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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract. The self-similar infall model (SSIM) is normally discussed in the context of radial orbits in spherical
symmetry. However it is possible to retain the spherical symmetry while permitting the particles to move in
Keplerian ellipses, each having the squared angular momentum peculiar to their ‘shell’. The spherical ‘shell’,
defined for example by the particles turning at a given radius, then moves according to the radial equation of
motion of a ‘shell’ particle. The ‘shell’ itself has no physical existence except as an ensemble of particles, but it
is convenient to sometimes refer to the shells since it is they that are followed by a shell code. In this note we
find the distribution of squared angular momentum as a function of radius that yields the NFW density profile
for the final dark matter halo. It transpires that this distribution is amply motivated dimensionally. An effective
‘lambda’ spin parameter is roughly constant over the shells. We also study the effects of angular momentum on
the relaxation of a dark matter system using a three dimensional representation of the relaxed phase space.

Key words. Cosmology: theory – dark matter – large-scale structure of Universe – Galaxies: halos – Galaxies:
formation – Galaxies: evolution

1. Introduction

In the paradigm of Cold Dark Matter (CDM), what have

been called universal density profiles have emerged from

collisionless self-gravitating numerical models in the form

ρ ∝ r−α

(

1 +

(

r

rs

)β
)

−

γ−α
β

, (1)

where either α = 1, β = 1, γ = 3 (NFW) or

(Moore et al. 1999) α = 1.5, β = 1, γ = 3. Noting the

importance of mergers in hierarchical clustering Syer &

White (Syer & White 1998) argued for this universality

as a self-regulation of a halo density profile. This is due to

tidal stripping and dynamical friction acting alternately

on merging satellites to flatten a steep profile and steepen

a flat profile. Independently (Subramanian et al. 1999a)

gave a similar argument wherein a nested sequence

of undigested cores form the profile, each with power

law densities dominating only locally. However several

authors have shown that N-body simulations repro-

duce the (NFW) profile without the need for clumpy
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lyon1.fr
?? henriksn@astro.queensu.ca

initial conditions and mergers (Aguilar & Merritt 1990,

Huss et al. 1999a, Huss et al. 1999b, Moore et al. 1999,

Tittley & Couchman 2000).

The radial Self-Similar Secondary Infall model (SSIM:

FG84, Moutarde et al. 1995, HW99) predicts a ‘one-sided

attractor’ final density profile according to (but see

(Hoffman & Shaham 1985) for a slightly different depen-

dence on the cosmological spectral index)

ρ

ρc
=











(

r
rs

)

−2

, n < 1
(

r
rs

)

−

3(n+3)
n+5

, n > 1
. (2)

Here n refers to the power spectrum of the primor-

dial cosmological perturbations piece-wise approximated

as P ∝ kn. In the range of acceptable initial condi-

tions the variations in the predicted density logarith-

mic slope are small (2 ≤ 3(n+3)
n+5 ≤ 9

4 ). Hence the pre-

dicted central cusps are too steep compared to those found

in the N-body simulations or indeed compared to ob-

servations (De Blok et al. 2001). In a companion paper

(Henriksen & Le Delliou 2002), the SSIM is shown to ad-

mit density inflections at the centre when finite physical

resolution is accounted for, but the expected flattening

may not be on a large enough scale to reproduce that of
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the N-body simulations. Such resolution effects however

may lie behind the mass resolution dependence in the re-

sults of Jing & Suto (Jing & Suto 2000).

Recently Lokas & Hoffman (Lokas & Hoffman 2000)

have studied the consequences of abandoning the self-

similar aspect of the SSIM in favour of an adiabatic invari-

ant calculation, and of introducing a more detailed form

of the initial power spectrum. However the self-similarity

has been found to arise naturally in most shell code sim-

ulations (i.e. it is not an assumption) and in any case the

results of Lokas & Hoffman are very close to those cited

above for the SSIM. The authors conclude by suggesting

that it is prominently the presence of angular momentum

that flattens the central cusp.

Indeed numerous authors have emphasized the ef-

fect of an isotropic velocity dispersion ( thus of non-

radial motion) in the core of collisionless haloes. Thus

(Huss et al. 1999b)’s Fig. 17 shows an NFW-type den-

sity cusp flattening relative to the isothermal profile

just where the velocity dispersion changes from predomi-

nantly radial to isotropic. This flattening doesn’t appear,

in (Huss et al. 1999a), for the case of pure radial force.

A similar result was obtained by (Tormen et al. 1997),

and (Teyssier et al. 1997) who also found that singular

isothermal profiles arise during radial infall while isotropic

velocity dispersions are associated with flatter profiles.

Similarly, Moutarde et al. (Moutarde et al. 1995) corre-

late flat density profiles with higher dimensionality of the

available phase space during infall and they confirm the

natural development of self-similarity after turn-around.

Thus we are motivated to consider a simple extension

of the SSIM that includes the effects of angular momen-

tum (i.e. of each orbiting particle producing in general a

smooth velocity ‘anisotropy’ — the limits being purely ra-

dial or spherically symmetric in velocity space — at each

point on a spherical ‘shell’).

