
Leading Guard Digits in Finite-Precision Redundant

Representations

Jean-Michel Muller, Peter Kornerup

To cite this version:

Jean-Michel Muller, Peter Kornerup. Leading Guard Digits in Finite-Precision Redundant
Representations. IEEE Transactions on Computers, Institute of Electrical and Electronics
Engineers, 2006, 55 (5), pp.541-548. <10.1109/TC.2006.79>. <ensl-00000001>

HAL Id: ensl-00000001

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00000001

Submitted on 27 Mar 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-ENS-LYON

https://core.ac.uk/display/52330983?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-ens-lyon.archives-ouvertes.fr/ensl-00000001

Leading Guard Digits in Finite Precision
Redundant Representations

Peter Kornerup, Member, IEEE, and Jean-Michel Muller, Senior Member, IEEE

Abstract—Redundant number representations are generally used to allow constant time additions, based on the fact that only

bounded carry-ripples take place. But, carries may ripple out into positions which may not be needed to represent the final value of the

result and, thus, a certain amount of leading guard digits are needed to correctly determine the result. Also, when cancellation during

subtractions occurs, there may be nonzero digits in positions not needed to represent the result of the calculation. It is shown here that,

for normal redundant digit sets with radix greater than two, a single guard digit is sufficient to determine the value of such an arbitrary

length prefix of leading nonzero digits. This is also the case for the unsigned carry-save representation, whereas two guard digits are

sufficient, and may be necessary, for additions in the binary signed-digit and 2’s complement carry-save representations. Thus, only

the guard digits need to be retained during sequences of additions and subtractions. At suitable points, the guard digits may then be

converted into a single digit, representing the complete prefix.

Index Terms—Redundant representations, leading guard digits, multioperand additions, pseudo overflows.

�

1 INTRODUCTION AND NOTATION

IN hardware realizations of many calculations, a redun-
dant representation of operands is advantageous as it

allows addition and subtraction to be performed in constant

time, independent of the word size. Also, an argument to a

multiplier may be delivered in a redundant representation

as recoding into a higher radix can take place directly from

such a representation. Similarly, it is often not necessary to

convert the result of a multiplication or division to
nonredundant form, as it may have to participate in further

computations. In general, it is preferable to leave inter-

mediate results in redundant form until they eventually

must be converted to a nonredundant representation as the

cost of such conversions is at least logarithmic in the word

size. Observe that, for a redundant representation, there are

no simple (constant time) overflow checks, so a computa-

tion must be planned such that there is no overflow in the
final result. Thus, it is necessary to design circuits with an

appropriate number of digit positions to assure that there is

room for the worst-case situation.

But, redundant representations may have “nonsignifi-

cant” prefix-strings of digits, e.g., binary signed-digit

representations may have prefix strings of the form
�1111 � � � 1 � �11. In many applications (SRT division, elemen-

tary functions with redundant remainder), we need

information on the partial remainder (either its approximate

value, its sign, or knowing it is small) from a small window

of digits, without converting it to nonredundant form. Very

often a bound on the result of a computation is known and

there is no need to use more leading digit positions (guard

digits) than absolutely necessary to identify the value of

such a prefix string and, thus, the value of the number

represented. As an example, in the SRT division algorithm

as introduced by Atkins in [1], employing remainder

updating in a redundant representation, the digit selection

is based on some leading digits of the remainder whose

value is known to be bounded, but obtained by an effective

subtraction with cancellation. In an implementation, a

sufficient amount of such guard digits must be maintained

for a correct digit selection to be possible. In a radix 2k SRT

divider, due to cancellation at least k leading digits of value

zero are generated, but they are not necessarily represented

by zero-digits. Also, in “shift-and-add” type of elementary

function evaluations based on redundant “remainders,”

there is a similar need for considering a minimal amount of

leading guard digits, e.g., as in [4, Section 5.3].

Here, we analyze the minimal number of guard digits

needed to be able to determine the value of a redundantly

represented number for which a bound on its value is

known. Given such a bound, together with the number of

digits needed to represent such bounded values, it is

possible to obtain a small bound on the value represented

by any additional prefix string of digits present in the

redundant representation. It is then shown that this prefix

value can always be determined by a few of the least

significant digits of the prefix string, these being the guard

digits. It is shown that, for contiguous digit sets with digits

of absolute value less than or equal to the base � � 3, a

single guard digit is sufficient, which is also the case for the

(unsigned) carry-save representation, but that two guard

digits are sufficient and may be necessary for binary signed-

digit and 2’s complement carry-save representations.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 5, MAY 2006 541

. P. Kornerup is with the Department of Mathematics and Computer
Science, University of Southern Denmark, Campusvej 55, DK-5230
Odense, Denmark. E-mail: kornerup@imada.sdu.dk.

. J.-M. Muller is with the Laboratoire LIP/Arenaire, ENS Lyon, 46 Allee
d’Italie, F-69364 Lyon Cedex 07, France.
E-mail: Jean-Michel.Muller@ens-lyon.fr.

