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Towards Causal Effect Estimation of Emotional Labeling of
Watched Videos
Rumo à Estimativa do Efeito Causal da Rotulação Emocional de Vı́deos Assistidos

Eanes Torres Pereira 1*, Geovane do Nascimento Silva1

Abstract: Emotions play a crucial role in human life, they are measured using many approaches. There are
also many methodologies for emotion elicitation. Emotion elicitation through video watching is one important
approach used to create emotion datasets. However, the causation link between video content and elicited
emotions was not well explained by scientific research. In this article, we present an approach for computing the
causal effect of video content on elicited emotion. The Do-Calculus theory was employed for computing causal
inference, and a SCM (Structured Causal Model) was proposed considering the following variables: EEG signal,
age, gender, video content, like/dislike, and emotional quadrant. To evaluate the approach, EEG data were
collected from volunteers watching a sample of videos from the LIRIS-ACCEDE dataset. A total of 48 causal
effects was statistically evaluated in order to check the causal impact of age, gender, and video content on liking
and emotion. The results show that the approach can be generalized for any dataset that contains the variables
of the proposed SCM. Furthermore, the proposed approach can be applied to any other similar dataset if an
appropriate SCM is provided.
Keywords: Affective Computing — Causal Inference — Pattern Recognition — Multimedia

Resumo: As emoções desempenham um papel crucial na vida humana, elas são mensuradas por meio de
várias abordagens. Existem também várias metodologias para elicitar emoções. A elicitação de emoções por
meio de vı́deos assistidos é uma abordagem importante usada para criar conjuntos de dados de emoções.
Contudo, o link causal entre o conteúdo do vı́deo e as emoções elicitadas não foi bem explicado pela pesquisa
cientı́fica. Neste artigo, apresentamos uma abordagem para computar o efeito causal de conteúdos de vı́deos
em emoções elicitadas. A teoria do Do-Calculus foi empregada para computar a inferência causal e um SCM
(Structured Causal Model) foi proposto considerando as seguintes variáveis: sinal de EEG, idade, gênero,
conteúdo do vı́deo, gostar/não-gostar e quadrante emocional. Para avaliar a abordagem, dados de EEG foram
coletados de voluntários assistindo a uma amostra de vı́deos do conjunto de dados LIRIS-ACCEDE. Um total de
48 efeitos causais foi avaliado estatisticamente de modo a checar o impacto causal de idade, gênero e conteúdo
de vı́deo em gostar/não-gostar e emoção. Os resultados mostram que a abordagem pode ser generalizada para
qualquer conjunto de dados que contenha as variavéis do SCM proposto. Além disso, a abordagem proposta
pode ser aplicada a qualquer outro conjunto de dados similar se um SCM apropriado for fornecido.
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1. Introduction

Emotions play a crucial role in human life, they influence
to a great extent our decisions and quality of life. Emotions
are measured using many approaches, such as responses to
questionnaires and physiological signals acquired by diverse
types of sensors (electroencephalography, electrocardiogra-
phy, body temperature, etc). There are also many method-

ologies for emotion elicitation, such as playing music and
presenting images and videos. Applications of emotion un-
derstanding range from Health Sciences to Marketing and
Economy.

There is a great quantity of research being executed on
classification of affect based on emotion elicitation through
video watching. Some of the well-known EEG (Electroen-
cephalography) datasets [1], [2] [3] for emotion classification
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were constructed using data from people who watched videos.
There are some unanswered questions in the Affective Com-
puting area, for example:

• How do we know which are the specific video contents
responsible for certain affective and liking responses?

• Is there any causal relationship between subject age,
gender, and his affective state after watching a specific
video content?

• Is there any causal relationship between subject age,
gender, and his liking label assigned to a video?

The research presented in this paper aims to answer those
questions using Causal Inference, specifically the Do-Calculus
methodology developed by Pearl [4]. To achieve the objective,
videos of the LIRIS-ACCEDE dataset were presented for
volunteers, who were wearing EEG sensors on their scalps.
Each volunteer labeled their emotional states after watching
each video in terms of valence, arousal and liking. A DAG
(Directed Acyclic Graph) was created to model the causal
relations among the studied variables and Do-Calculus was
employed to measure the causal effects.

Do-Calculus allows to draw causal inference about experi-
mental interventions from observational data. Therefore, by
using Do-Calculus without having to perform the experiment,
but from data collected from other observational studies it
is possible to answer a question like the following: What
would the valence of the emotion felt by the subjects be if
they had watched a video containing dogs? Causal Inference
is not new in the sciences and Philosophy, and Do-Calculus is
not the only existing approach for causal inference. Another
well-known approach, specially in Psychology, is the Propen-
sity Scores [5]. The Do-Calculus was chosen to analyze the
results obtained in this research because its usage of DAG
(Directed Acyclic Graphs) makes it more intuitive and allows
a graphical definition of causation [6].

Therefore, the goal of this research is to present a method-
ology to evaluate the causal effect of specific video contents
on affective and liking states of subjects who watched videos.
Furthermore, this article also presents the results of the pro-
posed methodology applied to the evaluation of causal effects
of age and gender on affective and liking states.

The outline of the paper is composed by 6 sections. Sec-
tion 2 presents the related work on video concepts and on
EEG-based age, gender, and emotion classification. The Do-
Calculus basic theory is presented in Section 3. Section 4
presents the proposed approach. Experimental results are pre-
sented and discussed in Section 5. Finally, Section 6 presents
the conclusions of the research.

2. Related Work
This section is composed by three subsections. Two of them
present researches on EEG-based classification of emotion,
age and gender. The last section presents research on video

concepts. As video concepts extraction and classification are a
fundamental topic for this research, it was decided to include
a review of related work on that subject matter.

2.1 EEG-based Emotion Classification
Current researches have demonstrated that EEG signals carry
information about age and gender [7] [8], The frequencies
of EEG signals are commonly grouped in bands, such as:
delta (0-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (14-
30 Hz), gamma (over 30 Hz). There are many approaches
proposed for EEG-based emotion classification. In the be-
ginning (before the rising popularity of Deep Learning ap-
proaches/techniques), researchers used handcrafted techniques
for extracting features like entropy, PSD (Power Spectrum
Density) and HOC (Higher Order Crossings) [9] for training
classifiers.

There are many EEG datasets proposed for emotion classi-
fication, for instance DEAP [1], MAHNOB-HCI-Tagging [2],
and STEED [10]. Although there is a lack of consensus in
some methodological aspects (e.g., quantity of channels, po-
sition of channels, frequency bands, signal duration, signal
features, etc), one may say that is possible to classify emo-
tions using EEG signals. This subsection presents a review on
recent research on the topic of EEG-based emotion classifica-
tion.

An important evidence for the possibility of EEG-based
emotion classification is the existence of works evaluating all
the features that are being used for the classification task. For
instance, Jenke et al. [11] affirm that when they were writing
their article, there was no systematic comparison of features
for EEG-based emotion classification, therefore that was the
objective of their article. According to Jenke et al. [11], there
is no agreement in literature about which features are most
appropriate for emotion classification. Of course, they are
not considering the use of end-to-end (E2E) Deep Learning
approach in which the same architecture extracts features and
trains a classifier. In order to evaluate feature extraction and
feature selection approaches, Jenke et al. [11] collected their
own EEG dataset from 16 subjects (nine male) with ages be-
tween 21 and 32 years. The duration of the signals for each
subject was 30 seconds and the signals were labeled in five
emotions: happy, curious, angry, sad, and quiet. For emotion
induction, authors used IAPS [12] pictures, and for classi-
fication they used Quadratic Discriminant Analysis (QDA).
Results showed that multivariate feature selection techniques
performed better than the univariate counterpart. One of the
best feature extraction methods was the HOC (Higher Order
Crossings), which performed better than spectral power bands
approaches. Two main extensions of the Jenke et al. [11]
research could be: To apply the methodology for emotion
induction by videos, and to evaluate features across multiple
datasets.

