
Regular Issue

- 17 -

* Corresponding author.
E-mail address: pekka.siirtola@oulu.fi

DOI:  10.9781/ijimai.2018.12.001

I. Introduction

HUMAN activity recognition is a field of science where classification 
methods are applied to inertial sensor data to recognize human 

activities. Some early preliminary activity recognition studies had 
already been done in the 1990’s (such as [1, 2]) but [3] can be considered 
as the first proper inertial sensor -based activity recognition article. It 
concentrated on recognizing daily activities using accelerometers, and 
how clothes could be made aware of context.

Our human activity recognition article “Recognizing human 
activities user-independently on smartphones based on accelerometer 
data” [4] was published in IJIMAI in 2012. For the study, a daily activity 
data set were collected from eight healthy subjects. The trousers’ front 
pocket was fixed as the phone placement, but the subject was allowed 
to determine whether the phone was placed in the left or right pocket. 
The participants performed five different activities: walking, running, 
cycling, driving a car, and idling, that is, sitting/standing. The total 
amount of the data collected was about four hours. These activities 
were selected for the study because normal everyday life consists 
mainly of these five activities.

Study used a window length of 7.5 seconds, and altogether 42 features 
were extracted from windows. These included for instance standard 
deviation, mean, minimum, maximum, five different percentiles (10, 
25, 50, 75, and 90), and a sum and square sum of observations above/
below certain percentile (5, 10, 25, 75, 90, and 95). The classification 
was obtained using a two stage procedure. In the first classification stage, 
a model was trained to decide if the studied subject was active (walking, 
running or cycling) or inactive (driving a car or idling). In the second 
stage, the exact activity label was obtained, and therefore, one model was 
trained to classify an active activity as walking, running or cycling, and 
the other to classify an inactive activity as idling or driving.

The models were trained offline using the collected daily activity 
data set. In addition, these models were implemented to smartphones 
(Symbian^3- and Android-phones) and also used in online tests. To 
compare different classifiers, the classification was performed using 
two different classification methods, kNN (k nearest neighbours) and 
QDA (quadratic discriminant analysis). The most descriptive features 
for each model were selected using a sequential forward selection 
(SFS). QDA classifiers for offline and online recognition were trained 
using the whole training data set, similar to kNN classifier for the 
offline recognition. However, because of the limited computational 
power of the smartphone, the activity recognition on the device using 
kNN was performed using only a limited number of randomly chosen 
instances from training data.

The offline recognition results show that the method enables 
accurate results. Each activity is recognized with high accuracy. The 
average classification accuracy using QDA was 95.4% and using kNN, 
94.5%.

For the online experiments, the application for real-time 
classification was tested by seven persons carrying Nokia N8 
smartphone in their trousers’ front pocket. In addition, classification on 
Android device was tested by five subjects, again, carrying the phone 
on their trousers’ front pocket. Based on the experiences gathered using 
Nokia phones, only QDA classifier was implemented to Android-
phone. The online recognition rates were almost identical to offline 
results. On a device running Symbian^3 operating system the average 
classification accuracy using QDA was 96.2% and using kNN, 94.1%, 
and on Android phone the recognition accuracy using QDA was 94.5%.

The article showed that user-independent activity recognition 
works reliably and operating system independently. In fact, it was one 
of the first articles showing that human activities can be recognized 
reliably in real-time in real-life conditions using smartphone hardware 
and smartphone sensors. The article got immediately a positive 
reception from the research community, and so far, according to 
Google Scholar, it has been cited 146 times making it the most cited 
article ever published in IJIMAI (numbers checked 14.11.2018). In 
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addition, it was selected as the most outstanding article published in 
the 10 years of IJIMAI life. In addition, it was a key part of Dr. P. 
Siirtola’s Doctoral thesis “Recognizing human activities based on 
wearable inertial measurements: methods and applications” [5] which 
was published in 2014. This article introduces how the field of human 
activity recognition and recognition based on wearable sensor data has 
changed, and especially, how the research of the authors of [1] has 
progressed since 2012.

II. Ready-To-Use Activity Recognition

A sequel to [4] was presented in “Ready-to-Use Activity Recognition 
for Smartphones” [6]. It extended the work by introducing body-position 
independent human activity recognition method. This means that while 
in [4] the phone position was fixed as trousers’ pocket, in [6] there 
was more options as the phone position. In fact, a data set containing 
data from five body positions (trousers’ front pocket, jacket’s pocket, 
at backpack, at brachium, and at the ear) were gathered for this study. 
The participants performed five different activities: walking, running, 
cycling, driving a car, and sitting/standing. However, there is no data 
from each activity from each body position. For instance, subjects were 
not allowed to cycle while holding a phone at the ear because of safety 
issues. Moreover, data were collected when a phone was laying on the 
table. Therefore, six activities were recognized. The total amount of the 
data collected was about fifteen hours.