Manuscript received 17 Mar. 2005; revised 4 Sept. 2005; accepted 21 Nov.
2005; published online 22 Mar. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0081-0305.

0018-9340/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

The present work was initiated in continuation of an

analysis of the digit selection process in SRT division as

presented in [3]. Previous work includes [7], presenting

digit-sequential algorithms for detecting “real overflow”

and correcting for “nonreal” (pseudo) overflow in signed-

digit number systems. While discussing the use of carry-

save representations in signal processing, [6] considers the

problem of converting prefix strings in 2’s complement

carry-save representations and provides simple constant

time conversions and [8] similarly describes a necessary

correction in the instance of adding two signed-digit

numbers. We shall return to the two latter results.

Below, we shall briefly introduce our notation for radix

polynomials and Section 2 will contain a fundamental

lemma and results where a single guard digit turns out to

be sufficient. Sections 3 and 4 deal with the binary borrow-

save (signed-digit) representation and the more complex

case of carry-save 2’s complement, where two guard digits

are needed. Section 4 finally discusses the results and

presents the conclusions.

1.1 Notation

In this paper, we will use a somewhat formal notation of

radix polynomials as representations of numbers, to be

distinguishable from the values represented. Given an

integer radix or base �, j�j � 2, a radix � polynomial is an

expression of the form:

P ¼
Xm
i¼‘

di½��i; ð1Þ

where the digits di are integers, di 2 ZZ, belonging to some

digit set D which is finite and such that 0 2 D. The square

brackets ½ � around � are used to distinguish the radix

polynomial P in (1) from its real value, which is denoted

kPk, and can be expressed as:

kPk ¼
Xm
i¼‘

di�
i: ð2Þ

This allows us to discuss different representations of the

same number or value. The representations (1) are assumed to

have a finite number of terms, hence their values (2) are

rational numbers. In the examples, we will also use string

representations, using ordinary symbols for digit values,

including the overbar to denote negative digit values.

Discussing radix representations, the base � will remain

fixed and we will denote the set of base � radix polynomials

over some digit set D by P½�;D�, i.e.:

P½�;D� ¼
Xm
i¼‘

di½��i j di 2 D; ‘ � m 2 ZZ

()
:

Also define the fixed point radix polynomials as a set of the

form:

F ‘;m½�;D� ¼ P ¼
Xm
i¼‘

di½��i j P 2 P½�;D�
()

for some fixed, system defined, values of ‘ and m, ‘ � m.

Similarly, we may define the 2’s complement systems by

F 2c
‘;m½2; f�1; 0; 1g� ¼

�
P ¼

Xmþ1

i¼‘
di½2�i

j di�0 for i ¼ ‘; ‘þ 1; � � � ;m and dmþ1¼�dm
�
;

where the digit dmþ1 is not represented in hardware

realizations as its value can be derived from dm. But, it is

convenient to include it here for the analysis because it

allows us to determine the value kPk of a 2’s complement

polynomial P as for any other radix polynomial. Thus,

kPk ¼ dmþ12mþ1 þ
Xm
i¼‘

di2
i ¼

Xm�1

i¼‘
di2

i � dm2m;

with range �2m � kPk � 2m � 2‘.
In the following, we shall, in particular, look at the

redundant 2’s complement carry-save polynomials defined as

the set

F 2c
‘;m½2; f�2;�1; 0; 1; 2g� ¼

�
P ¼

Xmþ1

i¼‘
di½2�i

jdi�0 for i ¼ ‘; ‘þ 1; � � � ;m and dmþ1¼�dm
�
;

for which the value of P belonging toF 2c
‘;m½2; f�2;�1; 0; 1; 2g�

may similarly be determined by

kPk ¼
Xm�1

i¼‘
di2

i � dm2m;

with range �2mþ1 � kPk � 2ð2m � 2‘Þ.

2 ADDITION IN REDUNDANT DIGIT SETS

Addition in F ‘;m½�;D� is not a closed operation in such a

finite system, so precautions have to be taken if the result is

not representable. Most often the basic integer addition

operation of a computer does not notify the user in case of

such an overflow situation, the system just discards digits

(carry-outs) that cannot be represented and, thus, the

computer implements a modular addition ðaþ bÞmod �m.
It is obvious that if the digit set D is nonredundant for

the base �, then, for addition in F ‘;m½�;D�, any nonzero

digit generated in position k with k > m is a signal that the

result is not representable. Thus, the carry generated in

position m directly acts as an overflow signal. For addition

in the nonredundant 2’s complement system, the situation

is different since position mþ 1 in practice is not included

in the representation. However, overflow can be detected

when the carry-in to position m is different from the carry-

out of that position.
If D is redundant for base �, the situation is more

complicated. First, notice that if the value of the carry

generated in the most significant position m is zero, then

certainly the result is representable in F ‘;m½�;D�, but a

nonzero carry does not necessarily imply that an overflow

situation has arisen.

542 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 5, MAY 2006

Example 1. Consider the following addition in

F 0;4½2; f�1; 0; 1g�:

and note that the value of the result is actually

representable in the system.

