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Assuming dislocations could be meaningfully described by torsion, we propose here a scenario based on
the role of time in the low-energy regime of two-dimensional Dirac materials, for which coupling of the
fully antisymmetric component of the torsion with the emergent spinor is not necessarily zero. Appropriate
inclusion of time is our proposal to overcome well-known geometrical obstructions to such a program, that
stopped further research of this kind. In particular, our approach is based on the realization of an exotic
time-loop, that could be seen as oscillating particle-hole pairs. Although this is a theoretical paper, we
moved the first steps toward testing the realization of these scenarios, by envisaging Gedankenexperiments
on the interplay between an external electromagnetic field (to excite the pair particle-hole and realize the
time-loops), and a suitable distribution of dislocations described as torsion (responsible for the measurable
holonomy in the time-loop, hence a current). Our general analysis here establishes that we need to move to
a nonlinear response regime. We then conclude by pointing to recent results from the interaction laser-
graphene that could be used to look for manifestations of the torsion-induced holonomy of the time-loop,
e.g., as specific patterns of suppression/generation of higher harmonics.
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I. INTRODUCTION

To date, there is no experimental evidence of torsion of
spacetime and the most prominent theory of gravity we
have, Einstein’s general theory of relativity, does not
contemplate torsion. Nonetheless, torsion remains the focus
of important research, both in fundamental and in con-
densed matter physics.
On the fundamental side, just like curvature is intimately

connected with mass, torsion is intimately connected with
spin, see, e.g., the pioneering work of Kibble [1]. Some
argue that torsion manifests itself through the very exist-
ence of spinors, in an otherwise standard spacetime (see,
e.g., [2]), while others continue to pursue the idea that
torsion may as well be an actual physical property of
our spacetime, within an extended theory of gravity

(see, e.g., [3]) or of quantum gravity (see, e.g, [4]).
Furthermore, both standard supersymmetry (SUSY), in
its curved space declination (supergravity, SUGRA) [5]
and the more recent unconventional SUSY (USUSY) [6]
make extensive use of torsion.
On the condensed matter side, the existence of two kinds

of basic topological defects, disclinations and dislocations,
related respectively to curvature and torsion, makes it
natural to include torsion in the geometrical description
of the physical properties of materials [7,8]. This is not
entirely free of ambiguities, in particular when it comes to
associate a specific torsion to a given distribution of
Burgers vector; but surely torsion is one of the two
geometric entities at work there, along with curvature.
In the last years, due to their low energy spectrum

structure, Dirac materials [9] have emerged as experimental
playgrounds where both kinds of arenas, the fundamental
research and the condensed matter one, met. In particular,
the role of disclinations is under intense investigation to
realize graphene analogs of Dirac quantum fields in curved
spacetimes, see, e.g., [10–16] and recently the role of yet
another kind of defects (grain boundaries) was also
explored [17]. Investigations on how, in this context,
dislocations could be used to construct an analog Dirac
field theory coupled with torsion, rather than curvature,
were of course carried on, see, e.g., [18].
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If we were able to do so, it would be an invaluable help to
shed light on some of the above recalled mysteries on
torsion. Let us mention, for instance, USUSY, especially in
its ð2þ 1Þ-dimensional formulation, that has been found to
have many similarities with the Dirac field theory on
graphene, see [19,20], and especially the recent [21].
Unfortunately, the exploration of the role of torsion in this
setting found a geometric obstacle, just due to the 2þ 1
dimensions: As we shall recall later, a Dirac spinor only
couples to the fully antisymmetric component of torsion,
hence three dimensions are necessary. Lacking the spatial
third dimension, this seemed impossible [22–24]. These
“no-go” results stopped research in this direction. It is the
main goal of this work to suggest a way to surmount this
obstacle, based on the use of time as the necessary third
dimension.
In what follows we shall first recall, in Sec. II, how the

geometrical obstruction to have torsion in two-dimensional
Dirac materials comes about, while in Sec. III we propose
our way to overcome it. In Sec. IV we explore the possible
ways to extract experimental data from the condensed
matter system related to the microscopic analog relativistic
model. In Sec. V we put some flesh on the latter bones,
by identifying the responses to combined electromagnetic
and disclination/torsion perturbations. In Sec. VI we
point to the nonlinear response regime as the one necessary
to find the effect we are looking for. Finally, in the
concluding Sec. VII, we summarize the results and point
to future work.

II. TORSION AND TWO-DIMENSIONAL
DIRAC MATERIALS

By definition, Dirac materials’s π electrons1 obey a
low-energy dynamics near a Dirac point, governed by
an emergent relativisticlike Hamiltonian with structure
HD ¼ vFσ⃗ · p⃗, where vF is the Fermi velocity, and vectors
are spatial two dimensional, see, e.g., [25]. To fully take
into account this emergent relativisticlike structure [10],
we include time as x0 ¼ vFt, hence turn to the (2þ 1)-
dimensional action2

S0½Ψ̄;Ψ� ¼ iℏvF

Z
d3xΨ̄γa∂aΨ: ð1Þ

Here, the Dirac spinor is not in the irreducible representa-
tion of the Lorentz group SOð1; 2Þ, it has four components
Ψ ¼ ðψþ;ψ−ÞT , with ψ� ¼ ðα�; β�ÞT . The variables α and
β denote the sublattice anticommuting operators, acting

near the two inequivalent Dirac points labelled with “�”.
This might seem a redundancy, especially for the choice
of the Clifford algebra presented in the Appendix A, for
which the two two-component spinors are fully decoupled.
Nonetheless, this is the general setting one must use
because the interaction we are about to consider might,
in principle, as well couple the two irreducible spinors.
This will be discussed later here, and more details can be
found in [17] on the role of the two Dirac points, and on the
various choices for the Clifford algebra.
The natural generalization of (1) to a (2þ 1)-

dimensional spacetime, equipped with a metric gμν ¼
ηabeaμebν and a metric-compatible connection Γλ

μν that
includes torsion [26]

