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Efficient Breast Cancer Classification Using
Histopathological Images and a Simpler VGG

Classificacao Eficiente do Cancer de Mama Usando Imagens Histopatologicas e uma
VGG mais Simples

Marcelo Luis Rodrigues Filho!, Omar Andres Carmona Cortes?

Abstract: Breast cancer is the second most deadly disease worldwide. This severe condition led to 627,000
people dying in 2018. Thus, early detection is critical for improving the patients’ lifetime or even curing them.
In this context, we can appeal to Medicine 4.0, which exploits machine learning capabilities to obtain a faster
and more efficient diagnosis. Therefore, this work aims to apply a simpler convolutional neural network, called
VGG-7, for classifying breast cancer in histopathological images. Results have shown that VGG-7 overcomes
the performance of VGG-16 and VGG-19, showing an accuracy of 98%, a precision of 99%, a recall of 98%, and
an F1 score of 98%.
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Resumo: O cancer de mama é a segunda doenga mais mortal do mundo. Essa condigao grave resultou na
morte de 627.000 pessoas em 2018. Dessa forma, a deteccao precoce da doenca é fundamental para melhorar
a vida dos pacientes ou até mesmo cura-los. Nesse contexto, podemos recorrer ao Medicine 4.0 que explora
as capacidades de aprendizado de maquina para obter um diagnéstico mais rapido e eficiente. Portanto, este
trabalho tem como objetivo aplicar uma rede neural convolucional mais simples, denominada VGG-7, para
classificagao do cancer de mama em imagens histopatoldgicas. Os resultados mostraram que o VGG-7 supera
o desempenho do VGG-16 e do VGG-19, apresentando uma acuracia de 98 %, uma precisao de 99 %, um
recall de 98 % e um escore F1 de 98 %.
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1. Introduction

Breast cancer is a severe disease that attacks women primarily.
However, about 1% of men are also affected by it [1]. In fact,
breast cancer is the most common cancer among women and
the second one in general [2]. The World Health Organization
(WHO) estimates that this kind of cancer impacts 2.1 mil-
lion women per year with 627,000 deaths, representing about
15% of all deaths caused by cancer [3]. Thus, it is critical
to perform the early diagnoses to start the treatment as fast
as possible, increasing the lifetime expectation and maybe
getting the patient’s cure.

Diagnostic demands a specific biopsy examination, in
which sections of a suspect sample are placed onto glass
slides to be observed under a microscope for proper analysis.
Then, the pathologist examines the tissue slides at various

magnification levels to view cells, glands, nucleus and detects
the resemblance of these structures with normal and diseased
tissue [4], identifying the morphological characteristics of the
tissue, which indicates signs of malignancies to determine if a
tumor is growing as a malignant one [5].

These samples of tissue images have high variability in
each class (benign or malign), so methods based on spatial
exploitation of image data help extract characteristics from
those histopathological images. Thus, Medicine 4.0 [6] arises
proposing using technology such as computer vision and ar-
tificial intelligence to help pathologists in this task. On the
one hand, the pathologist is the expert who can confirm the
diagnose. On the other hand, the expert is human; therefore,
he is subject to physical, psychological, and visual distresses.
Therefore, computational tools become essential for helping
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in providing a precise and fast diagnosis.

Thus, we are engaged in investigating how convolutional
neural networks (CNNGs) classify cancer in histopathological
images. The main problem with using CNNS is that these
architectures usually involve many layers, demanding con-
siderable time to train them, especially when using large
datasets such as ImageNet. Thus, this work proposes a simpler
CNN architecture that can perform efficiently in classifying
histopathological images. We used the VGG-16 as a baseline
because it has presented good results, then tested a smaller
configuration named VGG-7 with and without transfer learn-
ing, i.e., we also trained our VGG from scratch using only the
BreakHis [7] dataset.

In this context, the work is divided as follows: Section
2 shows some related works; Section 3 details the BreakHis
dataset, Data Augmentation techniques, Transfer Learning, an
overview about VGG architectures, and our proposal (VGG-
7); Section 4 describes the configuration and the images
histopathological dataset used in this work. Section 4.5 de-
scribes the results of our computational experiments, perfor-
mance metrics, and discussion about the results and presents
the conclusions and future work.

2. Related Works

Convolutional Neural Networks (CNNs) belong to a subgroup
called Deep Learning, which has played an important role in
image segmentation and classification. LeCun [8] introduced
the first CNN in 1998, extending the initial concept of neural
networks. Indeed, CNN s represent a milestone in image-based
machine learning applications.

