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I. Introduction

THE visual perception of color involves the cone cells on retina. 
These photosensitive cells react to the light reflected by objects. 

There are three types of cone cells with different sensitivities: S-cones, 
M-cones, and L-cones, which are sensitive to small, medium, and large 
wavelengths of light, respectively. These three types of cones work 
well for an individual without color vision deficiency (CVD), and he/
she is called a trichromat [1].

(a) (b) (c) (d) 

Fig 1. Color wheel when seen by (a) regular trichromat people; (b) protanope 
people, (c) deuteranope people and (d) tritanope people.

However, about 5% of world population have some sort a disturbance 
in color perception, which reduces their visible color spectrum [2]. This 
visual disturbance of CVD people may reduce their perception of the 
surrounding world, specifically when compared to trichromats (cf. Fig. 
1). For example, a trichromat can distinguish two overlapping objects 
with distinct colors in an image, but a CVD person may not distinguish 

them, i.e., two distinct colors are perceived as one.

A. Color Vision Deficiencies
CVD mainly stems from the partial or total malfunctioning of a cone 

cell type, as shown in Fig. 2. In the case of partial malfunctioning of a 
single type of cones, the deficiency is called anomalous trichromacy, 
but if this malfunctioning is total, the impairment is called dichromacy; 
finally, in the case of total malfunctioning of two or three types of cone 
cells, the impairment is known as monochromacy [3] [4]. Besides, 
as illustrated in Fig. 2, the prefixes ‘protano’ (or protan), ‘deuterano’ 
(or deutan) and ‘tritano’ (or tritan) denote the handicap of L-, M- and 
S-cones, respectively.

Fig 2. Degrees of severity of color vision deficiency and its subtypes.
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In the present work, the research focus is on dichromacy, specifically 
deuteranopy and protanopy. As shown in Fig. 1, the deutan and protan 
dichromat individuals only see blues and yellows, while the tritan see 
bluish cyans and reds. More specifically, deutan/protan dichromats 
only see two different hues, considering the HSV (Hue, Saturation, and 
Value) color wheel depicted in Fig. 1: 60◦- yellow and 240◦-blue. That 
is, all the colors Fig. 1(b)-(c) seen by deutan and protan dichromats just 
result from varying saturation and brightness. Analogously, the tritan 
dichromats only see two hues, 0◦-red and 180◦-cyan, as the remaining 
colors observed in Fig. 1(d) are obtained from either 0◦-red or 180◦-
cyan with varying values of saturation and brightness. These results 
were achieved using the simulation algorithm due to Viennot et al. [5]. 
Note that the dichromacy corresponds to anomalous trichromacy with 
a 100% of severity [6].

B. Related Work
Currently, most color adaptation algorithms are based on color 

mapping, i.e., they map some colors onto other colors, as it the case of 
the following algorithms due to Martin et al. [7], Ichikawa et al. [8], 
Rasche et al. [9], Iaccarino et al. [10], Huang et al. [11], Kuhn et al. 
[12], Doliotis et al. [13], Wang et al. [14], Chen et al. [15], and Ribeiro 
and Gomes [16] [17]. However, in general, these algorithms tend to 
recoloring most pixels of an image, causing loss of naturalness of color 
as perceived by dichromat people [Ichikawa et al. 2003] [Wakita and 
Shimamura 2005] [Huang et al. 2007] [Kuhn et al. 2008] [Flatla et 
al. 2013], though the resulting contrast is more noticeable after all. 
But, this may have negative implications on the perceptual learning 
of CVD people, possibly causing more perceptual confusion in many 
cases. These naturalness- and contrast-related problems have led to 
the investigation of alternative color identification algorithms, called 
content-independent methods [18] [19], which overlay patterns (e.g., 
color names and meters) on colored visualization contents. But, clearly, 
these techniques have the downside of causing noise in the color 
perception, though they minimize ambiguities in color identification.

In this paper, we follow a distinct approach, which consists in 
enhancing the contours (not the interiors) of image regions featuring 
objects. As far as we know, this is the first contour-based adaptation 
algorithm for minimizing ambiguities if color perception of CVD 
people. As shown in paper, this allows for increasing the contrast 
without compromising the naturalness of imaging. In addition, this 
allows CVD people to see more objects than they see normally.