Tλ
μν ¼ Γλ

μν − Γλ
νμ; ð2Þ

is

S ¼ iℏvF

Z
d3x

ffiffiffiffiffiffi
−g

p
Ψ̄γμDμΨ; ð3Þ

where the covariant derivative is defined as DμΨ ¼
∂μΨþ i

2
ωab
μ JabΨ, with Jab ¼ i

4
½γa; γb� the Lorentz gener-

ators in spinor space. The spin-connection, ωab
μ ¼

eaλðδλν∂μ þ Γλ
μνÞebν, can be decomposed into torsion-free

and contorsion contributions [27], ωab
μ ¼ ω

∘ ab
μ þ κabμ , where

Tλ
μν ¼ Eλ

aκν
a
bebμ − Eλ

aκμ
a
be

b
ν . Standard manipulations of

the action S, reported in detail in the Appendix A, lead
to the form

S ¼ iℏvF

Z
d3xjejΨ̄

�
γμD

∘
μ − i

4
γ5

ϵμνρ

jej Tμνρ

�
Ψ; ð4Þ

where jej ¼ ffiffiffiffiffijgjp
, the covariant derivative, D

∘
μ, is based on

the torsionfree connection, ω
∘ ab
μ , only, γ5 ≡ iγ0γ1γ2 ¼�

I2×2
0

0−I2×2
�

(we used the conventions of [17] for γ0,

γ1, γ2 giving a γ5 that commuteswith the other three gamma
matrices3), and the contribution due to the torsion is all in
the last term through its totally antisymmetric component
[28]. From here, it is evident that the emergent fermions
of Dirac materials Ψ can only be coupled to the component
T012 (or also with T102, or T210). This is the above-
mentioned geometric obstacle, that led earlier investigators
to conclude that, for two dimensional Dirac materials,
dislocations could not be accounted for by torsion [22–24].
Notice that, when odd-sided defects of the kind indicated

in the right picture of Fig. 1 are present, the two triangular
sublattices, say A and B, making the hexagonal lattice of
graphene (and of other Dirac materials of the family), get

1In the following we refer to two dimensional Dirac materials,
with hexagonal lattice. Examples are graphene, germanene,
silicene [9].

2We use Latin indices a; b;… for tangent/flat space and Greek
indices μ; ν;… for base curved manifold. We choose the
signature ηab ¼ diagðþ;−;−Þ. The Vielbeins are denoted by
eaμ and their inverse by Eμ

a.

3This is due to the reducible, rather than irreducible, repre-
sentation of the Lorentz group we use.
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intertwined at specific locations, where a sort of frustration
occurs (that is, those points belong to both A and B at the
same time). As noticed in [17] (see also [29]), for some
particular descriptions, the two Dirac points are related by a
change in the sublattice, A ↔ B. While this only happens
for certain suitable descriptions (e.g., even for the same
Dirac points we have different Hamiltonian choices, see
Appendix B of [17]), since the actual physics is indepen-
dent from this choice, we can always pick up a description
where this is true. Therefore, in general, when such defects
are present we must use both Dirac points, as we do here.
The torsion tensor in crystals is related to the Burgers

vector through the formula4 [8,32]

ba ¼
Z Z

Σ
eaλT

λ
μνdxμ ∧ dxν; ð5Þ

where Σ is a surface containing the dislocation, but
otherwise arbitrary, a ¼ 0, 1, 2. We clearly see that the
only two possibilities that a nonzero Burgers vector can
give rise to ϵμνρTμνρ ≠ 0, necessary for the coupling in (4),
are (cf. Fig. 1): (i) a time directed screw dislocation, i.e.,
bt ∝

R R
T012dx ∧ dy or (ii) an edge dislocation spotted by

a space-time circuit, e.g, bx ∝
R R

T102dt ∧ dy. Here we
took eaμ ¼ δaμ, in both circumstances.

III. USING “TIME LOOPS” TO OVERCOME
THE TWO-DIMENSIONAL GEOMETRIC

OBSTRUCTION

Our claim here is that both scenarios, are in fact not
impossible. The first scenario could be explored in the
context of the fascinating time crystals introduced by
Wilczek [33,34], and it is the focus of intense experimental
studies (see, e.g., [35] and the recent [36]). Such lattices,
discrete in all dimensions, including time, would be an
interesting playground to probe ideas of quantum gravity
[37], although in 2þ 1 dimensions.5 In what follows, we
shall not focus on this, but rather on the second scenario.
In the Appendix B we show that we can take the

Riemann curvature to be zero, R
∘ ab
μν ¼ 0, but with

κabμ ≠ 0, and choose a frame where ω
∘ ab
μ ¼ 0. These settings

make possible to isolate the effects of torsion on the system,
and the corresponding action is

S ¼ iℏvF

Z
d3xjej

�
Ψ̄γμ∂μΨ −

i
4
ψ̄þϕψþ þ i

4
ψ̄−ϕψ−

�
;

ð6Þ

where ϕ≡ ϵμνρ

jej Tμνρ. As clearly shown in (6), even in the

presence of torsion, the two irreducible spinors, ψþ and ψ−,

FIG. 1. (i) Screw dislocation in a cubic lattice. Burgers vector and the dislocation line are parallel here. The circuit presents an extra
step when b⃗ is nonzero. For χ3 ≡ t this configuration could give rise to nonzero temporal components of torsion, an instance to be
investigated in the context of the “time crystals” of [33]. (ii) Edge dislocation in an hexagonal two-dimensional lattice, typical of a vast
class of Dirac materials [9]. The Burgers vector, b⃗, lies in the plane, while the dislocation line, L, is perpendicular to it, hence always
orthogonal to b⃗. For this particular case of a pentagon-heptagon pair, this configuration is also called glide dislocation [22]. To close the

circuit, with this b⃗ ¼ ð1; 0Þ, the number of steps (five here) is larger by one unit for the portion that includes the shaded area, with respect
to portion running in the defectfree part (four steps here).

4Despite the apparent simplicity of the formula (5), in
practice it is a difficult task to assign the torsion tensor for a
given distribution of Burgers vector on the graphene sheet, see,
e.g., [30,31].

5In 2þ 1 dimensions we do have a defect-based approach to
classical gravity/geometry, see [7] and [8], although the role of
time is not clear there.
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actually decoupled. Nonetheless, they couple to ϕ with
opposite signs.
To spot the effects of ϕ, we propose to make use of the

particle-antiparticle structure, encoded in the action (6).
Indeed, the regime of Dirac materials we describe, is the
“half-filling” [25], whose vacuum state has the vacancies
of the valence band (E < 0) completely filled, and the
vacancies of the conduction band (E > 0) empty. This is
the analog of the Dirac sea. If a pair particle-hole is excited
out of this vacuum, and particle and antiparticle are made to
oscillate, say, along y, as described in Fig. 2, this amounts
to a circuit of the particle-antiparticle pair in the (y; t)-plane.
Fully exploiting the emergent relativisticlike structure of
the model, the portion of the circuit described by the
antiparticle moving forward in time, corresponds to the
particle moving backward in time. This realizes a time-
loop. The pictures in Fig. 2 refer to a defectfree sheet. The
presence of a dislocation, e.g., like the one in Fig. 1, with
Burgers vector b⃗ directed along x, would result in a failure
to close the loop proportional to b⃗.
Within the idealized, single-particle/classical picture,

what we are saying is that: provided dislocations can be
meaningfully described by a suitable torsion tensor, the low
energy Dirac field theory emerging here can include a
nonzero coupling with torsion, accounting for a field theory
description of the effects of dislocations, only when the third
dimension is taken to be time. This is a nice idea, but the real
challenge is to bring this idealized picture close to experi-
ments. We introduce below the first steps in that direction.

