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Choosing Starting Values for certain
Newton-Raphson Iterations

Peter Kornerup? Jean-Michel Muller "

a University of Southern Denmark
Odense, Denmark

b ONRS-LIP- Arénaire
Lyon, France

Abstract

We aim at finding the best possible seed values when computing a% using the
Newton-Raphson iteration in a given interval. A natural choice of the seed value
would be the one that best approximates the expected result. It turns out that in
most cases, the best seed value can be quite far from this natural choice. When
we evaluate a monotone function f(a) in the interval [@min, @max], by building the
sequence z, defined by the Newton-Raphson iteration, the natural choice consists
in choosing zy equal to the arithmetic mean of the endpoint values. This minimizes
the maximum possible distance between zy and f(a). And yet, if we perform n
iterations, what matters is to minimize the maximum possible distance between x,,
and f(a). In several examples, the value of the best starting point varies rather
significantly with the number of iterations.

Key words: Computer arithmetic, Newton-Raphson iteration, Division,
Square-Root, Square-Root Reciprocal, Root Extraction

1 Introduction

Newton-Raphson iteration is a well-known and useful technique for finding
zeros of functions. It was first introduced by Newton around 1669 [12], to solve
polynomial equations (without explicit use of the derivative), and generalized
by Raphson a few years later [17]. NR-based division and/or square-root have
been implemented on many recent processors [14,8,15,13,9].

As a matter of fact, the classical “Newton-Raphson” iteration for evaluat-
ing square-roots (deduced from the general iteration by looking for the zeros
of function z? — a) goes back to much earlier. Al-Khwarizmi mentions this
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method in his arithmetic book [2]. Moreover, it was already used by Heron
of Alexandria (this is why it is frequently quoted as “Heron iteration”), and
seems to have been known by the Babylonians 2000 years before Heron [6].

Let us now turn to the modern Newton-Raphson (NR) iteration. Assume we
want to compute a root o of some function ¢. The NR iteration consists in
building a sequence

. )
Tn4+1 = Tn ¢'($n) (1)

If ¢ has a continuous derivative and if « is a single root (i.e., ¢'(«) # 0), then
the sequence converges quadratically to «, provided that xg is close enough to
Q.

The choice of a good starting value for the square root iteration has been the
subject of some research since the 1960’es. An early reference is [7] and later
[1] also attempted to minimize the maximal error expressed as

G(z)
N

max

|
z€[a,b] 08

Y

using a polynomial or rational function G(x) of some prescribed degree. Simi-
larly [4,11] minimized the relative error:

Ve —G(z)
NG

max
z€a,b]
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where the latter reference showed, that for such functions the optimal starting
value is independent of the number of iterations to be performed, except when
the approximation is chosen to be a constant. [5] provided 9 different such
approximating functions. [18] showed some simple relations between several of
these optimization criteria. [19] investigated similarly the alternative iteration
for the square root reciprocal

Tni1 = 2,(3 — az?) /2,

which avoids division, also minimizing the relative error.

More recently [10] discuss using absolute instead of relative error for the clas-
sical square root iteration, attempting to minimize the absolute error after a
predetermined number of iterations. They concentrate on approximations in
the form of linear functions, and a very small number of iterations (n =1, 2).



Due to the increased interest in speeding up division, algorithms based on
obtaining good reciprocals has spurred a lot of activity in also obtaining good
initial values for the Newton-Raphson reciprocal iteration

Tnt1 = Tn(2 — azy).
In 1994 [16] developed explicit formulas for the optimal starting values for this
iteration, as functions of the number n of iterations, and the interval (a, b)

"+
a2 "b+ b2 "a’

Bn = (2)

and [3] discuss the construction of initial value tables for reciprocation.

Here we shall develop similar optimal starting values for obtaining roots of
the function

¢($) =P - a,

1
i.e., for use in Newton-Raphson iterations to approximate f(a) = a».

