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On Lorentz dynamics : From group actions to

warped products via homogeneous spaces

A. Arouche, M. Deffaf and A. Zeghib

December 9, 2004

Abstract

We show a geometric rigidity of isometric actions of non compact
(semisimple) Lie groups on Lorentz manifolds. Namely, we show that
the manifold has a warped product structure of a Lorentz manifold
with constant curvature by a Riemannian manifold.

1 Introduction

Recall the following result of [9], which shows how homogeneous spaces are
rare in Lorentz geometry (in comparison with the Riemannian case, say)

Theorem 1.1 [9]Let (M,g) be a homogeneous Lorentz space of dimension
≥ 3, with irreducible isotropy group, then it has constant sectional curvature.

Observe that the statement in [9] seems weaker, since the isotropy group
is assumed to satisfy a supplementary condition: non-precompactness. How-
ever, this follows from irreducibility. Indeed, in the same vein as [9], the
principal result of [3] says how irreducibility is strong in the Lorentz setting:

Theorem 1.2 [3] A Lie subgroup (not assumed a priori to be closed) of
O(1, n), which does not preserve any one dimensional isotropic subspace of
R

1+n, is up to conjugacy, a union of some components of some O(1, p) ⊂
O(1, n).

Our goal in the present article is to relax homogeneity by considering
(non-transitive) isometric group actions. This work is actually motivated by
the study of isometric Lie group actions on non-compact Lorentz manifolds,
for instance in the same vein as [1, 7, 6]...
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1.1 Warped product structure versus partial homogeneity

We ask firstly if there is an adaptation of Theorem 1.1 to non-transitive iso-
metric actions. In this situation, we consider a group G acting isometrically
on a Lorentz manifold (M,g). Each orbit is a homogeneous space. However,
the causal type of the orbit may be, timelike, spacelike or lightlike, that is,
the induced metric is Lorentzian, Riemannian or degenerate, respectively.
The following generalization of Theorem 1.1 relies on the existence of orbits
of Lorentz type satisfying irreducibility. It says roughly that the space is
partially of constant curvature.

Theorem 1.3 Let G be a Lie group acting isometrically on a Lorentz man-
ifold (M,g) of dimension ≥ 3. Suppose there exists an orbit N which is a
(homogeneous) Lorentz space with irreducible isotropy.

Then, N has constant (sectional) curvature, and a neighborhood of it is
a warped product L×w N , where L is some Riemannian manifold. Further-
more, the factor N corresponds to the orbits of G.

Definition and fundamental properties of warped products are in §2. It
follows that the group G is a subgroup of the isometry group of a constant
curvature manifold N (acting transitively on it). It is a non-difficult alge-
braic matter to classify them. Conversely, any such group acts isometrically
on any warped product L ×w N .

1.2 Non-properness versus Irreducibility

Let us go a step further, and try to get rid of the irreducibility hypothesis.
In fact, irreducibility is an algebraic condition which looks somehow non-
adapted to our dynamico-geometrical setting here. We want to substitute for
it a more natural dynamical condition. Our theory is that non-properness
is good enough for this role.

1.2.1 Recalls

We find it worthwhile to make some order around the concept of non-
properness of actions. This will be useful in the sequel (statements and
proofs).

Recall that an action of a group G on a space M is called proper, if for
any sequences (xn) of M , and (gn) of G, if (xn) and (gnxn) converge in M ,
then some subsequence of (gn) converges in G.

For our purpose here the following variant will be useful. We say that the
action of G is locally equicontinuous, if keeping the notations as above,
a subsequence of (gn) is (locally) equicontinuous (or say it is equicontinuous
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in a neighborhood of the limit of (xn)). Therefore, a subsequence of (gn)
is converging in the group of homeomorphisms of M , but, the limit does
not necessarily belong to G. Obviously, a non locally-equicontinuous action
is non-proper. The converse is not true. The standard example of a non-
proper but equicontinuous action is the usual linear action of R on the torus
with dense orbits. This is in general the case of any non-closed Lie group of
the isometry group of a compact Riemannian manifold. Another example is
the action of the universal cover G̃ on G (via the canonical projection). It is
always locally equicontinuous, but proper only if G has a finite fundamental
group. Observe nevertheless:

Fact 1.4 Let G be a Lie group acting by preserving a pseudo-Riemannian
structure on a manifold M . If G is the full isometry group, or G is semi-
simple with finite center, then its action is non-proper iff it is non-equicontinuous.

