
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº6

- 122 -- 122 -

* Corresponding author.

E-mail address: joe.dhanith@gmail.com

DOI: 10.9781/ijimai.2020.09.003

Keywords

Focused Crawler,
Semantic Similarity,
Word Embedding,
Adagrad, Cosine,
Recurrent Neural
Network.

Abstract

Learning-based focused crawlers download relevant uniform resource locators (URLs) from the web for a
specific topic. Several studies have used the term frequency-inverse document frequency (TF-IDF) weighted
cosine vector as an input feature vector for learning algorithms. TF-IDF-based crawlers calculate the relevance
of a web page only if a topic word co-occurs on the said page, failing which it is considered irrelevant. Similarity
is not considered even if a synonym of a term co-occurs on a web page. To resolve this challenge, this paper
proposes a new methodology that integrates the Adagrad-optimized Skip Gram Negative Sampling (A-SGNS)-
based word embedding and the Recurrent Neural Network (RNN).The cosine similarity is calculated from the
word embedding matrix to form a feature vector that is given as an input to the RNN to predict the relevance of
the website. The performance of the proposed method is evaluated using the harvest rate (hr) and irrelevance
ratio (ir). The proposed methodology outperforms existing methodologies with an average harvest rate of 0.42
and irrelevance ratio of 0.58.

A Word Embedding Based Approach for Focused
Web Crawling Using the Recurrent Neural Network
P. R. Joe Dhanith1*, B. Surendiran1, S. P. Raja2

1 Department of CSE, National Institute of Technology Puducherry, Karaikal (India)
2 Department of CSE, Vel Tech Rangarajan Dr.Sagunthala R & D Institute of Science and Technology (India)

Received 11 March 2020 | Accepted 4 July 2020 | Published 25 September 2020

I. Introduction

There has been a rapid increase in the number of web pages, from
only 20 million in 2010 to 1.7 billion in 2020 [1]. The exponential

increase in the volume of web pages each year has made it difficult
for search engines to index them [2]–[5]. At the heart of a search
engine is a web crawler, which is a software bot that retrieves web
pages, commencing from seed URLs. A classic web crawler retrieves
huge masses of information from the internet for a search, including
information on irrelevant topics. Classic web crawlers demand huge
storage capacities as well as additional downloading time. Such a
problem calls for a topic-driven focused crawler that only downloads
relevant web pages from the internet for a given topic.

Fig. 1 illustrates the working design of a focused web crawler,
wherein the initial URLs are set by users for a given topic. The
crawler visits web pages from initially-defined URLs and computes
the similarity score of unexplored web pages. Based on the relevance
score, precedence is assigned and stored in a web page archive.

Most focused web crawlers [6]–[9] only use full-page text to
compute the similarity score of a web page, while others [10]–[13]
use both full-page and anchor texts to calculate the relevance score,
and [14]–[16] use cosine similarity to calculate the similarity score of
unvisited web pages. In numerous existing studies [14]–[16], the cosine
similarity value is calculated by finding the TF-IDF. The TF-IDF-based

cosine similarity calculates the relevance score only if the topic term
co-occurs with the terms on the web page, or else the similarity value
is set to zero. The cosine similarity-based focused crawler provides a
zero similarity score if the web page is semantically related but with
no terms in common between the web page and the topic.

It was to overcome such challenges that researchers began working
on ontology learning-based crawlers [17]–[19] to establish the
semantic similarity between the topic and web page. Domain-specific
ontologies are designed by domain experts, and crawlers fetch wrong
results when human errors or discrepancies occur in the ontologies.

This paper proposes a new word embedding-based approach
using the RNN to resolve this issue. Word embedding is one of the
most common web page vocabulary representations. It is capable of
capturing the meaning of a word on a web page, its semantic and
syntactic similitude, and its relationship with other words. This work
uses the A-SGNS to handle rare words that show up in the vocabulary.
From the embedding matrix, the cosine similarity between the topic
and web pages is calculated. The calculated cosine vectors are given as
input to the RNN to predict the relevance of the web page.

The major contributions of this paper are as follows:

(1) Integrating the A-SGNS model with the RNN to automatically
retrieve relevant web pages,

(2) Optimizing the SGNS using the Adagrad algorithm and the RNN
using the RMSprop algorithm, and

(3) Implementing and evaluating the following nine different focused
crawlers, including the breadth-first search (BFS)-based, vector
space model (VSM), ontology learning-based using artificial neural
network (ANN), Naive Bayes (NB)-based, link context-based, ANN-

Regular Issue

- 123 -

based, semi-supervised, optimized Naive Bayes (ONB)-based, and
the proposed RNN crawler. The efficiency of the nine focused
crawlers is assessed using the harvest rate and irrelevance ratio.

The remainder of this article is organized as follows: Section II
addresses existing methodologies. Section III describes the newly-
constructed crawler framework, and Section IV the experimental
design. Section V presents the experimental analysis, and Section VI
concludes the paper.

A. Working of Focused Web Crawler
Fig. 1 shows the working architecture of the focused web crawler,

whose major components are a crawler frontier, web page fetcher, policy
centre, web page pool, web page parser and relevance computation.
The crawler frontier is a priority queue that stores a list of URLs in a
prioritized order, based on the relevance score. The web page fetcher
downloads web pages. The policy centre checks whether the web page
is downloadable, and the web page pool stores downloaded web pages.
The web page parser parses the web page to plaintext. The relevance
computation computes the relevance of unvisited web pages. The
stepwise working of the focused web crawler is as follows:

Step 1:The crawler frontier is initialized with the seed URLs and
the policy centre with the depth of the web pages explored.

Step 2: The web page fetcher downloads web pages in the crawler
frontier one by one. Once a web page is downloaded, the web page
fetcher extracts the URLs present therein and sends them to the policy
centre.

Step 3: The policy centre checks the downloadability of the received
URL. A downloadable URL is sent back to the web page fetcher for
downloading, else it is terminated. Steps (2) and (3) are repeated until
the user-defined depth is reached.

