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émanant des établissements d’enseignement et de
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Abstract: In this paper, live and bounded free-choice Petri nets with stochastic firing times
are considered. Several classical routing policies, namely the race policy, Bernoulli routings, and
periodic routings, are compared in terms of the throughputs of the transitions. First, under
general i.i.d. assumptions on the firing times, the existence of the throughput for the three
policies is established. We also show that the ratio between the throughputs of two transitions
depend only on the asymptotic frequencies of the routings, and not on the routing policy. On the
other hand, the total throughput depends on the policy, and is higher for the race policy than for
Bernoulli routings. Second, we show how to compute the throughput for exponentially distributed
free-choice nets under the three policies. This is done by using Markov processes over appropriate
state spaces. We use this to compare the performance of periodic and Bernoulli routings. Finally,
we derive optimal policies under several information structures, namely, the optimal pre-allocation,
the optimal allocation, and the optimal non-anticipative policy.
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Débit dans les réseaux à choix libres stochastiques :

existence, calculs et optimisations.

Résumé : Dans cet article, nous considérons des réseaux de Petri vivants bornés avec des temps
de tir stochastiques. Nous comparons plusieurs politiques de routage classiques : la politique de
compétition, les routages Bernoulli et les routages périodiques. Pour ce faire nous étudions le
débit des transitions du réseau. Tout d’abord, pour des temps de tir avec des distributions i.i.d.
générales, nous établissons l’existence du débit pour ces trois politiques. Nous montrons aussi que
le rapport entre les débits de deux transitions dépend seulement des fréquences de routage et non
de la politique de routage. En revanche, le débit total dépend de la politique de résolution de
conflits choisie : il est plus élevé pour la politique de compétition que pour le routage Bernoulli.
Dans un deuxième temps, nous montrons comment calculer ce débit pour des temporisations
exponentiellement distribuées pour ces trois politiques de routage en utilisant des processus de
Markov sur des espaces d’états appropriés. Nous utilisons ces méthodes pour comparer les routages
Bernoulli et périodiques. Enfin, nous montrons comment trouver les politiques qui maximisent le
débit en fonction de l’information disponible. En utilisant des processus de décision de Markov
nous exhibons les politiques de pré-allocation, d’allocation et non-anticipative optimales.

Mots-clés : Réseaux de Petri à choix libres, Compétition, Stratégie de Routage Optimal.



Throughputs in stochastic free-choice nets 3

1 Introduction

In this paper, we consider a live and bounded free-choice net with stochastic firing times and
we analyze classical policies of conflict resolution in terms of the throughput of the transitions
(number of firings per second). The first policy is the famous race policy, see for instance [1]. The
other policies are Bernoulli routings, periodic routings, and throughput-optimal routings.

This problem has already been considered for timed deterministic fluid Petri nets. Two different
models of fluid Petri nets have been studied, in [9] and [15]. In both cases, it has been proved
that the throughput is simply the solution of a linear program ([10, 15]). The discrete case is
more involved. The deterministic discrete free-choice case has been studied in [6] and has a high
combinatorial complexity. On the other hand, the existence of the throughput for stochastic free-
choice nets with general i.i.d. firing times and Bernoulli routings is established in [11] but no
means of computation is provided.

Here, we first show the existence of the throughput for the race policy and the periodic routings
for general i.i.d. timings. Then we compare the throughput obtained under the different policies,
for a fixed asymptotic frequency of the routings. Let λk, k ∈ {race,Ber, per}, be the vector of the
throughputs at the different transitions. We prove that there exists a vector v only depending on
the asymptotic routing frequencies and such that λk = αkv, for αk ∈ R+.

In the second part of the paper, we show how to compute explicitly the throughput for expo-
nentially distributed free-choice nets with Bernoulli routings, periodic routings and for the race
policy. The race policy case is standard: the marking evolves as a continuous-time jump Markov
process. As for Bernoulli and periodic routings, we construct a Markov process which is not evolv-
ing on the marking reachability graph but on an extended state space which takes into account
the possible routings. We show how to choose the parameters of the Bernoulli routing in order to
maximize the throughput. We use these computations to compare Bernoulli routings with periodic
routings. Numerical evidence suggests that balanced periodic routings provide better throughputs
than Bernoulli routings, much like in open systems [2] or closed deterministic ones [8].

In the final part of the paper, we consider optimal policies. Observe that the race policy can be
seen as a greedy policy which is locally optimal. Using Markov Decision Processes, we provide a
computation of the throughputs for optimal routing policies under several information structures:

� Pre-allocation: the routing of a token is decided immediately upon entering the routing
place, knowing the global marking.

� Allocation: the routing of a token can be decided at any instant, and knowing the global
marking.

� Non-anticipative policy: the routing can be decided at any instant, knowing the global
marking and the next transition available.

We compare the throughput that one can achieve using these different information structures,
showing that the last one provides a better throughput than the second, which is also better than
the first one.

We exhibit a free-choice net with one conflict place for which the optimal non-anticipative
policy is to perform a race in some marking and a constant allocation in some other marking.

2 Stochastic free-choice nets

In this section, we recall the basic definitions of stochastic free-choice nets. We set N
∗ = N \ {0}

and 1X is the characteristic function of the set X.
A Petri net is a 4-tuple N = (P, T ,F ,M0) where (P, T ,F) is a directed bipartite graph with

nodes P ∪T , P ∩T = ∅, and arcs F ⊂ (P ×T )∪ (T ×P) and where M0 ∈ N
P . The elements of P

are called places and those of T , transitions, and M0 is called the initial marking of N . For a node
x ∈ P ∪ T , we denote by •x the set of its predecessors and by x• the set of its successors. The
marking evolves according to the firing rule: a transition a is enabled if: ∀p ∈ •a, M(p) ≥ 1. An
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4 A. Bouillard, B. Gaujal and J. Mairesse

enabled transition can fire, and then the marking becomes M ′ with M ′(p) = M(p)−1•a(p)+1a•(p).

