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Preface
This dissertation is a result of research work carried out at the Department of Informa-

tion and Communication Technology (ICT), Center for Artificial Intelligence (CAIR) at

the University of Agder (UiA) in Grimstad, Norway. The work started as part of an

integrated Ph.D. program from January 2017 until January 2018 and was full-time un-

til December 2021. Professor Morten Goodwin, UiA, is the primary supervisor for this

Ph.D. work. Professor Ole-Christoffer Granmo, UiA, is the co-supervisor. The Depart-

ment of ICT, UiA, funds this research under Associate Professor Folke Haugland, head

of the department.

Production note: LATEX is the primary software for writing this dissertation and the papers

produced during the Ph.D. study. We acquire results from algorithms and simulation

using C++ and PYTHON with various libraries and tooling. Most notable is the use of

TENSORFLOW for building the models.
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Abstract
Deep reinforcement learning has attracted considerable attention from industry and academia,

among others, because of its success in solving intricate video games and industrial appli-

cations. Recent advancements in hardware and computing exponentially increase compu-

tational power availability, facilitating deep neural networks training. These networks can

learn the RL behavior policy from high-dimensional data and perform significantly better

than exact tabular solutions, albeit requiring considerably more computer resources.

Games are among the most used applications to assess reinforcement learning (RL) algo-

rithms’ behavioral properties and planning efficiency. They can provide the data structure

and volume required to train deep learning models. Specially crafted games can express

real-world industry applications to reduce setup costs while drastically increasing repro-

ducibility. RL can improve efficiency in industrial applications where expert systems

dominate the scene, reduce manual and potentially dangerous labor. The problem with

applied industrial reinforcement learning is that traditional methods learn by trial and er-

ror. Because of this, RL agents risk encountering catastrophic events during learning,

which can cause damage to humans or equipment. Therefore, using games to train and

study safe RL agents is appealing.

Real-Time Strategy (RTS) games are especially captivating because of their high dimen-

sional state and action spaces. Furthermore, RTS games share many attributes with in-

dustrial and real-world applications, such as simultaneous actions, imperfect information,

and system stochasticity. Recent advancements show that model-free RL algorithms can

learn superhuman performance in games such as StarCraft II, again using substantial com-

putational power. Therefore, the downside is that these algorithms are expensive and hard

to train, making it challenging to use the same methods for industrial applications. There

are also substantial state-space complexity gaps in open-source environments. This re-

stricts algorithm evaluation to only a subset of tasks required for operating sufficiently in

industry applications.

Game environments: This thesis addresses the environment gap by proposing six new

game environments to evaluate RL algorithms in several tasks. Deep Line Wars and Deep

RTS are two novel RTS environments for testing algorithms in long-term planning under

imperfect information. Deep Maze is a flexible labyrinth environment for learning RL

agents to navigate mazes from memory. Deep Warehouse is a specially crafted environ-

ment for evaluating the safety of RL algorithms in automated storage and retrieval systems

(ASRS), which is the exclusive focus of this thesis. An ASRS has autonomous vehicles
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that seek to maximize item throughput in a three-dimensional grid. The design goal of the

proposed environments is to facilitate a plethora of additional problems for RL algorithm

evaluation. Therefore, all environments provide parameters that adjust the problem com-

plexity and a flexible scenario engine that can challenge algorithms in various problems,

such as memory and control. We empirically show that our environments are significantly

more computationally efficient than environments of similar complexity. The diversity of

proposed environments can help fill the complexity gap in the literature. We finally in-

troduce the Center for Artificial Intelligence and Reinforcement Learning (CaiRL) toolkit

for high-performance RL research, which collects all proposed environments in a single

runtime.

Model-based RL: This thesis also introduces new energy-efficient, high-performance

RL algorithms for RTS games and industry-near simulations using the introduced envi-

ronments. Model-free reinforcement learning shows promising results in simulated en-

vironments but is inadequate for industrial applications. They need to collect millions

of samples and learn through trial and error. Conversely, model-based reinforcement

learning (MBRL) exploits a known or learned dynamics model, which can substantially

increase sample efficiency. Therefore, model-based RL is a more robust study choice for

industrial applications than model-free RL methods. The current model-based RL litera-

ture shows that deep learning-based models perform best but have several shortcomings.

Deep learning models are often sensitive to hyper-parameters, and slight changes to the

real environment significantly affect the model accuracy. Furthermore, existing models

do not account for safety or risk when deriving behavioral policies, making such methods

problematic for industrial applications.

This thesis addresses some of these challenges and proposes novel model-based rein-

forcement learning methods that focus on decision safety and sample efficiency. Our al-

gorithms, the Dreaming Variational Autoencoder (DVAE), Deep Variational Q-Networks

(DVQN), and Observation Reward Action Cost Learning Ensemble (ORACLE), combine

model-based RL and variational Bayesian methods to train dynamics models on existing

and proposed environments. The DVAE algorithm uses recurrent neural networks and

variational autoencoders to learn the dynamics model and show effectiveness in primi-

tive environments. DVQN uses variational autoencoders and deep Q-Networks for in-

terpretable and separable latent spaces and contributes to automatic options discovery in

hierarchical reinforcement learning. Finally, ORACLE combines state-space, recurrent

neural, and stochastic neural networks. The algorithm shows state-of-the-art prediction

capabilities while using auxiliary safety objectives for safer learning.

We then take advantage of the dynamics model to train model-free algorithms offline.

Furthermore, we use risk-directed exploration and curiosity to build risk-sensitive agents

for improving decision safety in games and industrial applications. We empirically show





that our methods in most cases perform better than state-of-the-art model-free and model-

based algorithms in traditional RL benchmarks, RTS games, and simulated industrial

applications.

In a nutshell, we believe that the game environments, RL methods, and studies presented

in this dissertation will advance the state-of-the-art research within the studied topics and

contribute positively towards solutions for enabling model-based RL in industry applica-

tions.









Summary
Denne avhandlingen fremmer banebrytende algoritmer innen kunstig intelligens-baserte

beslutningssystemer. Disse algoritmer er testet i sanntids strategispill som StarCraft II og

i oppdragskritiske industrielle systemer. Forskningsområdet er dyp forsterkende læring

(deep reinforcement learning), en kombinasjon av dyp læring og forsterkende læring. Det

overordnede målet med dette forskningsarbeidet er å gjøre datasystemer i stand til å nå

optimale beslutningssekvenser uten å gjøre feil.

Spill brukes ofte til å teste effektiviteten til forsterkningslæringssystemer. For eksempel

kan spill gi simuleringer av virkelige industriapplikasjoner som reduserer eksperimen-

tkostnadene og forbedrer reproduserbarheten. Forsterkende læring kan eliminere manuelt

eller risikabelt arbeid i industrielle omgivelser. Ekspert systemer dominerer automasjon

av industrielle miljøer i dag, hvor det kan være vanskelig å definerer optimale regelsett

for komplekse problem. Tradisjonelle forsterkende læringssystemer lærer ved prøving

og feiling. Som et resultat risikerer forsterkende læringsagenter å skade mennesker eller

utstyr mens de lærer. Derfor kan bruk av spill for å lære forsterkende læringsmidler å

operere trygt eliminere disse risikoene. Nøkkeleffekten av å løse disse bekymringene er

å muliggjøre svært effektive og sikre autonome systemer som eksisterer i ulike former i

samfunnets daglige rutine.

Kompleksiteten til sanntidsstrategispill er interessant for forskning på kunstig intelligens.

Oppgaver som krever samtidige operasjoner, ufullkommen informasjon og systemtil-

feldighet er elementer i sanntids strategispill. Med den siste utviklingen lærer forsterkn-

ingslæringsalgoritmer å oppnå overmenneskelig ytelse i spill som StarCraft II. Ulempen

er at disse algoritmene er dyre og vanskelige å trene, noe som gjør dem vanskelige å bruke

i industrielle applikasjoner.

Forskningsgapet: Reinforcement learning er en prosess der maskinen søker å maksimere

et tilbakemeldingssignal gjennom prøving og feiling. Nåværende banebrytende forsterk-

ende læringsalgoritmer har vesentlige begrensninger fordi de krever mye utforskning for

å lære gode beslutningssekvenser. Denne utforskende tilnærmingen kan føre til uønskede

utfall i virkelige systemer.

Generelt følger forsterkende læring en risikonøytral læringsstrategi, der fatale beslut-

ninger står sentralt i læringsmålet. Slike feil kan ikke tolereres i oppdragskritiske sys-

temer og krever sikkerhet for å forhindre skade på menneskelig og virkelig utstyr. Som

et resultat er det behov for å utvikle nye opplæringsalgoritmer for å bevare sikkerheten

under læring.
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Til slutt bruker banebrytende forskning datakraftskrevende spill, som StarCraft II. Dette

krever dyre datasystemer som ikke er allment tilgjengelige for alle forskningsinstitusjoner.

Det finnes andre alternativer, men de mangler fleksibiliteten til å justere ønsket vanske-

lighetsgrad og datakraftskrevende kompleksitet.

Det er betydelige utfordringer å ta tak i i denne oppgaven. Oppsummert har forsterkende

læring lav effektivitet, fokuserer mest på risikonøytral trening, og har begrenset tilgang til

variable kontekster og testmiljø for eksperimentering. Dette etterlater ulike hull der det

er betydelig rom for forbedring. For å tette disse hullene mot bedre beslutningstaking i

industrilignende miljøer deler vi forskningen inn i tre separate emner:

Emne 1: Spillmiljøer for forsterkende læringsforskning med fleksible oppgaver

Emne 2: Modellbasert forsterkningslæring for mer effektiv forsterkningslæring i san-

ntidsstrategispill

Emne 3: Sikker forsterkningslæring for industrilignende systemer

Emne 1: Spillmiljøer: Dette forskningsarbeidet tar for seg hullet i eksperimentelle

miljøer ved å foreslå seks nye spillmiljøer for å evaluere forsterkningslæringsalgoritmer.

Deep Line Wars og Deep RTS er to nye sanntidsstrategispill for å teste algoritmer i plan-

legging og læring ved mangelfull informasjon. Deep Maze er et fleksibelt labyrintspill for

å lære forsterkende læringsalgoritmer å navigere i labyrinter fra hukommelse. Deep Ware-

house er et spesiallaget spill for å evaluere sikkerheten til forsterkningslæringsalgoritmer

i Automated Storage and Retrieval Systems (ASRS), som er det eksklusive fokuset i dette

forskningsarbeidet for industrilignende miljø. Et ASRS har autonome kjøretøy som søker

å maksimere varegjennomstrømning i et tredimensjonalt rutenett. Alle spill gir parame-

tere som justerer problemkompleksiteten og en fleksibel scenariomotor som kan utfordre

algoritmer i ulike problemer, som minne og kontroll. Vi viser empirisk at disse spillene

er betydelig mer datakraftseffektive enn spill med lignende kompleksitet. Mangfoldet av

foreslåtte spill bidrar til å fylle kompleksitetsgapet i den vitenskapelige litteraturen. Avs-

luttningsvis introduserer vi Center for Artificial Intelligence and Reinforcement Learning

(CaiRL) for forskning på høyytelses forsterkende læring, som samler alle miljøbidrag i et

enkelt forskningsverktøy.

Emne 2: Modellbasert forsterkningslæring: Dette forskningsarbeidet foreslår modell-

baserte forsterkningslæringsteknikker som fokuserer på effektivitet og sikkerhet i beslut-

ningsprøver. Avhandlingen presenterer Dreaming Variational Autoencoder (DVAE) som

lærer å etterligne hvordan spillmotordynamikken fungerer. Læringen skjer gjennom læring

ved demonstrasjoner. Etter at læringsfasen er ferdig, kan tradisjonelle, ineffektive forsterkn-

ingslæringsalgoritmer trygt trene ved å bruke spilltilnærmingen ved akselererte hastigheter.





Videre presenterer denne avhandlingen Observation Reward Action Cost Learning En-

semble (ORACLE) som på samme måte lærer hvordan spillmotoren fungerer, men som

kan lære mer kompleks spilldynamikk. Derfor er ORACLE mer egnet for spill med

avansert grafikk som StarCraft II, men trenger å balansere treningstid og nøyaktighet.

Emne 3: Sikker forsterkningslæring: Det finnes flere metoder for å trene forsterkn-

ingslæringsalgoritmer på en sikrere måte i virkelige miljøer som krever sikkerhet. Dette

eksperimentelle arbeidet viser at det er mulig å redusere feilraten under trening uten

å legge urealistiske begrensninger eller forutsetninger på læringsmålene. Konkret pre-

senterer arbeidet et rammeverk for å lære en atferdsmodell av et system. Denne mod-

ellen brukes deretter til å utføre forsterkende læringsutforskning i et fullstendig isolert

læringsmiljø.

Hovedresultat: Avhandlingen bidrar med fire åpen kildekode-spill for å berike mang-

foldet av tilgjengelige spill for forsterkende læringsforskning. Følgelig er det nå mer

tilgjengelig for utdanningsinstitusjoner å justere problemkompleksiteten basert på tilgjen-

gelig finansiering og beregningsressurser. Alle bidragene er samlet inn i CaiRL forskn-

ingsverktøysettet som fokuserer på å redusere kostnadene på eksperimenter, og går i ret-

ning mer effektive spill for forskning.

Avhandlingen presenterer fire algoritmer for modellbasert forsterkningslæring, hvor to av

algoritmene fokuserer på å forbedre sikkerheten under læring i oppdragskritiske systemer.

Avhandlingen går mot å løse noen av kjerneutfordringene ved forsterkende læring, nemlig

sikkerhet og lærings-effektivitet.

Vi tror at spillmiljøene, forsterkningslæringsmetodene og studiene som presenteres i denne

avhandlingen bidrar til å flytte fremmover forskningen innenfor de studerte temaene og

bidrar positivt til løsninger for å muliggjøre generell bruk av forsterkende læring i spill og

kritiske industrielle applikasjoner.
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MCTS Monte Carlo Tree Search.

MDNRNN Mixture Density Network Recurrent Neural Net-

work.

MDP Markov Decision Process.

ME-TRPO Model-Ensemble Trust-Region Policy Optimiza-

tion.

MSE Mean Squared Error.

NDIGO Neural Differential Information Gain Optimisa-

tion.

ORACLE Observation Reward Action Cost Learning En-

semble.





PBO Pixel Buffer Object.

PCA Principal Component Analysis.

PETS Probabilistic Ensembles with Trajectory Sam-

pling.

PG Policy Gradient.

PGM Probabilistic Graphical Model.

PlaNet Deep Planning Network.

POMDP Partial Observable Markov Decision Process.

PPO Proximal Policy Optimization.