IV. BRIDGE BETWEEN THE MICROSCOPIC/
CLASSICAL PICTURE AND ITS MACROSCOPIC

MEASURABLE MANIFESTATIONS

The primary aim of this paper is theoretical. Namely, as
just recalled, we wanted to point to a way to overcome a

geometric obstruction, via the inclusion of time in the
picture. Nonetheless, we shall now move some steps
toward clarifying how to extract measurable effects of this
microscopic picture. In other words, we shall illustrate the
steps involved in going from the microscopic classical one-
particle action we propose, till, e.g., an ammeter measuring
a macroscopic current that is the manifestation of the effect.
Generally speaking, there are four families of experi-

ments one could perform on our Dirac material, based on
the following class of phenomena: (i) thermodynamics;
(ii) spectroscopy; (iii) thermal and electronic transport and
(iv) scanning tunneling microscopy (STM). In this section
we shall try to be as general as possible, and keep in mind
all possibilities, although the first family of phenomena is
perhaps the less suitable, because, when considering
thermodynamics, the microscopic properties are, so to
speak “averaged away”. On the other hand, from the list
above, the experiments on the electronic transport seem the
most appropriate, because the quasiparticles we are describ-
ing are indeed those responsible for such properties. Hence,
at the end of this road, we shall indeed be seeking for
experiments on the transport properties.
Nonetheless, we want to keep the generality as much

possible here, for two reasons. First, since one might
envisage different roads than those we have in mind, we
want to furnish the first aid there too. Second, we want to
clarify one important aspect of our approach, that is the
interplay between different languages, typically at work
when dealing with analogs. On the one hand, we shall have
the field theoretical description of relativistic systems, on the
other hand we shall have the condensed matter description.
We shall declare which is the language in use, case by case,
as clearly as possible, although sometimes we may forget, or
deem it to be self-evident. Hence, this warning, at this stage
of the paper, should alert the reader to pay the due attention
to this delicate point, from here on.

FIG. 2. Idealized time-loop. At t ¼ 0, the hole (yellow) and the particle (black) start their journey from y ¼ 0, in opposite directions.
Evolving forward in time, at t ¼ t� > 0, the hole reaches −y�, while the particle reaches þy�, (blue portion of the circuit). Then they
come back to the original position, y ¼ 0, at t ¼ 2t� (red portion of the circuit). This can be repeated indefinitely. On the far right, the
equivalent time-loop, where the hole moving forward in time is replaced by a particle moving backward in time.
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In our view, the simplest settings to realize in practice the
microscopic picture above presented, need: (i) an external
electromagnetic field to excite the pair particle-hole neces-
sary for the time-loop, and (ii) that a suitable disclination/
torsion provides the nonclosure of the loop in the appro-
priate direction, something we shall refer to as holonomy.
To summarize: we are looking for the measurable effects
of a disclination/torsion-induced holonomy in a time loop.
It is only a (suitable) combination of those interactions that
can produce the effect we are looking for.
Therefore, the action governing the relevant microscopic

dynamics is

S ¼ i
Z

d3xjejðΨ̄γμð∂μ − igemAμÞΨ − igtorψ̄þϕψþ

þ igtorψ̄−ϕψ−Þ; ð7Þ

→ i
Z

d3xðψ̄γμ∂μψ − igemĵ
μ
emAμ − igtorĵtorϕÞ

≡ S0½ψ̄ ;ψ � þ SI½A;ϕ�: ð8Þ

where, we have set constants to one, gem and gtor are the
electromagnetic and torsion coupling constants, respec-
tively. In the last line, to avoid unnecessary complications,
we considered only one Dirac point, say ψ ≡ ψþ, and the
metric is taken to be flat, jej ¼ 1, hence the indices are
the flat ones, μ; ν;… → a; b;…, but nonetheless, to ease
the notation, we shall use Greek letters, anyway. Finally,
ĵμem ≡ ψ̄γμψ , while ĵtor ≡ ψ̄ψ .
The electromagnetic field is external, hence a four-

vector6 Aμ ≡ ðV; Ax; Ay; AzÞ. Nonetheless, the dynamics
it induces on the electrons living on the membrane is
two-dimensional, therefore, the effective vector potential
may be taken to be7 Aμ ≡ ðV; Ax; AyÞ, see, e.g., [42,43].
Similarly, the torsion field ϕ as well enters into the action as
an external field, because there is no dynamical kinetic term
for it, although there are no issues about dimensionality
here. A different view, when ϕ is constant, is to include
it into the unperturbed action, where it plays the role
of a mass S0 → Sm, see, e.g., [21], where Sm ¼
i
R
d3xψ̄ð=∂ −mðϕÞÞψ .
With this in mind, the generic one-particle diagram that

represents the microscopic phenomenon we are seeking,
without taking it too literally as a real Feynman diagram, is

given in Fig. 3. Of course, the details of the specific settings
that give rise to the wanted torsion-induced holonomy in
the time-loop, are all to be found. In what follows we shall
establish constraints and general properties of these terms.
We are in the situation described by the microscopic

perturbation

SI½Fi� ¼
Z

d3xX̂iðx⃗; tÞFiðx⃗; tÞ; ð9Þ

with the system responding through X̂iðx⃗; tÞ to the external
probes Fiðx⃗; tÞ. The general goal is then to find

X̂i½Fi�; ð10Þ

to the extent of predicting a measurable effect of the com-
bined action of the two perturbations Fiðx⃗; tÞ∶ Fem

1 ðx⃗; tÞ ∝
Aμðx⃗; tÞ, that induces the response ĵμem, and Ftor

2 ðx⃗; tÞ ∝
ϕðx⃗; tÞ, that induces the response ĵtor:

SI½A;ϕ� ¼
Z

d3xðĵμemAμ þ ĵtorϕÞ; ð11Þ

where we have included the couplings, gem and gtor, in the
respective currents.
The first comment we make is that we shall keep open

the possibility of a time dependence for both perturbations,
not only for the obvious electromagnetic one. Of course,
the typical time scales involved are different, τtor ≫ τem,
but indeed the defects do have a dynamics. They can form,
dissolve, move, as shown in various annealing processes.
Nonetheless, we shall not consider that dynamics here, just
like we do not include the dynamics of the electromagnetic
field in our study of the response of the system.
A second general comment, is that, apart from γ0, and the

actual values of the couplings, the response to the voltage V
is of a similar type as the response to the ϕ perturbation,
ĵ0em ∼ ĵtor. As we shall recall later, this is a change in density
of π electrons, rather than a flowing of its current.
The third comment is related to the formal mathematical

language used. We shall use the relativistic language of the
actions above, and shall try to extract from it all possible
predictions. Therefore, in the averaging processes, neces-
sary to compare the predictions of the microscopic theory

FIG. 3. Interaction of the π electron with an external electro-
magnetic field (wavy line) and the external ϕ field (dashed line).
This sketched and not literal diagram is the simplest possible
nonzero contribution to the process of torsion-induced holonomy
in the time-loop we are seeking.