In general we find the following iteration

T, a
= —1+—),
ot D (p xh

n

which specializes into

p=-1

1
o(z) = il and iteration Z,1 = T,(2 — ax,)

This sequence goes to 1/a: hence it can be used for computing reciprocals;
p=2
2 : : 1 a
¢(r) =2 —a and iteration =z, == (z,+—).
2 T
This sequence goes to v/a. Note that this iteration requires a division, usu-
ally a fairly “expensive” operation, and thus often avoided.

p==2

1
é(z) = il and iteration x,41 = J;—n (3 — axi) .

This sequence goes to 1/y/a. It is also frequently used to compute /a,
obtained by multiplying the final result by a.



To make the iterations converge quickly, we have to make sure that x, is
close enough to the wanted result. It is also important to make sure that the
number of required iterations is a small constant. This is frequently done by
using the first, say k, bits of the input value a to address a table of suitable
initial values. Hence, for all the input values with the same first & bits (they
constitute some interval [@min, Gmax]), the iterations will be started with the
same xg. A natural choice consists in choosing the value of xy that minimizes

ae[al’mrlii%max] ‘f(a) B "L‘O‘ ‘
If f is monotone, this is traditionally done (e.g., [3]) by taking x¢ equal to the
arithmetic mean

3 (f (Gmin) + f(amax)) -

As said above, this minimizes the maximum possible distance between x, and
f(a). And yet, if we perform n iterations, what really matters is to minimize
the maximum possible distance between z,, and f(a). In the following, we
develop expressions for starting values for a specific number of iterations.
These choices turns out to be much better than the natural choice. In the case
of reciprocation, we actually find again the optimal choice of Eqn. (2) from
[16].

2 Estimating the error

We wish to compute

a=a'?,

where p is a nonzero integer (p can be either positive or negative). This will
be done by computing the zero of

(b(CU) =P - a,

using the Newton-Raphson iteration. The obtained iteration is

Tpy1 = % (p -1+ ax;”) : (3)

We wish to find the best starting point for a € [amin, Gmax|, assuming we will
perform n iterations. To do that, we want to estimate |z, — «| from |z¢ — a.

Since the Newton-Raphson iteration has a quadratic convergence (that is, if xg
is close to a, then |x,.; — «| is roughly proportional to the square of z,, — ),
we shall try to estimate the coefficient of proportionality.



From (3), we get

Tppn—a  1p—1 1p°—1

(Zn—a)? 2 a 6 o (wn =)

1 2) (p? =1
24 fo%s (4)
1 2 21

1 (e+2)(p+3) (P - 1) (2, — )
120 ot

+ 0 ((x — a)4)

The formula shows that if p = —1 (i.e., in the case of the computation of a

reciprocal), the coefficient of proportionality is a constant (it does not depend
on x,). In that particular case, the solutions given later will be exact, not
approximate.

For p # —1 we haven’t succeeded in getting from (4) a direct expression for
Zp—a in terms of o —a. And yet, since we assume that the interval [@min, Gmax]
is small, it makes sense to assume that, as soon as n > 1, the terms

1p°—1 1 (p+2)(p* -1
5 o (zp — @) + 2 ~ (zn, — @)
_ 1;_0 P+2)(p 243) (r* 1) (2, — )’ (5)

2

+ 0 ((xn - a)4)

become negligible compared to (p — 1)/(2a). Also, we may assume that for
n = 0, the terms

1 (p+2)(p*-1)

24 lo%: (20 = a)Q
L p+2)(p+3) (@ -1) (20 — a)° (6)
120 ot

+ 0] ((.’L'() — a)4)

can be neglected compared to

1p?—1

6w 0



Thus we have

From (7) and (8), we find

— 1\ 1
tnam (220)
2c
2n—1

x<p—1_p2—1(xo_a>> (9)

2x 602

n

X (IE() —O[)

Now, we have to find a starting point 2y that minimizes the maximum absolute
value of |z, — a| (the maximum is taken for all a € [amin, Gmax], i-€., for all

a € [ai{ﬁ, al/? ] — by convention, if y < z, then [z, y] is the interval [y, z]).