Since LeCun’s publication, intensive research has been
done in the area, including comparing CNN with regular seg-
mentation algorithms. For instance, recently, Pereira Jr. et al.
[9] presented a study in which CNNs show good results even
in raw images, i.e., with no pre-processing or normalization.

The ability to work with images was sooner extended to
medical and biomedical applications. Thus, Artificial Neural
Networks (ANNs) and Deep Learning (DL) are actually the
foremost machine-learning tools in several domains such as
image analysis and fault diagnosis [10]. Remarkably, the use
of CNNss in the field of medical research has been demon-
strated in several works.

For example, Gulshan et al. [11] proposed an ensemble
architecture for detecting diabetic retinopathy by using ten
neural networks; then, the final results are giving by a linear
average over predictions. Gayathiri et al. [12] proposed a
simple CNN devised by only six convolutional layers for
classifying diabetic retinopathy as well. Furthermore, Su
et al. [13] improved the R-CNN to identify lung nodules in
computer tomographies. These works are only some examples
of many other investigations that have been conducted using
deep neural networks.

Notably, in the field of breast cancer detection, [7] intro-

duces a public dataset ! composed of 7909 images of 82 pa-
tients, which has been the primary dataset in testing machine
learning algorithms, including CNN architectures presented
by the same author in [14].

In this particular field of breast cancer, Bejnordi et al. [15]
evaluate some CNNs, such as, GoogLeNet, ResNet, and VGG-
16, for identifying and classifying breast cancer metastasis in
the context of the CAMELYONI16 challenge. Silva and Cortes
[16] evaluated ResNet-18, ResNet-152, and GoogLeNet for
classifying breast cancer using histopathological images. Is-
mail and Sovuthy [17] compared ResNet-50 and VGG16 for
breast cancer detection using mammograms. Furthermore,
Singh et al. [18] investigated the issue of imbalanced data in
datasets using VGG19.

Regarding VGGs architectures [19], a popular CNN net-
work, it was introduced in 2015. Since then, several works
deal with their classification ability or try to improve it, espe-
cially in biomedical applications. For instance, [20] compares
VGG-16 and VGG-19 against ResNet50 with and without
transfer learning, showing that VGGs are more efficient than
the ResNet. In [21], a study on the performance of VGG16,
VGG19, ResNet-50, and GoogLeNet-V3 is carried out in fine-
needle aspiration cytology images, in which GoogLeNet-V3
reached the best results after a fine-tuning. Further, a novel
attention-based deep learning model using VGG-16 is pro-
posed by [22] to improve COVID-19 classification using x-ray
images getting the best results. Furthermore, a modified VGG,
called MVGG, is proposed and implemented in [23] to in-
crease the detection ability on 2D and 3D mammogram image
datasets.

As we can see, the field of using and studying deep learn-
ing models in the classification of biomedical images, espe-
cially the VGG architecture, is vast. Thus, in this paper, we
propose a simpler VGG architecture, called VGG-7, to pro-
vide a faster training deep learning model that also overcomes
the efficiency of the classical VGGs.

Next, we presents all methods used in this work, including
our proposal.

3. Materials and Methods

3.1 Convolutional Neural Networks

A regular CNN is usually composed of three kinds of layers:
convolutional, pooling, and fully connected. The convolu-
tional layer produces a convolved feature matrix, also known
as feature maps. The process is to apply a filter sliding the
filter matrix into the input image to produce the feature map,
which can be the same size as the input size if padding is
using or smaller otherwise. Figure 1 shows a 5 x 5 x 1 image
passing through a 3 x 3 x 1 filter with no passing producing a
3 x 3 x 1 feature map. In colour image with 3 channels, the
convolution operations extract informative features by blend-
ing cross-channel and spatial information together and each

IThe dataset is available in

breast-cancer-database)

(http://web.inf.ufpr.br/vri/
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channel of a feature map is considered as a feature detector.
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Figure 1. A 4 x 4 image passing through a convolutional
layer

Those filters that scan over a portion of the image and
extract features such as colors, shapes, and edges that ulti-
mately define a specific image [24]. We can have as many
convolutional layers as necessary.

If more than one convolutional layer is required, then we
can add pooling layers between them. In essence, the pooling
layer takes the feature maps produced in the convolution layer
and “pools” them into an image [24], performing a dimen-
sionality reduction. The reduction is made by using a single
operation, such as the maximum (max-pooling) or the average
(avg-pooling) values inside a box produced by the convolu-
tional layer. Figure 2 shows an 5 x 5 image passing through
a max-pooling operation reducing its dimensionality to 2 x 2
matrix.
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Figure 2. A 5 x 5 image passing through a max pooling layer

Finally, the output of the last pooling layer is flattened
into a fully connected neural network. Then, a general con-
volutional neural network presents a shape similar to Figure
3.

