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Abstract

Learning-based focused crawlers download relevant uniform resource locators (URLs) from the web for a 
specific topic. Several studies have used the term frequency-inverse document frequency (TF-IDF) weighted 
cosine vector as an input feature vector for learning algorithms. TF-IDF-based crawlers calculate the relevance 
of a web page only if a topic word co-occurs on the said page, failing which it is considered irrelevant. Similarity 
is not considered even if a synonym of a term co-occurs on a web page. To resolve this challenge, this paper 
proposes a new methodology that integrates the Adagrad-optimized Skip Gram Negative Sampling (A-SGNS)-
based word embedding and the Recurrent Neural Network (RNN).The cosine similarity is calculated from the 
word embedding matrix to form a feature vector that is given as an input to the RNN to predict the relevance of 
the website. The performance of the proposed method is evaluated using the harvest rate (hr) and irrelevance 
ratio (ir). The proposed methodology outperforms existing methodologies with an average harvest rate of 0.42 
and irrelevance ratio of 0.58.
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I. Introduction

There has been a rapid increase in the number of web pages, from 
only 20 million in 2010 to 1.7 billion in 2020 [1]. The exponential 

increase in the volume of web pages each year has made it difficult 
for search engines to index them [2]–[5]. At the heart of a search 
engine is a web crawler, which is a software bot that retrieves web 
pages, commencing from seed URLs. A classic web crawler retrieves 
huge masses of information from the internet for a search, including 
information on irrelevant topics. Classic web crawlers demand huge 
storage capacities as well as additional downloading time. Such a 
problem calls for a topic-driven focused crawler that only downloads 
relevant web pages from the internet for a given topic.

Fig. 1 illustrates the working design of a focused web crawler, 
wherein the initial URLs are set by users for a given topic. The 
crawler visits web pages from initially-defined URLs and computes 
the similarity score of unexplored web pages. Based on the relevance 
score, precedence is assigned and stored in a web page archive.

Most focused web crawlers [6]–[9] only use full-page text to 
compute the similarity score of a web page, while others [10]–[13] 
use both full-page and anchor texts to calculate the relevance score, 
and [14]–[16] use cosine similarity to calculate the similarity score of 
unvisited web pages. In numerous existing studies [14]–[16], the cosine 
similarity value is calculated by finding the TF-IDF. The TF-IDF-based 

cosine similarity calculates the relevance score only if the topic term 
co-occurs with the terms on the web page, or else the similarity value 
is set to zero. The cosine similarity-based focused crawler provides a 
zero similarity score if the web page is semantically related but with 
no terms in common between the web page and the topic.

It was to overcome such challenges that researchers began working 
on ontology learning-based crawlers [17]–[19] to establish the 
semantic similarity between the topic and web page. Domain-specific 
ontologies are designed by domain experts, and crawlers fetch wrong 
results when human errors or discrepancies occur in the ontologies.

This paper proposes a new word embedding-based approach 
using the RNN to resolve this issue. Word embedding is one of the 
most common web page vocabulary representations. It is capable of 
capturing the meaning of a word on a web page, its semantic and 
syntactic similitude, and its relationship with other words. This work 
uses the A-SGNS to handle rare words that show up in the vocabulary. 
From the embedding matrix, the cosine similarity between the topic 
and web pages is calculated. The calculated cosine vectors are given as 
input to the RNN to predict the relevance of the web page.

The major contributions of this paper are as follows:

(1) Integrating the A-SGNS model with the RNN to automatically 
retrieve relevant web pages,

(2) Optimizing the SGNS using the Adagrad algorithm and the RNN 
using the RMSprop algorithm, and

(3) Implementing and evaluating the following nine different focused 
crawlers, including the breadth-first search (BFS)-based, vector 
space model (VSM), ontology learning-based using artificial neural 
network (ANN), Naive Bayes (NB)-based, link context-based, ANN-
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based, semi-supervised, optimized Naive Bayes (ONB)-based, and 
the proposed RNN crawler. The efficiency of the nine focused 
crawlers is assessed using the harvest rate and irrelevance ratio.

The remainder of this article is organized as follows: Section II 
addresses existing methodologies. Section III describes the newly-
constructed crawler framework, and Section IV the  experimental 
design. Section V presents the experimental analysis, and Section VI 
concludes the paper.

