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I. Introduction

THE quadratic assignment problem (QAP) is one of the known 
classical combinatorial optimization problems, in 1976 Sahni and 

Gonzalez [1] proved that the QAP belongs to the class of NP-hard 
problems [1]. It was introduced for the first time by Koopmans and 
Beckmann in 1957 [2]; its purpose is to assign n facilities to n fixed 
locations with a given flow matrix of facilities and distance matrix of 
locations in order to minimize the total assignment cost. This problem 
is applied in various fields such as hospital layout [3], scheduling 
parallel production lines [4] and analyzing chemical reactions for 
organic compounds [5].

Many recent hybrid approaches have improved performance in 
solving QAP such as genetic algorithm hybridized with tabu search 
method [6], ant colony optimization mixed with local search method 
[7] and ant colony optimization combined with genetic algorithm and 
local search method [8]. Recently the hybrid algorithms are much 
proposed and used by many researchers to find optimal or near optimal 
solutions for the QAP.

In this paper we propose a new competitive approach when 
compared with other existing methods in the literature. The golden ball 
algorithm mixed with simulated annealing (GBSA) is considered here 
as a hybrid metaheuristic to apply in the quadratic assignment problem. 

This work presents an efficient adaptation of GBSA algorithm to the 
quadratic assignment problem (QAP). This algorithm is based on the 
concept of soccer; it guides the search by simulated annealing [9] to 

escape from the local optima. The suggested technique has never been 
proposed or tested with QAP. In this research we use some small, medium 
and large test problems for comparing our approach to other recent 
methods from literature. Our approach is able to explore effectively the 
search space; it reaches the known optimal solutions in less time.

The rest of this paper is structured as follows: In section I, Introduction. 
In section II, Quadratic assignment problem formulation. In section III, 
Methods. In section IV, Results and discussion. In section V, Conclusion.

II. Quadratic Assignment Problem

The QAP [1] can be defined as a problem of assigning n facilities to 
n locations, with given flows between the facilities and given distances 
between the locations (Fig.1).

Fig. 1.  Quadratic Assignment Problem.
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The purpose is to assign the facilities to the locations in such a way 
that the total cost is minimized. Each facility must be placed just at one 
location.

We consider two n × n matrices, the flow matrix F=fij and the 
distance matrix D=dkl. The QAP formulation is given as follows (1):

minCost = ∑ ∑ fij dπ(i) π(j) 
   (1)

Sn is the set of all permutation of n elements {1, 2, …, n}.
π(i) and π(j)  are respectively locations of facilities i and j, we 

suppose that π(i)=k and π(j)=l.
fij dπ(i) π(j)  is the cost of assigning facility i in location k and facility j 

in location l.
The objective function (Cost) must be minimized.
Several algorithms are usually used to solve the quadratic assignment 

problem:
• Exact algorithms such as branch and bound algorithm [10] and 

branch and cut algorithm [11]. 
• Metaheuristics such as genetic algorithm [12],[13],[14], tabu 

search method [15],[16],[17], simulated annealing algorithm [9], 
ant colony optimization [18] and particle swarm optimization [19].

In recent year, metaheuristic algorithms are used in solving the QAP 
more than the exact algorithms which are unable to solve the hard 
instances of QAP in a reasonable time. Many researchers compared 
between different metaheuristic algorithms for solving the QAP [20], [21].

III. Methods

A. Golden Ball Metaheuristic
The GB technique is a metaheuristic proposed by E.Osaba et al. 

[22],[23]. It uses different principles of soccer to solve combinatorial 
optimization problems. The quality of this technique is demonstrated 
applying it to four combinatorial problems [23]: Asymmetric traveling 
salesman problem (ATSP) [24], Vehicle Routing Problem with Backhauls 
(VRPB) [25],[26], n-Queen Problem (NQP) [27], One-Dimensional Bin 
Packing Problem (BPP) [28].This algorithm is a promising metaheuristic 
to solve combinatorial optimization problems [23]. 