3.2 Transfer Learning
Medical images are generated by special medical equipment,
and their labeling often relies on experienced doctors. There-
fore, in many cases, it is expensive and hard to collect suffi-
cient training data. In such a case, transfer learning technology
can be utilized for medical imaging analysis. A commonly
used transfer learning approach is to pre-train a neural net-
work on the source domain (e.g., ImageNet, an image database
containing more than fourteen million annotated images with
more than twenty thousand categories) and then fine-tuning it
based on the instances from the target domain.

Torrey & Shavlik [25] defines transfer learning as the
improvement of learning in a new task through the transfer of
knowledge from a related task that has already been learned.

However, what are the benefits of using transfer learning? We
would state three main advantages:

* We can use models that were carefully designed by
experts;

* Because experts created those models, we do not need
to worry about what architecture or layers to use or
include;

* Due to their careful design, they tend to perform well
in image detection.

3.3 The VGG Architecture

There are essentially two VGG architectures: VGG16 and
VGG19, which are the most famous and commonly used for
image detection. The number in front of the name stands for
the number of weighted layers in the network, being created
to simulate the relation of depth with the representational
capacity of the network.

The VGG-16 is devised by 13 convolutional layers and 3
Fully Connected layers as presented in Table 1. Further, the
VGG-19 is composed of 16 convolutional layers and 3 Fully
Connected layers as illustrated in Table 2.

Table 1. VGG-16 Architecture

Layer Output Size Parameter
convl 150x150x64  kernel 3, stride 1, pad O
conv2 150x150x64  kernel 3, stride 1, pad O
maxpooll  75x75x64 -
conv3 75x75x128 kernel 3, stride 1, pad 0
conv4 75x75x128 kernel 3, stride 1, pad 0
maxpool2  37x37x128 -
conv>S 37x37x128 kernel 3, stride 1, pad O
conv6 37x37x256 kernel 3, stride 1, pad 0
conv7 37x37x256 kernel 1, stride 1, pad 0
maxpool3  18x18x256 -
conv8 18x18x512 kernel 3, stride 1, pad 0
conv9 18x18x512 kernel 3, stride 1, pad 0
convl0 18x18x512 kernel 1, stride 1, pad O
maxpoold  9x9x512 -
convll 9x9x512 kernel 3, stride 1, pad O
convl2 9x9x512 kernel 3, stride 1, pad 0
convl3 9x9x512 kernel 1, stride 1, pad 0
maxpool5  4x4x512 -
gap* 512 -
fcl 4096 4096 units
fc2 4096 4096 units
fc3 1 1 sigmoid

*gap: Global Average Pooling

Overall, VGGs are Convolution Neural Networks based
on a spatial filter to explore the relation of different convo-
lution filters with the neural network’s learning based on the
characteristics extracted. Therefore, adjusting filters and the
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Figure 3. A general view of a CNN with n convolutional-pooling layers and a fully connected one

Table 2. VGG-19 Architecture

Layer Output Size Parameter
convl 150x150x64  kernel 3, stride 1, pad O
conv2 150x150x64  kernel 3, stride 1, pad O
maxpooll  T75x75x64 -
conv3 75x75x128 kernel 3, stride 1, pad O
conv4 75x75x128 kernel 3, stride 1, pad O
maxpool2  37x37x128 -
convS 37x37x128 kernel 3, stride 1, pad O
conv6b 37x37x256 kernel 3, stride 1, pad O
conv7/ 37x37x256 kernel 1, stride 1, pad O
conv8 37x37x256 kernel 1, stride 1, pad O
maxpool3  18x18x256 -
conv9 18x18x512 kernel 3, stride 1, pad O
convl0 18x18x512 kernel 3, stride 1, pad O
convll 18x18x512 kernel 1, stride 1, pad O
maxpool4  9x9x512 -
convl2 9x9x512 kernel 3, stride 1, pad O
convl3 9x9x512 kernel 3, stride 1, pad O
convl4 9x9x512 kernel 1, stride 1, pad O
convl5s 9x9x512 kernel 1, stride 1, pad O
convl6 9x9x512 kernel 1, stride 1, pad O
maxpool5  4x4x512 -
gap* 512 -
fcl 4096 4096 units
fc2 4096 4096 units
fc3 1 1 sigmoid

*gap: Global Average Pooling

fully connected network in VGGs can perform well on dif-
ferent levels of information from histopathological images to
deal with the variability inter-class. For example, the VGG-16
and VGG-19 stack smaller filters 3x3 to induce the effect of
the large filter, but the use of small filters provided the benefits
of low computational complexity by reducing the number of
parameters.