As there are multiple EEG channels available for process-
ing, it is a valid idea to think that neighbor channels share
information and, therefore, they use an approach as a DCNN
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(Deep Convolutional Neural Network) to process EEG data as
it was performed by Putten et al. [8]. Another crucial source
of information in EEG is in the time dimensional. Therefore,
another good idea would be to use a recurrent neural network
to explore temporal information. Fourati et al. [13] proposed
to deal with the matrix of EEG data as a multidimensional
time series and process it for emotion classification using an
Echo State Network (ESN), which is a type of recurrent neu-
ral network. ESNs, in general, are composed by three layers:
input, hidden, and output. The hidden layer is called the reser-
voir. To deal with the problem of ESN’s random initialization,
Fourati et al. [13] performed unsupervised learning of the
random reservoir before the output layer learning. Fourati et
al. [13] used preprocessed version of DEAP dataset in their
experiments. Four types of classification experiments were
performed: valence, arousal, emotional stress, and states/calm.
Two types of inputs were given to the proposed approach: raw
signal and 4 bands filtered using daubechies db5 with 5 levels
wavelet decomposition. Results of Fourati et al. [13] were
compared with some state of art works. In all cases, except
for stress/calm results, Fourati et al. [13] proposed approach
achieved highest accuracy. Fourati et al. [13] did not mention
the unbalance of DEAP dataset and only evaluated the exper-
iments using accuracy. If unbalance is not dealt adequately
it may compromise results, as it was exposed by Pereira et
al. [14].

Although, there are many recent approaches for EEG-
based emotion classification using some variation of Deep
Learning (DL), SVM are still one of the most popular classi-
fiers for that task. Liu et al. [15] constructed a standardized
database of 16 emotional videos. As their main objective was
not to propose a new classification approach, they employed
the well-known feature extraction and SVM classification
paradigm for EEG-based emotion classification. One impor-
tant contribution of Liu et al. [15] work is that their database
was constructed to evoke target-specific emotions. EEG sig-
nals were collected using Emotiv Epoc Headset. The dataset
was constructed under supervision of nine research assistants
who majored in Psychology, and three specialists in the area
of emotion elicitation evaluated the film which were selected
by the nine research assistants. Afterwards, 462 Chinese-
speaking students (195 males) age ranging between 18 and 30
years. watched and rated the videos. The duration of the final
selected videos was between 1 and 3 minutes. For EEG ac-
quisition the number of volunteers was 30, and all volunteers
were male with age ranging between 19 and 26 years. The
standardized database was used to elicit seven emotions and
neutrality. The features extracted from EEG for classification
were: PSD, SLDA (Sparse Linear Discriminant Analysis),
and asymmetry features. For eight-class classification, anger
versus disgust versus fear versus sadness, the accuracies were
low: 32.31% (0.46%) and 65.09% (0.66%). However for
non-neutrality versus neutrality, positive versus negative, and
amusement versus joy versus tenderness the accuracies were
higher than 86%. The emotion elicitation video dataset pro-

posed by Liu et al. [15] has the drawback of the language
of videos be in Chinese, which does not allow replication of
results by researchers in other countries. However, the EEG
signals were collected from a high quality procedure and is
well-balanced for the emotional labels, with 2 videos for each
emotion: Joy, amusement, tenderness, anger, sadness, fear,
disgust, and neutrality.

Song et al. [16] proposed to use a variation of GCNN
(Graph Convolutional Neural Network) in order to exploit the
relationships of information present in different EEG chan-
nels for improving emotion classification. They called their
approach DGCNN (Dynamical Graph Convolutional Neu-
ral Network). A graph may be represented by an adjacency
matrix, and the DGCNN may learn the adjacency matrix of
EEG channel relationships dynamically. The network archi-
tecture is composed by four main layers: graph filtering layer,
convolutional layer, Relu activation layer, and full connected
layer. Five EEG features were extracted from signals and
given as input to the DGCNN. Five types of features were
evaluated: PSD (Power Spectrum Density), DE (Differential
Entropy), DASM (Differential Asymmetry), RASM (Ratio-
nal Asymmetry), and DACAU (Differential Causality).The
proposed approach was evaluated using two datasets: SEED
and DREAMER. Results for the SEED dataset were com-
pared with other state of art approaches. For PSD features, the
proposed approach achieved the highest accuracy. In subject
independent (LOSO: Leave-one-subject-out) experiments, the
proposed approached achieved the highest accuracy only us-
ing PSD features extracted from delta band. When using a
combination of features from all bands (alpha, beta, gamma,
theta, and delta) the best result was achieved for LOSO using
DE features as input for DGCNN (79.95%).

An important question was addressed by Zheng et al. [17]:
which EEG patterns are stable among different subjects and
EEG collection sections? Zheng et al. [17] point out that the
stability of patterns and performance of models over time
has not been fully exploited. To allow a better evaluation
of EEG pattern stability, the authors proposed a new dataset
(called SEED) with an important methodological difference
compared to existing datasets: the data were collected from
the 15 volunteers, three times with intervals of one week or
longer. EEG Feature extraction followed a procedure similar
to that followed by Song et al. [16]. The extracted features
were given as input to a GELM (Discriminative Graph Reg-
ularized Extreme Learning Machine) and, for comparison,
to a SVM. As occurred in Song et al. [16] experiments, the
highest results were obtained by the classifier trained with DE
features. The dataset was also evaluated, subject-dependently,
using training data for one of each section to test data from
one of the three sections. There are many accuracy results
higher than 80%, but for some subjects the accuracies were
near 50% (subject 5, for example).
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2.2 Age and Gender EEG-based Classification
One of our main assumptions in this research is that the EEG
signals carry information about subject gender and age which
could be used for train a classification algorithm. Therefore, in
this section we present papers from research in neuroscience
corroborating our assumption.

Nguyen et al. [7] proposed an approach for age and gen-
der classification using features extracted from EEG signals
obtained from the Australian EEG Database [18]. The Aus-
tralian EEG Database is comprised of EEG recordings of 40
patients, 20 male and 20 female with ages between 19 and 69
years. From those signals two types of features were extracted:
(i) Power Spectral Density, 11 coefficients of an 11th-order
Auto-regressive model and 3 Hjorth parameters (activity, mo-
bility and complexity); (ii) MFCC (Mel-frequency cepstral
coefficients), LFBP (Log filter-bank powers), and LSP (Line
spectral pairs). Nguyen et al. [7] called the second type of
para-linguistic features, because that type of feature is em-
ployed for speech classification. The features were extracted
from 8 EEG channels (F3, F4, C3, C4, P3, P4, O1, and O2)
and were given as input to SVM (Support Vector Machine)
classifier. For age, there were 3 classes (Young, Middle, and
Elderly), and for gender two classes (Male and Female). All
the accuracy results obtained in the experiments were higher
than 96%.

The research presented by Nguyen et al. [7] is the tra-
ditional way of pattern recognition: extracting features and
training a classifier. With the advancement of Deep Learning,
more and more researchers are going directly to algorithms
which are able of performing feature extraction and classifier
training simultaneously. One of those algorithms was imple-
mented as Deep Convolutional Neural Networks (DCNN) and
was employed by Putten et al. [8] in order to classify people
gender using EEG signals obtained from their scalps. Putten
et al. [8] used EEG from 1308 subjects (mean age 43.38 years
and 47% males) to train a DCNN which has the following
architecture details:

• Input layer: 2 seconds of EEG from 24 channels, cor-
responding to 256 × 24, because sampling rate was
128Hz;

• Intermediate layers: convolutional layer of 50-300 3×4
filters, 2×2 pooling layer, and 25% dropout layer;

• Output: two classes: male or female.

