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Abstract: In several cases, the input argument of an elementary function evaluation is given
bit-serially, most significant bit first. We suggest a solution for performing the first step of
the evaluation (namely, the range reduction) on the fly: the computation is overlapped with
the reception of the input bits. This algorithm can be used for the trigonometric functions
sin, cos, tan as well as for the exponential function.
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Réduction d’argument “au vol”

Résumé : 1l arrive que I’opérande dont on doit calculer une fonction élémentaire soit
disponible chiffre aprés chiffre, en série, en commencant par les poids forts. Nous pro-
posons une solution permettant d’effectuer la premiere phase de I’évaluation (la réduction
d’argument) au vol: le calcul et la réception des chiffres d’entrée se recouvrent. Cet al-
gorithme peut étre utilisé pour les fonctions trigonométriques sin, cos, tan, ainsi que pour
I’exponentielle.

Mots-clé : Réduction d’argument, fonctions élémentaires, arithmétique des ordinateurs.
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1 Introduction

The algorithms used for evaluating the elementary functions only give a correct result if
the argument is within some bounded interval. To evaluate an elementary function f(x)
(sine, cosine, exponential,...) for any z, one must find some “transformation” that makes
it possible to deduce f(z) from some value g(y), where

e y, called the reduced argument, is deduced from z;

e 1 belongs to the convergence domain of the algorithm implemented for the evaluation
of g.

With the usual functions, the only cases for which reduction is not straightforward are the
cases where y is equal to z — nC, where n is an integer and C a constant (for instance, for
the trigonometric functions, C'is a multiple of 7 /8).

Example 1 (Computation of the cosine function) Assume that we want to evaluate
cos(z), and that the convergence domain of the algorithm used to evaluate the sine and
cosine of the reduced argument contains [0, +/4]. We choose C = 7/4, and the computa-
tion of cos(x) is decomposed in three steps:

e compute y and n such thaty € [0, +n/4] and y = z — nn/4;

e compute g(y,n) =

( cos(y) if mmod8=0
Y2 (cos(y) —sin(y)) if nmod8 =1
—sin(y) if nmod8 =2

) =2 (cos(y) +sin(y) if nmod8=3 o
—cos(y) iIf mmod8 =14
4(—008( ) +sin(y)) if nmod8=75
sin(y) if nmod8 =6
| 2 (cos(y) +sin(y)) if nmod8 =7

e obtain cos(z) = g(y,n).

Example 2 (Computation of the exponential function) Assume that we want to evaluate

¥ in a radix-2 number system, and that the convergence domain of the algorithm used
to evaluate the exponential of the reduced argument contains [0,1n(2)]. We can choose
C = In(2), and the computation of e* is then decomposed in three steps:

RR n°4043



4 Vincent Lefévre and Jean-Michel Muller

e compute y € [0,In(2)] and n such that y = z — n In(2);
e compute g(y) = e¥;
e compute e* = 2"g(y).

Unless multiple-precision arithmetic is used during the intermediate calculations, a
straightforward computation of y as z — nC is to be avoided, since this operation will
lead to catastrophic cancellations (i.e., to very inaccurate estimates of y) when z is large or
close to an integer multiple of C. Many algorithms have been suggested for performing the
range reduction accurately [1, 2, 3, 9, 11].

Now, there are many cases (on special-purpose systems) where the input argument of
a calculation is generated most significant digit first. This happens, for instance, when this
argument is the result of a division or a square root obtained through a digit-recurrence
algorithm [7, 10], the output of an on-line algorithm [5, 12], or when it is generated by an
analog-to-digital converter.

In the sequel of this paper, we present an adaptation of the Modular Range Reduction
Algorithm [3, 8] that accepts such digit serial inputs and performs the range reduction “on
the fly”: most of the computation is overlapped with the reception of the input bits, and
the reduced argument is produced almost immediately after reception of the last input bit.
On-the-fly arithmetic algorithms have already been proposed by Ercegovac and Lang for
rounding or converting a number from redundant to non-redundant representation [4, 6].

2 Notations

In the sequel of the paper, = zpxp 1---To-z_1Z_o--+ x4 iS the input argument,
C = 0.01C_y---C_, is the constant of the range reduction (with —p < ¢), and
y = 0.y_1y—2---y—_p is the reduced argument. We assume 1/2 < C' < 1. These val-
ues satisfy:

e 0<y<C(;
e n = (z—y)/C isan integer.

We also define, for each i, m; (also called 2 mod C) as the unique value between 0 and
C such that (2° — m;)/C is an integer. These notations give some contraints on z and C
(e.g., Cis less than 1, z is less than 22*1). One can easily adapt the algorithms given in the
sequel of the paper to variables belonging to other domains. We chose these contraints to
make the presentation of the algorithms simpler.

INRIA



On-the-fly Range Reduction 5

3 Non-redundant algorithm

Algorithm 1 is by far less efficient than the “redundant” algorithm given afterwards. We
give it because it is simpler to understand, and because the other algorithm is derived from
it. The basic idea is the following: at step 4 of the algorithm, when we receive input bit 2 ;
of z, we add z,_; x (2’ mod C) to an accumulator. If the accumulated value becomes
larger than C, we subtract C from it.