Such a spherical model corresponds strictly nei-

ther to reality nor to the 3D N-body simulations of

cosmological dark halo fields, which display marked non-

sphericity (e.g. in Huss et al. 1999a, Huss et al. 1999b,

Moutarde et al. 1995, Teyssier et al. 1997,

Tormen et al. 1997). Some groups have even proposed a

triaxial density profile to replace the spherical (NFW) fit

(Jing & Suto 2002). We can regard the spherical model

as the result of a kind of ‘coarse-graining’ or averaging

in angle, but it remains unclear in principle whether the

averaging before the evolution as done here is equivalent

to the averaging after the evolution as done in the

simulations (NFW). In practice we simply examine to

what extent the respective profiles agree.

Various authors (Ryden & Gunn 1987,

White & Zaritsky 1992, Ryden 1993,

Subramanian et al. 1999a, Subramanian 1999b,

Sikivie et al. 1997 1) have treated degrees of veloc-

ity anisotropy (orbital angular momentum) in the SSIM

and found hints of shallow inner density cusps, and in at

least one case links between the NFW inner slope and

isotropic velocities (Ryden & Gunn 1987) were found.

However none of these semi-analytic treatments followed

the system through relaxation by phase mixing and

instability (HW99, Merrall 2003) to its final form. In

(Ryden 1993) the spherical symmetry was broken and the

final phase space was studied but the particle orbits were

confined to poloidal planes. Nevertheless slightly flatter

spherically averaged density profiles were found which

may reflect the correlation with higher dimensionality

found above (Moutarde et al. 1995). We pursue the

possible effects of general velocity anisotropy here by the

use of a spherically-symmetric shell code, whose only

constraint is that the angular momentum should be zero

averaged over shells.

In fact the system is made up of particles on elliptical

orbits that lie in planes through the centre of the system

and are isotropically distributed in angle at any point on a

sphere. Thus the vector angular momentum on the sphere

is zero. A spherical ‘shell’ may be defined as the set of

particles at a given radius that are all at the same phase

in their orbits. It might be the turn-around or apocentric

phase for example. Subsequently the shell comoves with

the same set of particles according to the radial equation

of motion of a particle.

Because of the spherical symmetry, angular mo-

mentum has to be introduced to the particles ad

hoc, after which it is conserved. This was done in

(White & Zaritsky 1992) by introducing a heuristic source

term that switches off at turnaround, or in another context

simply by assigning an angular momentum distribution at

turn-around time (Sikivie et al. 1997).

In this work, two forms of angular momentum are as-

signed at the turn-around of a given set of particles. It

is convenient subsequently to speak of this angular mo-

mentum squared as being assigned to a shell, but the re-

ality is as described above. In the next section, we will

briefly explain our implementation of angular momentum

in the SSIM. The effect on the density profile will be shown

in Sect. 3. Sect. 4 will focus on other consequences for

the SSIM’s relaxation. A brief discussion regarding mass-

angular momentum correlation will be presented in Sect.

5 before a concluding discussion (Sect. 6).

1 The focus of (Sikivie et al. 1997) was on indentifying veloc-
ity streams from non spherically-symmetric angular momen-
tum distributions. Although the same geometry as used here
was employed, a (FG84, Bertschinger 1985)- type one particle
integration was used which assumes strict self-similar phase
mixing and so is insensitive to phase space instability.
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2. The SSIM and Particle Angular Momentum

We seek a natural way of assigning the particle angu-

lar momentum on a shell ‘a priori’ so that our eventual

agreement with the NFW density profile should not sim-

ply be an empirical fit. There are two possibilities which

seem rather natural to us. The first one is to assign

that distribution of angular momentum over the ‘shells’

which allows the generalized self-similarity described by

Henriksen (Henriksen 1989) to hold until shell crossing.

Unfortunately this self-similarity does not carry through

into the virialized system by way of a constant logarith-

mic derivative of the turn-around time with respect to

the turn-around radius as in (FG84) or in (HW99). In

fact rather than yielding a prediction for the final den-

sity profile in terms of the assigned magnitude of angular

momentum as might be anticipated, we find that the per-

mitted magnitude is so small that no essential change is

produced in the relaxed density profile. This distribution

will be referred to as the self-similar angular momentum

profile or SSAM.

The second distribution that we consider and the one

that seems to produce the most satisfying results phys-

ically is simply that given by dimensional analysis in a

spherically symmetric self-gravitating system. This is sim-

ply a power law distribution and will be referred to as the

power law angular momentum profile or PLAM.

2.1. The SSAM: Self-similarity with angular

momentum

Following (Henriksen 1989) the radial equation of motion

may be written in the ‘Friedman’ form

(dξS)
2 − 1

S
+

J2

S2
= −1, (3)

where we have defined the Lagrangian label (recall that

for bound shells, E<0, hence the -1 in Eq. (3))

a =
GM(r)

|E| . (4)

The current radius R(r, t) of a particle or spherical

shell is the scaled form

R = aS(ξ),

with the self-similar independent variable defined as

ξ =

√

2GM

a3
(t − t0(a)) ,

and t0(a) is the turn-around time, chosen so that

at turn-around ξ = 0. Maintaining the self-similarity of

Eq.(3) requires J2 to be constant, which yields a con-

straint on the square of the ‘shell angular momentum’ j2

through the definition

J2 =
j2

2GMa
. (5)

This quantity may also be written using equation (4)

in the form

J =
j|E|1/2

√
2GM

, (6)

which shows it to be, but for a factor
√

2, the ‘local’ spin

parameter λ (Peebles 1993) expressed in terms of specific

angular momentum and energy. The mass however is the

entire mass inside a given shell rather than simply that of

the particles constituting the shell.

