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1  | INTRODUC TION

It is understandable to assume an equivalence between the centers 
of distribution of where a species occurs versus where biomass is 

concentrated. However, foundational work in marine ecology would 
suggest that it might be fortuitous for that to occur. In the develop-
ment of distribution theory, species distribution has been described 
as an irregular basin where the extent of the species distribution 
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Abstract
The distribution of a group of fish and macroinvertebrates (n = 52) resident in the US 
Northeast Shelf large marine ecosystem were characterized with species distribution 
models (SDM), which in turn were used to estimate occurrence and biomass center 
of gravity (COG). The SDMs were fit using random forest machine learning and were 
informed with a range of physical and biological variables. The estimated probability 
of occurrence and biomass from the models provided the weightings to determine 
depth, distance to the coast, and along-shelf distance COG. The COGs of occupancy 
and biomass habitat tended to be separated by distances averaging 50 km, which 
approximates half of the minor axis of the subject ecosystem. During the study pe-
riod (1978–2018), the biomass COG has tended to shift to further offshore positions 
whereas occupancy habitat has stayed at a regular spacing from the coastline. Both 
habitat types have shifted their along-shelf distances, indicating a general movement 
to higher latitude or to the Northeast for this ecosystem. However, biomass tended 
to occur at lower latitudes in the spring and higher latitude in the fall in a response to 
seasonal conditions. Distribution of habitat in relation to depth reveals a divergence 
in response with occupancy habitat shallowing over time and biomass habitat distrib-
uting in progressively deeper water. These results suggest that climate forced change 
in distribution will differentially affect occurrence and biomass of marine taxa, which 
will likely affect the organization of ecosystems and the manner in which human 
populations utilize marine resources.
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circumscribed population centers, represented conceptually by shal-
low and deep portions of the basin (MacCall, 1990). This so-called 
“basin model” is based on an irregular basin shape because that is 
what we encounter in nature. Hence, only if a species' basin was 
perfectly symmetric would we expect the centers of distribution of 
occurrence and biomass to align with each other.

Species movement within and between marine ecosystems has 
taken on both ecological and societal significance (Carozza et al., 
2019; Savo et al., 2017). Yet where species have some likelihood 
of occurring may not define where their most active centers of re-
cruitment are located or where growth may be maximized (Galaiduk 
et al., 2017; Majoris et al., 2018). The poleward movement of species 
has generally been described as a thermal accommodation, and with 
warming conditions, generally more habitat within the thermal con-
straints of a species becomes available (Wolfe et al., 2020). However, 
other factors defining habitat may change with these warming trends 
and fail to provide food resources or competitive advantage for a 
particular species (Sánchez-Hernández & Amundsen, 2018). The 
competitive dynamic in the formation of habitat would likely drive 
the center of biomass distribution into some subset of the overall 
occurrence envelope for the species (Majewski et al., 2017).

A changing relationship between the concentration of biomass 
and the extent of a species distribution would have a number of 
important ramifications. Against the backdrop of climate change, 
many species may currently include harvestable concentrations of 
biomass in accessible habitats; however, as range expands and shifts 
to new habitats occur, biomass may move to less accessible areas 
(Smith et al., 2017). For example, depth may define accessibility for 
a species in the sense that access via a bottom tending gear may 
be limited by the depth it can be fished, or, become the gear may 
become too expensive to operate if the target species moves to pro-
gressively deeper waters. We have already foreshadowed this po-
tential effect in that the distributional response of species to climate 
change includes a general movement to higher latitudes (Pinsky 
et al., 2013), but also has been described to include a movement to 
deeper depths (Perry et al., 2005). Spatial indicators that can be pro-
vided with available analytical techniques are not typically utilized 
in the management even though they can reduce uncertainties and 
risks in the management process (Rufino et al., 2018).

Long-term monitoring survey data can be successfully used for 
the assessment of the shifts in the distribution of marine fish and 
macroinvertebrates over time (Thorson & Barnett, 2017). Estimation 
of the centers of gravity (COGs) is one of the approaches commonly 
applied in marine ecology (Kendall & Picquelle, 1990; Murawski & 
Finn,  1988). They have been used to evaluate impacts of climate, 
fishing pressures, or other anthropogenic factors on the mean lo-
cation of marine resources (Adams et al., 2018; Perry et al., 2005; 
Pinsky et al., 2013). However, an extension of that approach has 
been to use observational data to develop species distribution 
models to advance inference on the distribution of habitat (Laman 
et al., 2018). This has taken the form of classification and regres-
sion models utilizing a range of mathematical forms that have the 
ability to capture the dynamics of distribution with inclusion of a 

range of dynamic predictor variables including physical and biologi-
cal parameters (Robinson et al., 2017). This approach has been used, 
for example to effectively describe the effects of temperature on 
Walleye pollock (Gadus chalcogrammus) in the Bering Sea (Thorson 
et al., 2017).