Step 4: Once the web page fetcher receives the URL from the policy
centre, it downloads the web page and stores it in the web page pool
as a HTML document.

Step 5: The stored web pages are sent to the web page parser, along
with the URLs, to retrieve meaningful information.

Step 6: The extracted information snippets are despatched to the
relevance computation module to determine the relevance of the web
page to the given topic. If the web page is relevant, the extracted URL
is sent to the crawler frontier or else it is terminated.

II. Related Work

The Google search engine uses the PageRank algorithm [2] to
compute the relevance score of web pages. The PageRank algorithm is
a voting method based on the number of incoming links and the rank
of incoming links. If the number and the rank of the incoming links are
high, the PageRank of the web page is also correspondingly high. The
Google PageRank algorithm is formulated as follows in Equation (1),

 (1)

where df is the damping factor, the value of df is usually set to 0.85,
p(wp) is the PageRank of the web page (wp), l1, l2, …, ln are the incoming
links to the web page wp, p(l1) is the PageRank of the first incoming
link (l1), c(l1) is the number of outgoing links from web page l1.

The baseline focused crawler downloads only relevant web pages
by computing the relevance score of target variables such as full-page
terms and anchor terms. The priority of the unvisited hyperlinks is
calculated by combining the relevance score of the target variables. The
priority score is given as a cosine function, as shown in Equation (2),

Web page
Fetcher

Crawler
Frontier

Policy Centre

Relevance
Computation

Extract URLs

Web page Pool

relevant URLs

URLs URLs

web pages

web pages

plain text

URLs

request web
pages

Internet

Web page
Parser

Fig. 1. Working design of focused web crawler.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº6

- 124 -

 (2)

where fp(url) is the priority function of unvisited URL, frs(t, p) is the
cosine function between the given topic and the full page terms, frs(t,
a) is the cosine function between the given topic and the anchor terms.

Andrea Capuano et al. [20] designed an ontology learning-based
focused crawler using the convolution neural network (CNN).
This work uses the Dbpedia spotlight and ImageNet to annotate,
respectively, web page text and image data. A Li [21] semantic
similarity algorithm calculates the textual relevance between the topic
and the web page, and a CNN algorithm computes the relevance score
between the downloaded image and the image in the knowledge base.
The classification of the text and image is combined to identify the
relevance of the web page. This work produced an average harvest
rate of 0.29 after 5000 web page downloads.

Javad Hosseinkhani et al. [22] proposed an ontology learning-based
focused crawler using the ant colony optimization (ACO) algorithm.
The crime ontology builder in this work is used to design a crime
ontology repository that annotates web pages. The ACO crawls and
prioritizes web pages from the internet, while the support vector
machine (SVM) classifies the relevance of a particular web page.

Debajyoti Mukhopadhyay et al. [23] advanced a semantic focused
crawler to download relevant URLs. This work proposed a relevance
score calculation formula between the topic and the web page, as
shown in Equation (3),

 (3)

where frs is the relevance score function, fo is the ontology-
based term weight, No is the count of the terms in the ontology, fs
is the synonym weight value of the term, and Ns is the count of the
synonyms in the ontology. A web page with a relevance score above
0.5 is considered relevant, otherwise it is not.

Juan Qiu et al. [24] designed a focused crawler for the OpenStack
Questions and Answers (Q&A) knowledge base. This work uses the
linear discriminant analysis (LDA) clustering algorithm to construct
the QA knowledge base topic corpus. A VSM is applied to find the
similarity between the topic and the web page for corpus update.

Tanaphol SUEBCHUA et al. [25] propounded a history feature-
based focused crawler. The history feature is extracted to reduce the
priority score of the unvisited web page that downloads irrelevant
web pages consecutively. The history feature, along with the relevance
score of the link context and page text, is given as input to a NB
classifier to predict the relevance of the web page.

Guangxia Xu et al. [26] elucidated a focused crawler based on
particle swarm optimization (PSO). Initially, the TF-IDF is applied to
calculate the weight of the terms, following which the PSO is applied
to predict the relevance of the web page.

H.Dong et al. [27] discussed a self-adaptive semantic focused
(SASF) crawler that combines an information content (IC)-based
semantic similarity measure and a statistics-based similarity measure
to determine the similarity score of a web page with respect to a given
topic. The relevance score is calculated only for a full-page text feature
with the given topic.

The relevance score of the SASF [27] is computed using Equation (4).

 (4)

where frs(url) relevance score function of the URL, fic(t, p) is the
Information content based semantic similarity function between the
given topic and the full page terms, fstsm(t, p) is the statistical based
string matching between the given term and the full page terms.

Ya Jun et al. [28] designed a cell-like membrane computing
optimization (CMCFC) algorithm. The relevance score is calculated
for four target variables (web page contents, link context, title term
and the surrounding paragraph text) with the given term, using the
cosine-based similarity metric. The relevance score of the four target
variables is combined to compute the precedence of the unexplored
web pages.

The relevance score of the CMCFC [28] is computed using
Equation (5),

 (5)

where frs(url) is the relevance score function of the URL, frs(t, p) is
the cosine function between the given topic and the full page terms,
frs(t, a) is the cosine function between the given topic and the anchor
terms, frs(t, title) is the cosine function between the given topic and the
terms, rs (t, st) is the cosine function between the given topic and the
surrounding terms.

Hai-Tao Zheng et al. [19] elucidated a semantic focused crawler
based on the artificial neural network (ANN). The relevance score is
calculated, based on the distance between the full-page text and the
given topic in the ontology. The crawler computes the term frequency
of the unvisited web pages and feeds them as input to the ANN. The
relevance score of the unvisited web pages is the output of the ANN.
A major limitation of this approach is its inability to work well in an
uncontrolled web environment.

Ahmed I Saleh et al. [17] designed a focused crawler using the
optimized NB classifier (ONB). This work integrates the NB classifier
with the SVM to form an optimized NB classifier. An integrated
SVM and genetic algorithm is used to remove outliers in the training
samples. The training data with the outliers removed is thereafter used
to train the NB classifier. The ONB finds the sense of the data using
the D2O ontology, calculates the similarity score of the web page, and
determines its relevance.

