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A B S T R A C T   

Visibility is a key factor influencing animal behavior in forest ecosystems. Fine-scale visibility in forested areas 
has been measured by ground-based approaches at the plot level, using site-specific methods that have limited 
spatial coverage. Here we examine airborne laser scanning (ALS) as a novel tool to quantify fine-scale visibility in 
the temperate forests of Germany at a landscape scale. We validate the (vertically-derived) ALS-derived visibility 
measures using proven (horizontally-derived) terrestrial laser scanning (TLS) estimates of true visibility. Our 
results indicate that there is a good agreement between the visibility resulting from ALS and TLS with an R2 

ranging from 0.53 to 0.84 and a normalized RMSE varying from 15.92% to 11.81% at various plot sizes, with the 
highest accuracy achieved using a plot size of 35 × 35 m. Our study demonstrates for the first time that ALS can 
be successfully applied to quantify fine-scale visibility in temperate forests at a landscape level. This approach 
holds potential for studying the spatial behavior of animals (e.g., habitat selection and predator–prey relation
ships) in forest ecosystems.   

1. Introduction 

Visibility (viewshed) analysis has been applied to a range of appli
cations in forest ecosystems, from locating fire watchtowers (Bao et al., 
2015; Göltaş et al., 2017), hiding scars from timber harvest (Chamber
lain et al., 2015; Domingo-Santos et al., 2011), planning military oper
ations (Caldwell et al., 2005; Drummond, 1956), to studying animal 
spatial behavior (Dupke et al., 2017; Loarie et al., 2013). However, 
despite the successful application of visibility analysis in natural 
resource management, previous studies indicate that measurement of 
fine-scale visibility in forest environments, particularly at the landscape 
level, is a challenge considering the architectural complexity of the plant 
(Murgoitio et al., 2014) which causes objects such as animals to be 
obscured (camouflaged) by vegetation. 

Visibility analysis is typically performed by checking whether the 
components block the sightline between an observer and a target in the 
modeled environmental scene. The level of complexity and precision of 
depicting an environmental scene depends on the goal and scale of the 

application (Vukomanovic et al., 2018). Environmental factors such as 
topographic and manmade features all influence the visibility of the 
surrounding area across spatial scales. Particularly in the case of forests, 
vegetation representation has a significant impact on perceived visibil
ity. For landscape-scale (e.g., several square kilometers) applications 
that assess the influence of coarse features on visibility, vegetation is 
typically treated as digital surface models, as implemented in most 
geographic information systems (GIS) (Loarie et al., 2013; Vukomanovic 
et al., 2018). For certain applications, such as research on animal ecol
ogy and military goals, fine-scale visibility should be estimated at dis
tances ranging from several to tens of meters when the view is often 
lateral and under the canopy. Within very short ranges, and particularly 
in areas of high vegetation density, visual obstruction is frequently 
dominated by the fine-scale 3D plant structure in the understory 
including trunks, branches, leaves, and internal gaps. In this regard, for 
these short-range applications, fine-scale visibility in forests often refers 
to fine-scale visibility in the understory (Murgoitio et al., 2014). The 
digital surface model used for landscape-scale applications is not 
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suitable for assessing fine-scale visibility in forests, as it does not contain 
understory information. As such, visibility analysis functions in GIS have 
not been adopted by short-range applications in forests. 

Fine-scale visibility in forests is typically measured in the field by 
observing or photographing a remote reference object of known size 
from a given viewpoint, and therefore determining the percentage of an 
object covered by vegetation (Higgins et al., 1996). The two most 
commonly used reference objects are a cover board or a pole (Griffith 
and Youtie, 1988; Winnard et al., 2013). The proportion of vegetation 
obstruction is nearly always determined through visual interpretation 
on the ground or by the automatic classification of photographs 
(Campbell et al., 2018; Morrison, 2016). However, one of the major 
limitations of these classical approaches is that visibility will only be 
obtained from a predetermined viewpoint and in limited directions, 
often four or eight cardinal directions. Moreover, the sampling effi
ciency is low and measurements are hard to replicate. 

