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Abstract: This paper presents a tool for dynamic forecasting of Network-Enabled Servers perfor-
mance. FAST (Fast Agent’s System Timer) is a software package allowing client applications to get
an accurate forecast of communication and computation times and memory use in a heterogeneous
environment. It relies on low level software packages, i.e., network and host monitoring tools, and
some of our developments in computation routines modeling. The FAST internals and user interface
are presented and a comparison between the execution time predicted by FAST and the measured time
of complex matrix multiplication executed on an heterogeneous platform is given.
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Prédiction dynamique de performance pour des serveurs de calcul
dans un environement de metacomputing

Résumé : Cet article présente un outil pour la prédiction dynamique de performances dans un
environnement de type Client-Agent-Serveurs. La bibliothéque FAST (Fast Agent’s System Timer)
permet aux applications clientes de prédire les besoins en temps d’exécution et de communication,
ainsi qu’en espace mémoire de sous-programmes dans un environnement hétérogéne. Elle est basée
sur des logiciels existants de plus bas niveau pour la surveillance du réseau et des machines et sur
des développements propres portant sur la modélisation des routines. Le fonctionnement du systéme
et son interface sont présentés, ainsi qu'une comparaison entre le temps prédit par FAST et le temps
mesuré pour une multiplication de matrices complexes exécutée sur une plate-forme hétérogéne.

Mots-clé : Prédiction de performances, Modélisation de calcul, Surveillance de ressources, Environe-
ment hétérogéne, Client- Agent-Serveurs.
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1 Introduction

One of the main goals of computer systems is to provide more computational power to scientists. To
achieve this goal, after trying to design bigger and bigger computers (until 9000 Pentiums for one of the
ASCI machines), we now aggregate smaller machines into clusters. A new trend, called metacomputing
(or grid computing) [4, 5, 9], consists in trying to use world wide available computers with more or less
transparency. This is the promise of a huge computational power because most of interactive machines
are under-used. Moreover, computations could be performed on the most appropriate computer. More
ambitious projects aim at building a system considering the whole Internet as a metacomputer. But
such solutions are difficult to achieve while keeping a good efficiency. Users would be able to use com-
putational power distributed across the world as easily as electrical power to form the Computational
Grid. In [9], Foster and Kesselman give a classification of grid applications. In this paper, we will
focus on On-demand Computing applications, and more particularly on numerical Network-Enabled
Servers (NES). These tools allow users to automatically (and sometimes transparently) access remote
hardware and software resources [7, 8, 12| through computational servers. One client submits a prob-
lem to an agent which has information about each server. The agent is supposed to return the address
of the most appropriate server to the client, according to parameters such as its capacity to solve the
problem, both in terms of performance and software availability, and the speed of the communication
link between the client and the server. Then the client sends its data to the server which in turn
computes and sends back the result to the client. The agent is thus one the most important entities
because it is where all scheduling and placement decisions are taken.

Collecting knowledge about available servers at runtime is a very important problem. Indeed,
in a metacomputing context, we deal with hierarchical networks of heterogeneous computers which
furthermore have hierarchical memories. Even if software packages exist to acquire the informations
needed about both computer and network using monitoring techniques [14], they often use a flat and
homogeneous view of the system, which is clearly not the case of our heterogeneous target platforms.
So we have to model computation routines in relation to the computer which will execute them.

In this paper, we describe FAST, a Fast Agent’s System Timer, which is designed to handle these
important issues. It allows an agent (or every other software entity that needs this kind of information)
to get informations about heterogeneous servers, networks, and computational routines. In Section 2,
we present more precisely the problem by giving two motivating examples. In Section 3, we give an
overview of existing software packages for performance forecasting. In Section 4, the architecture and
internals of FAST are described, and before concluding, experimental results are given in Section 5.