The accuracy obtained by Putten et al. [8] were around
80%, which is 16% lower than the accuracy obtained by the
approach proposed by Nguyen [7] which was published 5
years before. However, the main motive why Putten et al. [8]
results are important is because they did not performed feature
engineering. The same algorithm which selected the features
was used to train a classifier. That is one of the main motives to
use DCNN in this type of research. In a near past, researchers
discussed which were the best EEG features for classifying a
specific pattern [11]. Nowadays this discussion is changing.

Tomescu et al. [19] explain that the structural changes
which occur in brain during aging are well documented, fur-
thermore males and females differ in terms of brain volume,
grey/white matter ratio, regional cerebral blood flow. How-
ever the differences in dynamics of mental activities changes
in relation to gender and age are not yet well understood. In
order to set some light on that problem, Tomescu et al. [19]
proposed to use the concept of EEG micro-states (periods of
about 100ms of stable scalp potential fields) to study gender
and age changes in EEG. In their study, Tomescu et al. [19]
used 204-channel EEG signals from 179 subjects (6-87 years
old, 90 female). In order to select the periods for extracting
the EEG micro-states, the local maxima of the Global Field
Power (GFP) was computed, and the EEG signal was cut only
at the corresponding region of GFP peaks. The GFP peaks
were submitted to k-means clustering algorithm. Using a
fitting process, Tomescu et al. [19] determined: the mean du-
ration of micro-states, the occurrence of each micro-state, and
the transition between micro-states. Micro-states were further
grouped in four categories. ANOVA (Analysis of Variance)
results showed a general tendency for increased duration of
the micro-states with age, and for one of the four micro-states
categories there was a difference between males and females.

Vandenbosch [20] studied whether it is possible to predict
the age of children and adolescents using EEG recordings.
Two datasets were used: Netherlands Twin Register dataset
(NTR, 836 subjects), and Washington University in St. Louis
dataset (WUSTL, 702 subjects). The subject ages varied from
5 to 18 years. Power Spectrum Density (PSD) was extracted
from 12 EEG channels (F3, F4, F7, F8, C3, C4, P3, P4, P7,
P8, O1, and O2) and it was given as input for three types
of classifiers: random forest (RF), support vector machines
(SVM), and relevance vector machine (RVM). As there were
data of subjects from the same family in the datasets, the
data were reduced by excluding duplicate subjects of the
same family. A six-fold-cross validation was employed and
repeated a number of time equal to the quantity of different
subjects from the same family, selecting only one subject
per family in each iteration. Two types of age classifications
were performed: child-adolescence, ages (5, 7, 12, 14, 16,
18). For child versus adolescence classification the accuracy
was higher than 93%, and for age categories the MAE (Mean
Absolute Error) was 1.22 years for RF and 1.46 years for RVM,
while SVM regression did not perform well. The experiments
performed by Vandenbosch [20] showed that using popular
EEG features and classifiers it is possible to achieve good age
classification results.

Hu [21] performed some experiments to evaluate the feasi-
bility of classifying human gender using EEG signals. Hu [21]
used data collected from 28 healthy subjects (13 male) with
ages between 18 and 30 years. The data were digitized at
1000Hz from 32 channels. For each subject, five minutes of
signal were sectioned in one second periods. Therefore, the
dataset was augmented to 8400 samples (28 × 5 × 60). Four
types of entropy features were computed: fuzzy entropy (FE),
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sample entropy (SE), approximate entropy (AE), and spec-
tral entropy (PE). Six different classifiers and three different
ensemble of classifiers were trained: K-Nearest Neighbors
(KNN), Logistic Regression (LR), Quadratic Discriminant
Analysis (QDA), Decision Tree (DT), Bagging, Boosting, and
vote classifier. Although Hu [21] says that he used 10-fold-
cross-validation, there is no information about any caution
on the fact of samples from the same person occurring in
the training and test sets. Perhaps, there is some correlation
among samples coming from the same subject and it would be
a good practice to avoid different samples of the same subject
contained in the training and test sets simultaneously. When
evaluated isolated, all classifiers trained with a single type of
feature produced accuracies higher than 65%. There was also
classifier training using all features as input, in this case all
accuracies were higher than 95%. The accuracies for bagging
and boosting were all higher than 98%. Hu [21] obtained high
accuracy results for gender classification using EEG, the only
criticism to his work is the absence of caution of dealing with
signals coming from the same subjects in the training and
testing datasets.

Kaur et al. [22] used wireless EEG device (Emotiv Epoc
Plus) for collecting data from 60 subjects with ages between
6 and 55 years. The wireless EEG device records signal from
2 references and 14 channels: AF3, AF4, F3, F4, F7, F8, FC5,
FC6, P7, P8, T7, T8, O1, O2. The used sampling frequency
was 128Hz. Signals were smoothed using a least square fil-
ter (Savitzky-Golay filter) and they were processed by Dis-
crete Wavelet Transform (DWT) to extract five frequency
sub-bands: delta, alpha, beta, gamma, and theta. Three fea-
tures were extracted from each frequency band: mean, energy,
and root-mean-square. A random forest classifier used the
features to train and testing. The dataset is well-balanced
for quantity of subjects across age ranges, which were: 6-10,
12-15, 18-23, 25-29, 33-38, 42-55. But there was a small
unbalance for gender classes (35 male and 25 female). For
all band waves, the used classifiers had higher accuracy for
gender classification than for age classification. Theta, Delta
and Gamma bands had the highest accuracies. Kaur et al. [22]
analysed the accuracies changing signal duration in steps of
1 second, from 1 to 10 seconds. The highest accuracies were
between 7 and 8 seconds. A comparison with two other classi-
fiers was also performed: SVM (Support Vector Machine) and
ANN (Artificial Neural Networks). The results for Random
Forest were higher than the results for SVM and ANN in all
tested cases.

A well-known problem in training deep learning classifiers
is their need for great amount of data. Putten et al. [8] used
EEG data collected from 1308 subjects in order to train their
DCNN approach. In order to explore the temporal informa-
tion, a deep learning approach that may be more appropriate
for EEG signal processing are the long short-term memory
classifiers (LSTM) which are recurrent artificial neural net-
works. Kaushik et al. [23] used the dataset produced by Kaur
et al. [22] which contains data from 60 subjects (35 males)

with ages ranging from 6 to 55 years. Data were collected
for 10 seconds using a well-known commercial EEG device:
Emotive Epoch plus. Therefore, only 14 channels were used
(due to the capacity of EEG device). Kaushik et al. [23] pre-
processed the signals using the Daubechies Db-8 Wavelet
transform, resulting in four wavelet coefficients to noise and
five wavelet coefficients corresponding to alpha, beta, delta,
gamma and theta brain waves. Three Deep Learning Architec-
tures were investigated: Long Short Term Memory (LSTM),
Bidirectional LSTM (BLSTM), and BLSTM-LSTM.

