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M. Impéror-Clerc, P. Davidson, and P. Sotta
Laboratoire de Physique des Solides, Univ. Paris-Sud,

Bâtiment 510, 91405 Orsay Cedex, France

Abstract

The connectivity of the hydrophobic medium in the nonionic binary system

C12EO6/H2O is studied by monitoring the diffusion constants of tracer molecules at

the transition between the hexagonal mesophase and the fluid isotropic phase. The

increase in the transverse diffusion coefficient on approaching the isotropic phase

reveals the proliferation of bridge-like defects connecting the surfactant cylinders.

This suggests that the isotropic phase has a highly connected structure. Indeed, we

find similar diffusion coefficients in the isotropic and cubic bicontinuous phases. The

temperature dependence of the lattice parameter in the hexagonal phase confirms

the change in connectivity close to the hexagonal–isotropic transition. Finally, an

X-ray investigation of the isotropic phase shows that its structure is locally similar

to that of the hexagonal phase.
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1 Introduction

The phase diagram of the C12EO6/H2O system was determined more than 15 years ago

[1]. Since then, extensive studies have focused on the structure of the three mesophases it

exhibits, which are (on increasing surfactant concentration) hexagonal Hα, bicontinuous

cubic V1, and lamellar Lα phases. Their characteristics are by now very well established

[2]. The situation is less clear concerning the organisation of the isotropic phase that

borders all the above-mentioned mesophases at higher temperature. The lack of long-

range order and of optical birefringence prevents the use of common techniques such as

X-ray diffraction or optical microscopy. Therefore, the isotropic phase has been mostly

studied by light scattering and NMR, but the interpretation of experimental data is largely

model-dependent [3, 4, 5, 6, 7].

The isotropic phase in C12EO6/H2O and other related systems has also been studied

by elastic and quasi-elastic neutron scattering [8]. It is suggested from the observed fast

relaxation times that the isotropic phase is formed of small, globular micelles, even in the

vicinity of the hexagonal phase. However, no direct evidence is presented to support this

assertion.

Even at low concentration (c < 30%), the structure of the isotropic phase is not yet

completely clear. Interpretations in terms of small, attractively interacting (clustering)

micelles have been put forward [8, 9, 10, 11]. Other authors, however, claim that micelles

grow in size and become anisotropic with increasing temperature or concentration [4, 12,

13].

It is therefore necessary to use complementary characterisation methods. For instance,

rheological investigations can provide information about the structure of the isotropic

phase [14].

Indirect geometrical information can be obtained by studying the variation of struc-

tural properties of the surfactant aggregates upon crossing a boundary from a liquid

crystalline phase to the isotropic phase. The structure of the former, being better known,

can serve as reference. Furthermore, if the particular property remains unchanged at the

transition, one can assume that the local structure in the higher-temperature phase is

similar in some respect to that in the low-temperature ordered phase.

Such experiments have already been performed at the hexagonal-isotropic transition,
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the loss of hexagonal order upon approaching the transition being monitored by NMR and

optical birefringence methods [15, 16]. These experiments have shown that a significant

fraction of the surfactant molecules form defects near the isotropic liquid, which can be

column ends (with spherical caps) or bridges connecting neighbouring columns (fig.1). It

is clear that the nature of the isotropic liquid will be different depending on the nature of

the defects. Indeed, column ends will give rise to isolated micelles whereas bridges should

rather announce an isotropic liquid formed of cylinders highly connected to each other

and randomly oriented.

In order to discriminate between the two possibilities, we measured the diffusion coeffi-

cients of a hydrophobic probe (tracer molecule) which is dissolved in the lyotropic mixture

(sections 2.1 and 3.1). Indeed, it is reasonable to assume (as demonstrated by the exper-

imental results below) that the tracer is confined to the surfactant cylinders and spends

very little time in water. Hence, its diffusion must give valuable structural information

about the surfactant aggregates, as we have shown in a recent investigation of the lamellar

phase in the C12EO6/H2O system [17]. Two transitions were investigated : the Hα→I at

the azeotropic point of the hexagonal phase (50.0 % C12EO6 weight concentration) and

the V1 → I (concentration 59.0 %). The reason why we chose the azeotropic point for

the first transition is that the mixture behaves like a pure compound at this particular

concentration, i.e. the freezing range vanishes, which allows us to approach the transition

very closely [15].