Let us call A;4; the value obtained after this operation. One can easily check that
0<Ajy1 <Cand Ajy1 — zpzp_1 - zp—; x 2% is an integer multiple of C. Hence the
final value stored in the accumulator is equal to the reduced argument y.

Algorithm 1 Non-redundant algorithm.
Ap=0
fori =0toh —£do

Ti = Ai + Tph—imp—;
if T; < C then
A1 =T
else
A =T;-C
Y= Ape11

A possible variant consists in computing U; = A; + zp,—; (mp—; — C) in parallel with
T;, and then to choose A4;,1 equal to U; if U; > 0, otherwise T;.

4 Redundant algorithm

Now, to accelerate the reduction, we assume that we perform the accumulations with carry-
save additions. The carry-save number system allows very fast, carry-free additions. On
the other hand, its intrinsic redundancy makes comparisons somewhat more complex. The
accumulator will store the values A; in carry-save. In the previous algorithm, we needed
“exact” comparisons between the A;’s and C'. Having the A;’s stored in carry-save makes
these “exact” comparisons difficult. Instead of that, we will perform comparisons based on
the examination of the first three carry-save positions of A; only. This will not allow to
bound the A;’s by C. Nevertheless, we will show that the A;’s will be upper-bounded by

RR n°4043



6 Vincent Lefévre and Jean-Michel Muller

C + 1 (therefore by 3), which will suffice for our purpose. We denote:

A = (A, Ay (A1, 42 ) (A5, 42 )55 (A2, 42 )

Z772’ ivf %,—p’ %=

where Ag,lj) and AZ%.) are in {0, 1} and

p
A= (A0 + A2 2

j=0
The variable T; of the non-redundant algorithm is used again, and is also represented in
carry-save form:
1
T, = (1357

@, T (10, 1) (1, T))

2,—17 "g,—1 1,—27 " g,— 2,—p? " i,—p

This gives algorithm 2.

Algorithm 2 Redundant algorithm.
Ag=0+1
fori=0toh —£do
T; = Ai +es Thoi Mp—;
ﬁ — ((T(l) T~(2))‘(T~(1) 7(2) )‘(T~(1) 7(2) )) _1

3,0 2 74,0 /r \Tg,—1> 4, —1/0 \T¢,—2>F4,—2
converted to non-redundant binary using a 3-bit adder
if T; < C then
Aip1 =T,

else

A1 =T —s C(OrT; +¢s (1 - C) = 1)
B = Ah—€+1 +es (1 - C)
Convert Ay, _¢4+1 and B to non-redundant binary.

if B< 2then
y=Ap_p41—1
else
y=B-2

In the loop, we do not want to waste time with a full comparison to know whether we
need to subtract C' from T; or not. Thus we use a rough approximation T; to T; based on
the first three digits of T;. Since

(@5 T2y @0, 7)) <2270 4227 g2 2 <

2,—37 " i,—

INRIA



On-the-fly Range Reduction 7

we have: )
TzSTZ<Tz+§

We want to ensure that A; is always positive, that is, 7; — C does not lead to a negative
number. Then, the subtraction is performed only when ﬁ > C. Inthiscase, T; — C >
T,—C >0.

Now, we want to find an upper bound on all the A;’s (and one on the T;’s). Suppose that
for a given i, we have A; < M. ThusT; < M +C. If T, < C,then A1, = T; < T; + 4 <
C+ %; otherwise, A;,1 = T; — C < M. If we choose M = C + % then 4,41 < M in
both cases. By induction, 4; < C' + 1 and T; < 2C +  for all 4.

The final value of y is converted to non-redundant representation using a conventional
(i.e., non-redundant) addition. Another, faster, solution is to convert it on-the-fly, during the
second loop of the algorithm, using Ercegovac and Lang’s on-the-fly algorithm [4, 6] for
conversion from redundant to non-redundant representation.

5 Anexample: computation of cos(1010.111).

We choose C' = /4 =~ 0.1100101 (p = 7). Since z = 1010.111, we have h = 3 and
L= -3).

(m3 = 2 modw/4 =~ 0.0010011

me = 22 modw/4 =~ 0.0001001

m; = 2! modn/4 =~ 0.0110111
The values of the m;’sare: { my = 2° modw/4 ~ 0.0011011

m_y = 27! modw/4 = 0.1

m_o = 272 modw/4 = 0.01

m_g = 273 modn/4 = 0.001

\
The carry-save representations of the variables 7; and A; generated by the redundant
algorithm are

RR n°4043
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=1 7= BIIRRD | o< |a0={ O
=0 |1 ={ 00 [ o< | a={ bS50l
e o e e
=0 | 7= G000 |01<c 4= | BIIENS
r=1]m= { HIROED | 1> 0 |- { OIS
rr=1 7= { 000 01 <] 4= { FE106S
o =1 7= { G5RIRI 01 <] 40— { 305060

We then get y =
0.10101010001....

0.1010101, whereas the exact value of z mod =/4 is

6 Conclusion

The redundant algorithm presented in Section 4 allows fast, on-the-fly, range reduction. The
accuracy of this method is the same as that of the Conventional Modular range reduction
method (see [3, 8]).
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