The solution to Eq. (3) before shell crossing and up to

turn-around is

ξ + π/4 = −
√

S − (S2 + J2) +
1

2
arcsin

2S − 1√
1 − 4J2

, (7)

which gives ξ = 0 at the turn-around scale ST since there

S − (S2 + J2) = 0, (8)

and thus

2ST − 1 =
√

1 − 4J2. (9)

At t = 0 Eq. (7) yields the relation
√

2GM

a3
to(a) =

π

4
+

√

So − (S2
o + J2)+

1

2
arcsin

1 − 2So√
1 − 4J2

,(10)

where So ≡ r/a, the ratio of the initial radius of a ‘shell’

and its Lagrangian label. Once this latter ratio is deter-

mined the turn-around time to may be found as a function

of a. This ratio follows from Eqs. (4) and (5) once E(r) and

M(r) are given initially, as does also the required j2(r).

Thus this requirement of self-similarity before shell cross-

ing leads to a natural initial correlation between j2 and

the mass inside a shell.

The expression for the initial mass inside radius r for

a constant density background perturbed by a power law

ρ = ρb(1 + x−ε) is

M(r) = Mfx3

(

1 +
x−ε

q

)

(11)

where q is defined in terms of the power-law index ε of the

initial density perturbations

q = (1 − ε

3
)

, and we adopt

ρ = ρb

(

1 + λ.r−ε
)

,

λ being constant. The scaled radius x ≡ r/rf is defined

in terms of a fiducial radius (rf = (λ)
1
ε ) and the fiducial

mass is introduced as

Mf =
4π

3
ρbr

3
f .

The background density is ρb.
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We calculate the initial specific energy of a shell in

a de Sitter cosmology after the addition of the angular

momentum as

E(r) =
H2r2

2
−GM(r)

r
+

j2

2r2
= −4πGρbλ

(3 − ε)
r(2−ε)+

j2

2r2
.(12)

Now combining Eqs. (11) and (12) in the definition

(4), one finds for example

x

a
=

1 +
√

1 − 4J2(1 + qxε)2

2(1 + qxε)
, (13)

which yields using Eq.(5) the expression for the self-

similar compatible angular momentum distribution in the

SSIM 2 as

j2

2GMfrf
=

2J2

q
x(4−ε) (1 + qxε)2

1 +
√

1 − 4J2(1 + qxε)2
. (14)

Now it is immediately clear from these expressions that

the imposed self-similarity can not hold beyond xmax =

((1 − 2J)/(2Jq))
1/ε

. The specific energy at this radius fol-

lows from Eqs. (4), (13), and (11) as

E = −GMf

2qrf
x2−ε

max, (15)

and is not zero. Thus the self-similarity itself imposes an

outer cut-off on the system. This does not in itself present

a problem peculiar to the imposed self-similarity, since of

course for the shallow initial density profile (ε < 2) the

whole Universe is bound to the halo unless an arbitrary

cut-off is imposed. Moreover even the steep density profile

requires an arbitrary outer cut-off to define a finite mass

system.

The mass at this self-similar cut-off is fortunately large

compared to the fiducial mass as it becomes (11)

Mmax =
Mf

(2Jq)(3/ε)
(1 − 2J)(3/ε−1), (16)

and J is normally in the range 10−3 to 10−4 with ε ≈
2 in our simulations. Larger values (one might envisage

adding a spin parameter value up to ≈ 3.5 × 10−2) did

not permit a sufficiently large extent to allow the self-

similar virialized phase to be well resolved in time (see

xmax above). The cases that avoided this numerical limit

did not show any significant deviation in density or phase

space from the halos formed by purely radial infall. We

therefore do not dwell further on this distribution when

discussing the density profiles.
2 The approach from the force equation in

(Sikivie et al. 1997) yields a slightly different self-similar
constraint for the angular momentum:

j2
Sikivie =

J2
SikivieS

4
T a4

to(a)2
=

2J2
SikivieS

4
T GMa

ξ2
a

=
j2

ξ2
a

,

where ξa(x) = ξ|t=0
is obtained with the combination of Eqs.

(10), (13) and S = x/a and we identify our conventions with
J2

SikivieS
4
T ≡ J2.