On the other hand, the main limitation related to traditional
VGGs was the use of millions of parameters, mainly because
of computationally expensive fully connected layers, making
it computationally expensive and challenging to deploy them
on low-resource systems.

Moreover, VGG-16 and VGG-19 regulate network com-

plexity by introducing 1x1 filters, which are essentially a lin-
ear combination or linear projection (the number of input and
output channels is the same) and one more non-linearity onto
the space of feature maps generated by previous convolutions
layers. Also, max-pooling is placed after the convolutional
layer, while padding was performed to maintain the spatial
resolution [26]. In this case, VGG is a feature learner that can
automatically extract discriminating features from histopatho-
logical images by varying the width (number of channels),
depth (number of layers), and Fully Connected Layer from a
convolutional neural network-based VGG architecture.

3.4 Our Proposal: VGG-7

The VGG-7 model consists of four convolution layers di-
vided into two blocks, followed by max-pooling layers. Max-
pooling can divide the images into several blocks of the same
size and only take each block’s higher value. Also, the global
contextual information with embedded channel-wise statis-
tics was gathered with a global average pooling [27] layer.
The three last layers are Fully-Connected (FC) ones: the first
two ones have 128 and 64 units, respectively, and the third
one performs binary classification with a sigmoid function as
presented in Figure 4.
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Figure 4. VGG-7 Architecture with 4 convolutional layers
and a three layered fully connected one

Our proposal uses 3x3 zero-padding convolutions layers
with stride 1, each followed by a rectified linear unit (ReLU)
to avoid the saturation of gradients propagation and one 2 x 2
max pooling operation with stride equals 2 for feature extrac-
tion. Either, we double the number of feature channels on
each pooling operation step. Then, during the training pro-
cess, the input to VGG-7 is fixed-size with a 150 x 150 RGB
image.

Figure 5 shows some examples of features generated by
filters from VGG-7 applied to a histopathological image of
malignant breast cancer as input. Abstract and compact rep-
resentations edges are extracted in the last layers. Also, the
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representations downstream start highlighting what the net-
work pays attention to, and some features are not activated,
i.e., most are set to zero, and it composes a sparse matrix in
the feature space.

Furthermore, the width of convolutions layers (the num-
ber of channels) started from 32 in the first layer and then
increased by a 2-factor after each max-pooling layer until it
reaches 64. The units of the last layers are relatively small to
reduce computational cost. The first Fully-Connected (FC)
layer has 128 units that correspond to double the filter from
the previous max-pooling layer, and the second layer has 64
units. The final layer is the Sigmoid layer responsible for the
binary classification. The structure and hyperparameters of
each layers are shown in Table 3.

Table 3. VGG-7 Architecture

Layer Output Size Parameter
convl 150x150x32  kernel 3, stride 1, pad O
conv2 150x150x32  kernel 3, stride 1, pad O
maxpooll 75x75x32 size 2, stride 2
conv3 75x75x64 kernel 3, stride 1, pad 0
conv4 T5x75x64 kernel 3, stride 1, pad 0
maxpool2 37x37x64 size 2, stride 2
globalAvgPool — —
fcl and fc2 — 128 and 64 units
fc3 — 1 sigmoid

Next, we detail the experiments and discuss the results.

4. Computational Experiments

4.1 Dataset

The dataset comes from Breast Cancer Histopathological
Dataset [7], a public domain dataset made available by the
Laboratory of Vision, Robotics, and Images from Universi-
dade Federal do Parand (UFPR). The dataset comprises 7909
images of tumoral tissues from 82 different patients. The
images have different zoom magnitudes devised by 40x, 100x,
200x, and 400x as presented in Fig. 6, which shows a malig-
nant tumor.

Either, images are in the “png” format, having a resolution
of 700 x 460pixels, three RGB channels, and 8 bits depth
in each one. Table 4 presents the number of benignant and
malignant tumors according to the magnitude.

Table 4. Dataset Structure

Magnitude Benign Malign  Sub-Total
40X 652 1370 1995
100X 644 1437 2081
200X 623 1390 2013
400X 588 1232 1820
Total 2480 5429 7909

4.2 Data Augmentation

When the database is small and transfer learning seems insuf-
ficient to train the CNN properly, we can use a data augmen-
tation method to improve the dataset size. Also, it is essential
to teach the network the desired invariance and robustness
properties when only a few training samples are available.
We perform standard in-place or real-time data augmentation
techniques such as random rotation, random horizontal and
vertical flip, width and height shift range.

