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Equations governing the nonlinear dynamics of complex systems are usually unknown, and indirect methods are used to re-
construct their manifolds. In turn, they depend on embedding parameters requiring other methods and long temporal sequences
to be accurate. In this paper, we show that an optimal reconstruction can be achieved by lossless compression of system’s time
course, providing a self-consistent analysis of its dynamics and a measure of its complexity, even for short sequences. Our measure
of complexity detects system’s state changes such as weak synchronization phenomena, characterizing many systems, in one step,

integrating results from Lyapunov and fractal analysis.

1. Introduction

Dynamics of natural systems is often described by nonlinear
equations. When those equations are unknown, we can
reproduce the system dynamics through the reconstruction
of the manifold from the time course of one of its variables
[1-3]. Phase space reconstruction has been widely applied in
modeling and predictions of several nonlinear systems, such
as ecological, climate, and neural ones [4-7]. The embedding
theory proposed by Takens [8] allows one to reconstruct a
one-to-one map of the attractor of a dynamical process using
time-lagged values of a single system variable. The delay-
coordinate map is built from the time series X (¢) by vectors
in R of the form X, = [X(n),X(n—-1),x(n-27),..., X
(n— (m — 1)71)], where 7 is the time delay. To correctly build
the embedding of d-dimensional manifold M, it is crucial to
choose adequate values for m and 7, i.e., the embedding
parameters.

According to the Whitney theorem, the diffeomorphism
on M is ensured by choosing an embedding dimension
m>2d+1 [9] and the result may be generalized also to
noninteger (fractal) dimension [10]. Whitney theorem has
been relaxed, for example, in [11, 12], but still those studies
provide an upper bound for the estimation of m. Several

methods were developed to estimate the minimum possible
embedding dimension [13], and usually those methods are
based on the fact that when evaluating some quantities on a
R™ delay-coordinate map, they do not vary for m higher
than the proper embedding dimension. Those diffeo-
morphism invariants could be, for example, the largest
Lyapunov exponent or the percentage of false nearest
neighbours [14, 15], where the latter option, in its imple-
mentation introduced by Cao [16], is currently the most used
method to estimate the minimum m.

To estimate the embedding dimension, methods that
involve the fact that entropies are diffeomorphism invariants
have been proposed and include, for example, differential
entropy [17] and permutation entropy [18], where the latter
has the advantage to take into account the temporal in-
formation contained in the time series [19]. Kolmogorov
complexity, also known as algorithmic entropy, was pro-
posed in 1968 as a measure of the amount of information of
the trajectory of a dynamical process [20] and is defined as
the length of the shortest description that produces the
trajectory as output. Even if Kolmogorov complexity cannot
be computed, for the trajectories of a dynamical system, it is
usually approximated using lossless compression algo-
rithms, following the theorem of Brudno who, in 1978, wrote
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the equality between Kolmogorov complexity and entropy
rate [21]. Nevertheless, to date, estimating embedding di-
mension is still far from being an easy task, although this
parameter is critical to gain insights about the physics of the
underlying dynamical system.

In this paper, we show that optimal embedding di-
mension can be estimated through a measure of the Kol-
mogorov complexity, which is here evaluated using the
compression algorithm introduced by Lempel and Ziv [22].
Our dimension estimate could represent a more robust
measure than other information estimators because it is
independent on the system representation [23], so it may be
estimated without prior knowledge of the value of optimal
time delay 7 [24]. The main advantage of our approach is
that we explore the geometry of the manifold of the dy-
namical system with complexity measures that capture the
rich information about the underlying dynamics and reveal
change in the system state that is otherwise difficult to detect
[25-27]. In particular, here we show that exploring how the
system approaches its proper embedding dimension can
reveal the emergence of chaotic synchronization phenomena
in a coupled drive-response system.

2. Low-Dimensional Chaotic Systems

To estimate the optimal embedding dimension 1, we built
My (7,m), an ensemble of delay-coordinate maps from X ()
as a function of time delay 7 and m. Then, at fixed 7 and m,
we discretize values of delay coordinate map by using a grid
with bin size & X g rere = X, (& T,m) = (X1, %5,...,%,). We
computed the entropy rate of the resulting sequence of
symbols through a Lempel-Ziv data compression algorithm

[28]:
NESNAR W
S = ;;ng ,

where L} is the shortest subsequence starting at index i that
does not appear in the window x'~! of length n. We evaluated
entropy rate for the entire ensemble of delay-coordinate
maps My (m) and estimated as the optimal embedding
dimension m the one such that

S[My (m+ 1)]

S[MX(m)] = cost. (2)

This means that the optimum embedding dimension is
the one at which entropy rate has at least a component that
behaves as a nonlinear function of m, that is, S (m) ~ ¢,e%™.
That choice was suggested by the fact [29] that the system
with causal interactions among their elements has entropy
that grows as a nonextensive function of their size
S(N) = §;N + S, (N), where the nonextensive component is
described by a power law function S; ~ N™.