In Golden Ball algorithm, groups of solutions are considered as 
soccer teams which are composed of a fixed number of players, the 
captain of team plays the rule of the best solution of the group. Each 
team has a coach who determines the type of training to improve the 
efficiency of its team. There are two types of training: conventional 
training and custom training. As shown in Fig. 2, the concept of this 
method is based on four main phases: initialization phase, training 
phase, competition phase and transfer phase. 

In the initialization phase, we set the value of the number of teams 
(NT) and the number of players per team (PT). We assign randomly to 
each team a coach.

In the training phase, all teams must train by following a specific 
type of training. The conventional training is the daily training of a 
team. When a team becomes unable to improve its capacities, in this 
case, it must follow a custom training.

In the competition phase, each team must compete with other team 
chosen randomly. The winning team receives three points, in the case 
of equality; both teams receive one point. The accumulated points will 
be used to order the teams in descending order.

In the transfer phase, we detect three cases of transfer:
Season transfer: during the season, all teams must be sorted in the 

descending order according to the strength value.

Start
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& teams

Start of the season

Conventional /
Custom training

Season
finished

No
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Termination
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Transfer of players and 
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Fig. 2.  Flowchart of Golden Ball algorithm.

The strength value is calculated using the following formula (2): 

∑
 

 (2)
qij is the quality of player i of team j
All teams exchange their players in this way: the best player of the 

first team must be replaced by the worst player of the last team. This 
worst player will be replaced by this best player.

The best player of the second team must be replaced by the worst 
player of the penultimate team. This worst player will be replaced by 
this best player and so forth.

Special transfer: When a player of a given team is unable to improve 
after a custom training, the team must exchange it with a player of 
another team chosen randomly.

Cessation of coaches: after having ordered all the teams in 
descending order according to their accumulated point, the weaker 
teams must change their conventional training by another randomly 
selected.

The GB algorithm was tested by E.Osaba et al. with four different 
combinatorial optimization problems [23]. The same technique was 
applied on the flow shop scheduling problem [29] and the job shop 
scheduling problem [30].

B. Simulated Annealing Method
The simulated annealing algorithm [14] is inspired by the physical 

annealing process which attempt to improve the quality of the solid 
by using at the beginning a high temperature T0 at which the solid is 
in a liquid state. With the slow decrease of the temperature T (cooling 
phase) the solid regains its solid form (Fig. 3). Metropolis et al. show 
how to generate a sequence of successive states of the solid. The 
new state is accepted if the energy produced by this change of state 
decreases; otherwise, it is accepted with a probability defined by the 
following equation (3).
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= ∆ /( × ) (3)
  is Boltzmann constant

∆  is the energy difference produced by this change of state

 is the temperature of the solid
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Fig. 3.  Evolution of thermodynamic system.

The simulated annealing method [31] is one of the oldest algorithms; 
it is an iterative metaheuristic very used to solve combinatorial 
optimization problems in the continuous and discrete case. The strong 
point of this technique is to escape from the local minima and avoid 
the cyclic behavior. The performance of simulated annealing algorithm 
depends on a set of parameters which must be controlled. It means that 
the correct setting of the parameters produces satisfactory results.

IV. Adaptation of GBSA Algorithm

In the initialization phase we generate randomly the initial 
population of NT×PT solutions.

Each solution is represented in the following manner (Fig. 4):

Locations 2 7 4 5 6 3 9 8 1

Facilities i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9
Fig. 4.  Assign 9 facilities to 9 locations.

In the training phase, we used the following methods as conventional 
training functions:

2-opt [32], [33]: this iterative method is a local search algorithm, it 
repeatedly tries to improve the current assignment by exchanging two 
facilities.

Insertion method [34]: this method inserts a facility chosen randomly 
between two facilities.

Swapping mechanism [35]: this method swaps two parts selected 
randomly; the following figure (Fig. 5) explains the concept of this 
technique.