ReLU Rectified Linear Unit.

RL Reinforcement Learning.

RNN Recurrent Neural Networks.

RTS Real-Time Strategy.

S-DVAE Safe Dreaming Variational Autoencoder.

S-ORACLE Safe ORACLE.

SAC Soft Actor-Critic.

SARSA State Action Reward State Action.

SC2LE StarCraft II Learning Environment.

SIMD Single instruction, multiple data.

SLBO Stochastic Lower Bound Optimization.

SMDP Semi Markov Decision Process.

SOLAR Stochastic Optimal Control with Latent Repre-

sentations.

SRSSM Stochastic Recurrent State Space Models.

SSM State Space Models.

SWA Stochastic Weight Averaging.

SWAGAN Stochastic Weight Averaged Generative Adver-

sarial Network.

t-sne t-distributed stochastic neighbor embedding.

TD Temporal Difference.

TRPO Trust Region Policy Optimization.

VAE Variational Autoencoder.

VQ Vector-Quantized.

VQ-VAE Vector-quantized Variational Autoencoder.
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Chapter 1

Introduction
The research on Real-Time Strategy (RTS) games has advancements over the past decade,

especially for RTS games and in the industrial setting. Much research is still missing,

which this thesis aims to address. There is a need for new environments towards solv-

ing superhuman performance in RTS games, and few algorithms have proven applicable

for mission-critical industry applications. Reinforcement Learning (RL) algorithms need

improved sample efficiency, decision safety, and interpretability for industry applications.

The hope is that insights from RTS games can prove valuable for industry applications.

This chapter introduces the fundamental research questions guiding our work, thoroughly

discusses the motivation, and presents intended approaches for addressing the problems.

The overall goal of this thesis is to improve decision safety and sample efficiency in

Model-Based Reinforcement Learning (MBRL) towards solving RTS games and indus-

trial applications. We assert that RTS games are helpful for safety and performance eval-

uation in RL algorithms’ and can directly map to real-world industrial applications prob-

lems. A structured summary of the work carried out during the Ph.D., and a presentation

of the thesis organization concludes this chapter.

1.1 Reinforcement Learning
Our human lives comprise constant decision-making, small and large, in a world we ob-

serve as sequential. We decide to move our feet based on observations from our environ-

ment, eat when we feel hungry, and choose a life partner or career. Some decisions yield

instant feedback, such as eating, while others provide reward signals after a long time,

such as education. Therefore, we live in a world of sequential data, driven by constant

decision-making. The universe comprises simple functions. For example, the laws of

physics result in complex phenomena, such as the physical planet we inhabit, the forests

we dwell in, or the natural resources we consume. In this world environment, humankind

and other biological creatures strive to achieve a prolonged and healthy life by altering the

future with decision-making based on input from the physical feedback functions. This

unique ability to make decisions towards desired goals is essential for survival in nature

and society. Consequently, our intelligence is measurable based on how accurately we

1
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can predict the causality of past decisions (Legg and Hutter, 2007). We experience the

resulting cause-and-effect chain at discrete-time intervals using our sensory system and

adjust future decision-making toward our projected goal through processing and reason-

ing (Wolpert et al., 2019). How to optimize our internal thought process more effectively

towards reaching those goals is at the core of sequential decision-making and is the fun-

damental problem studied in reinforcement learning.

Reinforcement Learning (RL) is the branch of Artificial Intelligence (AI) that studies solu-

tions for goal-directed sequential decision-making problems only using numerical reward

signals. Agents learn through trial and error, which connect closely with the exploration-

exploitation trade-off. The trade-off between obtaining new knowledge and the need to

use that knowledge to improve performance is one of the most basic trade-offs, and opti-

mal performance requires some balance between exploratory and exploitative behaviors.

Work from the last decade progressively extends classical RL with Deep Learning (DL)

techniques.

The combination of RL and Deep Neural Networks (DNN), Deep Reinforcement Learn-

ing (DRL), removes the limitation of RL algorithms from mainly solving simple opti-

mization problems and enables solving a multitude of complex problems. These problems

range from playing computer games from pixels, mastering the game of Go, or learning

complex humanoid motion (Silver et al., 2016; Starke et al., 2021; Vinyals et al., 2019).

Reinforcement Learning algorithms are either model-based or model-free. The model-

based method uses a learned or known model to fuel the training of a behavior policy. A

policy is the combination of parameters that define the observed behavior of an RL algo-

rithm. Model-based RL is often more sample-efficient than model-free methods, at the

cost of higher demands for computational power. This dissertation only seeks to address

model-based DRL, so we use the terms RL interchangeably. DNNs comprise highly ex-

pressive non-linear models that parameterize arbitrary functions from observed data and

significantly reduce the need for manual feature and policy engineering. These functions

map observations of high-dimensional inputs, e.g., images, to decisions or actions. The

benefits of DNN models introduce several practical problems to RL policy learning. DRL

algorithms are sensitive to hyperparameters and often require comprehensive tuning to

find good policies beyond local optimality.

With the increased DNN model complexity, DRL algorithms learn slower and thus have

a high sample complexity. Therefore, DNN’s are impractical for problems with limited

data or strict limitations on climate emissions (Sutton and Barto, 2018, Chapter 11). Algo-

rithms with low efficiency are economically costly and carry increased climate emissions

which are not sustainable long term. Furthermore, traditional DRL algorithms are risk-

neutral, meaning they balance the exploration-exploitation trade-off. Such trade-off does

not account for uncertainty about the future, making deploying them in safety-critical
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real-world systems challenging. There is also a shortage of adequate, open-source envi-

ronments for testing algorithms in an industrial-grade context, making it hard to evaluate

algorithms affordably.

1.2 Industrial Artificial Intelligence
Industrial Artificial Intelligence (IAI) is a systematic discipline focusing on developing,

validating, deploying, and maintaining AI control systems for industrial applications with

sustainable performance, recently proposed by Lee, 2020; Peres et al., 2020. IAI is chal-

lenging because the infrastructure, e.g., the hardware and software, requires industrial-

grade reliability. There is a very low tolerance for error, making it crucial to handle un-

certainty in the best possible manner. Industry applications such as AI control of robotic

arms or motorized vehicles have high economic costs, and the equipment is often heavy-

weight. If controlled inadequately, such AI can damage humans or equipment and cause

substantial economic losses. Therefore, IAI systems should operate sustainably in terms

of performance.

There are notable efforts towards improving DRL for industrial applications (Levine et

al., 2016a). However, the mainstream research is far from achieving industrial-grade per-

formance in sample-efficiency, adversarial-robustness, safety, or sustainability (Polydoros

and Nalpantidis, 2017). For example, learning an RL agent to operate well in Atari 2600

games takes several days of trial and error (Mnih et al., 2015). Conversely, StarCraft II re-

quires months of training using expensive hardware (Vinyals et al., 2019). DNN’s differs

from traditional machine learning in that their capacity can scale from thousands to bil-

lions of parameters. Such scaling quickly becomes a challenge for complex environments

because it becomes harder to determine if agents learn the essence of a task or if it overfits

the task. In both cases, an algorithm might succeed in the short term. However, the latter

might fail if the environment dynamics change. The long training time is because of large

state-spaces, ranging from 1010 states for Atari 2600 games to 1036000 states for StarCraft

II. State-space is the space that holds all possible state compositions for a particular prob-

lem. DRL fundamentally relies on balancing the exploration-exploitation trade-off often

requiring millions of timesteps to learn near-optimal behaviors.

DRL is difficult to combine with real-time real-world IAI systems because of low sample

rates and the danger that equipment harms humans or the environment during trial and

error. On the other hand, simulated environments can provide a near-identical environ-

ment for training, do not risk damaging equipment, and enable training faster than in the

real world. Simulated environments are, for these reasons, widely used in research and

pre-production configurations.1

1One such simulated environment is the Autstore Simulator, which we demonstrate in Figure 4.7.
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1.3 Real-Time Strategy Games
Real-Time Strategy (RTS) games are interesting because they share many attributes with

real-world scenarios and high-precision industry problems.2An RTS game is a multiplayer

game where participants position strategic structures and control units (e.g., soldier units)

to gain control of land areas on the map. A player can construct additional units and

structures at the expense of resources accumulated throughout the game. Resources are

spread evenly throughout the map, with possible contested resources that encourage com-

petitive play. Therefore, RTS games provide an excellent platform for evaluating resource

management, low-latency planning, and risk evaluation for RL algorithms. The challenge

is that few alternatives are available for research-oriented RTS games. State-spaces are

either too simplistic to resemble industry-like systems (e.g., Micro RTS (Ontanon, 2013))

or too complex to yield meaningful evaluation without extensive computational power

(e.g., StarCraft II (Vinyals et al., 2019)).

Solving a complex game environment is an exciting feat because it illustrates that RL

gradually matures towards the ultimate challenge of solving advanced and complex real-

world problems safely (Ding and Dong, 2020). RL is still in its infancy. While many

fundamental problems are solved, there is still room for improvement in sample efficiency,

safety, and generalization (Arulkumaran et al., 2017). In the interim, RTS games are an

appealing platform to benchmark algorithms because they share similar characteristics to

real-world problems (Sethy et al., 2015). We present a list of central challenges in RL and

the shared characteristics with real-world problems:

Challenge: Reward Sparsity

Real World: Decisions made towards reducing climate emissions are rewarded

several years later. (Henderson et al., 2020a)

RTS Games: Immediate actions are usually rewarded when a game ends and not

after each consecutive action. (Silver et al., 2021)

Challenge: Partial Observability

Real World: Autonomous driving has an unknown number of traffic participants

with the uncertainty of which actions other cars will make. (Kobayashi, 2019)

RTS Games: The game is only partially observable, hidden in “Fog of War”, mean-

ing participants can only observe the game state in a radius of friendly units

and buildings. The participants can change the environment without revealing

that knowledge to the opponent. (Ontanon, 2013)
2We use the term industry-like, industrial applications, and industry applications interchangeably.
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Challenge: High Dimensionality

Real World: Data from patients with thousands of dimensions (features) or high-

resolution images from cameras. (Mahmud et al., 2018)

RTS Games: RTS games have large maps (e.g., 256x256 actionable map tiles)

with the ability to have 500 units with 100 different actions at each timestep.

(Vinyals et al., 2019)

Challenge: Planning over long time horizons

Real World: Autonomous driving requires planning from the start to the desti-

nation. Actions must come in strict order to prevent catastrophic outcomes.

(Kusy and Zajdel, 2014)

RTS Games: To succeed in RTS games, the player must plan hundreds of steps

to beat the opponent long-term, but incorrect actions are often recoverable.

(Vinyals et al., 2019)

Challenge: Learning Safely

Real World: Learning to drive a car happens under the supervision of an experi-

enced (expert) driver, and no accident must occur during the learning phase or

after learning to drive the car.

RTS Games: Many RTS games have environmental damage that regresses the

agent’s progress. The agent must learn to avoid this damage, preferably with-

out damage ever occurring. The agent must learn to avoid this damage, prefer-

ably without damage ever occurring. Learning to adapt to the environment can

also come to the agent’s advantage. For example, learning to use the environ-

ment as part of the strategy to defeat the opponent.

Following these comparisons, it falls naturally to use RTS games as a platform for re-

searching task solvability and finding techniques applicable to safety-critical real-world

applications (Levine et al., 2016b). The hope is that RL can play a substantial role in

solving safety-critical real-world applications through learning problems virtually. These

problems range from minor optimizations such as vehicle routing to key problems such

as driving autonomously in traffic and optimizing the climate emissions of the engine

exhaust system (X. Hu et al., 2019).

1.4 Motivation and Research Questions
The focus of this thesis is three-fold:
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1. We aim to study the use of variational autoencoders and state-space models for

learning highly expressive dynamics models in MBRL.

2. We aim to use the learned dynamics models for learning model-free RL techniques

more efficiently using RTS games as the primary test bench.

3. We aim to improve the decision safety of our model-based RL approach towards

better applicability in industry-like applications.

We present each research question with motivations and our scientific approach to ad-

dressing the question. We intend that the research questions overlap partially to bet-

ter combine the work throughout the dissertation. We investigate the following research

questions:

Question 1: To what extent can we reduce the complexity gap for game environments in

reinforcement learning research?

Motivation: Much of current state-of-the-art research is conducted in economic

or computational expensive software such as Mujoco and StarCraft II. While

other alternatives exist, they have state-spaces that are either too simplistic or

complex, leaving a gap in the diversity of experimental environments. This

gap motivates us to create novel environments that are computationally effi-

cient, following community standards that are particularly suited for AI re-

search.

Approach: We approach the state-space complexity gap by proposing novel en-

vironments for RTS game research. First, we aim to study the current state-

of-the-art environments and identify how to address the state-space complex-

ity gap. Finally, we aim to collect all the environmental contributions on a

highly efficient experiment execution platform, where the aim is to decrease

the computational overhead of game environments. We believe that answer-

ing this question allows complex environments to execute significantly faster,

reducing the climate footprint and reducing costs economically and computa-

tionally.

Question 2: How can the sample efficiency of model-free reinforcement learning algo-

rithms be increased to acquire good behavioral policies faster in complex RTS

games?

Motivation: Current state-of-the-art reinforcement learning often requires millions

of samples and days of training before reaching a sufficient level of exper-

tise in simple environments. For complex environments, the training time,
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cost, and hardware requirements increase dramatically. Due to the low sample

efficiency in current algorithms, reaching adequate expertise levels becomes

difficult.

Approach: Model-Based Reinforcement Learning (MBRL) algorithms are usually

more sample efficient than model-free alternatives. This is because having a

model of the environment allows learning behaviors using a model instead

of balancing the exploration-exploitation trade-off. We propose a model-

based RL scheme that learns a dynamics model from observations and can

use knowledge from external actors, such as expert systems. This enables

learning good behavioral policies in model-free algorithms more efficiently

than traditional model-free learning methods.

Question 3: How can RTS game environments support reinforcement learning towards

the goal of real-world industrial applications?

Motivation: RTS games share many characteristics with real-world industrial ap-

plications, such as simultaneous actions, imperfect information, stochasticity,

and state-space complexity. This motivates us to study reinforcement learn-

ing for industrial AI control through the lens of RTS games because it is far

simpler and more efficient to experiment in simulated environments. Second,

RTS games are among the most popular game genres in recent times, which

means that scientific contributions to AI control can significantly benefit the

game industry.

Approach: We approach this problem using the proposed RTS game environments

from research question 1 to build specialized mini-games that resemble parts

of an industry-like environment. We propose a model-based approach to in-

crease sample efficiency to learn good strategies within an acceptable time-

frame on commodity hardware. Following this research approach, we supple-

ment new challenges to the RTS games. Finally, we propose a virtual auto-

mated storage and retrieval system to evaluate the performance in industry-like

applications.