2 Motivating Examples and Problem Presentation

The main problem in heterogeneous Client-Agent-Servers systems is a scheduling one. We need to find
the most appropriate server for a set of computations and the most appropriate mapping according to
communication links. In this section, we present two motivating examples to illustrate these issues.
We consider the average completion time as a quality criterion.

We assume that we can not easily aggregate several servers to solve one problem, which is generally
the case for Network-Enabled Servers. Let consider three geographically distant servers, and two
matrices A and B. Because of previous computations, A is located on the first server and B on the
second one. Now if we want to compute A * B, there are three solutions. We can move B to server 1
and then compute, move A to server 2 and compute, or finally move A and B to server 3 and compute.
If the communication and computation times are those given in Figure 1(top), the final execution costs
are the ones shown in Figure 1(bottom). We can see that even if the third solution is not the most
natural one, this is the one that will lead to the faster execution.

The quality of the schedule, and thus the performance of the whole system, depends on the accuracy
of the communication and computation times forecasts. They depend on several parameters, which
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Figure 1: Motivating example.

can be splitted into three main categories. First, we have the computer parameters such as CPU
speed, memory size, and use of a batch system. Then, we have the network parameters, like topology,
bandwidth and latency for every link. For all these parameters, both static (theoretical) and dynamic
(measured) values have to be obtained. Finally, there are computational parameters relative to a given
problem which depend on the architecture of the target machine, the size of the input data and the
software package used to solve the problem.

For the second example, the heterogeneous platform considered is composed of a client connected
to two servers. If we want compute a complex matrix multiplication, it is important to have a good
knowledge of communication times to move data across the platform. Indeed, if the link between client
and servers is fast (resp. slow) and the one between servers is slow (resp. fast), we have to minimize
data transfers on the slowest link.

Figure 2(a) gives the formulation of the computation that we want to execute. One server will
compute C, and the other will compute C;. All data are initially located on the client. To execute this
computation, we have two options, shown respectivelly in Figure 2(b) and (c). Either we send both
matrices A and B to servers, or we send only one matrix to each server, and then, servers exchange
data to continue the computation. In both cases, results are sent back to the client.

The purpose of the FAST library is to allow the user to access as fast as possible the most accurate
estimations of these parameters to obtain better scheduling results.

3 Related Work

3.1 Network Weather Service (NWS)

The Network Weather Service (NWS) [14] is a project initiated at the University of California San Diego
and now located at the University of Tennessee Knoxville. It is a distributed system that periodically
monitors and dynamically forecast performance of various network and computational resources. It
is used by many grid projects like AppLeS [3], Globus [10], NetSolve [7], and Ninf [12]. NWS can
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Figure 2: Complex matrix multiplication formulation (a). Computation without communication be-
tween servers (b). Computation with data exchange between servers (c).

monitor several resources including communications links, CPU, and memory. For any communication
link between two points, NWS gives the bandwidth and latency. Concerning the CPU availability,
NWS gives two kind of information: calls to top or vmstat commands give the CPU load implied by
the existing jobs, and NWS is also able to guess the percentage of the CPU power that can be expected
by an incoming process at given priority level. Moreover, NWS is not only able to get measurements,
it can also forecast the evolution of the monitored system, using basic statistic functions like average
or median.

3.2 Bricks and Ninf

Bricks [1] is a tool developed to simulate a computational grid, using tools like NWS, to compare
scheduling algorithms and software. Bricks has been developed for Ninf [12] which is a Network-Enabled
Servers environment. Ninf uses Bricks for the evaluation of performance of grid based applications.
This work is close to our developments, because the simulation of the grid implies to have a model of
it. In this model, everything is seen as a queue. A communication link between two hosts is a queue
which processing speed is the bandwidth. A server is a queue where incoming tasks are enqueued and
processed in a FCFS way. A task is modeled by two values: the number of operations needed, and the
amount of data transfer it implies.