Hai Dong et al. [18] designed a semi-supervised ontology learning-
based approach for focused web crawling. This work extracts the
Resnik semantic similarity score [29] and the statistical-based co-
occurrence similarity score between the topic and the web page
contents as features. The feature vector is then given as input to the
SVM classifier to predict the relevance of the web page.

A review of the literature revealed the following drawbacks:

1. The TF-IDF weighting scheme finds the relevance of a web page
only if the topic term co-occurs in target variables such as web
page text and anchor text. The relevance score is otherwise
calculated as zero, given that the TF-IDF does not consider the
semantic similarity of the web page.

2. If the number of words on a web page is high, the dimension
of the feature space generated by the TF-IDF is also high. The
dimensionality of the feature space using the TF-IDF depends on
the number of words on the web page. The TF-IDF vectors of web
pages cause the high-dimensionality feature space that results
in inaccurately-performing NB, SVM and ANN classifiers in a
crawling environment.

3. Learning ontological concepts during a dynamic crawling process
is an expensive, time-consuming process for basic learning
algorithms like the NB, SVM and ANN. The complexity of learning
ontological concepts in a crawling environment culminates in
existing ontology learning-based crawlers performing at levels
below par.

To solve these issues, this paper proposes a new word embedding-
based approach using the RNN. An A-SGNS model is used to build a

Regular Issue

- 125 -

VSM for representing words through a low-dimensional space. From
the derived matrix, the cosine similarity between the extracted topics
and the extracted web page terms is calculated to form a feature vector.
The generated cosine feature vector is given as an input to the RNN to
predict the relevance of the web page.

III. Proposed Methodology

Fig. 2 shows the workflow diagram of the proposed work, with a
six-layer architecture. The crawler frontier is initialized with the seed
URLs and the topic by the user. The first layer is the topic preprocessing
layer, where the given topic is preprocessed by applying methodologies
like tokenization, Parts-of-Speech (POS) tagging, nonsense word
filtering, stemming and synonym searches. The preprocessing is done
using the Python Natural Language Toolkit (NLTK) library [30], [31],
and the synonyms of the given topic are extracted for a meaningful
search. The preprocessed topic terms are stored in a storage. The
second layer is the crawling layer, where web pages are downloaded
from the web, starting from manually assigned seed URLs. Once the
download is done, the web pages are sent to the term extraction layer.
The third layer is the term extraction layer, where the web pages are
parsed to plaintext by removing HTML tags. After the parsing, target
variables such as web page text and anchor text are extracted from the
web page. The fourth layer is the term preprocessing layer, where the
extracted target variables are preprocessed by applying methodologies
like tokenization, POS tagging, nonsense word filtering and stemming.
The preprocessing is carried out using the NLTK library [30], [31].
The fifth layer is the feature extraction layer, where the A-SGNS-
based word embedding matrix is formed. From the derived matrix, the
cosine similarity between the extracted topics and the extracted terms
is calculated to form a feature vector. The generated cosine feature
vector is given as input to the classification layer, where the recurrent
neural network classifies the web page to determine its relevance.

A. Recurrent Neural Networks
H. Palangi et al., [32]–[34] proposed a RNN for sentence embedding.

The RNN, a type of deep learning model, uses the previous output as
input in the hidden state and maintains the previous output to predict
the current output. Fig. 3 shows the RNN workflow architecture of
the proposed work.

The hidden state can be formulated as shown in equation (6):

 (6)

where win is the input weight vector, wrec is the recurrent weight
vector, s(t) is the hidden state, x(t) is the input vector, s(t⎯1) is the
previous hidden state and biass is the bias.

The output can be formulated as in equation (7):

 (7)

where σ(.) is the sigmoid activation function, o(t) is the output
vector, wout is the output weight, and biasout is the bias of the output
state.

B. Feature Extraction
The first step in this work is to build a VSM to represent words

through a low-dimensional space, using prediction-based word
embedding. The A-SGNS [35]–[37], a prediction-based model which
follows the neural network approach, is used. Given a sample of
vocabulary, V, and the retrieved word context pair set, Z, let p(Z=1|(w,
c)) be the likelihood that (w, c) arrives from Z and let p(Z=0|(w, c)) be
the likelihood that (w, c) may not. The presupposition of SGNS is that
if c is the context of word w in a window, the conditional probability
of p(Z=1|(w, c))should be high, and otherwise small. Let vw denote the
vector representation of w, and vc denote the vector of c. D is the set
of all pairs (w, c) that are in the text and D' is the set of all pairs (w, c)
not in the text. Then, Z can be represented as follows in equation (8).

Seed URLs and
Topic

Feature
Extraction

Topic
Preprocessing

Crawling

Term
Preprocessing

Recurrent Neural
Network Discard

Term
Extraction

Storage

Internet

User
topic initialized

preprocessed
topic terms

seed URLS
download web

pages

webpage

web page text and
anchor text

preprocessed
topic terms

preprocessed web
page terms

Repository

relevant
URLs

irrelevant URLs

Fig. 2. Proposed workflow architecture.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº6

- 126 -

 (8)

Then the p(Z=1|(w, c)) and p(Z=0|(w, c)) are computed as shown
in equations (9) and (12) respectively,

 (9)

 (10)

the above equation (10) is multiplied using and the following
equations (11) and (12) are formulated.

 (11)

 (12)

 (13)

where θ=(vc, vw)

 (14)

log likelihood is applied on both sides in equation (14) and
formulated in the following equation (15).