C. Contributions
The idea of the adaptation algorithm proposed in this paper is to 

increase the contrast of neighbor pixels that are indistinguishable for 
dichromat people, but at the same time to maintain the naturalness of 
color as much as possible. Color contrast is obtained by increasing the 
perceptual difference between neighboring regions of a given image. 
For that purpose, the interior of each region remains unchanged, being 
the contrast increased by lightening or darkening its region contours. 
As far as we are aware, there is no similar contour-based algorithm in 
the literature.

D. Organization Paper
The remainder of this paper is organized as follows. Section II describes 

our contour enhancement method. Section III presents the most relevant 
results about our algorithm with respect to the evaluation parameters: 
contrast and naturalness. Section IV describes our study of usability. 
Section V draws the most important conclusions about our work.

II. Contour Enhancement

The individuals with dichromacy see only two distinct hues; more 
specifically, blues and yellows for deutan and protan dichromats, and 

reds and greenish blue for tritan dichromats, although with different 
values of saturation and brightness. For example, a deutan dichromat 
perceives a weakly saturated yellow as a moss green. The reduced 
chromatic range as perceived by dichromat people may lead to lack 
of discrimination between neighbor regions in an image, resulting in 
confusion about what is being seen in the image.

To mitigate this problem, we propose an approach that enhances 
contours between adjacent image regions, which are indistinguishable 
for dichromat individuals. The idea is to highlight the contours that 
separate contiguous regions represented with different colors, but seen 
as similar or identical by dichromat people.

Fig 3. Diagram of the contour enhancement algorithm (CEA).

This contour enhancement procedure is illustrated in Figs. 3 and 4, 
and comprises the following steps:

1. Generate the image as seen by (deutan and protan) dichromat 
individuals from the original image.

2. Apply a Gaussian blur filter to both original and dichromat images.
3. Convert both original and dichromat images to grayscale.
4. Compute contours in both original and dichromat images.
5. Highlight those contours of the original image that are absent in 

the respective dichromat image.

A. Dichromat Image Generation
Taking the original image as input data, the first step of our algorithm 

consists in generating the corresponding image as seen by a dichromat 
individual. This is accomplished using the simulation algorithm due to 
Vienot et al. [5].

Essentially, this algorithm comprises three steps: (i) the RGB LMS 
conversion [20] [21]; (ii) the dichromat simulation (e.g. deuteranope) 
in the LMS color space, as proposed by Vienot et al. [5]; (iii) the LMS-
RGB conversion. Each step is associated to a specific matrix, so the 
entire process reduces to a product of three matrices, resulting in the 
following overall matrix:

 (1)
Summing up, we generate the image as seen by a dichromat 

individual by multiplying the matrix M above by the vector [R G B]T 
associated to each pixel. This step may be adjusted to any sort of CVD 
using a distinct overall simulation matrix M.
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(a) Original image 

 

(b) Dichromat image 

(c) Blurred image 

 

(d) Dichromat blurred image 

(e) Grayscale image 

 

(f) Dichromat grayscale image 

(g) Contour image 

 

(h) Dichromat contour image 

(i) Original image with 
enhanced contours 

 

(j) Dichromat view of image 
with enhanced contours  

 Fig 4. The contour enhancement process applied to a hibiscus flower.

Interestingly, as shown in Figs. 4(a)-(b), a deutan dichromat person 
cannot see the hibiscus flower at all, because he/she cannot distinguish 
the green background from the red flower.

B. Gaussian Blur Filter
Both images, the original image and dichromat image, are subject to 

a noise reducing procedure through a Gaussian blur filter (see [22] for 

further details). This is a pre- processing step, and is performed using 
the Gaussian 3 × 3 kernel matrix:

 (2)
This matrix corresponds to a Gaussian kernel of width of 1. Recall 

that this sort of image-blurring filters is commonly used in image 
analysis and processing, particularly when they coupled with contour 
detectors, which are sensitive to noise.

C. Grayscale Conversion
The conversion to a grayscale representation is performed by 

computing the luminance of each pixel [23], in conformity with the 
following expression:

I = 0.2989 R + 0.5866 G + 0.1145 B (3)
where, R, G and B are color components of the pixel. This conversion 

is justified by the fact that the human eye can perceive brightness 
changes better than color changes [22]. This fact is not only valid for 
trichromat, but also for dichromat people. Figs. 4(e) and (f) show the 
images that result from converting the images in Figs. 4(c) and (d) to 
grayscale, respectively.

D. Contour Detection
The core of our method lies in the detection of contours of regions 

within the grayscale images of both original and dichromat images. Its 
leading idea is to identify contours (or part of them) in the grayscale 
original image that do not exist in grayscale dichromat image. This is 
illustrated in Figs. 4(e) and (f), where the contours of the flower are 
completely absent in the grayscale dichromat image (Fig. 4(f)). This is 
because a deutan dichromat individual cannot perceive the difference 
between the green background from the red flower at all.