The US Northeast Shelf continental shelf ecosystem in many 
ways uniquely provides an opportunity to test hypotheses related 
to the differentiation of occurrence and biomass centers of distri-
bution. The Northeast US marine ecosystem, which includes some 
of the most important fishing grounds in the Northwest Atlantic 
(Sherman & Skjoldal,  2002), has experienced one of the fast-
est-warming trends in the world (Pershing et al., 2015). The NES is 
characterized by a biogeographical transition between subtropical 
and subpolar biomes and when viewed from a “basin” perspective, 
the NES is geographically and hydrodynamically complex; hence, 
it is an irregular basin likely to offer different habitats that match 
the production requirements of different species (Townsend et al., 
2006). The scientific surveys for this system have been compre-
hensive, which can be used to inform species distribution models 
(SDMs) for resident species at the microscale (Desprespatanjo 
et al., 1988). With these factors in mind, this study system should 
allow us to describe and differentiate centers of occurrence and 
biomass distribution with sufficient resolution to understand if and 
how they differ and what sort of change has occurred with centric 
distributions over time.

Capitalizing on decadal multispecies monitoring efforts, we pro-
vide a spatially and temporally comprehensive assessment of the 
relationship between the occurrence and biomass COGs for a group 
of fish and macroinvertebrates (n = 52) on the US Northeast Shelf. 
We hypothesized that: (a) the species distribution characterized by 
occupancy and biomass centers of gravity are not equivalent and 
that differences between their locations change in time under the 
changing climatic conditions; and, (b) part of the variation in the fish 
spatial distribution, and in turn discrepancies between occupancy 
and biomass COGs, can be explained by the fish size effect. Utilizing 
a series of machine learning-based SDMs, three COG metrics (depth, 
distance to the coast, and along-shelf distance) were developed to 
characterize species distributions based on occurrence probability 
and biomass catch per unit effort weightings. The difference be-
tween occurrence and biomass centers were analyzed as in between 
separation distances. Finally, the relationship between size and 
depth distribution for these species was analyzed.

2  | METHODS

2.1 | Study system

We studied the distribution of fish and macroinvertebrates oc-
curring in the Northeast US Continental Shelf ecosystem (NES: 
~278,780  km2; 63.33–81.41°W; 28.78–44.87°N), a well-studied 
continental shelf marine system along the western boundary of 
the North Atlantic Ocean. The NES is bounded by the Gulf Stream 
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to the southeast and the U.S. coast to the northwest. These wa-
ters are comprised of mixed slope and shelf waters and can be di-
vided into several relatively distinct regional subsystems but are 
all interconnected to some degree by the Labrador Current, which 
flows southward toward the equator (Townsend et al., 2006). We 
analyzed the distribution of fish and macroinvertebrates at spatial 
scale of 0.1 decimal degree grid (~8–10  km), termed the estima-
tion grid, shown in Figure 1a. Since depth is an important factor, 
bathymetric relief and key depth contours are shown in Figure 1b. 
Because the NES is oriented on a diagonal in respect to latitude and 
longitude, simply using latitude would seem insufficient to describe 
poleward movement. Following Nye et al. (2009) we used along-
shelf distance as a metric to describe progress along this SW to NE 
corridor. The reference line used to determine along-shelf distance 
is shown in Figure 1b.

2.2 | Distributional response variables

This study is based on a series of SDMs for taxa captured in a multi-
decade fishery-independent bottom trawl survey conducted in the 
NES. The biannual bottom trawl survey has been conducted by the 
Northeast Fisheries Science Center each year since 1963 in the fall 
(September–November) and in the spring (March–May/June) since 
1968, occupying upwards of 300 stations during each season and 
is based on a random stratified design (Desprespatanjo et al., 1988). 
Catches were standardized for various correction factors related to 
vessels and gears used in the time series (Miller et al., 2010). The sur-
vey catch provided the binary response of absence or presence for 
each taxa as the response variable in occurrence models and catch 
per unit (log10(CPUE kg tow−1 + 1)) as a continuous variable in the 
regression models estimating biomass habitat (see Data Availability 
Statement). We applied log-transformation to the biomass data, be-
cause nonconstant variation of a response variable may give greater 

weight to data with higher variation during random forest model 
training (De'ath & Fabricius, 2000). Despite the availability of survey 
catch data back to the 1960s, the time series of data used in model 
fitting and to estimate habitat distributions was limited to the period 
1976–2018, which as described below, is limited by the length of 
predictor variable time series. Prior to the analysis, the survey data 
were screened to exclude surveys lacking key information (e.g., geo-
graphic coordinates, tow duration, water temperature). This prea-
nalysis data screening process resulted in survey data containing 
over 36,000 tows.

2.3 | Predictor variables

Physical and biological environmental data used as predictor vari-
ables included dynamic variables that changed annually with recur-
ring sampling and static variables that were held constant over the 
model-training period. The suite of predictors can be summarized 
over five general categories listed in Table 1.