 (15)

 (16)

Let and

then the equation (16) can be formulated as follows in equation (17),

 (17)

where

Then the cost function can be given as follows in equation (18):

 (18)

The goal of any machine learning model is to find the optimal
values of a weight matrix (θ) to minimize prediction errors. To update
the lower learning rates for frequent words and higher learning rates
for infrequent words, this work uses the Adagrad algorithm [38]–[40]
for optimizing the cost function. The gradient descent on the cost
function is applied with respect to θ, as shown in Equation (19):

 (19)

A general AdaGrad update equation for cost function can be given
in the following equation (20):

 (20)

From the designed word embedding model, the cosine similarity
between the given topic and the web page is extracted as a feature. The
cosine similarity between the topic and the content of the web page is
given as follows in Equation (21):

 (21)

where is the embedding vector corresponding to the Topic, is
the embedding vector corresponding to the web page contents.

Fig. 3. Recurrent Neural Network workflow architecture of the proposed work.

Regular Issue

- 127 -

C. Classification Layer
The embedding vector of a document is represented as

.

where is the positive sample among the web page documents
and is the kth negative sample of the same. These semantic vectors
are produced by feeding the web page documents into the neural
network (RNN), as discussed in section IIIA.

1. Recurrent Weight
To maximize the likelihood of the positive document for the given

document with respect to recurrent weight (wrec) can be formulated as
follows in equation (22):

 (22)

where wrec is the recurrent weight, is the probability of
positive web page document for the ith Topic, and N is the number of
topic-document pair in the corpus.

The above equation can be rewritten as follows in equation (23):

 (23)

The li(wrec) can be determined using the formula below from (24)-
(28):

 (24)

 (25)

 (26)

 (27)

 (28)

where ∆i,j = sim(ti, di
+) ⎯ sim(ti, di

⎯), the ∆i,j value lies between 0 to 1,
and γ is a scaling factor to increase the range of ∆i,j.

To perform back propagation through time [41] for L(wrec) with
respect to recurrent weight (wrec) can be derived as follows in equation
(29):

 (29)

The derived cost value of recurrent weight (wrec) can be given as
follows in equation (30):

 (30)

where T is the number of time steps that the network is unfold over
time and

The recurrent weight can be updated by using the RMSprop
algorithm [42] because of its ability to update the lower learning
rates for frequent parameters and higher learning rates for infrequent
parameters and also clip the gradient when it goes higher than a
threshold.

 (31)

 (32)

where E[g2] is the mean square of the gradient, α is the moving
average parameter which is usually set to 0.9, ω is the learning rate
which is set to 0.001, at each time step τ for the parameter wrec.

2. Input Weight
As derived for recurrent weight, the cost value of input weight (win)

can be derived as follows in equation (33):

 (33)

IV. Experimental Design and Analysis

A prototype of the crawlers (BFS, VSM, SVM, NB, ANN, ontology
learning-based using the ANN, semi-supervised using the SVM, ONB-
based and, finally, the proposed RNN) was developed in Python3 [43],
[44], within the Spyder3.6 [45] platform. A cluster of six systems,
each with the following configurations, was used to implement the
prototypes: (i) 2.20GHz Intel Core i7-8750H 8th Gen processor, (ii) 16GB
DDR4 RAM, (iii) 1TB serialATA hard drive, (iv) NVidia GeForce GTX
1060 6GB graphics, and (v) the Windows 10 operating system. These
prototypes were implemented to crawl from the real web, using the
Python packages, BeautifulSoup [46] and urllib [47]. BeautifulSoup
package was used to handle HTML documents and urllib package was
used to handle the URLs. The lxml parser [48] of BeautifulSoup package
was used to parse the HTML documents. The urllib.parse function was
used to parse the URLs. A set of ten topics and their respective seed
URLs, as shown in Table 1, were given as input to all the crawlers. We
collected 350000 (175000 positive and 175000 negative samples) URLs,
along with their web page contents, for the topics shown in Table I in
order to train the machine learning algorithms.

The experimental evaluations were carried out in two stages. The
first stage was the training-testing phase of the machine learning
algorithms, where the NB+TF-IDF, SVM+TF-IDF, ANN + TF-IDF
and the proposed RNN + A-SGNS crawlers were evaluated using the
metrics in Section V(A). The second stage was the crawling phase,
where the performance of the crawlers (BFS, VSM, ontology learning-
based using the ANN, NB-based, link context-based using the SVM,
ANN-based, semi-supervised using the SVM, optimized Naive Bayes-
based and the proposed RNN+A-SGNS) was evaluated using the
metrics in Section V(C).

The NB, SVM and ANN algorithms, along with the TF-IDF, were
implemented using the sci-kit learn Python package [49]. The NB-
based crawler was implemented using the Gaussian Naive Bayes
(GNB) classifier with a Laplace smoothing function, and the SVM-
based crawler using a degree 1 linear SVM. The ANN model with 4
hidden nodes was implemented using the stochastic gradient descent
(SGD) optimizer with the initialized weight value of 0.5 and learning
rate of 0.1. In the proposed RNN model, the recurrent weight (wrec)
was initialized to -1.5 and the input weight (win) was initialized to 2.0.
The learning rate ω was initialized to 0.001 for both wrec and win .

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº6

- 128 -

TABLE I. Seed URLs for the Ten Topics

S.No Topic Seed URL

1 Football
• https://en.wikipedia.org/wiki/Football
• https://www.bbc.co.uk/sport/football

2
Knowledge
Mapping

• https://www.apqc.org/blog/4-step-guide-
knowledge-mapping

• https://www.mindmeister.com/blog/build-
knowledge-map/

3 Robot Army

• https://en.wikipedia.org/wiki/Military_robot
• https://www.popularmechanics.com/

technology/robots/a29610393/robot-soldier-
boston-dynamics/

4 Smart Phone
• https://en.wikipedia.org/wiki/Smartphone
• https://www.amazon.in/Smartphones/

b?ie=UTF8&node=1805560031

5
Cloud
Computing

• https://en.wikipedia.org/wiki/Cloud_computing
• https://azure.microsoft.com/en-in/overview/

what-is-cloud-computing/

6 wildfires
• https://en.wikipedia.org/wiki/Wildfire
• https://simple.wikipedia.org/wiki/Wildfire

7
Shahrukh
khan

• https://en.wikipedia.org/wiki/Shah_Rukh_Khan
• https://www.imdb.com/name/nm0451321/

8 computer
• https://en.wikipedia.org/wiki/Computer
• https://www.webopedia.com/TERM/C/

computer.html

9 Apple
• https://www.apple.com/in/
• https://minecraft.gamepedia.com/Apple

10 Movie
• https://www.amctheatres.com/movies
• https://www.imdb.com/chart/moviemeter/

V. Performance Evaluation

A. Performance Evaluation of Training Phase

1. Performance Metrics
This work uses four different metrics to measure the efficiency, at

the training phase of different machine learning algorithms. They are
accuracy (a), precision (p), recall (r) and F1-score (f) as shown in the
following Equations (34), (35), (36), and (37) respectively.