Question 4: To what extent are deep variational autoencoders effective as a mechanism

to learn the dynamics of virtual environments?

Motivation: The variational autoencoder is a powerful generative model that is

now extensively used to represent high-dimensional complex data via a low-

dimensional latent space. The original variational autoencoder models process

input data vectors independently and learn parameters unsupervised. RTS

games and industry applications often have high-dimensional complex state
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spaces. This motivates a combination of variational autoencoders and rein-

forcement learning approaches to compress the state-space to a compact rep-

resentation to train RL algorithms in a model-based manner.

Approach: We apply variational autoencoders with deep reinforcement learning

to propose a novel technique for model-based reinforcement learning. We

demonstrate that the algorithms are effective in relevant virtual environments.

We then aim to find improved methods to model time dependencies between

states, specifically using recurrent neural networks. Furthermore, we test

novel techniques such as stochastic weight averaging to train the proposed

algorithm better.

Question 5: How can state-space modeling combined with recurrent neural networks for

planning be used to learn the dynamics of a composite game environment?

Motivation: State-space modeling is a mathematical framework for modeling a

physical system as a set of inputs, outputs, and state variables. Like varia-

tional autoencoders, the state-space model learns a set of unknown state vari-

ables representing the environment dynamics. Our preliminary work finds that

state-space models exceed the expressive capabilities of variational autoen-

coders because they account for temporal dependencies. In combination with

recurrent neural networks, it is possible that state-space modeling can support

long-horizon predictions for dynamics models. This motivates us to continue

research in state-space modeling towards an end-to-end solution for model-

based reinforcement learning capable of encoding games with high state-space

complexity.

Approach: We approach this question by reviewing prior work combining deep

learning and state-space models. Following our study, we take inspiration

from prior work and design a state-space model for predictions, combined

with recurrent neural networks for learning temporal dependencies, using amor-

tized variational inference to train the model.

Question 6: How can we improve the decision safety of risk-neutral model-free rein-

forcement learning algorithms?

Motivation: Recent work proposes novel innovations in risk-neutral model-free

reinforcement learning algorithms. They demonstrate the ability to learn high-

dimensional data combined with deep learning techniques by only following

a single scalar reward value. A challenge with these algorithms is that they

are not concerned with safety during learning, making them less applicable

for mission-critical industry applications. This motivates us to investigate
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whether changing the reward signal can encourage standard model-free re-

inforcement learning agents to travel more safe and conservative trajectories.

Furthermore, this motivates us to study if agents can act safely by learning

from a dynamics model (e.g., learned model of the environment). We wish

to study if model-free techniques can be easily used with dynamics modeling

and learn fully offline by learning from agents that have demonstrated safe

behavior. In effect, we hope to create novel model-based algorithms using

existing model-free algorithms.

Approach: We address the problem by augmenting the learning techniques in our

proposed model-based methods. Specifically, we investigate if it is possible

to limit the optimization space using universal constraints that fit any environ-

ment. . Reinforcement learning is driven primarily by a scalar reward signal.

We investigate if it is possible to shape rewards to automatically follow more

safe trajectories while leading to near-global optimal policies. Specifically,

we study risk-directed exploration and risk-sensitive action selection methods

towards solving safe reinforcement learning.

Question 7: How can we apply deep reinforcement learning algorithms to industry-like

applications without the risk of damaging humans and real-world equipment?

Motivation: AI systems require safety to prevent damage to humans and real-

world equipment. Our opinion is that this is the most dominant challenge that

separates the field of reinforcement learning and mass adoption for practical

use in industrial applications. Because industrial systems tend to be expen-

sive, it is not acceptable to deploy risk-neutral algorithms because they can

cause irreversible damage to the environment. This motivates us to build an

algorithm that better accounts for risk and increases decision safety at training

and inference time.

Approach: We approach this question by creating training schemes that minimize

the need for training in real-world systems. We use our proposed model-based

reinforcement learning approach to train agents following this scheme and

evaluate the failure rate of tested algorithms in industry-like environments.

Limitations: This thesis aims to advance the field of model-based reinforcement learn-

ing for RTS games and apply discovered techniques to industrial applications. How-

ever, presenting a fully functional model that is deployable in a real-world industrial

environment is not within the scope of this Ph.D. work. Instead, we limit the scope

to include simulated Automated Storage and Retrieval Systems (ASRS). We create

several new environments, including RTS and ASRS game environments, to fill the
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Figure 1.1: Organization of contributions. The color codes illustrate the following top-

ics. Blue illustrate contributions of novel research environments, Gray is for

interpretability and hierarchical RL (options). Purple denotes safe reinforcement

learning, and Yellow represents work in goal-directed reinforcement learning. Fi-

nally, Green is our main contribution in model-based and safe RL.

state-space complexity gap in the literature. Furthermore, we confine the scope to

only include mini-game versions of complex environments such as StarCraft II for

RTS game research because of limited hardware availability. We limit the study’s

central part to using the proposed RTS game environment contributions because

computational efficiency allows substantially faster algorithm training. In the final

version of our contributed algorithm, we present a modular algorithm that can in-

tegrate well with other domains than games. One such example is integrating the

techniques in larger industrial problems or game genres.

1.5 Publications
Our contributions are in published peer-reviewed conferences and journals or submitted

for peer review but waiting for feedback. Part I of the dissertation includes 15 contribu-

tions during the Ph.D. work covering four main topics. The four topics are environments,

hierarchical RL, model-based RL, safe RL, and goal-directed RL. Figure 1.1 presents a

structured overview of all publications and shows the progression towards our final solu-

tion. Blue color represents contributions that primarily focus on studies in understanding

and designing environments suited to reinforcement learning research. The yellow color
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represents work on goal-directed reinforcement learning. Purple color denotes our work

on safe reinforcement learning. Gray color describes our work on the interpretability

of options, part of hierarchical RL research. The green color represents the work on

model-based reinforcement learning and is the main focus of our research. A summary of

peer-reviewed work carried out during this Ph.D. work follows.

Paper A: FlashRL: A Reinforcement Learning Platform for Flash
Games

Relates to: Question 1.

This paper introduces the Flash Reinforcement Learning (FlashRL) platform, which ex-

pands the availability of novel environments for reinforcement learning research. FlashRL

aims to support Flash games beyond the end-of-life of Flash in web-browsers. The lash

runtime was arguably the de facto standard for graphics and animations in the first decade

of 2000. The FlashRL execution platform provides a standardized API for accessing

thousands of Flash games using the OpenAI Gym toolkit. This contribution enables re-

searchers to expand the testing of reinforcement learning algorithms to novel Flash game

environments, which has previously been challenging because of the gap in tools avail-

able. FlashRL demonstrates high-performance using only 5% of the total utilized CPU

during training of deep reinforcement learning agents. Finally, we demonstrate promising

results using reinforcement learning algorithms such as Deep Q-Networks.

Paper B: Towards a Deep Reinforcement Learning Approach for
Tower Line Wars

Relates to: Question 1.

This paper proposes Deep Line Wars, a game environment between Atari 2600 and Star-

craft II, mainly targeting deep reinforcement learning algorithm research. The environ-

ment is a variant of Tower Line Wars from Warcraft III, Blizzard Entertainment. As proof

that the environment can harbor deep reinforcement algorithms, we propose and apply a

new Deep Q-Networks architecture. The proposed architecture aims to simplify the game

observation state-complexity to reduce the computational requirement compared to tradi-

tional DQN. Our experiments show that the proposed architecture can learn to play the

environment well and score 33% better than standard DQN, proving the game environ-

ment’s usefulness.
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Paper C: Deep RTS: A Game Environment for Deep Reinforcement
Learning in Real-Time Strategy Games

Relates to: Question 1.

This paper introduces the Deep RTS game environment for testing cutting-edge artificial

intelligence algorithms for RTS games. Deep RTS is a high-performance RTS game made

specifically for artificial intelligence research. It supports accelerated learning, meaning

that it can learn at a magnitude of 50 000 times faster than existing RTS games. Deep RTS

has a flexible configuration, enabling research in several RTS scenarios, including par-

tially observable state-spaces and map complexity. We demonstrate that Deep RTS lives

up to our promises by comparing its performance with Micro RTS, ELF, and StarCraft

II on high-end consumer hardware. We show that Deep Q-Networks beat random-play

agents. This indicates that the state representation carries meaningful information that al-

gorithms can learn. The primary focus of this contribution is to present Deep RTS, which

is publicly available at https://github.com/cair/DeepRTS.

Paper D: The Dreaming Variational Autoencoder for Reinforcement
Learning Environments

Relates to: Question 1, Question 2, and Question 4.

This paper presents the Dreaming Variational Autoencoder (DVAE), a neural network-

based generative modeling architecture for exploration in environments with sparse feed-

back. We further present Deep Maze, a novel and flexible maze engine that challenges

DVAE in partial and fully-observable state-spaces, long-horizon tasks, and determinis-

tic and stochastic problems. We show initial findings and encourage more research in

reinforcement learning driven by generative exploration.

Paper E: Towards Model-Based Reinforcement Learning for
Industry-near Environments

Relates to: Question 2, Question 3, and Question 4.

This paper presents the Dreaming Variational Autoencoder v2 (DVAE-2), a model-based

reinforcement learning algorithm that increases sample efficiency, enabling algorithms

with low sample efficiency to function better in real-world environments. We introduce

the Deep Warehouse environment for industry-near testing of autonomous agents in logis-

tic warehouses. We illustrate that the DVAE-2 algorithm improves the sample efficiency

for the Deep Warehouse compared to model-free methods.



https://github.com/cair/DeepRTS


Advances in Safe Deep Reinforcement Learning for
Real-Time Strategy Games and Industry Applications

Paper F: Increasing Sample Efficiency in Deep Reinforcement Learn-
ing using Generative Environment Modelling

Relates to: Question 2, and Question 4. This article presents the Dreaming Variational

Autoencoder (DVAE) with Stochastic Weight Averaging (SWA) and Generative Genera-

tive Adversarial Networks (GAN) (DVAE-SWAGAN), a neural network-based generative

modeling architecture for exploration in environments with sparse feedback. We present

comprehensive results using the Deep Maze environment using the DVAE-SWAGAN al-

gorithm in partial and fully observable state-spaces, long-horizon tasks, and deterministic

and stochastic problems. We compare our approach against other model-free algorithms

and encourage future studies in reinforcement learning driven by generative exploration.

Paper G: Towards Safe Reinforcement-learning in Industrial Grid-
warehousing

Relates to: Question 2, Question 4, Question 6, and Question 7.

This paper modifies the Dreaming Variational Autoencoder (DVAE) for safely learning

good policies with a significantly lower risk of catastrophes occurring during training.

The algorithm combines variational autoencoders, risk-directed exploration, and curios-

ity to train deep-Q Networks inside “dream” states. We introduce a novel environment,

Deep Warehouse (ASRS-Lab), for research in the safe learning of autonomous vehicles

in grid-based warehousing. The work shows that the proposed algorithm has better sam-

ple efficiency with similar performance to novel model-free deep reinforcement learning

algorithms while maintaining safety during training.

Paper H: CostNet: An End-to-End Framework for Goal-Directed Re-
inforcement Learning

Relates to: Question 2, and Question 6.

This paper introduces a novel reinforcement learning algorithm for predicting the distance

between two states in a Markov Decision Process. The learned distance function works

as an intrinsic reward that fuels the agent’s learning. Using the distance-metric as a re-

ward, we show that the algorithm performs comparably to model-free RL while having

significantly better sample-efficiently in several test environments.
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Paper I: Safer Reinforcement Learning for Agents in Industrial Grid-
Warehousing

Relates to: Question 4, Question 6, and Question 7.

This paper introduces advances in the novel Safer Dreaming Variational Autoencoder,

combining policy constraints, external knowledge, and risk-directed exploration for learn-

ing good policies. We show that the proposed method performs comparably to model-free

algorithms without safety constraints using model-based reinforcement learning. Further-

more, we empirically verify that our algorithm has a substantially lower risk of entering

catastrophic states.

Paper J: Interpretable Option Discovery using Deep Q-Learning and
Variational Autoencoders

Relates to: Question 4.

This paper presents the Deep Variational Q-Networks (DVQN), which combines deep

generative- and reinforcement learning. The algorithm finds good policies from a Gaus-

sian distributed latent space, particularly useful for defining options. The DVQN algo-

rithm uses MSE and KL-divergence regularization, combined with traditional Q-Learning

updates. The algorithm learns a latent space representing good policies with state clusters

for options. We show that the DVQN algorithm is a promising approach for identifying

initiation and termination conditions for option-based reinforcement learning. Experi-

ments show that the DVQN algorithm, with automatic initiation and termination, has

comparable performance to DQN (Rainbow) and can maintain stability when trained for

extended periods after convergence.

Paper K: ORACLE: End-to-End Model Based Reinforcement Learn-
ing

Relates to: Question 2, and Question 5.

This paper proposes an end-to-end model-based reinforcement learning algorithm, the

Observation Reward Action Cost Learning Ensemble (ORACLE), for learning model-

free algorithms to act in environments without trial and error in the real environment.

This method is beneficial for existing installations that employ existing decision-making

systems, such as an expert system.

The proposed algorithm has the same fundamental learning principles as the Dreaming

Variational Autoencoder but differs substantially architecturally. The model uses princi-

ples from state-space modeling, recurrent neural networks, and Bayesian Deep Learning
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to create a highly expressive model for learning industry environments. We show that

the algorithm is more sample efficient and performs comparably with existing model-free

approaches. We also demonstrate how the algorithm is actor agnostic, enabling existing

model-free algorithms to operate in a model-based context.

Paper L: CaiRL: A High-Performance Reinforcement Learning Envi-
ronment Toolkit

Relates to: Question 1.

This paper addresses the need for a platform that efficiently provides a framework for run-

ning RL experiments. We propose CaiRL Environment Toolkit as an efficient, compatible,

and more sustainable alternative for training learning agents and detail recommendations

on developing efficient simulations.

There is an increasing focus on developing sustainable artificial intelligence. However,

there is little effort in current literature to improve the environmental efficiency for run-

ning simulation environments. The most popular development toolkit for reinforcement

learning, OpenAI Gym, is built using Python, a powerful but slow programming language.

To overcome the slowness of Python, we propose a platform on C++ that gives the same

flexibility but at magnitudes faster speeds.

CaiRL also presents the first reinforcement learning Toolkit with a built-in Adobe Flash

emulator for running legacy Flash games for reinforcement learning research. We empiri-

cally demonstrate that CaiRL performs significantly better through a thorough comparison

of the classic control domains. Furthermore, we illustrate that CaiRL is fully compatible

with OpenAI Gym for running reinforcement learning experiments.