We also measured very precisely the lattice parameter of the hexagonal phase by X-

ray scattering and obtained additional qualitative information from the X-ray scattering

of the isotropic phase as a function of temperature (sections 2.2 and 3.2). Results are

discussed in section 4 within a numerical model for the diffusion of the probe molecules

which takes into account the lifetime of the defects. Conclusions are drawn in section 5.

2 Experimental

2.1 Diffusion

The surfactant was purchased from Nikko Ltd. and used without further purification. We

used ultrapure water from Fluka. The mixture was carefully homogenized. The samples
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were prepared between two parallel glass plates, with a spacing of 75 µm as described in

detail elsewhere [15]. The hexagonal phase was then oriented by the directional solidifi-

cation technique presented in reference [18]. No orientation procedure was needed for the

cubic phase, the diffusion tensor being isotropic.

We used a hydrophobic fluorescent dye (NBD-dioctylamin) at a concentration of about

0.1 w %. Its presence decreases by ∼ 1 oC the transition temperature Th at the azeotropic

point of the hexagonal phase , but the freezing range remains negligible (about 0.1 oC).

Our method of measuring the diffusion constant is a variant of the technique known

as fluorescence recovery after photobleaching (FRAP). The experimental setup was orig-

inally designed for the study of thin liquid films [19]. We focused the TEM00 mode of a

multimode Ar+-ion laser (total power 70 mW) on the sample, bleaching a spot about 40

µm in diameter. The intensity profile of the beam was approximately Gaussian. Typical

bleaching times were of the order of 5 seconds. About 0.5 oC below the transition tem-

perature the power had to be decreased to around 15 mW to avoid local melting of the

sample. The evolution of the fluorescence intensity profile (proportional to the concen-

tration of non-bleached molecules cn(x, y, t) ) was then monitored for one minute using a

cooled CCD camera (Hamamatsu C4742). It is however easier to write the equations for

the concentration of bleached molecules, c(x, y, t) = ctot − cn(x, y, t). We write the diffu-

sion equation for the hexagonal phase, with D‖ and D⊥ the diffusion constants along and

across the columns, respectively. In the equation for the cubic or isotropic phase, D‖ and

D⊥ both take the same value, DC or DI respectively. The bleaching is considered uniform

through the sample, so the concentration obeys a two-dimensional diffusion equation (in

the plane of the sample); the x axis is along the columns : ex ‖n.

∂c

∂t
= D‖

∂2c

∂x2
+ D⊥

∂2c

∂y2
+ βI0cn (1)

where the source term βI0cn accounts for the bleaching due to the observation light, of

homogenous intensity I0; its effect is negligible so we will ignore it from now on.

The initial concentration profile is :

c(x, y, 0) =
C

a1a2

exp

(

− x2

a1
2
− y2

a2
2

)

(2)

where a1 and a2 are the semi-axes of the initial spot. The time dependence reads :
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c(x, y, t) = C
exp

(

− x2

a1
2+4D‖t

− y2

a2
2+4D⊥t

)

√

(a1
2 + 4D‖t)(a2

2 + 4D⊥t)
(3)

In the hexagonal phase, where the diffusion is anisotropic, the concentration profile is

elliptical. The diffusion coefficients are deduced from the images by fitting a Gaussian

function whose adjustable parameters are the two coordinates of the center, the amplitude

C, the two semi-axes and the angle between the major axis of the ellipse and a given axis

in the plane.