Terrestrial laser scanning (TLS) can generate highly dense laser 
returns especially in the lower vegetation layers (e.g., canopy base, un
derstory, and terrain) and thereby capture the 3D structure at a fine 
spatial resolution (<2 cm), which allows representing the 3D structure 
of forest stands with substantial details (Dassot et al., 2011). Thanks to 
these advantages of TLS, it has recently started to be applied to quantify 
fine-scale visibility in forests in some studies. For example, Lecigne et al. 
(2020) developed an R package “viewshed3d” to generate 3D viewshed 
by tracing cone-shaped sightlines within the TLS point cloud in every 
direction of 3D space to determine their traveling distances before they 
meet any TLS point. Zong et al. (2021) proposed to build a 3D voxel 
model of the surrounding scene with TLS data using the occupancy grid 
algorithm and then trace the sightlines within the voxel model. In 
contrast, the sightline was treated as a straight line rather than a cone. 
Compared to traditional field methods, TLS may estimate visibility at 
any location and from any direction across a continuum of scales in a 
scanned area, and can therefore generate a 3D viewshed which refers to 
the volume in a 3D environment that is directly visible from a vantage 
position, in a similar way as the viewshed on the digital elevation model 
(DEM) (Wheatley, 1995). Moreover, a 3D cumulative viewshed of the 

scanned area can be created by computing repeatedly 3D viewsheds 
from several pre-defined viewpoints and then summing them up into a 
single 3D viewshed (Lecigne et al., 2020). TLS has proven to be an 
effective and efficient method to estimate 3D detailed visibility. How
ever, the TLS-derived estimate of fine-scale visibility is ground-based at 
plot level, and is therefore site-specific with limited spatial coverage. For 
a more extensive assessment of detailed visibility at larger spatial scales, 
these measurements would need to be repeated in many locations. So it 
is not practical to continuously characterize detailed visibility in a 
landscape using such an approach. 

Compared to TLS, airborne laser scanning (ALS) can provide insight 
into forest structure in larger areas. Currently, ALS has mainly been used 
to generate upper canopy surface models for visibility analysis in 
forested areas (Guth, 2009; Vukomanovic et al., 2018). However, the 
ability of ALS to quantify fine-scale visibility in understory on a large 
scale remains rather unexplored. Only three studies have investigated 
the utility of ALS in modeling the visual obstruction arising from vege
tation below the canopy. Murgoitio et al. (2013) used the diameter at 
breast height and tree height to account for the visual obstructions of 
tree trunks in the visibility model, but ignored the branches and leaves. 
Murgoitio et al. (2014) also examined the correlation between canopy 
area and the number of trunks derived from ALS data and the visibility of 
forest plots derived from TLS and the photography-based method 
respectively and found a relatively low association. Additionally, the 
visibility investigated in these studies was confined in several pre- 
defined directions and limited at the plot scale. Pyysalo et al. (2009) 
performed a visibility analysis on a 3D voxel model of the forest envi
ronment with a voxel size of 1 m built from ALS data. However, the voxel 
size was not fine enough to quantify detailed visibility. Moreover, they 
have not evaluated the accuracy of their approach. 

So far, there have been no suitable methods for characterizing fine- 
scale visibility in forests across landscapes, which severely limits the 
use of visibility in short-range applications. The visibility measured by 
both conventional field methods and the single 3D viewshed obtained by 
TLS is viewpoint specific. The visibility of the same area obtained at 
different viewpoints may be highly varied due to the spatial heteroge
neity of the vegetation structure. Therefore, extrapolation of the esti
mated visibility of these two methods to other areas is difficult. By 
contrast, a 3D cumulative viewshed derived from the TLS arises from the 
integration of 3D viewsheds from multiple viewpoints, thereby 
comprehensively quantifying the relative visibility of an area of interest 
in a landscape. Similar to the characterization of other understory 
structure attributes using the area-based approach of Næsset (2002), the 
area-based cumulative visibility can be statistically linked to ALS- 
derived metrics within that same area. ALS is likely a viable way to 
upscale the TLS-based cumulative visibility at the plot level to the 
landscape scale “wall-to-wall” spatial coverage. 

Our study is designed to assess the capacity of ALS data to charac
terize fine-scale visibility in mixed temperate forests at the landscape 
scale, by calibrating and validating the ALS visibility model using TLS- 
based cumulative visibility estimates at the plot level. Specifically, we 
sought to: (1) evaluate the performance of 23 frequently used ALS 
metrics to quantify fine-scale visibility and select important input met
rics at multiple plot sizes respectively, (2) identify the most important 
ALS metrics for quantification of fine-scale visibility, and (3) determine 
the optimal plot size for upscaling fine-scale visibility derived from TLS 
to a landscape scale using ALS. 