Physical environmental variables including surface and bottom 
water temperature (°C) and salinity (PSU) were made contempora-
neously with survey trawl samples with Conductivity/Temperature/
Depth (CTD) instruments (see Data Availability Statement). 
Temperature and salinity were initially tested as dynamics variables; 
however, salinity was found to be a weak predictor (Friedland et al., 
2020) and was applied as a static variable, which enabled training 
and fitting the models over the time period 1976–2018. Depth of 
the survey station (meters) was treated as a static variable in the 
analysis.

Benthic terrain descriptors included a series of static variables 
that characterize the shape and complexity of the substrate. Most 
benthic terrain variables were derived from the depth measure-
ments, such as vector ruggedness, rugosity, and slope (Table  2). 
Other variables described the substrate itself, such as benthic 

F I G U R E  1   The study system showing the estimation grid (n = 3,127) used for occupancy and biomass habitats (a); solid line is 100 m 
depth contour. Bathymetry of the study system with 50, 100, and 200 m depth contours as thin to thicker lines, respectively (b); red line 
represents along-shelf reference line with reference distances (km). Along-shelf distance reference line represents the distance from the 
origin of a transect originating at 76.53W 34.60N extending to 65.71W 43.49N. Selected along-shelf distances are indicated with black dots 
and corresponding values (in km)
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sediment grain size. The vorticity of benthic currents was also con-
sidered a benthic terrain variable.

In addition to the dynamic station temperature variables, remote 
sensing sea surface temperature (SST) fields were used to derive 
a complimentary set of static physical environment variables. SST 
fields from the MODIS Terra sensor were used to generate monthly 
mean SST data and monthly gradient magnitude, or frontal fields of 
the SST (see Data Availability Statement). There are many methods 
used to identify fronts (Belkin & O'Reilly,  2009) in oceanographic 
data that usually utilize some focal filter to reduce noise and then 
identify gradient magnitude with a Sobel filter. Calculations were 
performed in R using the ‘raster’ package (version 2.6-7) by applying 
a three by three mean focal filter and a Sobel filter to generate x and 
y derivatives, which were then used to calculate gradient magnitude.

Biological covariates included predictor variables represent-
ing lower trophic level primary and secondary production. Primary 
production variables were monthly chlorophyll concentration static 
variables developed from remote sensing data sources. The chloro-
phyll concentration data included measurements made with the Sea-
viewing Wide Field of View Sensor (SeaWiFS), Moderate Resolution 
Imaging Spectroradiometer on the Aqua satellite (MODIS), Medium 
Resolution Imaging Spectrometer (MERIS), and Visible and Infrared 
Imaging/Radiometer Suite (VIIRS) sensors during the period 1997–
2016. These data were merged using the Garver, Siegel, Maritorena 
Model (GSM) algorithm (Maritorena et al., 2010) obtained from the 
Hermes GlobColour website (see Data Availability Statement). As 
with the remote sensing SST data, monthly gradient magnitude (i.e., 
frontal chlorophyll fields) were also developed.

Secondary production covariates were based on zooplank-
ton abundances measured by the Ecosystem Monitoring Program, 
which conducts shelf-wide bimonthly surveys of the Northeast U.S. 
Shelf ecosystem (Kane, 2007). Zooplankton are collected obliquely 
through the water column to a maximum depth of 200 m using paired 

61-cm Bongo samplers equipped with 333-micron mesh nets (see 
Data Availability Statement). Sample location in this survey is based 
on a randomized strata design, with strata defined by bathymetry 
and along-shelf location. Plankton taxa are sorted and identified to 
the lowest possible taxonomic rank. We used the density estimates 
(number per 100 m3) of the 18 most abundant taxonomic categories 
and a biomass indicator (settled bio-volume) as potential predictor 
variables (Table  3). The zooplankton time series has some missing 
values, which were ameliorated by summing data over five-year time 
steps for each seasonal period and interpolating a complete field 
using ordinary kriging. Thus, for example, the data for spring 2000 
would include the available data from tows made during the period 
1998–2002.

2.4 | Occupancy and biomass habitat models

Species distribution models were developed using essentially the 
same approach as reported in (Friedland et al., 2020), with the only 
differences being the application of salinity variables as static fields 
instead of dynamic ones and the length of the training data time se-
ries. SDMs were fit using random forest machine learning (Cutler et al., 
2007), which were implemented using the ‘randomForest’ R package 
(version 4.6-14; Liaw & Wiener,  2002). Random forest models have 
been demonstrated to achieve a greater predictive power compared to 
other statistical models (Smolinski & Radtke, 2017). Prior to fitting the 
model, the independent variable set was tested for multi-collinearity 
among the predictors, and variables were eliminated using 'rfUtilities' R 
package (version 2.1-5; (Evans & Cushman, 2009)). From this reduced 
set of predictors, the final model variables were selected utilizing the 
model selection criteria of Murphy et al. (2010) as implemented in rfU-
tilities. The occupancy models were evaluated for fit based on out-of-
bag classification accuracy using the Area Under the ROC Curve (AUC) 

Predictor variable 
categories Description Number

Physical environment 
variables

Physical and oceanographic variables including depth, 
surface and bottom temperature, and surface and 
bottom salinity derived from surveys