6A different, if not more naturally ð2þ 1Þ-dimensional setting
would be to obtain Aμ by suitably straining the material, see, e.g.,
[23,24], and [16]. In that case, a typical setting is At ≡ 0,
Ax ∼ uxx − uyy, Ax ∼ 2uxy, where uij is the strain tensor.

7Alternatively, the so-called reduced QED approach can be
taken. In such approach, the gauge field propagates in a three-
dimensional space and one direction is integrated out to obtain an
effective interaction with the electrons constrained to move in a
two-dimensional plane [38,39]. This approach could shed some
light on the appearance of a photon Chern-Simons term [40,41].
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with the experiments, we shall use the functional integral
methods, as they are the most natural in the relativistic
context. Nonetheless, it is instructive and important to
perform similar calculations in the density matrix/
Hamiltonian approach, that is the most suitable for the
tight-binding description. With the latter in hands, one
would have an independent check of the relativistic
predictions.
A fourth general comment is that the visible macro-

scopic effects we are seeking, should come from some
form of mismatch between retarded and advanced Green
functions, GR, and GA, respectively, referring to the
propagations of particles, and holes, respectively. The
relativistic picture, as known, uses the causal or Feynman
propagator, that employs bits of both types of Green
functions. These, along with the expectedly nontrivial
topological properties of the ϕ term, are delicate issues
that need to be addressed to describe in mathematical
terms the t-loop, and its torsion-induced holonomy in the
proper language.
The last comment of this section is a very important one,

namely that the unperturbed system, described by S0 (or, by
Sm), is a free, noninteracting system, hence, in principle,
exactly solvable. Therefore, we see that the most delicate
issues here are the appropriate boundary conditions. It is
there that the details of the actual realization of the scenario
of interest will emerge.

V. THE LINEAR RESPONSE REGIME

For the sake of this general discussion, and in order to
learn the structure of the quantities involved, we shall now
focus on weak perturbations. Hence, we can use the linear
response which gives for (10)

Xiðx⃗; tÞ ¼
Z

d3x0χijðx⃗; t; x⃗0; t0ÞFjðx⃗0; t0Þ þOðF2Þ; ð12Þ

where χij is the response function, which encodes the
microscopic details of the system.
The macroscopic response, X, should be seen as the

expectation value of some one-particle operator, both from
the quantum and the statistical average point of view

X ¼
X
ab

hψ̄aXabψbi; ð13Þ

where

h� � �i≡ 1

Z

Z
Dðψ̄ψÞð� � �Þe−S½ψ̄ ;ψ ;F�; ð14Þ

with the partition function Z¼R
Dðψ̄ψÞexpf−S½ψ̄ ;ψ ;F�g,

and a Wick rotation was performed, t → iτ.
In our case, the Euclidean action S½ψ̄ ;ψ ;A;ϕ�, is obtained

from (8), hence the response functions are8

χemμν ðx; x0Þ ¼
δ2

δAμðxÞδAνðx0Þ
����
A¼0

lnZ ¼ 1

Z
δ2

δAμðxÞδAνðx0Þ
����
A¼0

Z ∼ hĵemμ ðxÞĵemν ðx0Þi; ð15aÞ

χtorðx; x0Þ ¼ δ2

δϕðxÞδϕðx0Þ
����
ϕ¼0

lnZ ¼ 1

Z
δ2

δϕðxÞδϕðx0Þ
����
ϕ¼0

Z ∼ hĵtorðxÞĵtorðx0Þi; ð15bÞ

χtoremμ ðx; x0Þ ¼ δ2

δAμðxÞδϕðx0Þ
����
A¼ϕ¼0

lnZ ¼ 1

Z
δ2

δAμðxÞδϕðx0Þ
����
A¼ϕ¼0

Z ∼ hĵemμ ðxÞĵtorðx0Þi; ð15cÞ

which give, respectively, the macroscopic quantities

jemμ ðxÞ ¼
Z

d3x0χemμν ðx; x0ÞAνðx0Þ; ð16aÞ

jtorðxÞ ¼
Z

d3x0χtorðx; x0Þϕðx0Þ; ð16bÞ

jtoremμ ðxÞ ¼
Z

d3x0χtoremμ ðx; x0Þϕðx0Þ: ð16cÞ

With these, we can now move the first steps toward
rephrasing the one-particle/classical picture presented above
in terms of macroscopic many-body quantities. The former
entail the microscopic elements of the (high energy/emergent
analog) model, while macroscopic many-body quantities are
ready for being used to design suitable experiments.
Let us now combine the two response functions to Aμ

and to ϕ, to have one vector and one scalar response

jμðxÞ≡
Z

d3x0½χemμν ðx; x0ÞAνðx0Þ þ χtoremμ ðx; x0Þϕðx0Þ�;

ð17Þ

jðxÞ≡
Z

d3x0½χtoremμ ðx; x0ÞAμðx0Þ þ χtorðx; x0Þϕðx0Þ�; ð18Þ
8Notice that on the second equality we are omitting terms

proportional to hjemμ i¼ 1
Z

δ
δAμ

jA¼0Z, as well as hjtori ¼ 1
Z

δ
δϕ jϕ¼0Z.