2.2. PLAM: The Power Law Distribution of Angular

Momentum

In this section we consider the simplest initial distribution

of angular momentum (that is a correlation with the ini-

tial mass as above) that may be expected on dimensional

grounds. This is the Keplerian form (the specific rotational

kinetic energy is a fixed fraction J2 of the specific binding

energy)

j2

2r2
=

GM(r)J2

r
(17)

where J2 is again constant. As a consequence all of the

equations of the previous section (including the solution

for the scale factor) may be applied simply by replacing

J2 in those equations by J2x/a and noting that in this

case the previous procedure leads to

x

a
= −J2 +

1

1 + qxε
. (18)

The motion before shell crossing is now no longer ‘self-

similar’ in the sense of the previous section, but in fact we

can see that for J2x/a small the situation at turn-around

is little different from the purely radial motion. It is dur-

ing the subsequent re-collapse that angular momentum is

significant. One of our objectives is to see what form this

initial correlation takes in the final relaxed halo so that it

may be compared with the Λ CDM results of Bullock et

al. (Bullock et al. 2001).

Once again the angular momentum distribution can

not be maintained beyond an outer scale xmax where now

xmax =

(

1 − J2

qJ2

)1/ε

, (19)

although with J2 small this yields a larger dynamic range

than before. Eqs. (17) and (11) now yield the explicit ini-

tial angular momentum distribution as

j2

2GMfrf
=

J2

q
x(4−ε)(1 + qxε). (20)

We observe that at large qxε this distribution tends to one

for which there is a constant angular velocity as a function

of initial radius. Moreover while the coefficient J2(1+qxε)

is constrained to be always smaller than one, x
(4−ε)
max may

be large. It is for this reason that j2 may be large enough

in this case to substantially alter the nature of the final

collapsed halo.

In the numerical work below we present examples for

ε = 1.5, the ‘shallow’ case and for ε = 2.5, the ‘steep’ case.

For the SSAM J is essentially the specific spin parameter

(×1/
√

2) and calculations were carried out with J ≈ 1.7×
10−3 for the shallow case and with J ≈ 6.8 × 10−5 for

the steep case. These values are rather small compared to

the median value of λ = .05 reported in (Peebles 1993).
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This shows clearly the limitations imposed by this angular

momentum distribution together with the constraint of

forming a core.

For the PLAM distribution, J2 is actually rather larger

than the spin parameter wherever x/a is small. The values

used for J2 were 10−3 for the shallow case and ≈ 9×10−3

in the steep case. These are much closer to the val-

ues for the spin parameter found in cosmological simu-

lations. If J2 is taken much larger than these values the

outermost shells did not reach the center. In this latter

event the core displayed isolated phase mixing ‘islands’

(Sikivie et al. 1997).

3. Numerical Evolution of the PLAM Distribution

to the NFW Profile

3.1. Establishment of the NFW profile

We use a shell code with a semi-analytic treatment of

the energy calculation (Le Delliou 2001) to follow the

development of the dark matter halo through the shell

crossing phase. This code has been well tested elsewhere

(Le Delliou 2001) and is known to reproduce standard re-

sults (HW99).

As was indicated above the SSAM distribution did not

produce density profiles that were significantly different

from those found in pure radial infall. In particular the

relations between the power law index of the initial den-

sity perturbation ε and the final density power law in the

bound core were the same as those found for radial infall

(FG84, HW99). Thus we do not present these results here.

The PLAM initial distribution with the parameters

given above evolved to cores having the density profiles

shown in (Fig. 1). The time indicated on the figures is

that defined in (HW99) and refers to the logarithmic time

near the end of the self-similar infall ‘equilibrium’ phase.

The figure shows that both in the steep and shal-

low case the profile is no longer well fit by a power

law even in the intermediate regions. Rather there is a

smoothly varying convexity in the logarithmic slope that

is well fit by the indicated NFW profile except in the most

central regions. There a flattening occurs that is more

pronounced than is accounted for by the NFW profile.

Flattening is anticipated relative to the self-similar slope

on general thermodynamic grounds in the coarse-graining

study of (Henriksen & Le Delliou 2002), and the presence

of a central point mass (perhaps imitated here by nu-

merically smoothed density cusps) can produce such flat-

tened cusps (Nakano & Makino 1999). Unfortunately our

numerical resolution is too poor in this core region to say

that this flattening is a physically significant result.

We also show piecewise power law fits in various re-

gions of the figure in order to emphasize the inadequacy

of a global power law fit. One sees moreover that the ap-

parent slope does tend toward r−3 in the external regions.

The theoretical power law slope for undisturbed radial in-

fall is 2.0 for the shallow case and ≈ 2.14 for the steep

case. Neither of these values fits the whole density profile

of these cores.

We note that the force ‘smoothing’ length εs occurs

near the mid-point of the indicated spatial range. This

does not affect the validity of the density profile inside

this radius however as was established numerically and by

coarse graining in (Henriksen & Le Delliou 2002) for pure

radial infall. Their interpretation of the results in terms

of ‘turn-round’ relaxation of the shells is unchanged by

the present extention of phase space dimensionality since,

as seen in Sect. 4, relaxation still takes place mostly out-

side of the ‘smoothing’ length (Le Delliou 2001). However

even if the relaxation argument still holds, it cannot be

made to predict the exact slope of the NFW profile. We

shall examine in detail the NFW profile dependence on

resolution in Sect. 3.2.

Our results ought to be compared to the re-

sults of the similar study of Hozumi et al.