This firing is denoted by M
a→ M ′. A marking M ′ is reachable from M if there exists a sequence

of transitions a1, . . . , an such that M ′ is obtained from M by successively firing a1, · · · , an. We
write M

w→ M ′ where w = a1 · · · an, and w is called an admissible sequence. We denote by R(M0)
the set of all the reachable markings (from M0). For an admissible sequence σ ∈ T ∗, we denote
by −→σ its commutative image (or Parikh vector), that is, the vector of N

T that counts the number
of occurrences of each transition in σ.

A stochastic Petri net is a Petri net where random timings have been added on the transitions.
More precisely, a stochastic Petri net is a 5-tuple = (P, T ,F ,M0, ϕ), where (P, T ,F ,M0) is a
Petri net, where ϕ = (ϕa)a∈T , and ϕa = (ϕa(n))n∈N∗ is a sequence of i.i.d. random variables with
finite expectation (E(ϕa(1)) < ∞). Moreover, the sequences ϕa, a ∈ T , are mutually independent.
The firing rule is defined as follows: if the n-th firing of transition a starts at time t, then at time
t, one token is removed from each input place of a, and at time t + ϕa(n), one token is added in
each output place of a.

A free-choice (Petri) net is a Petri net where: ∀(p, a) ∈ P×T , (p, a) ∈ F ⇒ (p• = {a}) or (•a =
{p}). That is, choices and synchronizations in the net are separated. A Petri net is live if for
every reachable marking M ′, and for every transition a, there exists a marking M ′′ reachable from
M ′ such that a is enabled in M ′′. A Petri net is bounded if there exists m ∈ N such that for
every reachable marking M ∈ R(M0), for every place p ∈ P , M(p) ≤ m. A connected live and
bounded Petri net is strongly connected. In this article, we only consider strongly connected live
and bounded free-choice nets.

The cluster [x] of x ∈ P ∪ T is the smallest subset of P ∪ T such that: (i) x ∈ [x]; (ii)
p ∈ P , p ∈ [x] ⇒ p• ∈ [x]; (iii) t ∈ T , t ∈ [x] ⇒ •t ∈ [x]. The set of all the clusters of a Petri net
defines a partition of the nodes. For free-choice Petri nets, each cluster contains only one place or
only one transition.

Conflict resolution

In order to solve the conflicts in free-choice nets, at the places having several output transitions
(conflict places), one needs to define a routing policy: when a token arrives in such a place, the
policy defines which output transition will be fired with that token.

The race policy is defined as follows: when a token arrives in a conflict place p, every output
transition of p begins its firing. The first transition that finishes to fire is effectively fired (it wins
the race), and all the other output transitions of p abort their firing at that time. Therefore, the
probability that a transition a ∈ p• wins the race is P(ϕa(1) = mina′∈p•{ϕa′(1)}), assuming that
no ties are possible. (Otherwise a procedure to break ties needs to be specified.)

A Bernoulli-routed Petri net is a tuple (P, T ,F ,M, ϕ, u) where (P, T ,F ,M, ϕ) is a stochastic
Petri net and u = (up)p∈P is the set of routing functions. For every place p, up = (up(n))n∈N∗ is
a sequence of i.i.d. r.v.’s (hence the name Bernoulli routing), and those sequences are mutually
independent and independent of the firing times. The r.v. up(n) tells the transition that will be
fired by the n-th token entering place p.

A Petri net with periodic routing is a tuple (P, T ,F ,M, ϕ, u) where (P, T ,F ,M, ϕ) is a stochas-
tic Petri net and where u = (up)p∈P with up ∈ (p•)N

∗

being a deterministic periodic function.
Again up(n) tells the transition that will be fired by the n-th token entering place p.

A routing is equitable if for every conflict place p, each output transition is chosen with a strictly
positive frequency. Under the race policy, the equitable condition becomes: for every place p, for
every transition a ∈ p•,

P(ϕa(1) = min
a′∈p•

{ϕa′(1)}) > 0. (1)

In a general Petri net, where synchronizations and choices are not separated, the routing policy
could lead to a deadlock (no transition can be fired) while the Petri net without routing is live. On
the other hand, in the free-choice case, it is proved in [11] that every transition will fire infinitely
often in a routed net if and only if the Petri net is live and the routings are equitable.

INRIA



Throughputs in stochastic free-choice nets 5

In the following, we always assume that equitability is satisfied.

3 Existence of the throughput

Theorem 1. Let N k be a live and bounded stochastic free-choice net with a routing policy k ∈
{race,Ber, per}. For every transition b, there exists a constant λk

b ∈ R+ (throughput of transition
b) such that a.s. and in L1,

lim
n→∞

n

Xk
b (n)

= lim
t→∞

X k
b (t)

t
= λk

b ,

where Xk
b (n) is the instant of completion of the n-th firing of transition b under policy k and

X k
b (t) is the number of firings completed at time t under policy k.

Proof. The result was proved in [11] for the Bernoulli routing.

-Race policy. The case of the race policy can be dealt with by showing that the behavior of the
net under the race policy can be simulated by a suitable Bernoulli-routed net. Starting from
N race = (N , ϕ), consider the Bernoulli-routed net (N , ϕ′, u), where the distribution of transition
a becomes

P(ϕ′
a ≤ t) = P(ϕa ≤ t|∀b ∈ (•a)•, ϕa ≤ ϕb),

and where the routing function u is such that

P(up(n) = a) = P(ϕa ≤ ϕb, ∀b ∈ (•a)•).