On this, see [[44], p. 370–371] and Sec. VI.
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where, as required for gauge invariance and current con-
servation [[44], page 390], for an arbitrary function αðxÞ, it
is demanded that

χemμν ðx; x0Þ∂ναðx0Þ ¼ χtoremν ðx; x0Þ∂ναðx0Þ ¼ 0:

The actual realization of the time-loop (must come from the
“em” part) with a torsion-induced holonomy (must come
from the “tor” part), requires specific settings that we do not
provide in this qualitative analysis.
The first of such settings is that, if no electromagnetic

field is around to excite the particle-hole pair necessary for
the t-loop, then the pure torsional contribution must be null

Z
d3x0χtorðx; x0Þϕðx0Þ → 0: ð19Þ

To prove the above, one will need details of actual structure
of ϕðxÞ ¼ ϵμνλTμνλ, i.e., as made out of torsion, whereas we
are dealing with it here merely as a scalar quantity.
On the other hand, the effects we are looking for must be

encoded into the mixed response function χtoremμ ðx; x0Þ. To
have an idea of what these terms might mean, let us briefly
recall the meaning of the well-known electromagnetic
response function, for time and space translational invariant
systems, for which

jμðp⃗;ωÞ ¼ χemμν ðp⃗;ωÞAνðp⃗;ωÞ: ð20Þ

Focusing on the spatial components (actual electric current)
we have, essentially, two cases: the longitudinal response

j⃗iðp⃗;ωÞ ¼ χ⃗emi0 ðp⃗;ωÞVðp⃗;ωÞ þ χemii ðp⃗;ωÞA⃗iðp⃗;ωÞ; ð21Þ

(the i index in the last term is not summed), and the
transverse response

j⃗iðp⃗;ωÞ ¼ χemij ðp⃗;ωÞA⃗jðp⃗;ωÞ; ð22Þ

with i ≠ j.

A. Longitudinal response. External electric field

The longitudinal response is what we should expect
when a weak electric field is applied to the material.
From E⃗ðx⃗; tÞ ¼ ∇⃗Vðx⃗; tÞ þ ∂tA⃗ðx⃗; tÞ, we get E⃗ðp⃗;ωÞ ¼
p⃗Vðp⃗;ωÞ þ ωA⃗ðp⃗;ωÞ. By setting χemii ðp⃗;ωÞ ¼ σðp⃗;ωÞω,
and χemoi ðp⃗;ωÞ ¼ σðp⃗;ωÞp⃗i, we have the Ohm’s law

j⃗ðp⃗;ωÞ ¼ σðp⃗;ωÞðp⃗Vðp⃗;ωÞ þ ωA⃗ðp⃗;ωÞÞ
¼ σðp⃗;ωÞE⃗ðp⃗;ωÞ: ð23Þ

Therefore, along the same lines of what just recalled for
the electromagnetic linear response, the Occam’s razor
would suggest the Ansatz

χtoremoi ðp⃗;ωÞ≡ τðp⃗;ωÞp⃗i; ð24Þ

for the linear torsion response. Here, the conductivity τ that,
in general, differs from the electric conductivity σ, and the
explicit dependence from p⃗i is there due to indices structure
of the response function (just like it happens for χemoi above).
This produces a departure from the Ohm’s law above,

obtained from (17)

j⃗ ∼ σðp⃗V þ ωA⃗Þ þ χ⃗toremϕ ¼ p⃗ðσV þ τϕÞ þ ωσA⃗; ð25Þ

written in Fourier space, ðp⃗;ωÞ.
This is the many-body/macroscopic manifestation of the

one-particle/classical picture of Fig. 4. There the idea is to
use an electric field along y for some time t�, during which
the electron (hole) will move vertically along the positive
(negative) y axis. Then, at t ¼ t�, we abruptly flip the
electric field Ey. Now the electron (hole) starts the journey
to come back to the initial position y ¼ 0, that will
eventually be reached at t ¼ 2t�. However, in order to
make it easier to spot the effect of a nonzero bx, one should
also add a small x component Ex, there for all times t.
Due to that, the electron (hole) also moves to the left (right).

FIG. 4. An external electric field with components Ey and Ex is
applied to the graphene sheet at t ¼ 0. The Ey is flipped at t ¼ t�.
We see the electron (hole) trajectory describes the upper-left
(lower-right) triangle at t ¼ 2t�. The total failure to come back to
the same point is Δx1 þ Δx2. If Δx1 ≠ Δx2, then there could be a
Burgers vector along the x-direction.
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At time t ¼ 2t�, the electron (hole) will have a horizontal
separation of Δx1 (Δx2). All in all, if the difference bx ¼
Δx1 − Δx2 is nonzero, this could point out the existence of
a Burgers vector along the x-direction. As in the t–y plane,
the particle performed a loop, and in the x − y, the particle-
antiparticle pair does not come back to the same point. All
this idea is depicted in Fig. 4.
A flaw in this procedure is that, even when there is no

defect, the particle-antiparticle pair never comes back to the
same point. Indeed, after one loop in the t − y-plane, there
is a difference of Δx1 þ Δx2, showing the failure to close
the loop, regardless of whether the Burgers vector is zero
or not. In other words, the so called contrast (the ratio
between presence and absence of signal) would be close to
0, on the contrary to the ideal case, where a large contrast
would be necessary to make observable the effect we are
looking for.

B. Transverse response. External magnetic field

On the other hand, the transverse electromagnetic current
one obtains from χemij , is nothing else than the Hall current,

that is the response to a vector potential A⃗ ¼ Bx⃗ × z⃗=z,
generating a magnetic field perpendicular to the plane of
the Dirac material. In this case, one sees that the response
function, containing the microscopic elements of the
theory, again gives a measurable quantity that is the Hall
conductivity σxy ¼ −σyx, with

σijðxÞ ∼
1

ω

Z
d2xd2x0χemij ðx; x0Þ: ð26Þ

With reference to Eq. (17), we then see that the ideal
realization of what represented in Fig. 5, is to apply a
magnetic field, that will separate positive and negative
charge carriers (as customary in the Hall effect). The one-
particle picture is that such a field, when of sufficient
strength, excites a pair particle-hole out of the vacuum, and
both particle and hole turn around the dislocation line, in
the (x; y)-plane, as shown in Fig. 2. The corresponding
time-loop in the (y; t)-plane (supposing that the Burgers
vector is directed along x, like in Fig. 1), is necessarily
deformed, the deformation being proportional to the
magnitude of the Burgers vector, Δt ∝ b=vF.

FIG. 5. Torsion/dislocation-induced idealized deformations of the idealized time-loop. On the left, two possible effects of a magnetic
field pointing into the plane (x; y), in the presence of some nonzero dislocations, indicated with the shadowed region. Both in (I) and in
(II), the antiparticle/hole travels through the shadowed region, that, although not necessarily so, can be thought of as buckling out of the
plane, and deformed. The disturbance delays when the y-coordinate of particle and antiparticle is again the same (−ȳ here). Therefore,
both (I) and (II) produce the deformed time-loop in the (t; y)-plane of (III). Nonetheless, it is only when particle and antiparticle do not
meet, see (II), by a mismatch of their x-coordinate after a turn (related to the Burgers vector) that this produces a current, whose field
theoretical description is represented in the depicted Feynman graph.
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In Fig. 5, we depict two possibilities, (I) and (II), both
giving the deformed time-loop in the (y; t)-plane (III), but
only (II) truly includes the required holonomy, that should
give rise to a net flux of particles and antiparticles, giving
meaning to the vertex ψ̄γ5ϕψ , hence directly related to the
dislocations present in the material.
In the language of the response function, with reference

to Eq. (17), we should have two contributions to the
combined current. One contribution is entirely electromag-
netic, and is a transverse current directed along y. The other
contribution, entirely due to the response to torsion, could
be engineered to be along the x-direction. In summary

j⃗em ¼ ð0; jemy Þ and j⃗torem ¼ ðjtoremx ; 0Þ: ð27Þ

This appears to be the most promising way to spot the
effect, for at least two reasons. First, as well known, the
Hall current is very sensitive to the different types of
carriers, (quasi) electrons and (quasi) holes. This is crucial
for our time-loop. Second, the contrast here is, in principle,
infinite because along the x direction the only contribution
would be the one induced by torsion, jtoremx ≠ 0 vs jemx ¼ 0,
therefore even the smallest effect of a nonzero jtoremx should
be visible (of course, within limits imposed by instruments,
noise, etc.).