The images were transformed during the training to save
memory, but this resulted in slower training. The images are
converted from RGB to BGR, and then each color channel
is zero-centered without scaling. The complete set of opera-
tions are: randomly flip horizontally, randomly flip vertically,
random rotations of 50 degrees, width, and height shift with
filling the remaining area with the nearest pixels. The data
augmentations parameters are summarized in Table 5.

Table 5. Parameters of data augmentation

Parameters of Image Augmentation  Values
Rotation range 50
Width shift range 0.2
Height shift range 0.2
Horizontal flip True
Vertical flip True
Fill mode nearest

4.3 Experiments Setup

The application was implemented in Python 3.0 using recent
versions of TensorFlow[28] and Scikit-learn [29] library. The
code and the training step have been done in Kaggle [30],
which was essential to this work because this platform pro-
vides a GPU Nvidia Tesla P100 used for training the CNN.
The virtual machine is a two CPUs Intel® Xeon 2.30 GHz,
14 GB of RAM, and 37.11 GB of HD. Even though we used
GPUs, the training step takes about 1 hour for each network
configuration.

The input images and their corresponding labels are used
to train the network with Adam optimizer [31] and Binary
Cross-Entropy loss function (Eq. 1). All the kernels are initial-
ized with a random uniform distribution procedure of Xavier
[32]. We use class weighting to create a model where loss val-
ues for classes “benignant” and “malignant” are multiplied by
their corresponding weight values to avoid unbalanced classes
in the dataset. In binary classification, class weights can be
represented by calculating the frequency of the positive and
negative classes and then inverting it so that when multiplied
to the class loss, the underrepresented class has a much higher
error than the majority class.

d
J(0)=CE(y,9) =— )i yilog(9i) 4 (1 —y)log(1—3) (1)

i=1
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Figure 6. Malignant cancer in different magnitudes (40x,
100x, 200x, and 400x, left to right)[7]

The learning rate is Adam’s default, 0.001, the momen-
tum equals 0.9, and gamma equals 0.1. We train the neural
network by slicing the data into batches of size 32 and repeat-
edly iterating over the entire dataset for 50 epochs (Figure 7).
Moreover, we tested two types of sampling: hold-out (80/20
and 90/10) and k-fold (k = 10 and k = 5) cross-validation.
Thus, Figure 7 presents the general procedure of training the
CNNGs.

Moreover, we did not use transfer learning in VGG-7
because of a lack of computing resources to run experiments
with the ImageNet dataset.

4.4 Performance metric
Performance measurement is the process of collecting, analyz-
ing, and/or reporting information regarding the performance
of an individual, group, organization, system, or component
[33]. The most commonly used performance metrics for clas-
sification problems in Machine Learning systems are Accu-
racy, Precision, Recall, and F1 score.

These metrics consider the True Positives (correctness
of the predictive model for malignant tumors), False Posi-
tives (predictive model errors for malignant tumors), True

Train samples

Batch of images
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Training Fully Connected
MNeural Metwork

Randomly transformed
batch of images

Figure 7. Training flow

Negatives (correctness of the predictive model for benignant
tumors), and False Negative (predictive model errors for be-
nignant tumors).

Accuracy

Accuracy measures the fraction of predictions our model got
right. For binary classification, accuracy can also be calcu-
lated in terms of positives and negatives in Eq. 2.

A TP+ TN o
ccuracy =
YT TPYFP+TN+FN

Precision

Precision measures what proportion of correct positive (malig-
nant tumor) identifications is produced by the classifier, and it
is expressed by Eq. 3.

Precisi TP 3)
recision = ————

TP+FP
Recall
Recall or sensitivity is the actual positive rate or hit rate that
measures what percentage of actual positives (cancer) is being
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correctly classified (Eq. 4).

Recall = L “4)
TP+FN
F1 score
F1 score or F_measure is a weighted harmonic mean of pre-
cision and evoke to deal with the threshold between the two
measures (precision and recall) as depicted in Eq. 5.

precision X recall
Fpeasure = — )
precision+ recall

ROC curve and Area Under Curve

A ROC (Receiver Operating Characteristic) curve is a graph-
ical plot that indicates the performance of a classification
model at all classification thresholds of the False Positive
Rate and True Positive Rate. True Positive Rate (TPR) is a
synonym for recall and was previously defined in Eq. 4. False
Positive Rate (FPR) is defined in Eq. 6.

FP

FPR= ————
FP+TN

(6)

Given the ROC curve, it is possible to compute its area
under the curve, also known as AUC, which measures the
probability of a model misclassify a sample as a random posi-
tive (cancer) rather than a random negative (benignant tumor).
Furthermore, AUC provides an aggregate performance mea-
sure across all possible classification thresholds, ranging from
0 (wrong predictions) to 1 (good predictions).