1 5 3 7 10 6 2 4 8 9

Pos1 Posk Pos2

1 7 10 6 2 4 5 3 8 9

Fig. 5.  Illustration of swapping mechanism.

As a custom training function the proposed adaptation used simulated 
annealing method [14],[31], it is used when the current solution is 
blocked in the local minima; it helps to accept some movement and 
escape from the local optimum.

Simulated annealing steps

S1:=Current solution
Generate a new solution based on the current solution. We used 
the swap of two random locations 

S2:=New solution
f(S1):= cost of S1
f(S2):= cost of S2
if ( f(S2)<f(S1))
 S1:=S2
Else
 Generate random number r in  [0,1)
 Calculate the value of p

= ( ( ) ( ))/( ) 

 If(r<p)
 S1:=S2
Decrease the temperature value
Repeat all steps until T= 0.

V. Results and Discussion

The program was run 10 times on different instances of QAPLIB 
[36]. The GBSA algorithm was implemented in C language and 
compiled using Microsoft Visual Studio 2008, the program code was 
executed in computer with Genuine Intel( R ) 575 @ 2.00 GHz 2.00 
GHz RAM 2,00 Go. 

The program uses three parameters: NT (number of groups), PT 
(number of schedules per group) and T (temperature). 

The parameters values in the table below (Table I) produce better 
results during the algorithm run.

4×5 random solutions are sufficient to obtain good results.

TABLE I. Parameters values

NT 4
PT 5
T 40

At the high temperature, the simulated annealing method becomes 
unnecessary because proximally 50% of iterations accept decision at 
the high temperature [37]. In this paper we fixed the high temperature 
at 40 which is considered a symptom of fever in humans.

Table II represents the following information: 
Optimal: Best known Solution 

Best: Best permutation 

NBest: The number of runs in which the algorithm reaches the best 
permutation 

Worst: The worst permutation 

Average: The average cost (= the sum of solutions cost obtained 
divided by 10)

The relative percentage deviation from the best known solution is 
calculated as follows (4):

RPD =  
Average − Optimal

Optimal
 × 100 % 

 (4)
Time: Best time per seconds
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TABLE II. Numerical Results of the GBSA Algorithm