2. Material and methods 

2.1. Study site 

The study site lies in the southern part of the Bavarian Forest Na
tional Park, a mixed temperate forest located in southeastern Germany 
(49◦3′19′′N, 13◦12′9′′E) (Fig. 1). The park extends over an area of 
24,250 ha with altitudes between 590 and 1440 m. The predominant 

Fig. 1. Location of field plots in the southern part of the Bavarian Forest Na
tional Park, Germany. 
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tree species of the park are Norway spruce (Picea abies) (67%) and Eu
ropean beech (Fagus sylvatica) (24.5%) (Cailleret et al., 2014). 

2.2. TLS data 

TLS data were collected during the summer (July or August) of 2016, 
2017, and 2019, respectively, using a time-of-flight scanner RIEGL VZ- 
400 (Riegl LMS GmbH, Horn, Austria) (Table 1). A total of 66 sample 
plots were gathered, each with a radius of 22.5 m. The plot centers were 
geo-located using a Leica Viva GS14 differential GNSS receiver with a 
spatial accuracy of around 5–10 cm. The plots represent three types of 
forests (i.e., coniferous, deciduous, and mixed) and three categories of 
stand developmental stages (i.e., young, medium, and mature). To 
minimize occlusion, four scans were acquired at each plot, with one scan 
at the plot center, three at the edge of the plot. To co-register these four 
scans, 12–14 cylindrical retro-reflective targets were placed in the plot to 
serve as control points. 

Table 1 
TLS data specifications.  

Specification Value 

Sensor RIEGL VZ-400 
Wavelength 1550 nm 
Beam divergence 0.35 mrad 
Scan angle Horizontal: 360◦

Vertical:100◦ (+60◦/− 40◦)  

Measurement rate 122,000 measurements/second 
Range accuracy 5 mm 
Range 1.5–600 m  

Fig. 2. The size, position, and orientation of the square plots for estimation of 
visibility using TLS. 

Fig. 3. Illustration of the process of calculating 3D viewshed: (a) a sightline with an azimuth angle of φ and a zenith angle of θ; (b) 2D representation of tracing 
sightlines within the occupancy grid model; and (c) 2D representation of the generated viewshed. 

Table 2 
Description of ALS metrics used as predictor variables for modeling visibility.  

Metrics Description 

Canopy Hp10_can 10th height percentiles of canopy returns 
Hp50_can 50th height percentiles of canopy returns 
Hp70_can 70th height percentiles of canopy returns 
Hp90_can 90th height percentiles of canopy returns 
Hsd_can Standard deviation of canopy return heights 
Hskew_can Skewness of canopy return heights 
Hkurt_can Kurtosis of canopy return heights 
P_ground Percentage of ground returns 

Understory Hp10_us 10th height percentiles of understory returns 
Hp50_us 50th height percentiles of understory returns 
Hp70_us 70th height percentiles of understory returns 
Hp90_us 90th height percentiles of understory returns 
ORD Overall relative point density 
NRD Normalized relative point density 
LPI Laser penetration index 
P_NRD Percentage of NRD 
P_LPI Percentage of LPI 
Hp99_sd Standard deviation of 99th height percentiles of 

understory returns 
Hp99_cv Coefficient of variation of 99th height percentiles of 

understory returns 
NFC Number of filled columns 
NFV Number of filled voxels 

Topography VRM Vector ruggedness measures 
TRI Terrain ruggedness index  
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We classified TLS ground points using the LAStools software package 
(version 171017, rapidlasso GmbH, http://lastools.org) and generated 
digital terrain models (DTM) with a resolution of 0.2 m. The height of 
each above-ground TLS return was normalized by subtracting the 
elevation of the DTM. 

2.3. ALS data 

The ALS flight campaign was conducted under leaf-on conditions in 

June 2017 covering the entire park. A Riegl LMSQ 680i sensor, oper
ating at a wavelength of 1550 nm, and a beam divergence of 0.5 mrad, 
was flown at an altitude of 550 m, with a 60% side lap of parallel flight 
strips. Thus, the average density of points obtained was 30 points/m2. 
The positional accuracy of the ALS data was assessed by geometrically 
checking it with enclosing polygons of flat buildings. This gave an ac
curacy of 5 cm horizontally and 6 cm vertically. Therefore, the plani
metric and vertical displacement between the ALS and TLS data was less 
than 15 cm and 16 cm, respectively. We generated the DTM of the study 
area with a resolution of 1.0 m based on the classified ground points 
provided by the vendor. The height of the aboveground ALS points was 
then normalized with the obtained DTM. 