As the example indicates, a signaling of overflow must

take at least Oðlogðm� ‘ÞÞ time, hence the advantage of

constant time addition is lost if it is necessary to test for

overflow following each addition. Fortunately, this may not

be necessary in a composite computation when the result is

known to satisfy a certain bound as long as a sufficient

amount of leading guard digits are carried along in the

computation to avoid loss of any significant information.

Hence, with a little planning, overflow testing and,

possibly, scaling of the result can be postponed until a

conversion into a nonredundant representation may be

needed anyway.
Since a number representation in a redundant digit set

may have a prefix string of nonzero digits which can be

reduced (e.g., 1�11 � 01 in signed-digit base 2), it may be

necessary to be aware of the presence of such strings. It is

well-known that up to two additional leading digits may be

generated in such a redundant addition (one in the case of

radix � � 3 with digit set D ¼ fd j �� � �s � d � s � �g,
where 2s � � þ 1, using Avizienis algorithm [2]). Fortu-

nately, the value represented by such a prefix string is

always bounded:

Lemma 1. Let P 2 P½�;D� with D be a digit set of the form

D ¼ fd j �� � r � d � s � �g, s� rþ 1 ¼ � þ �, where

the redundancy index 1 � � � � þ 1, and such that the value

of P is representable in F ‘;m½�;D�:

r
�mþ1 � �‘
� � 1

� kPk � s �
mþ1 � �‘
� � 1

:

Then, with Q and R defined by P ¼ Q½��mþ1 þR, the

absolute value of Q satisfies:

jkQkj < 1þ �

� � 1

and, thus, if � � � � 1, it follows that jkQkj � 1 and, for

� � 3, the bound is jkQkj � 2 when � 2 f�; � þ 1g.
Proof. From the definition of Q, we have

kPk ¼ kQk�mþ1 þ kRk, hence

r
�mþ1 � �‘
� � 1

� kRk � kQk�mþ1

� s �
mþ1 � �‘
� � 1

� kRk:

But, R 2 F ‘;m½�;D� implies r �
mþ1��‘
��1 � kRk � 0 and

s �
mþ1��‘
��1 � kRk � 0, then

jkQk�mþ1j � ðs� rÞ�
mþ1 � �‘
� � 1

¼ ð� � 1þ �Þ�
mþ1 � �‘
� � 1

< 1þ �

� � 1

� �
�mþ1;

from which the results follow, noting that kQk is
integral. tu
Observe that only in the extreme cases of � ¼ � or � ¼

� þ 1 for � ¼ 2 is it possible that jkQkj � 2, with a maximal
bound of 3 obtained. This can be confirmed with
D ¼ f�2;�1; 0; 1; 2g, so � ¼ 3, with kQk ¼ 3 in the example
11�22�222 ¼ 610 ¼ 00222. Later we shall discuss this digit set
used in 2’s complement carry-save representation. Note
also that the situation where � � � � 1 includes cases with
nonunique zero representation, i.e., where � (and/or ��) is
a member of the digit set.

Theorem 2. For � � 3, let P ¼
Pmþk

i¼‘ di½��i 2 F ‘;mþk½�;D�,
k � 1, be a polynomial whose value kPk is representable in

F ‘;m½�;D�, with digit set D ¼ fd j �� � r � d � s � �g,
s� rþ 1 ¼ � þ � with redundancy index 1 � � � � þ 1.

Let Q be the prefix of P defined by P ¼ Q½��mþ1 þR, then,

for 1 � � � � � 1, the value of kQk is bounded by jkQkj �
1 and, for � 2 f�; � þ 1g, the bound is jkQkj � 2. In both

cases, kPk can be uniquely determined by the relation

kQk � dmþ1 ðmod �Þ, where dmþ1 is the (guard) digit of P

with weight �mþ1.

Thus, conversion of P 2 F ‘;mþk½�;D�, k � 2 into P 0 2
F ‘;mþ1½�;D� with kP 0k ¼ kPk can be performed in constant

time, exclusively based on converting the value of the single

guard digit dmþ1 into the value of Q and discarding all higher

order terms.

Proof. Follows trivially from Lemma 1 since kQk 2
f�1; 0; 1g implies that the only permissible values
of dmþ1 are ��;�� þ 1;�1; 0; 1; � � 1; �, and, for
kQk 2 f�2; 2g, the values are �� þ 2;�2; 2; � � 2 since
kQk � dmþ1 ðmod �Þ. tu

The theorem shows that, for � � 3, one leading guard digit is
sufficient to assure that the value ofQ and, hence, kPk can be
identified. Note that, for � ¼ 2, then 1 and�1 fall in the same
residue class, hence the result does not apply. When kQk �
dmþ1 ðmod �Þ with jkQkj � 1, then kQk is equal to the new
digit d0mþ1 of weight �mþ1, where d0mþ1 can be expressed as

d0mþ1 ¼ kQk ¼
�1 if dmþ1 ¼ � � 1

dmþ1 if dmþ1 2 f�1; 0; 1g
1 if dmþ1 ¼ � þ 1;

8<
:

mapping the guard digit dmþ1 into the set f�1; 0; 1g. For
� 2 f�; � þ 1g, when kQk ¼ 	2, then, similarly,

d0mþ1 ¼ kQk ¼
2 if dmþ1 2 f�� þ 2; 2g
�2 if dmþ1 2 f�2; � � 2g:

�

Note that the important cases of redundant binary
representations fall in the class where kQkj j � 2, here we
shall see in the next section that two guard digits may be
needed.