We see two main problems to this approach. First, it lacks of accuracy because the amount of
flops that can be obtained from the same machine is not constant. For example, on modern pipelined
processors, level-3 BLAS are more efficient than level-2 or level-1 BLAS because of memory hierarchies
and dual operations. Then, such a tool needs a lot of computation at runtime and does not seem well
suited for an interactive tool.

3.3 Remote Computation Service (RCS)

RCS [2] is a RPC system to unify the interface to remote resources. It has its own NWS-like monitor,
communication layer and modeling methods. But the monitor lacks some important features like
forecasting and non-intrusive CPU monitoring. The communication layers are implemented on top of
PVM.

The model of routines provided by RCS is based on source code analysis to determine the com-
putation complexity of each routine. For example, the result the LAPACK LU factorization function
is %n3 — %nQ + %n where n is the size of the matrix. But this is only the theoretical complexity of
the LAPACK LU routine. Even if this formulation is asymptotically true, it does not take the com-
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puter architecture into account, therefore loosing accuracy for medium range values. Indeed, between
two versions of the same routine, a generic and a vendor optimized one, performance is affected by a
significant multiplicative factor.

4 FAST Architecture and Internals

In this section, we detail the different parts of FAST. Then, we present the interface between FAST

and client applications.
__ Client Application '

. Knowsabout
: C:)g&tﬂt; o : @ FAST @ - Knowsabout
} : : Computer

® Available memory: 35 | | e StaUs (up/dowr)
| N.et?/vagr:lr(] e . FAST API . - eCPU load
© eBandwidth ‘ ‘ ) R '\B"ﬂogaioad

® | atency 717 Static Data Dynamic Data ;g N.etwotlfk *

® Topology : Acquisition Acquisition " e Bandwidth
. ®Protocol : : ] :
© Computations > T — . elaency
! eFeasibility
. eNeeded space ||
. eNeededtime LDAP NWS

Low Level Software

Figure 3: Overview of the FAST architecture.

As shown in Figure 3, FAST is composed of two main modules offering an user API: the static
data acquisition module and the dynamic data acquisition module. The former models the time and
space needs of a computation on a given machine for a given set of parameters, while the later forecast
the behavior of dynamically changing resources, e.g., workload or bandwidth. The system relies on
low level software packages. First, a database system is used to store the static data. The Lightweight
Directory Access Protocol (LDAP) [11] was chosen because it can be distributed over the system and
for its performance for reading or searching data. Furthermore, LDAP is widely used in the grid
community. Then, the dynamic data are acquired from a network and host monitoring software. As
NWS can monitor both network and host, we chose it for the beta version of our tool. But, FAST
is not tightly linked to these two software packages. If they are not available, FAST could include
mechanisms and interfaces to acquire dynamic data and store static data from and to more basic tools.
This would imply a lost of accuracy but a gain of portability.

In the next two sections, we present the main modules of FAST. We also give an idea of what kind
of routines FAST uses to interact with low level software packages.

4.1 Static Data Acquisition

This module is one of the main contributions of FAST. Its goal is to predict the time and space needs
of routines. We see several approaches, depending on the type of routine that has to be evaluated.
Some routines can be easily measured. This kind of routines are usually sequential and highly
optimized for the processor, as the matrix-matrix product routine dgemm() from the level 3 BLAS
library. FEach computer hardware vendor ships this library optimized for its material or at least
automatically tuned version are available like ATLAS [13]. This is why it is not always possible to
study the source code to compute manually its time and space complexity. In this case, we benchmark
the routine in time and space, fit the resulting data by a polynomial regression, and store the result in
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a LDAP tree. This phase can be time-consuming, but it has only to be done once when a new server
registers to an agent. Furthermore, it is of course possible to share the results between all identical
machines or clusters.

Some other routines can not be evaluated experimentaly as easily, but are simpler to study. For
example, the parallel matrix-matrix product routine pdgemm from the SCALAPACK library is based
on the concurrent execution of dgemm on sub-matrices. In [6], the authors show that timing of such
functions are harder to evaluate because many parameters have to be taken into account (such as
data distribution or the shape of the processor grid). For these routines, FAST allows to specify the
computation time by a complex expression that aggregates the computation time of other routines
(obtained with the first method) to communication time of the parallel version of the algorithm given
by a careful evaluation of the algorithms.