Such contours are determined by applying the Sobel gradient masks 
in the x and y directions to each pixel [22]. As a result, we obtain two 
Sobelized images Gx and Gy in the x and y directions, respectively, 
which are then merged into a Sobelized image through the following 
expression:

 (4)
Note that this process must be applied to both grayscale counterparts 

(Figs. 4(e) and (f)) of the original image and dichromat image. The 
resulting images are shown in Figs. 4(g) and (h).

E. Contour Highlighting
The contour enhancement step in subtracting the contours of the 

grayscale dichromat image to those contours of the grayscale original 
image. In this way, we obtain the missing contours in the dichromat 
image, which are then highlighted with more or less luminance, 
depending on the current luminance of each pixel in the dichromat 
image, as illustrated in Figs. 4(i) and (j).

III. Results

To our best knowledge, CEA is the first contour-based color 
adaptation algorithm for CVD people. However, our testing was 
focused exclusively only on deutan and protan dichromat people, 
largely because their color perception is quite similar, in addition to 
the fact that deuteranopy and protanopy are the most common types of 
dichromacy we find in world male population.

A. Setup
Testing was performed using a 64-bit Microsoft Windows laptop 
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(a) (b) 

(c) (d) 
Fig 7. Recycling sign as seen by: (a) a trichromat individual; (b) a deutan 
dichromat person; (c) a trichromat person after CEA adaptation; (d) a deutan 
dichromat person after CEA adaptation.

(a) (b) 

(c) (d) 
Fig 6. Nameplate of danger as seen by: (a) a trichromat individual; (b) a deutan 
dichromat individual; (c) a trichromat individual after CEA adaptation; (d) a 
deutan dichromat individual after CEA adaptation.

(a) (b) 

(c) (d) 

Fig 5. Europe map: (a) original image as seen by a trichromat individual; (b) original image as seen by a deutan deuteranope individual; (c) image as seen by a 
trichromat individual after adaptation through the CEA method; (d) image as seen by a deutan deuteranope individual after adaptation through the CEA method.
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equipped with an Intel Core i7-4750HQ CPU 2.0GHz, with 8GB RAM. 
CEA algorithm and its competitors (Ching-Sabudin method [24] and 
Iaccarino et al.’s method [10]) were coded in Javascript programming 
language for HTML5 web compliant browsers, including Firefox and 
Chrome. Note that we also implemented in Javascript the Vienot et al.’s 
algorithm [5] which simulates how deuteranope people see colors, and 
yet an algorithm to count regions in images.

Those two competitor algorithms (Ching-Sabudin method and 
Iaccarino et al.’s method) were chosen because they also apply to 
deutan and protan dichromat people. Besides, these algorithms have 
the further advantage of their codes are publicly available.

In methodological terms, as explained further below, we used three 
metrics to evaluate the efficiency of CEA algorithm: perceived region 
rate (ρ), naturalness (ν), and contrast (C).

B. Perceived Region Rate
By definition, the perceived region rate (ρ) is the ratio of the number 

of regions (or objects) seen by the CVD individual to the number of 
regions as seen by a trichromat individual. For example, the image 
depicted in Fig. 7(a) has 7 regions seen by a trichromat individual, 
but the same image as seen by a deutan dichromat individual has only 
one region; therefore, the value of ρ = 1/7. That is, there are 6 out of 
7 regions that not seen by the deutan dichromat individual. But, after 
applying our CEA algorithm, every single deutan dichromat person 
could see those 6 unseen regions. This was accomplished without 
changing the color of pixels inside each region; only region contour 
pixels were changed where needed to avoid color confusion. This made 
it possible to distinguish between Spain and France in Fig. 5 along their 
common border.

Fig 8. Perceived region rate for five categories of images before (in blue) and 
after (in red) adaptation through CEA.

In Fig. 8, we show the overall results for perceived region rate in 
respect to a dataset of 100 images divided into five categories, namely: 
infovis (information visualization), indoor, outdoor, scivis (scientific 
visualization), and signage. Examples of these images are shown in 
Figs. 9-10 further ahead. As observed from Fig. 8, the perceived region 
rate of our algorithm has significant gains for infovis-, scivis-, and 
signage-type images, when compared to the corresponding images 
as seen by deutan and protan dichromats before adaptation. That is, 
these CVD people see more image regions after adaptation than before 
adaptation, resulting in an increasing of their visual perception.

