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I. Introduction

SINCE the turn of the Century, researchers have been studying 
clustering methods and comparing them from different perspectives. 

These algorithms were the core of an emerging data mining discipline, 
which would soon explode along with the popularity of big data 
approaches in all fields. And when these ideas were applied to digital 
education, the field of Learning Analytics was born.

But the core of these approaches is still the use of adequate clustering 
algorithms for each scenario, and this problem has received a fair share 
of attention. Berkhin contrasted theoretically different algorithms 
[1], and indicated how to perform the most typical evaluations, data 
preparation and measurements. In [2], the authors studied 216 articles 
written between 2000 and 2011, classifying the literature in three 
axes (knowledge types, analysis types, and architecture types) and 
exploring the different context where such techniques may be used. 
Remarkably, the study highlighted the potential applications of data 
mining techniques in social sciences, psychology, cognitive sciences 
and human behavior, which is very relevant for this specific work. 
In turn, other studies such as [3] provided solid grounds for defining 
and scoping clustering,  discussing aspects such as variable selection 
and similarity measurements, and provided a theoretical foundation 
of grouping methods and applications. Other authors have studied the 
theoretical limitations and potential pitfalls of these techniques [4].

All in all, the theoretical foundation of clustering algorithms is solid 
and has been the object of detailed studies. In terms of experimental 
analysis, we can find publications as early as in the 80s. In [5] the 

author proposed specific analysis methods, and also studied the 
performance impact of different perturbations. In [6] the authors 
compared five grouping algorithms and used four different supervised 
automatic learning algorithms to analyze their performance. In [7] 
three algorithms were measured with four cluster validation indexes, 
using synthetic and real datasets. Other relevant works have conducted 
formal tests to determine the most appropriate data mining algorithms 
for specific fields such as classification [8] or text mining from RSS 
sources [9]. However, few experimental studies focused on analyzing 
performance using specifically educational datasets.

In turn, Learning Analytics (LA) research ranges from theoretical 
essays on the potential impact of LA in education [10] to very focused 
studies on how it is useful for establishing personalized feedback to 
improve academic performance [11]. There are also works proposing 
dynamic models for data analysis of educational datasets [12] or 
proposing the use of different statistical algorithms to rank academic 
performance [13]. Regarding the evolution of the state of the art, 
different works have studied stakeholders, benefits and challenges 
[14]-[15] or differentiated types of educational settings, tasks and 
outputs [16]. Other authors have studied specific quality indicators 
to assess the impact of LA in education [17] or studied in depth the 
foundations of LA in terms of data mining techniques [18]. All these 
efforts can be characterized for their use of clustering algorithms as 
an analysis technique, which is the focus of this work, but typically 
focus on one or two algorithms at most, or just in the educational and 
social implications, rather than focusing specifically in experimental 
comparison of the performance of different algorithms when applied 
in educational settings.

And while the challenges of small-scale and relatively clean 
educational datasets lie mostly on how to identify the best visualizations 
or practical uses of the data, the emergence of open education formats 
is yielding increasingly complex and noisy datasets, imposing non-
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trivial burdens on the data mining algorithms applied to make sense of 
how students are interacting with these open materials.

At the crossroads of these lines of research, our goal is to contribute 
experimental validation of the performance of different clustering 
techniques when specifically applied to educational datasets, thus 
providing a more solid foundation for further works focusing on 
practical aspects rather than back-office performance.

To achieve this goal, we have conducted a practical experiment 
using a real-world dataset provided by Universidad Mariana in 
Colombia, benchmarking different algorithms and configurations in 
terms of internal validations and stability measurements.

II. Materials and Methods

The experimental design is quite straightforward. We started with a 
literature review to select a representative set of clustering algorithms. 
Then, we organized a workflow for testing each algorithm and selected 
specific measurements for comparison, and finally we applied this 
workflow to all algorithms targeting an educational dataset provided 
by Universidad Mariana. This section details each of these steps.

A. Selecting the Algorithms to Be Benchmarked
The specific selection of algorithms was conducted after performing 

a literature review, with a heavy influence of related works from other 
fields ([1], [4], [16]) and trying to provide a wide perspective of the 
potential approaches.

The final selection of algorithms is summarized in Table I.