(Here we assume for simplicity that P(ϕa = ϕb) = 0 for all a 6= b.)
This Bernoulli routing is called the Bernoulli routing simulating the race policy. Indeed, in the

race policy the output transition of a conflict place that is fires is that with the smallest firing time.
The usual description is to begin the firing of every output transition and to fire the transition
which is the first to finish its firing. Another equivalent way to process is to consider all the firing
times of the output transitions before beginning to fire, compare them and choose the one with
the smallest firing time. Under i.i.d. assumptions, the probability that transition a is fired is

P(ϕa ≤ ϕb, ∀b ∈ (•a)•)

and the distribution of the firing time of a is

P(ϕ′
a ≤ t) = P(ϕa ≤ t|∀b ∈ (•a)•, ϕa ≤ ϕb).

-Periodic routing. The case of periodic routings can be proved by adapting the proof of the
Bernoulli case in [11].

Let Eper be the state space of the net, that is

Eper = {(M, i1, . . . , ik) | M ∈ R(M0), ij ∈ {0, . . . , dpj
− 1}}, (2)

where p1, . . . , pk are the conflict places of the net. Clearly, this state space is finite.
Let block a transition b of the net. As the routing is equitable, there exists a unique reachable

marking Mb, called the blocking marking of transition b, where transition b is the only enabled
transition (see [11]). Let the state obtained be (Mb, r). If b is fired and blocked again, the new state
obtained is (Mb, r

′). Moreover, r′ does not depend on the order of the transition fires (because
the routing is deterministic), so (Mb, r) is the only state that can be reached ([11], Lemma 4.4).
Up to a commutation of transitions, the firing sequence is also unique.

If transition b is successively blocked and fired, according to the previous description, there
exists a state (Mb, r) that is visited infinitely often. Furthermore, the firing sequence between two
visits of that state is unique up to the commutation of transitions of the firing sequence. Let kt

be the number of occurrences of t in such a sequence.
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6 A. Bouillard, B. Gaujal and J. Mairesse

We suppose now, without loss of generality, that the initial state of the net is (Mb, r), and
denote by (Ñ , M̃b, τ̃ , ũ) the open expansion of (N ,Mb, τ, u) and b defined as follows.

Let K = max{k : Mb
bk

→}. The open expansion of (N ,Mb, τ, u) and b is:

� P̃ = P ∪ {pb, pI} ;

� T̃ = (T − {b}) ∪ {I, bi, bo} ;

� F̃ =























(F − {(p, b) ∈ F , (b, p) ∈ F})
∪{(p, bo) : (p, b) ∈ F , (b, p) /∈ F}
∪{(bi, p) : (b, p) ∈ F , (p, b) /∈ F}
∪{(bi, p), (p, bi) : (b, p) ∈ F , (p, b) ∈ F}
∪{(I, pI), (pI , bi), (bo, pb), (pb, bi)}

;

� M̃p =















Mp if p ∈ P − •b
Mp − K + Kχb• if p ∈ •b
K if p = pb

0 if p = pI

;

� τ̃a(n) =







τa(n) if a ∈ T − {b}
τb(n) if a = bi

0 if a = bo

,

� ũp(n) = up(n).

pI

N

b bipbbo

I
Ñ

Figure 1: Open expansion.

Figure 1 illustrates this construction. The Petri net obtained is neither live nor bounded. In
order to be enable some transitions, one has to define the firing times of transition I. When
transition I is saturated (transition I is fired an infinitely number of time at instant 0), N and Ñ
have the same behavior. We now prove the existence of the throughput of transition b in Ñ . Let
define ζ1 as the random vector (τ1(1), . . . , τ1(k1), . . . , τ|T |(1), . . . , τ|T |(k|T |)) and more generally,

ζi(τ1((i − 1)k1 + 1), . . . , τ1(ik1), · · · , τ|T |(((i − 1)k|T | + 1), . . . , τ|T |(ik|T |)).

The vector ζi is the sequence of the firing times of the transitions between the i-th and the
i + 1-th visit in state (Mb, r) if the firing dates of I are spaced enough so that transition b is fired
exactly kb times. Because of the independence hypothesis, the sequence (ζi) is i.i.d. The existence
of the throughput is now a consequence of the monotone-separable framework defined in [4] that
can be applied here.

Remark The transformation of a Petri net with the race policy into the Bernoulli routing
simulating the race policy modifies the distributions if the firing times. This leads to more complex
distributions. In particular, a net with exponentially distributed firing times for the race policy
in not transformed into a Bernoulli routed net with exponential firing times.

INRIA



Throughputs in stochastic free-choice nets 7

3.1 Ratio between the throughputs of the transitions

Although it seems impossible to compute the throughput of the transitions when the firings have
general distributions, it is rather easy to compute the ratio between the throughputs of two different
transitions for all three routing policies.

Define the routing matrix Rk = (Rk
ij)i,j∈T as:

Rk
i,j =

1

|•j|
∑

p∈P:i→p→j

F k(p, j),

where F k(p, j) is the frequency of routing to transition j from place p under the routing k. In
particular, FBer(p, j) = P(up(1) = j), F race(p, j) = P(ϕj ≤ ϕa, ∀a ∈ p•), and F per(p, j) is the
proportion of tokens routed to j over one period of the routing, that is, |rp|j/dp, where dp is the
period on the routing in place p and |rp|j the number of times transition j is chosen during a
period.

From the equitable assumption, in all three cases, the matrix Rk is irreducible, its spectral
radius is 1, and it admits a unique eigenvector xk = (xk

a)a∈T , xk
a ∈ R+ \ {0}, ∑

a xk
a = 1, such

that xkRk = xk.

Theorem 2. The model is the same as in Theorem 1. For all routing policy k belonging to
{race,Ber, per}, there exists a constant ck ∈ R+ ∪ {∞} such that for all transition a, λk

a = ckxk
a.

The proof is an adaptation of the proof of [11, Prop. 5.1] in which Bernoulli-routed nets are
considered.