5

Benthic terrain 
descriptors

A series of variables that characterize the structure 
of benthic habitats, most of which are based on 
bathymetry data. See Table 2 for details

19

Secondary production 
variables

Abundance of zooplankton taxa and a zooplankton 
biomass index (settled bio-volume) composed mostly 
of copepod species. Some taxa only identified to 
family or others to a general category. See Table 3 for 
details

19

Remote sensing Primary 
production variables

Remote sensed measurements of monthly mean 
chlorophyll concentration; and, the gradient 
magnitude or frontal data for the same fields

24

Remote sensing Physical 
environment variables

Remote sensed measurements of monthly mean SST; 
and, the gradient magnitude or frontal data for the 
same fields

24

Note: Number refers to number of variables.

TA B L E  1   Summary of predictor 
variables used in the development of 
spring and fall occupancy and biomass 
habitat models
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index using the 'irr' R package(version 0.84.1; (Gamer et  al.,  2019)) 
using the default classification threshold probability of 0.5. Biomass 
model regressions were evaluated for fit using the root mean squared 
error statistic based on the R package ‘Metrics’ (version 0.1.4; (Hamner 
et al., 2018)). The candidate species were limited to the consistently 
abundant taxa from the survey, which was defined as those species 
occurring in at least 150 trawl tows and which numbered 96 species. 
From this candidate list, a subgroup of species deemed to have occur-
rence models with satisfactory fits were used to estimate occupancy 
and biomass habitats over the estimation grid for the same period of 
the training data, 1976–2018.

2.5 | Distribution indices

Change in distribution was characterized with three spatial distribu-
tion metrics derived from to occurrence probability and biomass dis-
tribution for modeled taxa. The three COG metrics: distance to the 
coastline (DTC), along-shelf distance (ASD) and depth of occurrence 

(DEPTH) were calculated based on the predictions of the random 
forest models. Model-based estimates of COGs have been shown 
to be more robust than metrics calculated on the raw data (Thorson 
et al., 2016). COGs can be calculated as:

where di is a value of DTC, ASD or DEPTH associated with an estima-
tion grid i. ti denotes either modeled occurrence or biomass at estima-
tion grid i. k is the total number of estimation grid cells in the study area 
(n = 3,127).

The distribution metrics of COG were calculated as the weighted 
mean distances or depths using the occurrence probability or biomass 
measures of the subject taxon as the weighting factor. DTC is the dis-
tance of the COG from the closest position on the coastline, expressed 
in units of km. ASD was taken as the distance from the origin of a tran-
sect to the COG position of the subject taxon projected to the nearest 
point of the transect. The transect originates at 76.53°W 34.60°N and 

COGyear =

∑k

i=1

�

di × ti

�

∑k

i=1
ti

Variable Notes References

Complexity—Terrain 
Ruggedness Index

The difference in elevation values from a 
center cell and the eight cells immediately 
surrounding it. Each of the difference values 
are squared to make them all positive and 
averaged. The index is the square root of this 
average

Riley et al. (1999)

Namera bpi BPI is a second order derivative of the surface 
depth using the TNC Northwest Atlantic 
Marine Ecoregional Assessment (“NAMERA”) 
data with an inner radius = 5 and outer 
radius = 50

Lundblad et al. (2006)

Namera_vrm Vector Ruggedness Measure (VRM) measures 
terrain ruggedness as the variation in three-
dimensional orientation of grid cells within 
a neighborhood based the TNC Northwest 
Atlantic Marine Ecoregional Assessment 
(“NAMERA”) data

Hobson (1972)

Prcurv—2 km, 
10 km, and 20 km

Benthic profile curvature at 2 km, 10 km and 
20 km spatial scales was derived from depth 
data

Winship et al. (2018)

Rugosity A measure of small-scale variations of 
amplitude in the height of a surface, the ratio 
of the real to the geometric surface area

Friedman et al. (2012)

seabedforms Seabed topography as measured by a 
combination of seabed position and slope

http://www.north​
easto​ceand​ata.org/

Slp—2 km, 10 km, 
and 20 km

Benthic slope at 2 km, 10 km and 20 km spatial 
scales

Winship et al. (2018)

Slpslp—2 km, 10 km, 
and 20 km

Benthic slope of slope at 2 km, 10 km and 
20 km spatial scales

Winship et al. (2018)

soft_sed Soft-sediments is based on grain size 
distribution from the USGS usSeabed: 
Atlantic coast offshore surficial sediment data

http://www.north​
easto​ceand​ata.org/

Vort—fall (fa), spring 
(sp), summer (su), 
and winter (wi)

Benthic current vorticity at a 1/6 degree 
(approx. 19 km) spatial scale

Kinlan et al. (2016)

TA B L E  2   Summary of benthic 
terrain predictor variables used in the 
development of spring and fall occupancy 
and biomass habitat models

http://www.northeastoceandata.org/
http://www.northeastoceandata.org/
http://www.northeastoceandata.org/
http://www.northeastoceandata.org/
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extends to 65.71°W 43.49°N (Figure 1b). For this index, lower ASD 
correspond to positions in the southwest portion of the ecosystem 
and higher values more in the northeast. DEPTH represents the depth 
(depth of the seabed) of the COG and is expressed in units of meters.