Two types of experiments were performed: Using raw
signal, and using wave-bands obtained by wavelet processing.
The higher accuracies were obtained for alpha and beta bands,
and alpha accuracy was higher than beta accuracy. The alpha
accuracy for age in the proposed model was very near the
BLSTM result (91.31% against 91.96%, respectively). For
gender, beta waves were better than alpha waves, with re-
sults of 97.5% and 95.5% for BLSTM and BLSTM-LSTM,
respectively. The research of Kaushik et al. [23] shows the
feasibility of age and gender classification using EEG. An
important factor to emphasize here is that the better frequency
bands for the results obtained by Kaushik et al. [23] were
discrepant with the results obtained by Kaur et al. [22]. Kaur
et al. [22] research pointed to better results in beta and theta
for age classification and delta wave for gender classification,
whilst Kaushik et al. [23] results pointed to alpha and beta
bands having the highest results. The discrepancy must be
further investigated.

2.3 Video Concepts
There are two main types of video temporal units: shots and
scenes. According to Sidiropoulos et al. [24], the main feature
in a shot is the sequence of images taken without camera inter-
ruption, and scenes are longer higher-level temporal segments.
Shot detection, for example, may be performed by detecting
video editing effects. However, scene detection is a challenger
problem because it is based on semantic criteria. Sidiropoulos
et al. [24] proposed an approach to decompose videos into
scenes, which is based on a multi-modal scene segmentation
technique called Generalized STG-based (GSTG). The tech-
nique proposed by Sidiropoulos et al. [24] exploits features
from visual and auditory channels. The most import module
of the approach is the STG (Scene Transition Graph), which
computes similarities between key-frames and construct a
connected graph. As the STG presents a high computational
complexity due to compute similarities between every two
shots, Sidiropoulos et al. [24] proposed an approximation
algorithm to limit the number of shot pairs to be used in com-
puting similarities. Sidiropoulos et al. [24] also proposed
a variation of STG to low-level audio features. The STGs
algorithms for audio and visual features were combined to
form the GSTG. The approach was evaluated on two datasets:
Netherlands Institute for Sound & Vision dataset, and the
TRECVID dataset. The F-score of the experimental results
were higher than 86%.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 29 • N. 2 • p.52/62 • 2022



Causal Effect of Videos

According to Sidiropoulos et al. [25], a video concept is a
high-level video-feature, and concept detection means: esti-
mating for each concept a degree of confidence in the hypothe-
sis that this concept is suitable for describing the contents of a
given elementary piece of a video stream. The video concept
detection problem is challenging because it is an open set prob-
lem: the number of different possible concepts is unknown
a priori for any video. Sidiropoulos et al. [25] affirms that
the majority of approaches focus on extracting image features
(like SIFT, SURF, DAISY, etc) from key-frames, and training
classifiers such as SVM to create base detectors. In their work
they proposed to use, as another source of data for training
base detectors, the video tomographies [26], which are spatio-
temporal slices with one axis representing time and another
axis representing space. The video tomographies were used
in conjunction with visual features extracted from key-frames.
Furthermore, Sidiropoulos et al. [25] proposed to use genetic
algorithms for selecting subsets of best-performing base de-
tectors, they used 37 linear SVM classifiers as base detectors.
The approach was tested on the 2011 and 2012 TRECVID
SIN Tasks datasets, which contained 50 and 46 concepts for
evaluation, respectively. The experimental results were evalu-
ated in terms of Mean Extended Inferred Average Precision
(MXinfAP), and using all concepts or motion-related concepts
only. In all cases, the quantity of base detectors was lower for
the selection among 37 base detectors, and in almost all cases
the MXinfAP was superior for the approach.

Apostolids and Mezaris [27] proposed an algorithm for
fast temporal video segmentation into shots, they affirm that
there are two types of shots, abrupt and gradual, and their al-
gorithm is able to detect the two types of shots. The approach
is executed in three steps: (i) computation of video frames
similarity to detect abrupt transitions; (ii) detection of gradual
transitions; and (iii) filtering of shots detected wrongly due to
object/camera movement or camera flash-lights. The video
dataset was comprised of 15 videos obtained from German
public broadcaster RBB, cultural heritage show of the Dutch
public broadcaster AVRO, and videos from the archive of the
Netherlands Institute for Sound and Vision. The ground-truth
was created by human annotation. The results were evalu-
ated in terms of precision, recall and F-Score. For the three
metrics, results were higher than 88% and higher than other
approaches selected for comparison.

Markatapoulou et al. [28] affirms that semantic video con-
cept detection in video aims to annotate video fragments with
one or more concepts chosen from a predefined concept list. A
crucial step in video concept detection is segmenting the video
in shots. A common practice in concept detection is to com-
bine classifiers trained with different features (late fusion), but
due to unbalance in the quantities of different concepts, the
classifier combination may be challenging. To deal with the
classifier combination problem and to better integrate hand-
crafted features and DCNN-based features, Markatapoulou et
al. [28] proposed to use a cascade of classifiers. The classi-
fier cascade approach became famous after Viola and Jones

used it for object detection [29]. An important characteristic
of cascade approaches is organizing classifiers in stages in
such a way that the more computational consuming operations
are in the latter stages. The DCNN architecture used was the
16-layer pre-trained DCNN proposed by Simonyan and Zisser-
man [30]. Authors used features extracted by the last hidden
layer of the DCNN. The classifiers were evaluated in terms of
MXinfAP. The classifier trained using only DCNN features
obtained higher results than using handcrafted features (ORB,
SIFT, SURF). However, the highest MXinfAP was obtained
when the classifier used a combination of ORB, SIFT and
DCNN features.

According to Markatopoulou et al. [31], there are two
main categories of methods for considering the relationships
between concepts: modelling the label relationships, and ex-
ploiting the task relationships. Markatopoulou et al. [31]
proposed to use a variation of the ELLA (Efficient Lifelong
Learning Algorithm) [32] algorithm for video concept de-
tection because they affirms that MTL (Multi-task learning)
algorithm might be appropriate for semantic concept detec-
tion. They called their ELLA approach of ELLA LC (LC
means Label Constraint). Experiments were performed using
the TRECVID 2013 SIN dataset, which contains 800 hours
of video for training and 200 hours of video for testing. Four
DCNN classifiers were used for feature extraction: an 8-layer
CaffeNet; a 16-layer ConvNet; a 22-layer GoogLeNet; and a
DCNN trained by the authors with architecture similar to the
22-layer GoogLeNet. In the tests, the MXinfAP was evaluated
for 38 concepts. In all cases, except one of them, the proposed
approach achieved highest results.

Markatopoulou et al. [33] point out that the existing ap-
proaches for video concept annotation do not consider se-
mantic relationships or inter-dependencies among concepts.
Therefore, they proposed a DCNN architecture to explore
both implicit and explicit concept relationships (visual-level
and semantic-level). Implicit concept relationships were mod-
elled using Multi-task Learning (MTL) to learn shared feature
vectors encoded in DCNN layers. Explicit concept relations
were modelled using a new cost function (CCE-LC: Cost
Sigmoid Cross-entropy with Label Constraining) for a set of
DCNN layers which exploits correlations between concepts.
Experiments were performed on four datasets: TRECVID-
SIN 2013, PASCAL-VOC 2007, PASCAL-VOC 2012, and
the NUS-WIDE. The problem was defined as: given a concept,
retrieve the 2000 video shots which are mostly related with it.
The best MXinfAP results achieved by the proposed approach
were 33.77%, 87.00%, 88.69% and 60.73% respectively for
the following datasets: TRECVID-SIN, PASCAL-VOC 2007,
PASCAL-VOC2012, and NUS-WIDE.

Vasileios Mezaris and associated researchers developed
a web service called VideoAnalysis4ALL 1 which allows the
upload of videos for shot and scene segmentation, and visual

1Available at
⟨http://multimedia2.iti.gr/onlinevideoanalysis/service/start.html⟩. Last ac-
cess: April 16, 2020.
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concept detection. The papers reviewed in this subsection
were published by the team of Vasileios Mezaris, who is
Senior Researcher in the Multimedia Knowledge and Social
Media Analytics Laboratory of the Information Technologies
Institute. The VideoAnalysis4ALL was used for detecting the
concepts used in the research presented in this article.