A 3D accelerometer is a sensor consisting of three accelerometers 
that are approximately perpendicular to each other. However, as a side 
results, it was noted in the article that in reality, in each phone these 
sensors are aligned a bit differently due to manufacturing differences. 
Because of this difference, accelerometer values from different phones 
are at a different level, and this leads to differences in measured values 
and, eventually, misclassifications. On the other hand, it was noted that 
despite the differences in sensor values, the shapes of the signals are 
approximately the same but absolute values differ by some constant. 
This difference is normally fixed by using automated or user-driven 
calibration. However, because the difference in the signal level is the 
only major difference caused by different calibration, in our study, 
differences were eliminated simply by subtracting the mean of the 
window’s values from each value of the window. This way, calibration 
differences can be eliminated already in the feature extraction phase 
and automated or user-driven calibration was not needed.

For the model training, 19 features were extracted from magnitude 
signal and from the signals combining two out of three acceleration 
channels after calibration differences were eliminated, so together 76 
features were extracted and models for offline and online experiments 
were trained using these. QDA was decided to be used as a classifier, 
and in order to achieve the highest possible recognition rates, the most 
descriptive features for each model were selected using SFS method. 
Moreover, to obtain reliable user-independent results, the training was 
performed using the leave-one-out method, so that each person’s data 
in turn was used for testing and the rest of the data were employed for 
model training.

Offline experiments showed that using the presented method, it was 
possible to recognize activities with a high accuracy user-independently. 
In addition, all the activities were detected almost perfectly from each 
body-position. Moreover, hardware variations between phones was not 
an issue: training data was collected using five different smartphones 
and activities from each phone were detected reliably.

Again, online experiments were performed using phones running 
two different operating systems, Symbian^3 and Android. Online 
recognition accuracies were also high, however, not as high as offline 
recognition results. The difference between recognition rates of online 
and offline scenarios was most likely caused by real-life situations from 

which there was no training data. Moreover, it was not only noted that 
recognition can be done body position –independently without caring 
hardware differences, it was also noted that mobile application was 
light. In fact, Symbian^3 -version of the application used only around 
15% of CPU capacity of the Nokia N8, and thus, the application did 
not eat too much battery.

III. Towards Personalized Activity Recognition Models

The main weakness of articles [4] and [6] was that they were based 
on user-independent models. When dealing with data collected from 
humans, the challenge is that people are different: they are unique for 
instance in terms of physical characteristics, health state or gender. All 
of these affect to the inertial data that are measured. In fact, it is shown 
that user-independent models do not work accurately for instance if 
they are trained with healthy study subjects and tested with subjects 
who have difficulties to move [7]. One more challenge is real-life, 
real-time conditions. It has been shown that when models that work 
in laboratory conditions are used in real-life conditions outside the 
laboratory, the results can be far from excellent [8]. In such cases, 
the recognition model is not general enough, and therefore, it cannot 
react to the changing and unseen conditions. It is especially relevant to 
overcome problems arising from real world conditions when the aim is 
to build a model that is used outside laboratory. In fact, non-stationary 
environments are considered one of the modern machine learning’s 
greatest challenges [9]. Therefore, to be able to use models in real 
life problems, model used in the recognition process should be non-
stationary instead of stationary. Moreover, because of problems related 
to different types of people, the focus of research should be on personal 
and personalized prediction models instead of user-independent 
models. However, the challenge of personal and personalized models 
is that they require personal training data. This normally would require 
an extensive, separate data collection session for each user.

A. From User-Independent to Personal Human Activity 
Recognition Models Using Smartphone Sensors

One method to obtain personalized recognition models without 
user-interruption was presented in [10]. The study presented a method 
for smartphones to obtain light weight personalized human activity 
recognition models unobtrusively by using the sensors of a smartphone. 
The proposed method consisted of four phases:

1. In the first phase, sensor fusion-based recognition model is 
trained and used to recognize activities from the streaming data. 
To maximize the recognition rate of this model, it is trained 
using a large number of features and these features can be based 
on more than one type of sensors of a smartphone (for instance 
accelerometers, GPS values, gyroscopes, and magnetometers).

2. When classifying streaming data using sensor fusion-based user-
independent model, it can be assumed that recognition process 
is reliable leading to reliable classification results. Therefore, by 
combining these recognition results, and using them as labels, 
and the data related to them, a personal training data set can be 
gathered without user-interruption.