A. Working of Focused Web Crawler 
Fig. 1 shows the working architecture of the focused web crawler, 

whose major components are a crawler frontier, web page fetcher, policy 
centre, web page pool, web page parser and relevance computation. 
The crawler frontier is a priority queue that stores a list of URLs in a 
prioritized order, based on the relevance score. The web page fetcher 
downloads web pages. The policy centre checks whether the web page 
is downloadable, and the web page pool stores downloaded web pages. 
The web page parser parses the web page to plaintext. The relevance 
computation computes the relevance of unvisited web pages. The 
stepwise working of the focused web crawler is as follows:

Step 1:The crawler frontier is initialized with the seed URLs and 
the policy centre with the depth of the web pages explored. 

Step 2: The web page fetcher downloads web pages in the crawler 
frontier one by one. Once a web page is downloaded, the web page 
fetcher extracts the URLs present therein and sends them to the policy 
centre.

Step 3: The policy centre checks the downloadability of the received 
URL. A downloadable URL is sent back to the web page fetcher for 
downloading, else it is terminated. Steps (2) and (3) are repeated until 
the user-defined depth is reached.

Step 4: Once the web page fetcher receives the URL from the policy 
centre, it downloads the web page and stores it in the web page pool 
as a HTML document.

Step 5: The stored web pages are sent to the web page parser, along 
with the URLs, to retrieve meaningful information.

Step 6: The extracted information snippets are despatched to the 
relevance computation module to determine the relevance of the web 
page to the given topic. If the web page is relevant, the extracted URL 
is sent to the crawler frontier or else it is terminated.

II. Related Work

The Google search engine uses the PageRank algorithm [2] to 
compute the relevance score of  web pages. The PageRank algorithm is 
a voting method based on the number of incoming links and the rank 
of incoming links. If the number and the rank of the incoming links are 
high, the PageRank of the web page is also correspondingly high. The 
Google PageRank algorithm is formulated as follows in Equation (1),

 (1)

where df is the damping factor, the value of df is usually set to 0.85, 
p(wp) is the PageRank of the web page (wp), l1, l2, …, ln are the incoming 
links to the web page wp, p(l1) is the PageRank of the first incoming 
link (l1), c(l1) is the number of outgoing links from web page l1.

The baseline focused crawler downloads only relevant web pages 
by computing the relevance score of target variables such as full-page 
terms and anchor terms. The priority of the unvisited hyperlinks is 
calculated by combining the relevance score of the target variables. The 
priority score is given as a cosine function, as shown in Equation (2),
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 (2)

where fp(url) is the priority function of unvisited URL, frs(t, p) is the 
cosine function between the given topic and the full page terms,  frs(t, 
a) is the cosine function between the given topic and the anchor terms.

Andrea Capuano et al. [20] designed an ontology learning-based 
focused crawler using the convolution neural network (CNN). 
This work uses the Dbpedia spotlight and ImageNet to annotate, 
respectively, web page text and image data. A Li [21] semantic 
similarity algorithm calculates the textual relevance between the topic 
and the web page, and a CNN algorithm computes the relevance score 
between the downloaded image and the image in the knowledge base. 
The classification of the text and image is combined to identify the 
relevance of the web page. This work produced an average harvest 
rate of 0.29 after 5000 web page downloads.

Javad Hosseinkhani et al. [22] proposed an ontology learning-based 
focused crawler using the ant colony optimization (ACO) algorithm. 
The crime ontology builder in this work is used to design a crime 
ontology repository that annotates web pages. The ACO crawls and 
prioritizes web pages from the internet, while the support vector 
machine (SVM) classifies the relevance of a particular web page.

Debajyoti Mukhopadhyay et al. [23] advanced a semantic focused 
crawler to download relevant URLs. This work proposed a relevance 
score calculation formula between the topic and the web page, as 
shown in Equation (3),

 (3)

where frs is the relevance score function, fo is the ontology-
based term weight, No is the count of the terms in the ontology, fs 
is the synonym weight value of the term, and Ns is the count of the 
synonyms in the ontology. A web page with a relevance score above 
0.5 is considered relevant, otherwise it is not.