3. Do-Calculus and Structured Causal
Model

The Causal Inference approach used in this paper is mainly
based in Structured Causal Model (SCM) and in Do-Calculus,
as proposed by Pearl et al. [6] [4]. A SCM is a mathematical
structure S = {U,V,F,G}, where:

• U is a set of exogenous variables, i.e., variables that
could not be measured or variables that are not directly
present in the model;

• V is a set of endogenous variables, i.e., variables that
are present in the model and which can be measured
and manipulated directly;

• F is a set of functions ruling the relationships among
endogenous and exogenous variables;

• G is a directed acyclic graph depicting the structural
relationship of causation among variables of U and V .

The graph, G, may be obtained by two main ways: (i) by
domain knowledge, a specialist may propose the cause and ef-
fect relationships among variables of a problem; (ii) by causal
search, algorithms are employed to search for the causal re-
lations among variables. In this research, domain knowledge
was employed to propose a graph depicting cause-effect rela-
tionships among the following variables: age range, gender,
video concept, liking, emotional quadrant. The modeled graph
is presented in Figure 1, and the set of endogenous and ex-
ogenous variables are, respectively, V = {v1,v2,v3,v4,v5,v6}
and U = {u1,u2,u3,u4,u5,u6}. For the purposes of this paper,
it is not necessary to define the set of functions F because
this research is not interested in the exact numeric functional
influence of each causal variable in the effect variable.

Figure 1 represents the causal diagram of the studied prob-
lem. In this research, EEG signal was clustered in 4 groups,
ages were divided in three ranges, video content was clus-
tered in four groups, like was labeled in three categories (like,
dislike, neutral), and emotions were grouped according to
valence-arousal quadrants. In Figure 1, each graph’s node
represents:

• V1 = {1,2,3,4}. EEG signal feature category. Each
number represents one of 4 possible clusters resulting
from the application of K-means to the HOC features;

Figure 1. Proposed Causal Diagram. The set of functions F is
depicted as the arrows.

V1U1

V2

U2

V3

U3

V4

U4

V5

U5

V6

U6

• V2 = {0,1,2}. Age of the subject, obeying the follow-
ing distributions 0: 18-22, 1: 23-26, 2: 27-30;

• V3 = {0,1}: Gender of the subject (0 female, 1 male);

• V4 = {0,1,2,3}. Video content category obtained by
video-concept clustering as described in Subsection 4.3;

• V5 = {1,2,3}. Like/Dislike value, 0: like, 1: neutral, 2:
dislike;

• V6 = {1,2,3,4}. Emotional Quadrant. From quadrant 1
up to quadrant 4 we have the following valence-arousal
relations, respectively: HV-HA, HV-LA, LV-LA, LV-
LA. Where, the letters mean: HV = high valence; HA
= high arousal; LV = low valence; LA = low arousal.

One of the most important contributions of Do-Calculus
is the possibility of answering interventional questions us-
ing observational data. In order to answer such questions,
Do-Calculus [4] provides, among other mathematical tools:
The Back-Door Criterion, The Front-Door Criterion, and The
Three Rules of Do-Calculus. The definitions and theorems on
Do-Calculus presented in this section are written exactly as
in [4].

Definition 3.1. (Back-Door) A set of variables Z satisfies the
back-door criterion relative to an ordered pair of variables (Xi,
X j) in a DAG G if:

(i) no node in Z is a descendant of Xi;and

(ii) Z blocks every path between Xi and X j that contains an
arrow into Xi.

An explanation about item (ii) in Definition 3.1: When it
says that Z blocks a path, it means that conditioning on one
or more elements of the Z set blocks the causal dependence
between the other variables. This blocking/unblocking is
explained using D-separation theory. Due to textual space
constraints, it is not possible to explain all details about D-
separation, and the reader is advised to read one of Pearl books
referred in this article.
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Theorem 3.1 (Back-Door Adjustment). If a set of variables
Z satisfies the back-door criterion relative to (X , Y ), then
the causal effect of X on Y is identifiable and is given by
Equation 1.

P(y|do(x)) = ∑
z∈Z

P(y|x,z)P(z) (1)

In Theorem 3.1 the identifiability refers to the possibility
of obtaining a consistent estimate of the probability of Y under
the condition that X is set to x by external intervention, from
data involving only observed variables [34].

Definition 3.2. (Front-Door) A set of variables Z is said to
satisfy the front-door criterion relative to an ordered pair of
variables (X , Y ) if:

(i) Z intercepts all directed paths from X to Y ;

(ii) there is no unblocked back-door path from X to Z; and

(iii) all back-door paths from Z to Y are blocked by X .

Theorem 3.2 (Front-Door Adjustment). If Z satisfies the
front-door criterion relative to (X , Y ) and if P(x,z)> 0, then
the causal effect of X on Y is identifiable and is given by the
Equation 2.

P(y|do(x)) = ∑
z∈Z

P(z|x)∑
x′

P(y|x′,z)P(x′) (2)

Both Back-Door and Front-Door adjustment equations
are used to go from an interventional probability equation
to an observational probability equation. But there are also
more high level criteria for accomplishing the conversion
from intervention to observation: The following Rules of
Do-Calculus are used for that purpose.

Rules of Do-Calculus [35]. Let X , Y , Z, and W be arbi-
trary disjoint sets of nodes in a causal DAG G. We denote by
GX the graph obtained by deleting from G all arrows pointing
to nodes in X . Likewise, we denote by GX the graph obtained
by deleting from G all arrows emerging from nodes in X . To
represent the deletion of both incoming and outgoing arrows,
we use the notation GXZ . The following three rules are valid
for every interventional distribution compatible with G.

1. Insertion/deletion of observations: Equation 3.

2. Action/observation exchange: Equation 4.

3. Insertion/deletion of actions: Equation 5.

P(y | do(x),z,w) = P(y | do(x),w)

IF (Y ⊥⊥ Z | X ,W )GX

(3)

P(y | do(x),do(z),w) = P(y | do(x),z,w)

IF (Y ⊥⊥ Z) | X ,W )GX ,Z

(4)

P(y | do(x),do(z),w) = P(y | do(x),w)

IF (Y ⊥⊥ Z | X ,W )GX ,Z(W )

(5)

where Z(W ) is the set of Z-nodes that are not ancestors of any
W -node in GX .

By applying Do-Calculus rules in the proposed SCM of
Figure 1, it is possible to answer interventional queries and to
verify the causal impact among variables.

In Do-Calculus, an intervention in the variable X is rep-
resented by do(X), and the graph G is modified to GX by
excluding all arrows that arrives into X . In this article, the
causal effect was computed using the library PyAgrum [36].

4. Proposed Approach
This Section presents the proposed approach and the descrip-
tion of the data used, such as video dataset and EEG dataset.
In this Section, the proposed research questions are presented
in Do-Calculus notation, and the adjustment formula for one
of the research questions is developed (Research Question 1).
The adjustment formula for all research questions was not pre-
sented because they are very similar with the one presented.

4.1 Overall Presentation
The results presented in this paper were obtained by apply-
ing Causal Inference to a dataset which is composed by the
following parts:

• 60 videos from the LIRIS-ACCEDE video dataset;

• EEG samples from volunteers who watched LIRIS-
ACCEDE videos;

• Video valence, arousal and liking labels assigned by
volunteers for the watched videos;

• Information about age and gender of the volunteers.

