized board by STMicroelectronics,2

'http://bitbucket.org/unipv_cvmlab/sisfalltemporallyannotated.
*http://www.st.com/en/evaluation-tools/steval-stlcsO1v1.html
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which is explicitly designed as an host for wearable smart
Sensors.

The organization of the paper is as follows: Section II con-
tains a review of the related literature; Section III describes
the enhanced annotation process and design of the RNN
architecture of reference; Section IV discusses the implemen-
tation of the proposed system, while Section V presents some
selected experimental result achieved on the extended SisFall
dataset in terms of both classification performance and
embedded footprint. The embedding procedure is described
in Section VI. Section VII concludes the paper.

Il. RELATED WORKS
A. FALL DETECTION
Xu et al. [4] presents an updated review of FDS, building on
the data presented by Habib ef al. [S] and Mohamed et al.
[10]. According to the authors, two main trends can be identi-
fied in recent literature.

The first main trend is the decline of classic ambient-based
FDS [11], [12]—with the exception of newly proposed Kin-
ect-based solutions—and smartphone-based FDS [13] in
favor of wearable-device-based solutions. As is, ambient-
based systems may affect privacy and can only cover areas
within the range of the selected sensors, while smartphone-
based systems suffer from power consumption problems. In
contrast, wearable, low-power devices, offer better applica-
bility as they can be used regardless of the user location, and
are best-suited to work in a low-power usage scenario.

Although recent smartphone- and smartwatch-based FDS
have reported battery lifetime in the order of tens of hours
[14], [15], [16], specialized hardware might yield more
robust and predictable systems in terms of power consump-
tion. In [17], the authors present a wearable module where
the battery lifetime is estimated in about forty to fifty hours,
depending on the number of alarms.

One of the major drawbacks of specialized hardware is the
limited computational power, which often leads to the design
of hybrid systems, where only part of the computation is
made on-board and the remaining part is delegated to a
remote device, for instance a smartphone. A hybrid scenario
requires establishing a communication channel to the remote
device. Continuous communication, however, tends to drain
the battery too quickly for a 24 x 7 application. For example,
[18] and [19] consider prototypes equipped with Bluetooth
modules, which deplete the system batteries in four and
seven hours respectively. Wi-Fi was used instead in [20] for
the communication between a smartphone and a smart-shoe:
reportedly, the smartphone battery was completely dis-
charged in about three hours. A more recent architecture
employing nRF communication is described in [21] and the
authors report a battery duration of up to 76 hours.

This paper presents a FDS which, with the use of special-
ized hardware and network and communication optimization
for energy consumption-reduction, can reach more than 130
hours of continuous operation onboard a Micro-Controller
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Unit (MCU), and possibly up to a few weeks with further
optimization.

Nevertheless, automatic FD from wearable sensor data is still
considered an open problem, mainly due to the difficulties in
achieving a good trade-off between recognition performance,
energy efficiency and computational requirements [21].

The second main trend is the rise in adoption of Machine
Learning (ML) algorithms [22] instead of statistical methods
and traditional digital processing. However, the paper also
notes that no DL solutions has been employed for online
wearable fall detection. The authors speculate that the reason
relies on the scarcity of adequately large and properly anno-
tated datasets.

The most widely adopted sensor in wearable devices for
FDS is the 3-axis accelerometer, due to its low cost and tiny
size. Rotational sensors (i.e., gyroscopes) are used for
instance by Bou et al. [23], in which very good results are
reported for FD with the use of gyroscopes measurements
alone. In [24] the authors make use of both accelerometers
and gyroscopes readings obtaining “low computational cost
and fast response”.

The common approach in wearable FDS is to first filter
raw acceleration sensor readings and then apply a feature
extraction method of some sort to segment out falls from
other background activities, also called Activities of Daily
Living (ADL). In [8], [25], the occurrence of a fall is detected
by comparing statistical indicators like standard deviation of
acceleration magnitudes with predefined thresholds.

In [26] the authors compare two different ML techniques:
k-Nearest Neighbors (kNN) and Support Vector Machine
(SVM), while a simple feed-forward Artificial Neural Net-
work (ANN) is used in [27]. Similarly, the authors of [28]
illustrate that a very simple ANN solution is able to detect
falls on accelerometer data recorded by a wrist-worn device
with near 100 percent sensitivity. In [29], the authors com-
bine different techniques to improve the prediction of the
classifier: they investigate the use of ANN, kNN, Radial
Basis Function (RBF), Probabilistic Principal Component
Analysis (PPCA) and Linear Discriminant Analysis (LDA).
In [30] the authors propose a Finite State Machine (FSM)
model to extract relevant episodes from input sequences.
These episodes are then subdivided into features that are fed
to a kNN classifier to distinguish between falls and ADL.

The positioning of the sensor on the body is a critical factor
in obtaining a satisfying detection performance. Sensors in spe-
cific body positions, in general, allow for better detection per-
formance; for instance, sensors positioned near the center of
mass perform much better than sensor located on the subjects’
wrist or ankle. The authors of [31] compares statistical indica-
tors, SVM and ANN on several database, obtaining good rec-
ognition performance on wrist-collected sensor data.

Most of the above methods extract features from a sliding
window of a predefined length. Thus, it seems natural to take
into account RNN-based solutions, which also make use of
sliding windows (see below), to try to improve the FDS
performance.

1278

TABLE 1. List of publicly-available datasets for fall detection.