Instance Optimal Best Nbest Worst Average %RPD Time 
Bur26a 5426670 5426670 10 5426670 5426670,00 0,00 0
Bur26b 3817852 3817852 10 3817852 3817852,00 0,00 0
Bur26c 5426795 5426795 10 5426795 5426795,00 0,00 1
Bur26d 3821225 3821225 10 3821225 3821225,00 0,00 2
Bur26e 5386879 5386879 10 5386879 5386879,00 0,00 1
Bur26f 3782044 3782044 10 3782044 3782044,00 0,00 1
Bur26g 10117172 10117172 10 10117172 10117172,00 0,00 0
Bur26h 7098658 7098658 10 7098658 7098658,00 0,00 1
Chr12a 9552 9552 10 9552 9552,00 0,00 0
Chr12b 9742 9742 10 9742 9742,00 0,00 0
Chr12c 11156 11156 10 11156 11156,00 0,00 0
Chr15a 9896 9896 10 9896 9896,00 0,00 0
Esc16a 68 68 10 68 68,00 0,00 0
Esc16b 292 292 10 292 292,00 0,00 0
Esc16c 160 160 10 160 160,00 0,00 0
Esc16d 16 16 10 16 16,00 0,00 0
Esc16e 28 28 10 28 28,00 0,00 0
Esc16f 0 0 10 0 0,00 0,00 0
Esc16g 26 26 10 26 26,00 0,00 0
Esc16h 996 996 10 996 996,00 0,00 0
Esc16i 14 14 10 14 14,00 0,00 0
Esc16j 8 8 10 8 8,00 0,00 0
Esc32a 130 136 01 140 139,40 7,23 240
Esc32b 168 168 10 168 168,00 0,00 0
Esc32c 642 642 10 642 642,00 0,00 0
Esc32d 200 200 10 200 200,00 0,00 0
Esc32e 2 2 10 2 2,00 0,00 0
Esc32g 6 6 10 6 6,00 0,00 0
Esc32h 438 438 10 438 438,00 0,00 0
Esc64a 116 116 10 116 116,00 0,00 0
Esc128 64 64 10 64 64,00 0,00 65
Had12 1652 1652 10 1652 1652,00 0,00 0
Had14 2724 2724 10 2724 2724,00 0,00 0
Had16 3720 3720 10 3720 3720,00 0,00 0
Had18 5358 5358 10 5358 5358,00 0,00 1
Had20 6922 6922 10 6922 6922,00 0,00 0
Nug12 578 578 10 578 578,00 0,00 0
Nug14 1014 1014 10 1014 1014,00 0,00 0
Nug15 1150 1150 10 1150 1150,00 0,00 0
Nug16a 1610 1610 10 1610 1610,00 0,00 0
Nug16b 1240 1240 10 1240 1240,00 0,00 0
Nug17 1732 1732 10 1732 1732,00 0,00 0
Nug18 1930 1930 10 1930 1930,00 0,00 0
Nug20 2570 2570 10 2570 2570,00 0,00 0
Rou12 235528 235528 10 235528 235528,00 0,00 0
Rou15 354210 354210 10 354210 354210,00 0,00 0
Rou20 725522 725522 08 725582 725534,00 0,00 1
Scr12 31410 31410 10 31410 31410,00 0,00 0
Scr15 51140 51140 10 51140 51140,00 0,00 0
Scr20 110030 110030 10 110030 110030,00 0,00 3
Sko42 15812 15880 01 16036 15969,00 0,99 240
Sko49 23386 23582 01 23736 23652,40 1,13 240
Tai12a 224416 224416 10 224416 224416,00 0,00 0
Tai15a 388214 388214 10 388214 388214,00 0,00 0
Tai15b 51765268 51765268 10 51765268 51765268,00 0,00 0
Tai17a 491812 491812 10 491812 491812,00 0,00 0
Tai20a 703482 703482 05 713260 706128,90 0,37 32
Tai20b 122455319 122455319 10 122455319 122455319,00 0,00 1
Tai25a 1167256 1181326 01 1193120 1187990,60 1,77 240
Tai30a 1818146 1841180 01 1867650 1858562,80 2,22 240
Tail40a 3139370 3215360 01 3251200 3233951,20 3,01 240
Tail50a 4938796 5084020 01 5143598 5113257,40 3,53 240
Tho30 149936 150578 01 151742 151189,20 0,83 240
Tho40 240516 243362 01 246172 244773,00 1,76 240
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The program stops when the optimal solution is reached or when 
the execution time exceeds 240 seconds. We take two digits after the 
comma, for the results shown in the two columns: Average and the 
Relative Percentage Deviation %RPD.

As Table II shows, the proposed algorithm allows to obtain always 
the optimal solution of 81,25% of the instances tested in a time not 
exceeding three seconds. The %RPD of 93,75% of the instances 
does not exceed 2% and this clearly shows that the GBSA algorithm 
converges well to the optimal solution. According to the values shown 
in the Table II, when the value of %RPD is equal to 0.00%, this means 
that the program reaches exactly the optimal solution at least 8 times 
per 10 tests and in this case the best and the worst solution are often 
the same.

Abd El-Nasser  et  al. [38] presented a comparative study between 
Meta-heuristic algorithms: Genetic Algorithm (GA), Tabu Search 
(TS), and Simulated annealing (SA) for solving a real-life (QAP) and 
analyze their performance in terms of both runtime efficiency and 
solution quality [38].

The Fig. 6 compares the relative percentage deviation of some 
instances of QALIB for our proposed algorithm GBSA, GA, TS and SA. 
The result shows that GBSA has more quality than the other algorithms 
for solving the QAP. We can deduce that our proposed method has 
really improved SA’s effectiveness in solving these instances which we 
have chosen as an example for our comparative study.