4.2 Data Description
4.2.1 Video Dataset
As one of the main questions of this research is to evaluate
the causal impact of video content in human emotional states,
a video dataset containing affective annotations is necessary.
Among the well-known labeled video datasets publicly avail-
able, the LIRIS-ACCEDE [37] was chosen due to following
the main reasons:

• The dataset consists of 9,800 good quality video ex-
cerpts;

• All video excerpts are shared under the Creative Com-
mons license;
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• There are affective annotations for all videos;

• The affective annotations were obtained from people
from diverse cultural backgrounds;

• In the dataset, there are short videos with duration of
less than 60 seconds.

After downloading the dataset, the next step was to se-
lect 60 videos which would be presented to volunteers. For
each valence-arousal quadrant, 15 representative videos were
selected using the scores available in the LIRIS-ACCEDE
dataset. The names of the videos are presented in Figure 2, in
Section 4.3.

4.2.2 EEG
The EEG signals used in our experiments were collected from
volunteers in our laboratory while they were watching videos.
The volunteers were undergraduate students from our univer-
sity. Table 1 presents detailed information about volunteers
gender and age. After watching each video, a self-assessment
questionnaire was prompted to the volunteer asking three
questions: how was valence perceived (in a scale from 1 to
9)?; how was arousal perceived (in a scale from 1 to 9)?; and,
if they liked, did not liked or were indifferent to video content.

Table 1. Detailed information about volunteers, before and
after removing problematic samples.

Before After
Min. Age 17 18
Max. Age 21 30
Avg. Age 20 22
Std. Age 1.41 3.87

Male 15 9
Female 11 7

Tot. Volunteers 26 16

EEG signals are affected by many types of noise sources,
for instance: eye-blinking, eye-rolling, chewing, shaking arms
and legs, etc. There is not a method for EEG signal filtering
which has good results for all types of noise. Even deep
learning has been employed for filtering EEG signals, but
results still require improvements [38]. Although there is not
a known study about the effect of filtering signals containing
affective content, all filtering approaches may discard signal
information that could be important for emotion classification.
Therefore, in this research, the EEG signals were used without
any type of filtering. This decision may affect the quality of
EEG features and, consequently, the clustering. However, the
combination of evidence allowed by probabilistic approaches
as those used in this research could attenuate possible prob-
lems in one of the evidence sources.

Only channels FP1, FP2, F3 and F4 where used for extract-
ing features in this research. This decision is in accordance
with the common practice in the literature [14] [10]. The cho-
sen feature was the HOC (Higher Order Crossings) [9] which

is one of the best features for EEG-based emotion classifica-
tion [11]. The feature vectors were given as input to K-means
clustering algorithm to group them in 4 clusters. Those 4
clusters represent the levels of variation of variable V1 in the
causal diagram presented in Figure 1.

4.3 Concept-Based Video Clustering
The tool available in the website VideoAnalysis4ALL 2 was
used to extract the concepts of all 60 videos. The video con-
cept clusterization may be formalized as follows. Consider a
set of videos, V = {v1,v2, . . . ,vn}, and a function α represent-
ing the processing of VideoAnalysis4ALL tool.

α : V →C×S (6)

where V represents the input set of videos, C represents the
set of concepts, and S represents the set of shots. Equation 6
shows that the output of α is a matrix containing all the
concepts of the input video grouped by shots. However, not all
concepts were used in this research, only the most important,
which were selected by employing function β .

β : C×S →C10 ×S10 (7)

In Equation 7, domain and counter-domain look similar,
except by the fact that the output matrices have at most 10
concepts from at most 10 shots. The concept selection was
performed by sorting the concept scores. After applying Equa-
tion 7, the videos were clustered by concept. For each video,
a text document was created containing all the 10 selected
concepts presented in the video sorted by scores from each
video scene. In the best case, for each video there were 100
concepts. However, the same concept could occur in more
than one scene indicating its importance for that video. Be-
sides, not all video had 100 concepts because some of them
did not had 10 scenes or 10 concepts for each scene. Some
video concepts are presented in Table 2.

After clustering, the video concepts were grouped in 4
groups of video contents, and those groups represent the levels
of variation of the variable V4 in Figure 1. In order to allow
the 2D visualization, the 4-dimensional dissimilarities were
given as input to a multi-dimensional scaling (MDS) algorithm
to project the data into 2 dimensions. Figure 2 shows two
higher level clusters: indoor and outdoor. The indoor clusters
contain people, in one of them appearing mainly entertainment
situations, and in the other appearing mainly people faces. The
outdoor clusters contain nature, one of them contains animals
and the other contains mainly natural environment.

4.4 Proposed Research Questions in Do-Calculus
Notation

4.4.1 Research Questions
Section 5 presents results for the following causal queries:

2Available at: http://multimedia2.iti.gr/onlinevideoanalysis/
service/start.html . Last access: March 07th, 2020.
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Table 2. Sample of concepts for each video labeled as quadrant 2. In reference to Figure 2, these are the correspondences of
cluster numbers and colors: 0 = green, 1 = orange, 2 = blue, 3 = pink.

Video Cluster Concept
ACCEDE00539 0 Kitchen Table Room Person Eaters Indoor Adult
ACCEDE06621 1 Sunglasses Outdoor Sky Sunny Vehicle Person Clouds
ACCEDE00059 1 Vegetation Plant Daytime Outdoor Person Child Girl Trees
ACCEDE05223 0 Person Female Person Talking Adult Male Person Face Civilian Person
ACCEDE00535 0 Person Eaters Adult Table Kitchen Female Person Indoor
ACCEDE00775 0 Person Adult Sitting Down Table News Studio Talking Eaters
ACCEDE01892 0 Eaters Person Adult Face Food Joy Flowers
ACCEDE01762 1 Female Person Face Teenagers Female Human Face Person Female Human Face Closeup Single Person Female
ACCEDE00842 0 Female Person Single Person Female Teenagers Female Human Face Single Person Face Female News Subject
ACCEDE01545 3 Domesticated Animal Cats Quadruped Animal Mammal Dogs Explosion Fire
ACCEDE04314 1 Cats Domesticated Animal Dogs Quadruped Animal Mammal Person
ACCEDE04318 1 Waterscape Waterfront Islands Outdoor Lakes Mountain Oceans Valleys
ACCEDE09210 1 Vegetation Plant Trees Daytime Outdoor Landscape Forest Person
ACCEDE07099 1 Urban Park Tent Trees Ground Vehicles Outdoor Vegetation Vehicle
ACCEDE09207 1 Female Person Trees Person Female News Subject Face Teenagers Female Human Face

Figure 2. Concept-Based Clustered Videos.

1. P(V5 | do(V4)): Which is the causal impact of a given
video concept in the subject like/dislike state for that
video?

2. P(V5 | do(V3)): Which is the causal impact of the sub-
ject’s gender in the subject like/dislike state for a video?

3. P(V5 | do(V2)): Which is the causal impact of the sub-
ject’s age in the subject like/dislike state for a video?

4. P(V6 | do(V4)): Which is the causal impact of a given
video concept in the subject emotional state after watch-
ing a video?

5. P(V6 | do(V3)): Which is the causal impact of the sub-
ject’s gender in the subject emotional state after watch-
ing a video?

6. P(V6 | do(V2)): Which is the causal impact of the sub-
ject’s age in the subject emotional state after watching
a video?

The causal formulae for all 6 causal queries have similar
structures, for each one only the variables are changed. In or-
der to calculate the causal impact of an intervention in Vi in the

value of Vk, it is necessary to calculate P(Vk | do(Vi)), which
may be obtained by successively applying Do-Calculus rules,
to achieve Equation 8. The results of applying Equation 8
for answering the proposed causal questions are presented in
Section 5.