Finally, there is a last kind of routines that are much difficult to deal with because their performance
depend on characteristics which are hard to extract (like the shape of the matrices involved or the values
of their elements). It is often the case of sparse matrix operations. The processing of such routines in
FAST is an open problem, and will need further work. Two approaches seem possible. First, we can
simulate the resolution of the problem without actually compute it, or of course we can choose the
most powerful machine that can solve the problem without trying to predict its execution time.

4.2 Dynamic Data Acquisition

This module can acquire measured values at runtime. We developed a set of routines based on NWS,
even if other similar libraries could also be used. For every pair of machines in the system, we are able
to report the bandwidth and the latency, and for each computer, we can give the workload and the
free available memory at a given time. This module allows FAST to get the network values between
two machines even if there is no direct NWS monitoring between them. FAST searches automatically
for the shortest path between these two machines in the graph of monitored links. In this case, the
estimated bandwidth is the minimum of those in the given path. For the latency, we take the sum of
the different latencies.

Queries to NWS can be time consuming because the client requests are sent to the forecaster. This
component contact the name server to locate the memory server. Then, it can ask for the data needed
to this memory server, compute its forecast and send it back to FAST. For example, as there is only
one active test every two minutes on a TCP link, it is useless to send the request to NWS each time.
That’s why we implemented a cache of queries to NWS to speed up the response time of FAST. If a
given query has been sent twice to FAST in less that 10 seconds, the data in the cache are sent back
to the client. Ten seconds is the default interval between two CPU tests.

4.3 Interface between FAST and Client Applications

We designed a very simple APT to combine the static and dynamic data acquired by the system and to
produce values which can be directly used by a client application. Indeed, only a few values are needed
in a scheduling context: the time needed for the computation on a given host, if its space needs can be
fulfilled on this host, and the time needed to transfer the data from their location to the host on which
the computation will be done. This is the reason why there are only four functions in the API. First,
the fast_comm_time(data_desc, source, dest) function gives the communication time to transfer
the data described by data_desc from the host source to the host dest, taking the current network
characteristics into account. Then, the fast_comp_time(host, problem, data_desc) function gives
an estimation of the time needed to execute the routine problem on the given host for the parameters
data_desc, taking into account both the theoretical performance of this host for this problem, and
the actual load of the host. The fast_comp_size(host, problem, data_desc) function gives, for
the same arguments, the memory space needed by the routine. Finally, the fast_get_time(host,
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Figure 4: Comparison between FAST forecasts and actual computation time for one operation.

problem, data_desc, localizations) function aggregates the results of others functions and fore-
cast the time needed to execute the given problem on host for the data described by data_desc,
taking into account the prior localizations of data and the time to get them on host. This function
returns —1 if the computation is impossible, for example if there is not enough memory available.

With this API, the pseudo-code corresponding to the example of Figure 1 would be to choose the
server s minimizing the expression:

get_time(s,"MatMult",{{"A",dense,M,N}, {"B",dense,N,K}},{"s1","s2"})

where s can be either s, so, or s3.

5 Experimental Results

To validate our approach, we conducted experiments to evaluate the accuracy of FAST forecasts. We
wanted to show if FAST was able to forecast accurately the time and space need of basic matrix
operations and if it was possible to combine these forecasted values to estimate the time need of a
sequence of operations.

As we wanted to evaluate FAST’s accuracy and not its impact on scheduling performances, the test
bed used was heterogeneous, but relatively simple. We used the two machines: Pizies, a PII desktop
computer with 128 Mb of memory, and Kwad, a server doted of 4 PIII processors, each with one Mb
of cache, and 256 Mb of memory for the system.