Juan Qiu et al. [24] designed a focused crawler for the OpenStack 
Questions and Answers (Q&A) knowledge base. This work uses the 
linear discriminant analysis (LDA) clustering algorithm to construct 
the QA knowledge base topic corpus. A VSM is applied to find the 
similarity between the topic and the web page for corpus update.

Tanaphol SUEBCHUA et al. [25] propounded a history feature-
based focused crawler. The history feature is extracted to reduce the 
priority score of the unvisited web page that  downloads irrelevant 
web pages consecutively. The history feature, along with the relevance 
score of the link context and page text, is given as input to a NB 
classifier to predict the relevance of the web page.

Guangxia Xu et al. [26] elucidated a focused crawler based on 
particle swarm optimization (PSO). Initially, the TF-IDF is applied to 
calculate the weight of the terms, following which the PSO is applied 
to predict the relevance of the web page.

H.Dong et al. [27] discussed a self-adaptive semantic focused 
(SASF) crawler that combines an information content (IC)-based 
semantic similarity measure and a statistics-based similarity measure 
to determine the similarity score of a web page with respect to a given 
topic. The relevance score is calculated only for a full-page text feature 
with the given topic. 

The relevance score of the SASF [27] is computed using Equation (4).

 (4)

where frs(url) relevance score function of the URL, fic(t, p) is the 
Information content based semantic similarity function between the 
given topic and the full page terms, fstsm(t, p) is the statistical based 
string matching between the given term and the full page terms.

Ya Jun et al. [28] designed a cell-like membrane computing 
optimization (CMCFC) algorithm. The relevance score is calculated 
for four target variables (web page contents, link context, title term 
and the surrounding paragraph text) with the given term, using the 
cosine-based similarity metric. The relevance score of the four target 
variables is combined to compute the precedence of the unexplored 
web pages.

The relevance score of the CMCFC [28] is computed using 
Equation (5),

 (5)

where frs(url) is the relevance score function of the URL, frs(t, p)  is 
the cosine function between the given topic and the full page terms,  
frs(t, a) is the cosine function between the given topic and the anchor 
terms, frs(t, title) is the cosine function between the given topic and the 
terms, rs (t, st) is the cosine function between the given topic and the 
surrounding terms.

Hai-Tao Zheng et al. [19] elucidated a semantic focused crawler 
based on the artificial neural network (ANN). The relevance score is 
calculated, based on the distance between the full-page text and the 
given topic in the ontology. The crawler computes the term frequency 
of the unvisited web pages and feeds them as input to the ANN. The 
relevance score of the unvisited web pages is the output of the ANN. 
A major limitation of this approach is its inability to work well in an 
uncontrolled web environment.

Ahmed I Saleh et al. [17] designed a focused crawler using the 
optimized NB classifier (ONB). This work integrates the NB classifier 
with the SVM to form an optimized NB classifier. An integrated 
SVM and genetic algorithm is used to remove outliers in the training 
samples. The training data with the outliers removed is thereafter used 
to train the NB classifier. The ONB finds the sense of the data using 
the D2O ontology, calculates the similarity score of the web page, and 
determines its relevance.

Hai Dong et al. [18] designed a semi-supervised ontology learning-
based approach for focused web crawling. This work extracts the 
Resnik semantic similarity score [29] and the statistical-based co-
occurrence similarity score between the topic and the web page 
contents as features. The feature vector is then given as input to the 
SVM classifier to predict the relevance of the web page.

A review of the literature revealed the following drawbacks:

1. The TF-IDF weighting scheme finds the relevance of a web page 
only if the topic term co-occurs in target variables such as web 
page text and anchor text. The relevance score is otherwise 
calculated as zero, given that the TF-IDF does not consider the 
semantic similarity of the web page.

2. If the number of words on a web page is high, the dimension 
of the feature space generated by the TF-IDF is also high. The 
dimensionality of the feature space using the TF-IDF depends on 
the number of words on the web page. The TF-IDF vectors of web 
pages cause the high-dimensionality feature space that results 
in inaccurately-performing NB, SVM and ANN classifiers in a 
crawling environment.

3. Learning ontological concepts during a dynamic crawling process 
is an expensive, time-consuming process for basic learning 
algorithms like the NB, SVM and ANN. The complexity of learning 
ontological concepts in a crawling environment culminates in 
existing ontology learning-based crawlers performing at levels 
below par.