KORNERUP AND MULLER: LEADING GUARD DIGITS IN FINITE PRECISION REDUNDANT REPRESENTATIONS 543

3 REDUNDANT BINARY REPRESENTATIONS

There are two particularly interesting redundant represen-

tations for � ¼ 2, the borrow-save, and the 2’s complement

carry-save representations, but we will first briefly consider

the unsigned carry-save representation, only capable of

representing nonnegative numbers.

Theorem 3. Let P ¼
Pmþk

i¼‘ di½2�i 2 P½2; f0; 1; 2g� for k � 1 be a

polynomial whose value kPk is representable in

F ‘;m½2; f0; 1; 2g�. With Q defined by P ¼ Q½2�mþ1 þR, then

Q is either the zero polynomial or the polynomial Q ¼ 1 � ½2�0.

In the last case, dm must be zero since the value kPk is

representable, hence the polynomial can be rewritten by

changing dm into d0m ¼ 2 and discarding all higher order

digits.

Note that this result does not cover the 2’s complement

carry-save representation; we shall see later (Theorem 6)

that two guard digits are sufficient and may be necessary, to

determine the value of the prefix Q. Also, for the borrow-

save (signed-digit) representations, two guard digits turn

out to be sufficient.

3.1 Borrow-Save Representation

We will first show that two guard digits are necessary and

sufficient to determine the value of Q in the case of signed-

digit, base 2 (borrow-save) representation:

Theorem 4 (Guard digits for borrow-save). Let P ¼Pmþk
i¼‘ di½2�i 2 P½2; f�1; 0; 1g� for some k � 2 be a

borrow-save polynomial whose value kPk is representable

in F ‘;m½2; f�1; 0; 1g�. With prefix Q defined by

P ¼ Q½2�mþ1 þR, then the value of Q satisfies kQk 2
f�1; 0; 1g and can be determined by:

kQk � ð2dmþ2 þ dmþ1Þ ðmod 4Þ
and kQk 2 f�1; 0; 1g:

Thus, two guard digits are sufficient to determine kQk, but

two guard digits are also necessary unless the sign of the value

is known.

Proof. By Lemma 1, for � ¼ 1, jkQkj � 1. Let S be defined by

Q ¼ S½2�2 þ dmþ2½2� þ dmþ1, then again, by the lemma,

kSk 2 f�1; 0; 1g a n d kQk ¼ kSk � 4þ dmþ2 � 2þ dmþ1,

hence, the result. To distinguish dmþ2dmþ1 ¼ 01 from

dmþ2dmþ1 ¼ �111, obviously two guard digits are needed,

unless the sign of the value is known. tu

Note that the conversion of the two guard digits could

also be found by applying Theorem 2 for � ¼ 4 by

considering the digit pair dmþ2dmþ1 as an encoding of a

base-4 digit. The value kQk of Theorem 4, equal to the

converted guard digit d0mþ1, can also be expressed as

kQk¼�1 , ðdmþ2 6¼ 0 ^ dmþ1¼1Þ
_ðdmþ2¼0 ^ dmþ1¼�1Þ

kQk ¼ 0 , dmþ1¼0
kQk ¼ 1 , ðdmþ2 6¼ 0 ^ dmþ1¼�1Þ

_ðdmþ2¼0 ^ dmþ1¼1Þ;

or by this simple rule: Just negate the value of the digit dmþ1

if dmþ2 is nonzero and then discard all digits of weight

higher than 2mþ1, leaving only one guard digit.
We would also like to eliminate that guard digit, i.e.,

convert it into F ‘;m½2; f�1; 0; 1g�, but, in general, this is not

possible in constant time, as evident from Example 1 when

dm ¼ 0, where logarithmic time is needed for such a

rewriting. Hence, one may as well convert the polynomial

into a nonredundant representation, in this case, probably

into standard 2’s complement.

Corollary 5. Under the conditions of Theorem 4, for the case

k ¼ 2 of the addition of two borrow-save polynomials, the

resulting polynomial P ¼
Pmþ2

i¼‘ di½2�i can be converted into

P 0 ¼
Pmþ1

i¼‘ d0i½2�
i 2 F ‘;mþ1½2; f�1; 0; 1g� in constant time,

where

d0i ¼ di for ‘ � i � m

d0mþ1 ¼
dmþ1 if dnþ2 ¼ 0

dmþ2 otherwise:

�

This special case was stated without proof in [8] for

correcting the output of a single signed-digit 4-to-2 adder,

employing a selector on the output of the most significant

adder. Alternatively, otherwise, in the case set,

d0mþ1 ¼ �dmþ1, using the above rule.
Note that these results imply that, in a multioperand

addition, e.g., a tree structured adder, it is sufficient to

perform the additions with two guard digits and only apply

the correction in the final stage, leaving one guard digit,

then possibly followed by a conversion into a nonredun-

dant representation. There is no need to perform corrections

in each addition.
Two guard digits can always be reduced to one if needed

for reduced operand width, e.g., for use as a Booth recoded

operand in a multiplication or, in general, when a

redundant value may be used directly for some further

calculations.

