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1 Introduction

In this short communication, I give a very simple derivation of the Jarzynski
equality [1]

∆F = −β−1 ln
〈

e−βW
〉

, (1)

which allows to compute the free energy difference ∆F = FB − FA of a body,
which is driven between two equilibrium states A and B by an external (time-
dependent) force λ, from the probability distribution function P(W ) of the work
done on the system

W =

∫ tB

tA

∂Ht(x, λ)

∂t
dt =

∫ tB

tA

∂Ht(x, λ)

∂λ
λ̇dt, (2)

regardless of the nature of the transformation (reversible or irreversible) between
the states A and B. Here Ht(x, λ) denotes the full (time-dependent) Hamilto-
nian of the system, which is supposed to be in thermal contact with a heat bath
of temperature T = 1/kBβ, the whole ensemble being isolated, x = (p, q) =
(p1, . . . , pn, q1, . . . , qn) denotes the phase-space point of the system (which is
supposed to have 2n degrees of freedom), and 〈f(W )〉 =

∫

f(W ) P(W ) dW de-
notes an average over the ensemble of realizations of the work W done on the
system (for any “smooth” function f).

There are two parts in this derivation. The first is mathematical and will be
discussed later. The result is the following: let E(x) be the (time-independent)
energy of a body in thermal equilibrium with a heat bath of temperature T .
If its energy can be written in the additive manner E(x) = E0(x) + V (x),
which can always be achieved by making certain very general assumptions, then
one can compute the free energy F of the body (and all the relevant ther-
modynamic quantities) from the only knowledge of the equilibrium Gibbsian
distribution ρ0(x) = Z−1

0 e−βE0(x), where Z0 =
∫

e−βE0(x) dx is the partition
function corresponding to the “unperturbed” energy E0(x) of the body (and to
its “unperturbed” free energy F0 = −β−1 lnZ0).
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The second part of the argument, which relates the perturbation energy V to
the thermodynamical work W done on the system, first in the time-independent
case, and then in the time-dependent case, is physical.

2 Thermodynamic perturbation theory

The fundamental need for perturbation theory runs as follows: for example,
in quantum mechanics, the goal is to compute the eigenvalues λ (the energy
spectrum) and the eigenvectors u (the wave functions) of the (time-dependent
or not) Hamiltonian H(x) of a system, from the eigenvalue equation H(u) =
λu, where H is generally a very complicated differential operator, occasionally
depending on time via some time-dependent energy coupling (due, e.g., to some
external time-dependent force).

However, for evident analytical reasons, the calculus of the eigenvalues λ and
of the eigenvectors u is generally intractable. In order to circumvent this prob-
lem, one generally write (when this is possible) the energy of the system in the
additive manner H(x) = H0(x)+V (x), where H0(x) denotes the “unperturbed”
energy of the system (i.e. the quantity from which one can compute the eigen-
values λ0 and the eigenvectors u0), and V (x) the perturbation energy. Then,
one computes by iteration λ and u from the only knowledge of the“unperturbed”
eigenvalues λ0 and eigenfunctions u0, which are computable [2]. Eventually, the
perturbation energy V (x) can depend on some external force λ, time-dependent
or not (e.g., λ can be an electrical or magnetic field).

The situation is very similar in statistical mechanics: once ones has set
up the Hamiltonian E(x) of the system (which, again, is in thermal contact
with a heat bath of temperature T , the whole ensemble being isolated), the
fundamental problem is to compute the partition funtion Z of the system

Z =

∫

e−βE(x) dx,

where dx = dp dq =
∏

dpi dqi, from which one can compute the free energy F
of the system

F = −β−1 lnZ,

and, e.g., the thermal average energy of the system 〈E〉 = −∂ ln Z
∂β

[3].
Again, these well-known formulas are purely formal, and inapplicable in real-

istic cases, because the energy E(x) of the body is generally a very complicated
function of the coordinates q and momenta p of the “particles” constituting the
body, and the integration over the phase-space cannot be carried out in order
to compute Z [in the quantum case, this calculus is of combinatoric nature,
and requires a counting of the (occasionally degenerate) states |n〉 of the system
via the formula Z =

∑

e−βEn , which also becomes quickly an impossible task].
However, as we will show below, much more can be said about Z, F and 〈E〉,
at least formally.
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Let us first assume that the energy of the body (which, again, is in thermal
contact with a heat bath of temperature T , the whole ensemble being isolated)
is time-independent, and that it can be written in the additive manner