To solve these issues, this paper proposes a new word embedding-
based approach using the RNN. An A-SGNS model is used to build a 
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VSM for representing words through a low-dimensional space. From 
the derived matrix, the cosine similarity between the extracted topics 
and the extracted web page terms is calculated to form a feature vector. 
The generated cosine feature vector is given as an input to the RNN to 
predict the relevance of the web page.

III. Proposed Methodology

Fig. 2 shows the workflow diagram of the proposed work, with a 
six-layer architecture. The crawler frontier is initialized with the seed 
URLs and the topic by the user. The first layer is the topic preprocessing 
layer, where the given topic is preprocessed by applying methodologies 
like tokenization, Parts-of-Speech (POS) tagging, nonsense word 
filtering, stemming and synonym searches. The preprocessing is done 
using the Python Natural Language Toolkit (NLTK) library [30], [31], 
and the synonyms of the given topic are extracted for a meaningful 
search. The preprocessed topic terms are stored in a storage. The 
second layer is the crawling layer, where web pages are downloaded 
from the web, starting from manually assigned seed URLs. Once the 
download is done, the web pages are sent to the term extraction layer. 
The third layer is the term extraction layer, where the web pages are 
parsed to plaintext by removing HTML tags. After the parsing, target 
variables such as web page text and anchor text are extracted from the 
web page. The fourth layer is the term preprocessing layer, where the 
extracted target variables are preprocessed by applying methodologies 
like tokenization, POS tagging, nonsense word filtering and stemming. 
The preprocessing is carried out using the NLTK library [30], [31]. 
The fifth layer is the feature extraction layer, where the A-SGNS-
based word embedding matrix is formed. From the derived matrix, the 
cosine similarity between the extracted topics and the extracted terms 
is calculated to form a feature vector. The generated cosine feature 
vector is given as input to the classification layer, where the recurrent   
neural network classifies the web page to determine its relevance.

A. Recurrent Neural Networks
H. Palangi et al., [32]–[34] proposed a RNN for sentence embedding. 

The RNN, a type of deep learning model, uses the previous output as 
input in the hidden state and maintains the previous output to predict 
the current output.  Fig. 3 shows the RNN workflow architecture of 
the proposed work. 

The hidden state can be formulated as shown in equation (6):

 (6)

where win is the input weight vector, wrec is the recurrent weight 
vector, s(t) is the hidden state, x(t) is the input vector, s(t⎯1) is the 
previous hidden state and biass is the bias.

The output can be formulated as in equation (7):

 (7)

where σ(.) is the sigmoid activation function, o(t) is the output 
vector, wout is the output weight, and biasout is the bias of the output 
state.

B. Feature Extraction
The first step in this work is to build a VSM to represent words 

through a low-dimensional space, using prediction-based word 
embedding. The A-SGNS [35]–[37], a prediction-based model which 
follows the neural network approach, is used. Given a sample of 
vocabulary, V, and the retrieved word context pair set, Z, let p(Z=1|(w, 
c)) be the likelihood that (w, c) arrives from Z and let p(Z=0|(w, c)) be 
the likelihood that (w, c) may not. The presupposition of SGNS is that 
if c is the context of word w in a window, the conditional probability 
of p(Z=1|(w, c))should be high, and otherwise small. Let vw denote the 
vector representation of w, and vc denote the vector of c. D is the set 
of all pairs (w, c) that are in the text and D' is the set of all pairs (w, c) 
not in the text. Then, Z can be represented as follows in equation (8).
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Fig. 2. Proposed workflow architecture.
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 (8)

Then the p(Z=1|(w, c)) and p(Z=0|(w, c)) are computed as shown 
in equations (9) and (12) respectively,

 (9)

 (10)

the above equation (10) is multiplied using  and the following 
equations (11) and (12) are formulated.

 (11)

 (12)

 (13)

where θ=(vc, vw)

 (14)

log likelihood is applied on both sides in equation (14) and 
formulated in the following equation (15).