2.4. Estimation of visibility using TLS 

In this study, we focused on the visibility in the understory whose 
upper height boundary was defined as 2.0 m. Firstly, we applied the TLS- 
based approach proposed by Zong et al. (2021) to generate the 3D 
viewshed for understory in a field plot from a single viewpoint. A 3D 
cumulative viewshed was then created by repeatedly calculating the 3D 
viewsheds from 225 viewpoints, then summing them into a single 3D 
viewshed. Finally, the visibility of the field plot was calculated from the 
derived cumulative viewshed. 

To determine the optimal plot size for upscaling, we established and 
tested nine concentric square plots with the side length varying from 5 to 
45 m with a step of 5 m and all centered in the middle of the field plot 
and oriented north–south (Fig. 2). We determined the largest investi
gated plot size as 45 m, the diameter of the field plots, so that the TLS 
point cloud density is high enough to accurately estimate visibility. 

To generate a single 3D viewshed for each plot, a subset of point 
clouds from 0 to 2 m above the ground inside the square plot was 
extracted first. Next, a 3D voxel-based occupancy grid model of each 
plot, where each voxel was inferred to be either “occupied” or “free”, 
was established using the TLS point cloud. The side length of the voxel 
was set to be 0.1 m, as recommended by Zong et al. (2021). An example 
occupancy grid is shown in the Supplementary Fig. 1. In addition, to 
avoid sightlines penetrating below the ground in the following sightline 
tracing procedure, the DTM constructed at each plot was combined with 
the occupancy grid model. Finally, a set of sightlines were traced within 
the combined plot scene, with each sightline having two angles: zenith 
angle (θ) and azimuth angle (φ) (Fig. 3a). All sightlines radiate from the 

Fig. 4. Box and whiskers representing TLS-derived visibility of the plots at 
different plot sizes. 

Table 3 
The ALS metrics selected for the prediction of visibility at different plot sizes. The number in the cell is the rank of variable importance in descending order for each plot 
size.  
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viewpoint with θ ranging from 0 to 180◦ as well as φ ranging from 0 to 
360◦ both with an angular step of 0.1◦. A sightline is assumed to be 
blocked by an occupied voxel, a boundary of occupancy grid model, or 
the DTM, while passing through a free voxel (Fig. 3b). After tracing all 
sightlines, every voxel in the occupancy grid model will be labeled either 
“visible” or “invisible” according to whether hit by a sightline, and all 
visible voxels constitute the 3D viewshed of a plot (Fig. 3c). 

The 3D cumulative viewshed tells us how many of the viewpoints 
from which each voxel can be seen, i.e., their cumulative visibility. The 
cumulative visibility of each voxel was then normalized according to the 
total number of viewpoints. The cumulative visibility of the whole plot 
was calculated as the mean cumulative visibility of all voxels in the plot 
scene. 

For every plot size, 225 (25 × 25) viewpoints were distributed in a 
grid pattern inside the plot, equally spaced with each other in the 
northerly and easterly direction at 1.0 m above the ground level (see 
Supplementary Fig. 2). Our exploratory results showed that the cumu
lative visibility of the whole plot steadily increased when the number of 
viewpoints in a single direction was increased from 5 to 25, and then 
reached an asymptote for denser viewpoints (see Supplementary Fig. 3). 
Therefore, we consider the differences in cumulative visibility, when the 
viewpoints are denser than 25 × 25, to be negligible. 225 viewpoints 
were deployed here to reduce computational cost. Dungan et al. (2018) 
found a similar result in the case of calculating 2D cumulative viewshed 
on the DEM. 

Fig. 5. The overall performance of the selected ALS metrics for prediction of visibility aggregating the results of all final models at different plot sizes. (a) The rank of 
the times that each metric was selected by all final models, (b) the rank of the mean permutation importance of each metric. 

Fig. 6. The relationship between the nRMSE (a) and R2 (b) of the RF models and the plot sizes.  
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2.5. Calculation of ALS metrics 

We calculated 23 ALS metrics over each square plot to characterize 
the canopy, understory, and topographical conditions, using different 
plot sizes (Table 2). Previous research has shown that many of these 
metrics are valuable in predicting a variety of understory attributes and 
can be transferred to similar forest ecosystems. All echoes from each 
pulse (e.g., single, first, and last) were used to calculate the ALS metrics 
using the lidR (Roussel et al., 2020), R package for LiDAR data 
processing. 