There exist two sets of problems in QAPLIB that represent a 
challenge for any proposed algorithm. These problems were introduced 
by Skorin-Kapov [39] and Taillard [40].

We selected 9 instances from Skorin-Kapov and 7 instances from 
Taillard. For this list of QAPLIB instances, we compared our proposed 
method with others recent methods such as: Memetic algorithm (BMA) 
[41], Breakout local search (BLS) [42] and Cooperative parallel tabu 
search algorithm (CPTS) [43]. The list of instances shown in Table III 
is a challenge for our algorithm.

We have fixed the maximum execution time of GBSA algorithm at 
4 minutes. As the results depict (Table III), the GBSA algorithm needs 
some improvement to better solve some hard instances of QAP. But in 

general, the proposed algorithm seems promising to solve the quadratic 
assignment problem. According to the values of the relative percentage 
deviation from the best known solution, GBSA algorithm produces 
results near the global optimum in a reasonable time.

VI. Conclusion

The GBSA algorithm is the result of the hybridization of two 
methods: golden ball metaheuristic and simulated annealing method. 
This new hybrid algorithm is based on soccer concepts; it incorporates 
and guides simulated Annealing technique to escape from the local 
minima and to find the global optimal solution. This method has 
never been proposed or tested on QAPLIB instances. In this work we 
proposed an adaptation of our strategy to solve the QAP. The numerical 
results indicate the efficiency of the proposed GBSA adaptation and its 
performance compared to algorithms in literature of QAP. As a result, 
we deduce that our proposed approach has a high convergence speed. 

TABLE III. Comparison of GBSA Algorithm with Algorithms in the Literature of the QAP

GBSA BMA BLS CPTS

Instance BKS %RPD Time (m) %RPD Time (m) %RPD Time (m) %RPD Time (m)

Sko72 66256 0,543 4.0 0.000 3.5 0.000 4.1 0.000 69.6

Sko81 90998 0,481 4.0 0.000 4.3 0.000 13.9 0.000 121.4

Sko90 115534 0,614 4.0 0.000 15.3 0.000 16.6 0.000 193.7

Sko100a 152002 0,539 4.0 0.000 22.3 0.001 20.8 0.000 304.8

Sko100b 153890 0,679 4.0 0.000 6.5 0.000 10.8 0.000 309.6

Sko100c 147862 0,396 4.0 0.000 12.0 0.000 15.5 0.000 316.1

Sko100d 149576 0,760 4.0 0.006 20.9 0.001 38.9 0.000 309.8

Sko100e 149150 0,528 4.0 0.000 11.9 0.000 42.5 0.000 309.1

Sko100f 149036 0,704 4.0 0.000 23.0 0.000 17.3 0.003 310.3

Tai40a 3139370 3,012 4.0 0.059 8.1 0.022 38.9 0.148 3.5

Tai50a 4938796 3,532 4.0 0.131 42.0 0.157 45.1 0.440 10.3

Tai60a 7205962 2,870 4.0 0.144 67.5 0.251 47.9 0.476 26.4

Tai80a 13499184 2,965 4.0 0.426 65.8 0.517 47.3 0.691 94.8

Tai100a 21052466 2,771 4.0 0.405 44.1 0.430 39.0 0.589 261.2

Tai50b 458821517 0,285 4.0 0.000 1.2 0.000 2.8 0.000 13.8

Tai60b 608215054 0,147 4.0 0.000 5.2 0.000 5.6 0.000 30.4

Fig. 6.  %RDP of some instances for GBSA, GA, TS and SA algorithms.
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Moreover, we need to ameliorate this technique even more for some 
hard QAPLIB instances. Finally, we plan to apply the GBSA algorithm 
to TSP and compare it with Random-keys Golden Ball algorithm [44]. 
We plan also to propose a new hybridization such as mixing Golden 
Ball algorithm with Tabu Search method.
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