 (15)

 (16)

Let  and  

then the equation (16) can be formulated as follows in equation (17),

 (17)

where 

Then the cost function can be given as follows in equation (18):

 (18)

The goal of any machine learning model is to find the optimal 
values of a weight matrix (θ) to minimize prediction errors. To update 
the lower learning rates for frequent words and higher learning rates 
for infrequent words, this work uses the Adagrad algorithm [38]–[40] 
for optimizing the cost function. The gradient descent on the cost 
function is applied with respect to θ, as shown in Equation (19):

 (19)

A general AdaGrad update equation for cost function can be given 
in the following equation (20):

 (20)

From the designed word embedding model, the cosine similarity 
between the given topic and the web page is extracted as a feature. The 
cosine similarity between the topic and the content of the web page is 
given as follows in Equation (21):

 (21)

where  is the embedding vector corresponding to the Topic,  is 
the embedding vector corresponding to the web page contents.

Fig. 3. Recurrent Neural Network workflow architecture of the proposed work.
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C. Classification Layer
The embedding vector of a document  is represented as 

.

where  is the positive sample among the web page documents 
and  is the kth negative sample of the same. These semantic vectors 
are produced by feeding the web page documents into the neural 
network (RNN), as discussed in section IIIA.

1. Recurrent Weight
To maximize the likelihood of the positive document for the given 

document with respect to recurrent weight (wrec) can be formulated as 
follows in equation (22):

 (22)

where wrec is the recurrent weight,  is the probability of 
positive web page document for the ith Topic, and N is the number of 
topic-document pair in the corpus.

The above equation can be rewritten as follows in equation (23):

 (23)

The li(wrec) can be determined using the formula below from (24)-
(28):

 (24)

 (25)

 (26)

 (27)

 (28)

where ∆i,j = sim(ti, di
+) ⎯ sim(ti, di

⎯), the ∆i,j value lies between 0 to 1, 
and γ is a scaling factor to increase the range of ∆i,j.

To perform back propagation through time [41] for L(wrec) with 
respect to recurrent weight (wrec) can be derived as follows in equation 
(29):

 (29)

The derived cost value of recurrent weight (wrec) can be given as 
follows in equation (30):

 (30)

where T is the number of time steps that the network is unfold over 
time and 

The recurrent weight can be updated by using the RMSprop 
algorithm [42] because of its ability to update the lower learning 
rates for frequent parameters and higher learning rates for infrequent 
parameters and also clip the gradient when it goes higher than a 
threshold.

 (31)

 (32)

where E[g2] is the mean square of the gradient, α is the moving 
average parameter which is usually set to 0.9, ω is the learning rate 
which is set to 0.001, at each time step τ for the parameter wrec.

2. Input Weight
As derived for recurrent weight, the cost value of input weight (win) 

can be derived as follows in equation (33):

 (33)

IV. Experimental Design and Analysis

A prototype of the crawlers (BFS, VSM, SVM, NB, ANN, ontology 
learning-based using the ANN, semi-supervised using the SVM, ONB-
based and, finally, the proposed RNN) was developed in Python3 [43], 
[44], within the Spyder3.6 [45] platform. A cluster of six systems, 
each with the following configurations, was used to implement the 
prototypes: (i) 2.20GHz Intel Core i7-8750H 8th Gen processor, (ii) 16GB 
DDR4 RAM, (iii) 1TB serialATA hard drive, (iv) NVidia GeForce GTX 
1060 6GB graphics, and (v) the Windows 10 operating system. These 
prototypes were implemented to crawl from the real web, using the 
Python packages, BeautifulSoup [46] and urllib [47]. BeautifulSoup 
package was used to handle HTML documents and urllib package was 
used to handle the URLs. The lxml parser [48] of BeautifulSoup package 
was used to parse the HTML documents. The urllib.parse function was 
used to parse the URLs.  A set of ten topics and their respective seed 
URLs, as shown in Table 1, were given as input to all the crawlers. We 
collected 350000 (175000 positive  and 175000 negative samples) URLs, 
along with their web page contents, for the topics shown in Table I in 
order to train the machine learning algorithms.

The experimental evaluations were carried out in two stages. The 
first stage was the training-testing phase of the machine learning 
algorithms, where the NB+TF-IDF, SVM+TF-IDF, ANN + TF-IDF 
and the proposed RNN + A-SGNS crawlers were evaluated using the 
metrics in Section V(A). The second stage was the crawling phase, 
where the performance of the crawlers (BFS, VSM, ontology learning-
based using the ANN, NB-based, link context-based using the SVM, 
ANN-based, semi-supervised using the SVM, optimized Naive Bayes-
based and the proposed RNN+A-SGNS) was evaluated using the 
metrics in Section V(C).