1
P or a = al/P

It can be shown that the maximum value is attained for a = a,;, g

1
? and o = al/?, are

hence it will be minimized when the values for a = a5, AP

_ 1/p 1/p

equal. Denoting apin = 0,45, and amax = a5, we get the following equation

2n—1

p—1 PAC | p—1 p2—1
2amin 2O‘min B 604111in2 ('TO B amin)

on—1

(p—l)an_l p—1 p2—1( )
- Zo — Qmax
20max 20max  B0max? *



After some simplifications, this equation becomes

a1—1/2”_1 ( 3 p+ ]-

max Cenin - (:L'O - amin)m) (IL'() - a’min)2

_ n—1 3 -+ 1
ﬂ:arlniI}/Q ( - (.To - amax)p—2> (350 - a’max)2

O{]’]’la,)( max

This new equation is a 3" degree polynomial equation in o (or more precisely,
a set of two 3"¢ degree equations, depending on the “+”). It is therefore
very easily solvable numerically, obtaining the root located in the interval
[arains az5]

Now, let us as an example focus on the case of reciprocation. This is what we
do in practice, and we call 3, the obtained starting point for n iterations.

3 Example, p = —1, Newton-Raphson Reciprocation

As mentioned above, Newton-Raphson iteration for computing the reciprocal
of a number a consists in performing the iteration

Tna1 = Tn(2 — axy,) (12)

In practice, when we wish to compute the reciprocal of a number a that will
be assumed to be between 1 and 2, the first £ bits of the binary representation
of a — 1 (the “implicit one” being omitted) are used as address bits to find in
a table an adequate value of the seed xy. This means that the same zy will be
used for all values of a in an interval

[a'mina a'max] ’

With Gmax — Gmin Of the form 27% in the most frequent cases. Fig. 1 shows
that the choice of the starting point can have a huge influence on the final
approximation error (for other values of p, we may get very similar figures).

As said in the introduction, it is frequently suggested to choose the arithmetic

mean, e.g., as used in [3],
1 1
(e ™ )
Gmin Gmax

1
b=



—54

05 06 07 08 0.9 1

Fig. 1. Radix-2 logarithm of the maximum distance (for all a in [1,2]) between
iterate =4 and 1/a, depending on the choice of z¢ in [1/2,1].

Let us try to minimize the distance between x,, and 1/a. First, let us compute
that distance. From (12), we get

1 , 1 1\?
Tpt1 —— =2Tp — 0T, — —=—a|(Tp — — | ,
a a a

which is the very same equation as we would obtain with p = —1 from (4).

Hence, by induction
1 n NG
Tp——=—a> " (mo — —) : (13)
a a

What we now have to find is the value zy (between 1/amin and 1/amayx) such
that the maximum value (for a between amin and amax) of |2, —1/al is as small
as possible. By examining the derivative of function:

g(a) = ¥ (550 _ l)zn

a

one immediately deduces that, for a given ¢, the maximum value of |z,, —1/a|
is obtained for a = ampi, Or @ = Gmax-

That is, the maximum error is either




or

As before, this maximum value will be minimized when E; = FE,. This gives
an equation that xy must satisfy to be the best starting point for n iterations

" 1\ 1\
i (r0-—) =i (m-—) . (14

Amin

To solve this equation define

A =a2" and p, =al 2"
From (14) we get
on n
An n 12
AnTo — = |HUnTo —
Omin max
And, since
1 1
<z <
Omax Amin
this gives
A Hn
Ao — = — UnZo-
Amin Omax

This is now very easily solved, and gives

Gmax Qmin

T =
RS Wy

From this we deduce the following result, which is identical to the result quoted
above from [16].