To estimate the optimal dimension for the embed-
ding, avoiding the evaluation of the optimal time delay 7,
we tested our algorithm with a specific set of 7 values and
found robust results with respect to the choice of this
parameter. Figure 1(a) shows an example for a single
realization of a Lorenz signal, where estimation of optimal
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m does not change for different 7 values. Figure 1(b) shows
the results of our algorithm for a set of chaotic systems.
Specifically, we consider Logistic, Hénon and Ikeda maps,
Rossler, Lorenz, and Mackey-Glass systems with three
different time delays, widely used to model the dynamics of
several natural phenomena, from chemical reactions to
climate. For each system, we computed our measures
across 50 different realizations and compared our estimates
with correlation dimension (d,) measures [30-33]. We
found that for most of the tested systems, our dimension
estimate is close to Whitney’s upper bound 2d, + 1, while
for Mackey-Glass systems that we tested at three different
time delays, we found that our m measures are close to the
lower bound delimited by d,.

3. Unidirectionally Coupled Systems

In coupled chaotic systems with a drive-response configu-
ration, generalized synchronization (GS) may occur if the
state of response system X does not depend on its initial
condition but depend only on the state of the driver Y, that
is, if there is a functional relation between trajectories in the
phase space, X (t) = © (Y (t)). When ® is the identity, there
is identical synchronization, which is easy to detect because
the synchronized motion becomes simply a sharp line in
X (t) vs Y (t) plane [34]. Otherwise, when @ differs from the
identity, weak GS may emerge, and this phenomenon is
difficult to detect. Different methods to detect GS have been
proposed [35].

For instance, it has been proven that synchronization
occurs when all of the conditional Lyapunov exponents
are negative [36], while it is possible to gain insight into
the kind of synchronization that is acting by considering
the dimension of the global synchronization manifold d
with respect to the dimension of the driver system dp,: if
dg = dp, then the response system does not have an effect
on the global dimension and there is identical syn-
chronization. Otherwise, if dg > d,, the global manifold
has a fractal structure and the synchronization is weak
[37]. To reveal weak GS in a coupled system, two different
classes of measures are needed, namely, conditional
Lyapunov exponents and dimension(s) of the global
manifold.

Here, we show that the analysis of the dimension of the
response system through lossless complexity measures can
easily detect the emergence of GS. To this aim, we studied
synchronization phenomena between two unidirectional
chaotic systems, where GS takes place as a function of
coupling factor C. We studied the optimal dimension m of
the systems assuming, as we did for noncoupled systems,
that entropy is well described by a nonextensive function of
number of elements S ~ N™. That assumption is especially
well posed when the system is weakly sensitive to initial
conditions, where it was proven [38, 39] that the usual
Shannon entropy measures are not appropriate and a new
measure of entropy has to be introduced that depends on
sensitivity to initial conditions and the multifractal
spectrum.
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FIGUre 1: Estimated embedding dimensions for low-dimensional chaotic system. (a) First derivative of S[My (m + 1)]/S[My (m)] as a
function of m at different time delays 7 for a Lorenz dynamical system. Across all 7 values, the derivative reaches zero for m = 4. (b)
Estimated m for a set of chaotic systems. For comparison purposes, values are plotted as a function of correlation dimension d,. For each
dynamical system, we show mean and standard error of the mean evaluated across N = 50 realizations. Dashed line corresponds to m = d,;

dotted line is m = 2d, + 1.

3.1. Heterogeneous Systems. As a first example, we consid-
ered a unidirectionally coupled system in which the au-
tonomous driver X is a Rossler oscillator:

X = —6{x, + x5},
X, = 6{x; +0.2x,}, (3)
X3 = 6{0.2 + x5 (x; = 5.7)},
and the driven one, Y, is a Lorenz oscillator:
y1=10(=y1 + »,),
2 =28y, =y, =~ ylys + Cx3, 4
V3= Y1Y2 — 2.66y;.

This type of system was investigated in previous works
[40-42]. In Figure 2(a), we show that, similarly to previous
studies, GS arises for a threshold coupling strength
C=C,>2.1, where the conditional Lyapunov exponent
becomes negative. We computed Lyapunov exponents using
the pull-back method [43, 44] which relies on the
Gram-Schmidt orthonormalization of Lyapunov vectors
while integrating the dynamical system with a fourth-order
Runge-Kutta algorithm (integration time step dt = 0.01).
We computed exponents with 5000 time points, after dis-
carding the first 10000 iterations. The correlation dimension
d, is estimated by using 25000 time points and looking for
the plateau in the function d,(m,e) [45], indicating a
suitable scaling relationship. As shown in Figure 2(b), d, of
the global manifold is higher than d, of the driver Rossler
system, indicating that at the threshold C,,, the whole system
undergoes a regime of weak synchronization.