Dataset Ref. Number of Number of Sensing
subjects activities device
DLR [37] 16 6 Smartphone
tFall [26] 10 8 Smartphone
Project Gravity ~ [25] 3 19 Smartphone
MobiFall [38] 24 13 Smartphone
UniMiB SHAR  [40] 30 17 Smartphone
SisFall [8] 38 34 Custom
UMAFall [39] 17 11 Custom

Several DL solutions for offline wearable FD have been
presented in the literature in recent years. In [32], a Deep Con-
volutional Neural Network (DCNN) followed by a RNN layer
is proposed, where the DCNN extracts features from sensor
signals, while the RNN detects a temporal relationship among
the extracted features. Reportedly, however, these approaches
are computationally expensive and were performed on a
workstation. Nonetheless, in [33] an offline DL solutions is
shown to outperform statistical and ML methods in the wrist-
based FD. In [34], DCNN, LSTM and ConvLSTM-based
architectures are compared for the closely related problem of
fall prediction [35].

B. DATASETS
For RNN network supervision, the basic requirements for a
dataset of sensor readings are:

1) the availability of the raw, unfiltered signals as read

from onboard sensors;

2) the presence of several different falls and ADL;

3) an adequate number of both ADL and falls to train a DL

architecture;

4) the availability of temporal annotations (see below).

Many datasets of human activities containing fall events
have been proposed in the literature [36]. Almost every one
of these contains simulated events re-enacted by young vol-
unteers, which can be challenging to translate into a real-
world scenario [4]. Among them, we selected 7 datasets for
consideration [8], [25], [26], [37], [38], [39], [40].

Table 1 lists these datasets together with their main fea-
tures, highlighting the number of different subjects involved
in the experiments and the number of different activities per-
formed by volunteers.

After a comparative evaluation, we selected SisFall as the
most suitable dataset for this work. The main reasons are the
size of the dataset and the hardware used for the recordings—
a wearable device that closely resembles the SensorTile
device selected for validating the system proposed in this
paper (Section VI).

The SisFall dataset includes recordings from a total of 38
volunteers: 23 young subjects and 15 elderly subjects, each
performing 34 different activities in a controlled scenario (19
ADL and 15 falls) with several retries, for a total of 4510
complete sequences. Moreover, the set of activities has been
validated by a medical staff and each type of tracked activity
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is described by a prototype video recorded by an instructor.
The SisFall dataset was recorded with a custom board includ-
ing two tri-axial accelerometers and a tri-axial gyroscope,
both operating at a frequency of 200 Hz. The recording
device was positioned on the waist of the volunteers, with
fixed orientation to the body.

The SisFall dataset includes annotations that classify each
whole activity as either a fall or an ADL. No specific indication
is provided about when in the sequence of readings a fall
occurs, nor about when a particular ADL takes place. For
instance, the annotation could read “collapsing into a chair
while trying to stand up” without any indication when either
the standing up or the collapse occur. Moreover, the sequences
may include both a fall event and other ADL sub-sequences,
such as walking, sitting, standing, etc.

It is worth mentioning that none of the datasets listed in
Table 1 include a temporal annotation of the kind required. As
a consequence, none of these dataset can be directly applicable
to supervised DL without extending the annotations.

C. DEEP LEARNING FOR EMBEDDED SYSTEM

In general, the end-to-end training of a deep network on an
embedded system is unsustainable due to the computational
cost involved. In contrast, the embedding of run-time infer-
ence modules on microcontrollers is definitely more feasible.
Still, specific optimizations are required to make such imple-
mentation possible.

A first and obvious optimization strategy is to prune the
training model by removing all parameters that are only
required for training, such as those required by stateful
optimizers.

More sophisticated optimizations described in the litera-
ture are parameter compression [41], which includes weight
pruning and quantization; weight matrix approximation [42];
weight clustering [43]; and fixed-point representation [44].
Integer quantization is another, even more aggressive strat-
egy for reducing memory occupancy as it could be based on
8-bit integers [44]. This approach could be brought to the
limit with ultra-low precision weights, such as binary or ter-
nary representations [45], [46].

Widespread software support for such solutions is only
expected to improve in the future. New tools are emerging,
such as hardware interfaces (e.g., TVM [47]) or frameworks
like TensorFlow Lite,” which is available for mobile and high-
end embedded device. However, in the instance of ultra-low
power MCU, the support from publicly-available frameworks
is still very limited, to the point that building custom software
may be the only viable strategy, as in our case.

Ill. DESIGN

In this section, we discuss the overall design of the proposed
FDS. We assume that the entire training process is to be per-
formed on a workstation due to its computational cost. We

*http://www.tensorflow.org/lite
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also assume that a highly-optimized, detection-only RNN
inference module will be the embedded component to be run
on the wearable device. The only outbound communication
from the run-time module will be that of issuing a remote
notification in case of a fall or other relevant events (e.g., bat-
tery discharging), thus entailing an extremely limited trans-
mission traffic.

A. ENHANCED LABELING

As discussed in Section II-B, we selected SisFall dataset [8]
as a reference. However, the original SisFall annotation of
sequences as a whole is not sufficient to support the training
of a RNN method aiming to the real-time detection of falls.

Therefore, the annotations must be made in terms of event-
specific time intervals, to suit the training process.