Theorem 1 The mazimum possible distance between x, and 1/a is smallest
when xy s equal to the number

2-" 2-m
Umax + Qmin

2—n 2—n *
ama,xamin + amin Amax

Some values of 3, are of particular interest:

e [ is the arithmetic mean of 1/amin and 1/amax: we find again (which is not
surprising) the value that minimizes the maximum distance between 1/a
and xg;



e [3; is the geometric mean of 1/ayi, and 1/ayay, that is,

A

1
AV4 QminAmax

e the limit value (when n — o) of 3, is

Boo

2

Amin + Amax

that is, the reciprocal of the midpoint of the interval [@min, Gmax]- This shows
(and this will be confirmed below by the experiments) that this “naive”
choice for zy is far from being naive, and turns out to be a much better
choice than the sophisticated value 5y that minimizes the maximum distance
between 1/a and .

3.1 First example: amin = 1 and amax = 2.

This example corresponds to the direct computations of reciprocals of man-
tissas of floating-point numbers without any tabulation. By (15) we find the
following starting values

Bo = 3/4

B =1/v2

By = 0.68644 - - -

B3 = 0.67642- - -

Boo = 2/3
We get, depending on the choice of xy, the following approximation errors:
xo ||max |z; — 1/al|max |22 — 1/a||max |z3 — 1/a|/max |x4 — 1/a||max |z5 — 1/a]
Bo [1.25 x 1071 |3.12x 1072 |1.95x 1073 |7.63 x 1078 |1.16 x 10710
B ||I8.56 x 1072 [1.47x 1072 [4.33x10™* |3.75x 1077 [2.82x 1073
B ||19.83 x 1072 [9.67 x 103 [1.87x10* 698 x10°% [9.76 x 10~1°
Bs |[1.05 x 10~¢ 1.10 x 1072 1.20 x 107* |2.89 x 1078 1.67 x 10715
Bs |1.08 x 1071 [1.16 x 1072 [1.36 x 10~* |1.83 x 1078 [6.75 x 1016
Bs [1.10 x 107 [1.20 x 1072 [1.44x 107* [2.07x 1078  |4.28 x 1016
Buolll.1l x 1077 [1.23x 1072 [1.52x 107% [2.32x 108  [5.40 x 10~'6

Observe that the minimal values of the maximum errors occur after n itera-
tions, when £, is used as the starting value (emphasized in bold face).

For performing 5 iterations, choosing S5 is 272245 times more accurate than
choosing (y. This corresponds to more than 18 bits of difference in accuracy.

10




3.2 Second example: iy = 3/2 and amax = 7/4

Of course, when amax — min decreases, the difference tends to be reduced (since
the interval where xy can lie shrinks). This is shown in the following table:

Zy |max |z, — 1/a||max |zy — 1/a||max |z3 — 1/a||max |z4 — 1/a||max |25 — 1/a]
Bo [|13.97 x 1073 |2.76 x 10° 1.33x107° [3.09 x 1071® |1.67 x 1073°
B ||13.67 x 1073 [2.36 x 107° 9.71 x 10719 |1.65 x 10718 |4.76 x 10736
Bo |13.81 x 1073 217 x10°°% 826 x 1071 [1.19x 107 {2.49 x 10736
Bs |I3.87 x 1073 [2.25x 107° [7.61 x 1071° |1.01 x 1078 |1.80 x 103¢
Bs |1I3.91 x 1072 [2.29 x 107°  [7.89 x 1071% |9.33 x 10712 |1.52 x 10736
Bs 13.93 x 1072 |2.31 x 10™°  |8.03 x 10710 [9.67 x 1071 |1.40 x 1036
Bo)3.94x 1070 [2.33x 1075 [8.17x 1010 [1.00 x 10~ [1.51 x 10~

4 The general case of other roots

In the following we shall now look at other cases of finding roots of equations
of the form

o(r) =2 —a

for alternative values of p. For p > 2 or p < —1 recall that we can solve the
37 degree polynomials (11) numerically, but that the starting values obtained
this way are only approximations, as the error estimates of (9) are solutions
to slightly perturbed problems.