Percentiles of laser pulse height distribution are the most widely used 
ALS metrics for forest structure characterization (Lefsky et al., 1999; 
Naesset, 1997). We calculated the height percentile (HP) of pulse returns 
at 5% intervals from Hp5 to Hp95 in a plot for canopy and understory 
separately. Aboveground returns below 2.0 m were classified as un
derstory hits, while those above 2.0 m were classified as canopy hits. 
Due to a high correlation among these height percentiles, we only 
selected the Hp10, Hp50, Hp70, and Hp90 percentiles for statistical 

modeling. 
Overall relative point density (ORD) and normalized relative point 

density (NRD) are associated with understory vegetation density 
(Campbell et al., 2018). The laser penetration index (LPI) is well 
correlated with the leaf area index (Peduzzi et al., 2012). In a given area, 
ORD, NRD, and LPI are defined in the following way, respectively: 

ORD =
nus

ntotal
(1)  

NRD =
nus

nus + nground
(2)  

LPI =
nus + nground

ntotal
(3)  

where nus (understory points) is the number of non-ground returns with 
height < 2.0 m, nground (ground points) is the number of ground returns 
and ntotal (total points) is the number of returns from the ground level 

Fig. 7. Relationships between visibility derived from ALS and TLS at various plot sizes. The black dots represent the matched pairs of visibility derived from ALS and 
TLS for the sample plots. n refers to the number of plots involved in the statistical analysis. The blue line is the fitted regression line. The black line indicates the 1:1 
relationship. At plot sizes of 5 m and 10 m, some sample plots were removed because some ALS metrics in these plots could not be calculated due to insufficient ALS 
points. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(height = 0 m) to the height of the highest point. 
Besides the metrics derived from the vertical distribution of ALS 

returns, we have calculated several horizontal metrics that attempt to 
capture the spatial heterogeneity of the understory vegetation relative to 
the planimetric coordinates. The metric P_NRD is an extension of NRD. 
We first partitioned the square plot into a square grid, measuring 1 × 1 
m. For each such grid cell, the NRD was calculated. The understory 
vegetation for such a grid cell is arbitrarily assumed to be present if its 
NRD is more than 10%. Then, P_NRD was calculated as the proportion of 
such “understory present” grid cells. As similar to P_NRD, P_LPI was 
calculated as the proportion of grid cells whose LPI is more than 5% and 
therefore is assumed to be “adequate” regarding the light penetration. 
For the same grid, we calculated the 99th percentile height of the un
derstory returns for each grid cell and their variation: standard deviation 
of the Hp99 (Hp99_sd) and coefficient of variation of the Hp99 
(Hp99_cv). These two measures mainly characterize the evenness of the 
understory height over the plot (Gopalakrishnan et al., 2018). The 
number of filled columns (NFC) and the number of filled voxels (NFV) 
are calculated based on the voxelization of the ALS point cloud (Crespo- 
Peremarch et al., 2018). We voxelized the understory hits in a plot using 
a 1 × 1 × 0.2 m (x × y × z) voxel size to have minimal empty voxels and 
thus reduce accuracy loss. The horizontal dimension was determined 
according to the size of the laser footprint and the density of ALS points, 
where the vertical size was based on the temporal spacing of the sample 
(i.e., 0.2 m). A voxel containing at least 4 points was defined as filled, 
and a filled column was required to have at least one filled voxel. NFC is 
equal to the proportion of the filled voxel columns in the understory, and 
NFV is calculated as the proportion of the filled voxels in the understory. 

We additionally calculated the topographic metrics including vector 
ruggedness measures (VRM) (Sappington et al., 2007) and terrain 
ruggedness index (TRI) (Riley et al., 1999) from the ALS-derived DTM to 

take into account the visual obstruction of the local terrain. 

2.6. Random forest algorithm 

Random Forest (RF) is a widely used machine learning algorithm 
that is very effective in classifying and regressing (Breiman, 2001). We 
used the RF algorithm implemented in the R package ‘‘randomForest” 
(Liaw and Wiener, 2002) to regress the TLS-derived visibility on ALS 
metrics and to evaluate the performance of the candidate metrics as well 
as select the most explanatory metrics at different plot sizes. We set up 
the RF parameter “Ntree” (i.e., number of trees grown) as 500 and 
parameter ‘‘Mtry” (i.e., number of predictors sampled for splitting at 
each node) as one-third of the number of predictors. 

2.6.1. Model performance assessment 
As each tree in the RF model is grown from a bootstrap sample of the 

data, the data left out of the bootstrap sample, the “out-of-bag” (OOB) 
data, can be used as a test set for that tree. However, OOB error may give 
an optimistic assessment of the performance of the RF model as dis
cussed by Breiman (2001), therefore we used an external 10-fold cross- 
validation (CV) procedure replicated by five times to get an averaged 
coefficient of determination (R2) and normalized root mean square error 
(nRMSE; i.e., RMSE divided by the range of the observed values). 