5.1 Quality of the data fitting

For each host, we used FAST to forecast the time and space needs of some matrix operations and
we compared the obtained values to the measured ones (not taking in account the actual load of the
resources). The used operations where the matrix multiplication using the dgemm function of the BLAS
library and matrix addition using a simple double loop.

Figure 4(a) shows the time values on both hosts for dgemm while Figure 4(b) shows the result for
the plus operation. FAST used a polynomial function of maximal order 4 in the first case and 6 in
the second case. In all cases, the error is negligible. The error is about 1% in most case, and bigger
when the estimated times becomes too small (less than one second). In this case, the relative error is
very big (up to 700%), but the absolute error is then smaller than 0.1 second. Given the coarse grain
of target applications, this is not seen as critical. Theses errors when the measured times are very
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small seem to come from the use of the getrusage(2) function to measure CPU timing, which have a
resolution of 0.01 second.

Concerning space needs, FAST succeeded to find a polynomial function estimating almost perfectly
the data (maximal error smaller than 0.1%). This is because the size used by a program performing a
matrix multiplication is a constant term for its code size, plus the size of allocated matrices, which is
obviously a polynomial function.

5.2 Using FAST for a sequence of operations

On Client:
e Send A,, A; and B, to Server 1 ;
e Send A,, A; and B; to Server 2.
On Server 1: On Server 2:

e C, =A, XB,; o C,=A; xB;;

e Cj, =A; X By ; e C;, =A, xB;;

e Send Cj, to Server 2 ; e Send Cy, to Server 1 ;
.Cr:Orl_Cm; .Ci:Ci1+Ci2;

e Send C to the Client. e Send Cj to the Client.

Figure 5: Complex matrices multiplication algorithm.

Then, we evaluated the ability of FAST to forecast the needs of a sequence of operations which
could possibly be done in parallel, taking in account the load of the resources. The example chosen is
the complex matrices multiplication because it can be easily done in parallel on two hosts (as shown
on Figure 2), and because it combines basic matrix operations such as multiplication and addition.

The test-bed was composed of the same two machines Pizies and Kwad. The LDAP server, the
NWS name, memory and forecast servers and the client were all located on Pizies while the two agents
were on separate nodes of Kwad.

We implemented the complex matrices multiplication following the algorithm described in Figure 5,
and compared the observed execution time to the combination of FAST forecast of each individual
operation composing the sequence.

Figure 6 shows the result of this experiment. Even if the system had to deal with the errors of
both static and dynamic data acquisition, cumulated on each operation, FAST managed to forecast
the time of the sequence with an accuracy of 23% in the worst case and about 10% in average, which
is a reasonable result given the facts that the operation is composed of several steps and the platform
is heterogeneous.

6 Conclusion and Future Work

In this paper, we presented FAST, a tool for performance forecasting in the scope of Client-Agent-
Servers systems. After giving a motivating example of the need of accurate models of both com-
munications and computations and the related issues, we have presented some related work in this
domain. We then presented the internals of FAST, and the software packages it relies on (like NWS)
to monitor host and network resources. We also developed a benchmarking tool coupled with an data
fitting method to accurately model computation routines. We presented some experiments, showing
that FAST models very accurately simple operations, and that time of operation sequences can be
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Figure 6: Comparison between FAST forecasts and actual computation time for a complex matrix
multiplication.

forecasted with an error lower than 23% in the worst case and about 10% in average by combining the
obtained values.

In the current version of FAST, only the matrix multiplication and addition operation were tested.
So as a first future work, we would like to model other numerical operations such as other BLAS
or LAPACK routines and their parallel counterparts. We also plan to develop other FAST client
applications into numerical interactive environments such as Matlab or Scilab. Then, we would like
to give the ability to FAST to use other networks than TCP, like myrinet or VIA. Finally, we have
contacts with the NWS and NetSolve teams to achieve a better integration of our programs. We are
of course interested by other grid applications that need accurate performance estimations.
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