For the proof, recall the well known fact that a C0-limit of pseudo-Riemannian
(smooth) isometries is a smooth isometry, and that the Lie group topology
coincides with the C0 topology. This is equivalent to saying that the isom-
etry group is closed in the group of homeomorphisms. (Actually, this fact
is general for all rigid geometric structures). For G a simple Lie group with
finite center, recall that its image under a homomorphism into any Lie group
is closed, and that G is a finite cover of it. An analogous argument applies
to the semi-simple case with finite center. ♦

Therefore, in statements (essentially inside proofs) below,which involve
semi-simple Lie groups, we will not worry to sway from compactness to
pre-compactness.

A G-homogeneous space G/H is non-proper if the G-left action on it is.
This is equivalent, in the general case, to the fact that H is not precompact,
and to that H is not compact in the semi-simple case.

1.2.2 Semi-simple group actions with non-proper orbits

Without a priori irreducibility hypothesis, we have the following generaliza-
tion of Theorem 1.3, assuming the orbits are non-proper, and the group G
is semi-simple (a kind of intrinsic irreducibility).

Theorem 1.5 Let G be a semi-simpleLie group of finite center acting iso-
metrically on a Lorentz manifold (M,g) of dimension ≥ 3. Suppose that no
(local) factor of G is locally isomorphic to SL(2, R) and that there exists a
non-proper orbit N of Lorentz type, (that is N has a non-compact isotropy).

Then, up to a finite cover, G factorizes G = G1 × G2, where:
- G2 acts properly on a neighborhood of N , with spacelike orbits of con-

stant dimension.
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- On a G-invariant neighborhood U of N , G1 acts isometrically on the
Lorentz quotient U/G2 which is a warped product L ×w N1, where N1 has
constant (sectional) curvature and corresponds to the G1-orbits. In particu-
lar, if G is simple, then U itself is a warped product.

Looking at semi-simple Lie groups acting transitively, with non-compact
isotropy on a constant curvature Lorentz space, on can prove in a standard
way the following:

Corollary 1.6 In the case above, up to a (central) cover, G1 is O(1, n)
(resp. O(2, n)) the isometry group of the de Sitter space (resp. anti de
Sitter space), that is the universal Lorentz space of positive (resp. negative)
curvature.

Remarks 1.7

1) In both theorems above, the warped product is local, i.e. not the
whole space is a warped product. To see this, one considers the O(1, n)-
action on the Minkowski space R

1,n. If the Lorentz quadratic form is q =
−x02 + x12 + . . . + xn2, then the warped product is defined exactly on the
region q > 0.

2) The result does not seem to be optimal, that is, it might be generalized
to other groups.

3) Warped product structures on universal covers of compact Lorentz
manifolds with strong dynamics, are obtained, for instance, in [4, 10, 11].

1.3 From non-proper actions to non-proper homogeneous

spaces

Let us go another step, by asking how to get such non-proper orbits from
a global condition on the action? For instance, is orbital non-properness
inherited from non-properness of the (ambient) action?

Theorem 1.8 Let G be a semi-simple Lie group of finite center acting iso-
metrically and nonproperly on a Lorentz manifold M . Suppose that no
(local) factor of G is locally isomorphic to SL(2, R). Then, there is a point
with a non-compact stabilizer. In particular, the restriction of the action
of G to its orbit is nonproper. More exactly, the stabilizer of some point
contains a non-trivial unipotent one-parameter group. (In other words, a
non proper Lorentz G-space contains a non-proper G-homogeneous orbit)

This result allows one to get from (non-transitive) actions to homoge-
neous (i.e. transitive) ones. This is a common philosophy for actions with
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strong dynamics and a geometric background. The result here is in par-
ticular reminiscent to the so-called Zimmer’s embedding Theorem (see for
instance [12]). “Unfortunately”, there is a damper to put on : the orbit is a
non-proper homogeneous space, but not necessarily Lorentz! The nuisance
is that it can be lightlike (degenerate); another story.