In order to do so, we first defined the following three clas-
ses of events to be associated with temporal sub-sequences:

e FALL: the time interval in which the person is experienc-
ing an uncontrolled transition towards an unwanted,
potentially catastrophic state, i.e., a fall;

e ALERT: the time interval in which the person is
experiencing an uncontrolled transition towards a desired
state, e.g., a near fall such as a stumble followed by a
recovery;

e BKG: all time intervals in which the person is in control
and in a desired state (i.e., background).

The BKG class is intended to contain all daily activities
that are not related to a fall, such as walking, going up and
down the stairs, sitting on a chair, and so on. The ALERT
class has been introduced in the annotations for maximal
generality and potential reuse of the dataset for different pur-
poses, such as risk assessment instead of fall detection.

Introducing a third class increases the challenge of correct
detection. In the literature, approaches usually deal with two
classes (i.e., BKG and FALL). For a fair comparison, the
ALERT class can be collapsed into BKG.

The three classes above were used for marking temporal inter-
vals in all SisFall sequences. The implementation of the actual
annotation procedure is described in detail in Section IV-A.

B. RNN ARCHITECTURE AND TRAINING
The reference RNN architecture is depicted in Figure 1.

The core of the network is based on one or more LSTM
cells stacked in layers [48] (Layers 4 and 6). LSTM cells are
popular DL architectures, due to their capability to efficiently
capture long-term relationships in the input data [7]. In pass-
ing, we also considered the lighter Gated Recurrent Unit
(GRU) [49] architecture as an alternative but, in our experi-
ments, such choice entailed a reduction in sensitivity—which
is critical for FD-by over 4 percent.

We also considered bidirectional LSTM [50] as well,
although we did not follow that line of inquiry since we did
not achieve performance improvements worth of the increase
in computational complexity and memory occupancy.

The size of the tensors inside each LSTM gate [48],
commonly referred to as the inner dimension, is a design
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OUTPUT {2,3}
Layer 9 SOFTMAX
1x{2,3}
Fully
i 1xn
Layer 7 |
|
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|
Layer 6 |
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Layer 5
wXmn
Layer 4
wXn
Layer 3 DROPOUT
wXn
Layer 2 BATCHNORM
w X n
Fully
Layer 1 Connected 1
INPUT w X {3,6}

FIGURE 1. The RNN architecture of reference. The input size is
determined by the number of sensors (accelerometers and/or
gyroscopes), the sensory input dimensions and the size w of the
sliding window; n represents the cell inner dimension. The out-
put size depends on the number of classes used in annotating
the dataset, namely two (BKG and FALL) or three (BKG, FALL
and ALERT). Layers 6 and 7 can be replicated up to k times.
Implementation with different values of k and » represents archi-
tectural variants of the base model. White blocks are active dur-
ing the training phase only and are not used in the inference
module.

hyperparameter and will be denoted with # from now on. Find-
ing a good trade-off value for n is challenging: on the one hand,
n has to be large enough to provide good generalization and
prediction capabilities; on the other, its size should be as small
as possible, to contain the overall network size.

The number of LSTM layers is also a design hyperpara-
meter and will be referred as k. For the reasons above, in the
proposed architecture k is assumed to be in {1,2}, as shown
in Figure 1.

Variants of the reference architecture considered are char-
acterized by selecting different values of the hyperparameters
k and n and by selecting different sensor inputs.

Input signals are preprocessed as explained in Section IV-B.
Then, as shown in Figure 1, the input is processed by the fully-
connected Layer 1, while a second fully-connected layer
(Layer 8) collects the output from the LSTM cell at Layer 4
(or 6) and feeds its output to the final Softmax classifier
(Layer 9), which produces the classification according to the
number of classes considered: these will be three, when con-
sidering also the ALERT class, or two when considering BKG
and FALLs only.

The architecture also includes a batch normalization
layer [51] (Layer 2), to regularize input data, and three drop-
out layers [52] (Layers 3, 5 and 7). These latter layers are
used during training to improve generalization, while they
are removed from the inference module embedded on the
device.

The training of LSTM cells is based on the idea of tempo-
ral unfolding [48], as shown in Figure 2. Temporal unfolding
entails that the input sequence (both in training and during
online inference) is first partitioned in sub-sequences, called
windows, having a predefined length of w input samples.
This is obtained by sampling each input sequence at fixed
periods of length s < w. The term s will be referred to as
stride. The values of w and s are both positive integers.
Then, each LSTM cell is unfolded layer-wise into exactly w
copies of itself, with such copies sharing the same set of

(t) (0) (1) (w)
Yy Vi Vi Vi
A hy A ho A h® A h{
+| LSTMg }- A LSTMgk > LSTMg |—+ A LSTMk F
unfolding
AV hp = AV?  hO AYY RO AYY B
LSTM LSTM > LSTM LSTM1
H o Wma L fosma  Losma ]
<® <) ) (W)

L e I
next window x(8) x(8+w)

FIGURE 2. Temporal unfolding of a RNN architecture with kK LSTM layers. The network is fed with windows containing w samples from
the input stream x. A new window is taken each s input signals. The network output is called y, and the internal state is referred as h.
For simplicity we assume that the network is composed by LSTM cells only.
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FIGURE 3. An example of a SisFall [8] prototype video in which an
instructor performs a specific activity (fall from a slip). The
sequence of sensor readings is superimposed.

numerical parameters. Each copy receives two inputs: the
output from the previous cell (h)) in the temporal unfolding
at the corresponding layer, and the input signal x) from the
window at the corresponding index ¢ (Figure 2).