 (34)

 (35)

 (36)

 (37)

where tp, tn, fp and fn are true positive, true negative, false positive
and false negative respectively.

B. Analysis of Training Phase
A series of experiments was conducted to identify the right

classifier with the requisite ability to guide the focused crawler. A
dataset with 350,000 positive query-document pairs was collected
for 10 different topics, as shown in Table I, each with 17,500 positive
and 17,500 negative samples. Initially we applied tokenization, POS
tagging, nonsense word filtering and stemming on both query and
document data. The preprocessing was carried out using the Python
Natural Language Toolkit (NLTK) [30], [31]. The nltk.word_tokenize()

function was used to tokenize the topic words and the document
words, the nltk.pos_tag() function to find the part of speech of each
topic word and document word, and the nltk.stem package to find
the root word of each topic word and document word. The words
identified without POS tag were removed as non-sense words.
Following the preprocessing of the training data, the TF-IDF-based
cosine similarity and A-SGNS-based cosine similarity were extracted
as a feature for each query-document pair. The TF-IDF-based extracted
feature was used to train the NB, SVM, and ANN classifiers, while the
A-SGNS-based extracted feature was used to train the RNN classifier.
After training the classifiers, a testing dataset of 2827 query-document
pairs was used to test the performance of the classifiers. The training
phase was evaluated using four well-known metrics, formulated in
Equations (34)-(37). Table II shows the results of a comparison of the
four classifiers with 350,000 training data samples. The SVM with the
TF-IDF, NB with the TF-IDF, ANN with the TF-IDF, and RNN with the
A-SGNS produced accuracy of 0.623, 0.62, 0.70 and 0.813, respectively.

Logistic regression works well with linear data but not so with non-
linear data. To predict categorical outcomes, it needs each data point to
be independent. Given the limitations involved, it was, consequently,
unable to perform well on the dynamic internet. Since the number of
words in the web page was high, the dimensions created by the TF-
IDF vectors were also high. In a high-dimensional feature space, the
NB, SVM and ANN were affected by problems with overfitting and
time consumption [50]. The NB, SVM and ANN failed to handle high-
dimensional feature vectors and produced inaccurate results. The RNN,
on the other hand, is a discriminative model that tries to differentiate
between positive and negative samples in order to undertake the
classification. In the proposed work, the A-SGNS model was used to
build a VSM to represent words through a low-dimensional space. The
ability of the RNN to handle the A-SGNS word embedding vectors
resulted in its enhanced performance in a dynamic web environment
[51], with an average accuracy of 0.813.

TABLE II. Precision, Recall, F1-score and Accuracy with 350,000
Training Samples

Algorithm
Precision Recall F1-score

AccuracyClass
1

Class
0

Class
1

Class
0

Class
1

Class
0

SVM + TF-
IDF

0.50 0.51 0.62 0.39 0.55 0.44 0.623

NB + TF-
IDF

0.50 0.513 0.626 0.39 0.55 0.443 0.62

ANN + TF-
IDF

0.5 0.50 0.42 0.58 0.45 0.53 0.70

RNN +
A-SGNS

0.62 0.57 0.45 0.73 0.52 0.64 0.813

C. Performance Evaluation of Crawling Phase

1. Performance Metrics
The performance of the six focused crawlers were measured by

using harvest rate and irrelevance ratio can be shown in the equations
(38) and (39).

2. Harvest Rate
Harvest rate is defined as the ratio of the number of relevant web

pages downloaded out of total number of web pages downloaded. The
harvest rate (hr) can be formulated as follows in equation (38).

 (38)

Regular Issue

- 129 -

where hr is the harvest Rate, Rwp is the number relevant web pages
downloaded, and Nwp is the total number of web pages downloaded.

3. Irrelevance Ratio
Irrelevance ratio is defined as the ratio of number of irrelevant web

pages downloaded out of total number of web pages downloaded. The
irrelevance ratio can be formulated as follows in equation (39).

 (39)

where ir is the irrelevance ratio, rj is the number of relevant web
pages downloaded, and nj is the total number of web pages downloaded.

D. Analysis of Crawling Phase
The experimental results were evaluated for all the four focused

crawlers, namely, the SVM + TF-IDF, NB + TF-IDF, ANN + TF-IDF
and the proposed RNN + A-SGNS. For the NB, SVM, and ANN, the
TF-IDF-based cosine similarity was given as an input feature, while
for the RNN, the SGNS-based cosine similarity was the input feature.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1000 2000 3000 4000 5000

H
ar

ve
st

 R
at

e

Number of web pages downloaded

Naive Bayes + TF-IDF

SVM + TF-IDF

ANN + TF-IDF

RNN + A-SGNS (proposed)

Fig. 4. Average harvest rate for ten topics for the SVM + TF-IDF, NB + TF-IDF,
ANN + TF-IDF and RNN + A-SGNS crawlers.