2 Proof of Theorem 1.3

2.1 An algebraic lemma

Lemma 2.1 Let E (resp. F ) be a Lorentz (resp. Euclidean) vector space.
Denote by O(E) and O(F ) their respective orthogonal groups. Let H ′ be a
Lie subgroup of O(E)×O(F ), whose projection on O(E) acts irreducibly on
E.

Then, H ′ contains a subgroup H ⊂ O(E) × {1}, which contains the
identity component of O(E). In particular:

- Any linear H-invariant mapping f : E → F (f ◦h = f , for any h ∈ H)
is trivial.

- The same is true for any H-invariant bilinear antisymmetric mapping
E × E → F .

Proof. The crucial fact follows from Theorem 1.2 applied it to H, the
projection of H ′ on O(E). It is a finite union of components of O(1, p). Say
H = O(1, p) to simplify notation. Since O(F ) is compact, H is isomorphic
to the non-compact semi-simple Levi factor of H ′. Therefore, (up to a
cover...) H ′ contains a subgroup isomorphic to H, that is, there exists a
homomorphism ρ : H = O(1, p) → O(F ), such that the graph {(h, ρ(h)), h ∈
O(1, p)} is contained in H ′.

Next, one checks ρ is trivial. This uses a basic fact of Lie groups theory:
a semi-simple Lie group of non-compact type has no non-trivial homomor-
phism into a compact group. The idea, in this case, is that in O(1, p) there
are one parameter groups (the unipotent ones) having all their non-trivial
elements conjugate (this is easy to see in the case of O(1, 2) which is essen-
tially PSL(2, R)). Such a conjugacy is impossible in a compact group.

For the last two conclusions of the lemma, one can assume F = R.
The kernel of th linear mapping f is O(1, p)-invariant; hence it is trivial by
irreducibility. A similar argument yields triviality of invariant antisymmetric
bilinear mappings. ♦
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2.2 Group actions

Lemma 2.2 Let G be a Lie group acting isometrically on a Lorentz man-
ifold (M,g). Let N be an orbit of G, which is of Lorentz type and has an
irreducible isotropy group (inside G).

Then, the same is true for all orbits in a neighborhood of N . In particu-
lar, the orbits of G determine a foliation (i.e. have a constant dimension).
Furthermore, the orthogonal distribution of this foliation is integrable.

Proof. Consider x0 ∈ N , and denote by H its isotropy group. The
orthogonal space Lx0

of Tx0
N in Tx0

M is spacelike (the metric on it is
definite positive). We are in position to apply Lemma 2.1 with E = Tx0

N
and F = Lx0

. It then follows that the action of H on Lx0
is trivial. Let

expx0
denote the exponential of the Lorentz metric and consider the (local)

submanifold Lx0
= expx0

(Lx0
). Then expx0

conjugates the infinitesimal
action of H on Lx0

, with its action on Lx0
. In particular, H acts trivially on

this latter submanifold. That is H is contained in the isotropy group of any
point of Lx0

. An obvious semi-continuity argument implies that isotropy
groups can not be bigger. Therefore, we have a foliation by G-orbits, all
satisfying the same irreducibility condition for their isotropy groups. Let
us denote this foliation by N and its tangent bundle by TN . Let L be the
orthogonal distribution. The obstruction to integrability of L can measured
by means of a tensor T : L × L → TN . It is defined by T (X,Y ) = the
orthogonal projection on TN of the bracket [X,Y ], where X and Y are
sections of L. Since the isotropy group acts trivially on L and irreducibly
on TN , T is trivial, that is L is integrable. ♦

2.3 Warped product, end of the proof

Let (L, h) and (N,m) be two pseudo-Riemannian manifolds and w : L →
R

+ − {0} a warping function. The warped product M = L ×w N , is the
topological product L × N , endowed with the pseudo-Riemannian metric
g = h

⊕

wm.
Our goal now is to prove that M is a warped product. So far, we have the

orthogonal foliations N and L. One can say that De Rham decomposition
theorem is a criterion for a couple of such foliations in order that they
determine a (local) direct pseudo-Riemannian product. The condition is that
(the tangent bundles of) N and L are parallel, or a priori more weakly, that
leaves of N and L are geodesic. There is a similar, but more complicated,
criteria for warped products [5, 8]. We will not use this criterion, but rather
give a brief proof in our case. Our terminology here is close to that of [11],
which may be consulted for a more complete exposition. Let N and L be
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(local) leaves of a point x0 for the foliations N and L respectively. So,
locally, M has an adapted topological product L × N . The metric can be
written

g(l,n) = h(l,n)

⊕

m(l,n)

• Let us show that h(l,n) = h, that is, it does not depend on n. This
is clear since G acts isometrically: if k ∈ G, then it sends L(l,n) to Lk(l,n),
where k(l, n) has the form (l, n′) (orbits of G correspond to N ). Therefore
g = h

⊕

m(l,n) (the geometric meaning of this fact is that N is a geodesic
foliation [11]).