2.2 X-Ray Scattering

High resolution X-ray scattering experiments were performed at the H10 experimental

station at the LURE synchrotron radiation facility in Orsay, France [20]. A wavelength

λ = 0.155 nm was selected by a two crystals monochromator. Harmonic rejection was

obtained by reflection of the X-ray beam on two Rh-covered mirrors. The beam size was

0.5 × 2 mm2. The sample was set at the center of a Huber diffractometer equipped with

a crystal analyzer (Ge 111) . The scattered X-rays were detected with a Bicron point-

detector after reflection on the crystal analyzer. The resolution of the diffractometer

for a 2θ – scan was 0.002 o for the value of 2θ and the FWHM of the direct beam was

equal to 0.005 o in 2θ. For temperature regulation we used a home-made oven and a

computer-driven temperature controller.

Samples were contained in flat glass capillaries of thickness 0.1 mm (Vitro Com Inc.,

Mountain Lakes, New Jersey, U.S.A.). Capillaries were filled with the hexagonal phase

at room temperature by suction using a vacuum pump, as described in detail in reference

[21]. This procedure allows us to obtain very well aligned samples, the surfactant cylinders

being oriented along the capillary long axis by the flow.

In order to investigate the structure of the isotropic phase, X-ray scattering experi-

ments were also performed at the Laboratoire de Physique des Solides using a rotating

anode set-up (Cu Kα, λ = 0.154 nm). The X-ray beam delivered by the anode is punc-

tually focused by two perpendicular curved mirrors coated with a 60 nm nickel layer [21].

The mirrors cut the high energy radiation issued from the anode and a 20 µm nickel foil

filters the Kβ emission line. The beam size on the sample was 0.5 × 0.5 mm2. The X-ray
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intensity at the sample level is about 107 photons/s mm2. The scattered X-rays were

detected on imaging plates and the sample – detection distance was 30 cm. Exposure

times were typically 10 hours in the liquid isotropic phase.

3 Results

3.1 Diffusion

The results for the hexagonal-isotropic transition are presented in figures 2 and 3. Far

below the transition, both D‖ and D⊥ in the hexagonal phase follow Arrhenius laws, with

activation energies of 0.35 eV and 0.75 eV respectively. Starting at T ∼ Th − 5 oC, the

behaviour of D⊥ changes. Its value increases rapidly, departing from the activation law

and reaches 4.1 10−12 m2/s at the transition temperature Th = 38.60 oC. The behaviour

of DI (in the isotropic phase) also fits with an Arrhenius law, giving an activation energy

of 0.65 eV.

Close to the liquid crystal transition temperature we attribute the increase in D⊥

to the proliferation of defects connecting the cylinders and providing passage for the

tracer molecules. The next section presents a detailed and quantitative discussion of this

phenomenon.

In order to confirm this conclusion we measured the diffusion coefficient at the cubic-

isotropic phase transition. This type of experiment has already been performed by Mon-

duzzi and coworkers [22] for the self-diffusion coefficient of surfactant in the ionic system

CPyCl/NaSal/D2O. Using PFG-NMR, they found little or no difference between the dif-

fusion coefficients in the cubic and isotropic phases.

Figure 4 shows our experimental results. The transition temperature is Tc = 38.3 oC.

Within experimental accuracy, no discontinuity was observed at the transition. Since the

diffusion rate is closely related to the local structure of the phase, we can then conclude

that, at least at concentrations of about 60 %, the connectivity of the isotropic phase is

similar to that of the bicontinuous cubic one.
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3.2 X-Ray Scattering

A well oriented sample of the hexagonal phase (50 w% of surfactant) contained in a flat

glass capillary of thickness 100 µm was mounted with a (10) hexagonal Bragg peak in

reflection condition [21]. We performed 2θ–scans of this peak at different temperatures.