Fig. 4 shows the average harvest rate and Fig. 5 shows the average
irrelevance ratio of the SVM + TF-IDF, NB + TF-IDF, ANN + TF-IDF
and RNN + SGNS crawlers, respectively. The TF-IDF-based features
consider similarity only if the topic term co-occurs on the web page.
As a result, the SVM + TF-IDF, NB + TF-IDF crawler, and ANN + TF-
IDF crawler considers most web pages that are semantically related to
the topic as irrelevant. The SVM+TF-IDF, NB + TF-IDF and ANN + TF-
IDF crawlers produced an average harvest rate of 0.32, 029 and 0.34,
along with a high irrelevance ratio of 0.68, 0.71 and 0.66,respectively.
The A-SGNS is a context learning-based algorithm that considers the
semantic relatedness between the topic and the web page term. Owing
to this advantage, it considers the semantically related web page as a
relevant web page, and produced an average harvest rate of 0.42 and
a low irrelevance ratio of 0.58, thus outperforming the other focused
SVM + TF-IDF, NB+ TF-IDF and ANN + TF-IDF crawlers.

Naive Bayes + TF-IDF

SVM + TF-IDF

ANN + TF-IDF

RNN + A-SGNS (proposed)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1000 2000 3000 4000 5000

Ir
re

le
va

nc
e

R
at

io

Number of web pages downloaded

Fig. 5. Average irrelevance ratio for ten topics for the SVM + TF-IDF, NB + TF-
IDF, ANN + TF-IDF and RNN + A-SGNS crawlers.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1000 2000 3000 4000 5000

H
ar

ve
st

 R
at

e

Number of web pages downloaded

Breadth First Search

Vector Space Model

RNN + A-SGNS (proposed)

Fig. 6. Average harvest rate of ten topics for the BFS, VSM and RNN+A-SGNS
crawlers.

To retrieve the associated web pages without determining their
topical preferences, the breadth-first crawler explicitly selects
unvisited hyperlinks. The VSM makes use of the TF-IDF to compute
topical similarities but failed to capture the semantic similarity. As a
result, the average harvest rate of the BFS and VSM is less than that
of the RNN + SGNS and the average irrelevance ratio of the BFS and
VSM is higher than that of the RNN + SGNS. Fig. 6 and Fig. 7 show the
average harvest rate and average irrelevance ratio of the BFS, VSM and
RNN+A-SGNS respectively. Right from the beginning, the BFS starts
retrieving irrelevant results, and after 5000 web page crawls produced
an average harvest rate of 0.124 and an irrelevance ratio of 0.876. The
VSM crawler performed better than the BFS crawler because of the
relevance computation. The VSM crawler makes use of the TF-IDF
to compute topical similarities but failed to capture the semantic
similarity. After 5000 web page crawls, the VSM crawler produced an
average harvest rate of 0.237 and an irrelevance ratio of 0.763. The
proposed RNN+A-SGNS crawler outperformed both the BFS and VSM
crawlers with an average harvest rate of 0.42 and an irrelevance ratio
of 0.58 after 5000 web page crawls.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº6

- 130 -

Breadth First Search

Vector Space Model

RNN + A-SGNS (proposed)

0

0,2

0,4

0,6

0,8

1

1000 2000 3000 4000 5000

Ir
re

le
va

nc
e

R
at

io

Number of web pages downloaded

Fig. 7. Average irrelevance ratio of ten topics for the BFS, VSM and RNN+A-
SGNS crawlers.

Ontology learning-based crawlers use a domain-specific ontology
to ascertain the topical similarity between a topic and web pages. An
ontology is a well-known representation that helps find semantic
similarity. Ontologies are domain-specific and designed by domain
experts. A human error in ontology design results in the retrieval of
wrong results. In this work, WordNet ontology [52] for the semantic
representation of words was used in the design of the optimized Naive
Bayes (ONB) crawler, the ontology learning-based crawler using the
ANN (OL-ANN), and the semi- supervised learning-based crawler
using the SVM (SSL-SVM). Ontology learning on the dynamic internet
is a difficult and time-consuming process. Given the limitations of
ontologies and ontology learning, these crawlers performed poorly on
the dynamic internet in terms of the harvest rate and irrelevance ratio,
when compared to the proposed methodology. The ONB, ontology
learning-based crawler using the ANN, the semi-supervised learning-
based crawler using the SVM, and the proposed crawler produced an
average harvest rate of 0.39, 0.37,0.36 and 0.42, respectively, and an
average irrelevance ratio of 0.61, 0.63, 0.64 and 0.58, respectively. This
clearly shows that the proposed crawler outperformed the ontology
learning-based crawler. Fig. 8 and Fig. 9 show a comparison of the
results of the ONB, OL-ANN, SSL-SVM and the proposed crawler in
terms of the harvest rate and irrelevance ratio, respectively.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1000 2000 3000 4000 5000

H
ar

ve
st

 R
at

e

Number of web pages downloaded

Optimized Naive Bayes
Ontology Learnable Crawler (ANN)
Semi supervised learning
RNN + A-SGNS (proposed)

Fig. 8. Average Harvest Rate of ten topics for ONB, OL-ANN, SSL-SVM and
RNN+A-SGNS.

Optimized Naive Bayes

Ontology Learnable Crawler (ANN)

Semi supervised learning

RNN + A-SGNS (proposed)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1000 2000 3000 4000 5000

Ir
re

le
va

nc
e

R
at

io

Number of web pages downloaded

Fig. 9. Average Irrelevance Ratio of ten topics for ONB, OL-ANN, SSL-SVM
and RNN+A-SGNS.

VI. Conclusion and Future Work

The A-SGNS model presented here was intended to optimize the
performance of the focused web crawler. This work considers both
the syntactic and semantic similarity between the topic and web page
documents. The model first computes the A-SGNS model, from which
the cosine similarity of the topic and document terms is calculated.
The similarity vectors are given as input to the recurrent neural
network to classify the web page, based on its relevance. The results
of the experiment have demonstrated that the proposed system has
increased the efficiency of the focused crawler, outperforming the
breadth-first, VSM, and TF-IDF-based learning crawlers as well as
those based on ontology learning. In conclusion, the proposed method
is ideally suited to focused crawlers and has conclusively proved its
efficacy.

Future directions include plans for the design of a crawler using
long short-term memory networks (LSTM) or the gated recurrent
unit (GRU) to resolve the long-term dependency problem of the RNN
in learning sequences, brought on by problems with the vanishing
gradient.