• In order to understand the variation of m(l,n) as a function of (l, n),
write x0 = (l0, n0), fix l1 ∈ L and consider the mapping

S : (l0, n) ∈ N = N(l0,n0) → (l1, n) ∈ N(l1,n0)

S commutes with the G action on the G-orbits of (l0, n0) and (l1, n0). In
particular it commutes with the isotropy actions at these two points. As
showed previously these isotropy groups are the full orthogonal groups of
the Lorentz scalar products on their tangent spaces. In particular, they
preserve, up to a multiplicative constant, only one Lorentz scalar product.
This means that S is a homothety at (l0, n0) : the image metric equals
the metric at (l1, n0) (along N(l1,n0)) up to a multiplicative factor w(l0, n0).
Now, since S commutes with the (full) action on orbits, it follows that w
does not depend of n. That is, if m = m(l0,n) is the metric on N , then
m(l,n) = w(l)m. In sum, g = h

⊕

w(l)m, that is, M is a warped product.
• Finally, it remains to see that N has constant curvature. This is

exactly the content of Theorem 1.1 since N has a non-precompact irreducible
isotropy. ♦

3 Proof of Theorem 1.5

We will in fact prove Theorem 1.5 under the homogeneity assumption, that
is G acts transitively on M . This will be a generalization Theorem 1.1, where
one keeps non-precompactness assumption together with semi-simplicity of
the group, and gives up the irreducibility one. The proof in the non transitive
case will be just a variation of that of Theorem 1.3 using the transitive
statement which is:

Theorem 3.1 Let (M,g) be an irreducible G-homogeneous Lorentz space of
dimension ≥ 3, with non-precompact isotropy group, and G a semi-simple
Lie group with no (local) factor locally isomorphic to SL(2, R).

• Then, the isotropy group is irreducible and M has constant sectional
curvature.

7



- In the general case where M is not assumed to be irreducible, we have:
• M is locally a direct product M = L × N where L is a Riemannian

homogeneous manifold, and N is Lorentz and has constant curvature. To
this splitting corresponds an analogous (local) one for G.

Proof. For x ∈ M , and a lightlike (i.e. isotropic) vector u ∈ TxM ,
consider the orthogonal hyperplane u⊥. Let Cx the set of those u, for which
u⊥ is tangent to a totally geodesic (lightlike) hypersurface, that is, expx(u⊥)
is a totally geodesic hypersurface (near x). The crucial fact, proved in [9] is
that non-precompactness of the isotropy group Hx implies Cx is non-empty.

- Suppose Cx is finite. One can (locally) define only finitely many contin-
uous sections x → u(x) ∈ Cx. In particular, one can suppose these sections
invariant under the G-action. In fact, to simplify notation in the following
argument, one is allowed to suppose that Cx has (everywhere) cardinality
1. Therefore, we have a G-invariant distribution of hyperplanes x → u(x)⊥.
It is integrable, the leaf at x being the geodesic hypersurface

Hu = expx(u⊥)

We get from this that M possesses a codimension one G-invariant foliation.
The quotient space is a 1-manifold. But a simple Lie group acting (non-
trivially) on a 1-manifold must be locally isomorphic to SL(2, R). This is
impossible because of our assumption on G.

– It then follows that Cx is infinite. One then shows in a standard
way that there must exist a subspace Ex which is: generated by Ex ∩ Cx,
spacelike, and on which the isotropy group is irreducible.

• Therefore, we have a distribution E on which the isotropy group acts
irreducibly. As in the proof of Theorem 1.3, one defines an integrability
obstruction tensor for E, which must vanish, by Lemma 2.1 since it is anti-
symmetric and invariant under the isotropy group. Therefore E is integrable.
We denote by N its tangent foliation.