For each coupling value, we estimated the optimal
embedding dimension as the average across 50 realizations
of the system dynamics. Time series with 1000 time points
were used for the estimation. When approaching the syn-
chronization threshold C,, m increases abruptly and

assumes values between the two extremes of two indepen-
dent Lorenz and Rossler systems. Furthermore, it is worth
noting that the trend of m estimates is opposite to the trends
of both d, and conditional Lyapunov exponents, suggesting
that those measures are referring to different but comple-
mentary properties of the dynamical system. Previous
studies investigated how measures of entropy and com-
plexity are both needed to describe natural systems, since
they capture different properties of the dynamics [46, 47]. In
particular, Lyapunov exponents and fractal dimension
measures were usually related to the degree of randomness
and disorder of the dynamics, while our hypothesis is that m,
which is the dimension at which the entropy rate is described
by a nonlinear function, is related to the length of the
patterns, i.e., to regularities in the dynamics that allow for its
compression.

3.2. Identical Systems. A second example we considered is
the unidirectionally coupled system formed by two identical
Hénon maps [41], where the driver is described by the
system:

{ %1 =1.4 - x} + 0.3x,, 5)
X, = X,
and the driven one is described by
{)'/1 = 14— (Cx;y, + (1 -C)y7) +0.3y,, ©)
Y2 =01

We computed Lyapunov exponents using the pull-back
method with 5000 time points and we found that the
conditional exponent takes negative values in two different
intervals of couplings: in a window 0.44 < C,, < 0.54 and then
for C; > 0.68 (see Figure 3(a)). As shown in Figure 3(b), in
the first window C,,, the correlation dimension of the global
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FIGURE 2: Lorenz driven by Rossler system. (a) Estimated m and conditional Lyapunov exponents, as a function of coupling strength. (b)
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FiGure 3: Coupled Hénon maps. (a) Estimated embedding m and conditional Lyapunov exponents. (b) Estimated m and correlation

dimension d, as a function of coupling strength.

manifold is higher than the correlation dimension of an
independent Hénon system: dg; = 2.2 > dp.0n = 1.2, indi-
cating that the synchronization is weak in this interval.
Furthermore, for coupling values higher than C;, we have
that dg = dyepon = 1.2, showing that for high couplings,
identical synchronization takes place. Both the coupling
strength intervals and the two different regimes for GS are
revealed with a single embedding measure. Here, we
computed for each coupling value the optimal embedding
dimension m as the average across 50 realizations, 1000 time
points each, using lossless compression of the dynamics. We
found that in C,, interval, the complexity of the coupled
system increases, giving rise to an increased estimated m of
the global manifold. For C > C;, the optimal m has a drop,
showing that there is a change in the system state; in par-
ticular, m estimates take values typical of an independent
Hénon map, revealing an identical synchronization.

4. Conclusion

In conclusion, we have shown that complexity measures
used to reconstruct the geometry of the manifold of a dy-
namical system can be used to gain many insights about the
system itself, even when the underlying governing equations
are not known. We observed how the irregularity of the
dynamics, expressed by entropy rate estimates, reaches a
plateau and remains constant by increasing the dimension of
the manifold, providing a robust and parameter-free esti-
mate of the intrinsic optimal dimension. Our measure is
quite stable for different values of time delay 7, providing a
desirable method for the reconstruction of the manifold that
relies only on a single estimate.

We choose to relate complexity of the system to the way
at which entropy rate measures depart from extensive
functions and become nonlinear functions of the number of
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system dimensions. How to properly evaluate complexity
has been a debated topic in last years. One of the most
debated issue is the fact that information theoretic estimates
like Shannon entropy measure the degree of randomness of
the system and do not take into account system’s dynamical
organization, whereas ideal complexity measures should
treat both random and lower distributions as minimally
complex [48]. In our approach, we focused on the entropy
component that deviates from extensivity, arguing that it
contains the information that has to be related to effective
system’s complexity.

To detect synchronization, usually quantities related to the
randomness of the dynamics [49, 50], such as Lyapunov
exponents and fractal dimension, are investigated. However,
to be estimated in a reliable way, those quantities require long
time series, in particular to compute correlation dimension,
which is also potentially biased by user’s choices about proper
scale and dimensions. Our method, on the contrary, gives
robust results for shorter time series and has the advantage to
capture and distinguish, with a single measure, different
synchronization regimes. Furthermore, the dimension at
which the time series reaches its maximum disorder is in-
formative and gives us insights about the intrinsic structure of
the system. The way in which the optimal embedding di-
mension varies as a function of the parameters ruling the
system dynamics highlights state changes, as long as they
affect regularities in dynamical patterns. In this paper, we
focused more specifically on the detection of generalized
synchronization in coupled chaotic systems, a phenomenon
that appears in many biological and physiological processes
[51-53], as well as in geophysical fluid dynamics [54], but it is
notoriously difficult to unravel. Additionally, the detection of
synchronization phenomena permits the identification of
causal drivers and leads to a better description and prediction
of system dynamics. The key role that causal influence among
observables has for the forecasting of their time course has
been addressed in many studies related, for example, to
ecological [55], financial [56], and multiscale human mobility
systems [57, 58]. Our method paves the way for applications
to more complex dynamics exhibiting phenomena that
usually require multiple complexity measures to be detected,
showing that lossless compression of system’s dynamics in the
phase space can be suitably used for this purpose.

Data Availability

The data that support the findings of this study are available
from the corresponding author upon request.
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