Differences between occurrence and biomass COGs were tested 
for main factor effects using a two-way repeated measures ANOVA 
test; factors included model type (biomass, occupancy), year, and 
species. Trend in each distribution measure was estimated using 
the generalized least squares model selection approach described 
in Hardison et al. (2019). This approach fits trend models with 
Gaussian, AR(1), and AR(2) correlation structures prior to selection 
by small-sample AIC (Sugiura,  1978), and reduces estimation bias 
due to autocorrelated residuals when compared to linear regression 
or the Mann-Kendall test alone. In addition to analyzing the distribu-
tion metrics, the distance between occurrence and biomass COGs 
were calculated; these calculations were done on the DTC, ASD 
and DEPTH indices as well as the COG latitude/longitude positions. 
Differences between seasonal COGs were tested for main factor 
effects using a two-way repeated measures ANOVA test; factors in-
cluded season, year, and species. Trends in these data were tested in 
the same manner as the COG measures.

2.6 | Fish size at depth

The relationship between fish body size and depth of occurrence 
was calculated for the suite of species modeled. For specimens 

captured in the bottom trawl survey that included a length measure-
ment (cm), linear models were estimated between length and depth 
as the independent variable. Regression fits with model p < .01 were 
considered significant.

3  | RESULTS

3.1 | Model performance and species selection

A set of 52 species were identified that provided acceptable model 
fits in both spring and fall seasons and thus formed the basis of a 
balanced analysis of change and contrast in occurrence and biomass 
COGs (Table 4). Occurrence model fits had average AUC scores of 
0.85 and 0.86 in the spring and fall, respectively. Our intention was 
to only use species models with an AUC > 0.75; we made one ex-
ception and included the species model for Jonah crabs that had 
a AUC  =  0.74 in both seasons. Of all the species used, six taxa, 
American lobster, Atlantic rock crab, Jonah crab, longfin squid, 
northern shortfin squid, and sea scallop, were macroinvertebrates 
whereas the balance were finfish. Though inclusion in the study 
was based on the performance of the occurrence models, the bio-
mass models had relatively high performing fits as well. The average 
RMSE scores for the spring and fall biomass models were 0.11 and 
0.12, respectively.

3.2 | Change in occurrence and biomass center of 
gravity measures

The mean COG metrics for occurrence and biomass habitats across 
species varied seasonally and changed both synchronously and 
asynchronously. Time series of the mean occupancy DTC metrics 
were without trend in both spring and fall which was in contrast to 
increasing trends found in the biomass habitat data (Figure  2a,b). 
Spring occupancy DTC remained at approximately 105 km through-
out the time series and was generally <100 km in the fall. Mean bio-
mass DTC increased in both seasons, but the only significant trend 
among these times series was found in the spring biomass DTC data 
(Table  5). The main factor comparison test showed no difference 
between the occupancy and biomass DTC data in either season 
(Table 6).

Time series of the mean occupancy and biomass ASD metrics 
all trended to higher or more northeasterly locations in both spring 
and fall (Figure 2c,d). In spring, the occupancy COGs tended to be 
more to the northeast than the biomass COGs, while in spring, the 
positions reversed with the occupancy COGs further to the south-
west. ASD trends for both habitats and seasons were significant at 
p ≤ .082 (Table 5). However, the main factor test suggests that the 
only spring occupancy and biomass ASD metric values were signifi-
cantly different (Table 6).

Time series of the mean occupancy and biomass DEPTH metrics 
tended to diverge in both spring and fall, indicating a shallowing of 

TA B L E  3   Summary of zooplankton predictor variables used in 
the development of spring and fall occupancy and biomass habitat 
models

Variable name Full name

acarspp Acartia spp.

calfin Calanus finmarchicus

chaeto Chaetognatha

cham Centropages hamatus

cirr Cirripedia

ctyp Centropages typicus

echino Echinodermata

evadnespp Evadne spp.

gas Gastropoda

hyper Hyperiidea

larvaceans Appendicularians

mlucens Metridia lucens

oithspp Oithona spp.

para Paracalanus parvus

penilia Penilia spp.

pseudo Pseudocalanus spp.

salps Salpa

tlong Temora longicornis

volume Plankton bio-volume
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occurrence and a movement of biomass distributions to deeper depths 
(Figure 2e,f). With the exception of the fall biomass data, all of these 
trends were significant at p ≤ .07, further supporting the observation 
of divergence in depth distribution (Table 5). The main factor compar-
ison tests confirm the implied differences in occupancy and biomass 
DEPTH data in both seasons (Table 6). In summary, while occupancy 
habitat has tended to remain at constant distance from the coast, 
biomass habitat has moved further offshore. This is also reflected in 
changes in depth distribution of the habitat types, with biomass habitat 
tending to distribute in deeper water. The COG for both habitat types 
have shifted along the NES shelf further to the northeast.