The table below shows some starting values 3, for amin = 1 and amax = 2 for
various values of p and 0 < n < 5, together with the limiting values (..

[p=—3

p= 2

p=—1

p=2

p=3

Bo

0.89685026

0.85355339

3/4

1.20710678

1.12996052

A

0.88695734

0.83671927

0.70710678

1.20829381

1.13288765

B

0.88401897

0.83051406

0.68644244

1.19901822

1.12904943

Bs

0.88255736

0.82744145

0.67642857

1.19439264

1.12713081

B

0.88182871

0.82591381

0.67151443

1.19208497

1.12617201

Bs

0.88146495

0.82515229

0.66908205

1.19093267

1.12569277

Boo

0.88110158

0.82439236

2/3

1.18978149

1.12521367

11




4.1 Case p= —2, square root reciprocal

The conventional iteration z,41 = % (z, + %) for square root is not frequently
used, since it requires a division at each step, and division is significantly
slower than multiplication on almost all systems. Hence one may prefer the

following iteration:

= (3— afvi),

T4+l =

z
2

(16)

converging to 1/y/a. To get v/a it suffices to multiply the final result by a.

We have performed the Newton-Raphson iteration with the starting values
obtained above, and found the following maximum errors, with a,;, = 1 and
Amax = 2 We obtain:

2o ||max ‘xl — ﬁ max‘xg — ﬁ max‘xg — ﬁ max ‘:1:4 — ﬁ max ‘x5 — ﬁ
Bo ||4.86 x 1072 [4.90 x 10~* |5.09 x 107° |5.49 x 10™® |6.39 x 10~7
B ||3.78 x 1072 |2.98 x 10~® |1.88 x 10™® |7.50 x 1070 |1.19 x 10~ %8
B2 [|4.07 x 1072 245 x 1073 [1.26 x 1075 [3.37 x 107'% |2.41 x 1071°
Bs [4.21 x 1072 |2.62 x 1072 [1.03 x 1075 |2.24 x 1071 [1.06 x 10~*
By |14.28 x 1072 |2.71x 1073 [1.10 x 107> |1.82 x 10719(6.99 x 10~2°
Bs |[4.32 x 1072 [2.75 x 1073 [1.14 x 1075 [1.95x 10710 |5.68 x 1020
Booll4.35 x 1072 [2.80 x 1073 [1.18 x 1075 [2.08 x 10°'° |6.50 x 10~ 20

Repeating the computations, but now for a smaller interval, a,,;, = 1 and
Omax = 1 + 27* we find the following much smaller maximal errors.

To ||max ‘xl ~ 7 max ‘162 ~ a max ‘LE ~ max ‘$4 ~ max ‘:135 ~
Bo ||3.46 x 107*  [1.85 x 1077 |8.96 x 10719 [4.37 x 10727 |2.96 x 103
B [|3.39 x 1074 [1.78 x 1077 |8.77 x 10719 [3.72 x 10727 |2.13 x 103
Bo [|3.42 x 107*  |1.75 x 1077 |8.70 x 10719 [3.49 x 10727 |1.89 x 103
B3 1343 x10°% [1.77 x 1077 |8.67 x 10 19 (3.39 x 1027 |1.77 x 10 53
B (344 x 107% 177 x 1077 [8.69 x 10719 [3.834 x 10727 |1.72 x 1033
Bs (13.44 x 107*  [1.78 x 1077 |8.70 x 1017 |3.36 x 10727 |1.69 x 1053
Bool3.44 x 107*  |1.78 x 1077 |8.70 x 10719 |3.39 x 1027 |1.72 x 10753

12




Although the effect of using the optimal starting value is much less significant
here over a narrower interval, again we find the minimal values occurring after
n iterations when using (3, as the starting point.