Proof. As the result has already been proved for Bernoulli routed nets, the result holds for the
race policy, using the transformation of a net with the race policy into a Bernoulli-routed net. We
now show the theorem for periodic routings.

We first suppose that λa is finite for every transition a ∈ T . Let a be a transition and Xa(t)
be the number of complete fires at time t. Let Ypa(t), a ∈ T , p ∈ •a, be the number of tokens
routed in place p to transition a at time t. Then,

Xa(t) ≤ Ypa(t) ≤ Xa(t) + M̄, (3)

where M̄ is the bound of N . As the equation

Ypa(t) =

K(t)
∑

i=1

1{up(i)=a},K(t) = M0(p) +
∑

b∈•p

Xb(t) (4)

also holds, equation (3) gives

λa = lim
t

Xa(t)

t
= lim

t

Ypa(t)

t
, (5)

and equation (4), using the periodicity of up, gives

lim
t

Ypa(t)

t
= lim

t

∑K(t)
i=1 1{up(i)=a}

K(t)
.
K(t)

t
=

|rp|a
dp

.
M0(p) +

∑

b∈•p Xb(t)

t
. (6)

As the throughput exists, we get

λa =
|rp|a
dp

∑

b∈•p

λb. (7)

Moreover, this equation is valid for every place p ∈ •a. So

λa =
1

|•a|
∑

p∈•a

|rp|a
dp

∑

b∈•p

λb =
∑

b∈•p

λbRba (8)
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8 A. Bouillard, B. Gaujal and J. Mairesse

and λ = λR.
By construction, R is non-negative. As the routing is equitable, we have ∀(p, j) ∈ (P×T )∩F ,

|rp|a/dp > 0, so for every i, j ∈ T such that there exists p ∈ P such that i → p → j, Rij > 0.
Moreover, N is strongly connected, so R is irreducible. Using the Perron-Frobenius theorem, we
deduce that λ is unique (up to a multiplicative factor) and positive. The spectral radius of R is
then 1.

If there exists a transition a such that λa = ∞, then λ = (∞, . . . ,∞) because R is irreducible.
Moreover, R depends only on the routing frequencies of the tokens and not on the timings. So,
if every timing is replaced by an exponentially distributed r.a. of parameter 1, and the routing
is not modified, then, the timing of each fire is almost surely positive and λ ∈ R+. Applying the
first part of the proof, the spectral radius of R is 1.

Observe that R depends only on the routing frequencies of tokens, and not on the timings of
the transitions. Therefore, the ratios are the same for the three policies provided that F k(p, j) are
equal for all three policies.

3.2 Comparison between the policies

As mentioned before, the ratio between the throughputs of the transitions are the same in all three
cases. Therefore, to compare the throughputs, one just has to compare the total throughputs
ck =

∑

a∈T λk
a, k ∈ {race,Ber, per}.

Proposition 1. Let N race = (P, T ,F ,M, ϕ) be a live and bounded stochastic free-choice net with
the race policy and let NBer = (P, T ,F ,M, ϕ, u) be the Bernoulli-routed net with the same firing
times and routing frequencies as N race. Then, crace ≥ cBer.

Let first prove a preliminary lemma.

Lemma 1. Let p be a conflict place with output transitions p• = {a1, . . . , ak}. For t ∈ R+,
let PB(t) = P(ϕa1

< t) be the probability that the firing time of a1 in NBer is less that t and
Pr(t) = P(ϕa1

< t|ϕa1
< ϕai

, i ∈ {2, . . . , k}) the probability that the firing time of a1 in N race is
less that t. Then, ∀t ∈ R+, PB(t) ≤ Pr(t).

Proof. Let P1(t) = P(ϕa1
< t) and P2(t) = P(min(ϕa2

, . . . , ϕak
) < t). We have PB(t) =

∫ t

0
dP1(u)

and

Pr(t) =
P(ϕa1

< t ∧ ϕa1
< ϕai

, i ∈ {2, . . . , k})
P(ϕa1

< ϕai
, i ∈ {2, . . . , k}

= Pr(t) =

∫ ∞
0

∫ t∧u

0
dP1(v)dP2(u)

∫ ∞
0

∫ u

0
dP1(v)dP2(u)

.

But is

PB(t).

∫ ∞

0

∫ u

0

dP1(v)dP2(u) =

∫ ∞

0

∫ u

0

dP1(v)dP2(u) ×
∫ t

0

dP1(v)

=

∫ ∞

0

[

∫ u

0

dP1(v)][

∫ t

0

dP1(v)]dP2(u)

≤
∫ ∞

0

∫ t∧u

0

dP1(v)dP2(u)

= Pr(t).

∫ ∞

0

∫ u

0

dP1(v)dP2(u),

because
∫ t∧u

0

dP1(v) = min(

∫ t

0

dP1(v),

∫ u

0

dP1(v))

INRIA



Throughputs in stochastic free-choice nets 9

and
∫ x

0

dP1(v) ≤ 1 ∀x.

That last lemma can be interpreted in terms of stochastic comparison, notion that has been
developed in [13]: the random variable ϕa,r is stochastically less than ϕa,B (ϕa,r ≤st ϕa,B). Now,
we can prove Proposition 1.