C. Contrast
In the literature, there are various ways for contrast measuring of 

images. Our contrast metric C is based on Squared Laplacian [25], and 
is as follows:

 (5)
being G (x, y) given by:

 (6)
where I (x, y) is the value of the intensity of the pixel at position  

(x, y). W and H are the width and height of the image.
For the computation of the pixel intensity, we use the formula from 

Eq. 7, derived from by Poynton [23]:

 (7)
After applying the simulation algorithm for deuteranopes described 

in [5], the mean average value of the contrast of the original dataset 
as seen by deuteranope people was  = 0.0418. After applying our 
contour enhancement procedure, the average contrast increased to 

 = 0.054, representing a gain of 28.5%. In respect to Iaccarino et al.’s 
method [10], the average contrast for the same dataset of 100 images 
was  = 0.0417, so there was no gain in contrast. Finally, we obtained 
an average contrast of about 0.047 for Ching-Sabudin method [24], 
featuring an increase of 12.4% relative to the average contrast before 
the color adaptation process.

Notice that the contrast computation is achieved only after 
the deuteranope view simulation (which comes after the contour 
enhancement), since our goal is to improve the perception of images 
for deutan and protan dichromat people.

D. Naturalness
According to Flatla et al. [26], the color naturalness of an image can 

be expressed as follows:

 (8)
where W × H denotes the image resolution, Pi  is the color of the i-th 

pixel, and  is the color of this pixel after the color adaptation, while 
∆(Pi , ) denotes the color difference between Pi  and   in conformity 
with the CIE76 color-difference formula expressed in CIE Lab space 
coordinates given by

 (9)
where (Li, ai, bi) and ( , , ,) represent the Lab colors of Pi and 
, respectively. The smaller the value of ν, more natural is the re-

coloring procedure of each image.
Considering the reference dataset of 100 still images, we achieved 

an average value for the naturalness of about ν = 2.0 for deuteranope 
people. For the methods in comparison, Iaccarino et al. [10] and 
Ching and Sabudin [24], we got the naturalness scores of ν = 8.6 and  
ν = 20.76, respectively. These values are expectable, since our 
method only changes the contour pixels, not interior pixels of regions; 
Iacarinno’s et al.’s method changes colors to close colors, while Ching-
Sabudin method changes colors to far away colors. Summing up, CEA 
method outperforms those two competitor algorithms in respect to 
color naturalness maintenance.
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IV. Subjective Evaluation

To assess the CEA algorithm in the perceptual augmentation of 
CVD users, we carried a statistical study based on a questionnaire as 
described below.

A. The Universe of CVD People
The subjective evaluation involved 13 CVD male volunteers. 

Initially, they performed the D-15 Color Arrangement Test [27] for 
a more accurate characterization of the universe of CVD users. The 
following results were obtained: 2 people with strong protanomaly 
(ages 32 and 49), 1 person with moderate protanomaly (age 27), 5 
people with strong deuteranomaly (ages 49, 51, 57 and 69), 4 people 
with moderate deuteranomaly (ages 17, 21, 26 and 46), and 1 person 
with deuteranopy (age 35). In spite of the fact that the CEA algorithm 
has been designed for deuteranope and protanope people, we also 
considered deuteranomalous and protanomalous people in our study 
because of their high degree of CVD severity, i.e., they see in a similar 
way to deutan and protan dichromats [28].

B. The Questionnaire
Methodology
Unlike most color adaption usability studies based on questionnaires 

[11] [12], we have not adopted the Law of Comparative Judgment 
(LCJ) of L.L.Thurstone [29], because this law only allows us to 
compare two alternatives or algorithms. In our study, we compare 
four alternatives: the original image without color adaptation (WCA), 
Iaccarino et al.’s method [10], Ching-Sabudin method [24], and our 
CEA method. Consequently, we decided to use descriptive statistics 
techniques [30] [31], particularly the following metrics: arithmetic 
mean (x), standard deviation (σ), and coefficient of variation (υ = σ/ x), 
also called relative standard deviation. For each questionnaire image, 
those four alternatives are presented randomly to each CVD individual 
to not influence the choice of the respondents somehow.