• Also L = E⊥ is integrable. Indeed, the leaf of L at x is nothing but
the intersection

Lx = ∩u∈Cx
Hu

In addition, as all the hypersurfaces Hu are geodesic, the foliation L is
geodesic. We recalled in §2.3 the interpretation of being geodesic by the
fact that the holonomy mappings of the orthogonal foliation N , defined as
mappings between (local) leaves L, are isometric.

• A leaf N of N is a Lorentz manifold with a big, in fact maximal isotropy
group (at each point), that is (essentially) O(1, p) (where p + 1 = dimM).
At this stage, we don’t know if M is homogeneous. However, remember
the proof in [9]: non-precompacteness and irreducibility of isotropy groups
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lead to existence of geodesic hypersurfaces, which leads in turn to that the
sectional curvature is constant for all 2-planes tangent to a same point.
Then, using Schur’s lemma one proves N has (everywhere the same) constant
curvature.

• The isotropy group of any point x ∈ N acts trivially on the leaf Lx.
It follows that the group R generated by all the isotropy groups of points
of N , preserves individually the leaves of N . It is known, that for constant
curvature spaces, the isotropy group of two different points generate the full
isometry group. In particular R acts transitively on the leaves of N . In
fact, the foliation N is defined by the R-action. We are thus exactly in
the situation of Theorem 1.3 (where R plays the role of G). Therefore, we
deduce that M is (locally) a warped product L ×w N .

• The quotient M/L has a similarity Lorentz structure, that is, a Lorentz
metric up to a (global) constant, preserved by G. On other words, G acts by
homothety on the constant curvature N . It is easy to describe the similarity
group of the Minkowski space. One can in particular see that a non semi-
simple Lie group acts transitively by homothety.

• We infer from this that N has a non-vanishing curvature. Since G acts
transitively on M = L×w N by preserving the warped product structure, all
the leaves {l}×N are isometric, and hence have a same curvature. However,

metrics at two levels l1 and l2 are related by a factor w(l1)
w(l2) . Curvature are

related by the inverse ratio. From constancy of curvature, we infer that w
is a constant function, that is M = L × N is a direct product. This finishes
the proof of Theorem 3.1. ♦

4 Proof of Theorem 1.8

The following method has become a standard ingredient in the study of
“geometric” G-actions, see for instance [1, 2, 7, 6]... One considers the
action of the group G on the space S2(G) of symmetric bilinear forms on
its Lie algebra G. There is a Gauss G-equivariant map Φ : M → S2(G).
Non-properness of the G-action on M translates to a non-properness of the
action of G on the image Φ(M). This latter is “algebraic”, it has a poor
dynamics, easy to understand. From this, one hopes to get information
about the G-action on M .

In our case here, one shows there exists a point q ∈ M such that G
admits an isotropic subspace with respect to the symmetric bilinear form
Φ(q), of dimension ≥ 2. Then the non-precompactness of the stabilizer
stab(q) follows.
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4.1 The Gauss map

Let G be a Lie group acting by isometries on a Lorentz manifold (M,h).
For each X ∈ G let X be the vector field on M given by:

Xx =
d

dt
(exp(tX).x)|t=0.

Let Φ : M → S2(G) be the so-called Gauss map given by

x 7→ Φx : (X,Y ) 7→ hx(Xx, Yx).

Recall the definition of the G-action on S2G. It is given by :

(g.q) (X1,X2) = q
(

Adg−1X1, Adg−1X2

)

. for q in S2 (G) and g in G, and X1,X2 ∈ G.
Then Φ is equivariant, that is :

g.Φx = Φg.x∀g ∈ G.

Indeed, for g ∈ G and X ∈ G, we have :

AdgXgx =
d

dt
(exptAdgX.gx) |t=0=

d

dt
(g.exptX.g−1.gx) |t=0= dgx(Xx).

Hence, for X,Y ∈ G,x ∈ M and g ∈ G, we get (using the fact that G acts
on M by isometries) :

g.Φx(X,Y ) = hx(Adg−1X
x
, Adg−1Y x

) = hx(dg−1
gx Xgx, dg−1

gx Y gx)

= hgx(Xgx, Y gx)

= Φgx(X,Y ).