Temporal unfolding allows training of a RNN, like the
LSTM, as a non-recurrent deep network, which entails the
applicability of all techniques that are typical in the DL field.

As will be described in Section V, the window width w
represents another critical hyperparameter for performances.
As w decreases, larger parts of interesting events—those
marked as FALL or ALERT—do not fit in a single window,
making it harder for the network to capture the overall
dynamics of the ongoing events. As w increases, windows
tend to contain more background than relevant events.

Conversely, the choice of the stride s is dictated by practi-
cal considerations. The lower the value of s, the more the
training data is augmented with overlapping windows, and
thus the higher the training time. Beside a certain threshold,
however, there is no guarantee that a lower s will improve
network performance.

Please note that the embedded inference module can use a
different value for s than the one chosen during training.
Using lower values for s implies a more frequent analysis on
the input stream. Using higher values for s, on the other
hand, entails a reduced computational load on the wearable
device. A good choice of s during inference is thus imple-
mentation-dependent. For simplicity we used the same value
for s in both training and inference.

IV. IMPLEMENTATION
A. ANNOTATION PROCEDURE
As discussed in Section III-A, the annotation task consists of
associating a description of the temporal intervals that corre-
spond to the FALL and ALERT classes to each sequence in
the SisFall dataset, while the rest is considered BKG by
default.

As already mentioned, each activity type included in the
SisFall protocol is described by a prototype video (Figure 3).

VOLUME 9, NO. 3, JULY-SEPT. 2021

Fall backward while walking caused by a slip

«Q
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2 ! —— acc.ony
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0 500 1000 1500 2000 2500 3000ms
Fall
Alert
0 500 1000 1500 2000 2500 3000ms

FIGURE 4. The annotation tool used to enhance the SisFall data-
set. A sequence of accelerometer readings (top pane) is marked
as either ALERT (in orange) or FALL (in blue). The result is trans-
lated into a time series of labels (bottom pane). The tool offers a
simple mouse and keyboard interface for batch annotations.

In our work, the ensemble of prototype videos was used to
define the criteria for associating temporal intervals corre-
sponding to each class (FALL, ALERT and BKG) to the
sequences of sensor readings. These criteria were subse-
quently used to annotate each sequence in the dataset.

The actual annotation was performed with a custom graphi-
cal software tool which allows the visual inspection of a
selected sequence and the marking of the temporal intervals
corresponding to FALL and ALERT. An example of the graph-
ical interface of the annotation tool is shown in Figure 4.

In the figure, the upper pane shows the sequence of read-
ings for the tri-axial accelerometers. In the same pane, the
temporal intervals can be marked using the mouse pointer.
The lower pane shows the resulting annotation, as a time
series of labels.

The annotation was performed by a team comprising the
authors and several colleagues. At the outset, the team agreed
on common classification criteria, then each member per-
formed the annotations separately and finally they jointly
reviewed them in multiple passages to minimize inter-anno-
tator noise. In defining the criteria and reviewing the annota-
tions, the team received valuable insight by a physician
specialized in physiatry.

The extended annotation to the SisFall dataset is publicly
available online as an addendum to the original dataset.*

B. DATA PREPARATION

First, each raw SisFall sequence was passed through a low-
pass Butterworth filter to remove high-frequency noise.
Then, all readings were translated into the [—1,+1] range
using standard Z-Score normalization. Low-pass filtering
is necessary as raw sensor readings often include high-
frequency noise and outliers that can affect the normalization
procedure; normalization, on the other hand, is critical when
using sensor data from different input sources such as gyro-
scopes and accelerometers.

*http://bitbucket.org/unipv_cvmlab/sisfalltemporallyannotated.
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TABLE 2. Configuration of the training

parameters.

Parameter Value
Number of epochs 300
Batch size 500
Optimizer Adam
Learning rate 2.5 %1073
L2 regularization 1.5x 1073
Dropout rate 0.8

Afterwards, each filtered and normalized sequence was
divided into windows of width w, sampled with stride s from
the sequence itself.

Each window was then to be labeled with one of the three
classes: FALL, ALERT or BKG. We performed extensive
experimentation with different criteria of classification to
translate temporal labels to window labels. Eventually, we
adopted the following rules:

e a window containing at least 10 percent of readings

within a FALL temporal interval is labeled as FALL;

e otherwise, a window containing a majority of readings

within an ALERT temporal interval is labeled as ALERT;

e in any other case, the window is labeled as BKG.

The first criterion was chosen to ensure that the number of
FALL windows remained significant even with large values
of w. Under our annotation criteria, time intervals marked as
FALL were typically lasting just a few hundred milliseconds,
and thus could be easily overlooked by any majority-based
labeling rule. On the other hand, a smaller percentage entails
collecting too few correlated samples in a FALL window.
The value of 10 percent was determined experimentally.

C. TRAINING

The typical learning process for a RNN is performed by split-
ting the dataset into a training and a test set. As already
stated, the SisFall dataset includes data acquired from 38

100
BKG 0.03%  0.96% ”
g 60
< ALERT 16.33% 12.24%
2 40
FALL{ 14.22% 0.0% . 20
. 0

BKG ALERT FALL
Predicted label

(a)

different subjects. To avoid identity bias, each subject in Sis-
Fall was arbitrarily assigned to either the training or the test
set. As a result, the training dataset included 30 subjects (12
elders), and the test dataset included 8 subjects (3 elders).