3. When personal data from each of the recognized activities is 
available, a new user-dependent recognition model can be trained. 
In order to make this personal recognition model light, only a 
small number of features extracted from a one sensor are used to 
train the model.

4. Streaming data can then be classified using a computationally 
efficient, single sensor-based user-dependent model.

The data used in the study was the same as the one used in [6], 
but in this case both accelerometer and magnetometer data was used. 
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Therefore, the user-independent model used in phase 1 was trained 
using features extracted from both accelerometer and magnetometer 
signals, and personal user-dependent model trained in phase 3 was 
trained using accelerometer reading only, making it more energy 
efficient than user-independent model.

Experiments were done with LDA (linear discriminant analysis), 
and QDA classifiers, and the experiments showed that the presented 
method improved classification accuracy when compared to traditional 
user-independent model. In fact, the recognition accuracy improved in 
nine tested cases out of ten, on average the improvement varied from 
3 to 4 %-units.

B. Personalizing Human Activity Recognition Models Using 
Incremental Learning

Using the approach presented in [10], recognition accuracy can 
be improved but the problem of the approach is that personalization 
is based on model re-training. Therefore, in order to build personal 
recognition models, all the streaming data needs to be kept stored. 
This is problematic as it requires a lot memory, and model re-training 
requires a lot calculation capacity.

Incremental learning refers to recognition methods that can learn 
from online information and adapt to new environments. The advantage 
of incremental learning is that this adaptation can be done without model 
re-training and user-interruption. Instead, the idea is that models can be 
updated, instead of re-training, automatically based on streaming data 
[11]. Therefore, in the case of human activity recognition, incremental 
learning can not only be used to adapt to new environments, but also 
to data of new unseen person to build personalized recognition models.

Our method to personalize human activity recognition models 
using incremental learning was presented in [12]. In fact, our study 
does not only show that personalization based on incremental learning 
improves the recognition rates compared to results of user-independent 
model, it also compares three base classifiers:  LDA, QDA and CART 
(classification and regression tree).

The experiments were made using publicly open data set [13]. This 
data contains data from seven physical activities (walking, sitting, 
standing, jogging, biking, walking upstairs and downstairs). Data set 
contains measurements from 10 study subjects. However, only nine 
persons data were used in the experiments, as apparently one of the 
study subjects had placed sensor in different orientation than others 
making the data totally different to other subjects’ data. In fact, because 
of this problem, and other problems that can be found from publicly 
open datasets [14], in 2018 we introduced OpenHAR [15] which is a 
MATLAB toolbox to provide easy access to 10 publicly open human 
activity datasets.

In [12], incremental learning was based on Learn++ algorithm [16]. 
Learn++ is an ensemble method where the idea is to process incoming 
streaming data not as single values but instead as chunks. For each 
chunk, a new group of weak base models are trained and combined to 
a group of previously trained base models through weighted majority 
voting as ensemble model [17]. The following idea was used in our 
study to personalize models: in the first place, user-independent 
models were trained and added to ensemble. When streaming data 
from a new unseen person were obtained, ensemble model was used 
to label this new data. This data and predicted labels can then be used 
to train personal recognition models which can be added to ensemble. 
This means that instead of re-training the whole recognition model, 
personalized models can be obtained by updating the existing model 
by adding new base models to ensemble. Therefore, once the new 
base models were added to ensemble, the data used to train these base 
models were no longer needed, and it can be erased from the memory. 
This makes the approach very efficient computationally. Moreover, 
every time a new base model was added to ensemble, the model 

becomes more personal, and simultaneously this continuous learning 
also enables a solution to adapt to new environments and unseen 
situations. However, problem with the data chunks used to personalize 
the recognition process was that they were small. Thus, they did not 
contain much variation leading easily to over-fitted models. To avoid 
over-fitting, noise injection method we presented in [18] was applied 
to training data sets to increase the size of training data and increase 
its variation.

According to the experiments shown in [12], in most cases 
personalization reduces the average error rate: when new base models 
were added to Learn++, error rates decreased. In fact, the improvement 
was significant: QDA and CART improved results in 7 cases out of 
9 and LDA with all study subjects. With CART the average error 
rate dropped from 18.0% to 15.7% (13.1% improvement), with LDA 
from 14.1% to 9.5% (33.1% improvement), and with QDA from 
11.1% to 9.1% (17.9% improvement). Comparison was made to user-
independent model. Therefore, while the average error rate using 
QDA was the smallest, the biggest benefit from personalization can be 
achieved when LDA was used as a base classifier.