2.6.2. Variable importance 
In the RF framework, the performance of variables is measured by 

the variable importance which is crucial not only for variable selection 
but also for model interpretation (Genuer et al., 2010). The most 
frequently used variable importance score is the permutation impor
tance which was also used in this study. The permutation importance 
quantifies the increase in the average OOB error of a tree in the forest 

Fig. 8. The field photographs of three sample plots (i.e., plots ID 3, 53, and 63), and its corresponding visibility derived from ALS at a plot size of 35 m (highlighted 
with a black square). The visibility of its surrounding eight plots was also shown. The photographs were taken at the center of the three plots that represent low, 
medium, and high levels of understory cover, respectively. 
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when the observed values of this variable are randomly permuted in the 
OOB data. 

2.6.3. Variable selection 
We applied a modified variable selection method suggested by 

Genuer et al. (2010). The OOB error in their method was replaced by the 
R2 and nRMSE for model performance assessment. By contrast, the 
variable importance was recalculated repeatedly as the variables were 
eliminated by a recursive backward procedure, as recommended by 
Gregorutti et al. (2017). The constituent three main steps of the method 
were wrapped into the five-time 10-fold CV procedure separately. We 
aggregated results from all 10-fold CV partitions and computed the 
mean R2, nRMSE, and permutation importance at each step. 

2.6.4. Metric performance assessment 
The performance of a selected metric in the final model for predicting 

visibility at a given plot size was measured by the mean permutation 
importance aggregated from all five-time 10-fold CV results. The overall 
performance of a selected metric was evaluated by the aggregated re
sults from all final models at all plot sizes. We used the times that a 
metric was selected by all final models to measure its contributing 
consistency and averaged the permutation importance values of a metric 

in all final models to measure its contributing significance. If a metric 
was not selected in the final model at a plot size, its permutation 
importance was treated as zero. 

2.7. Mapping visibility using ALS data 

After the statistical comparison, the most accurate RF model, as well 
as the corresponding optimal plot size and ALS metrics, were identified. 
We extracted the identified ALS metrics with the optimal plot size and 
used them as the input of the calibrated optimal RF model to generate a 
contiguous visibility map of the whole study area. 

3. Results 

3.1. Estimation of visibility by TLS 

As evidenced by Fig. 4, the mean visibility of the plots estimated by 
TLS steadily decreased from 0.93 to 0.39 with the increase of the plot 
size from 5 m to 45 m, while the standard deviation increased from 0.02 
to 0.12 when the plot size increased from 5 m to 35 m and declined to 
0.10 at larger plot size of 45 m. 

Fig. 9. Maps of the southern part of the Bavarian Forest National Park showing (a) the age of forest stands (Silveyra et al., 2018) and (b) the fine-scale visibility 
across forest landscapes generated in this study using ALS data. 

Table 4 
Summary of visibility statistics on various forest age groups.  

Forest age Mature Medium Young 

Coniferous Deciduous Mixed Coniferous Deciduous Mixed Coniferous Deciduous Mixed 

Mean visibility  0.507  0.495  0.523  0.449  0.427  0.425  0.410  0.386  0.412 
Standard deviation  0.073  0.099  0.086  0.076  0.082  0.080  0.044  0.030  0.051 
Mean of all  0.508    0.434    0.402    
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3.2. Performance of ALS metrics in predicting visibility 

Table 3 presents the ALS metrics selected for the prediction of visi
bility in the final RF model at each plot size and their ranking in variable 
importance. It demonstrates that the selected ALS metrics and their 
rankings vary according to the size of the plot. Fig. 5 shows the rank of 
the metrics in terms of the times that they were selected by all final 
models (a) and the mean permutation importance (b). The most 
frequently used metrics in the RF models included, in the descending 
order of frequency, NRD, P_NRD, Hp10_can, Hp99_cv, Hp70_us, 
Hp50_can, TRI, Hp50_us, and ORD, while other metrics were not 
selected by any model. NRD, P_NRD, and Hp10_can consistently 
appeared as the top three metrics that were mostly selected and pro
vided the most significant contribution at different plot sizes. 