B. Experimental Platform
We employed different platforms and tools to create our experimental 

pipeline. We started with raw and cross-referenced data available on 
an Oracle 10g database server. We extracted different listings and 
used Microsoft Excel to review, perform basic cleaning (including 
anonymization) and saving as CSV (comma-separated values) files.

All statistical analyses and clustering algorithms were applied 
using the opensource platform R, for which we created our test scripts 
using the R Studio graphical interface. The platform was also used to 
create the different visualizations that helped in this study and that 

are included in this article. In Table II we provide a summary of the 
different libraries that we used for the experiment.

C. Benchmarking Performance
In order to benchmark the performance of each algorithm, we 

focused on the facilities provided by the clValid library presented in  
[19] to measure internal and stability validations.

Internal validations are computed using intrinsic information from 
the datasets to assess the quality of the resulting clusters. We used the 
three main internal validation measurements offered by the validation 
library: connectivity (which provides a value in the [0, ∞) range where 
lower is better), silhouette width (which proves values in the (-1,1) 
range where higher is better), and Dunn index (which provides a value 
in the [0, ∞) range where higher is better).

In terms of stability measurement, we again selected the main 
measures from [19], all of them focused on inspecting each cluster 
and sequentially removing internal columns and checking whether 
the cluster remains valid. We employed APN (average proportion of 
non-overlap), AD (average distance between measurements), ADM 
(average distance between means) and FOM (figure of merit, focused 
on the average intra-cluster variance of the observations). All of them 
take values in the [0, ∞) range where higher is better except APN, with 
values in the [0,1] range with preferred results close to zero.

TABLE I. Algorithm Selection

NAME Description

K-means
It builds the clusters with similarity measure, each cluster is 
represented by a centroid, which is the average of its elements. It 
works only with numerical data and its affected by outliers [1].

CLARA
It builds the clusters without all the data, instead, sample them 
at random and then the centers are calculated with the PAM 
algorithm. It works with numerical data [1].

PAM

It is a robust version of K-means. The process of grouping 
is done through the search of a sequence of objects called 
medoids. Its main characteristic is the reduction of the average 
dissimilarity of the observations to its nearest observation [1].

FANNY It calculates the clustering in a diffuse way in a number K 
clusters.

Hierarchical

It uses previous clusters to form the new clusters. It’s of two 
types: divisive (top-down) and agglomerative (bottom-up). 
It can be applied with any type of variables and it is not 
necessary to establish a priori the number of clusters to be 
formed. It is sensitive to noise and outliers.

AGNES Hierarchical algorithm of agglomerative type, it uses the 
Euclidean distance as similarity measure.

DIANA Hierarchical algorithm of divisive type, it uses the Euclidean 
distance as similarity measure.

TABLE II. R Libraries

Library Description

cluster
It allows clustering analysis by implementing hierarchical 
and partition algorithms. Details in: https://cran.r-project.
org/web/packages/cluster/index.html

ggplot2
It builds visualizations using the information of the 
data meaning. Details in: https://cran.r-project.org/web/
packages/ggplot2/index.html

factoextra

It offers different easy-to-use functions to extract and 
visualize the results of multivariate analyzes, it simplifies 
clustering analysis and its graphical representations. 
Details in: https://cran.r-project.org/web/packages/
factoextra/index.html

readr
It provides fast and friendly mechanisms to read files in 
csv, tsv and fwf formats. Details in: https://cran.r-project.
org/web/packages/readr/index.html

RColorBrewer
It provides color schemes to be used with various types of 
graphic representations. Details in: https://cran.r-project.
org/web/packages/RColorBrewer/index.html

gplots It offers several tools to draw processed data. Details in: 
https://cran.r-project.org/web/packages/gplots/index.html

d3heatmap

It creates interactive heat maps that can be viewed in 
different environments such as R console and R studio. 
Details in: https://cran.r-project.org/web/packages/
d3heatmap/index.html

stats
It offers different statistical functions for data analysis. 
Details in: https://stat.ethz.ch/R-manual/R-devel/library/
stats/html/00Index.html

NbClust

It provides 30 indexes to determine the optimal number of 
clusters in a dataset and it offers the best clustering scheme 
of different results. Details in: https://cran.r-project.org/
web/packages/NbClust/

clValid
It provides functions to evaluate clustering results in 
biological and statistical way. Details in: https://cran.r-
project.org/web/packages/clValid/index.html

pvclust
It is an implementation of bootstrap resampling to evaluate 
the uncertainty in hierarchical clustering. Details in: 
https://cran.r-project.org/web/packages/pvclust/index.html
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D. Preparing the Dataset
One particularity of Learning Analytics approaches is the focus on 

inspecting academic data generated at specific institutions for specific 
courses, since comparisons across platforms, institutions and even 
individual courses may be challenging due to significant differences 
in usage patterns [10]

We therefore chose to focus on a specific student profile within the 
host institution: Computer Engineering students enrolled in the first 
semester with the 2010-2016 timeframe (7 years).