IV. Using Human Activity Recognition Methods In 
Health Applications

Back in 2012, most of the activity recognition studies were based 
on inertial sensor data, as devices did not normally include any other 
sensors. However, nowadays the situation is different. For instance, 
wrist-worn Empatica E4 device includes not only inertial sensor, but 
also thermometer, electrodermal activity sensor, which is used to 
measure galvanic skin response, and photoplethysmography sensor, 
which can measure blood volume pulse, heart rate, and heart rate 
variability. This has opened new research possibilities, and nowadays, 
similar methods that were used to train human activity recognition 
models can be used to train models for health and medical application.

In [19] we used data collected using Empatica E4 to early detection 
of migraine attacks. Data was collected from seven volunteer study 
subjects. Five of them were women and two were men, and the age 
of the study subjects varied from 30 to 60 years. They had different 
types of migraines, for instance five of them had aura symptoms, 
while two did not have. Moreover, most of them did not use preventive 
medication. However, all of them used medication during the migraine 
attacks. All of the study subjects had migraine attacks quite often. 
In fact, this was a criterion for joining the study as it helped the data 
gathering process. Frequent attacks enabled a shorter data collection 
period, which ensured that data consisted of several migraine attacks 
for every study subject. Data gathering session was long; study subjects 
wore Empatica E4 on their non-dominant hand approximately 27 days. 
Altogether, data set included 200 days of data.

When data was pre-processed, it was noted that the quality of signals 
was not good during the daytime due to physical activity which caused 
disturbances to signals. Due to this problem, only sleep time data was 
used in the study. Moreover, sleep time data were divided into two 
classes: (1) nights before a day without a migraine attack and (2) nights 
before a day with a migraine attack, and therefore, class (2) contains 
information and measured values about the pre-ictal stage of a migraine 
attack. The idea behind this approach is to inform the user after he/she 
wakes up in the morning if he/she will have a migraine attack that day, 
and therefore, user can take predictive medication if needed.

Similar to human activity recognition studies, features were extracted 
from sleep time data by considering one night as one window. Altogether, 
110 features were extracted from sleep data, these included for instance 
standard deviation, mean, max, min, different percentiles from each 
signal, as well as correlations between different signals. However, the 
problem was that though the data set was extensive, 27 nights of data per 
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study subject, considering one night as one window compressed the data 
set so much that reliable models cannot be built based on it. Moreover, 
the data set was imbalanced, set includes only a few nights of data from 
class (2), and most of the data were from class (1). 

In order to increase the number of observations, it was decided to not 
base the recognition on the features extracted from each night. Instead, 
we used the differences between nights as features. Differences were 
calculated so that (1) nights before a migraine attack were compared 
to nights before a day without a migraine, and (2) nights before a day 
without a migraine were compared with each other. This approach 
increased the number of data significantly: before this procedure, data 
set had 200 samples (data from 200 nights), while after applying this 
approach, the number of observations was 2265. In addition, to avoid 
over-fitting the number of observations were increased using our noise 
injection presented in [18].

Experiments were again made using LDA and QDA classifiers. The 
results showed that migraine attacks cannot be detected beforehand 
using user-independent model. However, the results using personal 
models were encouraging: balanced accuracy for detecting attacks one 
night prior was 70% using LDA, and as high as 84% using QDA. While 
the average detection rate using QDA was high, the results also show 
that balance accuracy varies greatly between study subjects (from 60% 
to 95%), which shows how complicated the problem actually is. In fact, 
the future work is to determine reasons for this variation. For instance, 
it is possible that some migraine types are more difficult to predict than 
others are, or it is possible that our data set was not comprehensive 
enough to build reliable models for different study subjects.

V. Conclusion

A lot has happened in the field of human activity recognition using 
wearable sensors since 2012 when our article “Recognizing human 
activities user-independently on smartphones based on accelerometer 
data” was published in IJIMAI. Our article was one of the first articles 
where human activity recognition was done in real-time on smartphone 
using smartphone’s own sensors. Therefore, it had its own small role in 
shaping the field as it is now.

While the field has developed, also our research has progressed 
and diversified: we have moved from stationary recognition models to 
models that enable continuous life-long learning, from user-dependent 
models to personalized models, and from movement recognition to more 
comprehensively measuring humans, which enables understanding 
what is happening inside human body.

The future of human activity recognition, and especially, recognition 
based on data from wearable sensors, looks interesting. Wearable 
devices and their market develop rapidly, and new sensors are introduced 
to devices which enables new types of applications. Moreover, market 
development enables bigger user tests for researchers, and more 
business opportunities for application developers.
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