References

[1] “Internet Live Status,” 2020. [Online]. Available: https://www.
internetlivestats.com/total-number-of-websites/.

[2] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web
search engine BT - Computer Networks and ISDN Systems,” Comput.
Networks ISDN Syst., vol. 30, no. 1–7, pp. 107–117, 1998.

[3] G. Ayers, J. H. Ahn, C. Kozyrakis, and P. Ranganathan, “Memory
Hierarchy for Web Search,” Proc. - Int. Symp. High-Performance Comput.
Archit., vol. 2018-Febru, pp. 643–656, 2018.

[4] Auf Wiedersehen, “The Architecture of a Large-Scale Web Search Engine,
circa 2019,” 2019. [Online]. Available: https://0x65.dev/blog/2019-12-14/
the-architecture-of-a-large-scale-web-search-engine-circa-2019.html.

[5] B. Muller, “How search engines work: Crawling, Indexing, and Ranking,”
Moz Pro, 2020. [Online]. Available: https://moz.com/beginners-guide-to-
seo/how-search-engines-operate.

[6] A. Hliaoutakis, G. Varelas, E. Voutsakis, E. G. M. Petrakis, and E. Milios,
“Information Retrieval by Semantic Similarity,” Int. J. Semant. Web Inf.
Syst., vol. 2, no. 3, pp. 55–73, 2011.

[7] Z. Liu, Y. Du, and Y. Zhao, “Focused Crawler Based on Domain Ontology
and FCA,” J. Inf. Comput. Sci., vol. 8, no. 10, pp. 1909–1917, 2011.

Regular Issue

- 131 -

[8] Z. Geng, D. Shang, Q. Zhu, Q. Wu, and Y. Han, “Research on improved
focused crawler and its application in food safety public opinion analysis,”
2017 Chinese Autom. Congr., pp. 2847–2852, 2017.

[9] T. Hassan, C. Cruz, and A. Bertaux, “Predictive and evolutive cross-
referencing for web textual sources,” Proc. Comput. Conf. 2017, vol.
2018-Janua, no. July, pp. 1114–1122, 2018.

[10] S. Chakrabarti, M. van den Berg, and B. Dom, “Focused crawling: a new
approach to top-specific Web source discovery,” Comput. Networks, vol.
31, no. 11–16, pp. 1623–1640, 1999.

[11] F. Menczer, F. Menczer, G. Pant, G. Pant, P. Srinivasan, and P. Srinivasan,
“Topical Web Crawlers: Evaluating Adaptive Algorithms,” ACM Trans.
Internet Technol., vol. V, no. February, p. 38, 2003.

[12] J. R. Park, C. Yang, Y. Tosaka, Q. Ping, and H. El Mimouni, “Developing
an automatic crawling system for populating a digital repository of
professional development resources: A pilot study,” J. Electron. Resour.
Librariansh., vol. 28, no. 2, pp. 63–72, 2016.

[13] G. H. Agre and N. V. Mahajan, “Keyword focused web crawler,” 2nd Int.
Conf. Electron. Commun. Syst. ICECS 2015, pp. 1089–1092, 2015.

[14] Y. Du, W. Liu, X. Lv, and G. Peng, “An improved focused crawler based
on Semantic Similarity Vector Space Model,” Appl. Soft Comput. J., vol.
36, pp. 392–407, 2015.

[15] G. Salton, A. Wong, and C. Yang, “Information Retrieval and Language
Processing: A Vector Space Model for Automatic Indexing,” Commun.
ACM, vol. 18, no. 11, pp. 613-620, 1975.

[16] P. Bedi, A. Thukral, and H. Banati, “Focused crawling of tagged web
resources using ontology,” Comput. Electr. Eng., vol. 39, no. 2, pp. 613–628,
2013.

[17] A. I. Saleh, A. E. Abulwafa, and M. F. Al Rahmawy, “A web page distillation
strategy for efficient focused crawling based on optimized Naïve bayes
(ONB) classifier,” Appl. Soft Comput. J., vol. 53, pp. 181–204, 2017.

[18] H. D. and F. K. Hussain, “SOF: a semi-supervised ontology-learning-
based focused crawler,” Concurr. Comput. Pract. Exp., vol. 25, no. 6, pp.
1755–1770, 2013.

[19] H. T. Zheng, B. Y. Kang, and H. G. Kim, “An ontology-based approach to
learnable focused crawling,” Inf. Sci. (Ny)., vol. 178, no. 23, pp. 4512–4522,
2008.

[20] A. Capuano, A. M. Rinaldi, and C. Russo, “An ontology-driven multimedia
focused crawler based on linked open data and deep learning techniques,”
Multimed. Tools Appl., 2019.

[21] Y. Li, Z. A. Bandar, and D. McLean, “An approach for measuring semantic
similarity between words using multiple information sources,” IEEE
Trans. Knowl. Data Eng., vol. 15, no. 4, pp. 871–882, 2003.

[22] J. Hosseinkhani, H. Taherdoost, and S. Keikhaee, “ANTON Framework
Based on Semantic Focused Crawler to Support Web Crime Mining
Using SVM,” Ann. Data Sci., 2019.

[23] D. Mukhopadhyay and S. Sinha, “Domain-Specific Crawler Design,” pp.
85–112, 2019.

[24] J. Qiu, Q. Du, W. Wang, K. Yin, C. Lin, and C. Qian, “Topic Crawler for
OpenStack QA Knowledge Base,” Proc. - 2017 Int. Conf. Cyber-Enabled
Distrib. Comput. Knowl. Discov. CyberC 2017, vol. 2018-Janua, pp. 309–
317, 2018.

[25] T. Suebchua, B. Manaskasemsak, A. Rungsawang, and H. Yamana,
“History-enhanced focused website segment crawler,” Int. Conf. Inf.
Netw., vol. 2018-Janua, pp. 80–85, 2018.