Paper M: Towards Safe and Sustainable Reinforcement Learning for
Real-Time Strategy Games

Relates to: Question 2, Question 3, Question 5, Question 6, and Question 7.

This article presents a novel model-based DRL approach for tackling complex environ-

ments to reduce the need for failures during training. Specifically, our approach demon-

strates successful learning while still considering robust safety awareness, minimizing

risk, and reducing computational costs compared to model-free RL methods.

We empirically verify the Safe ORACLE (S-ORACLE) in multiple complex and stochas-

tic game environments such as Deep RTS, ELF: MiniRTS, Micro RTS, Deep Warehouse,

and StarCraft II. We show that our algorithm performs better than state-of-the-art model-

free and model-based approaches in the tested environments.
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1.6 Thesis Outline
This dissertation composes of two parts. Part I provides an overview of the work carried

out throughout the Ph.D. study. Part II includes the publications and in-review articles

representing this thesis’s main contribution, seen in the list of contributions. The remain-

der of this dissertation is structured as follows.

Chapter 2: Background presents the background literature of the techniques used in

this thesis. This includes Markov Decision Processes, Reinforcement Learning,

Safe Reinforcement Learning, and various Deep Learning modeling techniques.

Chapter 3: Literature Review describes a thorough literature review of scientific ad-

vances in reinforcement learning that motivates and inspires our contributions. The

keywords for our study are model-based, safety, environments, goal-directed RL,

interpretable RL, and, hierarchical RL.

Chapter 4: Software Contributions and Evaluation describes our scientific software

contributions to novel reinforcement learning environments. We present new en-

vironments to fill the state complexity gap in current state-of-the-art and discuss

our motivations, design specifications and provide baseline results and evaluations.

Chapter 5: Algorithm Contributions presents our main contributions of novel tech-

niques for safe model-based reinforcement learning in RTS games towards a func-

tional industry-grade reinforcement learning solution. Specifically, we present the

motivation for carrying out the work, and describe the details of our algorithms.

We provide the hyperparameters that led to the best results in our experiments, and

summarize the algorithm contributions.

Chapter 6: Contribution Evaluation empirically evaluates our algorithm contributions

using the proposed software contributions, including state-of-the-art environments

in the reinforcement learning literature. Each section presents a hypothesis that we

aim to address in the experiments and evaluations

Chapter 7: Conclusion and Future Work concludes Part I of this thesis and discusses

the final achievements of having carried out the Ph.D. work. Finally, we outline

future research directions that could potentially improve the work presented in this

thesis.

Part II presents the publications produced during the Ph.D. work in their entirety. There

are thirteen publications labeled from Paper A to Paper M. The papers are listed in

chronological order, roughly representing the flow of this thesis. See Figure 1.1 for

a detailed illustration of the research progression.





Chapter 2

Background
The fundamentals of reinforcement learning include Markov decision processes, model-

free reinforcement learning algorithms such as tabular methods, deep learning variants,

and model-based reinforcement learning. Extensions towards better safety include uncer-

tainty identification, constrained Markov decision processes, and risk-based objectives.

Furthermore, Bayesian and variational Bayesian methods can learn expressive models for

model-based reinforcement learning and interpretable RL.

This chapter thoroughly describes the background and preliminary information required

to understand the contributions of this thesis. We introduce the fundamentals of reinforce-

ment learning, including Markov decision processes, model-free reinforcement learning

algorithms such as tabular methods, deep learning variants, and model-based reinforce-

ment learning. We then dive into the techniques of safe reinforcement learning and de-

scribe core modeling techniques used in this thesis. These techniques include state-space

models, recurrent neural networks, and autoencoders. Finally, we describe topics this

work has not completed but has built momentum for future work.

2.1 Markov Decision Processes
The essence of reinforcement learning is teaching machine algorithms to make a sequence

of decisions in a dynamic system. Markov Decision Process (MDP) is a mathematical

framework that defines a class of stochastic sequential decision processes and is RL algo-

rithms’ fundamental building block. This thesis focus on games with a finite number of

states and actions. Therefore, we consider finite MDP’s. Figure 2.1 visualizes the MDP

framework, a discrete-time sequential process of making decisions then observing ot with

its corresponding reward rt. The observation is either fully observable such that ot = st

or partially observable such that ot ̸= st. (Monahan, 1982)

Definition 1 An MDP model is expressed as a tuple M = ⟨S,A,P ,R, γ⟩ where S
is the state-space, A is the action-space available to the agent at every timestep, P :

S×R×S×A → [0, 1] is the transition function,R : S×A → R is the reward function,

and γ → [0, 1] is the discount-factor (Puterman, 1990).
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Figure 2.1: The agent-environment synergy in an MDP (2018). The agent makes actions

in the environment, which triggers a transition to the next state. The agent observes the

new state with the corresponding reward signal.

The transition function P describes the probability of transitioning from a particular state

st to st+1 with the corresponding reward r after taking action a. The transition function

contains all information about the MDP,

P(st+1, r|st, at) = Pr [St+1 = st+1,Rt+1|St = st,At = at]

=
∑

st+1∈S

∑

rt∈R
p(st+1, rt|st, at) = 1, (2.1)

where P is defined for the next state st+1, ∀s ∈ S, and ∀a ∈ A(s). From the four-

argument transition function in Equation 2.1, we can derive a state-transition function

T : S × S ×A → [0, 1] and a reward functionR : S ×A → R for all state-action pairs.

The state-transition function is defined,

T (st+1|st, at) = Pr [St = st+1|St−1 = s,At−1 = a]

=
∑

r∈R
P(st+1, r|st, at), (2.2)

where the probability of entering the next state st+1 is dependent on the current state st
and the taken action at. The reward function is defined,

R(s, a) = E [Rt+1|St = s,At = at]

=
∑

rt∈R
r
∑

st+1∈S
P(st+1, rt|st, at), (2.3)

where R is the expected reward that the agent receives after making action at, triggering

transition to state st+1. An MDP has the Markov property if the next state and expected

next reward only depends on the current state and action. The Markov property exists for

a MDP only if,

Pr [St+1 = st+1,Rt+1 = rt|st, at, . . . s0, a0]
= Pr [St+1 = st+1,Rt+1 = rt|st, at] = 1.
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For complex game environments or real-world applications, the Markov property rarely

holds because fully observable data of the dynamics system are hidden (ot ̸= st). It is

challenging to characterize the next state without the Markov property unless it is possible

to observe the current state in its entirety. (Hausknecht and Stone, 2015).

2.1.1 Partially Observable Markov Decision Processes

In complex games such as Starcraft II and Dota 2, only partial state observations are

accessible (Berner et al., 2019; Vinyals et al., 2019). The agent must exploit partial

observations to construct beliefs of the true state. Partial Observable Markov Decision

Process (POMDP) is a generalization of MDPs that accounts for partial observability

of states. Therefore, it is widely used in literature to formalize optimization problems

such as games and industry applications. POMDP is defined as a tuple MPOMDP =

⟨S,A,Ω,P ,R,O, γ⟩ of three sets, three functions, and one constant. The definition is

similar to regular MDP’s. However, it includes a set of observations Ω = {o1, o2, . . . , on}
and the agent perception model O : S×A → Π(Ω) where Π(Ω) represent the probability

distribution on Ω (Littman et al., 1995). Figure 2.2 illustrates a POMDP where the agent

can only take actions at dependent on observations ot. The problem with observations is

that they may not capture the necessary information to succeed in the environment. Let

us consider some examples.

Example 1 A game of pong where the observation is a singular pixel image.

Example 2 A game of pong where the x-axis at position 20%-80% is masked (black area

without vision).

In the first example, the agent cannot determine the direction or velocity of the ball. For

the second example, the agent cannot fully determine the ball position at the 20%-80%

range of the x-axis, making it nearly impossible to learn how the ball moves. To alleviate

these problems, the agent can make decisions based on a history of observations. At state

st+n, one can think of this as having prior knowledge. The problem is that storing prior

observations in a buffer becomes infeasible for games with near-infinite states, making

this approach inadequate for complex games.

2.1.2 Belief Markov Decision Processes

Another approach to capture information from history is to encode observations into a be-

lief state using belief MDPs. A belief state b is a summarization of previous observations

into a probability distribution over all states s ∈ S, where b(st) = Pr(st|o1...t), represents

the probability that the environment is in state st (Rodriguez et al., 2000). Given that we
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Figure 2.2: A POMDP system. o, a, s, r denotes observations, actions, states, and re-

wards, respectively. The agent can only observe o0 . . . on after making an action where

the underlying state st . . . sn is hidden from the agent.

Figure 2.3: A Belief MDP. b, a, s, r denotes belief-state distributions, actions, states, and

rewards, respectively. In contrast to POMDP’s, the underlying state st is replaced with a

belief state distribution. States sampled from the belief state distribution are used to make

decisions in the MDP, which has similar traits to fully observable MDP’s.

have an initial belief state b0, we can compute belief states,

bt+1(st+1) = P(st+1|ot, at, bt)
∝ P(ot|st+1, at, bt)P (st+1|at, bt)
∝ O(ot|st+1, at)P(st+1|at, bt)
∝ O(ot|st+1, at)

∑

st∈S
P(st+1|at, bt, st)P(st|at, bt)

∝ O(ot|st+1, at)︸ ︷︷ ︸
Observation Model

∑

st∈S
T (st+1|st, at)︸ ︷︷ ︸

State-Transition

bt(st)︸ ︷︷ ︸
belief

,

(2.4)

which is a sufficient statistic for bt ≡ o1...t. The reward functionR(st, at) requires hidden-

state information, but we can introduce belief states such thatR(bt, at) =
∑

s∈S bt(st)R(st, at).
The belief state distribution bt can memorize historical observations. We assume that this

is enough information to represent the hidden-state st to treat the POMDP similarly to

fully-observable MDP’s, as seen in Figure 2.3. (Littman et al., 1995; Xiang and Foo,

2021)
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2.2 Reinforcement Learning
Analogous to human intelligence, a behavior policy is the brains of an algorithm and

expresses parameters for a function that aims to behave optimally in a given problem.

This section explains traditional RL methods such as tabular and function approximation

methods. These methods work well in many games or real-world applications but require

substantial data sampling to learn good behaviors. As the state-space complexity increases

in environments, training time increases exponentially, one of the major constraints of

state-of-the-art reinforcement learning. (Sutton and Barto, 2018)

The ultimate goal of a reinforcement learning agent is to find the optimal policy π∗. A

policy represents a mapping from state observations to action probabilities π(at|st). RL

algorithms categorize into three learning types; value-based, policy-based, and a combi-

nation called actor-critic-based algorithms. Our work utilizes all three categories, with

an additional focus on value-based methods. Value-based methods aim to learn a scalar

quantification of goodness between states and actions. We can indirectly infer an optimal

policy by learning an optimal value function. Policy-based or direct policy search learn

parameters for a policy function. Conversely to value-based methods, policy-based meth-

ods learn the policy direcly, fueled using a feedback function. Actor-critic algorithms

combine the merits of both approaches by alternating between steps to estimate the value

function and policy gradient updates.

There are also variations of on-policy and off-policy where off-policy algorithms can learn

using historical data and data samples from other policies. Lastly, there are model-based

and model-free algorithms where model-based algorithms learn using a predicted model

(unknown, but learned from samples) or a known environment model. In contrast, model-

free algorithms learn solely by trial and error in an unknown environment. RL algorithms

primarily frame the learning problem as an MDP and usually have an update procedure

as follows:

1. Read current observation st

2. Make a decision based on observation π(at|st)

3. Receive reward rt

4. Update policy estimates with a learning algorithm. Go back to step 1.

The optimal policy π∗ is the policy in policy-space Π that maximize the return,

π∗ = argmax
π∈Π

E [G|π] (2.5)
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where,

Gt = Rt+1 + γRt+2 + γ2Rt+3

=
∞∑

k=0

γkRt+k+1,
(2.6)

is the cumulative discounted return. The discount factor 0 ≤ γ ≤ 1 quantifies the im-

portance between immediate and distant rewards, where γ = 0 considers only immediate

rewards. γ = 1 weight immediate and distant rewards equally (2018). Perhaps the most

central equation in RL is the Bellman Expectation Equations,

vπ(st) = Eπ [Gt|St = s]

= Eπ [Rt+1 + γvπ(St+1)|St = s)]
(2.7)

where vπ(st) quantifies how good it is for the agent to be in state st following policy π

(Kiumarsi et al., 2018). The Bellman Equation, famously from dynamic programming,

defines a recursive function that expresses a relationship between the value of a state

and the successor state (Bellman, 1952; Sutton and Barto, 2018). However, the state-

value function is not practical when quantifying how good actions are in state st. This

is because the state-value function is a sum of all action values. The state-action value

function Q : S × A → R quantifies how good action at is in state st. The state-action

value function,

Qπ(st, at)

= Eπ [Rt+1 + γv(St+1)|St = s,At = a]

= E[Rt+1 + γEa∼πQ(St+1, a) | St = s,At = a],

(2.8)

is similar to the state-value function Qπ(st, at) but decomposes the value-function into

values for individual actions. (Kaelbling et al., 1996). Consequently, we find the optimal

policy π∗ indirectly through Q∗(st, at) or V ∗(st) functions, or in other words, solving the

Bellman Equation1 (Arulkumaran et al., 2017),

Q∗(s, a) = E[Rt+1 + γmax
a′

Q∗(St+1, at)].

2.2.1 Q-Learning

The most central algorithm for fundamental RL is the Q-Learning algorithm (Watkins

and Dayan, 1992). Q-Learning is a value-based algorithm and uses the Q-function from

Equation 2.8 as the basis for deriving the policy. Q-Learning is a model-free algorithm.

Such algorithms work independently of the underlying MDP dynamics T and are off-

policy. Off-policy describes the learning methodology, in this case, that it can learn from
1RL theory has significantly more ground to cover, but we have left out non-essential parts for this

dissertation. We recommend (Van Otterlo and Wiering, 2012) for further reading.
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samples collected by other policies, such as a random policy. The Q-Learning algorithm

follows the Bellman equations (Equation 2.8), where

Q(st, at)← Q(st, at) + αδt, (2.9)

where 0 ≤ α ≤ 1.0 is the learning rate, and δt is the Bellman residual,

δt = Rt+1 + γmax
a∈A

Q(st+1, at)
︸ ︷︷ ︸

off-policy

−Q(st, at). (2.10)

The Bellman residual δt denotes the Temporal Difference (TD) error between current and

subsequent state estimates. The name TD derives from its use of changes, or differences,

in predictions over successive time steps to drive the learning process. This procedure is

named bootstrapping, e.g., we update our estimates of Q(st, at) with another estimation

maxa∈AQ(st+1, a). Generally, Q-Learning assumes taking the best action greedily (max-

operator) given current knowledge (Jaakkola et al., 1994). The max operator assumes

that all future actions are optimal, allowing other policies to make decisions off-policy.