4.4.2 The Adjustment Equation for P(V5|do(V4))

Let V5 and V4 be endogenous variables in Figure 1 without
considering the exogenous variables. So, the first step is to
verify if there is any change in the Graph of Figure 1 after
excluding the arrows coming to V5. As there is no change, we
verify the possibility of applying Back-Door or Front-Door
adjustment. As there are observations available on V2, V3,
and V6, one should try to apply Back-Door criterion with
Z = {V2,V3,V6}, but V6 could not be used because does not
attends item (ii) of Back-Door definition (V6 does not block
the path between V5 and V6). For Back-Door, Z would change
to Z = {V2,V3}. But neither V2 nor V3 blocks a path between
V4 and V5 which contains an arrow into X4. Therefore, Back-
Door may not be applied to this problem.

The next step is verifying the possibility of applying Front-
Door criterion. Let’s start with Z = {V1,V2,V3,V6}, and ex-
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Table 3. Concept clusters for each used video. In reference to
Figure 2, these are the correspondences of cluster numbers
and colors: 0 = green, 1 = orange, 2 = blue, 3 = pink.

Video Cluster Video Cluster
ACCEDE00059 1 ACCEDE02558 0
ACCEDE05656 0 ACCEDE00535 0
ACCEDE02568 3 ACCEDE06618 2
ACCEDE00539 0 ACCEDE02584 0
ACCEDE06621 1 ACCEDE00646 0
ACCEDE02590 0 ACCEDE06669 3
ACCEDE00736 1 ACCEDE03128 0
ACCEDE06690 0 ACCEDE00775 0
ACCEDE03300 0 ACCEDE07086 1
ACCEDE00842 0 ACCEDE03399 2
ACCEDE07099 1 ACCEDE00939 0
ACCEDE03464 1 ACCEDE07144 2
ACCEDE01050 2 ACCEDE03483 3
ACCEDE07157 1 ACCEDE01207 2
ACCEDE03509 2 ACCEDE07164 1
ACCEDE01212 2 ACCEDE04134 1
ACCEDE07165 1 ACCEDE01348 1
ACCEDE04314 1 ACCEDE07643 0
ACCEDE01545 3 ACCEDE04318 1
ACCEDE07751 2 ACCEDE01762 1
ACCEDE04323 0 ACCEDE07761 2
ACCEDE01892 0 ACCEDE04383 1
ACCEDE07788 0 ACCEDE02097 3
ACCEDE04614 3 ACCEDE08437 2
ACCEDE02122 0 ACCEDE04943 3
ACCEDE08463 0 ACCEDE02433 0
ACCEDE05223 0 ACCEDE09013 0
ACCEDE02450 3 ACCEDE05357 2
ACCEDE09207 1 ACCEDE02554 3
ACCEDE05636 0 ACCEDE09210 1

clude V6 from Z because it does not block a path from V4 to
V5. So, our Z would be Z = {V1,V2,V3}, and criteria (i) and
(ii) are satisfied, because Z intercepts all directed paths and
there is no back-door path from V4 to Z. As there is an arrow
from V4 to V1, V4 would block all back-door paths from Z to
V5, if they exist. Therefore, the Front-Door Adjustment can
be applied to this problem, and we get Equation 8.

P(V5|do(V4)) =∑
z

P(z|do(V4),z)
i=4

∑
i=1

P(V5|V4,i,z)P(V4,i) (8)

where z ∈ {V1,V2,V3}. The equations for the probabilities of
the other research questions are obtained similarly by applying
Front-Door Adjustment.

5. Results
As it may be seen in Table 1, there were data of only 16 vol-
unteers for experimentation, with a total of 960 samples (16
subjects times 60 videos). In order to statistically evaluate
the results, the data were randomized and 100 random sets
containing 600 samples each were created. For each set con-
taining 600 samples, a causal effect evaluation was performed,
and hypothesis tests were computed as described in this sec-
tion. For each set of samples, 48 causal effect evaluations
were performed as presented in Table 4.

The first step in analysing the collected data was to ver-
ify their normality. The normality test results are presented
in Table 4. In order to verify the normality, the Shapiro-
Wilk test for normality was employed using the causal effect
estimations obtained for each parameter combination. The
Shapiro-Wilk test was performed as hypothesis test consider-
ing the null hypothesis as the data was drawn from a normal
distribution.

Table 4 presents the results for normality tests. A total of
48 tests were performed, and for all of them the null hypothe-
sis was that the data follow a normal distribution. As it may
be seen in the right column of Table 4, there was not any case
in which the null hypothesis was rejected. Furthermore, in
a great number of tests, the p-value was very high. Only in
some cases, p-value was not so high. For example, only in
experiments 23, 33, 37, and 41 the p-value was lower than
10%, but still higher than 5%.

After checking for normality, the next step was to verify
the hypothesis of the effects of video content, age, and gender
on the volunteer video-liking. For those tests, a T-test for the
means of two independent samples was employed. Table 5
presents the 8 results for normality tests on the liking data.
For all normality liking tests the null hypothesis was rejected,
which means that not every pair of samples has similar average
values.

As it was verified by results showed in Table 5, liking
and disliking results have different averages. Therefore, the
next step is to verify which are the highest causal effects on
liking/disliking of variables video-cluster, age, and gender.
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Table 4. Normality Tests. Meaning of variables is as follows:
V1 = EEG Cluster, V2 = Age, V3 = Gender, V4 = Video
Content Cluster, V5 = Liking, and V6 = Emotional Quadrant.

Exp. # Cause Effect Stat. p-value
Reject

H0?
1 V4 = 0 V5 = 1 0.9912 0.7672 False
2 V4 = 0 V5 = 3 0.9902 0.6901 False
3 V4 = 1 V5 = 1 0.9866 0.4161 False
4 V4 = 1 V5 = 3 0.9901 0.679 False
5 V4 = 2 V5 = 1 0.9907 0.7245 False
6 V4 = 2 V5 = 3 0.9881 0.521 False
7 V4 = 3 V5 = 1 0.9903 0.6963 False
8 V4 = 3 V5 = 3 0.9903 0.6954 False
9 V3 = 0 V5 = 1 0.9827 0.2195 False