3.2 Two’s Complement Carry-Save Representation

The combination of a redundant digit set with a radix-

complement representation has turned out to be very

useful for the case of radix 2, in the form of the

2’s complement carry-save systems. Formally, the system

is F 2c
‘;m½2; f�2;�1; 0; 1; 2g� with the restriction that negative

digits are only allowed in position mþ 1 and only such that

dmþ1 ¼ �dm, i.e., dmþ1 2 f�2;�1; 0g. In practice, the digit

dmþ1 is not included in machine representations, hence, to

illustrate some of the peculiarities, let us look at an example:

Example 2. The set F 2c
0;2½2; f�2;�1; 0; 1; 2g� of three-digit,

carry-save 2’s complement integers and their (redun-

dant) representations, without the presence of the

leading nonpositive digit d3 of value d3 ¼ �d2, is:

544 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 5, MAY 2006

Note that the sign of a number cannot be determined
by the initial digit when it has the value 1 and also that
zero is not uniquely represented.

But, the system is a subset of F ‘;mþ1½2; f�2;�1; 0; 1; 2g�,
hence we can apply Lemma 1 since restricting the use of
some of the digits cannot increase the bound on the prefix
kQk, which turns out to be jkQkj � 3 since � ¼ 3. Observe,
however, that this does not take the restrictions on the use
of negative digits into account.

To be specific about the carry-save addition, we will
describe it using three addition mappings

�: f0; 1; 2g
 f0; 1; 2g ! f0; 1; 2g
 f0; 1g;
�: f0; 1; 2g
 f0; 1g ! f0; 1g
 f0; 1g;

and �: f0; 1g
 f0; 1g ! f0g
 f0; 1; 2g, as described in
Table 1, tables �, �, and �, each specifying the output as a
tuple cs, where c is the carry and s is the “place value.”

Example 3. Adding 6 and 0 in some of the nonzero
representations of zero in, respectivel, a 3, a 4, and a
5-digit system using the carry-save addition tables of
Table 1 yields:

where the left-most digits are not part of the actual
computation in the bounded length registers, but shown
to illustrate the correct computation, and, hence, where
the bounded length computations fail.

Note that the value 6 is representable in the 3-digit
system, but only in the form 022, not in the form 110. If
position mþ 1 is included, it is easy to see that all results
correctly represent the sum 6; however, only in the 5-digit
system is the result in F 2c

‘;m½2; f�2;�1; 0; 1; 2g� and only in
this system is the string without the leading nonpositive
digit a correct representation of the value 6. Note that it is
not possible from the leading digit values to determine the
sign of the number in this representation. The prefix

string �1112 is just another representation of zero and the
example illustrates that such leading guard digits must
be included if the computation is performed without the
digits in position mþ 1. Also note that the guard digits
must be beyond all possible representations of the value,
excluding prefixes of value zero, which is equivalent to
saying that the guard digits must be beyond those
needed to represent the value in nonredundant 2’s
complement.

The observations in the example tell us that it may be

necessary with two guard digits, but this also turns out to

be sufficient, as shown below.

Theorem 6 (Guard digits for 2’s complement carry-save).

Let P ¼
Pmþkþ1

i¼‘ di½2�i2F 2c
‘;mþk½2; f�2;�1;0;1;2g� k > 2, be a 2’s

complement carry-save polynomial whose value is represen-

table nonredundantly in F 2c
‘;m½2; f�1; 0; 1g�. Let Q 2

F 2c
0;k�1½2; f�2;�1; 0; 1; 2g� be the prefix of P defined by

P ¼ Q ½2�mþ1 þ
Pm

i¼‘ di½2�
i. Then, the value of Q can be

determined by solving:

kQk � 2dmþ2 þ dmþ1 ðmod 4Þ
and kQk 2 f�2;�1; 0g

ð3Þ

and the polynomial

P 0 ¼ kQk ½2�mþ2 � kQk ½2�mþ1 þ
Xm
i¼‘

di½2�i;

with a single guard digit d0mþ1¼�kQk2f0; 1; 2g has the same

value as P .

Hence, two leading guard digits are sufficient to convert the

representation of P into P 0 2 F 2c
‘;mþ1½2; f�2;�1; 0; 1; 2g�,

where the conversion can be performed in constant time by a

simple rewriting of the guard digits.