It is also possible to derive another popular algorithm, State Action Reward State Action

(SARSA), by omitting the max operator such that the Bellman residual,

δSARSAt = Rt+1 + γ Q(st+1, at+1)︸ ︷︷ ︸
on-policy

−Q(st, at),

is an on-policy TD update instead. The Q-Values are usually stored in a table. From

a computer perspective, such tables consume memory, usually between 32 and 64 bits

per table cell. Therefore, it becomes infeasible to use traditional RL in larger problems

because the table would exhaust the available system memory. For this reason, we use

function approximators to learn the latent representation (function), that best matches an

exact solution for the state-action value table.

2.2.2 Deep Q-Networks

Since traditional RL relies on tables to store parameters, it becomes infeasable to assume

an exact function to solve our policy optimization problem (Sutton and Barto, 2018).

Instead, function approximation and specifically using neural networks is an appealing

approach. This is because they demonstrate the capability to learn high-dimensional

functions (Mnih et al., 2015). DQN tries to estimate the Q-Table so that Q(st, at; θ) ∼
Q∗(st, at). Learning of the parameters θ is done through minimizing the following loss-

objective,

L(θi) = Est,at,rt,st+1∼P(.)

[
(δi|θi)2

]
, (2.11)

where δi is the Bellman residual from Equation 2.10. The first term is a reward, the

second term is the greedy estimation from the target Q-network, and the third term is
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the inference Q-network. The reason why two Q-networks are used is because of the

max operation combined with bootstrapping. Since Q-Learning assumes that all actions

from st and onwards are optimal, bootstrapping overestimates the Q-values and will as

st → ∞ become significantly overestimated. This problem is called the maximization

bias. Therefore, using independent estimators, we can unbiased Q-value estimates of the

actions selected using the opposite estimator. We can thus avoid maximization bias by

disentangling our updates from biased estimates.

2.2.3 Policy Gradient Algorithms

In contrast to value-based methods, Policy Gradient (PG) algorithms aim to find an opti-

mal behavior policy through direct policy search. The policy is defined as a parametrized

function w.r.t θ and computes gradients based on an objective function,

J(θ) =
∑

st∈S
dπθ(st)vπθ(st)

=
∑

st∈S
dπθ(st)

∑

at∈A
πθ(at|st)Qπθ(st, at)

∝ Est,at,rt,st+1∼P(.) [lnπθ(at|st)Qπθ(st, at)] ,

(2.12)

where dπθ(st) denotes the stationary distribution for πθ. (Sutton, 2019). Gradient updates

are performed using gradient ascent as we wish to find parameters θ for πθ that yields the

highest return, written as θ ← θ + α∇θJ(θ). The gradient theorem (Sutton and Barto,

2018) finds that the gradient w.r.t θ of the objective function J(θ) is,

∇θJ(θ) = Eπθ [Qπθ(st, at)∇θ lnπθ(at|st)].

Qπθ(st, at) is interchangeable with any return-based function (e.g., advantage function).

Eπθ indicates the empirical average over a finite set of samples, sampled using the algo-

rithm (Schulman et al., 2016). Strictly speaking, this means that policy gradient algo-

rithms are traditionally on-policy. Many algorithms build on the policy gradient frame-

work. Perhaps most notable is the Proximal Policy Optimization (PPO) algorithm for

its substantial empirical performance and simplicity (Schulman et al., 2017). PG algo-

rithms are notoriously difficult to train because estimates have high variance and no bias.

Vanilla PG is perhaps most known for this behavior, making the algorithm more sus-

ceptible to local optima and performing poorly across larger state spaces. We define the

ratio rot(θ) between current policy πθ(at|st) and previous policy πθold(at|st) such that

rot(θ) =
πθ(at|st)
πθold

. If we substitute lnπθ(at|st) in Equation 2.12, the objective becomes,

JCPI(θ) = Est,at,rt,st+1∼P(.) [ro(θ)Qπθ(st, at)] ,
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which is the Trust Region Policy Optimization (TRPO) objective in Schulman et al., 2015.

The problem with JCPI is that maximization leads to excessively large policy updates

making learning unstable. The work on PPO proposes a clipping scheme to reduce the

size of policy updates,

JCLIP (θ) = Est,at,rt,st+1∼P(.) [min(ro(θ)Qπθ(st, at), clip(ro(θ), 1− ϵ, 1 + ϵ)Qπθ(st, at))] ,

where ϵ is a hyperparameter 0 ≤ ϵ ≤ 1, typically set in the range of ϵ ∼ 0.2.

2.2.4 Model-Based Reinforcement Learning

Model-Based Reinforcement Learning (MBRL) follows the standard MDP derivation. It

involves learning the transition-function T from observed data (Moerland et al., 2020).

The goal is to find some parameters θm so that the estimated transition function P̂(st+1, rt|st, at; θm) ∼=
P(st+1, rt|st, at). In this work, we learn to derive the reward-function R̂ : S × A and

state-transition function T̂ : S × A because we aim to quantify uncertainties in reward

function estimates for risk-sensitive RL. This is further detailed in Section 2.3.1. While

it is common to incorporate decision-making into the model with algorithms such as

Cross-Entropy Method (CEM), our methods are model agnostic, enabling the training of

model-free algorithms (e.g., Q-Learning) using an estimated environment model. Model-

free approaches are more studied and have significantly better reward performance than

model-based approaches (Vinyals et al., 2019). Unlike model-free algorithms, model-

based algorithms are usually more sample efficient (Sutton, 1990). In combination with a

learned model of the environment, the aim is to combine the best of three worlds: sample

efficiency, reward performance, and risk-awareness incorporated.

The goal of an estimated environment model T̂ : S×A is to learn parameters θm that best

can reflect the behavior and characteristics of the unknown dynamics T from Equation

2.2. The estimated dynamics model is with this referred to as a dynamics model and is

defined,

T̂ (ŝt+1|ŝt, at; θm) ∼= T (st+1|st, at), (2.13)

where we assume that the estimated model is in some way captures information of the

unknown MDP similar to Hidden Markov Model (HMM)’s (Eddy, 2004). There are many

approaches to learning such models. However, we focus on Variational Autoencoder

(VAE)’s (Kingma and Welling, 2013), state-space models (Kalman, 1960), and recurrent

neural networks (Hochreiter and Schmidhuber, 1997).

2.3 Safe Reinforcement Learning
Traditional RL learns the optimal policy according to an optimization criterion. This opti-

mization criterion varies with algorithms but is commonly implemented to minimize time
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(b) Illustration of safety-constrained MDP state-
space.

Figure 2.4: Illustration of an MDP where actions are made according to a policy π. The

green nodes demonstrate safe terminal states in the state-space, gray is safe, neutral states,

red nodes are catastrophic state, and orange nodes are the transition given an action. The

left figure follows traditional RL optimization where trial and error occurs to recognize

bad states. The right figure illustrates a policy that has constraints and knowledge for

actions leading to states with negative feedback (red area).

or maximize reward. The return maximization criterion is frequently used in Q-Learning,

seen in Equation 2.9. This objective back propagates Q-estimates of the following state

to the former state.

It becomes evident that there is no safety guarantee in the traditional view of reinforce-

ment learning (Berkenkamp et al., 2017). The primary focus is for the agent to find

the policy that maximizes some feedback signal. Through Dynamic Programming (DP),

Monte Carlo Methods (MCM), or Temporal Difference (TD), find a way to learn by trial

and error. Trial and error are insufficient for mission-critical systems, because there are

usually no room for error. Therefore, it is natural to seek an alternative path towards

learning good policies while reducing the number of visited catastrophic states.

Figure 2.4 illustrates a deterministic MDP in the view of a traditional RL agent (Figure

2.4a) and an agent that is safety-aware (Figure 2.4b). The MDP considers state-space

S = {s0 . . . s9} and an action-space A = {a0 . . . a2} controlled using policy π(at|st),
with the probability of transitioning to the next stateP(st+1|st, at). The traditional model-

free RL agent must explore by trial and error to learn a policy that would keep a distance

from catastrophic states. This implies that the agent would with high probability, take





Advances in Safe Deep Reinforcement Learning for
Real-Time Strategy Games and Industry Applications

action a0 in state s0 and enter state s1 leading to a catastrophic terminal outcome. Such

outcome in a real-world system could potentially damage humans or equipment. The

motivation for a safer learning system becomes evident. The idea is to find a method to

map knowledge of good (green) and bad (red) state-space regions prior to exploration.

2.3.1 Uncertainty

Most algorithms are considered risk-neutral from a traditional RL view because they rely

on balancing exploration and exploitation until finding a good strategy. As clearly seen in

the update equation for Q-Learning (Equation 2.8) and the deep learning version for DQN

(Equation 2.11). Traditional RL algorithms learn by maximizing rewards (Equation 2.5)

that are not necessarily designed to guide agents safely to goal states. The problem with

risk-neutrality is that safety-critical systems such as the Deep Warehouse simulator (De-

scribed in Section 4.4), traditional algorithms fail to learn without relying on experience

from catastrophic states (Paper G).

One approach towards safe RL is to quantify the epistemic or aleatoric uncertainty and

define it as a risk signal. Aleatoric uncertainty stems from the observations done of the

environment. An environment might have some inherent noise and stochasticity that is

not controllable by the agent, which further amplifies belief MDP (however, the belief

distribution is epistemic uncertainty) and POMDP’s because of added uncertainty beyond

the observable state-space. Aleatoric uncertainty can be thought of as not changeable

but quantifiable. Conversely, epistemic uncertainty is the model uncertainty, or in other

words, the uncertainty of whether model predictions are correct with current knowledge.

A model can quantify (learn) epistemic model uncertainty, which correlates tightly with

the model’s overall prediction performance. (Kendall and Gal, 2017). In a stochastic

MDP, several measurable uncertainties exist, such as model, reward, and value uncer-

tainty (Bagnell et al., 2001).

Model uncertainty is the uncertainty of the transition function P in an MDP. It is suc-

cessfully used in literature to guide agents safely during learning (Kearns and Singh,

2002) in known MDP models. This work considers MDP’s where the transition

function (environment model) is unknown. For this reason, we must estimate the

model, which adds additional model uncertainty.

Reward uncertainty is the uncertainty of receiving a specific reward rt at state st given

the action made. The intrinsic motivation from Schmidhuber, 2010 describes an

auxiliary reward signal from the extrinsic reward functionR. Work from Pathak et

al., 2017 similarly proposes a dynamics-based prediction error used as a secondary

reward signal.
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Policy-space Π

Constrained	policy	space Γ

Figure 2.5: The policy-space (blue) Π and the subset of policies (red) Γ ⊆ Π, where each

policy π ∈ Γ must satisfy the constraints ii ∈ I .

Value uncertainty considers the value function vπ(s) as a source of risk. Due to the re-

cursive nature of the Bellman equations (Equation 2.7), the value-function estimates

increasingly accumulate errors over time t→∞.

2.3.2 Constrained Markov Decision Processes

Constrained Markov Decision Process (CMDP) extends the original MDP framework

from Altman, 1999 that replaces the conventional risk-neutral conditional expectation of

cumulative reward objectives with a notion of risk measure.

Risk is a function that quantifies the danger or uncertainty of making an action following

policy π(at|st) (Heger, 1994). It is founded on the uncertainty associated with future

events. It is inevitable since the consequences of actions are unknown when an action is

made in systems with unknown dynamics (Shen et al., 2013). Numerous methods quantify

risks, such as Risk-Sensitive Criterion (Geibel and Wysotzki, 2005), Worst Case Criterion

(Gaskett, 2003), and Constrained Criterion (Moldovan and Abbeel, 2012) where this

work focus on the latter. A policy that disregards risk evaluation is risk-neutral, and the

learning objective is to maximize the expectation of returns,

max
π∈Π

Eπ(G) = max
π∈Π

Eπ(
T∑

t′=t

γt
′−trt′),

which express the same objective as in Equation 2.6. For algorithms that follow this

objective, it is clear that the algorithm is risk-neutral by design because safe trajectories

are seldom the same trajectory as maximizing rewards. This motivates adjustments to the

objective function to make the policy more risk-aware when maximizing the return.

The Constrained Criterion is an appealing extension to the standard MDP framework,

described as the tuple (S,A,R,P , γ, I). I is a set of constraints applied to the MDP.

Such constraints guarantee that learning policies are constrained to a subset of the full

state-space, typically used to reduce or eliminate unsafe policies, as illustrated in Figure

2.4. The most promising work in CMDP’s and safe RL is the work of Berkenkamp et al.,
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2017. The general form of the constrained criterion is defined,

max
π∈Π

Eπ(G) subject to ii ∈ I, ii = {hi ⋛ αi} (2.14)

where ii is the nth constraint in the set I that must be satisfied in the MDP. Additionally,

hi is a function related to the return G, an upper or lower bound to the threshold value αi.

Consider all constraints satisfied, then the policy-space is reduced to a subset Γ ⊆ Π, and

the policy exists only within this subset π ∈ Γ. The idea is that the constraints lead to a

smaller policy-space, where it is more likely that a safe solution is found, seen in Figure

2.5. Given that the algorithm selects policies only from the safe subset Γ, the objective

function can be written as

max
π∈Γ

Eπ(G) (2.15)

which is the standard definition of expected return from Equation 2.6, but w.r.t to a subset

of safe policies Γ.

Constraint selection is a delicate user-defined process of designing signals using data from

the MDP, which largely depends on the specific problem (2017; Geibel and Wysotzki,

2005). Mainstream literature uses Lyapunov and Barrier functions which guarantees

safety analytically within a subset of the policy search space (Chow et al., 2018). The

problem with these methods is that they are highly dependent on model assumptions

which are usually infeasible to achieve for complex real-world systems. Section 3.2.1

details state-of-the-art literature on Lyapunov and barrier functions.

2.3.3 Risk-directed Exploration

Following Edith et al., 2005, risk-directed exploration is an auxiliary risk-driven feedback

signal that guides action selection in RL algorithms. The exploration-risk function Ψ :

S ×A → R,

Ψ(st, at) = wH− (1− w) E[R(st, at)]
max
at∈A
|E[R(st, at)]|

, (2.16)

where H is the entropy function,

H(st, at) = −T̂ (st+1|st, at) log T̂ (st+1|st, at). (2.17)

The entropy H of a stochastic process is a measured uncertainty that suits well for quan-

tifying risk. The risk is denoted Ψ and, as seen in Equation 2.16, is used as a trade-off

between normalized expected return and system entropy (Yang and Qiu, 2005a). The risk

is weighted 0 ≤ w ≤ 1 where w ≥ .5 appreciate the stochastic nature of the system more.