4.2 Cube root reciprocal

With amin = 1 and ama = 2 for p = —3 we obtain:

Zo ||max ‘:1:1 — 3%/5 max ‘xz — % max ‘.’Eg — 3%/5 max ‘:104 — 3%/5 max ‘:1:5 — 3%/5
Bo 11292 x 1072  [2.10 x 1073 [1.11 x 10~® |3.09 x 10710 [2.41 x 10~"°
B ||2.37 x1072 [1.39 x 1073  |4.83 x 1076 |5.88 x 10! |8.71 x 10=?!
Bo (249 x 1072 |1.22x 1073 [3.71 x 1076 [3.47 x 107! [3.04 x 1072
Bs 12.55 x 1072 [1.28 x 1073 |3.26 x 107% [2.65 x 107" |1.78 x 102!
B4 ||2.58 x 1072 [1.31 x 1073 |3.42x 1076 |2.34 x 107! |1.36 x 1072}
Bs [2.59 x 1072 [1.32x 1073 |3.50x 1076 |245 x 10! |1.20 x 10~ 2
Bool|2.61 x 1072 [1.34 x 1073 |3.58 x 106 [2.57 x 10711 |1.32 x 102!

In this case, if we perform 5 iterations, starting the iterations from [5 leads
to a result that is 201 times more accurate than starting with ;.

4.3

Square root

With apin = 1 and apma, = 2 for p = 2 we obtain:

Zo ||max |z; — y/a||max |xe — y/a||max |z — y/a||max |z4 — \/a||max |z5 — \/al
Bo |[1.78 x 1072 |1.55 x 107* |1.20x 1078 [7.23 x 1017 |2.61 x 10733
B [|1.80 x 1072 |1.58 x 10~* [1.25 x 10~® |7.85 x 10~'7 [3.08 x 10733
By 193 x 1072 [1.34 x 10™* [9.00 x 107° |4.05 x 10717 [8.21 x 103
Bs [2.02 x 1072 (143 x10~* |7.58 x 1072 |2.88 x 107!7 |4.14 x 10734
Bs |2.07 x 1072 |1.49x 107* |7.87 x 107 |2.42 x 10717 [2.92 x 10~3
Bs 12.09 x 1072 |1.53 x 107* [8.24 x 107° |2.40 x 10717 |2.45 x 10734
Bool2.12 x 1072 |1.56 x 10~*  [8.61 x 107° |2.62 x 1017 [2.43 x 103

Notice that in this case (5 is slightly better than (3, for 4 iterations, and
that (. (and f¢ but it is not shown in the table) is slightly better than

13




(s for 5 iterations. The same phenomenon occurs for 5, where [ is a slightly
better starting point. This is obviously an effect of solving a slightly perturbed

problem.

4.4 Fifth roots

With amin = 1 and apmax = 2 we obtain:

xo ||max |x; — /a||max |z9 — /a||max |z3 — /a||max|z4 — /a||max |z5s — /a|
Bo [|1.10 x 1072 |2.08 x 10~* |7.51 x 10~% |9.82 x 10~'® [1.68 x 10~2®
B [1.03 x 1072 2.07 x 107*  [8.53 x 1078  [1.46 x 1071* |4.24 x 10728
Bo ||1.06 x 1072 |1.94 x 10~% |7.52 x 107% [1.13 x 10~* |2.56 x 10=%8
Bs [11.08 x 1072 {1.99 x 10~* {7.05 x 107® [9.95 x 101> [1.98 x 10~ 28
By [|1.09 x 1072 |2.03 x 10~* |7.15x 10~® |9.33 x 10713 |1.74 x 10~28
Bs 1.09 x 1072 |2.05 x 10~* |7.29 x 10~%  [9.24 x 10~'° |1.63 x 1028
Boo|1.10 x 1072 |2.07 x 107* |7.42x 10°% [9.59 x 107'® [1.60 x 1028

In this case, although g, is always a better starting point than §, for n
iterations, the difference is negligible.

Conclusion

We have suggested a strategy for getting optimal starting points for Newton-
Raphson-based iterations for approximating a'/? . In many cases choosing
these values, results in much smaller approximation errors, than using
traditional seed values.
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