Sequences in both training and test sets were translated
into labeled windows of width w, according to the method
described in Section IV-B. The training set was further
divided into train and validation sets using a random 80%/
20% split on the number of windows.

All experiments presented in this paper were performed
with the training configuration reported in Table 2, which
was determined via an exhaustive grid search to be the best
performing in terms of classification.

1) LOSS FUNCTION

With the enhanced SisFall dataset, the number of windows
labeled as either BKG, ALERT or FALL was largely unbal-
anced. Clearly, this is not specific of SisFall but is to be
expected for any dataset comprising both ADL and simulated
falls, since their respective durations are considerably differ-
ent. Considering our annotation criteria, the duration of BKG
temporal intervals may be up to several seconds, while
FALL intervals will be in the range of 500 ms to two sec-
onds. Therefore, depending on the window size w, the num-
ber of windows labeled as BKG can be up to two orders of
magnitude larger than those labeled as ALERT or FALL.

Class imbalance may lead to substantial inaccuracies in the
classification performed by the trained RNN. Figure 5(a)
shows the confusion matrix computed on the test set after a
training with a typical cross-entropy loss function [53] with
L2 regularization and w = 256. As expected, BKG activities
were classified accurately, whereas FALLs were poorly
detected and ALERTSs went almost undetected.

To balance this out, we adopted a weighted cross-entropy
loss function in which the contribution of each window to
the gradient has a weight that is inversely proportional to the
size of the corresponding class in the training dataset.

100

BKG 4.93% 1.25% 5

g 60
< ALERT{ 10.19%

,g 40

FALL{ 2.19% 4.39% 20

BKG ALERT FALL
Predicted label

(b)

FIGURE 5. Confusion matrices obtained with w = 256 and the non-weighted (a) and weighted (b) cross-entropy loss functions. True
labels on the y-axis correspond to the manual annotations, whereas predicted labels are those produced by the RNN classifier. Both
confusion matrices were measured on the test set with k = 2 and n = 32.
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To be precise, denoting £; the component of the multiclass
cross-entropy loss computed on the ith window, we
employed the weighted cross-entropy function £"

Li=— Zyi,c log (pi.c) (1)

ceC

EW = Zm,- Li, (2)

where C = {FALL, ALERT, BKG}, y is a binary indicator
that is equal to 1 if ¢ is the label associated to the window i and
0 otherwise, p is the probability that the window i belongs to
class ¢ as predicted by the given model, and the weight m;
applied to the ith component of the loss is defined as

1 if yi.BKG =1
m; = § [BKG|/|ALERT| if y, AsrgrT = 1. (3)
|BKG|/‘FALL‘ if yi.FALL =1

Figure 5(b) shows the confusion matrix after training with
the loss function in Eq. (2). A drastic rise of the accuracy can
be observed, especially for the ALERT class.

2) SELECTING WINDOW WIDTH AND STRIDE

The selection of the values for the two critical hyperpara-
meters w and s can be performed with comparative experi-
ments. For instance, Figure 6 shows how the sensitivity of
the RNN classifier varies when the window width w is varied
between 32 and 1024. The stride values were set to s = %w.
A window width of 256 samples (i.e., 1.28s with a sampling
rate of 200 Hz) proved to be the most effective for automatic
FD, as can be seen in the figure.

The same procedure was applied to each variant of the
base RNN architecture.

Two trends were observed. Lower values of w, as mentioned
in Section I1I-B, imply that only a small portion of an event (i.e.,
ALERT or FALL) is contained in a window. Thus the network
cannot capture the complete dynamic of events and increasingly
relies on the absolute amplitude of the signal. As w decreases
(especially for w < 32), this effect becomes more and more
pronounced. Increasingly high values of w, on the other hand,
imply that the network is fed with windows containing multiple
types of events which, combined with the labeling rule that gives
prominence to the FALL class, leads to a network which is
unable to distinguish relevant events from the background.

V. RESULTS

A. SELECTING THE MINIMAL CONFIGURATION

The reference RNN was implemented using Tensor-
Flow 1.8 [54] and trained on a Dell 5820 workstation,
equipped with an NVIDIA GTX 1080Ti GPU.

Several experiments (average training time of ~ 3.5 hours)
were performed in order to identify the combinations of net-
work parameters that produce the minimal footprint in terms
of memory occupancy and computational cycles required,
while keeping good detection performance.
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FIGURE 6. Sensitivity of the RNN classifier with k =2 and n = 32
for different values of w. The stride value is set to %w.

The main hyperparameter to be investigated is the number
of LSTM layers k. Preliminary experiments showed that
using more than two layers (k > 2) produced no improve-
ment in terms of accuracy, despite the extra complexity intro-
duced. Therefore only the cases of k =1 and k =2 were
considered in full.

Given that most tensor parameters in an LSTM cell are
squared, both memory occupancy and computational load
grow quadratically with the value of n and only linearly with
k [55]. Thus, the inner dimension of each LSTM cell n has a
strong impact on both footprints.

Another key aspect to be assessed is the type and combina-
tion of sensor signals to feed as input to the network. The
options are: 1) accelerometers readings; 2) gyroscope read-
ings; 3) both. The selection of input signals is crucial from a
memory occupancy standpoint, even if it has a lesser effect
on computational load than either k or n [55].