3.3 | Change in distance between occurrence and 
biomass centers of gravity

The spacing between occupancy and biomass habitat COGs were 
substantial and, in some cases, changed over time. The distance be-
tween occupancy and biomass COGs simply based on their latitude 

and longitude positions suggest center spacing of approximately 
55–40 km in spring and fall, respectively (Figure 3a). The negative 
trend in the spring spacing distances was significant whereas the fall 
spacing distance time series was nonsignificant (Table 5). The main 
factor comparison tests suggest that the spacing in spring and fall 
were not significantly different (Table 7).

The distance between occupancy and biomass DTC COGs in-
dicate the relative position between the COGs in respect to the 
shoreline. Spring difference in DTC distance begin around zero and 
increased more than 2 km indicating that the biomass COGs relo-
cated further offshore by that amount (Figure 3b). The fall distances 
start in negative numbers indicating biomass was further inshore at 
the beginning of the time series and have now equalized. The dis-
tance trend in the spring spacing was significant at p = .1 and the fall 
trend was nonsignificant (Table 5). The main factor comparison test 
suggests that the spacing in spring and fall were not significantly 
different (Table 7).

The difference between occupancy and biomass ASD seasonal 
COGs varied by sign and magnitude. Spring differences in ASD 

F I G U R E  2   Time series (1976–2018) 
and linear trends of; mean distance to 
the coast (DTC) center of gravity index 
in spring (a) and fall (b); mean along-shelf 
distance (ASD) center of gravity index in 
spring (c) and fall (d); mean depth (DEPTH) 
center of gravity index in spring (e) and 
fall (f). Black squares—based on biomass 
habitat model, red circles—based on 
occupancy habitat model

102

104

106

108

110

94

96

98

100

102

855

870

885

900

915

930

950

960

970

980

1976 1984 1992 2000 2008 2016

190

200

210

220

230

240

1976 1984 1992 2000 2008 2016

175

180

185

190

195

 Biomass
 Occupancy

mk,tsaoc
eht

ot
ecnatsi

D

(a) (b)

mk,ecnatsidflhes
gnolA

(c) (d)

m,htpe
D

Year

(e)

F

(f)



2058  |     FRIEDLAND et al.

COGs were all negative reflecting the more southeasterly position 
of biomass COG (Figure 3c). The fall distances were all positive re-
flecting the reversal of occupancy and biomass relative position; the 
fall differences were of much lower magnitude of <10 km. The dis-
tance trend in the spring spacing was significant at p = .01 and the 
fall trend was nonsignificant (Table 5). The main factor comparison 
test suggests that the spacing in spring and fall were significantly 
different (Table 7).

The difference between occupancy and biomass DEPTH sea-
sonal COGs were both positive indicating biomass COGs were dis-
tributed at deeper depths. Spring differences in DEPTH were larger 
than fall and increased from approximately 20 m to nearly 40 m over 
the time series (Figure 3c). The fall depth differences were all positive 
but only ranged from approximately 7 to 15 m. The trend in depth 
difference was significant at p < .014 in both seasons (Table 5). The 
main factor comparison test suggests that the spacing in spring and 
fall were significantly different (Table 7). To summarize, the overall 
spacing of occupancy and biomass COGs ranged from approximately 
40 to 55 km across seasons; however, no single distribution metric 
was able to explain this distance in total. Instead, the separation of 
occupancy and biomass COGs was the result of the combined ef-
fects of complex movements in respect to both the along and off-
shore axes of the ecosystem.

3.4 | Fish size at depth accounts for differences in 
centers of gravity

The majority of species were found to have positive relationships 
between size and depth indicating an ontogenetic distributional 

Season Metric Model Slope CI p

(a) Trend in distribution

Spring DTC Biomass 0.087 (0.034, 0.139) .010

Occupancy 0.022 (−0.017, 0.060) .264

ASD Biomass 0.838 (0.561, 1.114) .002

Occupancy 0.357 (0.134, 0.580) .014

Depth Biomass 0.197 (0.006, 0.388) .053

Occupancy −0.141 (−0.27, −0.012) .070

Fall DTC Biomass 0.032 (−0.046, 0.109) .469

Occupancy −0.006 (−0.049, 0.037) .770

ASD Biomass 0.282 (0.047, 0.517) .048

Occupancy 0.229 (0.002, 0.455) .082

Depth Biomass 0.074 (−0.018, 0.166) .217

Occupancy −0.109 (−0.173, −0.046) .010

(b) Trend in difference

Spring Lat/Lon −0.156 (−0.268, −0.045) .023

DTC 0.060 (0.005, 0.115) .099

ASD 0.530 (0.430, 0.630) .000

Depth 0.340 (0.212, 0.469) .001

Fall Lat/Lon 0.023 (−0.084, 0.130) .669

DTC 0.043 (0.000, 0.085) .123

ASD 0.057 (−0.079, 0.193) .416

Depth 0.183 (0.107, 0.259) .013

Note: Slope with 95% confidence intervals (CI) and associated probability of the slope estimate (p) 
are given by season, metric, and model.
Abbreviations: ASD, along-shelf distance; DEPTH, the depth of the center of gravity; DTC, distance 
to the coastline.