The datasets were constructed with the main measurement of the 
average grade of all courses in the semester. The data was extracted 
from the host University’s database system, using specific queries and 
basic data management (e.g. transposing) to create rows representing 
each specific student’s aggregated data. 

The scripts were also prepared to provide anonymization when 
required and removed non-essential personal data (e.g. personal 
addresses or phone numbers).

All the relevant R scripts as well as the dataset can be downloaded 
from https://goo.gl/oNHm2R.

III. Results

A. Pre-processing
The first step in our test pipeline was the conduction of relatively 

simple cleanup tasks, mostly focused on removing instances 
where some grades were missing (this may happen either due to an 
administrative issue or an error in the grade reporting system). 

After this step, we analyzed for each variable different comparison 
statistics, averaging their maximum, minimum, average and mean 
values. We determined that their standard deviation and variances were 
minimal, therefore making it possible to work directly with the original 
data without requiring a previous normalization.

We also analyzed the dataset to validate its clusterability, using two 
approaches: first, we used the Hopkins statistic method from [20], with 
a resulting value of 0.2036606 (<0.5) which shows that the values 
are potentially groupable. We also validated this notion visually, by 
representing the tendency of the data to be grouped. This is achieved 
by (1) calculating the dissimilarities between all datapoints and storing 
them in a dissimilarity matrix according to their Euclidean distances, 
(2) sorting the matrix so that similar objects are closer together and (3) 
displaying the matrix to check the presence of high values along the 
diagonal of the matrix (Fig. 1).

Fig. 1.  Data clustering trend where we can observe dark blue rectangles 
aligned with the diagonal line, which can be interpreted as a potential 
clustering amenability of the data.

Therefore, we could ascertain the adequacy of our dataset for the 
goals of our experiment.

B. Optimal K Value
In order to determine the optimal number of clusters, we again used 

to separate and complementary methods. The first approach we used 
employed the gap stastic [21] targeting the K-means algorithm with 
a maximum value of K=10 and 10,000 Monte Carlo samples. The 
result can be observed in Fig. 2, yielding a proposal for one single 
cluster (or rather hinting that the data was not prone to clustering), 
although applying the 1-standard error criterion K=5 may also be a 
valid candidate.

Fig. 2.  Optimal K presented by the gap statistic.

Given this partially unsatisfactory result, we also looked at the 
nbClust R package, which analyses 30 separate indexed to determine 
the optimal K. We ran this analysis for values of K in the [2,10] range, 
with full clustering and all indexes included. As observed in Fig. 3, this 
yielded an optimal number of clusters of K=3.

Fig. 3.  Optimal K reported by nbClust.

C. Algorithm Execution with Optimal K Value
All seven algorithms were run on the data using K=3 in order to 

study their behavior and performance. 
Regarding the set of partition algorithms, Fig. 4a shows the 

dispersion and cluster charts produce by the K-means, CLARA and 
PAM algorithms (all three produced the same output), while Fig. 
4b shows the results for the FANNY algorithm, which displayed a 
significantly worse performance. 

These results were validated through a silhouette inspection, which 
measures the adequacy of each observation for each cluster representing 
the average distance between groups. Fig. 5 shows the results of these 
inspections. The K-means, CLARA and PAM algorithms yielded an 
average silhouette width of 0.55 while the FANNY algorithm yielded 
0.29. This indicates a good result for the first three algorithms, while 
the FANNY algorithm even had a cluster with negative average width, 
representing a large number of incorrectly assigned instances.
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Fig. 4 a. Cluster plot for K-means, CLARA and PAM algorithms. All three 
yielded the same result. 

Fig. 4 b.  Cluster plot for the FANNY algorithm.

Fig. 5 a. Clusters silhouette plot for the K-means, CLARA and PAM 
algorithms. All observations are >0 with an average of 0.55. 

Fig. 5 b. Clusters silhouette plot for the FANNY algorithm. In cluster 2 (cyan 
color) there are negative values. 