Dataset of images
In our subjective evaluation study, we considered five categories 

of images (see Figs. 9 and 10): InfoVis, concerning visualization of 
information; Indoor, concerning indoor scenes, Outdoor, concerning 
outdoor scenes, SciVis, concerning scientific visualization; and 
Signage, concerning traffic and warning signs. More specifically, we 
selected six images by category, in a total of thirty images. Therefore, 
each CVD individual had to score thirty images times four alternatives 
in a total of thirty images. Therefore, each CVD individual had to 
score thirty images times four alternatives, in a total of 120 images; the 
scores were thus 1 (highest score), 2, 3, and 4 (lowest score).

It is worth noting that the dataset of images was selected in 
conformity with the principles of representativeness and diversity 
suggested by Shaffer and Zhang [31]) to reduce the sampling error and, 
consequently, getting a significant statistical confidence interval.

Implementation
For the implementation of the questionnaire available at http://cea.

ipcb.pt/, we used the Google Forms from the Google Docs application 
package to collect data from each CVD individual. Basically, the 
questionnaire consists of six web pages, one page per category of 
images. These images are disposed in the questionnaire in the same 
order as they are in Figs. 9 and 10.

In the questionnaire, each CVD volunteer expresses his/her satisfaction 
degree (or preference) by scoring the four alternatives of each image, 
regarding the discrimination of the contents (contrast) and naturalness. 
Scoring is performed using a (discrete) qualitative ordinal scale, from the 
more (highest score 1) to less (lowest score 4) preferred alternative. Note 
that this scoring scale is adequate up to five items [32] [33].

Validation
For the validation of the questionnaire, we benefited from the 

contribution of 2 statisticians and 2 CVD researchers. The statistics 
experts were important to adopt descriptive statistics techniques, 
as adequate for multiple options up to 5, as well as to design the 
questionnaire itself. In respect to CVD researchers, one of whom 
is also a dichromat individual, they played an important role in the 
formulation of the questions focused on color contrast and naturalness, 
as selected for the questionnaire.

C. Data Scoring and Collecting
Fig. 11 shows the raw quantitative results obtained from the 

questionnaire. These results express the CVD people’s preferences 
relative to five image categories depicted in Figs. 9 and 10, namely: 
InfoVis, Indoor, Outdoor, SciVis, and Signage. Recalling that we have 
6 images per category and a universe of 13 respondents, we see the data 
sample consists of 78 responses (= 6 × 13) per category; for example, 
considering the CEA method, the data sample for the SciVis category 
(see Fig. 11(d)), comprises 1 response with score 1, 16 responses with 
score 2, 22 responses with score 3, and 18 responses with score 4. 
Summing the number of responses for any other method, we always 
obtain 78 responses with the scores ranging in [1, 4]. Thus, the number 
of scores is equal to the number of methods under analysis.

D. Data Analysis
We based data analysis on two descriptive statistical tools: (i) box-

and-whisker diagrams (see Fig. 12); (ii) coefficient of variation (see 
Table I). Such diagrams and statistical data were produced from raw 
data presented in Fig. 11. The box-and-whisker diagrams constitute 
a visual tool that helps us to observe the distribution of preferences 
of CVD respondents radidly [34]. As its name says, a box-and-
whisker diagram has one box and two whiskers (see Fig. 12). The box 
represents the consensus of preferences and includes at least 50% of 
the preferences of each method. More specifically, such box represents 
the preferences of the second and third quartiles, which are put apart 
through the median (cf. horizontal straight-line segment inside the box. 
The arithmetic mean shows off as a cross inside the box.

On the other hand, the coefficient of variation (CV, for brevity) 
measures the dispersion/concentration of the distribution of such 
preferences [30], as shown in Table I. Recall that the coefficient of 
variation υ is given by the ratio x/σ, where x stands for the mean, and σ 
the standard deviation. Sometimes, the coefficient of variation is also 
called relative standard deviation.

Therefore, a brief glance at Figs. 11 and 12 and statistical data listed 
in Table I shows us the following:
• Infovis: When compared to other methods, CEA method is the 

one with the highest mean (2.67). Furthermore, it presents the 
lowest coefficient of variation (36%). So, in respect to infovis-type 
images, CEA method clearly performs better than any other testing 
method, including the WA approach.

• Indoor: Taking into consideration the diagram (b) in Fig. 12, we 
again see that both WA and CEA methods are clearly better than 
the other two methods, but their arithmetic means are similar, 3.04 
and 2.94, respectively. Despite its higher dispersion (31%) face to 
the CEA method (26%), the WA method tends to count with higher 
scores (31 out of 78 preferences with score 4) than CEA method. 
Therefore, the WA method ranks first for the indoor-type images.