(Hozumi,Burkert & Fujiwara 2000). These authors also

investigate the effect of smoothly anisotropic velocity dis-

tributions (but with zero net angular momentum on shells,

just as in our case) on the density profile. Instead of using a

shell code however, they integrate the CBE directly start-

ing from non-equilibrium power law density distributions.

Moreover they initiate their calculation with an ‘ad hoc’

distribution function that is simply a Gaussian in each of

the radial and azimuthal velocities, each Gaussian having

different dispersions. In contrast we have started our sim-

ulations in this work from actual cosmological initial con-

ditions radially, on which we have imposed rather natural

distributions of angular momentum. The effect is that our

collapse begins from a well-defined surface in phase space.

Despite the differences in the initial conditions, we ob-

serve that the conclusions drawn in the two works are

rather similar. Their parameter 2α is essentially our pa-

rameter J−2 (our radial specific kinetic energy is essen-

tially GM/r) which we have taken in the range 100- 1000

for the favoured PLAM. Although the largest value used in

their paper is 2α = 20, because our ratio of kinetic energy

to binding energy (≈ (1+J2)/(1+δM/M)) is much closer

to unity than is theirs, the calculations are more compa-

rable than it might seem. Hozumi et al. have not fitted

their profiles with a NFW curve, but their conclusions

about the central flattening resemble ours. This suggests

that particle angular momentum is indeed playing a role

in determining the density profiles of dark matter halos,

and hence of galaxies.

We conclude then in this section that the PLAM of

Eq. (20) does yield the NFW density profile over most

of a dark matter halo. Moreover the required amplitude
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Fig. 1. ‘Power law’ angular momentum (PLAM): density profiles for critical values of the angular momentum near the end of
the self-similar quasi-equilibrium phase in the shallow (ε = 3

2
= 1.5) and steep (ε = 5

2
= 2.5) initial density profiles cases

of the angular momentum does not need to exceed that

likely to be provided by tidal interactions. The PLAM

places the embryonic halo particles on a surface in phase

space which may therefore reveal something of the tidal

fields they experience near turn-around.

3.2. NFW and resolution

The motivation in (Moore et al. 1999) for proposing an

alternate universal profile to the NFW profile is based on

their observation of a resolution dependence of the inner

slope. This resolution problem was also pointed out in the

studies by (Jing & Suto 2000). (Moore et al. 1999) claim

that their results show that the inner slope converges to-

wards their proposed profile.

We have tested our results under changes in resolution

using two different ‘smoothing’ lengths.

Similarly to the results of (Moore et al. 1999), an in-

crease in resolution in our model steepens the profile. This

can be measured by the increase of the concentration fac-

tor c3 when the ‘smoothing’ length is reduced, as seen on

3 The NFW profile in terms of critical density, density and
radial scales reads

ρ

ρc

=
δc

r
rs

(

1 + r
rs

)2
,

Fig. 2. Nevertheless, contrary to (Moore et al. 1999), the

NFW profile is still the best fit, provided the appropriate

change in concentration factor has been performed.

We interpret these results in terms of the centrifugal

acceleration at a given radius between the two ‘smoothing’

lengths: thus its regularised expression in the model reads

ac =
j2r

(r2 + ε2s)
2
.

Taking its value at radius r0 ¿ 1 with r0 ∈ [εs2
; εs1

], and

considering the dominant terms, one can see that

for εs1
ac1

∝ j2r0

for εs2
ac2

∝ j2

r3
0

}

⇒ ac1
= ac2

r4
0,

which yields ac2
/ac1

= 1/r4
0 À 1 ⇒ ac2

À ac1
. In other

words, to diminish εs depletes particles from the centre.

Therefore resolution appears to fix the magni-

tude of the NFW profile’s concentration parameter c.

Nevertheless, we have established that the addition of an-

gular momentum to CDM haloes transforms the single

with rs = r200/c defining the concentration factor and the two
scales correlated through (see (NFW))

δc =
c3

[

ln(1 + c) − c
1+c

] .
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Fig. 2. Smaller smoothing length εs test run: density profiles for critical values of the angular momentum near the end of the
self-similar quasi-equilibrium phase in the shallow (ε = 3

2
= 1.5) initial density profiles case using the ‘power law’ form of angular

momentum

power-law density profile into two slope NFW type pro-

file.

4. Phase space structure of the dark matter halo

4.1. Virial ratio and phase space projection

We begin by considering the r-vr projection of phase space

and the corresponding virial ratios, for comparison with

the well-known radial results (HW99). These are shown in

Figs. 3 and 4 for the SSAM and the PLAM respectively.

In each figure the ‘shallow’ and ‘steep’ initial profiles are

displayed, although these in fact show little difference in

behaviour. In our simulations we used ‘equal mass model-

ing’ of the ‘shells’.

In (HW99), the shell modeling used smaller masses for

inner shells than for outer shells in order to improve the

dynamical mass resolution at the beginning of the infall.