TA B L E  5   Linear trend in the center of 
gravity distribution metrics (a) and linear 
trend in the differences in the distribution 
metrics between models for occurrence 
and biomass habitats (b)

TA B L E  6   Results for main factor comparison of model types 
using a two-way repeated measures ANOVA test

Season Metric F p

Spring DTC 0.709 .404

ASD 4.579 .037

DEPTH 9.668 .003

Fall DTC 0.297 .588

ASD 1.059 .308

DEPTH 3.803 .057

Note: Factors include model type (biomass, occupancy), year, and 
species; each model had 1, 42, 51 degrees of freedom by factor for a 
total of 4,471.
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gradient. In spring, 50 of the 52 study species had sufficient data 
to estimate the relationship between size and depth; of the regres-
sions, 38 (76%) had positive slope coefficients (Figure 4a). Slightly 
more pronounced were the differences in sign of the fall coefficients 
where 40 (78%) were positive based on 51 taxa with sufficient data 
(Figure 4b).

4  | DISCUSSION

The occurrence and biomass centers of distribution were distinct 
among fish and macroinvertebrates in the US Northeast Shelf large 
marine ecosystem. These centers tend to be separated by substan-
tial distances and have been shifting dynamically in response to 
changing climate conditions within the ecosystem. Generally, the 
two centers were separated by an average distance of around 50 km, 
which approximates the dimensions of the minor axis of the eco-
system. Clearly, habitat gradients for these species are irregular and 
cause habitats to be partitioned. Habitat partitioning is most visibly 
associated with life stage and can be represented with fish size as a 
proxy variable. Such relationships between body length and habitat 
have previously been demonstrated for multiple reef fish species 
with varying life history characteristics (Galaiduk et al., 2017). Due 

to the limited range of depth (10–40 m), ontogenetic environmental 
niche partitioning in that study was driven mainly by the physical 
descriptors of habitat complexity (i.e., local relief and/or slope) and 
selected biotic variables (i.e., probability of occurrence of mixed un-
differentiated vegetation, sessile invertebrates, and reef). However, 
in our study, depth was one of the most important predictors. Since 
the depth of fish occurrence was strongly related to fish size, it sug-
gests that fish size indirectly affects the spatial distribution of these 
marine resources.

Shifts in the location of the COGs for occurrence and biomass 
among fish and macroinvertebrates presented in this study show 
contrasting patterns. Discrepancies in the occupancy and biomass 
can be mediated by the competition for resources, which in turn 
drives migration of organisms between different areas (Bijleveld 
et al., 2018). Range of other ecological phenomena can modulate 
species occupancy and biomass distribution, including abrupt spa-
tial discontinuities or temporal changes in environmental conditions 
(Brown, 1984) or population dynamics (Foggo et al., 2007). As previ-
ously presented for macrozoobenthos in Dutch Wadden Sea, there 
is no general relationship between species' biomass and occupancy, 
therefore predicting biomass from its occupancy is not always pos-
sible (Bijleveld et al., 2018). Since both features of the species dis-
tribution can provide valuable information into the management 
process but show inconsistent patterns, our results underscore the 
high value of long-term programs monitoring both occupancy and 
biomass of organisms.

Habitat centers of distribution are shifting to higher latitude, 
which mirrors the shifts seen in empirical distributions; however, 
partitioning the analysis by occurrence and biomass reveals signif-
icant seasonal differences in where biomass is concentrated. The 
juxtaposition of biomass to occurrence reverses from spring to fall, 
which reflects the large seasonal excursion of biomass COGs versus 
occurrence COGs. Biomass tends to shift at distances approaching 
100 km, whereas occurrence shifts less than half that amount. There 

F I G U R E  3   Temporal variations 
(1976–2018) in mean distance between 
biomass and habitat centers of gravity 
latitudes and longitudes (a), difference 
between distance to the coast (b), along-
shelf distance (c), and depth (d) indices for 
spring and fall models
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TA B L E  7   Results for main factor comparison of seasons using a 
two-way repeated measures ANOVA test

Metric F p

Lat/Lon 2.658 .109

DTC 1.805 .185

ASD 10.800 .002

Depth 5.670 .021

Note: Factors include season, year, and species; each model had 1, 42, 
51 degrees of freedom by factor for a total of 4,471.
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are a number of factors that form latitudinal gradients that could 
shape the productivity of fish. An obvious gradient is the one formed 
thermally as the ecosystem cools and warms seasonally.