4.5 Results and Discussion

Hold-Out

The first result regards the losses in the training stage using
only hold-out sampling. Figure 8 shows the loss as epochs
increase in 80/20 (a) and 90/10 (b). As we can see, the error
decreases faster and more than the other ones in VGG-7,
reaching a value close to zero.

Figure 9 shows the ROC curve of the three CNN archi-
tectures with the areas of 0.94, 0.87, and 0.89 for VGG-7,
VGG-19, and VGG-16, respectively in 80/20 hold-out. Then,
considering that the ROC curve presents the probability of
confirming the illness’s presence, the figure validates the effi-
ciency of our proposal.

In order to determine the efficiency of the CNN networks,
Tables 6 and 7 present all metrics obtained by the experiment
using the hold-out sampling using the rate of 80/20 and 90/10
with and without data augmentation, respectively. As we can
see, the VGG-7 overcame the classical VGGs in all metrics
with and without data augmentation, meaning that VGG-7
is more efficient than the other networks with fewer misclas-
sifications. As expected, the generalization error tends to
decrease as we increase the training set size in all architec-
tures. Nonetheless, VGG-7 overcomes the other ones in all
metrics.

0.6 — VGG-T
VGG-16
VGEG-19
0.5

a 0.4
5
0.3
0.2
o 10 20 k] 40 50
Epoch
5
— VGG-7
VGG-16
4 VGG-19
3
I
5
2
1
D T T T T T T
0 10 20 30 40 50
Epoch

Figure 8. Training loss as the epoch count increases in
hold-out 80/20 and 90/10, respectively

Table 6. Metrics - Hold-Out: 80/20 and 90/10 with no data
augmentation

Hold-out 80/20

Metrics VGG-7 VGG-16 VGG-19
Accuracy 0.95 0.85 0.89
F1 score 0.96 0.88 0.92
Precision 0.97 0.95 0.91

Recall 0.96 0.82 0.93

Hold-out 90/10

Metrics  VGG-7 VGG-16 VGG-19
Accuracy 0.93 0.89 0.89
F1 score 0.95 0.92 0.92
Precision 0.97 0.91 0.90

Recall 0.93 0.93 0.94

K-Fold Cross Validation: 10 and 5 folds

K-fold Cross-validation is a way to measure and evaluate
the estimator performance. This technique randomly assigns
training sets in which each training set or fold is used to train
the classifiers independently. The measuring of classification
metric must be computed against the test set in that fold.
Finally, the result of the experiment is obtained by average
them folder evaluation results. In addition, this technique
requires more computing power than training in a single train
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and test set such as hold-out; however, the primary benefit is 2
that the estimators do not overfit to a single training set. % 04 ROC fold 1 (AUC = 0.80)
Concerning k-fold cross-validation sampling, Tables 8, = Egg ;z:: ; E:EE fg:i:
9, and 10 show the results of the 10 Stratified K-Fold Cross- 0.2 ROC fold 4 (AUC = 0.88)
Validation, i.e., the stratified re-sampling guarantees that the ROC fold § (AUC = 0.88)
same distribution is used in training and test sets. As we can 0.0 — Mean ROC [AUC = 0.84)

see, the VGG-7 outperforms the other VGG version in all
metrics. Unfortunately, the experiments with data augmenta-
tion and no transfer learning are blank because of our limited
computing resources and user constraints. Also, we did not

0o 0z 04 06 08 10
False Positive Rate

Figure 11. ROC by folds: VGG-16

use transfer learning in VGG-7.

Figures 10, 11, 12 summarize the results of Area Under the
ROC Curve measures in 5 Stratified K-Fold Cross Validation
experiment and we conclude that the VGG-7 has a better

Also, we perform an experiment using a kK = 5 in order to
show the performance of VGGs with no transfer learning. Ta-
bles 11, 12, and 13 show the results according the considered
metrics. Moreover, the referred tables present the execution
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Table 8. Results for 10 folds (k = 10): Model VGG-16

Data Augmentation

Model No transfer learning  Transfer learning
Accuracy * 0.89 +0.03
Precision * 0.90 £ 0.02
VGG-16  F1 score * 0.92 +0.02
Recall * 0.94 + 0.02
AUC * 0.85 +£0.03
Original dataset
Model No transfer learning  Transfer learning
Accuracy 0.46 +0.18 0.97 + 0.05
Precision 0.27 £ 0.34 0.98 £+ 0.02
VGG-16  F1 score 0.33 £ 0.40 0.98 £ 0.03
Recall 0.40 = 0.49 0.98 £ 0.05
AUC 0.50 £+ 0.00 0.86 = 0.03

Table 9. Results for 10 folds (k = 10): Model VGG-19

*the results to data augmentation experiments with no transfer learning are in blank because of our limited computing resources or restrictions.