Furthermore, we define a utility function U : S ×A → R,

U(st, at) = ρ(1−Ψ(st, at)) + (1− ρ)π(at|st), (2.18)
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where 0 ≤ ρ ≤ 1 controls risk-awareness of the agent. For ρ = 0, the algorithm behaves

risk-neutral. As ρ → 1, the agent becomes increasingly aware of risks in the decision-

making process. Note that the utility function U is policy agnostic and works with policy

and value based algorithms (e.g., PG and DQN). Moreover, value-based methods (e.g.,

Q-Learning), are usable with sampling techniques such as ϵ-greedy or Boltzmann distri-

butions (softmax). (Edith et al., 2005; Tijsma et al., 2017)

2.3.4 Risk-sensitive Reinforcement Learning

Risk-sensitive RL refers to the branch of safe RL, which expresses the balance of weighted

risk metric and the return function,

max
π∈Π

(Eπ(R(st, at))− βω). (2.19)

The first term in Equation 2.19 is the expectation of returns (Equation 2.3). The second

term is the weighted 0 ≤ β ≤ 1 risk-function ω : R × S × A → R (note that this

is omega ω not to be confused with w in Equation 2.16) (Geibel and Wysotzki, 2005).

Literature has studied different definitions of risk, such as using uncertainty from the TD-

Error (Campos and Langlois, 2003; Mihatsch and Neuneier, 2002), reward uncertainty

(Gosavi, 2009), and using a set of error-states (Geibel and Wysotzki, 2005). This work

uses two sources of uncertainty in the system, particularly the dynamics model entropy

and the variance in a set of predicted rewards, similar to Gosavi, 2009. Like Romoff et

al., 2018, we consider a function approximator to learn a reward signal without inducing

additional noise because model predictions are already noisy. Unique to recent literature,

we combine risk-sensitive RL and risk-directed exploration (Equation 2.16), adjusting

for explorative safety long term, inspired by Edith et al., 2005, and short term through

risk-using weighting of the return function.

2.3.5 Goal-directed Reinforcement Learning

Goal-Directed Reinforcement Learning (GDRL) is not directly a technique for reducing

risk. However, it has appealing properties that reduce the probability of entering catas-

trophic states. Therefore, works in the literature adopt GDRL as a method towards risk

reduction (del R. Millán, 1995). GDRL separates the learning into two phases. Phase

one aims to solve the Goal-Directed Exploration (GDE) problem (Smirnov et al., 1996).

To solve the GDE problem, agents must determine at least one viable path from the ini-

tial state to a goal state. In phase two, agents use the learned path to find a near-optimal

path. The two phases iterate until the agent policy converges (Debnath et al., 2018).

The modeling task is to compute costs using neural network approximators that follow

an episodic training scheme. During exploration, the algorithm records a buffer of vis-

ited states. When the agent enters a terminal state, states in the buffer are labeled with
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Figure 2.6: A graphical representation (PGM) of a state-space model. ot is observations,

zt is latent variables (e.g., hidden system dynamics), and at denotes a function or variable

that influences the system’s transition.

the corresponding Euclidean distance from the goal. The training is a supervised learn-

ing problem but requires a sufficient set of historical data for the estimator to accurately

predict distances between the current state and the terminal state.

2.4 Machine Learning Models
This section presents machine learning models central to reinforcement learning and

prominent to the success of our contributions. Variational mnference and Probabilistic

models have shown outstanding performance in computer vision. Algorithms based on

these principles offer incredible capabilities to learn expressive models. Therefore, they

are also an appealing choice for model-based RL, used to learn a dynamics model from

collecting data during exploration. Reinforcement learning heavily relies on techniques

from other branches of machine learning research. For example, the most significant

discovery in recent times is using deep learning models in place of exact tabular solu-

tions, which immensely increase expressive capabilities. These techniques span several

disciplines, such as State Space Models (SSM) from control theory, Recurrent Neural

Networks (RNN), Variational Autoencoder (VAE), and Vector-quantized Variational Au-

toencoder (VQ-VAE) which are deep variational Bayesian methods. 2

2.4.1 State Space Models

State Space Models (SSM) is particularly interesting because of its remarkable history of

predicting system dynamics and future events. One such example is trajectory estima-

2We refer the reader to Kingma and Welling, 2019 for a detailed introduction to variational inference
and probabilistic models.





2.4. MACHINE LEARNING MODELS

tion in the aerospace industry. At the Apollo 11 project, SSM’s contributed to land Neil

Armstrong and Buzz Aldrin on the moon in the late ’60s (McGee and Schmidt, 1985)

using the work of Kalman, 1960. Since then, state space methods have been applied in

many subjects, including economics, finance, political science, environmental science,

road safety, and medicine (Commandeur et al., 2011). Figure 2.6 illustrates a graphical

representation of an SSM.

SSM’s are defined for a given sequence of observations o1:T = [o1, . . . xT ] that depends

on input variables. This dissertation inputs actions from RL agents a1:T = [a1, . . . , aT ].

At each time step, the latent-state variable zt encapsulates all past information up to the

present. The states in an SSM form a Markov Chain (MC). They are highly similar

to the assumptions in MDPs, such as having the Markov property. SSMs demonstrate

excellent capabilities for expressive non-linear systems and system identification (Schön

et al., 2011). There are three types of SSMs. Filtering for noise reduction of present state

using previous states, smoothing for estimating previous states using future states, and

prediction to estimate future states using previous states.

Smoothing computes the posterior pθ(zt|o1:T , a1:T ) using past, present, and future infor-

mation to predict the latent variable. Because smoothing uses future information, it

is limited to offline learning but performs better due to additional data. It is possible

to redefine smoothing for a fixed-lag interval k such that pθ(zt|o1:t+k, a1:t+k). It is

applicable in an online setting when the system allows for a k timesteps delay.

Filtering computes the posterior using past information pθ(zt|o1:t, a1:t) to retrieve the

present latent-state. Filtering is widely used in literature because of its ability to

work online. Perhaps the most widely known model is the Linear Gaussian State

Space Model (LGSSM) (Kalman Filter) from (Kalman, 1960).

Prediction is for computing the future posterior latent-state variable pθ(zt+k|o1:t, a1:t+k).
Prediction is the primary focus of this thesis. It is particularly interesting because it

allows predicting future events based on historic state and action information.

Using a neural network function approximator, we model the SSM problem as a non-

linear stochastic process. We take inspiration from the seminal work of Kingma and

Welling, 2013 using amortized variational inference techniques, similar to the efforts of

Fraccaro, 2018. The goal is to design the function pθ(zt|bt−1, at−1) to predict future latent

vectors where bt−1 is the belief state function and at−1 is the RL agent’s action at state st.

Generally, one can almost think of SSM’s as a VAE, but significantly better capabilities

to learn temporal state depedencies. In practice, the temporal dependencies are learned

using recurrent neural networks, and therefore, the SSM method functions similarly to

VAEs.
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Figure 2.7: A traditional autoencoder. The encoder qθ takes an observation o as input

and computes it to a compact latent space variable (latent representation). Consequently,

the decoder can decode the latent space variables where the goal is to decompress the

data so that the original input is retrieved ôt. Several training methods exist for deep

autoencoders, but the most common method is using mean-squared error between the

observed datapoint ot and the decompressed output ôt.

2.4.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are interesting because they aim to learn data depen-

dencies stretched through time. This work tests several RNN methods such as Liquid-

Time Constant (LTCRNN) networks from Hasani et al., 2021 and Gated Recurrent Unit

(GRU) from Cho et al., 2014. However, we found Long short-term memory (LSTM)

networks from Hochreiter and Schmidhuber, 1997 to perform better in most tested en-

vironments. Following Belief Markov Decision Process (BMDP)’s theory, it is possible

to learn a belief distribution with sufficient observations statistics bt ≡ o1...t. The LSTM

layer is part of the generative network to predict present belief states bt based on the pre-

vious belief state bt−1 and action at−1. However, they only use the notation zt after adding

stochasticity to the LSTM prediction.

2.4.3 Deep Autoencoders

Autoencoders are commonly used in supervised learning to encode arbitrary input to a

compact representation and use a decoder to reconstruct the original data from the en-

coding. The purpose of autoencoders is to store redundant data into a densely packed

vector form. In its simplest form, an autoencoder consists of a feed-forward neural net-

work where the input and output layer has equal neuron capacity and the hidden layer is

smaller and used to compress the data, seen in Figure 2.7. This is also commonly called

the “bottleneck”. Such autoencoder can be defined as: qθ : O → Z, pθ : Z → O, where

qθ, pθ : argmin
qθ,pθ
||O − (qθ × pθ)Ô||2. In this notation, O defines the input data-space, Z,
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Figure 2.8: A convolutional variational autoencoder. Convolutions extract features from

input pixels ot and parametrize a Gaussian distribution by splitting the last layer of the

encoder to mean µ and standard deviation σ. This allows using the reparameterization

trick, which allows gradients to flow through the network for optimization. We sample

the latent space variables zt from the Gaussian such that zt ∼ N (µ, σ; θ) and decodes

the latent variables using the decoder pθ. The decoder output ôt is a generative sample

variation of the input ot. The network is trained with variational inference, specifically

using a reconstruction loss (mean-squared error) and a Kullback Leibler Divergence (KL)

as the regularization term).

the latent space, and Ô as the reconstructed data space. Traditional autoencoders are not

generative, meaning that they cannot learn to interpolate between observed samples in a

partial state-space. This reason motivates looking into alternative methods for generating

novel samples from only a fraction of the data space. (Baldi, 2012)

2.4.4 Variational Autoencoders

The Variational Autoencoder (VAE) is a generative autoencoder that uses neural networks

to parametrize probability distributions to define a probabilistic latent variable model ef-

ficiently. Figure 2.8 illustrates the VAE architecture where an observation ot encodes

to µ and σ that is used to sample Gaussians with the reparametrization trick. zt is the

sampled latent space variables that decode to the predicted observation ôt. VAE’s define

a generative model and an inference network used to learn the parameters that best fit

observed data. The generative model is the joint probability distribution prθ(xt, zt) =

prθ(xt|zt)prθ(zt) where prθ(zt) = N (zt; 0, I) and the decoder is usually prθ(xt|zt) =

N (xt;µ, σ) with µ and σ being neural network estimators (Kingma and Welling, 2013).

The inference network or the encoder allows computing a posterior approximation given

a particular data point (e.g., an observation of a game). In particular, we use Amortized

Variational Inference (AVI) that shares parameters over all observed data points (2013).

The posterior approximation is defined as p(zt|xt) = N (zt;µ, σ) following the same
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principles as for the decoder. Parameter learning is performed using Evidence Lower

Bound (ELBO), which consists of a reconstruction and regularization term (Equation

5.9 and Equation 5.12. The reconstruction term optimizes the style of the output (e.g.,

correct color and shapes), and the regularization term aims to model the data similarly

to the prior (e.g., a Gaussian distribution). The network trains using ELBO because

prθ(zt|xt) =
∫
zt

prθ(xt|zt)prθ(zt)
prθ(xt)

dz is intractable (Zhang, Butepage, et al., 2019). Intu-

itively, the aim is to create a generative model that can reconstruct belief data over unseen

data points given the best estimates of data seen thus far. This fits well with a model in RL

but requires adjustments to account for temporal dimensions. Motivated by the challenges

of posterior collapse in VAE, Van Den Oord et al., 2017 propose a categorical generative

network using vector quantization and demonstrates superior encoding performance on

several datasets.

2.4.5 Vector Quantized-Variational Autoencoder

Vector-quantized Variational Autoencoder (VQ-VAE)s is a type of variational autoen-

coder that uses vector quantization to obtain a discrete latent representation, in contrast to

the continuous latent representation of traditional VAE’s. VQ-VAE is different in that the

encoder outputs are discrete. Additionally, the prior is learned in contrast to being a static

distribution in VAE’s. The algorithm incorporates ideas from vector quantization which

forms its name VQ-VAE. The primary motivation behind this algorithm is that posterior

collapse is circumvented, which is a significant problem in traditional VAE’s. VQ-VAE

uses a discrete codebook component, a list of vectors corresponding to an index. The

codebook is used to quantize the bottleneck part (vector) of the autoencoder, and the en-

coder network output is used to lookup the codebook vector that is closest in Euclidean

distance,

zq(ot) = argmin
i
||ze(ot)− ei||2 (2.20)

where ze(ot) is the encoder vector for an observation xt, ei, is the codebook vector at

index i, and zq(ot) is the quantized vector reconstructed by the decoder. (2017)

2.5 Interpretable and Option-based RL
This study envisions an algorithm that humans can interpret while simultaneously learn

a multi-level policy for solving many different problems. For example, learning an algo-

rithm to play StarCraft will hopefully allow other long-term planning problems to reuse

the learned hierarchical behavioral policy.

Although interpretability and option-based RL are not this dissertation’s primary focus, it

is nevertheless central to model-based DRL, because (1) it is crucial to understand models
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in real-world environments (trust), and (2) it is potentially better to separate behavioral

policies as options for multi-objective planning tasks. We present Deep Variational Q-

Networks (DVQN) in Section 5.2, which aim to interpret latent spaces in reinforcement

learning agents. As a result, we propose a new approach towards automatic options dis-

covery in hierarchical reinforcement learning and the options framework.

Interpretable Reinforcement Learning

A longstanding problem of reinforcement learning (and machine learning) is explain-

ing and interpreting the decision processes. With the broad adoption of deep learning

techniques, explainability has become even more central, as it is nearly impossible to un-

derstand the influence of each parameter on the model. One may ask why it is vital to

interpret these RL models. The most dominating response is the need to trust models for

deployment in production environments. There are two prevalent methods in interpretable

AI, specifically intrinsic explainability, where the model is inherently explainable. One

such example is Decision Trees (DT). The second interpretability method is post-hoc, as-

suming an external algorithm that analyzes the decision-maker model and interprets the

observed behavior or parameters. Interpretations are either local or global, where local in-

terpretations interpret parts of the model. In contrast, a global interpretation can interpret

the whole model.

Because the primary focus is to solve safe RL in RTS games, the work on interpretability

is limited to post-hoc methods with local interpretability. Specifically, this thesis inves-

tigates the interpretation of game environment state spaces using dimension reduction

techniques, such as VAE and VQ-VAE, similar to the work from Zahavy et al., 2016.