One such scan is shown in figure 5. The value of the hexagonal lattice parameter a at a

given temperature is obtained from the position 2θmax of the maximum of the diffraction

peak :

a =
2√
3

d10 =
2√
3

λ

2 sin(θmax)
=

λ√
3 sin(θmax)

(4)

Thanks to the high resolution of the diffractometer, we were able to detect very small

changes (down to 0.002 o) of the value of 2θmax versus temperature. The results are plotted

in figure 6. Far below the transition to the isotropic liquid phase, a increases linearly with

temperature :

a = alin(T ) = (5.9 − 0.0019(Th − T ))nm (5)

The value of the thermal expansion coefficient is
1

a

da

dT
= 3.2 10−4K−1. Its positive sign

accounts for the observation of the zig-zag structure on cooling the hexagonal phase [23].

Near the phase transition, one observes (figure 6) a deviation from the linear temperature

dependence, with an additional increase in a, ∆a = a− alin. This effect is observed in the

range (Th − T ) < 5 oC, in good agreement with birefringence and NMR observations [15]

and the diffusion results.

We performed X-ray scattering measurements on the isotropic phase at the same

surfactant concentration (figure 9). For comparison, we also plotted the first two Bragg

peaks of the hexagonal phase. It is possible to notice that there is practically no shift of

the maximum scattering vector q0 upon crossing the transition temperature (compare the

curves for 37 oC and 40 oC). This indicates that there is little change in the local structure

of the system. Moreover, the fact that the peak in the isotropic phase is narrow and that

a wide shoulder is detectable (corresponding to the second Bragg peak, in position
√

3 as

compared to the first), suggests that local order is preserved, up to a distance d that can

be estimated as :
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d ∼ a
q0

∆q
∼ 4a (6)

where ∆q is the width of the peak (in the isotropic phase) from which we subtract the

experimental resolution, taken as roughly equal to the width of the Bragg peak in the

hexagonal phase [24]. The positional order is maintained up to fourth-neighbours. This

should not surprise us, since we are investigating a very concentrated system.

4 Discussion

In this section, we try to relate the pretransitional evolution of D⊥ to the appearance

of structural defects. Indeed, NMR and birefringence data [15] show that, in the same

temperature range (Th − 5 oC up to Th), the hexagonal order weakens when approaching

the transition. This feature can be explained by considering that an increasing fraction

of surfactant molecules belongs to the defects. These defects may consist either in a

fragmentation of the columns, which become spherically capped cylinders, or in bridges

connecting neighboring columns ( figure 1), as discussed in the Introduction (see also

reference [15]). A possible structure for the latter type of defects has been proposed in

terms of Karcher surfaces connecting columns three by three [25, 26].

4.1 Diffusion

It is clear that connections between cylinders can provide a passage for the tracer molecules,

thus leading to the observed increase in D⊥. The presence of defects of the first type

(capped cylinders) can be ruled out, since it would bring about a decrease in D‖, which

does not appear in our measurements. We will assume in the following that the only

defects present are of the ‘bridge’ type (figure 1 – b). This conclusion is coherent with the

fact that the curvature of the aggregates diminishes with increasing temperature (due to

the decreasing hydration of the nonionic polar groups [27, 28]) which clearly favours the

merging of the cylinders over their breaking up.

Let us now estimate the density of defects ndef (number of defects per unit volume).

In order to do so, we must quantify their role in transverse diffusion by relating ndef to

Ddef = D⊥−Dnorm (where Dnorm is the “normal” behaviour of D⊥, extrapolated from low
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temperature). We shall denote by a ' 6 nm (see figure 6) the parameter of the hexagonal

lattice and let L be the average distance between connections along a cylinder. The

adimensional parameter x = a/L provides a quantitative measure of the defect density,

since ndef = 2
3
√

3a3
x [29]. We shall see in the following that the diffusion contribution of

the defects also depends on their lifetime, τ . Throughout the discussion, we will consider

only the type of defects depicted in figure 1 – b, connecting three neighbouring cylinders.