Observe that if G acts non-properly on M , then so does it on Φ(M).

4.2 Root decomposition

Let A be a Cartan subalgebra, that is, a maximal abelian R-split subalgebra
of G and A the associated Cartan group. Let Φ = Φ (A, G) be the root
system of (A, G) and

G = G0 ⊕
⊕

α∈Φ

Gα

the root space decomposition where

Gα = {X ∈ G : adA.X = α(A).X,∀A ∈ A}

10



G0 = {X ∈ G : adA.X = 0,∀A ∈ A}.

Then A acts on G by diagonal matrices, since

Adg−1 = AdexpH = eadH = diag(eα(H))α∈φ∪{0}

where g−1 = exp(H), H ∈ A. It follows that A acts by diagonal matrices,
and S2(G) admits the following decomposition

S2(G) =
⊕

λ∈Φ∪{0}+Φ∪{0}

Vλ.

where Vλ is the set of symmetric bilinear forms q on G which satisfy:

q(exp(H).X1, exp(H).X2) = eλ(H).q(X1,X2),

for all H ∈ A and all X1,X2 ∈ G. Keeping in mind that for X1 ∈ Gα and
X2 ∈ Gβ we have :

q(exp(H).X1, exp(H).X2) = e(α+β)(H).q(X1,X2).

It follows that the forms q in Vλ satisfy :

α + β 6= λ ⇒ Gα⊥Gβ.

4.3 Properness of abelian actions

The following is a criterion for the non-properness of linear actions of abelian
Lie groups

Lemma 4.1 Let {λ1, · · · λn} be a generating system in R
d. Let R

d act
faithfully on R

n by diagonal matrices as follows. For t ∈ R
d, set M(t) =

diag(e〈λi ,t〉)1≤i≤n, where 〈., .〉 is the usual inner product in R
d. Assume V is

an invariant (topological) subspace of R
n on which the action is nonproper.

Then there exists a nonzero vector t0 ∈ R
d and an element x ∈ R

n such that
xi = 0 if λi(t0) < 0 or an element y ∈ R

n such that yi = 0 if λi(t0) > 0.

Proof. Since the action on V is nonproper, there exists a sequence (tp)
with tp → +∞ in R

d and a sequence (xp) in V such that xp → x in V

and yp = tp.xp → y in V . Consider the sequence
tp

‖tp‖
. Up to taking a

subsequence, we may assume it has a limit t0. Since the action is faithful,
and t0 6= 0, there exists i ∈ 1, · · · , d such that λi(t0) 6= 0. Note that
λi(tp) → +∞ if λi(t0) > 0 and λi(tp) → −∞ if λi(t0) < 0. Hence xi = 0 if
λi(t0) > 0 and yi = 0 if λi(t0) < 0. ♦
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4.4 End of the proof

As we mentioned above, G acts nonproperly on Φ(M). Let G = KAK be
the cartan decomposition of G. Since G has finite center K is compact. So
A acts also nonproperly on Φ(M). From this, it follows that there exists
t 6= 0, q ∈ Φ(M) and λ0 ∈ Φ such that λ0(t) < 0 and qλ = 0 for all λ ∈ Φ
with λ(t) < 0. Put q = Φx. Then

⊕

α(t)<0 Gα is isotropic with respect to

Φx. Hence the image of
⊕

α(t)<0 Gα by the map X 7→ Xx is an isotropic
subspace of TxM , so its dimension is less or equal to 1. However:

Fact 4.2 For any t ∈ A, the dimension of
⊕

α(t)<0 Gα is at least 2 (where
G is assumed to have no local factor locally isomorphic to SL(2, R)).

Proof. This dimension can not be 0, since G is semi-simple. If it equals 1,
then, the subalgebra

⊕

α(t)≥0 Gα has codimension 1 in G. This contradicts
the non existence of SL(2, R) factor condition (only simple groups locally
isomorphic to SL(2, R) act on 1-manifolds). ♦

We infer from this the existence of a nonzero element X ∈
⊕

α(t)<0 Gα

such that Xx = 0, which yields : exp(tX) ∈ stab(x),∀t ∈ R. But elements
of

⊕

α(t)<0 Gα are nilpotent, and thus generate non-compact groups. This
finishes the proof of Theorem 1.8. ♦
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