This allowed for the SSIM’s quasi-equilibrium self similar

state to be achieved almost as soon as the core forms, to

the detriment of an accurate phase space description that

is our objective here. The use of constant mass shells leads

to a relatively coarser mass resolution in the central part of

the halo, which part corresponds to the set of shells that

first forms the core, and so the quasi-equilibrium state

is not achieved as gracefully. In fact this choice results

in a poor modeling of the constant self-similar mass flux

needed to maintain self-similarity during the accretion of

innermost shells into the core. Each new shell acts almost

as an overdensity perturbation to the previously estab-

lished core and disturbs it from self-similar equilibrium un-

til it is ‘digested’ (Le Delliou 2001). Thus the equal mass

modeling simulation requires an initial period of stabi-

lization to reach the self-similar quasi-equilibrium. This

period should be roughly the time to accrete the shell of

the unequal mass modeling simulation that possesses the

same mass as the constant mass used here. This conjecture

was successfully tested.

A major physical difference with the radial SSIM ap-

pears during the transition from the self-similar equilib-

rium to a virialized isolated system, for which the virial

ratio is unity. There is a visible smoothing compared with

the radial SSIM’s sharp transition: instead of falling al-

most instantly from the self-similar value to unity when

the last shell falls in, the presence of angular momen-

tum produces instead a slow decrease from the self-similar

value to that of the isolated system. This begins earlier

than in the radial SSIM case (as measured by T ) and fin-

ishes later.

The phase space projections (the lower panels of figures

3 and 4 display the phase space distribution of shells in

the radius-radial velocity plane) reveal that there remains

a stream of outer particles for which the angular momen-

tum is so large that they will never fall into the core (their

rotational kinetic energy makes them unbound). Indeed,
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Fig. 3. SSAM: virial ratios and phase space projections in the
radius/radial velocity plane near the end of the self-similar
quasi-equilibrium phase for critical values of the angular mo-
mentum in the shallow (ε = 3

2
= 1.5) and steep (ε = 5

2
= 2.5)

initial density profiles cases

since the initial angular momentum distribution for the

particles is monotonically increasing with radius, and since

the angular momentum is conserved exactly throughout

the simulations including the initial radial ordering until

shells reach the core; so near the end of the self-similar

phase, the shells with increasingly large angular momen-

tum are contributing to the mass flux. Given higher and

higher angular momentum, there is a point at which an-

gular momentum induces an inner turn around radius at

the size of the self-similar core. Particles with smaller an-

gular momentum will be able to enter the core but with

a reduced radial velocity compared with the purely ra-

dial radial SSIM. This gradual extinction of the mass flux

due to increasing particle angular momentum (velocity

anisotropy) gradually shifts the system from its interme-

diate quasi-static phase to its final virialized phase.

Comparing the phase space projections of the SSAM

and the PLAM in Figs. 3 and 4 respectively we note that

the SSAM seems less homogeneous. The exploration of the

3D phase space in Sect. 4.3 will confirm the impression

that the SSAM is less relaxed in phase space during the

accretion phase.

4.2. resolution effects

Considering the way resolution affects the virial ratio and

r-vr projection of phase space, the previous remarks on

the system’s relaxation can be extended.

The previous stabilisation delay for equal mass ‘shell’

modeling is increased when using the reduced ‘smoothing’
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Fig. 4. ‘Power law’ angular momentum (PLAM): virial ra-
tios and phase space projections in the radius/radial velocity
plane near the end of the self-similar quasi-equilibrium phase
for critical values of the angular momentum in the shallow
(ε = 3

2
= 1.5) and steep (ε = 5

2
= 2.5) initial density profiles

cases

length. Here this period encompasses almost all of the self-

similar phase (Fig. 5’s upper panels). Nevertheless, the

right panel indicates that there still is an interval where

the virial ratio is slowly decreasing from a higher value

than 1.

We interpret this interval as due to the increase in the

maximum acceleration felt by shells in the central parts

of the halo: the scattering of shells is then much stronger,

which makes it more difficult for the system to settle down.

To minimise this inertial noise, the mass resolution should

follow the ‘smoothing’ length reduction. We adopted an

optimum balance between the mass, force and time reso-

lutions found by trial and error.

It is remarkable that the noise in the virial ratio (Fig.

5) is diminished with the ‘smoothing’ length: if on one

hand the equilibrium is achieved slower, it is on the other

hand of a more stable final nature. Thus even if the mass

flux resolution is not sufficient to account for the stabilisa-

tion delay, it still provides a good basis of understanding

the relaxed system.

Adding to this picture, the phase space of the smaller

εs simulation appears more relaxed than its larger εs coun-

terpart; the relaxation region at the edges of the system

restricts itself to the first outer stream and all traces of

the phase space mixing sheets washes out (Fig. 5’s lower

right and left panels). Such relaxation explains why the

smaller εs simulation’s phase space is slightly wider in ra-

dial velocity and narrower in radius. This also shows in

the more concentrated smaller εs NFW fit (Fig. 2).
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In the light of N-body studies such as that of Knebe et

al. (Knebe et al. 2000), inaccuracy in the dynamics from

two body scattering excludes ‘smoothing’ lengths much

smaller than that used in our regular simulations, at given

mass resolution. The mass resolution limitations on accu-

racy as well as the smoothing-length-time-step relation

shed light on the low smoothing length cut off4.