In the case where the lifetime of the defects is very short compared to the characteristic

diffusion time of the molecules, Ddef can be evaluated analytically. The molecule has a

constant probability x to encounter a defect. Once a defect is reached, the molecule can

either cross it, or continue to move along the cylinder, with equal probability, so that it

will spend (on average) x/2 of its time crossing defects and 1 − x/2 travelling along the

columns. Denoting by z the axis of the cylinders and by ρ the position vector in the

plane orthogonal to z, the presence probability for a particle starting a random walk at

the origin is (time is given in units of t0, the elementary step) :

P (ρ, z, t) = C(t) exp

(

−z2

2a2(1 − x/2)t

)

exp

(

−ρ
2

(4/3)a2(x/2)t

)

(7)

where C(t) is a normalisation factor depending only on the time; the numerical factors

2 and 4/3 are the ones for random walks respectively in 1D and in 2D on a hexagonal

network. Keeping in mind that we are interested not in the density along ρ, but in its

projection on the fixed plane of the sample (which gives an additional factor 1/
√

2 ) we

can estimate the ratio r = Ddef/D‖ as being :

r =
2

3
√

2

x/2

1 − x/2
(8)

In order to check the validity of formula (8), and to investigate the influence of the

defect lifetime, we have performed Monte Carlo numerical simulations. We generate

random walks on a 3D lattice which reproduces the hexagonal structure. The elementary

RW jump is equal to the lattice parameter. In the absence of defects, the particle only

diffuses along axis z. Defects connecting three nearest-neighbour cylinders are introduced

in order to allow transverse diffusion. When a defect is encountered, the particle has a

probability of 1/2 to remain on the same cylinder and equal probabilities 1/4 to jump on

one or the other of the two connected neighbours.
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One elementary RW step defines the unit time in the simulation. Defects have a

lifetime τ which means that, every τ elementary steps, all the defects are erased and

replaced again at random.

Each RW has 104 steps and the probability distribution is averaged over 104 RWs.

The statistics of particle positions gives us the diffusion coefficients both the parallel

(along the z axis) and transversal diffusion coefficients. Their ratio r = Ddef/D‖ is plotted

against x = a/L (figure 8) for different lifetimes τ .

For τ = 1, the defect configuration should be changed at every RW step and the sim-

ulation would require too much time. However, since the defect positions are completely

decorrelated from one step to the other, the solution adopted was to give each particle a

constant probability x of encountering a defect. We see that the dependence r(x) is very

well described by equation (8) (solid line in figure 8).

It is clear from figure 8 that increasing the stability of the defects lessens their efficiency

for tracer diffusion or, in other words, more defects are needed to obtain a given value of

r when τ becomes larger : if for τ = 1 a density x ' 0.25 is needed in order to reach the

value measured just before the transition to the isotropic phase r = Ddef/D‖ = 0.072, for

τ = 10 one already has x ' 0.5.

The dependence of r(x) also changes its character with increasing τ : for τ = 1, r ∼ x

(to leading order), while for frozen-in defects (τ = 104), r ∼ x2. This is because, in order

to jump from a cylinder to the next one at a distance a, the molecule has to diffuse along

z for a distance L :

tjump ∼ a2

Ddef

∼ L2

D‖
=⇒ r =

Ddef

D‖
∼ a2

L2
= x2 (9)

Since the defects are at equilibrium, their density ndef is given by a Boltzmann factor

ndef = n0 exp
(−Edef

kBT

)

(10)

where Edef is the energy of the defect as compared to the perfectly ordered structure.

The fact that the number of defects increases abruptly close to the transition tempera-

ture means that their energy decreases (we will neglect the increase in thermal energy :

kBT ' kBTh in the vicinity of the transition). The simplest assumption is that of a linear

behaviour :
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Edef = α(Th − T ) + E0 (11)

The birefringence and NMR measurements [15] give (by fitting ndef(T )) a value α =

225 kB; our fit for Ddef(T ) (see figure 3) gives α = 180 kB. We can thus consider that

Ddef ∼ ndef , which supports our hypothesis that the defects have very short lifetimes. It

is then justified to use (8) for evaluating the mean distance between connections at the

transition temperature L0 : L0 ' 4a ' 25 nm, in fairly good agreement with results of

reference [15], which gives L0 ' 17 nm. An important consequence is that the density

of defects in the hexagonal phase is large at the transition; the picture of the hexagonal

phase as being formed of infinitely long parallel columns is no longer accurate in these

conditions.