Proof. By Lemma 1, jkQkj � 3, but, since

P 2 F 2c
‘;m½2; f�1; 0; 1g�,

jkQkj2mþ1 � jkPkj þ
Xm
i¼‘

di2
i

�����
�����

< 2m þ 2mþ2;

KORNERUP AND MULLER: LEADING GUARD DIGITS IN FINITE PRECISION REDUNDANT REPRESENTATIONS 545

TABLE 1
“Carry Save” Addition Tables

for di 2 f0; 1; 2g, and, since kQk must be nonpositive,

necessarily kQk 2 f�2;�1; 0g. Let S be defined as the

prefix of Q defined by Q ¼ S ½2�2 þ dmþ2½2� þ dmþ1,

then kSk 2 f�1; 0; 1g and kQk ¼ 4kSk þ 2dmþ2 þ dmþ1,

thus (3) holds. Hence, P can be represented in

F 2c
‘;mþ1½2; f�2;�1; 0; 1; 2g� by a simple rewriting of the

digits dmþ2 and dmþ1 such that d0mþ2 ¼ kQk ¼ �d0mþ1. tu
Note that it is not possible just to prepend the value of kQk

as a digit in the set f�2;�1; 0g to the string dmdm�1 � � � d‘ to

obtain a polynomial in F 2c
‘;m½2; f�2;�1; 0; 1; 2g� as this may

violate the rule that dmþ1 ¼ �dm. And, as we shall see

below, a rewriting may require a change arbitrarily far to

the right. Recall that it is required that the value kPk is

representable in nonredundant 2’s complement, hence

�2m � kPk � 2m � 2‘ or

� 2m � kPk ¼ kQk � 2mþ1 þ dm2m þ
Xm�1

i¼‘
di2

i < 2m: ð4Þ

If kQk ¼ 0, then kPk must be nonnegative, hence changing

the left bound to zero, then

0 � dm2m þ
Xm�1

i¼‘
di2

i < 2m;

and, thus, dm must be zero. For kQk ¼ �2, where kPk < 0, it

follows similarly from (4) by changing the upper bound that

3 � 2m � dm2m þ
Xm�1

i¼‘
di2

i < 2mþ2;

which implies that 2 � dm < 4, hence dm ¼ 2. Thus, for

kQk ¼ 0;�2, we have the correct value of dm, but this is not

always the case for kQk ¼ �1, where the sign of kPk cannot be

determined from that of kQk. But, �2m�kPk � 2ð2m�1�2‘Þ,
so

� 2m��2mþ1 þ ð2dmþ dm�1Þ2m�1þ
Xm�2

i¼‘
di2

i <2m;

where 0 �
Pm�2

i¼‘ di2
i < 2m, hence kQk ¼ �1 implies

1 � 2dm þ dm�1 � 5. Now, there are three possible values

of dm, where dm ¼ 1 satisfies dm ¼ �kQk, dm ¼ 2 is possible

since this combination is equivalent to dmþ1 ¼ dm ¼ 0, and,

finally, dm ¼ 0 is possible, together with dm�1 ¼ 1 or 2. The

combination dmdm�1 ¼ 02 can easily be changed into

dmdm�1 ¼ 10 and dmdm�1 ¼ 01 is possible provided that

dm�1 ¼ � � � ¼ djþ1 ¼ 1, with dj ¼ 2 for some j � ‘, because

the string representation can then be changed into
�11100 � � � 0dj�1 � � � d‘ representing the same value. However,

this would require an arbitrary “look-ahead” into the

trailing set of digits, which cannot be done in constant time.
To complete the picture, we will now show that, for

kQk ¼ �1, if dmdm�1 ¼ 01 there is such an integer j,

‘ � j � m� 1, where dm�1 ¼ � � � ¼ djþ1 ¼ 1 with dj ¼ 2.

From the bounds above, we have

2m �
Xm�1

jþ1

2i þ dj2j þ
Xj�1

i¼‘
di2

i:

Now, assume there is no such j, i.e., di 2 f0; 1g for

i ¼ m� 1;m� 2; � � � ; ‘. Then, there is a contradiction since

the right-hand side of the inequality then has a value strictly

smaller than 2m. Hence, there must be such a dj ¼ 2

following the sequence of ones such that dj ¼ 0 would

make the right-hand side even smaller.
We must then conclude that there is no constant time

algorithm, mapping such a result with guard digits into the

set F 2c
‘;m½2; f�2;�1; 0; 1; 2g�. For practical purposes, the two

guard digits should be retained during further computa-

tions until the result is to be mapped into a nonredundant

representation.

Corollary 7. Provided that the result of a computation performed

in 2’s complement, carry-save arithmetic is representable in

ordinary nonredundant 2’s complement representation in

F 2c
‘;m½2; f�1; 0; 1g�, then it is sufficient to express the result

with two guard digits as a carry-save number in

F 2c
‘;mþ2½2; f�2;�1; 0; 1; 2g�, i.e., without the digits in position

mþ 3 and higher.

It is then possible in constant time to rewrite the

guard digits such that the result is a correct

polynomial P in 2’s complement, carry-save representa-

tion with P ¼
Pmþ2

i¼‘ di½2�i 2 F 2c
‘;mþ1½2; f�2;�1; 0; 1; 2g�,

satisfying dmþ1 ¼ �dmþ2.