3.3. The optimal plot size 

As depicted in Fig. 6, the most accurate model for predicting visi
bility was developed with a plot size of 35 m, with an R2 of 0.84 and an 
nRMSE of 11.81%. The nRMSE significantly decreased from 15.92% to 
11.81% when the plot size increased from 10 m to 35 m. Further 
increasing the plot size to 45 m resulted in an increase in nRMSE to 
13.25%. The R2 showed an inverse trend, significantly rising from 0.53 
to 0.84 at 35 m, before declining slightly to 0.81 at larger plot sizes. The 
specific correlation between ALS-derived visibility and TLS-derived 
visibility for each plot size is shown in Fig. 7. It showed that there was 
a good agreement between the visibility derived from ALS and TLS with 
an R2 ranging from 0.53 to 0.84 and a normalized RMSE varying from 
15.92% to 11.81% at various plot sizes. 

Fig. 8 shows the field photographs of three sample plots and the 
corresponding visibility derived from ALS. These three representative 
plots (i.e., plots ID 3, 53, and 63) demonstrate low, medium, and high 
understory cover levels, respectively. As depicted in Fig. 8, denser un
derstory vegetation led to lower visibility. 

3.4. Mapping visibility using ALS data 

Fig. 9b shows the contiguous map of the visibility of the whole study 
area, which was produced with the optimal plot size of 35 m. Besides, we 
extracted the visibility of mature, medium, and young forests using the 
land cover map supplied by the park (Silveyra et al., 2018) and 
compared the visibility map to the forest age map (Fig. 9a). The spatial 
variation in visibility concurred with the distribution of mature, me
dium, and young forests. Overall, visibility decreased with increasing 
forest age and was particularly high in mature forests (Table 4). 

4. Discussion 

This study set out to evaluate the applicability of ALS for the esti
mation of fine-scale visibility in a temperate forest ecosystem. Our 
findings demonstrate that the fine-scale visibility in forests could be 
accurately predicted from structural metrics derived from ALS data, 
with an R2 ranging from 0.53 to 0.84 and an nRMSE varying from 
15.92% to 11.81% at various plot sizes; while the highest accuracy was 
achieved at a plot size of 35 m. 

We found the mean visibility of the plots derived from the TLS 
decreased with the increase of the plot size and its standard deviation 
showed an inverse U-shaped trend with regard to the increasing plot 
size, with the highest standard deviation at 35 m. The decrease in mean 
visibility is a result of increased visual obstructions in the sightline. The 
low variance with the small plots is due to the fact that most parts of a 
target in forest plots are visible at a very close distance. In contrast, a 
target at a far distance is heavily covered by vegetation, reducing the 
variance between the different plots. Therefore, there is an intermediate 
distance at which the highest variance between the different plots is 
obtained, as also suggested by Nudds (1977) and Murgoitio et al. (2014). 

Our results demonstrated that eight ALS metrics, including NRD, 
P_NRD, Hp10_can, Hp99_cv, Hp70_us, Hp50_can, TRI, and Hp50_us 
significantly contributed to higher accuracy for predicting fine-scale 
visibility under the leaf-on condition in forests, with NRD, P_NRD, and 
Hp10_can being the most important three metrics. These metrics can be 
categorized into four groups: the metrics characterizing vertical canopy 
structure including Hp10_can and Hp50_can; the metrics characterizing 
vertical understory structure including NRD, Hp70_us, and Hp50_us; the 
metrics characterizing horizontal understory structure including P_NRD 
and Hp99_cv; and the topographic metrics characterizing terrain 
ruggedness including TRI. As similar to the prediction of other under
story attributes such as fractional cover and density (Crespo-Peremarch 
et al., 2018), the metrics with regard to canopy conditions are also 
influential for the prediction of fine-scale visibility. We found that NRD 
had the most consistent and significant contribution to the accuracy of 
fine-scale visibility predictions, which implies that fine-scale visibility is 
highly related to vegetation density in the understory. Our results 
demonstrate that the metrics that can consider the horizontal understory 
heterogeneity like P_NRD and Hp99_cv are useful to enhance the 
description of plant spatial distributions and, consequently, predictions 
of stand attributes. TRI started to make a difference in predicting fine- 
scale visibility at large plot sizes. This is because the local terrain 
within the extent of the small plots is “smooth”, and thus the visual 
obstruction that results from terrain roughness is small. However, the 
topographic effect should be carefully checked and is expected to come 
into play at a relatively small plot size when such studies are carried out 
in very rough areas. 

Overall, our results showed the high performance of ALS data for 
predicting fine-scale visibility, with the best accuracy at the plot size of 
35 m. As our results showed, the variance of the TLS-derived visibility 
was highest at the optimal plot size of 35 m. As we have revealed, the 
discrimination of visibility among different plots will be reduced when 
the plot size is too small or large, and thus the accuracy of the prediction 
will be lower, particularly with the plot size of 5 or 10 m in this study. 
The increase in visibility in forest plots with the increase of the plot size 
depends on the vegetation density. A target will disappear more rapidly 
from the visual field when it moves from a closer to further distance in a 
dense forest. It thus implies that the optimum size of the plot is linked to 
the density of vegetation in the forest. Specifically, the optimal plot size 
is expected to be smaller in a denser forest (e.g., a tropical forest). 