C. Yet one more possibility

One more way to spot the effect, in principle, would be to
refer to the μ ¼ 0 ¼ ν contribution of Eq. (17), and
compare to the μ ¼ 0 component of (18). In this case
we should see an impact of the torsion on the response
density, or, in other words, on the way the charges
distribute. Again, though, the contrast would not be ideal.

VI. NECESSITY FOR NONLINEAR RESPONSE

The simple, semiqualitative analysis presented in the
previous section, is only indicative, and cannot be pushed
too far. In fact, in our model, described microscopically by
the action (8), we can indeed produce a prediction based on
the charge conjugation invariance of that emergent rela-
tivistic theory. Such prediction is that

χtoremμ ðx; x0Þ ∼ hĵemμ ðxÞĵtorðx0Þi≡ 0: ð28Þ

This is nothing more than an instance of the Furry’s
theorem of quantum field theory [45], that in QED reads9

χemμ1…μ2nþ1
ðx1;…; x2nþ1Þ ∼ hĵemμ1 ðx1Þ � � � ĵemμ2nþ1

ðx2nþ1Þi ¼ 0;

ð29Þ

and for us implies

χtoremμ1…μ2nþ1
ðx1;…; x2nþ1; y1;…; ymÞ

∼ hĵemμ1 ðx1Þ � � � ĵemμ2nþ1
ðx2nþ1Þĵtorðy1Þ � � � ĵtorðymÞi ¼ 0:

ð30Þ

This result does not mean that we have to find a completely
different approach, or that the effects we are looking for
cannot be seen in this language. This result simply means
that we need to move to the nonlinear response regime.
Indeed, our general expectations could be formalized as

two kinds of requests on the functional expansion of the
response (10): (a) terms with an odd number of derivatives
δ=δAμ, and (b) terms with only δn=δϕðx1Þ � � � δϕðxnÞ must
not be there. The two conditions are based on different
criteria. The first one is strictly related to the validity of the
emergent analog relativistic model based on the action
S½ψ̄ ;ψ ; A;ϕ�. The second is a request that needs be
obtained from the torsional nature of the field ϕ, that we
did not include in the previous analysis.
With these considerations, the first nonzero contribution

would be

jtoremμ ðxÞ ¼
Z

d3x0d3x00χtoremμν ðx; x0; x00ÞAνðx0Þϕðx00Þ: ð31Þ

with

χtoremμν ðx; x0; x00Þ ¼ 1

Z
δ3

δAμðxÞδAνðx0Þδϕðx00Þ
����
A¼0

Z

∼ hĵemμ ðxÞĵemμ ðx0Þĵtorðx00Þi: ð32Þ

To simplify the discussion, let us focus on the time
dependance only, an on the current rather than the charge
response

jtoremi ðtÞ ¼
Z

dt0dt00χtoremij ðt; t0; t00ÞAjðt0Þϕðt00Þ; ð33Þ

that, in terms of Fourier components,10 reads

jtoremi ðωÞ ¼
Z

dω0dω00χtoremij ðω;−ω0;−ω00ÞAjðω0Þϕðω00Þ:

ð34Þ

By regarding this as a process of a stimulated emission of
frequency ω, from inputs of frequencies ω0 and ω00, the

9While C−1ĵtorC ¼ ĵtor, hence we can have any number of
them in the vacuum expectation value (VEV), for the other cur-
rent C−1ĵemC ¼ −ĵem, so that hΩjĵemμ jΩi ¼ hΩjC−1ĵemμ CjΩi ¼
−hΩjĵemμ jΩi≡ 0, where we changed notation for the VEV,
and we used charge conjugation invariance of the vacuum
jΩi ¼ CjΩi.

10Our Fourier transform convention for a function f∶Rn → R
is fðxÞ ¼ R

dnk
ð2πÞn=2 e

−ik·xfðkÞ, and fðkÞ ¼ R
dnx

ð2πÞn=2 e
ik·xfðxÞ.
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conservation of energy implies ω ¼ ω0 þ ω00. If, further-
more, ω0 ¼ ω00, then ω ¼ 2ω0, i.e., the system responds to a
probe of given frequency generating higher harmonics
(second harmonic in this example).
Therefore, for the experiment we are looking for, we can

resort to a well developed technique, the high-order
harmonic generation (HHG), able to characterize structural
changes both in atoms and molecules and, more recently,
bulk materials (for a recent review see e.g., [46]). HHG is a
nonlinear optical phenomena in which the frequency of the
laser light that drives the system is converted into its integer
multiples. Harmonics of very high orders are generated
when atoms, molecules and, recently, solid materials, are
exposed to intense (usually near-infrared) and short (within
the femtosecond domain) laser pulses. Particularly, the
spectrum from this process consists of a plateau, where the
harmonic intensity is nearly constant over many orders, and
it suddenly ends up, at the so-called HHG cutoff. HHG is
considered nowadays as one of the best methods to both
produce ultrashort coherent light covering a wavelength
range from the vacuum ultraviolet to the soft x-ray region
and to obtain atomic, molecular and condensed matter
structural information with, unique, nanometer spatial
resolution. The development of HHG has opened new
research areas such as attosecond science and nonlinear
optics in the extreme ultraviolet (XUV) region [47]. In the
last few years, the subject of HHG from solid-state samples
has attracted considerable attention [48–50]. In particular,
it is now experimentally possible to disentangle the intra-
and inter-band currents, and how to use HHG to character-
ize structural information such as the energy dispersions
[51–53]. Very recently, Berry-phase effects have been
explored in topologically trivial materials, through exper-
imental studies of HHG in atomically-thin semiconductors
[54] and in quasi-2D models [55], where the sensitivity of
harmonic emission to symmetry breaking (specifically, the
breaking of inversion symmetry in monolayer MoS2 and
α-quartz) is shown via the presence of even harmonics.
In our scheme, the intra-band harmonics, governed by

the intra-band (electron-hole) current, will be strongly
modified, depending on the presence, or not, of disloca-
tions. Indeed, one immediate impact of the previous
discussion on the structure of the nonlinear response,
would be that, the torsion-induced holonomy of the
time-loop could manifest itself through specific patterns
of suppression and generation of higher harmonics.