We took the same approach for our selection of hierarchical 
algorithms. Fig. 6 show the cluster plots for the hierarchical and 
AGNES algorithms (which were equal) and for the DIANA algorithm 
(which presented issues with one of the clusters).

Fig. 6 a.  Cluster plot for the hierarchical and AGNES algorithms. Both yielded 
the same result. 

Fig. 6 b.  Cluster plot for the DIANA algorithm.

Similarly to the other family, the clusters yielded by the hierarchical 
variants were validated through silhouette inspection, using a different 
visualization due to concerns with the very small cluster yielded by the 
DIANA algorithm. 

The silhouettes can be observed in Fig. 7. The first two algorithms 
yielded the same result while, remarkably, the DIANA algorithm had 
produced three clusters, all with positive silhouette values, meaning 
that all values are well assigned, even if the value for cluster #3 (the 
small blue one in Fig. 6b) is relatively low (0.27) although the overall 
value is 0.54, very close to the other two algorithms.

Fig. 7 a.  Clusters silhouette plot for the hierarchical and AGNES algorithms. 
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Fig. 7 b.   Clusters silhouette plot for the DIANA algorithm.

D. Algorithm Execution Doubling the Optimal K Value
While the previous observations already present some interesting 

insights, the decision of going with a specific K value was a concern, 
especially given that one of our tests suggested potential gains for 
relatively high K values.

We therefore repeated the process using a higher value, K=6 
(doubling the previous value) in order to check both the consistency of 
the previous results and the effect of increasing K in general.

In Fig. 8 we can observe the performance of the clustering 
algorithms once we double the K value. FANNY basically maintains 
the same average (and poor) performance for K=3 and K=6, while the 
other algorithms actually decreased their performance, yielding small 
but significant errors in most cases. In this sense, PAM and CLARA 
took a significant performance hit, with 11 and 10 wrongly classified 
observations respectively. In turn, the classic K-means algorithm 
presented four negative values after increasing the K value.

Fig. 8 a.  Clusters silhouette plot for K-means with K=6.

Fig. 8 b.  Cluster silhouette plot for CLARA with K=6.

Fig. 8 c.  Cluster silhouette plot for PAM with K=6.

Regarding hierarchical algorithms, their cluster silhouette plots (Fig. 
9) show that the hierarchical and AGNES algorithms still show the 
same behavior but doubling the K value impacted their performance 
negatively. Not only they assigned more instances incorrectly, but they 
also reduced the average silhouette value from 54% to 24%. In turn, the 
DIANA algorithm also took a performance hit, but did not experience 
any incorrect classifications.

Fig. 9 a.  Cluster silhouette plot for hierarchical with K=6.

Fig. 9 b. Cluster silhouette plot for AGNES with K=6.

Fig. 9 c.  Cluster silhouette plot for DIANA with K=6.
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E. Internal Validation and Stability Measurement
As stated in previous section, in order to assess the performance 

of the different algorithms we performed a comparison using internal 
validation and stability measurements. Fig. 10 displays the R output 
with all the internal validation scores for our selection of algorithms, 
for varying K values from 3 to 6, while Fig. 11 displays the output for 
stability scores.

Fig. 10. Internal validation scores for all algorithms.

Fig. 11.  Stability scores for all algorithms.

Regarding partition algorithms, for K=3, K-means, CLARA and 
PAM tie as the best performers, due to their lower connectivity score 
(5.7167), best silhouette coefficient (0.5549) and best Dunn index 
(0.3721). However, this tie disappeared when we increased K values, 
with K-means maintaining better performance while CLARA and 
PAM quickly degraded their numbers. In turn, the FANNY algorithm 
yields no output given its inability to generate measurable clusters. In 
terms of stability, PAM achieved the best score with K=6 for AD and 
FOM measurements, and also performed excellently with ADM with 
K=3. K-means achieved the best APN score with K=6.

Focusing on hierarchical algorithms, hierarchical achieved the best 
connectivity and Dunn scores for K=3 and K=5 respectively, while 
DIANA achieved the best score in terms of correct instance assignments 
when K=4. In terms of stability scores, hierarchical again displays the 
best scores for K=3 and K=5 for APN and ADM measurements, while 
DIANA achieves optimal values for AD and FOM when K=6.