The NB, SVM and ANN algorithms, along with the TF-IDF, were 
implemented using the sci-kit learn Python package [49]. The NB-
based crawler was implemented using the Gaussian Naive Bayes 
(GNB) classifier with a Laplace smoothing function, and the SVM-
based crawler using a degree 1 linear SVM. The ANN model with 4 
hidden nodes was implemented using the stochastic gradient descent 
(SGD) optimizer with the initialized weight value of 0.5 and learning 
rate of 0.1. In the proposed RNN model, the recurrent weight (wrec)  
was initialized to -1.5 and the input weight (win) was initialized to 2.0. 
The learning rate ω was initialized to 0.001 for both wrec  and win .
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TABLE I. Seed URLs for the Ten Topics

S.No Topic Seed URL

1 Football
• https://en.wikipedia.org/wiki/Football
• https://www.bbc.co.uk/sport/football

2
Knowledge 
Mapping

• https://www.apqc.org/blog/4-step-guide-
knowledge-mapping

• https://www.mindmeister.com/blog/build-
knowledge-map/

3 Robot Army

• https://en.wikipedia.org/wiki/Military_robot
• https://www.popularmechanics.com/

technology/robots/a29610393/robot-soldier-
boston-dynamics/

4 Smart Phone
• https://en.wikipedia.org/wiki/Smartphone
• https://www.amazon.in/Smartphones/

b?ie=UTF8&node=1805560031

5
Cloud 
Computing

• https://en.wikipedia.org/wiki/Cloud_computing
• https://azure.microsoft.com/en-in/overview/

what-is-cloud-computing/

6 wildfires
• https://en.wikipedia.org/wiki/Wildfire
• https://simple.wikipedia.org/wiki/Wildfire

7
Shahrukh 
khan

• https://en.wikipedia.org/wiki/Shah_Rukh_Khan
• https://www.imdb.com/name/nm0451321/

8 computer
• https://en.wikipedia.org/wiki/Computer
• https://www.webopedia.com/TERM/C/

computer.html

9 Apple
• https://www.apple.com/in/
• https://minecraft.gamepedia.com/Apple

10 Movie
• https://www.amctheatres.com/movies
• https://www.imdb.com/chart/moviemeter/

V. Performance Evaluation

A. Performance Evaluation of Training Phase

1. Performance Metrics
This work uses four different metrics to measure the efficiency, at 

the training phase of different machine learning algorithms. They are 
accuracy (a), precision (p), recall (r) and F1-score (f) as shown in the 
following Equations (34), (35), (36), and (37) respectively.

 (34)

 (35)

 (36)

 (37)

where tp, tn, fp and fn are true positive, true negative, false positive 
and false negative respectively.  

B. Analysis of Training Phase
A series of experiments was conducted to identify the right 

classifier with the requisite ability to guide the focused crawler. A 
dataset with 350,000 positive query-document pairs was collected 
for 10 different topics, as shown in Table I, each with 17,500 positive 
and 17,500 negative samples. Initially we applied tokenization, POS 
tagging, nonsense word filtering and stemming on both query and 
document data. The preprocessing was carried out  using the Python 
Natural Language Toolkit (NLTK) [30], [31]. The nltk.word_tokenize() 

function was used to tokenize the topic words and the document 
words, the nltk.pos_tag() function to find the part of speech of each 
topic word and document word, and the nltk.stem package to find 
the root word of each topic word and document word. The words 
identified without POS tag were removed as non-sense words. 
Following the preprocessing of the training data, the TF-IDF-based 
cosine similarity and A-SGNS-based cosine similarity were extracted 
as a feature for each query-document pair. The TF-IDF-based extracted 
feature was used to train the NB, SVM, and ANN classifiers, while the 
A-SGNS-based extracted feature was used to train the RNN classifier. 
After training the classifiers, a testing dataset of 2827 query-document 
pairs was used to test the performance of the classifiers. The training 
phase was evaluated using four well-known metrics, formulated in 
Equations (34)-(37). Table II shows the results of a comparison of the 
four classifiers with 350,000 training data samples. The SVM with the 
TF-IDF, NB with the TF-IDF, ANN with the TF-IDF, and RNN with the 
A-SGNS produced accuracy of 0.623, 0.62, 0.70 and 0.813, respectively.