Data Augmentation

Model No transfer learning  Transfer learning
Accuracy * 0.88 +£0.02
Precision * 0.90 £ 0.02
VGG-19  F1 score * 0.91 £ 0.02
Recall * 0.92 £ 0.03
AUC * 0.85 + 0.03
Original dataset
Model No transfer learning  Transfer learning
Accuracy 0.50 £ 0.19 0.96 £+ 0.04
Precision 0.34 £0.34 0.97 £ 0.03
VGG-19  F1 score 041 £ 041 0.97 £ 0.02
Recall 0.50 £ 0.50 0.98 £ 0.02
AUC 0.5+0.0 0.98 + 0.04
Table 10. Results for 10 folds (k = 10): Model VGG-7 104 ' i —
VGG-7 el
-
Metric Data Augmentation  Original Dataset 081 o
2 -
Accuracy  0.96 = 0.02 0.98 = 0.02 g 5 e
F1 score 0.97 + 0.02 0.98 + 0.02 2 -~
Precision 0.97 £+ 0.01 0.99 + 0.01 £ o041 ROC fold 1 (AUC = 0.79)
Recall 0.97 + 0.03 0.98 + 0.03 é ROC fold 2 (AUC = 0.83)
ROC fold 3 (AUC = 0.88)
021 ROC fold 4 (AUC = 0.87)
ROC fold 5 (AUC = 0.86)
time, showing that VGG-7 took much less time in the ex- 0.0 1 — Meon ROC (AUC = 0.64)
periment, and the usage of transfer learning favors the other 00 02 04 06 08 10
VGGs. On the other hand, the use of data augmentation did False Positive Rate
not improve results and increased training time complexity in Figure 12. ROC by folds: VGG-19

quadratic order.
All in all, our proposal presents a significant advantage
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Table 11. Results for 5 folds (k = 5): Model VGG-16

Data Augmentation

Model No transfer learning  Transfer learning
Accuracy 0.39 £0.15 0.87 £0.02
Precision 0.14 £ 0.27 0.97 £ 0.02
VGG-16 F1 score 0.16 +0.33 0.91 £ 0.01
Recall 0.20 + 0.40 0.94 + 0.01
Execution time 4h 33min 26s 3h 7min 52s
Original dataset
Model No transfer learning  Transfer learning
Accuracy 0.46 £0.18 0.97 £ 0.04
Precision 0.33 £ 0.40 0.98 £+ 0.03
VGG-16 F1 score 0.27 £ 0.34 0.98 + 0.03
Recall 0.40 + 0.49 0.98 + 0.03
Execution time 1h 30 min 10s 29min 16s

Table 12. Results for 5 folds (k = 5): Model VGG-19

Data Augmentation

Model No transfer learning  Transfer learning
Accuracy 0.39 £0.15 0.87 £ 0.03
Precision 0.14 £0.27 0.90 £+ 0.02
VGG-19 F1 score 0.20 £ 04 0.90 + 0.03
Recall 0.14 + 0.27 0.90 + 0.03
Execution time 4h 22min 35s 3h 37min 48s
Original dataset
Model No transfer learning  Transfer learning
Accuracy 0.54 £0.18 0.97 £ 0.05
Precision 0.41 +£0.34 0.98 £+ 0.03
VGG-19 F1 score 0.49 +0.40 0.98 + 0.03
Recall 0.60 + 0.49 0.98 + 0.03
Execution time 1h 44min 16s 35min 22s

over the other VGGs because our approach needs to search for
much lesser parameters than the other ones. The total number
of parameters is 82,209, 15,765,313, and 21,075,009 for VGG-
7, VGG-16, and VGG-19. Consequently, the training stage
of VGG-7 is faster than the other ones. Additionally, our
proposal requires much less memory in both the training stage
and deployment or embedment.

Next, we illustrate how the VGG-7 works with activation
maps using Grad-CAM.

4.6 VGG-7 visualization with Grad-CAM
Grad-CAM [34] is a method that uses a gradient to visualize
and calculate the importance of spatial locations given by
CNN. However, it can also be used in the Natural Language
Processing domain. Thus, we are able to analyze the activation
maps of the VGG-7 to different images of different classes.
As previously presented, an input image is passed through
the convolutional layers and then through a pooling layer

for specific computations to obtain a score for a particular
category. The gradients are calculated concerning a unique
class; the Grad-CAM result clearly shows attended regions.
Therefore, this method is essential to note the regions that the
Convolutional Neural Network considers necessary for class
prediction [35].