The nature of relaxation in the SSIM leads to the den-

sity profile being trustworthy even below its ‘smoothing’

length, but only a few times above its mass resolution

characteristic length. This is caused by the fact that re-

laxation in the SSIM essentially occurs in the few dynam-

ical times that particles are freshly incorporated into the

self-similar core, mainly around the secondary turnaround

radii, i.e. near the radial boundary of the core.

All of the phase space maps presented are measured at

T=12 which corresponds to a clear end of the self-similar

infall phase and beginning of the isolated system virialised

phase.

4.3. Three Dimensional Phase Space

This section explores the nature of the mass distribution in

the radius-radial velocity-angular momentum phase space

for systems with a shallow (ε = 3
2 ) initial density profile.

The SSAM and PLAM models are both presented here

for comparison purposes. All of these phase space maps

are measured at T=12 which corresponds to a clear end

of the self-similar infall phase and the beginning of the

isolated system virialized phase. To get a complete sense

of the topology of the winding and relaxation of the orig-

inal Liouville stream of Hubble flow shells, we use tilted

projections of the (X,Y,j2) space. We recall that initially,

with the power law distribution of angular momentum and

the Hubble radial velocity, the particles lie on a curve in

this phase space.

Figs. 6, denoted from top left to bottom right (a), (b)

and (c), allow for a finer analysis of the final state: (a)

4 An example calculation: the constant mass of one shell is
given in the simulation’s unit as m1shell = 2.10−2. The maxi-
mum density contrast on Fig. 2 can be taken as δρ

ρ0
= 4.1013.

Because of its high value, the density contrast, denoted δ in
this note, can be identified with the density itself

δρ

ρ0

= 4.1013 À 1 ⇔ δρ

ρ0

≡ δ ' ρ.

Thus, the volume of innermost shells can be evaluated as

δ ' ρ =
m1shell

V1shell

⇒ V1shell '
m1shell

δ
,

so the characteristic length scale of a shell in the centre is given
by

L1shell '3

√

m1shell

δ
=3

√

2.10−2

4.1013
=3

√
5.10−16 =3

√
0.510−5 ' 7.9 × 10−6.
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Fig. 5. Smaller smoothing length εs test run: virial ratios and
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the end of the self-similar quasi-equilibrium phase for critical
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2
=

1.5) initial density profiles cases using the ‘power law’ form of
angular momentum

shows a clear relaxation. The core appears to be rather

smoothly populated in this projection. Fig. 6 (b) displays

more clearly the outer phase mixing streams. The most

striking fact that is made clear in Fig. 6 (c) is that the

relaxed shells lie on a thin surface in phase space: this is

a 2-dimensional sheet in the shape of a soaring bird, the

neck and beak pointing toward large radius and angular

momentum, while the high velocity wings spread progres-

sively over higher and higher values of j2. The accumula-

tion of shells at low radius forms a flat basin.

The phase space from the SSAM initial angular mo-

mentum distribution displays increased Liouville stream

structure (and is therefore less relaxed) than for the power

law case presented above. Fig. 7 reveals that the distribu-

tion of particles, although it peaks near the same surface as

that found for the ‘power law’ initial angular momentum

distribution in Fig. 6, is non-zero throughout a substan-

tial region of phase space compared to the mean position.

This is more pronounced for the SSAM despite the differ-

ence in scales used for the angular momentum in the two

figures. Relaxation is clearly not as advanced in this case.

It seems that the strict self-similarity before shell-crossing

better segregates the shells in phase space. This recalls

the importance of available phase space volume to relax-

ation pointed out by Tormen et al. (Tormen et al. 1997),

Teyssier et al. (Teyssier et al. 1997) and Moutarde et al.

(Moutarde et al. 1995). The enhanced phase space volume

per particle inhibits relaxation.
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Fig. 6. Phase space exploration using the ‘power law’ form of angular momentum near the end of the self-similar quasi-
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2
= 1.5 ). 3d views from top left to bottom: front view from underneath;

side view from underneath; front view from above.

5. Angular momentum and mass correlation?

The existence of the phase space surface found in the pre-

vious section implies correlations in the various projec-

tions. Recently one group has reported finding a universal

angular momentum profile in N-body simulations in terms

of a halo’s cumulative mass (Bullock et al. 2001) accord-

ing to

M(< j) = Mvm j/(j0 + j), (21)

where m and j0 are correlated characteristic scales and

Mv is the halo’s virialized mass. However, one should

bear in mind that the profile given by Eq.(21) has been

criticized by other authors (van den Bosch et al. 2002,

Chen & Jing 2002), who claim it results from the ommis-

sion of particles, carrying what they call negative angular

momentum, and thus not to represent truly a halo an-

gular momentum profile. In fact, their negative angular

momentum stands for an angular momentum projected

on the total vector of the halo which points oppositely to

the total vector. In our approach one half of the particles

carry, according to this definition, negative angular mo-

mentum since our total vector should be
−→
0 by symmetry.

Throughout we have only worked with the square of the

particle angular momentum.

(Bullock et al. 2001) also find a power law describing

the correlation between angular momentum and radially

cumulative mass (j(M) ∝ Ms where M = M(< r) and

s = 1.3 ± 0.3). For this reason we consider these correla-

tions in the two systems of the previous section in order

to determine whether our choice of initial angular momen-

tum is compatible with these simulations.