Logistic regression works well with linear data but not so with non-
linear data. To predict categorical outcomes, it needs each data point to 
be independent. Given the limitations involved, it was, consequently, 
unable to perform well on the dynamic internet. Since the number of 
words in the web page was high, the dimensions created by the TF-
IDF vectors were also high. In a high-dimensional feature space, the 
NB, SVM and ANN were affected by problems with overfitting and 
time consumption [50]. The NB, SVM and ANN failed to handle high-
dimensional feature vectors and produced inaccurate results. The RNN, 
on the other hand, is a discriminative model that tries to differentiate 
between positive and negative samples in order to undertake the 
classification. In the proposed work, the A-SGNS model was used to 
build a VSM to represent words through a low-dimensional space. The 
ability of the RNN to handle the A-SGNS word embedding vectors 
resulted in its enhanced performance in a  dynamic web environment 
[51], with an average accuracy of 0.813.

TABLE II. Precision, Recall, F1-score and Accuracy with 350,000 
Training Samples

Algorithm
Precision Recall F1-score

AccuracyClass 
1

Class 
0

Class 
1

Class 
0

Class 
1

Class 
0

SVM + TF-
IDF

0.50 0.51 0.62 0.39 0.55 0.44 0.623

NB + TF-
IDF

0.50 0.513 0.626 0.39 0.55 0.443 0.62

ANN + TF-
IDF

0.5 0.50 0.42 0.58 0.45 0.53 0.70

RNN + 
A-SGNS

0.62 0.57 0.45 0.73 0.52 0.64 0.813

C. Performance Evaluation of Crawling Phase

1. Performance Metrics
The performance of the six focused crawlers were measured by 

using harvest rate and irrelevance ratio can be shown in the equations 
(38) and (39).

2. Harvest Rate
Harvest rate is defined as the ratio of the number of relevant web 

pages downloaded out of total number of web pages downloaded. The 
harvest rate (hr) can be formulated as follows in equation (38).

 (38)
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where hr is the harvest Rate, Rwp is the number relevant web pages 
downloaded, and Nwp is the total number of web pages downloaded.

3. Irrelevance Ratio
Irrelevance ratio is defined as the ratio of number of irrelevant web 

pages downloaded out of total number of web pages downloaded. The 
irrelevance ratio can be formulated as follows in equation (39).

 (39)

where ir is the irrelevance ratio, rj is the number of relevant web 
pages downloaded, and nj is the total number of web pages downloaded.

D. Analysis of Crawling Phase
The experimental results were evaluated for all the four focused 

crawlers, namely, the SVM + TF-IDF, NB + TF-IDF, ANN + TF-IDF 
and the proposed RNN + A-SGNS. For the NB, SVM, and ANN, the 
TF-IDF-based cosine similarity was given as an input feature, while 
for the RNN, the SGNS-based cosine similarity was the input feature.
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Fig. 4. Average harvest rate for ten topics for the SVM + TF-IDF, NB + TF-IDF, 
ANN + TF-IDF and RNN + A-SGNS crawlers.

Fig. 4 shows the average harvest rate and Fig. 5 shows the average 
irrelevance ratio of the SVM + TF-IDF, NB + TF-IDF, ANN + TF-IDF 
and RNN + SGNS crawlers, respectively. The TF-IDF-based features 
consider similarity only if the topic term co-occurs on the web page. 
As a result, the SVM + TF-IDF, NB + TF-IDF crawler, and ANN + TF-
IDF crawler considers most web pages that are semantically related to 
the topic as irrelevant. The SVM+TF-IDF, NB + TF-IDF and ANN + TF-
IDF crawlers produced an average harvest rate of 0.32, 029 and 0.34, 
along with a high irrelevance ratio of 0.68, 0.71 and 0.66,respectively.
The A-SGNS is a context learning-based algorithm that considers the 
semantic relatedness between the topic and the web page term. Owing 
to this advantage, it considers the semantically related web page as a 
relevant web page, and produced an average harvest rate of 0.42 and 
a low irrelevance ratio of 0.58, thus outperforming the other focused 
SVM + TF-IDF, NB+ TF-IDF and ANN + TF-IDF crawlers.  
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Fig. 5. Average irrelevance ratio for ten topics for the SVM + TF-IDF, NB + TF-
IDF, ANN + TF-IDF and RNN + A-SGNS crawlers.
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Fig. 6. Average harvest rate of ten topics for the BFS, VSM and RNN+A-SGNS 
crawlers.