Proof of Proposition 1. For every transition a ∈ T , Xa(n) is the completion time of the n-th fire

of transition a. Let νap = min{k :
∑k

i=1 1{up(i)=a} = n} be the minimal number of tokens arrived
in p such that n tokens have been routed to a. Then Xa(n) satisfies the equation ([3])

Xa(n) =











max
p∈•a






min

(ni,i∈•p):Mp+
P

i∈•p
ni=νpa(n)

max
i∈•p

Xi(ni)

















+ ϕa(n),

where ϕa(n) is the firing time of the n-th fire of transition a (if N race is considered, we will write
ϕa,r and if NBer is considered, we write ϕa,B). That equation is satisfied by both N race and
NBer. When those equation are unfolded, they can be expressed in function of ϕb(i), b ∈ T only.
As

Φ : ((xi,ni
)i, y) →











max
p∈•a






min

(ni,i∈•p):Mp+
P

i∈•p
ni=νpa(n)

max
i∈•p

xi,ni

















+ y

is non-decreasing, Xa is non-decreasing. Moreover, to compute Xa(n), only a finite number of
ϕb(i) is necessary, which depends only on the routing. Indeed, let Ma be the marking where only
a a can fire (that marking exists and is unique in routed free-choice nets, see [11, Lemma 4.4]),
let −→σ be the commutative image (unique for a given routing) of the fired transitions from M to
Ma after n − 1 firings of a. Then Xa(n) depends only on ϕb(1), . . . , ϕb(|−→σ |b), b ∈ T , as the other
firing can only happen after the marking of transition a.

Theorem 3.3.11 in [13] states that the stochastic order is stable for non-decreasing functions.
From Lemma 1, for every transition b, for every n ∈ N

∗, ϕr,b(n) ≤st ϕB,b(n) and as Φ is non-
decreasing, we get λrace

a = limn→∞
n

Xr,a(n) ≥ limn→∞
n

XB,a(n) = λBer
a and crace ≥ cBer.

The comparison with periodic routings is more difficult. This will be illustrated in the next
section which focuses on computational issues.

4 Computing Throughputs

This section is devoted to the computation of the throughput in live and bounded free-choice Petri
nets. We now consider that every transition a has a firing time exponentially distributed with
parameter µa ∈ (0,∞).

4.1 Race policy

The race policy case is well-known. The marking evolves as a continuous-time jump Markov pro-
cess. Let M be a reachable marking and TM be the set of the transitions enabled at M . The
first transition fired is a ∈ TM with probability µa/(

∑

a′∈TM
µa′). The firing time is exponentially

distributed with parameter
∑

a′∈TM
µa′ . The stationary distribution πr of this process is charac-

terized by the equation πrQ = 0, where Q is the infinitesimal generator defined as follows. Denote
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2 3
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Figure 2: Example of a live and bounded free-choice Petri net.

by M · a the marking such that M
a→ M · a. We have

∀M1 ∈ R(M0), QM1,M1·a = µa if a ∈ TM1

QM1,M1
= −

∑

a∈TM1

QM1,M1·a

The total throughput is then given by the formula:

crace =
∑

M1∈R(M0)

−(πr)M1
· QM1,M1

.

To illustrate the computation of the throughput, we study an example that will be used
throughout the paper.

Example 1. Consider the Petri net in Figure 2. The places are named by letters (a to e) and
the transitions by numbers (1 to 5). The parameters of the exponentially distributed timings of
the transitions are respectively µ1 = 2, µ2 = 2, µ3 = 3, µ4 = 5, and µ5 = 1. The state space is
the set of reachable markings: R = {{a, d}, {a, e}, {b, d}, {b, e}, {c, d}, {c, e}}. The marking is a
continuous-time Markov process with infinitesimal generator:

Q =

















−2 0 2 0 0 0
1 −3 0 2 0 0
2 0 −5 0 3 0
0 2 1 −6 0 3
0 5 0 0 −5 0
0 0 0 0 1 −1

















.

The stationary distribution πrace is obtained by solving the equation πraceQ = 0. We obtain
πrace = (85, 90, 40, 30, 42, 90)/337.

The throughput is crace =
∑

i −πi.Qii = 1120/377 ≈ 2.97.

4.2 Bernoulli routings

For a free-choice Petri net with Bernoulli routings, the marking is not a Markov process anymore.
One possibility is to add immediate firing transitions to model the routing which would yield a
semi-Markov process for the marking (see [1]). Another possibility, used here, is to model the
evolution of the net by a Markov process over an extended state space. This approach has the
advantage that computations can be carried out symbolically which is very helpful for optimization
purposes.
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Throughputs in stochastic free-choice nets 11

The main trick in the construction is the choice of the state space. When a token enters a
conflict place, the timing of the transition to be fired, depends on the routing. If we took R(M0)
for the state space, then this would lead to difficulties due to that dependence. In order to separate
the timings from the routing, we consider a new state space: when a token enters a choice place,
the transition it can fire is already defined. For M ∈ R(M0), let T (M) be the set of all the
maximal sets of transitions that can be fired simultaneously (in the non-timed Petri net) under
M . Then, the extended state space is

E = {(M,T ) | M ∈ R(M0), T ∈ T (M)}, (9)

i.e. every state corresponds to a pair formed by a marking and a set of enabled transitions.
The infinitesimal generator Q of the chain is defined as follows. Let (M1, T1) ∈ E , and a ∈ T1.

Transition a is fired with rate µa and the new set of enabled transitions is T2 = (T1 \ {a}) ∪ T ′

where T ′ is a maximal set of newly enabled transitions, chosen randomly according to the Bernoulli
routings.

Example 2. Consider again the Petri net of Figure 2. A token arriving in place b fires tran-
sition 2 with probability p and transition 3 with probability q = 1 − p. The state space is
{(ad, 1), (ae, 1, 5), (bd, 2), (bd, 3), (be, 2, 5), (be, 3, 5), (cd, 4),
(ce, 5)}, and the infinitesimal generator is :

Q =

























−2 0 2p 2q 0 0 0 0
1 −3 0 0 2p 2q 0 0
2 0 −2 0 0 0 0 0
0 0 0 −3 0 0 3 0
0 2 1 0 −3 0 0 0
0 0 0 1 0 −4 0 3
0 5 0 0 0 0 −5 0
0 0 0 0 0 0 1 −1

























.

By solving πBerQ = 0, we get πBer formally, each coordinate being a rational fraction of p.
The total throughput is :

cBer =
60(4p2 − 17p + 18)

138p2 − 403p + 414
.