We performed extended comparative experiments on the
annotated SisFall dataset by considering all possible combi-
nations of:

e Input sensor readings: 3D accelerometers, 3D gyroscopes

or both.

e Number of LSTM layers: 1 or 2 cells (k);

e Inner LSTM cell size: 4, 8, 16 and 32 (n);

Each experiment was evaluated in terms of the mean accu-
racy achieved on the three detection classes (BKG, ALERT,
and FALL). In order to provide a robust evaluation, we used
a 3-fold cross-validation. Figure 7 reports the mean accuracy
on the three folds of the validation and the test set.

The experiments are grouped at three levels. At the outer-
most level they are classified according to the type of sensor
data used as input: the first eight figures relate to gyroscope
only, the next batch to accelerometers only and the final
batch to both. Each batch of eight experiments is then classi-
fied according to the number of LSTM layers k. The last clas-
sification level pertains to the inner cell size: from left to
right, the value of n goes from 4 to 32.

As it can be seen in the figure, there is no significant differ-
ence in the performance for k = 1 and k = 2. However, an
architecture with an additional layer clearly requires more

1283

Authorized licensed use limited to: UNIVERSITY OF PAVIA. Downloaded on September 23,2022 at 17:20:57 UTC from IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Musci et al.: Online Fall Detection Using Recurrent Neural Networks on Smart Wearable Devices

100

M Validation accuracy
Test accuracy
95

90
85
80 I
75

K=1 K=2 K=1
1.Gyroscopes

N=4 N8N16N32N4 N=8 N=16 N=32 N=4 N-8N16N32

N=4 N=8 N=16 N=32 N=4 N= 8 N=16 N=32 N=4 N= 8 N 16 N=32
K=2 K=1

2.Accelerometers 3.Both

FIGURE 7. Mean accuracy of several variants of the RNN fall detection module. The most effective network configuration is sought for in
terms of three main design parameters: type of sensor readings, number of LSTM layers %, inner cell dimension n. The diagram shows
the outcome of the experiments for the 24 possible combinations by comparing both validation and test accuracy.

computational cycles for inference, and more memory to
store additional network weights. For these reasons, the
choice of k = 1 is to be preferred.

Considering k = 1 only, n = 16 and n = 32 produce much
better test and validation accuracy than lower values of n.
However, although the inner dimension of 32 yields better
results in validation accuracy, the more relevant test accuracy
does not improve meaningfully with respect to n = 16.

The results in figure also confirm that, in terms of accu-
racy, using accelerometers only is indeed more effective than
using gyroscope only, as reported in [56]. It is worth noting
that, using both types of sensors combined leads to signifi-
cant improvements (about 2 percent in the best case) yet at
the cost of a slight increase in power consumption.

In conclusion, we select the configuration being the most
effective in terms of test accuracy as the one withk = 1, n =
16 using both accelerometer and gyroscope data. From the
experience collected, we believe that these same considera-
tions apply to the embedding of any RNN architecture for
fall detection.

B. COMPARISON WITH STATISTICAL INDICATORS
To complete the performance assessment of the embed-
dable RNN architecture, we wanted to perform a compara-
tive of some sort with other applicable techniques. While
an extensive study was outside the scope of our work, we
wanted to assess our approach against lighter techniques.
We thus proceeded to do a double comparison: the first
one using statistical indicators as benchmarks, the second
with a supervised learning approach based on a SVM
(Section V-C).

We start by comparing the classification performance of
the RNN model to the classification performance of best sta-
tistical indicator proposed in the SisFall paper [8], namely

Co == \Jo? (@) + 0*(ay) + 02 (az), 4)
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where o is the variance and a,, a, and a, are respectively the
variables representing acceleration readings along the x, y
and z axes.

Using this statistical indicator, we can define a Cy classifier
where each sequence of the original SisFall dataset is classi-
fied as a fall if at any point the computed value of the Cy indi-
cator was greater than a predefined threshold, or as an ADL if
lower.

In [8], the Cg indicator was applied to entire sequences and
not to specific subsets or windows. Furthermore, Cy was used
for detecting two classes and not three. To make the Cy indi-
cator and the RNN architecture comparable, we will follow
two different approaches:

1) Adapt the Cy classifier to work on windows and with

three classes;

2) Adapt the RNN classifier to work on whole sequences

and with two classes.

All the comparisons described in the following were made
in terms of sensitivity (SE), specificity (SP) and accuracy
(AC), using the standard definitions [53], with the under-
standing that positives represent falls.

1) ADAPTING THE Cy CLASSIFIER

We applied the Cy indicator to each window obtained from
the preprocessing step described above first by computing
the variances o2 along each axis and for the same window;
then by comparing the value in Eq. (4) with two thresholds, a
lower one for ALERT (77 = 0.271) and an higher one for
FALL (T, = 0.701). Each window was classified as belong-
ing to the class for which the Cy value was at any point
greater than the higher of the two thresholds. The two thresh-
olds were chosen by performing a grid search and selecting
those that produced the best classification accuracy over the
validation set.

Table 3 shows the classification performance of the
adapted Cy classifier and the RNN classifier. As discussed,
the adapted Cy is applied on windows instead of entire
sequences.
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TABLE 3. Comparing performance between the adapted C, clas-
sifier on the entire SisFall dataset and the RNN classifier.