Further, the neurons in the last convolutional layer in Con-
volutional Neural Networks look for high-level semantics
(class-specific information) and low-level spatial features in
the image, i.e, the object parts. The Grad-CAM method uses
the gradient information flowing into the last convolutional
layer of the Convolutional Neural Network to assign impor-
tance to each neuron for a particular class that is viewable
with heatmaps.

In this context, the Grad-CAM method expressed in Equa-
tion 7 first computes the gradient of the score for specific class
¢(y°) concerning the feature map activations A* of the kth con-
volutional layer. These gradients flowing back are global
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Table 13. Results for 5 folds (k = 5): Model VGG-7

Data Augmentation

Model No transfer learning
Accuracy 0.95 +£0.02
Precision 0.97 £0.01
VGG-7 F1 score 0.96 + 0.02
Recall 0.96 £+ 0.02
Execution time 2h 54min 23s
Original dataset
Model No transfer learning
Accuracy 0.97 £ 0.03
Precision 0.99 £ 0.02
VGG-7 F1 score 0.98 + 0.03
Recall 0.97 £ 0.03
Execution time 19min 48s

average pooled over spatial dimensions (width and height) to
obtain the neuron importance weights oy of a feature map k
for a target class c.

of = GAP(Vy*(A")) @)

Finally, the Grad-CAM performed the weighted combina-
tion of activations maps in forwarding propagation with re-
spective weight importance matrix resulting from the equation
7, followed by ReLU [36] to highlight feature with positive
influence on the class ¢ of interest, i.e., pixels whose intensity
should be increased in order to increase y°. Negative pixels
are likely to belong to other categories in the image [34]. This
process is summarized in Equation 8 that outputs a coarse
heatmap of the same size as the convolutional features maps
(75x75 in this case).

out put® = ReLU (Y ot A¥) (8)
k

Figure 13 clearly shows that the masks (Equation 8) gener-
ated by Grad-CAM and VGG-7 pays more attention to regions
that cover the tissue, maybe inter-cellular regions when is pre-
dicting a malignant tumor. However, we also can see that this
network did not consider all regions covering the tissue when
predicting the benignant class.

5. Conclusions

This paper proposed a simpler VGG neural network called
VGG-7 for classifying breast cancer in histopathological im-
ages. We trained the VGG-7 from scratch with no transfer
learning because using ImageNet to train the neural network
would consume too much time. Our proposal was compared
against the classical VGGs (VGG16 and VGG19) with and
without transfer learning and with and without data augmenta-
tion. Unfortunately, some architectural constraints hinder our

experiment with data augmentation and no transfer learning
in the 10-folded experiment.

Allin all, classical VGGs with no transfer learning achieved
lower performance than using it regardless the number of folds.
Furthermore, our proposal achieved 95% of accuracy, 97%
of precision, 96% of recall, and 96% of F1 Score in 80/20
hold-out sampling with no data augmentation. Further, the
VGG-7 achieved 0.94% of accuracy, 95% of precision, 97%
of recall, and 96% of F1 Score in 80/20 hold-out sampling
with data augmentation.

Regarding the k-fold, surprisingly, the VGG-7 reached
better results with the original dataset, i.e., with no data aug-
mentation, getting 97% of accuracy, 99% of precision, 97%
of recall, and 98% of F1 Score, which is much better than
classical VGGs with no transfer learning.

Finally, the VGG-7 presented a much better execution time
in the training stage. The reached time is 19min48s in the
original dataset and 2h 54min 23s using data augmentation
against 3h 7min 52s and 29min 16s of VGG with transfer
learning; and, against 3h 37min 48s and 35min 22s in VGG-
19 also with no transfer learning. Values with no transfer
learning in VGG-16 and VGG-19 are even higher.

In this context, we can summarize our contributions as:

* We proposed a simple yet effective VGG-7 convolu-
tional neural network with fewer layers and fewer filters
than other VGGs;

» We validated the effectiveness of VGG-7 by using hold-
out and k-fold cross-validation with stratified folds;

* We investigated how transfer learning impact the per-
formance of VGG-16 and VGG-19.

* We investigated the use of data augmentation in VGG-7,
VGG-16, and VGG-19.

Future work includes: (i) compare the VGG-7 against
other CNNs architectures; (ii) test the VGG-7 using other
fully connected networks; (iii) add different classifiers, such
as SVM replacing the VGG-7 fully connected layer; (iv) com-
pare the VGG-7 using transfer learning from ImageNet and
from and (v) use VGG-7 with other algorithms creating en-
semble classifiers in order to improve the efficiency of the
classification.
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Figure 13. Grad-CAM [34] to VGG-7
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