10 V3 = 0 V5 = 3 0.986 0.3826 False
11 V3 = 1 V5 = 1 0.989 0.5912 False
12 V3 = 1 V5 = 3 0.9868 0.4325 False
13 V2 = 0 V5 = 1 0.9888 0.578 False
14 V2 = 0 V5 = 3 0.9917 0.806 False
15 V2 = 1 V5 = 1 0.9797 0.1289 False
16 V2 = 1 V5 = 3 0.9945 0.9612 False
17 V4 = 0 V6 = 1 0.9935 0.9209 False
18 V4 = 0 V6 = 2 0.9835 0.2532 False
19 V4 = 0 V6 = 3 0.9941 0.9468 False
20 V4 = 0 V6 = 4 0.9951 0.9774 False
21 V4 = 1 V6 = 1 0.9894 0.6209 False
22 V4 = 1 V6 = 2 0.9898 0.6559 False
23 V4 = 1 V6 = 3 0.9755 0.06128 False
24 V4 = 1 V6 = 4 0.9873 0.4625 False
25 V4 = 2 V6 = 1 0.9865 0.7619 False
26 V4 = 2 V6 = 2 0.9839 0.7456 False
27 V4 = 2 V6 = 3 0.9895 0.2377 False
28 V4 = 2 V6 = 4 0.996 0.234 False
29 V4 = 3 V6 = 1 0.9911 0.7619 False
30 V4 = 3 V6 = 2 0.9909 0.7456 False
31 V4 = 3 V6 = 3 0.9831 0.2377 False
32 V4 = 3 V6 = 4 0.9831 0.234 False
33 V3 = 0 V6 = 1 0.9755 0.06083 False
34 V3 = 0 V6 = 2 0.9895 0.6336 False
35 V3 = 0 V6 = 3 0.9884 0.5467 False
36 V3 = 0 V6 = 4 0.9841 0.2775 False
37 V3 = 1 V6 = 1 0.9778 0.09226 False
38 V3 = 1 V6 = 2 0.9787 0.1081 False
39 V3 = 1 V6 = 3 0.99 0.6744 False
40 V3 = 1 V6 = 4 0.9859 0.374 False
41 V2 = 0 V6 = 1 0.9747 0.05315 False
42 V2 = 0 V6 = 2 0.9821 0.1977 False
43 V2 = 0 V6 = 3 0.9923 0.8499 False
44 V2 = 0 V6 = 4 0.9908 0.7351 False
45 V2 = 1 V6 = 1 0.9789 0.1121 False
46 V2 = 1 V6 = 2 0.9884 0.5477 False
47 V2 = 1 V6 = 3 0.988 0.5139 False
48 V2 = 1 V6 = 4 0.9915 0.7863 False

Those causal effects are presented in Table 6. By analysing
results from Table 6, the following conclusions are drawn:

• All clusters of concepts have a higher causal effect on
not liking (LIKING=0) than on liking (LIKING=1);

• The video dataset had a negative causal impact on fe-
male volunteers (they did not liked the videos);

• The video dataset had a positive causal impact on male
volunteers (they liked the videos);

• Youngest volunteers (AGE=0) were negatively impacted
by videos (they did not liked the videos);

• Oldest volunteers (AGE=1) were positively impacted
by videos (they liked the videos).

• The content of video cluster number 4 caused more
liking than the other clusters.

Overall, the video dataset negatively impacted the liking
of volunteers, and oldest and male volunteers were more posi-
tively impacted than youngest and female volunteers. Table 7
presents results of causal impact of cluster of concepts, gender,
and age on emotional quadrants. As it may be seen, all video
concept clusters had a negative causal impact on the emotional
responses of volunteers. However, the video cluster number 4
caused more positive emotions than the other video clusters.
This result for emotional quadrant is in accordance with the
result for liking. The LV-LA quadrant had the highest causal
impacts. This result is related to the fact already noted about
results presented on Table 6 where it was seen that, in general,
volunteers were negatively affected by video concepts. The
valence-arousal analysis of causal effects on all ages and gen-
der clusters had a highest causal effect on the LV-LA quadrant,
which indicate a high propensity for attenuated (low arousal)
negative emotions (low valence) for all the volunteers when
watching the videos. However, in 3 of 4 cases, the second
highest causal effects for AGE and GENDER occur in HV-LA
quadrant, with the following values: 0.2020 (GENDER=1),
0.1858 (AGE=0), and 0.2020 (AGE=1).

One hypothesis we have to justify is the negative impact
of the video content in liking and emotional responses is that
the contents of the chosen sample were not attractive to the
volunteers. Another hypothesis is related to the fact that the
videos were not obtained from high-quality productions like
Hollywood companies. A great number of videos were pro-
duced by novel companies or by amateur producers. During
the EEG acquisition, some volunteers commented about the
quality of the videos. Anyway, those hypotheses do not in-
validate this research, because the proposed approach can be
replicated by any researcher using other datasets and other
volunteers. Our findings demonstrate the usefulness of the
proposed approach to determine the causal effect of video
content and quality in the liking and emotional responses of
subjects.
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Table 5. Normality Liking Tests
Exp. Number CLUSTER VID GENDER AGE Stat. p-value Reject H0?

P(LIKING — DO(CLUSTER VID))
1 0 - - 8.515 4.353e-15 True
2 1 - - 7.944 1.498e-13 True
3 2 - - 9.966 3.471e-19 True
4 3 - - 8.189 3.317e-14 True

P(LIKING — DO(GENDER))
5 - 0 - 12.52 8.347e-27 True
6 - 1 - 5.03 1.107e-06 True

P(LIKING — DO(AGE))
7 - - 0 9.084 1.151e-16 True
8 - - 1 8.006 1.028e-13 True

Table 6. Liking Tests. In this paper, V5 = Liking, V4 = Video
Content Cluster, V3 = Gender, and V2 = Age.

LIKING=0 LIKING=1
P(V5 | DO(V4 = 0)) 0.3543 0.3162
P(V5 | DO(V4 = 1)) 0.3547 0.3150
P(V5 | DO(V4 = 2)) 0.3548 0.3131
P(V5 | DO(V4 = 3)) 0.3555 0.3170
P(V5 | DO(V3 = 0)) 0.3598 0.3361
P(V5 | DO(V3 = 1)) 0.3040 0.3507
P(V5 | DO(V2 = 0)) 0.3568 0.3271
P(V5 | DO(V2 = 1)) 0.3161 0.3483

Table 7. Emotional Quadrant Tests. From quadrant 1 up to
quadrant 4 we have the following valence-arousal relations,
respectively: HV-HA, HV-LA, LV-LA, LV-LA. Where, the
letters mean: HV = high valence; HA = high arousal; LV =
low valence; LA = low arousal. The meaning of variables in
the Table are: V6 = Emotional Quadrant, V4 = Video Content
Cluster, V3 = Gender, and V2 = Age.

HV-HA HV-LA LV-LA LV-HA
P(V6 | DO(V4 = 1)) 0.1229 0.1836 0.5173 0.1762
P(V6 | DO(V4 = 2)) 0.1198 0.1830 0.5200 0.1772
P(V6 | DO(V4 = 3)) 0.1186 0.1801 0.5209 0.1804
P(V6 | DO(V4 = 4)) 0.1207 0.1867 0.5189 0.1737
P(V6 | DO(V3 = 0)) 0.1360 0.1591 0.5005 0.2044
P(V6 | DO(V3 = 1)) 0.1092 0.2020 0.5333 0.1555
P(V6 | DO(V2 = 0)) 0.1207 0.1858 0.5181 0.1753
P(V6 | DO(V2 = 1)) 0.1215 0.2020 0.5215 0.1814

6. Conclusion
This article presented an approach for drawing causal effect
answers to the problem of emotion elicitation in videos. Two
main theories were employed in this research: video concepts
and causal inference (Do-Calculus). For the videos used in
this research, the obtained results allow to conclude: Although
in general volunteers did not like the videos, it is possible to
say that, in general, men liked and women did not like the
videos. A conclusion about age: youngest volunteers did not
like the videos, but oldest volunteers liked the videos. The
results for valence-arousal quadrants are in accordance with
liking results: the videos may have induced attenuated (low
arousal) negative emotions (low valence) for all volunteers.

One limitation of the proposed method is the necessity of
the expert to design the causal graph. This limitation could
be overcome using causal search methods. Other limitations
of the proposed method are related to experimental condi-
tions, especially the number of volunteers and EEG samples.
Furthermore, the proposed method would be better evalu-
ated using professional high-quality videos instead of amateur
videos.

The proposed approach may be employed to evaluate lik-
ing and emotional elicitation for any video dataset if it has
information about EEG, age, and gender of subjects who
watched the videos. A future work would be to verify whether
there is transportability [39] among EEG datasets. An ap-
plication of transportability would be to verify if the results
obtained using the proposed EEG dataset is transportable to
other datasets like DEAP [1]
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