Compared to the accuracy at small plot sizes, Murgoitio et al. (2014) 
achieved similar results with R2 values of 0.68 and 0.67 at 5 m and 10 m 
distance respectively when they regressed ALS-derived trunk and can
opy area on the TLS-derived visibility in three predefined directions in a 
lodgepole pine ecosystem. However, the R2 decreased steadily to 0.17 
when the sightline length increased to 45 m, which is different from the 
pattern in our study. The reason seems that the TLS data were collected 
at only one position in their study, which caused a low point density far 
away from the TLS sensor, and in turn limited the ability of TLS to 
characterize vegetation structure for visibility modeling. Hence, a 
multiple TLS scan is needed to estimate fine-scale visibility in forests as 
suggested by Zong et al. (2021), especially in dense forest plots. Addi
tionally, they found the relationship between ALS-derived trunk as well 
as canopy area and reference visibility measured by the photography- 
based method was found to be weak, and they attributed this phenom
enon to the canopy shadowing limitation of ALS. In their study, the ALS 
point density was 8.68 points m− 2, much lower than the 30 points m− 2 

in this study. This implies that the point density of ALS data has an 
important influence on their capacity to quantify fine-scale visibility in 
forests. 

The map of fine-scale visibility in the study area showed a spatial 
variation in accordance with the forest age map. Mature forests had 
significantly higher visibility than medium and young forests (Table 4). 
Previous studies have found that there tends to be less shrub and her
baceous vegetation in old-growth forests than in young forests due to 
lower resource availability (e.g., light, soil nutrition, and water) (Lindh 
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et al., 2003; Oliver, 1980; Riegel et al., 1992). As Fig. 8 has shown, 
visibility decreased when the level of understory cover increased from 
low to medium, and further to high. Therefore, the relative lack of shrub 
and herbaceous vegetation results in less visual obstruction and higher 
visibility in the understory of mature forests than in medium and young 
forests. 

There was a time lag between the collection of the TLS and ALS data 
in our study. Specifically, ALS data were acquired in June 2017, whereas 
the TLS data were collected separately in July and August of 2016, 2017, 
and 2019. Considering that both data were acquired during the summer 
when the leaves had stopped growing, we expect that the change in the 
vegetation structure of the understory will be minimal. 

The continuous fine-scale visibility map derived by our method can 
be represented as a layer to model the spatial behavior of animals. It has 
potential when integrated with remotely collected animal location data, 
allowing us to better understand the factors that influence animal 
movement patterns and habitat selection. In previous such studies, the 
visibility of the animals’ habitat is often quantified by surrogate attri
butes, such as land cover type and canopy cover and height (Filla et al., 
2017; Hill et al., 2004; Johnson et al., 2000). However, these attributes 
are not a physical measure of real visibility. Moreover, proxies for vis
ibility cannot account for the effects of the height of animal eyes and 
their visual acuity determining the distance at which an animal can 
detect objects with sufficient resolution to inform behavioral decisions. 
Using our method, the height of the viewpoints can be determined ac
cording to the eye height of the animal of interest and the visual acuity 
can also be considered for determining the grain size of upscaling. 

5. Conclusion 

In this study, we evaluated the applicability of ALS data to quantify 
fine-scale visibility at the landscape level in a mixed temperate forest. 
Specifically, we examined the ability of 23 commonly used metrics 
derived from ALS data under the leaf-on condition to characterize the 
fine-scale visibility. We also evaluated the effect of field plot size on the 
accuracy of the fine-scale visibility estimate. We verified the estimated 
visibility from the ALS using TLS-derived visibility. Based on the results 
we conclude that ALS-derived structural metrics accurately predict fine- 
scale visibility in the mixed temperate forest. The optimum plot size was 
35 × 35 m. ALS offers an efficient and accurate way to upscale 3D vis
ibility in forests to a landscape and regional level – an application pre
viously limited to the plot level (e.g., approximately 30 × 30 m) using 
TLS data. As this study was conducted in a central European mixed 
temperate forest, further research is necessary to test whether similar 
accuracies may be obtained in other forest ecosystems with higher 
canopy density and tree species mixes, using ALS data. 
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