More literature can be found in the detailed survey on interpretable RL from Puiutta and

Veith, 2020.

Hierarchical Reinforcement Learning with Options

The options framework from Sutton et al., 1999 is a multi-policy scheme that functions

through temporal abstractions in MDP’s. In a regular MDP, time is perceived as a fixed

sequence (e.g., every timestep is a fixed step of 0.5 seconds) where a policy operates over

the MDP as a whole. The options framework formalizes the MDP to include a sequence

of actions by an option-conditioned policy with a termination condition. An MDP has a

set of options that induces a hierarchy that models the temporal abstraction (e.g., different

time scales or timespans per option) and constitutes a Semi Markov Decision Process

(SMDP). Therefore, SMDP’s is the extension that allows the time between actions to be

variable instead of fixed.

A typical SMDP defines actions at different levels of abstractions, and an excellent ex-
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ample of such MDP is robotic control problems. For example, the robot has to perform

n0 action every t0 milliseconds for controlling legs to walk using policy π0. However, for

making hand gestures, the action-space may have n1 actions requiring decision evalua-

tion every t1 milliseconds using π1. This gives us two different policies (or options) that

function over the same MDP but at different levels of abstractions.

This work does not create a hierarchical solution but creates momentum for such work in

the future. Specifically using VAE’s to interpret and cluster parts of the state-space, we

show that it is possible to classify a different set of required behaviors, as seen in Section

6.3.

2.6 Summary and Overview
This chapter presents an overview of relevant topics for this Ph.D. dissertation in model-

based reinforcement learning, model-free reinforcement learning, and safe-reinforcement

learning as the major topics. We also present other less prevalent topics in our research,

specifically interpretability and hierarchical reinforcement learning. We connect the present

background to our contributions in Table 2.1.
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Table 2.1: An detailed overview connecting the background to our proposed methods.

The topic column describes the particular technique. The DVAE, ORACLE, and DVQN

columns describe if the technique is used in the algorithm.

Topic DVAE ORACLE DVQN

MDP’s X X X

POMDP’s X X X

Q-Learning X X X

Policy Gradients X X -

Model-Based RL X X -

Uncertainty Learning X X -

CMDP’s X - -

Risk-Directed RL X X -

Risk-Sensitive RL X X -

Goal-Directed RL X X -

State Space Models - X -

Recurrent NN’s X X -

Autoencoders X - X

Variational Inference X X X

Vector Quantization - X -

Interpretable RL - - X

Hierarchical RL - - -





Chapter 3

Literature Review
A central part of research is learning from other researchers’ discoveries and expanding

on the body of knowledge. Scientific achievements are usually articles presenting re-

views of related work that lead to novel discoveries, justification, and conclusions. This

chapter presents the related literature to work carried out during this Ph.D. The chapter in-

cludes related work on model-based reinforcement learning, safe reinforcement learning,

goal-directed reinforcement learning, interpretable reinforcement learning, hierarchical

reinforcement learning, and a study of existing reinforcement learning environments.

3.1 Model-Based Reinforcement Learning
Recent literature shows that Model-based RL is becoming the frontier with several new

algorithms that outperform model-free variants with a large margin. The most recent

achievement is discrete world models with DreamerV2 from Hafner et al., 2021. Dream-

erV2 is the first reinforcement learning agent that achieves human-level performance on

the Atari benchmark by learning behaviors fully offline in a world model. Prior work

in Hafner et al., 2020 uses a similar architecture to Paper D by deriving latent dynamics

that form estimations of future observations given an action. More recently, Ozair et al.,

2021 proposed Vector-quantized Variational Autoencoder (VQ-VAE) for planning in RL.

The authors use a stochastic variant of the Monte Carlo Tree Search (MCTS) algorithm

to plan the agent’s actions and the discrete latent variables representing the system’s dy-

namics model. This approach shows state-of-the-art results in chess and illustrates that

the approach scales to DeepMind Lab, a first-person 3D environment with complex visual

state observations with only partial observability.

The Model-Ensemble Trust-Region Policy Optimization (ME-TRPO), formally proposed

by Kurutach et al., 2018, is a Dyna-based algorithm for learning a dynamics model. The

ME-TRPO method uses an ensemble of neural networks to form the dynamics model,

which significantly reduces model bias, increasing its generalization abilities. The en-

semble individually trains using single-step L2 loss in a supervised setting. After training

ME-TRPO, the authors use Trust Region Policy Optimization (TRPO) from Schulman

et al., 2015 as the model-free approach. The work shows significantly faster convergence

39
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in several continuous control tasks.

Luo et al., 2018 extend the ME-TRPO algorithm with Stochastic Lower Bound Optimiza-

tion (SLBO). In comparison, it modifies the single-step L2 loss to multi-step L2-norm

loss to the train ensemble dynamics model. The authors present a mathematical frame-

work for the guaranteed monotonic improvement of the dynamics model. This framework

is a meta-algorithm that iteratively builds a lower bound of the expected reward based on

the learned dynamics model and sample trajectories. The authors then show that they can

jointly maximize the lower bound over the dynamics model policy. The empirical results

show that SLBO outperforms state-of-the-art algorithms in Swimmer, Half-Cheetah, Ant,

Walker, and Humanoid environment in the Mujoco physics engine.

In Janner et al., 2019, the authors analyze previous methods and their capability to gen-

eralize well for longer time horizons. Their analysis suggests that reconstruction perfor-

mance is sufficient for shorter time horizons but exponentially decreases for more ex-

tended rollouts due to uncertainty. The proposed algorithm is called Model-Based Policy

Optimization (MBPO) and balances a trade-off between sample efficiency and perfor-

mance. The authors suggest a prediction horizon between 1-15 states, up to 200 states. In

conclusion, MBPO shows that model-based approaches can outperform state-of-the-art

model-free reinforcement learning when tuned appropriately.

Deep Planning Network (PlaNet) from Hafner et al., 2019 is a model-based agent that

interprets a state’s pixels to learn the dynamics of an environment. The model learns a

high-dimensional function that encodes observations and environment dynamics to latent

variables. The agent samples actions based on the learned latent variables. The proposed

algorithm showed significantly better sample efficiency than algorithms such as A3C and

D4PG. The authors also show that their algorithm can learn multiple tasks using a single

agent policy with a substantially faster convergence rate.

Chua et al., 2018 propose Probabilistic Ensembles with Trajectory Sampling (PETS). The

algorithm uses an ensemble of bootstrap neural networks to learn a dynamics model of

the environment over future states. The algorithm then uses this model to predict the

best action for future states. The authors show that the algorithm significantly lowers

sampling requirements for environments such as Half-Cheetah in Mujoco, compared to

Soft Actor-Critic (SAC) and PPO.

Bangaru et al., 2016 proposed a method of deducing the MDP by introducing an adaptive

exploration signal (pseudo-reward), obtained with a deep generative model using varia-

tional autoencoders. Their approach was to compute the Jacobian of each state and use it

as the pseudo-reward when using deep neural networks to learn the state-generalization.

They present two algorithm variations, MTRL-0, and MTRL-α, respectively, without and

with the Jacobian pseudo-reward. The authors demonstrate that their method outperforms
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value-iteration. Furthermore, their dynamics model can accurately predict state observa-

tions in navigation tasks.

Xiao and Kesineni, 2016 proposed using Generative Adversarial Networks (GAN) for

model-based RL. The goal was to utilize GAN for learning environment dynamics in

a short-horizon timespan and combine this with the strength of far-horizon value iter-

ation RL algorithms. The GAN architecture proposed illustrated near authentic gener-

ated images giving comparable results to Mnih et al., 2015. Azizzadenesheli et al., 2018

similarly verified the usefulness of GAN for model-based RL with theoretical analysis.

Their method, Generative Adversarial Tree Search (GATS), combines GAN’s and MCTS,

demonstrating significant bias reduction in Q estimates. Furthermore, their method sub-

stantially reduces sample complexity by a factor of 200% for DQN.

Higgins, Pal, et al., 2017 proposed DisentAngled Representation Learning Agent (DARLA),

an architecture for modeling the environment using β-VAE (Higgins, Matthey, et al.,

2017). The trained model was used to learn the optimal policy of the environment us-

ing algorithms such as DQN (Mnih et al., 2015), A3C (Mnih et al., 2016), and Episodic

Control (EC) (Blundell et al., 2016). DARLA is the first algorithm to introduce learning

without access to the ground-truth environment during training to the best of our knowl-

edge.

Buesing et al., 2018 evaluate the environment modeling capabilities in auto-regressive

(AR) and state-space models (SSM). The models, deterministic SSM (dSSM-DET), stochas-

tic SSM with VAE (dSSM-VAE), stochastic SSM (sSSM), and recurrent AR (RAR), is

tested in four games using the Atari Learning Environment (ALE), namely BOWLING,

CENTIPEDE, MS PACMAN, and SURROUND. The results suggest that it is better to

model the state-space than to utilize Monte-Carlo rollouts. Specifically, state-space mod-

els are significantly faster and produce more accurate results than auto-regressive meth-

ods.

Stochastic Optimal Control with Latent Representations (SOLAR) is an algorithm that

learns the dynamics of an environment by exploiting the knowledge from a reinforce-

ment learning policy. This enables the algorithm to learn local models used in policy

learning for complex systems. SOLAR is built around a Probabilistic Graphical Model

(PGM) structure that allows efficient learning of the environment model. The authors

show that gradients give good direction for policy improvements during training by ex-

ploiting model locality. The algorithm was compared to model-free methods and showed

significantly better performance and data-efficiency compared to algorithms such as Fit-

ted Linear Models (LQR-FLM) (Zhang, Patras, et al., 2019).

Ha and Schmidhuber, 2018a proposed in Recurrent World Models Facilitate Policy Evolu-

tion, a novel architecture for training RL algorithms using variational autoencoders. The
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authors demonstrate that agents could successfully learn the environment dynamics and

use this as an exploration technique requiring no interaction with the target domain. The

architecture is mainly three components; vision, controller, and model. The vision model

is a variational autoencoder that outputs a latent space variable of an observation. The

latent space variable is processed in the model and feeds into the controller for action de-

cisions. Their algorithms show state-of-the-art performance in self-supervised generative

modeling for reinforcement learning agents.

The algorithm VMAV-C combines VAE and attention-based value function and Mixture

Density Network Recurrent Neural Network (MDNRNN) from 2018a. This modification

to the original World Models algorithm improved performance in the CartPole environ-

ment. They used the on-policy algorithm, PPO, to learn the optimal policy from the latent

representation of the state-space (Liang et al., 2018).

Neural Differential Information Gain Optimisation (NDIGO) algorithm by Azar et al.,

2019 is a self-supervised exploration model that learns a world model representation

from noisy data. The primary characteristic of NDIGO is its robustness to noise be-

cause it weights negative feedback lower and provides more positive learning value. The

authors show in their maze environment that the model successfully converges towards

an optimal world model even when introducing noise. The author claims that the algo-

rithm outperforms the previous state-of-the-art, the Recurrent World Model from Ha and

Schmidhuber, 2018a.

Gregor, Jimenez Rezende, et al., 2019 proposed a scheme to train expressive generative

models to learn belief-states of complex 3D environments with little prior knowledge.

Their method effectively predicts multiple steps into the future (overshooting) and signif-

icantly improves sample efficiency. The authors illustrated model-free policy training in

several environments in the experiments, including DeepMind Lab. However, the authors

found it difficult to use their dynamics model in model-free agents directly.

3.2 Safe Reinforcement Learning
In most established systems in the industry, an expert system made from human reasoning

acts as a controller in the environment (Lu, 2019). This is critical for safe and stable learn-

ing in real-world environments so that ongoing and new operations are not interrupted.

There are several efforts towards better safety in RL. A common approach is formalizing

the problem as a constrained MDP and using Lyapunov or Barrier functions to guaran-

tee decision safety for a subset of the policy space under model assumptions. Another

frequently used approach is to apply RL algorithms with human intervention when there

is uncertainty about the outcome of actions. This section details related work where the

primary goal is to improve or solve safe model-based RL.
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3.2.1 Lyapunov Functions

Perhaps the most notable recent work in solving problems using safe model-based RL is

the work of Berkenkamp et al., 2017. They propose a region of attraction-based method

that is guaranteed safe, constrained to a set of safe states. The author presents a learning

algorithm with two assumptions. First, the model must be is Lipschitz continuous. Sec-

ond, requires a reliable and well-calibrated statistical model to allow accurate exploration,

close to the ground truth model function (the environment). The author uses the region of

attraction method from control theory and Lyapunov functions that constrain the problem

to an invariant set of the policy space. Furthermore, the author finds that a Lyapunov func-

tion is derivable from the value function vπ(s), given that all rewards are positive. The

experiments and theoretical justifications demonstrate that the algorithm functions well

for the inverted pendulum environment. Furthermore, their proposed algorithm improves

performance while also holding safety constraints (2017). Chow et al., 2018 similarly

use Lyapunov functions to solve Constrained Markov Decision Process (CMDP) prob-

lems with the assumption of a feasible baseline policy. The author proposes updating the

Lyapunov function using bootstrapping and showing that the method integrates well with

Q-Learning. The author does not provide convergence proof to the optimal policy but

empirically demonstrates that their approach performs better than Lagrangian methods.

3.2.2 Barrier Functions

Like Lyapunov-based approaches, the use of barrier function aims to constrain the policy-

space to a safe set of possible policies that are guaranteed to work safely. Cheng et al.,

2019 propose a combination of model-based dynamics learning, shielded RL, and model-

free algorithms as actors. Barrier functions are forward invariant, similar to Lyapunov

functions. They often use a temperature hyperparameter to determine how constrained

the policy space is. The method guarantees safety. However, it builds on the assumption

that a determined set of safety policies are given before training. The authors demon-

strate that their method outperforms novel model-free algorithms in sample efficiency

and safety but at the cost of reward performance. In a similar direction, Yang and Qiu,

2005b propose a novel actor-critic barrier function structure for multi-agent safety-critical

systems. Specifically, the authors propose a two-player game architecture for guaranteed

safety during learning and solve a known model with safety guarantees.

3.2.3 Human Intervention

One of the fundamental questions to raise in a safety-critical environment is when to trust

your model (Janner et al., 2019). In earlier work on Human Intervention techniques,

Saunders et al., 2018 propose a simple framework for safely training an algorithm us-
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ing human intervention for catastrophic states. At every timestep in the environment, a

human participant evaluates the state and propose an action to the algorithm. For catas-

trophic actions, humans correct the agent with a negative feedback signal. The human

intervention scheme is typically used with model-free algorithms. However, the human

can be considered a corrected model of the policy space. The authors found their method

to perform well, but it does not scale because humans must supervise the algorithm. Sim-

ilarly, Turchetta et al., 2020 propose a curriculum-based approach, Curriculum Induction

for Safe Reinforcement Learning (CISR), which assumes a teacher that intervenes in the

event of catastrophic states. The teacher policy guides the student, intervenes, and puts

the student in safe states if the CMDP criteria are not met. Authors describe the CISR

as a meta-learning framework where the teacher policy is an optimizable hyperparameter.