IV. Discussion

One of the most relevant (although reasonably expected) 
observations is that no algorithm is a clear and obvious winner across 
all measurements and potential K values.

In terms of internal validation, K-means, CLARA and PAM 
achieved the best overall scores with K=3, although CLARA and PAM 
experienced a worst degradation as the K value increased. However, 
the hierarchical and AGENS algorithms also achieve very significant 
Dunn scores when K=4. 

If we focus on K=3 (our selected optimal value), the worst 
performers in connectivity were the three hierarchical algorithms, 
although they achieved better Dunn index scores. However, they also 
presented more incorrect assignments, and therefore can be considered 
worst performers overall.

However, as we increased the K value, partition algorithms degraded 
their performance quickly, while hierarchical algorithms remained 
more stable and actually improved some scores.

In terms of stability, again there is no single algorithm that achieves 
the best score in all four measurements. PAM exhibited good AP and 
FOM behavior at K=6, hierarchical achieved very good APN with K=5 
and very good ADM with K=3.

Again, if we focus on K=3, the worst performer in terms of APN and 
ADM was CLARA, while DIANA and AGNES performed poorly in 
AD and FOM respectively.

The pattern of degradation as we increased the K value exhibited 
by partition algorithms was also apparent when looking at stability 
measurements, yielding a consistent conclusion of the better behavior 
of hierarchical algorithms for higher number of clusters.

The FANNY algorithm failed to produce significant clusters and 
was therefore deemed as poorly fit for our specific dataset.

V. Conclusion and Future Works

Open education is bound to push the boundaries of how we analyze 
our educational datasets. And as the scope of our research actions 
Learning Analytics becomes more and more specialized, the specific 
underlying techniques, including the selection of a particular clustering 
algorithm, are bound to receive less attention than appropriate.

This study aims to provide researchers with insights into how the 
different algorithms exhibit different performance patterns depending 
on specific measurements and variation in K values, especially when 
the dataset is highly driven by a set of grades in different courses.

This is achieved through a detailed and highly practical experiment, 
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selecting the most prominent algorithms identified in the literature 
and analyzing them using an assortment of assessment tools and an 
educational dataset from a higher education institution.

Among the seven clustering algorithms selected, we measured 
which algorithms performed better at an experimentally determined K 
value (K=3) and henceforth how they changed their performance if we 
increased this number.

During the experimental work we highlighted different relevant 
observations, from which we can distil some specific insights:
• Among partition algorithms, K-means and PAM were the best 

performers overall. The former achieved the best results in terms of 
internal validation (especially as we increased the K value) while 
the latter performed better in terms of stability.

• Among hierarchical algorithms, DIANA and hierarchical were 
the best performers, with a similar variation: the former achieved 
better internal validation scores, while the latter achieved better 
stability scores.

• Student grades in the sample dataset were highly groupable, as 
corroborated by the Hopkins statistic, a result that we expect would 
be extrapolated to other educational datasets, especially in higher 
education, where students tend to form grade patterns with ease. In 
lower education levels, the breadth of topics may introduce additional 
noise as students may have greater affinities for specific courses.

• In terms of determining the optimal K value, the Gap statistic was 
not really helpful, suggesting one single cluster even though the 
performance of the clustering algorithms for higher K values was 
rapidly apparent.

• Increasing the K value improved the performance of many 
algorithms in most metrics, although the number of errors also 
increased, and this improvement should be taken in context.

This work, however, also has specific limitations. Firstly, the 
preparation of the dataset was performed through an aggressive cleanup 
of the data, discarding all instances where any piece of information 
was missing. This resulted in a clean dataset 44% smaller than the 
original one. Given that this was an official dataset provided by the 
host University, it is to be expected to get similar noise levels in other 
real (non-synthetic) datasets, and better data cleanup techniques could 
be required. Making sure that we do not loose significant information 
while cleaning up data remains a significant open line of research.

In addition, most validations were performed trough different 
variations of Euclidean distance measurements, ignoring other 
approaches that may provide additional insights. This invites the 
potential expansion of this experiment either by including new 
measurements or by testing alternative educational datasets (or both).

Finally, we expect that the comparisons performed in this work will 
be helpful for future researchers looking into how to select the best 
algorithms for performing clustering analysis of educational datasets 
in higher education.

Further than the specific scores achieved by the different algorithms, 
we believe that this work adds value by identifying performance 
patterns that can be used as a base in future research.
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