The maximum of cBer is reached for p = (846− 30
√

615)/751 ≈ 0.14. The corresponding value of
the throughput is approximatively 2.61.

To have the same routing probabilities as in the race policy case, one must take p = 2/5. The
stationary probability is then πBer = (190, 270, 100, 141, 72, 108, 222, 81)/1184, and the throughput
is cBer = 1480/573 ≈ 2.58.

In both cases, we computed the total throughputs crace and cBer. To get back to the throughput
of one transition, we also need to compute the left-eigenvector associated to the eigenvalue 1 of the
matrix R. We have

R =













0 p 1 − p 0 0
1 0 0 0 0
0 0 0 1 0

2/3 0 0 0 1/3
0 0 0 1 0













,

and then, with p = 2/5, λk = ck

20 (10, 4, 2, 3, 1), where k ∈ {Ber, race}.

In the above example, the maximum of cBer is strictly less than crace. This is not always the
case and it is easy to build models in which a far better throughput can be reached with Bernoulli
routings than with the race policy.
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4.3 Periodic routings

We assume that place pi has a periodic routing policy with period di. The behavior of the net can
be modelled by a continuous-time Markov process with a state space E = R(M0) × {0, · · · , d1 −
1} × · · · × {0, · · · , ds − 1} where s = |P|.

Being in a state (M, r1, . . . , rs) means than the current marking is M and that the next
transition to be chosen by a token in place pi is given by the ri-th element in the periodic sequence
attached to i. The infinitesimal generator is defined accordingly.

The number of states becomes rapidly large when the periods of the routing functions increase.
Some numerical computations have been carried out using Maple for the foregoing example of
Figure 2. For every periodic routing of the conflict place b that has period at most 10, the
transition matrix has been automatically generated and then the throughput computed. The
results are displayed in Figure 3. For a given ration, different values are computed and correspond
to the different throughputs obtained with different routings with the same proportion of routings.
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periodic routings

Figure 3: Throughput of several periodic routing functions when the proportion of tokens sent to
transition 2 varies.

Numerical evidence suggests that the best periodic routing is given by balanced routing func-
tions. This fact has been proven for many open systems (see [2]). In the case of closed systems
(as for the free-choice net used here), this is in general unproved, with a few exceptions, see [8].

Numerical evidence also suggests that the best periodic routing is better than the best Bernoulli
routing, see Figure 4. But, the throughput obtained for an arbitrary periodic routing can be less
than the throughput obtained with Bernoulli routing with the same proportions.

The maximal throughput for the periodic routing is reached when the proportion of tokens sent
to transition 2 is 0.5. This is in contrast with the situation of Bernoulli routings, where we recall
that the maximum was attained for a proportion approximately equal to 0.14. This means that
one can’t find the best periodic routing by first computing the best Bernoulli routing and then
taking the balanced periodic routing corresponding to the same routing proportions. However, in
the next section we show how to find the best the Bernoulli routing.

The shape of the curve for the best periodic routing in Figure 4 is characteristic. It seems to be
piecewise-affine with singularities at rational points with small denominators. This is reminiscent
of the numerical data obtained in [8] for a closed free-choice Petri net with deterministic timings.
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Figure 4: Comparison of the Bernoulli routing with the best periodic routing when the proportion
of tokens sent to transition 2 varies.

5 Optimal routing policies

5.1 Optimal Bernoulli routing

In the previous sections, we showed the existence of the throughput in free-choice nets with the
race policy, and proved that the throughput obtained with that policy is greater than with the
routed net with the same routing probabilities. In this section, we focus on the routed nets and
study the dependence of the throughput with the routing parameters. In particular we provide
an efficient method the optimize the Bernoulli routing parameters in one conflict place in order to
maximize the total throughput of the net.

5.1.1 Optimization of one parameter

We first suppose that every routing parameter is fixed except one, say p. The average time spent
in a state does not depend on the Bernoulli parameters, so only the stationary distribution of the
embedded Markov chain of the Markov process described above depends on p.

Let P (p) be the transition matrix of the embedded Markov chain. The coefficients of P (p) are
polynomial of degree at most 1. For every p ∈]0, 1[, it is a stochastic and irreducible matrix, so,
by the Perron-Frobenius theorem, P (p)− I has rank r− 1, where r is the dimension of the matrix
P (p). The stationary probability π(p) is a solution of the equation

x.(P (p) − I) = 0, (10)

and every solution of that equation is collinear to π(p).
The following theorem ([12], Theorem 6.1) gives the complexity of a recursive algorithm that

computes a polynomial solution of x.(P (p) − I) = 0 in cubic time.

Theorem 3. Let M ∈ F [x]n×m be of rank r and degree bounded by d. There exists an algorithm
solving the system x.M = 0 in O(nmrd2) elementary operations.

Applied to our case, if n is the size of the state space defined in (9), the cost for solving
x(P (p) − I) = 0 is O(n2(n − 1)) = O(n3). Note that the state space can be exponentially large
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1 1101 100 10

1 10

Figure 5: Example of a Petri net where the maximum throughput with Bernoulli routing can be
higher than with the race policy.

compared to the size of the net: it is larger than the reachable marking set.The solution given
by the algorithm is a polynomial vector, whose degree is bounded by n. In fact, it can be shown
rather easily that the maximal degree of the coefficients of w is the number of lines where the
parameter p appears in P (p).

Notice that the time complexity to compute π(p) is the same as the time complexity to compute
the solution of a linear system with real coefficients. A more naive method would have lead to
a time complexity in O(n6): as it is possible to bound the degree of a polynomial solution x of
Equation 10, we can write x(p) as x0+x1.p+ · · ·+xd.p

d, where d is the maximal degree of x(p) and
xi are real vectors. Now, P (p) can be written as P0 +P1.p, where P0 and P1 are real matrices. By
identifying the coefficients, the system can now be solved as a linear system with d.n equations,
which leads to a time complexity in O((n.d)3).