For some species, changes in the distributional COG may be con-
trary to what is seen in the main trends. In this ecosystem, most spe-
cies experienced a shift in distribution to high latitudes or further to 
the northwest along shore; howevere, for some species like winter 
skate (Leucoraja ocellata) and shortnose greeneye (Chlorophthalmus 
agassizi), trends in ASD COG were negative, indicating shifts to 
the lower latitudes. For both species, finding deeper water meant 
movement to the south of their former habitats. Hake species have 
had COG distributions off the shelf break around 72–70°W; how-
ever, now these species have centers of distribution in more inshore 
areas around 42–43°N (Nye et al., 2009). Consequently, their oc-
currence COG is more inshore where they impose significant pre-
dation pressure on protected species (Friedland et al., 2012). These 
results suggest that particular species or groups of species may 
show contrasting patterns in the shifts of their COGs and since 

multiple ecosystem elements are shifting their distribution at dif-
ferent speeds and directions, it may potentially increase the rate of 
changes in interspecific interactions within the ecosystem (Kordas 
et al., 2011).

Environmental factors dominate in the modeling of species dis-
tribution and have overshadowed other effects, such as biotic in-
teractions, and specific biological characteristics, like phenotypic 
plasticity or locomotor performance (Twiname et al., 2020; Zhang 
et al., 2018). Besides the environmental factors in the SDM frame-
work, we investigated also possible relationships between fish body 
size and depth of occurrence. Most species were found to have pos-
itive relationships between size and depth indicating an ontogenetic 
distributional gradient. Therefore, part of the variation in the fish 
spatial distribution, and in turn discrepancies between occupancy 
and biomass COGs, can be explained by the fish size effect. The 
differences in occurrence and biomass habitat distributions reflect 
a response to changing physical conditions in the ecosystem, but 
also to the underlying ontogenetic organization of populations. The 

F I G U R E  4   Linear regression slope 
coefficients between length and depth 
for fish (beige) and macroinvertebrates 
(green) for spring (a) and fall (b) seasonal 
surveys. Species abbreviations are 
specified in Table 1. Regression with 
p < .01 statistical significance marked with 
an asterisk
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difference in depth distribution of the two habitat types is likely 
related to the change in depth preference by age and size of most 
species captured in the survey. Current methodological advance-
ment allows, for example, for the inclusion of additional biological 
information, and provides hybrid approaches placed between purely 
correlative and mechanistic models (Bush et al., 2016). Therefore, we 
encourage further studies, which can incorporate size properties of 
the studied populations or species (e.g., asymptotic length derived 
from the von Bertalanffy growth functions commonly used in fish-
eries science) in the prediction of species redistribution patterns and 
speed of these processes. Further parallel prediction of the changes 
in the size structure of the populations (Tu et al., 2018) and inclusion 
of these predictions in the models of species occupancy or biomass 
shifts in the future can help to improve their reliability.

The shifts or temporal trends in the COGs and differences be-
tween occupancy and biomass COGs were more pronounced in the 
spring than in the fall. We can attribute these differences to two 
aspects of the physical environment. Though the spring and fall 
surveys, and thus the time frames used to inform the models, were 
spaced by approximately six months or a half year, the surveys occur 
at different dynamic locations in the annual temperature cycle. The 
spring survey time frame revolves around April, which tends to be 
more proximate to the winter minimum than the fall survey time 
frame in October and its proximity to the summer maximum. As a 
consequence, the spring habitats are defined on a thermal field with 
less change, whereas the fall thermal field is changing rapidly. The 
change in the fall would be cooling, which would likely have the effect 
of compressing habitats within the range of the ecosystem. Though 
more commonly described in respect to oxygen stress (Campbell & 
Rice, 2014), thermal habitat compression has been described (Brown 
et al., 2016) and may be relevant here. Additionally, there are physi-
cal demarcations to the latitudinal extent of the ecosystem that are 
not artificially imposed by the survey itself. The northern bound-
ary of the ecosystem is associated with the shelf break, thus in the 
summer months, northerly annual migrations meet depth boundary 
conditions that may also serve to compress the fall distributions.

The differential shifts in species occupancy and biomass may 
have ramifications for the spatial management of the ecosystem. 
On face value, greater concentration of biomass at depth presents 
a climate-induced stressor on fishery operations through likely 
changes in transit times and operating costs (Kleisner et al., 2017). 
Higher concentrations of biomass at deeper depth will most likely 
be located further offshore, which is substantiated by the observed 
trends in biomass and distance to the coast. At the same time, spe-
cies occurrence footprints have enlarged (Friedland et al., 2020) and 
occupancy COGs have migrated inshore and into shallower water, 
thus creating new, accessible fishing opportunities and conflicts 
with existing management. Temporal shifts and discrepancies of oc-
cupancy and biomass COGs in the transboundary areas may cause 
challenges for the effective management of fisheries and allocations 
of fishing quotas (Baudron et al., 2020). Unequal distribution of oc-
cupancy and biomass habitats of fish and macroinvertebrates can 

also lead to the unbalanced fishing pressures and mortality. These 
results suggest that climate change forced change in distribution will 
differentially affect occurrence and biomass of marine taxa, which 
will likely affect the organization of ecosystems and the manner in 
which human populations utilize marine resources.
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