We can thus infer that the isotropic phase above the hexagonal mesophase has a highly

connected structure.

4.2 X-ray scattering

The additional increase in lattice parameter ∆a (figure 6) can also be explained by the

appearance of connections close to the transition. In this paragraph, we derive a very

simple relation between ∆a and the fraction f of surfactant molecules involved in the

connections.

The X-ray peak provides a measure for the parameter of the hexagonal lattice formed

by the surfactant cylinders. If a fraction f of molecules is involved in transversal junctions

between cylinders, a fraction (1 − f) of molecules are still inside the cylinders. Mass

conservation then demands that in a given volume, the total number of cylinders is divided

by 1/(1 − f) and the lattice parameter is multiplied by a factor
1√

1 − f
(because the

cylinders form a 2D hexagonal array). The value of f as a function of temperature is

given by the relation :

a(T ) =
alin(T )√

1 − f
=⇒ f = 1 −

[

alin(T )

a(T )

]2

(12)

where the value alin(T ) is extrapolated from the low-temperature behaviour in the region

near the transition (solid line in 6). From this relation we obtain f(T ), which fits well

with an exponential law, as plotted in figure 7.
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The fact that we find an exponential law for f(T ) for 0 < Th − T < 5 oC is in

agreement with the tracer diffusion results and the NMR and birefringence experiments

[15]. However, we obtain f(Th) = 1.3%, much less than the value of 8% estimated in

reference [15] (and a value of the parameter α ' 100kBT , about half of that given by the

birefringence experiment). This is not very surprising, since it is reasonable to assume

that the connections induce an elastic deformation of the hexagonal lattice, which will

also affect the value of the average lattice parameter a as measured by X-ray scattering.

If such a contribution tends to reduce locally the value of a (the cylinders getting closer

together), then the simple relation (12) underestimates the value of f .

5 Conclusion

The investigation of the C12EO6/H2O system by means of diffusion coefficients measure-

ments and X-ray scattering allowed us to obtain a clearer image of its isotropic phase for

high surfactant concentration (50–60 %). The data was mainly obtained by studying the

pretransitional effects that appear in the hexagonal and bicontinuous cubic mesophases

close to the transition towards the isotropic phase.

The increase of the diffusion coefficient across the cylinders (D⊥) in the hexagonal

phase for a hydrophobic fluorescent dye proves that very mobile defects, consisting in

connections between the cylinders, appear close to the transition.

This information is corroborated by the anomalous increase of the lattice parameter

a in the same temperature range. The X-ray scattering of the isotropic phase shows a

well-defined and fairly narrow peak corresponding to the first Bragg peak in hexagonal

phase.

No detectable jump in diffusion coefficient occurred at thetransition between the cubic

and isotropic phases, showing that the surfactant aggregates in the two phases are very

similar.

We can therefore conclude that, in the concentration range that we investigated, the

isotropic phase of the C12EO6/H2O system is probably composed of very long surfactant

cylinders locally preserving the hexagonal order (even though long-range order is lost),

forming a highly connected and rapidly fluctuating structure.
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FIGURES

Figure 1: Possible structures for defects in the hexagonal phase : a) - capped cylinders; b) -

bridges.
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Figure 2: Diffusion coefficients in the hexagonal and isotropic phases : D‖, D⊥ and DI .
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Figure 3: D⊥ in the hexagonal phase. Error bars are obtained by an average over three different

measures. The straight line represents the extrapolation of low-temperature behaviour. The

solid curve is an exponential fit (see text).
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Figure 5: Profile of the (10) Bragg peak in the hexagonal phase (limited by the experimental
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Figure 8: r = Ddef/D‖ plotted against x = a/L for different defect lifetimes τ .
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Figure 9: X-ray spectrum in the isotropic phase. A scattering profile in the hexagonal phase is

shown for comparison (note the difference in signal intensity).
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