The stationary probability is the normalized vector of that solution: it is a rational fraction,
with degree at most n for the numerator and denominator, and the throughput of the net is a
linear function of π(p). Then, maximizing P consists in studying a rational fraction between 0
and 1, and finding its maximum.

Example 3. Let us consider the net displayed in Figure 2. The total throughput as well as the
stationary measure π of the Markov chain can be computed as a rational function of p. The
maximum degree of the numerator of π is at most the number of lines in which the parameter
appears. We find:

πBer(p) =
1

4p2 − 17p + 18

(

2p + 3

2
,
9(p − 1)

2
,
5p

2
,
9 − p2 − 8p

4
, 3p(1 − p), 3(1 − p)2,

4p2 − 13p + 9

2
,
9(p2 − 2p + 1)

4

)

,

which gives the throughput: cBer(p) = 60(4p2−17p+18)
139p2−403p+414 . Then, we get that the maximum is

reached for p = 846−30
√

615
751 ≈ 0.14 and the maximum throughput is approximatively 2.61.

Note that in this example, the total throughput achieved with all Bernoulli routings (i.e. with
all possible routing parameters) is always less than the throughput obtained with the race policy.
This is not always the case. The Petri net represented in Figure 5 (with exponential parameters of
the timings given in bold in the figure) can achieve a far better throughput with Bernoulli routings
than with the race policy. With the race policy, crace ≈ 2.07. If the Bernoulli routing parameters
in places c and e, have same proportions as for the race policy and if p is the probability of routings
tokens in place a towards transition 1, the throughput is cber(p) = 2300

1400−1089p
. The maximum is

reached when p is close to 1 and the total throughput is cBer(1) ≈ 7.40.
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5.1.2 General case

When there are more than one parameter, there is no known efficient algorithm to compute the
throughput. But the naive method with several parameters is still valid: there is a solution of
(10) such that the degree of each parameter is less that n (because the maximal degree of the
coefficients of P (p) is at most 1. By identifying the coefficients of same degree in the equation, it
can be solved as a linear system of n(n + 1)m equations, where m is the number of parameters.
Then the complexity is O(n3m+3), which could be too large for practical computations as soon as
the state space increases.

5.2 Optimal allocations

We now consider larger classes of routings. In this section, we consider the optimal routing policies
in a free-choice net with respect to the throughput. Again, firing times will be exponential, so
that an MDP (Markov Decision Process) approach will be possible. The optimal policy under
several information structures, are derived and the corresponding throughputs are computed and
compared. This provides an enlightening illustration of the value of information.

Now, consider a stochastic live and bounded free-choice net with exponential firing times, the
firing rate of transition a being µa ∈ (0,∞). It is convenient to view the model as follows. The
instants of potential firing or availability of a given transition a are given by an exogenous Poisson
process of rate µa. At a potential firing instant, a firing may occur if and only if the transition
is enabled. In this last case, firing or not the transition is the role of a decision maker. The goal
of the decision maker is to maximize the total throughput. Variations of the model are obtained
depending on the moment when the decisions need to be taken and the quantity of information
available.

To use a MDP approach, it is convenient to work in a discrete-time setting. To that purpose,
the process obtained by superposition of the Poisson processes of rate µa is replaced by a sequence
of i.i.d. r.v.’s valued in T (the set of transitions) and of distribution (µa/Λ)a∈T , where Λ =

∑

a µa.
Now, time is slotted, and at each time slot, precisely one transition has the potential to fire. The
firing will occur, at this same time slot, if: (i) the transition is enabled, (ii) the decision maker
agrees. The above is a simple instance of the standard “uniformization” trick.

The immediate reward at each slot is 1 if a transition is fired and is 0 otherwise. Maximizing
the throughput is now equivalent to maximizing the infinite horizon average reward. Therefore,
it is possible to model the maximizing problem using a MDP. The maximal throughput and the
optimal policy will be given by the Bellman equation associated with the MDP (see for example
[14]). In particular, the maximal throughput of the Petri net is the average reward per unit of
time of the MDP multiplied by the uniformization constant Λ. Here, the state space of the MDP
is always finite. So the Bellman equation can be explicitly solved using policy iteration.

5.2.1 Optimal token pre-allocation

Assume that a token enters a conflict place at time slot n. The decision maker has to choose,
immediately, one of the output transitions. The information available is the marking of the Petri
net at time slot n. The token will eventually fire the chosen transition at the first slot after n
when it becomes available. In particular, when the decision is taken, it is not known which one of
the output transitions will be available first. We call this a pre-allocation policy.

Bernoulli routings and periodic routings are special cases of pre-allocations where the knowledge
of the global marking is not used.

The state space of the MDP is formed by the set of all pairs formed by a reachable marking
(M) and an allocation of tokens in conflict places (ρ), which must be memorized as the allocation
in a conflict place does not change until the token is consumed.

Let M · t be the marking obtained from M by the firing of transition t. For t ∈ ρ, let
rout(M,ρ,M · t) be the set of possible allocations for the new tokens appearing in conflict places

when the firing M
t→ M · t is performed. Let rout(M,ρ) =

∏

t∈ρ rout(M,ρ,M · t) be the set of
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all possible future decisions in state (M,ρ). For r ∈ rout(M,ρ) and t ∈ ρ, the firing of t will
transform the state (M,ρ) into the state (M · t, ρ · (t, r)) where ρ · (t, r) = ρ \ {t} ∪ (t•• ∩ r(t)).
In other words, the allocation remains the same except for the newly enabled places. As far as
conflict places are concerned, one and only one output transition of each newly marked place is
chosen.