• Outdoor: In respect to outdoor-type images, the WA alternative 
reaches the higher mean (3.06) and the smaller dispersion (29%), 
so it ranks first for the outdoor-type images. Thus, the best color 
adaptation method for outdoor-type images seems to be not using 
any recoloring procedure at all.
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:: InfoVis ::

Original Iacc. et al.  Ching-Sabudin    CEAOriginal Iacc. et al.     Ching-Sabudin    CEA

:: Indoor ::
Original Iacc. et al.  Ching-Sabudin    CEAOriginal Iacc. et al.  Ching-Sabudin    CEA

:: Outdoor ::
Original Iacc. et al.  Ching-Sabudin    CEAOriginal Iacc. et al.  Ching-Sabudin    CEA

Fig 9. Thumbnails of infovis-, indoor-, and outdoor-type images used in the usability test.
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:: SciVis ::
Original Iacc. et al.  Ching-Sabudin    CEAOriginal Iacc. et al.  Ching-Sabudin    CEA

:: Signage ::
Original Iacc. et al.  Ching-Sabudin    CEAOriginal Iacc. et al.  Ching-Sabudin    CEA

Fig 10. Thumbnails of scivis- and signage-type images used in the usability test.

 

     

 
 (a) (b) (c) (d) (e) 

Fig 11. Breakdown of the preference scores per category.
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• SciVis: Regarding scivis-type images, the best adaptation method 
is the CEA method, since it has the higher mean (2.96) and the 
smaller dispersion (27%), i.e., it is more consensual than any other 
method.

• Signage: Ching-Sabudin method ranks first in this image category 
because it has the higher mean (2.97), despite its high coefficient of 
variation (45%). In fact, the coefficient of variation is not relevant 
in this case because most scores (46 out of 78) accumulate at bin 4. 
Note that the CEA method is also a good solution for signage-type 
images because it also allows for the identification of unseen image 
regions, as shown in Fig. 8.

Summing up, CEA method seems to be better than WA method in 
three categories of images, namely infovis-, scivis- and signage-type 
images. Regarding indoor- and outdoor-type images, the best option is 
to leave them as they are, i.e., the WA method, according which there 
is no need performing any computational recoloring procedure. These 
results agree with those shown in Fig. 8.

Recalling that it is too difficult to find CVD people who could 
collaborate in the kind of studies, most of published works in this 
area carried out the assessment without the opinion of this audience, 
or involving only a group with a small number of people. However, 
this constitutes a limitation in the results achieved and in the drawn 
conclusions, as with our study.

TABLE I. Statistical Results

category metric WA Iaccarino 
et al.

Ching-
Sabudin CEA

InfoVis
x 2.51 2.49 2.36 2.67
σ 1.090 0.989 1.386 0.963
υ 43% 40% 59% 36%

Indoor
x 3.04 1.96 2.06 2.94
σ 0.946 1.038 1.231 0.779
υ 31% 53% 60% 26%

Outdoor
x 3.06 2.36 1.68 2.90
σ 0.873 0.911 1.211 0.906
υ 29% 39% 67% 31%

SciVis
x 2.87 2.04 2.15 2.96
σ 0.958 1.145 1.228 0.813
υ 33% 56% 57% 27%

Signage
x 2.04 2.53 2.97 2.46
σ 1.133 0.768 1.348 0.963
υ 56% 30% 45% 39%

Statistical metrics:
x: arithmetic mean; σ: standard deviation; υ: coefficient of variation.

V. Conclusions

In contrast to the state-of-the-art of the color adaptation methods, 
which use a pixel-wise recoloring procedure in an attempt of improving 
the color perception of deutan and protan dichromats, the focus of the 
CEA method is on the detection and highlighting of region contours 
where necessary, so the region interiors are left untouched. In other 

words, the CEA method is contour-wise recoloring procedure. Thus, 
the CEA method is a disruptive technique when compared to the 
current state-of-the-art of color adaptation methods. This opens new 
perspectives for a new family of color adaptation methods based on 
image analysis and processing.

In fact, to discriminate between confusing neighbor regions 
of a given image, we have introduced a contour highlighting or 
enhancement algorithm that increases the image contrast, while 
keeping the naturalness of image color, since there are no color changes 
in the region interiors and most contours do not need to be highlighted. 
Consequently, deutan and protan dichromats can see more images 
regions than usual, i.e., their image perception increases to a rate close 
to trichromats’ perception, but without disturbing their perceptual 
learning about the surrounding world.
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