Adapted Cy RNN Val. RNN Test
BKG 75.01 93.62 93.82
Sensitivity =~ ALERT 68.15 93.78 84.08
FALL 75.79 93.81 93.41
BKG 92.52 96.83 96.02
Specificity =~ ALERT 83.30 95.25 95.08
FALL 91.57 98.41 98.71
BKG 83.77 95.23 94.92
Accuracy ALERT 75.73 94.52 89.58
FALL 83.68 96.11 96.06

The SisFall dataset was preprocessed into windows of size w = 256 and
stride s = 128.

2) ADAPTING THE RNN CLASSIFIER

The original Co classifier was intended for two classes
only [8]. To adapt the RNN classifier accordingly, we needed
to train it on a temporally annotated dataset with only two
classes: BKG and FALL. In order to do so, we collapsed all
ALERT annotations in both the training and test sets into
BKG annotations. We then retrained the RNN classifier.
With reference to Figure 1, the upmost two layers were
adapted to have a two-dimensional output.

We then applied the retrained classifier to whole sequences
in the following way: if a sequence contained at least one win-
dow identified by the RNN classifier as a FALL, then the entire
sequence was classified as a fall; if no windows were classified
as FALLs, the entire sequence was classified as an ADL.
Table 4 shows the classification performance of both the Cy
classifier and the adapted RNN classifier on the entire SisFall
dataset.

C. COMPARISON WITH A SVM CLASSIFIER

We further compared the proposed RNN method with a
supervised learning approach based on SVM, which is fully
described in [57]. The method was evaluated on the same
annotated SisFall dataset to allow an effective comparison
between the obtained results.

The authors evaluated a large set of combinations of fea-
tures to determine the best balance between recall (i.e., sensi-
tivity) and precision. The paper shows that the best
performance on different metrics changes sensibly depending
on the set of chosen features and a filtering threshold that is
used to identify the windows associated to FALL events.

TABLE 4. Comparing performance between the C, classifier and
the RNN classifier on the original, unmodified SisFall dataset.

Cy Adapted RNN
Sensitivity 97.41 96.73
Specificity 87.3 97.15
Accuracy 91.75 96.94

The RNN classifier was adapted to work on entire sequences.
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TABLE 5. The performance of the SVM classifier developed
in [57] in three different scenarios: optimized for the best sensi-
tivity, specificity or accuracy.

SVM(sens) SVM(spec) SVM(accu)
Sensitivity 99.72 65.02 97.89
Specificity 91.77 99.80 96.99
Accuracy 95.05 85.44 97.93
#features 40 80 14
threshold 1 14 3

The table also reports the number of features and the filtering threshold used
to obtain the corresponding results.

Table 5 shows the results of the method in three different
scenarios: when the method is optimized for the best sensitiv-
ity, specificity or accuracy. The scenarios are denoted with
SVM(sens), SVM(spec) and SVM(accu), respectively.

D. DISCUSSION

From Tables 3 and 4 we can see that the RNN classifier sig-
nificantly outperforms the Cy classifier on both specificity
and accuracy in both cases, especially in the first one, where
timely detection was required.

Analyzing the data, the DL architecture is able to capture
the high variability of the challenging ALERT class in a way
that a simple statistical indicator is unable to.

The only exception is the sensitivity of the second scenario,
which is slightly lower to the one obtained with the Cy classi-
fier. Nevertheless, we do not perceive this as problematic, since
we also measured an event-wise sensitivity of 100 percent.
According to this metric we scored a true positive whenever a
fall was detected at least once during the event duration.

Figure 8 shows an example in which the RNN classifier (in
red) oscillates and thus the fall event (in yellow) is not detected
for the entire duration. We considered that as a successful
event-wise detection, since an alarm would be raised anyway.

On the other hand the RNN classifier drastically improves
the specificity, that is it minimizes false positives in fall
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FIGURE 8. Ground truth classification (in yellow) versus RNN
classification (in red) on a forward fall preceded by a slip.
Although the classifier oscillates, probably due to the hygh
dynamic of the slip, the event-wise detection is successful.
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detection. This is a desirable property for a wide user adop-
tion in a real-world application.

Table 5 shows that the RNN and SVM classifiers have
comparable performance when the SVM is optimized for
accuracy, although there is no clear winner among the two.
Nevertheless, it is worth mentioning that the SVM approach
is considered to be rather hard to implement on an embedded
system with the characteristics described in Section VI due
to the large number of features and the ensuing requirements
in terms of memory and processing power [57].

Overall, the detection performances of the RNN classifier
are very satisfactory, and prove that an online DL approach
can be effective in a realistic scenario.

VI. DEVICE EMBEDDING

Once a minimal RNN architecture has been identified using
the process described in Section V-A, the final step for a
complete implementation is to embed it on the target wear-
able device.

In order to assess the feasibility of embedding our RNN
model architecture, we chose a hardware device of reference.
The SensorTile board integrates a wide array of sensors,
including 3D accelerometers and gyroscopes; it is connected
to a 1004+ mAh Li-Ion battery and mounts a BLE radio mod-
ule for wireless communication. The SensorTile embeds an
ultra-low power ARM Cortex M4 MCU running at 80 MHz
with 128 KB of RAM.”

The embedded implementation was performed by manu-
ally porting a TensorFlow-compatible implementation of the
reference RNN model to the Cortex MCU, harnessing the
highly-optimized CMSIS library.® The original numerical
representation in 32-bit floating-point adopted with Tensor-
Flow was preserved, in order to keep the same classification
performance with respect to the workstation implementation.
Note that the embedding only concerns the inference capabil-
ities of the model. Thus, with reference to Figure 1, only the
blocks in grey were ported.