Conversion to remove both guard digits, i.e., mapping into

the set F 2c
‘;m½2; f�2;�1; 0; 1; 2g�, will, in general, require at

least logarithmic time, i.e., time proportional to that required

for conversion into nonredundant representation in

F 2c
‘;m½2; f�1; 0; 1g�.

Conversion of the two guard digits into a single digit

can, of course, be expressed in binary logic. We will here

assume that a carry-save digit di is encoded as a bit pair

ðci; siÞ such that the value of the digit di is the arithmetic

sum of ci and si. The following two results were stated

without proofs in [6].

Corollary 8. The 2’s complement polynomial

P ¼
Pmþkþ1

i¼‘ di½2�i 2 F 2c
‘;mþk½2; f�2;�1; 0; 1; 2g�, k > 2,

satisfying Theorem 6 can be converted into the 2’s complement

polynomial

P 0 ¼ �d0mþ1½2�
mþ2 þ d0mþ1½2�

mþ1 þ
Xm
i¼‘

d0i½2�
i

i n F 2c
‘;mþ1½2; f�2;�1; 0; 1; 2g�, w h e r e d0i ¼ di f o r

i ¼ ‘; ‘þ 1; � � � ;m, and the rewritten digit d0mþ1 is the

arithmetic sum of c0mþ1 and s0mþ1, as given by

s0mþ1 ¼ smþ1 � ðcmþ2 � smþ2Þ
c0mþ1 ¼ cmþ1 � ðcmþ2 � smþ2Þ;

ð5Þ

where dmþ1 � ðcmþ1; smþ1Þ and dmþ2 � ðcmþ2; smþ2Þ.
Proof. Follows easily from the following table, expressing

the relations between the values of kQk, kSk and the

guard digits from the proof of Theorem 6,

546 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 5, MAY 2006

using the appropriate encodings of the digits. tu
Noll in [6] and Noll and De Man in [5] also provide a

simplification in the case of a single 3-to-2 carry-save

addition, as realized by an array of full-adders, showing a

slightly modified (transistorized) full-adder, capable in a

single most-significant guard digit position of performing

the addition as well as the conversion. For completeness,

here, we will restate and also prove his result.

Corollary 9. Provided that the result of adding three non-

redundant 2’s complement numbers is representable in

ordinary nonredundant 2’s complement representation in

F 2c
‘;m½2; f�1; 0; 1g�, the result can be calculated by an array

of full adders, with the result represented as a carry-save, 2’s

complement polynomial

P 0 ¼ �d0mþ1½2�
mþ2 þ d0mþ1½2�

mþ1 þ
Xm
i¼‘

di½2�i;

employing a single guard digit position (modified) full-adder

producing the guard digit d0mþ1.

Let the result of an unmodified guard digit adder in position

mþ 1 be the pair ðcmþ2; smþ1Þ and let cmþ1 be the carry

coming in from the adder in position m. Then, the encoding of

the modified guard digit d0mþ1 � ðc0mþ1; s
0
mþ1Þ can be calcu-

lated by the modified adder in guard position mþ 1 as

s0mþ1 ¼ smþ1 � ðcmþ1 � cmþ2Þ
c0mþ1 ¼ cmþ2:

ð6Þ

Note. Noll [6] and Noll and De Man [5] present a full-adder

and a slightly modified version calculating s0mþ1 instead

of smþ1. It avoids the overhead of (6), by using the adder

operands directly, together with cmþ1. Their full-adder is

based on the expression s ¼ xyzþ �ccðxþ yþ zÞ, where

c ¼ xyþ xzþ yz is the carry-out, and the modified adder

calculates s00 ¼ xyzþ �cc00ðxþ yþ zÞ with c00 the carry-out

from the previous position. This expression for s00 is

equivalent to (6), except for some “dont-care” situations

corresponding to real overflows. By using the modified

adder in position mþ 1, then (6) can be calculated at

practically the same cost in area and time.

Proof. Assume for the proof, initially, that the operands as

well as the result are representable and that two guard

digits are present in operands as well as in the output of

a standard full-adder array and that the operands, say X,

Y , and Z, are sign-extended into position mþ 2. Then,

the addition can be described in digit string notation as:

Due to the sign-extension of operands xmþ2 ¼ xmþ1,

then ymþ2 ¼ ymþ1 and zmþ2 ¼ zmþ1, thus smþ2 ¼ smþ1.
Inserting the latter identity in (5) and interchanging the

role of c0mþ1 and s0mþ1, then (6) follows and, thus, a single

guard digit adder is sufficient. Implicitly, we have here

assumed that the operands are representable in

F 2c
‘;m½2; f�1; 0; 1g�. However, it is easily seen that if

constants CX;CY and CZ , satisfying CX þ CY þ CZ ¼ 0,

are added to X, Y , and Z, respectively, the result would

be the same. tu

4 CONCLUSIONS

Given bounds on the result of a composite, additive fixed-

point computation using a redundant number representa-

tion, it has been shown that it is sufficient to perform the

operations with one or two leading guard digits, beyond

those needed to represent the result. It is always possible in

constant time to rewrite the leading digits of the result such

that a single guard digit is sufficient. However, it has been

shown for sign-digit and 2’s complement carry-save

representations that it may take at least logarithmic time

to rewrite the result such that it contains no guard digits at

all. Hence, removal of the leading guard digits should be

postponed until the result anyway has to be converted to a

nonredundant representation.