[26] G. Xu, P. Jiang, C. Ma, and M. Daneshmand, “A Focused Crawler Model
Based on Mutation Improving Particle Swarm Optimization Algorithm,”
Proc. - 2018 IEEE Int. Conf. Ind. Internet, ICII 2018, no. Icii, pp. 173–174, 2018.

[27] H. Dong and F. K. Hussain, “Self-adaptive semantic focused crawler for
mining services information discovery,” IEEE Trans. Ind. Informatics, vol.
10, no. 2, pp. 1616–1626, 2014.

[28] W. J. Liu and Y. J. Du, “A novel focused crawler based on cell-like
membrane computing optimization algorithm,” Neurocomputing, vol.
123, pp. 266–280, 2014.

[29] P. Resnik, “Using Information Content to Evaluate Semantic Similarity in
a Taxonomy,” vol. 1, 1995.

[30] “Natural Language Processing Tool Kit (NLTK),” 2020. [Online].
Available: https://www.nltk.org/.

[31] E. L. and E. K. Bird, Steven, Natural Language Processing with Python.
O’Reilly Media Inc, 2009.

[32] H. Palangi et al., “Deep Sentence embedding using long short-term memory

networks: Analysis and application to information retrieval,” IEEE/ACM
Trans. Audio Speech Lang. Process., vol. 24, no. 4, pp. 694–707, 2016.

[33] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” Adv. Neural Inf. Process. Syst., vol. 4, no. January,
pp. 3104–3112, 2014.

[34] T. Mikolov, M. Karafiát, L. Burget, C. Jan, and S. Khudanpur, “Recurrent
neural network based language model,” Proc. 11th Annu. Conf. Int. Speech
Commun. Assoc. INTERSPEECH 2010, no. September, pp. 1045–1048, 2010.

[35] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations ofwords and phrases and their compositionality,” Adv.
Neural Inf. Process. Syst., pp. 1–9, 2013.

[36] Y. Goldberg and O. Levy, “word2vec Explained: deriving Mikolov et al.’s
negative-sampling word-embedding method,” no. 2, pp. 1–5, 2014.

[37] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 1st Int. Conf. Learn. Represent. ICLR
2013 - Work. Track Proc., pp. 1–12, 2013.

[38] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” COLT 2010 - 23rd Conf.
Learn. Theory, pp. 257–269, 2010.

[39] S. Ruder, “An overview of gradient descent optimization algorithms,” pp.
1–14, 2016.

[40] K. Kowsari, K. J. Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, and D.
Brown, “Text classification algorithms: A survey,” Inf., vol. 10, no. 4, pp.
1–68, 2019.

[41] G. Chen, “A Gentle Tutorial of Recurrent Neural Network with Error
Backpropagation,” pp. 1–10.

[42] G. Hinton, N. Srivastava, and K. Swersky, “Lecture 6a Overview of mini-
batch gradient descent,” Neural Networks Mach. Learn. Coursera, 2012.

[43] G. van Rossum, “Python tutorial, Technical Report CS-R9526,” Cent. voor
Wiskd. en Inform. (CWI), Amsterdam, 1995.

[44] “Python 3.6,” 2016. [Online]. Available: https://www.python.org/
downloads/release/python-360/.

[45] “Spyder IDE,” 2009. [Online]. Available: https://www.spyder-ide.org/.
[46] L. Richardson, “Beautiful Soup Documentation Release 4.4.0.” 2019.
[47] “urllib,” Python, 2020. [Online]. Available: https://docs.python.org/3/

library/urllib.html.
[48] “lxml parser,” Python, 2020. [Online]. Available: https://lxml.de/

elementsoup.html.
[49] G. Varoquaux, L. Buitinck, G. Louppe, O. Grisel, F. Pedregosa, and A.

Mueller, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res.,
vol. 12, no. 1, pp. 2825–2830, 2011.

[50] D. Isa, L. H. Lee, V. P. Kallimani, and R. Rajkumar, “Text document
preprocessing with the bayes formula for classification using the support
vector machine,” IEEE Trans. Knowl. Data Eng., vol. 20, no. 9, pp. 1264–
1272, 2008.

[51] H. Salehinejad, S. Sankar, J. Barfett, E. Colak, and S. Valaee, “Recent
Advances in Recurrent Neural Networks,” pp. 1–21, 2017.

[52] Princeton University, “About WordNet.” WordNet. Princeton University,
2010.

P. R. Joe Dhanith

P.R.Joe Dhanith received his B.Tech degree in Information
Technology from Anna University in 2010 and M.E
degree in Computer Science and Engineering from
Anna University in 2012. He is currently pursuing his
Ph.D degree in Computer Science and Engineering at
National Institute of Technology Puducherry. His main
research interests includes web mining, web crawling and

information retrieval.

B.Surendiran

B. Surendiran is currently working as an Assistant Professor
in the Department of Computer Science and Engineering
at National Institute of Technology Puducherry, Karaikal,
India. He completed his Ph.D in Computer Science
and Engineering at National Institute of Technology
Tiruchirapalli. His research interest includes recommender
systems, machine learning and data mining. He has

published more than 30 papers in international journals.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº6

- 132 -

S.P.Raja

S. P. Raja completed his B. Tech in Information Technology
in the year 2007 from Dr. Sivanthi Aditanar College of
Engineering, Tiruchendur. He completed his M.E. in
Computer Science and Engineering in the year 2010 from
Manonmaniam Sundaranar University, Tirunelveli. He
completed his Ph.D. in the year 2016 in the area of Image
processing from Manonmaniam Sundaranar University,

Tirunelveli. His area of interest is image processing and cryptography. He is
having more than 13 years of teaching experience in engineering colleges.
Currently he is working as an Associate Professor in the department of Computer
Science and Engineering in Vel Tech Rangarajan Dr. Sagunthala R&D Institute
of Science and Technology, Chennai. He published 30 papers in International
Journals, 24 in International conferences and 12 in national conferences. He is
an Editorial Board Member of International Journal of Interactive Multimedia
and Artificial Intelligence.