E(x) = E0(x) + V (x), (3)

where “everything” can be calculated from the “unperturbed” energy E0(x) of
the body [the partition function Z0 =

∫

e−βE0(x) dx, the free energy F0 =
−β−1 lnZ0, etc.], but not from its “full” energy E(x). Therefore, the funda-
mental problem is to devise a method to compute, even approximatively, the
partition function Z, the free energy F , etc., corresponding to the “full” energy
E(x) of the system. Indeed, we will show that if Eq. (3) holds, then one can
compute exactly Z and F , without anymore assumptions than Eq. (3), which
relies on the separability of the Hamiltonian of the system, and on thermal
equilibrium.

From these very few assumptions, the algebra is very simple. Let us first
compute the partition function Z =

∫

e−βE(x) dx of the system. From Eq. (3),
one gets

Z = Z0

∫

ρ0(x) e−βV (x) dx = Z0

〈

e−βV
〉

0
, (4)

where ρ0(x) = Z−1
0 e−βE0(x) is the “unperturbed” equilibrium Gibbsian distri-

bution of the system. Therefore, the free energy of the system is given by

F = −β−1 lnZ = F0 − β−1 ln
〈

e−βV
〉

0
. (5)

This result was derived up to the second order [i.e. only with the first two
cumulants of V in Eq. (5)] by Peierls and Bogoliubov, who gave an upper bound
for the free energy F of the system [3] [indeed, Eq. (5) indicates that the “full”
free energy F is merely the cumulants generating function of the perturbation
energy V ]. Our result is much stronger, and looks amazingly similar to the
Jarzynski equality (1).

3 Dynamical interpretation

The preceeding result holds for a time-independent and equilibrium system.
However, provided that the system is initially (say, at time t = 0) at equilibrium,
these results are also true if the energy of the system depend on time through
a time-dependent perturbation energy, which can be due to an external force
λ which is switched on at times t > 0. Therefore, if the energy of the system
reads

Et(x, λ) = E0(x) + Vt(x, λ), (6)

where the time-dependent perturbation energy Vt is only non-zero for times
t > 0, then one trivially has

Ft = F0 − β−1 ln
〈

e−βVt

〉

0
for all t > 0, (7)
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which has exactly the same meaning as Eqs. (4)-(5).
In fact, the perturbation energy Vt can be identified to the work Wt done

on the system on the time interval (0, t) in a very simple way [one simply has
to put tA = 0 and tB = t in Eq. (2), but here B does not necessarily denotes
an equilibrium state]. Since the energy Et of the system depends explicitly on
time only through the external force λ(t), one has by applying the chain rule

dEt(x, λ)

dt
=

∂Et(x, λ)

∂t
=

∂E(x, λ)

∂λ

dλ

dt
.

Therefore, by Eq. (2) one has Wt = Et − E0 = Vt, and one finally gets

Ft = F0 − β−1 ln
〈

e−βWt

〉

0
, (8)

which resembles amazingly the Jarzynski equality (1).

4 Discussion and conclusion

The formula (8) obtained above is not really the Jarzynski equality (1), since the
Jarzynski equality computes the free energy difference of the system from the
work distribution P(W ), which takes into account all the (in principle) nonequi-
librium fluctuations of the work W done on the system during the transfor-
mation between the (equilibrium) states A and B. In our derivation, this is
obviously not the case, since the average 〈·〉 is performed from the equilibrium
Gibbsian distribution ρ0(x) = Z−1

0 e−βE0(x).
However, this slight detail perhaps throws some light on the debate started

by Cohen and coworkers [4], and perhaps explains why all the experiments which
has been performed in order to test the Jarzynski equality are successful, even
in very defavorable (irreversible) cases (and more strikingly, when the state B
is not an equilibrium one) [5].

To conclude, we should add that among the hypotheses needed to the result
(8), the ergodicity of the system is of course required. However, even unrealistic,
this is a rather weak statement, because we only need ergodicity at times t ≤ 0,
that is to say without external (time-dependent) driving force λ.

Acknowledgments — The author thank S. Ciliberto and K. Gawȩdzki for useful
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References

[1] C. Jarzynski, Phys. Rev. Lett. 78 (14), 2690 (1997); see also G. E. Crooks,
J. Stat. Phys. 90 (5-6), 1481 (1997)
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