The results assure that, in binary multioperand addition

or many other computations, it is sufficient to use one or

two leading guard digits beyond the digits needed to

represent the result, even in the case that the result is known

to have fewer digits than the operands. And, in the case of the

summation of k operands, when nothing in particular is

known about these, it is sufficient with the guard digits

beyond the at most log� k extra digits needed to accom-

modate the worst-case growth of the sum compared to the

operands.

Specific instances of the results presented in this paper

must be well-known to anyone who has implemented

systems employing redundant representations, like signed-

digit and 2’s complement carry-save, since such considera-

tions seem unavoidable in many applications. Beyond the

specific instances discussed in [6], [7], [8], we have not been

able to find a general discussion about, and analysis of, the

need for leading guard digits. It is our hope that the

presented results may clarify the problems of “pseudo

overflow” and aid future implementers.

KORNERUP AND MULLER: LEADING GUARD DIGITS IN FINITE PRECISION REDUNDANT REPRESENTATIONS 547

REFERENCES

[1] D.E. Atkins, “Higher-Radix Division Using Estimates of the
Divisor and Partial Remainders,” IEEE Trans. Computers, vol. 17,
pp. 925-934, 1968.

[2] A. Avizienis, “Signed-Digit Number Representations for Fast
Parallel Arithmetic,” IRE Trans. Electronic Computers, vol. 10,
pp. 389-400, Sept. 1961.

[3] P. Kornerup, “Digit Selection for SRT Division and Square Root,”
IEEE Trans. Computers, vol. 54, no. 3, pp. 294-303, Mar. 2005.

[4] J.-M. Muller, Elementary Function Evaluation: Algorithms and
Implementation. Boston, Basel, Berlin: Birkhäuser, 1997.

[5] T. Noll and E. De Man, “Anordnung zur Bitparallen Addition von
Binärzahlen mit Carry-Save Überlaufkorrektur,” European Patent
EP 0 249 132 B1, Aug. 1993.

[6] T.G. Noll, “Carry-Save Architectures for High-Speed Digital
Signal Processing,” J. VLSI Signal Processing, vol. 3, pp. 121-140,
1991.

[7] B. Parhami, “On the Implementation of Arithmetic Support
Functions for Generalized Signed Digit Number Systems,” IEEE
Trans. Computers, vol. 42, no. 3, pp. 379-384, Mar. 1993.

[8] D. Timmermann and B.J. Hosticka, “Overflow Effects in Redun-
dant Binary Number Systems,” IEE Electronics Letters, vol. 29, no. 5,
pp. 440-441, Mar. 1993.

Peter Kornerup received the mag.scient. de-
gree in mathematics from Aarhus University,
Denmark, in 1967. After a period with the
University Computing Center, beginning in
1969, involved in establishing the computer
science curriculum at Aarhus University, he
helped found the Computer Science Department
in 1971. Through most of the 1970s and 1980s,
he served as chairman of that department. Since
1988, he has been a professor of computer

science at Odense University, now the University of Southern Denmark,
where he also served a period as the chairman of the department. He
spent a leave during 1975/1976 with the University of Southwestern
Louisiana, Lafayette, four months in 1979 and shorter stays over many
years with Southern Methodist University, Dallas, Texas, one month with
the Université de Provence in Marseille in 1996 and two months with the
Ecole Normale Supérieure de Lyon in 2001 and again in 2005. His
interests include compiler construction, microprogramming, computer
networks, and computer architecture, but, in particular, his research has
been in computer arithmetic and number representations, with applica-
tions in cryptology and digital signal processing. Professor Kornerup has
served on the program committees for numerous IEEE, ACM, and other
meetings, in particular, he has been on the program committees for the
Fourth through the 17th IEEE Symposia on Computer Arithmetic and
served as program cochair for these symposia in 1983, 1991, and 1999,
and is serving again for the 18th, to take place in 2007. He has been a
guest editor for a number of journal special issues and served as an
associate editor of the IEEE Transactions on Computers from 1991 to
1995. He is a member of the IEEE and a member of the IEEE Computer
Society.

Jean-Michel Muller received the PhD degree in
1985 from the Institut National Polytechnique de
Grenoble. He is Directeur de Recherches
(senior researcher) at CNRS, France, and he
manages the LIP laboratory (LIP is a joint
laboratory of CNRS, the Ecole Normale Supér-
ieure de Lyon, INRIA, and the Université Claude
Bernard Lyon 1). His research interests are in
computer arithmetic. Dr. Muller was program
cochair of the 13th IEEE Symposium on

Computer Arithmetic (June 1997), general chair of the 14th IEEE
Symposium on Computer Arithmetic (April 1999), and is serving as the
program cochair for the 18th, to take place in 2007. He served as
associate editor of the IEEE Transactions on Computers from 1996 to
2000. He is a senior member of the IEEE and the IEEE Computer
Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

548 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 5, MAY 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