Dimensional analysis and the definition of the final

density profile as ρ ∝ r−µ leads one to approximate the

self-similar model’s relaxed state with power laws for the

angular momentum (j2 ∝ r4−µ) and for the mass profiles

(M ∝ r3−µ). Thus, s can be predicted to be s = 4−µ
2(3−µ) ,.

In turn the SSIM gives the index µ as a function of the

initial index ε as:

µ =

{

2 ε ≤ 2
3ε

1+ε ε > 2
.

Although in the presence of enough angular momentum

the radial SSIM results are expected to be altered, we are
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Fig. 7. Phase space exploration using the self-similar form of angular momentum near the end of the self-similar quasi-equilibrium
phase (shallow initial density contrasts ε = 3

2
= 1.5 ). 3d views from top left to bottom: front view from underneath; side view

from underneath; front view from above.

not really in that regime. Thus it is remarkable that the

shallow initial density profile yields s = 1. The largest

deviation in the SSIM from that value of s is given for

ε = 3, since then s = ε+4
6 = 7

6 ' 1.17, which is also within

error from the (Bullock et al. 2001) value.

Empirically, the previous section’s phase space struc-

ture warns us that a correlation M - j2 may not be most

readily found from a simple regression on all shells. Instead

we might try to fit just the correlation from the projected

mean surface about which the shells are distributed. The

projection of phase space into the j2 − X plane forms a

caustic that appears to be a reasonable measure to com-

pare with the predicted angular momentum profile. Fig.

8 illustrates the angular momentum profile correlations:

the thin continuous lines are mere power law fits to all

of the particles, and their values do not reflect the self-

similar calculations. By contrast, a j2 ∝ X2 fit to the

phase space caustic verifies the predictions for the shallow

case. We have not investigated for this note the steep case

but have no reason to believe the results would be differ-

ent. Moreover, the density profiles show some steepening

on the outer edges of the halo (Fig. 1), which translates

into evidence for a flattening of the mass profile, hence of

the mass-angular momentum profile as in Eq.(21).

These results are remarkable in that they rest on the

idea that the dimensional angular momentum distribution

used initially (17) also obtains in the ultimate halo. The

same thing is true for the SSAM. Consequently the final

correlation j ∝ r merely reflects the universality of the

density profile in the intermediate ranges for the initially

‘flat’ density perturbation.

6. Summary

In this note we have studied the effects of particle an-

gular momentum on the density profile and phase space

structure of the final halo in the Self-Similar Infall Model

(SSIM) for the formation of dark matter halos. We have

used a simple shell code since the angular momentum aver-

aged over each sphere is zero. We find the NFW profile to

be an excellent fit to the density profile produced when an

initial angular momentum distribution provided by sim-

ple dimensional arguments (PLAM) is assigned. This fit
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holds until the very central regions where extra flatten-

ing is expected on thermodynamic grounds (this flattening

probably proceeds to a Gaussian with sufficient resolution

(Henriksen & Le Delliou 2002)).

In addition we have shown that the initial line in phase

space develops into a fairly well defined surface in phase

space in the final halo. The ‘ridge’ or cusp of this surface

when projected into angular momentum- position space

is also predicted by the same dimensional argument. It

seems then that some memory of the initial correlation

between position and angular momentum is retained in

the final object.

An alternate distribution of initial angular momen-

tum (SSAM) that was designed to maintain strict self-

similarity until shell crossing produces a less relaxed final

phase space distribution (at the same dimensionless time)

that is rather less precisely distributed on a 2D surface in

the phase space. It is not able to reproduce the NFW den-

sity profile, perhaps because of the reduced relaxation (as

displayed by the higher dimensionality in the final phase

space).

The question as to whether the successful angular mo-

mentum distribution (PLAM) is actually established by

tidal effects remains unanswered here. It essentially re-

quires the rotational kinetic energy acquired by each halo

particle to be a fixed fraction of the local halo gravitational

potential. That the local gravitational potential should be

an upper limit is clear, but it is not obvious why there

should be a fixed fraction for all shells. One might assign

J2 as a random variable about some mean to see how sen-

sitive the results are to a fixed value in the manner of

(Sikivie et al. 1997). However a coarse graining over the

shells would tend to produce the same mean independent

of r and so we would expect a similar coarse-grained re-

sult to what we have found here. In fact Ryden & Gunn

(Ryden & Gunn 1987) do give the expected rms angular

momentum distribution with mass for Gaussian random

primordial perturbations. Their Fig. 10 suggests a linear

relation in the range of masses that interests us here. This

agrees approximately with our Eq. (20) when ε is close to

2 at moderate radii.

However although the results of the n-body sim-

ulations are usually given as spherical averages, it is

not evident that this gives the same result as the

strictly spherically symmetric calculation reported here.

Nevertheless the agreement with the results of Bullock

et al. (Bullock et al. 2001) is encouraging in this sense

, even though they may not contain all of the relevant

physics(van den Bosch et al. 2002, Chen & Jing 2002).
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