The implementation details of the run-time module are
described in [55] and are not repeated here.

A. VALIDATION
The embedded implementation was validated in the follow-
ing way:

e The chosen network was trained on a workstation using
the training set defined in Section IV-C;

e Inference was made using the TensorFlow implementa-
tion on the workstation on the test set defined in
Section IV-C;

e Inference was then made using the embedded imple-
mentation on the device on the same test set;

e Finally, the numerical values produced during both
inference processes were compared.

*http://www.st.com/en/evaluation-tools/steval-stlcsO1v1.html
°https://www2.keil.com/mdk5/cmsis.
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The resulting mean squared numerical error is in the order
of 1077 on the entire test set, meaning that the output of the
embedded implementation is effectively indistinguishable
from the output of the workstation implementation.

B. MEMORY OCCUPANCY AND BATTERY DURATION
The authors of [55] derived a general method to estimate
memory occupancy and battery duration, in a scenario where
the optimized FD implementation is ran online 24 x 7.

Applying the same formulas, we can derive memory occu-
pancy and computational workload for the minimal network
selected in Section V-A with k = 1 and n = 16. This results
in a memory footprint of less than 18.5 KB, and a processing
time per window of 0.051 s. These measures shows the suit-
ability of the RNN architecture for embedded real-time
processing.

Furthermore, by using the STM32CubeMX Power Con-
sumption Calculator, we were able to estimate that a wear-
able device running the minimal architecture could be
operative, with a battery of 100 mAh, for about 132 hours
without recharging, going well beyond the minimum require-
ment of a single-day autonomy for a practical application.

Using accelerometers as the only input data slightly modi-
fies these results: the processing time decreases by 0.001 s,
the memory occupation decreases by 2.5 KB and the auton-
omy increases by 4 hours. In our opinion, these figures jus-
tify the choice of using both accelerometers and gyroscopes
to improve the classification performance.

C. VARIANCE FILTER

The results presented so far assume that the DL inference
module will be running continuously on the MCU. We
believe this is not necessary in order to maintain satisfactory
performance because in a real-life scenario, many sequences
of data readings will be produced when the user is at rest or
performing low-dynamic activities; such sequences could be
safely classified as background by a simple variance filter.

A precise estimation of the filter threshold and of the trade-
off between the loss in prediction accuracy and the gain in
battery duration would require further experiments “in the
wild”. Still, a crude formula for the estimation of the differ-
ence in battery duration B can be inferred by assuming that
the execution time of the variance filter is negligible with
respect to the RNN module

B
Bnew = ¢7 (5)
1 - Wriltered

where Wyierea € [0, 1) is the fraction of filtered windows with
respect to the total number of processed windows. Thus, the
battery duration grows hyperbolically as more windows are
filtered, and it can potentially last for several weeks in a real-
world application.

This line of research has been followed by some of the pres-
ent authors in [58] on the same SensorTile MCU employed in
this work. The authors included two preprocessing filters in the
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inference pipeline. Both filters use an optimized implementa-
tion of the Welford algorithm to compute the variance of a
given window before the input to the RNN architecture. If the
variance is below either threshold, the window is ignored and
could never generate an alarm.

Table 1 in [58] shows that the power consumption of the
variance filters is several orders of magnitude below the one
of the embedded inference module, thus confirming the
assumption at the base of the above formula.

VIl. CONCLUSIONS AND FUTURE WORKS

This work discusses the design and implementation of a DL
technique for human fall detection, targeted to a resource-
constrained wearable device.

A reference RNN architecture is proposed, based on
LSTM cells. Several architectural variants are discussed and
comparatively analyzed, looking for a viable trade-off among
detection performance, power consumption and architectural
complexity.

Detection capabilities were evaluated on the publicly-
available SisFall dataset. In order to make it suitable for super-
vised learning, temporal annotations were added manually for
three classes of relevant events: BKG (background), ALERT
and FALL.

The specificity, sensitivity and accuracy results obtained
on a unbiased test set derived from SisFall show that the min-
imal RNN architecture can reach comparable performances
to the state-of-art.

The feasibility of MCU embedding was assessed with an
actual implementation of the run-time detection module of
the RNN model for the SensorTile board. Experimental data
on both memory occupation and battery duration show the
viability of the proposed approach for online real-time proc-
essing that can last for several days.

The results presented suggest a suitable design strategy for
FD using a DL approach. Namely, that of finding the sim-
plest network architecture that could meet the desired perfor-
mance levels, while leaving a limited footprint in terms of
computation power and memory required.

The experience made during this work revealed the lack of
a complete and extensive datasets with appropriate annota-
tions. For this reasons, we have begun collecting a new data-
set of simulated falls made with a body network of multiple
wearable sensors connected to a gateway via BLE. We are
also experimenting augmentation techniques such as rota-
tions and oscillations of the recorded data that should
improve the quality of classification. To ease the task of
annotation, each activity performed by the volunteers will be
associated to a video recording, so that temporal intervals
can be identified by looking at the body posture of the volun-
teer instead of at the signals themselves. In our view, this
extended dataset will allow a more careful tuning of the net-
work architecture with the purpose of further improving the
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embedded implementation for wearable devices. Once such
implementation will have been achieved, tests with real sub-
jects in real-life scenarios will be planned and conducted.
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