VII. CONCLUSIONS

We conclude that, when time is duly included in the
emergent relativisticlike picture of Dirac materials, the
geometric obstruction to describe the effects of dislocations
in terms of a suitable coupling with torsion, within the
(2þ 1)-dimensional field theoretical description of the
π-electrons dynamics, can be overcome. This is not a
proof that torsion indeed describes dislocations in these

cases, and surely problems remain to be addressed, like a
unique assignment of torsion to a given distribution of
Burgers vectors. Nonetheless, when this is possible,
our suggestion here opens the doors to the use of these
materials as analogs of many important theoretical scenar-
ios where torsion plays a role.
Although our paper is theoretical, we moved the first

steps toward testing the realization of these scenarios. We
have envisaged some kinds of Gedankenexperiments on
time-loop that could spot the presence of edge dislocations,
routinely produced in Dirac materials. The effect must be
based on the interplay between an external electromagnetic
field (necessary to excite the pair particle-hole that realizes
the time-loops), and a suitable distribution of dislocations
described as torsion (that will be responsible for a meas-
urable holonomy in the time-loop).
Our general analysis here establishes that we need to

move to a nonlinear response regime. In particular, we
speculate that in a HHG technique, the structure of such
response, would include manifestation of the torsion-
induced holonomy of the time-loop through specific
patterns of suppression and generation of higher harmonics.
This sounds promising, for an experimental finding, as the
laser-graphene interaction, controlling electron dynamics
on an unprecedented precision scale, is the focus of intense
studies, both theoretical and experimental, see, e.g.,
[42,43]. Nonetheless, our results here need further detailed
analysis, that is beyond the scope of this paper, and we
intend to perform in future work.
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APPENDIX A: MINIMAL SPINOR COUPLING
WITH TORSION

Here we will recall the well-known argument, according
to which, spinors are only coupled with the totally
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antisymmetric part of the torsion, in the minimal coupled
prescription [28].
Suppose we have the following Hermitian and local

Lorentz invariant action (here we used natural units
½ℏ� ¼ ½c� ¼ 1)

S ¼ i
2

Z
d3x

ffiffiffiffiffi
jgj

p
ðΨ̄γμD⃗μΨ − Ψ̄D⃖μγ

μΨÞ

¼ i
2

Z
d3x

ffiffiffiffiffi
jgj

p �
Ψ̄γμD⃗μΨ − ∂μΨ̄γμΨ

þ i
2
ωab
μ Ψ̄JabγcΨE

μ
c

�
; ðA1Þ

where the covariant derivatives11

D⃗μΨ ¼ ∂μΨþ i
2
ωab
μ JabΨ;

Ψ̄D⃖μ ¼ ∂μΨ̄ −
i
2
Ψ̄Jabωab

μ ;

contain the contorsion part inside the spin connection,

i.e., ωab ¼ ω
∘ ab þ κab. With this convention, we have dea −

ω
∘ a

beb ¼ 0 and Ta ¼ −κabeb. To relate the last expression
to the torsion tensor, Tλ

μν ¼ Γλ
μν − Γλ

νμ, one uses Tμ
λ
ν ¼

Eλ
aκ

a
νbebμ − Eλ

aκ
a
μbebν .

In order to obtain the field equations for Ψ, we should
vary the action under Ψ̄. Therefore, we must integrate by
parts the second term of (A1).

S ¼ i
2

Z
d3x

ffiffiffiffiffi
jgj

p �
Ψ̄γμDμΨþ Ψ̄Eμ

aγa∂μΨ

þ i
2
ωbc
μ Ψ̄γaJbcΨE

μ
a þ i

2
ωbc
μ Ψ̄½Jbc; γa�ΨEμ

a

�

þ i
2

Z
d3x∂μð

ffiffiffiffiffi
jgj

p
Eμ
aÞΨ̄γaΨþ BT

¼ i
2

Z
d3x

ffiffiffiffiffi
jgj

p �
2Ψ̄γμDμΨþ i

2
ωbc
μ Ψ̄½Jbc; γa�ΨEμ

a

�

þ i
2

Z
d3x∂μð

ffiffiffiffiffi
jgj

p
Eμ
aÞΨ̄γaΨþ BT; ðA2Þ

where Dμ ≡ D⃗μ, and BT is a boundary term, which could
have some role in defining conserved charges, but we shall
not take it into account here. Let us manipulate the last term
in the first integral in (A2),

i
2
ωbc
μ ½Jbc; γa� ¼ −

1

2
ðωba

μ γb − ωac
μ γcÞ ¼ ωa

μbγ
b; ðA3Þ

where in the first equality we used the property
½γa; Jbc� ¼ iðγcδab − γbδ

a
cÞ.

Now,

i
2
ωbc
μ Ψ̄½Jbc; γa�ΨEμ

a ¼ ωμ
a
bE

μ
aΨ̄γbΨ ¼ ωμ

a
bE

μ
aebνΨ̄γνΨ

¼ Eμ
aEν

bωμ
a
ce

c
νΨ̄γbΨ:

We observe here that the term

Eμ
aEν

bων
a
cecμΨ̄γbΨ ¼ δcaEν

bων
a
cΨ̄γbΨ ¼ 0; ðA4Þ

where in the last equality we used the antisymmetry of ωab.
Therefore, we can add safely the term (A4) to the action.
So far, we have

S ¼ i
2

Z
d3x

ffiffiffiffiffi
jgj

p
ð2Ψ̄γμDμΨ − Eμ

aEν
bðωb

μcecν

− ωb
νcecμÞΨ̄γaΨÞ þ

i
2

Z
d3x∂μð

ffiffiffiffiffi
jgj

p
Eμ
aÞΨ̄γaΨ:

Now, we move to the second integral in (A2). First of all,
remember that [26]

ffiffiffiffiffijgjp ¼ jej, where for jej we under-
stand the determinant of the dreibein, i.e., jejϵμνρ ¼
ϵabceaμebνecρ. So,

∂μð
ffiffiffiffiffi
jgj

p
Þ ¼ ∂μjej ¼

1

3!
∂μðϵνρτϵabceaνebρecτÞ

¼ 1

2
ϵνρτϵabc∂μeaνebρecτ :