For a routing decision r ∈ rout(M,ρ), the expected gain at step k is

Jk(M,ρ) =
∑

t∈ρ

[

µt

Λ
(Jk+1(M · t, ρ · (t, r)) + 1) +

Λ − ∑

t∈ρ µt

Λ
Jk+1(M,ρ)

]

.

Then the optimal policy is to maximize the expectation:

Jk(M,ρ) = max
r∈rout(M,ρ)

∑

t∈ρ

[

µt

Λ
(Jk+1(M · t, ρ · (t, r)) + 1) +

Λ − ∑

t∈ρ µt

Λ
Jk+1(M,ρ)

]

.

This Markovian Decision process is finite and irreducible, therefore, using Proposition 2.1,
Chap 4. Vol. II in [5], there exists a unique reward vector, J = (J(M,ρ))(M,ρ) and a unique
optimal average reward, g verifying the Bellman equation corresponding to that process:

J(M,ρ) + g = max
r∈rout(M,ρ)

(

∑

t∈ρ

µt

Λ
(J(M · t, ρ · (t, r)) + 1) +

Λ − ∑

t∈ρ µt

Λ
J(M,ρ)

)

.

Example 4. Consider the example of Figure 2. Solving the Bellman equation, we get the following
optimal pre-allocation. When a token enters place b, allocate it to:

� Transition 2 if the current marking is {b, e};
� Transition 3 if the current marking is {b, d}.

The corresponding throughput is approximately 2.8.
In order to solve the Bellman equation, we used dynamic programming techniques and the

algorithm of values iteration.

5.2.2 Optimal token allocation

Each token in a conflict place is allocated to an output transition, but this allocation can be
modified by the decision maker at the beginning of each time slot: (i) knowing the current marking,
(ii) but not knowing the transition which is about to become available. We call this a (token)
allocation policy. Pre-allocation is of course a special case of allocation policy.

The state space of the MDP is simply the set of reachable markings. Let T (M) be the set
of all maximal sets of transitions that can fire in marking M . Each element of T (M) contains
exactly one transition in each marked cluster. The new Bellman equation is:

J(M) + g = max
r∈T (M)

(

∑

t∈r

µt

Λ
(J(M · t) + 1) +

Λ − ∑

t∈r µt

Λ
J(M)

)

.

Example 5. Consider the model of Figure 2. We get the following optimal allocation. At the
beginning of a time slot, if there is a token in place b, allocate it to:

� Transition 2 if the current marking is {b, e};
� Transition 3 if the current marking is {b, d}.

This optimal policy is different from the one in Example 4. Assume that the marking is {b, e}.
Then the token in b is allocated to transition 2, but if transition 5 fires first, then the token in b
gets re-allocated to transition 3. The corresponding throughput is approximately 3.05.
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5.2.3 Optimal non-anticipative policy

At each time slot, if the available transition is enabled, the decision maker decides either to fire
or not to fire the transition. The available information is the current marking. This can also
be viewed as a model where the decision maker may reallocate the token at the beginning of
each time slot knowing: (i) the current marking, (ii) the transition which is about to become
available. This is the maximal amount of information available without look-ahead. So we call
this a non-anticipative routing policy.

Clearly token allocation policies form a subset of non-anticipative policies. But the race policy
can also be emulated by a non-anticipative policy. It is also possible to have a coexistence of
allocations and races, see Example 6.

The state space is still the reachability graph. But the set of possible decisions in marking M
is now E(M), where E(M) is the set of all subsets of T containing at least one transition in each
marked cluster. Observe that the set E(M) is larger than the set T (M) of possible decisions for
token allocation policies. The new Bellman equation is

J(M) + g = max
r∈E(M)

(

∑

t∈r

µt

Λ
(J(M · t) + 1) +

Λ − ∑

t∈r µt

Λ
J(M)

)

.

When several transitions of the same cluster belong to r, the decision r induces a race between
these transitions.

Example 6. Let us continue with the Petri net of Figure 2. The optimal non-anticipative policy
is as follows:

� Allocate the token to transition 2 in marking {b, e}.
� Play race between transitions 2 and 3 in {b, d}.

The corresponding throughput is approximately 3.20.

The following diagram shows how the different policies compare in terms of throughput. An
arc means “provides a better throughput than”. No arcs means that no comparison is possible
(several examples of free-choice nets where one or the other policy provides a better throughput
have been constructed). The dashed arrow is a conjecture based on numerical evidence. The
respective throughputs obtained for the example of Figure 2 are given in parenthesis.

policy

routing
optimal

pre-allocation
optimal

race
(3.2)

(3.05) (2.80)optimal

(2.97)

Bernoulli
best

routing
(2.61)

(2.66)
routing
periodic
best

The net in Figure 6 shows that the race policy cannot be compared with the optimal routing:
in the previous examples, it has already been shown that the optimal routing can lead to a better
throughput than the optimal routing. The net is an example that the contrary can also be true.
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��

Figure 6: A net for which the race policy is better that the optimal routing. With the optimal
routing, the chosen transition is always the same and is the transition whose expected firing time
is the smallest. Then the throughput is the inverse of that expected firing time. For the race
policy, the throughput is the inverse of the expectation of the minimum of the firing times of the
two transitions.

6 Conclusion

In this article, we proved the existence of the throughput in free-choice nets under several conflict
resolution policies and compared those policies. On the other hand, we exhibit and showed how to
compute some optimal policies, according to the information that is available. There, we showed
on an example that the optimal non-anticipative policy consist in controlling the system or letting
it evolve according to the race policy, depending on the state of the network.

The free-choice assumption was necessary to avoid deadlocks with routing policies, but this
assumption can be relaxed if optimal policies are considered.
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Unité derechercheINRIA Lorraine: LORIA, Technop̂oledeNancy-Brabois- Campusscientifique
615,rueduJardinBotanique- BP 101- 54602Villers-lès-Nancy Cedex (France)
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