To retrieve the associated web pages without determining their 
topical preferences, the breadth-first crawler explicitly selects 
unvisited hyperlinks. The VSM makes use of the TF-IDF to compute 
topical similarities but failed to capture the semantic similarity. As a 
result, the average harvest rate of the BFS and VSM is less than that 
of the RNN + SGNS and the average irrelevance ratio of the BFS and 
VSM is higher than that of the RNN + SGNS. Fig. 6 and Fig. 7 show the 
average harvest rate and average irrelevance ratio of the BFS, VSM and 
RNN+A-SGNS respectively. Right from the beginning, the BFS starts 
retrieving irrelevant results, and after 5000 web page crawls produced 
an average harvest rate of 0.124 and an irrelevance ratio of 0.876. The 
VSM crawler performed better than the BFS crawler because of the 
relevance computation. The VSM crawler makes use of the TF-IDF 
to compute topical similarities but failed to capture the semantic 
similarity. After 5000 web page crawls, the VSM crawler produced an 
average harvest rate of 0.237 and an irrelevance ratio of 0.763. The 
proposed RNN+A-SGNS crawler outperformed both the BFS and VSM 
crawlers with an average harvest rate of 0.42 and an irrelevance ratio 
of 0.58 after 5000 web page crawls.
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Fig. 7. Average irrelevance ratio of ten topics for the BFS, VSM and RNN+A-
SGNS crawlers.

Ontology learning-based crawlers use a domain-specific ontology 
to ascertain the topical similarity between a topic and web pages. An 
ontology is a well-known representation that helps find semantic 
similarity. Ontologies are domain-specific and designed by domain 
experts. A human error in ontology design results in the retrieval of 
wrong results. In this work, WordNet ontology [52] for the semantic 
representation of words was used in the design of the optimized Naive 
Bayes (ONB) crawler, the ontology learning-based crawler using the 
ANN (OL-ANN), and the semi- supervised learning-based crawler 
using the SVM (SSL-SVM). Ontology learning on the dynamic internet 
is a difficult and time-consuming process. Given the limitations of 
ontologies and ontology learning, these crawlers performed poorly on 
the dynamic internet in terms of the harvest rate and irrelevance ratio, 
when compared to the proposed methodology. The ONB, ontology 
learning-based crawler using the ANN, the semi-supervised learning-
based crawler using the SVM, and the proposed crawler produced an 
average harvest rate of 0.39, 0.37,0.36 and 0.42, respectively, and an 
average irrelevance ratio of 0.61, 0.63, 0.64 and 0.58, respectively. This 
clearly shows that the proposed crawler outperformed the ontology 
learning-based crawler. Fig. 8 and Fig. 9 show a comparison of the 
results of the ONB, OL-ANN, SSL-SVM and the proposed crawler in 
terms of the harvest rate and irrelevance ratio, respectively.
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Fig. 8. Average Harvest Rate of ten topics for ONB, OL-ANN, SSL-SVM and 
RNN+A-SGNS.
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Fig. 9. Average Irrelevance Ratio of ten topics for ONB, OL-ANN, SSL-SVM 
and RNN+A-SGNS.

VI. Conclusion and Future Work

The A-SGNS model presented here was intended to optimize the 
performance of the focused web crawler. This work considers both 
the syntactic and semantic similarity between the topic and web page 
documents. The model first computes the A-SGNS model, from which 
the cosine similarity of the topic and document terms is calculated. 
The similarity vectors are given as input to the recurrent neural 
network to classify the web page, based on its relevance. The results 
of the experiment have demonstrated that the proposed system has 
increased the efficiency of the focused crawler, outperforming the 
breadth-first, VSM, and TF-IDF-based learning crawlers as well as 
those based on ontology learning. In conclusion, the proposed method 
is ideally suited to focused crawlers and has conclusively proved its 
efficacy.

Future directions include plans for the design of a crawler using 
long short-term memory networks (LSTM) or the gated recurrent 
unit (GRU) to resolve the long-term dependency problem of the RNN 
in learning sequences, brought on by problems with the vanishing 
gradient.
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