Observe that the dreibein determinant fulfils the relation
ϵabceaμebν ¼ jejϵμνρEρ

c. Then,

∂μð
ffiffiffiffiffi
jgj

p
Þ ¼ jej

2
Eσ
a∂μeaνϵνρτϵρτσ ¼ jejEν

a∂μeaν :

It is important the property,

∂μðEν
aebνÞ ¼ 0 ¼ ebν∂μEν

a þ Eν
a∂μebν ⇒ ebν∂μEν

a

¼ −Eν
a∂μebν ⇒ ∂μE

ρ
a ¼ −Eρ

bE
ν
a∂μebν ;

or

∂μE
μ
a ¼ −Eμ

aEν
b∂νebμ:

Finally, we can compute the second integrand in (A2), as

∂μð
ffiffiffiffiffi
jgj

p
Eμ
aÞ ¼ Eμ

a∂μð
ffiffiffiffiffi
jgj

p
Þ þ

ffiffiffiffiffi
jgj

p ∂μE
μ
a

¼
ffiffiffiffiffi
jgj

p
Eμ
aEν

bð∂μebν − ∂νebμÞ:

The action can be regrouped as

11Here we work in the two-index notation for the Lorentz
generators and the spin connection to keep the discussion as
general as possible. Of course we can comeback to the dual one-
index notation in three dimensions.
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S ¼ i
2

Z
d3x

ffiffiffiffiffi
jgj

p
ð2Ψ̄γμDμΨþ Eμ

aEν
bð∂μebν − ∂νebμ

þ ωb
μde

d
ν
− ωb

νde
d
μÞΨ̄γaΨÞ

¼ i
2

Z
d3x

ffiffiffiffiffi
jgj

p
ð2Ψ̄γμDμΨþ Eμ

aEν
bT

b
μνΨ̄γaΨÞ

¼ i
Z

d3x
ffiffiffiffiffi
jgj

p �
Ψ̄γμDμΨþ 1

2
Tν
μνΨ̄γμΨ

�
;

which is the result given in equation (2.33) of [28], but
now adapted to three dimensions and our metric sign
conventions. The last action is expressed in terms of
the total covariant derivative Dμ. If we separate the
contorsion component from this covariant derivative, we

have Ψ̄γμDμΨ ¼ Ψ̄γμD
∘
μΨþ i

2
Ψ̄γμκabμ JabΨ, where D

∘
μ is

the covariant derivative containing only the torsionless part
of the connection. Let us focus on the term containing κab.
First, we notice that γμκμabJab ¼ Eμ

cκμ
abγcJab. Then, we

use Jab ¼ i
4
½γa; γb�, and

γcJab ¼
i
2
δcaγb −

i
2
δcbγa þ

i
2
ϵcabγ

0γ1γ2:

With these

i
2
Ψ̄γμκμabJabΨ ¼ −

1

2
Ψ̄Eμ

aκμ
abγbΨ

þ 1

4
Ψ̄Eμ

cκμ
abϵcabγ

0γ1γ2Ψ:

If we now use, for instance, the (reducible) representation

γμ ¼ ðγμþ
0

0
γμ−Þ [17]

γ0 ¼
�
σ3 0

0 σ3

�
; ðA5Þ

γ1 ¼
�
iσ2 0

0 −iσ2

�
; ðA6Þ

γ2 ¼
�
−iσ1 0

0 −iσ1

�
; ðA7Þ

we have a natural definition of γ5 as

γ5 ≡ iγ0γ1γ2 ¼
�
I2×2 0

0 −I2×2

�
: ðA8Þ

Taking into account that Eμ
aκμ

abγb ¼ Eμ
aκμ

a
bγ

b ¼
Eμ
aκμ

a
be

b
ργ

ρ ¼ −Tμ
μργρ ¼ Tμ

ρμγρ, and that, following similar
steps Eμ

cκμ
abϵcab ¼ ϵμνρ

jej e
a
νebρκμab ¼ − ϵμνρ

jej Tμνρ, we obtain

i
2
Ψ̄γμκμabJabΨ ¼ −

1

2
Ψ̄Tμ

ρμγρΨ −
i
4

ϵμνρ

jej TμνρΨ̄γ5Ψ:

Finally, we arrive to

S ¼ i
Z

d3xjej
�
Ψ̄γμD

∘
μΨ −

1

2
Ψ̄Tν

μνγ
μΨ

−
i
4

ϵμνρ

jej Ψ̄γ
5Ψþ 1

2
Ψ̄Tν

μνγ
μΨ

�

¼ i
Z

d3xjej
�
Ψ̄γμD

∘
μΨ −

i
4

ϵμνρ

jej TμνρΨ̄γ5Ψ
�

¼ i
Z

d3xjej
�
ψ̄þγ

μ
þD

∘
μψþ þ ψ̄−γ

μ−D
∘
μψ−

−
i
4

ϵμνρ

jej Tμνρðψ̄þψþ − ψ̄−ψ−Þ
�
; ðA9Þ

with the spinor coupling only to the totally antisymmetric
components of torsion.
Notice that the spinors associated to each Dirac point, ψþ

and ψ−, are decoupled even when the torsion is included.
Therefore, the field equations, obtained by varying the
action (A9) with respect to the independent fields ψ̄þ and
ψ̄− are

γμþD
∘
μψþ −

i
4

ϵμνρTμνρ

jej ψþ ¼ 0; ðA10Þ

γμ−D
∘
μψ− þ i

4

ϵμνρTμνρ

jej ψ− ¼ 0; ðA11Þ

respectively.

APPENDIX B: ZERO CURVATURE AND
NONZERO TORSION

In this Appendix we use the notation of differential
forms (practically, this means that there are no explicit
Einstein indices μ; ν;…). In the general case where we have
torsion and curvature, the Lorentz spin-connection takes

the formωab ¼ ω
∘ ab þ κab. The first term contribution is the

Riemannian or Levi-Civita connection, while the second
one is the contortion. Correspondingly, the Lorentz curva-
ture Rab ¼ dωab − ωa

cω
cb, can be split as

Rab ¼ R
∘ ab þDκab ¼ R

∘ ab þD
∘
κab − κacκ

cb;

where R
∘ ab

is the Riemannian curvature. In this work, we
commit ourselves in a particular situation where the torsion
contribution can be isolated from pure geometric curvature.
Thus, we propose a situation where the Riemannian

curvature is zero (R
∘ ab ¼ 0), but κab ≠ 0. This proposal

is meaningful as κab transforms as a tensor under Lorentz
transformations, therefore κab ≠ 0 is independent of the

selected frame. On the other hand, as R
∘ ab ¼ 0, we can

choose also a Lorentz frame where the torsionless spin

connection is locally zero (ω
∘ ab ¼ 0).
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