However, the algorithm makes assumptions that an intervention set exists before learning.

The authors demonstrate that the student policy performs significantly better in the Frozen

Lake environment when erroneous states are intervened compared to no intervention.

3.2.4 Summary

Many different approaches have been proposed throughout the last decade to improve

safety in RL algorithms. We present work that uses Lyapunov or Barrier functions to

guarantee decision safety for a subset of the policy space under model assumptions. These

methods formalize the problem as a constrained MDP. The second approach is RL algo-

rithms with human intervention when there is uncertainty about the outcome of actions.

These methods perform sufficiently but require significant manual labor by humans to

function. This work draws inspiration from several other works in safe RL, which the

respective authors best describe in Bagnell et al., 2001; Berkenkamp et al., 2021; Cam-

pos and Langlois, 2003; del R. Millán, 1995; Edith et al., 2005; Geibel and Wysotzki,

2005; Mihatsch and Neuneier, 2002; Romoff et al., 2018, but is otherwise also referred

to throughout this thesis. Furthermore, a comprehensive study in safe RL is described in

Garcı́a and Fernández, 2015.

3.3 Goal-directed Reinforcement Learning
Earlier studies have contributed significantly to improve the ability to solve reinforcement

learning problems with a goal-directed approach. Perhaps the most well-known study

of the Goal-Directed Reinforcement Learning (GDRL) problem begins with Koenig and

Simmons, 1996. Their approach splits the problem into two phases; GDE and knowledge

exploitation. The study finds that the convergence of GDRL-based Q̂- and Q-learning

closely relates to the state representation and volume of prior knowledge. Furthermore,

their work shows that computationally intractable problems are tractable with minor mod-
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ifications to the state- representation.

de S. Braga and Araújo, 1998 apply GDRL using temporal-difference learning to col-

lect prior knowledge and create a reward and penalty surface explaining the environment

dynamics. The map acts as an expert advisor for the TD algorithm and proves the pol-

icy performance. Their work shows that the concept of GDRL works well in grid-based

environments and includes significantly better sample efficiency than Q-Learning.

Matignon et al., 2006 studied the importance of reward functions and initial Q-values

for GDRL. The authors thoroughly studied the effect of different initial states of the Q-

table and found it challenging to design a generic algorithm for initially setting optimal

parameters. However, they found that initial values considerably impact the performance

and sample efficiency. Furthermore, the author shows that adding a goal bias leads to

much faster learning and recommends an adjustable continuous reward function.

Debnath et al., 2018 propose a hybrid approach, formalized as a GDRL problem. The first

phase optimizes a dynamics model of the environment with samples from a model-free

reinforcement learning policy. The second phase exploits the learned dynamics model to

improve further the policy, similar to the work in Paper F. The authors show that GDRL-

based algorithms accelerate learning and considerably improve sample efficiency.

3.4 Interpretable Reinforcement Learning
There are numerous attempts in the literature to improve interpretability with deep learn-

ing algorithms, but primarily in the supervised case. Zhang, Patras, et al., 2019 provide

an in-depth survey of interpretability with Convolutional Neural Networks (CNN). Our

approach is similar to Wang et al., 2019, where the authors propose an architecture for vi-

sual perception of the DQN algorithm. The difference, however, is primarily our focus on

the interpretability of the latent space distribution via methods commonly found in vari-

ational autoencoders. Similar efforts to combine Q-Learning with VAE include Huang

et al., 2020; Tang and Kucukelbir, 2017, which theoretically shows promising results but

with limited focus on interpretability. Annasamy and Sycara, 2018 did notable work on

interpretability using KL-distance for optimization but did not find convincing evidence

for a deeper understanding of the model. The focus of our contribution deviates here and

finds significant value in a shallow and organized latent space.

3.5 Hierarchical Reinforcement Learning
The learned latent space is valuable for selecting options in Hierarchical Reinforcement

Learning (HRL). There has been increasing engagement in HRL research because of sev-

eral appealing benefits such as sample efficiency and model simplicity (Barto et al., 2003).
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Despite its growing attention, there are few advancements within this field compared to

model-free RL. The options framework (Sutton et al., 1999) is perhaps the most promis-

ing approach for HRL in terms of intuitive and convergence guarantees. The options

framework extends MDP’s to Semi Markov Decision Process (SMDP) (Younes and Sim-

mons, 2004). SMDP features temporal abstractions where multiple discrete time steps

are generalized to a single step. These abstract steps define an option, where the option

is a subset of the state-space. In the proposed algorithm, the structure of the latent space

forms such temporal abstractions for options to form.

3.6 Environments
Several exciting game environments in the literature focus on state-of-the-art research in

AI algorithms. Few game environments target the RTS genre. One reason may be that

these environments are challenging to solve, and there are few ways to fit results with

preprocessing tricks. It is, however, essential to include RTS games as part of the active

research of deep reinforcement learning algorithms as they feature long-term planning.

This section reviews existing game platforms and environments actively used in RL re-

search. For this dissertation, we present results that use environments from Section 3.6.2,

Section 3.6.7, Section 3.6.8, Section 3.6.9, and Section 3.6.10.

3.6.1 Stratagus

Stratagus is an open-source game engine that can create RTS-themed games. Wargus,

a clone of Warcraft II, and Stargus, a clone of StarCraft I, are examples of games im-

plemented in the Stratagus game engine. Stratagus is not an engine that targets machine

learning explicitly, but several researchers have performed experiments in case-based rea-

soning (Fathy et al., 2010; Ontanon et al., 2008) and Q-Learning (Jaidee and Muñoz-

Avila, 2012) using Wargus. Stratagus is still actively updated by contributions from the

community.

3.6.2 Arcade Learning Environment

Bellemare et al., 2013 present the Atari Learning Environment (ALE) that enabled re-

searchers to conduct cutting-edge research in general deep learning (2013). The package

provides hundreds of Atari 2600 environments that help demonstrate the capabilities of

DQN and the A3C algorithm in seminal work from Mnih et al., 2015. The platform has

been a critical component in RL research advancements. (Mnih et al., 2016; Mnih et al.,

2015)





Advances in Safe Deep Reinforcement Learning for
Real-Time Strategy Games and Industry Applications

3.6.3 TorchCraft

Synnaeve et al., 2016 present TorchCraft, a bridge between the scientific computing

framework Torch and StarCraft I. TorchCraft is widely used in literature and is used

for deep learning research (Churchill et al., 2017; Peng et al., 2017). Additionally,

TorchCraft has replay data of over 65 000 StarCraft games from Lin et al., 2017.

3.6.4 Malmo Platform

The Malmo project is a platform built atop the popular game Minecraft proposed by

Johnson et al., 2016. Minecraft is a 3D environment where the objective is to survive in a

world of dangers, construct shelter, prevent starvation, and navigate through complicated

environments. The authors claim that the platform has all characteristics that qualify it as

a platform for general AI research.

3.6.5 ViZDoom

Kempka et al., 2016 propose ViZDoom, a platform for RL research using pixel-based in-

puts. Doom is a first-person shooter game in a semi-realistic 3D world where the overall

goal is to survive or defeat enemies. The authors modify the game to support scenarios

(tasks) such as move-and-shoot and more complex maze-navigation problems. Using a

customized reward signal to fuel learning, the authors demonstrate that their implemen-

tation of DQN can learn good strategies with just a few hours of training using consumer

hardware. The overall goal of their contribution is to enrich the availability of RL envi-

ronments.

3.6.6 DeepMind Lab

Beattie et al., 2016 present a platform for 3D navigation and puzzle-solving tasks. The

primary purpose of DeepMind Lab is to act as a platform for DRL research. DeepMind

Lab provides rewards, pixel-based observations, and velocity information of the agents

for every timestep. The authors propose a scenario-based environment that entertains

problems in different topics such as memory and planning. The DeepMind Lab engine ini-

tially provides fruit-gathering levels in a static map, static navigation levels, procedurally-

generated navigation levels, and laser-tag levels (similar to first-person shooter games).

3.6.7 OpenAI Gym

OpenAI Gym is “a toolkit for developing and comparing reinforcement learning algo-

rithms”, first proposed by Brockman et al., 2016. OpenAI Gym provides various environ-
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Table 3.1: Micro RTS maps with the corresponding map size.

Map Size
basesWorkers8x8A 8× 8

basesWorkers16x16A 16× 16

BWDistantResources32x32 32× 32

(4)BloodBath.scmB 64× 64

FourBasesWorkers8x8 8× 8

TwoBasesBarracks16x16 16× 16

NoWhereToRun9x8 9× 8

DoubleGame24x24 24× 24

ments from the following domains: Algorithmic tasks, Atari 2600, Board games, Box2d

physics engine, MuJoCo physics engine, and Text-based environments. OpenAI Gym

also hosts a website where researchers can submit their reward performance to compare

algorithm efficiency. OpenAI Gym is open-source and encourages researchers to add

support for their environments.

3.6.8 Micro RTS

Micro RTS is a simple RTS game designed to conduct AI research. The idea behind Mi-

cro RTS is to strip away the computational heavy game logic and graphics to increase the

performance and enable researchers to test theoretical concepts quickly (Ontanon, 2013).

The Micro RTS game logic is deterministic and includes fully and partially observable

state-spaces. The primary field of research in Micro RTS is game-tree search techniques

such as variations of MCTS and MiniMax (Barriga et al., 2017; Ontanon, 2013; Shleyf-

man et al., 2014). MicroRTS is also used for DL research, especially in the larger maps,

seen in Table 3.1.

3.6.9 ELF: Mini-RTS

The goal in Mini-RTS is for the agent to destroy the opponent’s base with its troops. Play-

ers have units, resources, and a base and must balance defensive and offensive planning

economics. It is possible to expand the base with worker units to build barracks or ex-

pand offensive powers. The ELF game engine is tick-driven, meaning that the agent must

make actions for every game tick. Mini-RTS is partially observable due to the fog-of-war,

and thus the agent is only presented with imperfect information. However, Mini-RTS is

significantly less complex logic-wise and graphically than StarCraft II. The Mini-RTS en-

vironment features two built-in strategies; AI-Simple and AI-Hit-and-run where both are
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Table 3.2: List of mini-game maps in SC2LE.

Map
MoveToBeacon

DefeatRoaches

BuildMarines

CollectMineralShards

CollectMineralAndGas

FindAndDefeatZerglings

DefeatBanelingsAndZerglings

used in the experiments (Tian et al., 2017).

3.6.10 StarCraft II

StarCraft II Learning Environment (SC2LE) bridges the StarCraft II observation and

action-space game interfaces to programming languages such as Python. SC2LE is an

initiative from Blizzard Entertainment and DeepMind to demonstrate the capabilities of

AI in RTS games. StarCraft II is a complex environment that requires short and long-term

planning. It is difficult to observe a correlation between actions and rewards due to the

imperfect state information and delayed rewards, making StarCraft II one of the hardest

challenges for RL algorithms to solve (Vinyals et al., 2017). In addition to the full-game

case, SC2LE features mini-games suitable for RTS research, as seen in Table 3.2.







Chapter 4

Software Contributions and Evaluation

The availability of game-playing environments is a prerequisite for RL research in RTS

games. Despite many game environments in the literature, environments are too simplis-

tic or require significant computational power. The lack of appropriately leveled game

complexity makes RL research challenging because the tasks are either fully solved or

expensive to use. Game complexity measures the difficulty and indicates the solvabil-

ity of a task using current technology. For example, solving tasks that takes minutes in

2021, was nearly impossible to solve in the early 2000’s. While state complexity does

not account for uncertainty or stochasticity in an environment, it is often used in literature

to measure difficulty. For example, Chess (8x8) has a state-complexity of ∼ 1050, Go

(19x19) ∼ 10360, and for StarCraft II, game complexity estimations range from 101685 to

1036000 (Pang et al., 2019) (Figure 4.11). In the extreme pace that RL research is moving,

it is important to use benchmarks that provide replicable environments and experiment

conditions. Therefore, it is essential to have flexible benchmarks and grow alongside

research progress.

It is safe to say that there is a clear gap in the literature of experimental environments in

RL, which motivates a scientific view on implementing new game environments for RL

research. This chapter presents the resulting software contributions throughout the Ph.D.

work and mainly tries to educate on enriching the availability of RL research platforms

and how to design these platforms for working in an industry-near manner.

Chapter organization. We present contributions in-order to demonstrate the chain of mo-

tivations better. Each contribution presents a motivational introduction, design specifica-

tions, and baseline experiments using reinforcement learning algorithms. These experi-

ments function as a baseline for parts of the contributions, but naturally, it is expected that

future work should trivially outperform the presented results. Finally, we summarize the

contribution.

51



4.1. DEEP LINE WARS

4.1 Deep Line Wars
Deep Line Wars is a simplistic and highly configurable real-time strategy game simulator

that narrows the state-space complexity gap between Atari 2600 and Starcraft II. Deep

Line Wars aims to present a minimalistic interface to research planning in RL agents and

typically captivates the strategic placement challenge in full-fledged RTS games.1

4.1.1 Motivation

Motivation 1 This contribution is motivated by the need for new RTS game environments

for RL research. At the time of this contribution, few RTS game environments

existed, and to the best of our knowledge, none were easily accessible with state-

of-the-art machine learning tools in Python. 2

Motivation 2 Multiplayer games are not broadly available in the literature, and planning

is a demanding challenge for agents in RTS games. The motivation is for Deep Line

Wars to cover the gap in available research environments.

4.1.2 Design Specifications

Deep Line Wars is a two-player version of the popular Line Tower Wars modification

from the Warcraft III game by Blizzard Entertainment. Line Tower Wars is not directly

an RTS game. However, Deep Line Wars features a majority of elements in the RTS

genre, such as time-delayed objectives, resource management, offensive and defensive

strategy planning.

Game Objective

The objective of Deep Line Wars is, as seen in Figure 4.1, to invade the opposing partici-

pant with units until the health reaches zero. For each unit that enters the black area on the

map, the opposing participant’s health reduces by one. The participants purchase units for

gold, which spawns at random locations on black tiles, and automatically walks towards

the other participant’s black line. It is possible to defend the base by building towers

that shoot projectiles at the opposing participant’s units. When units die, the opposing

player receives a configurable amount of the unit’s gold cost. Purchasing units increase

the participant’s income, distributed at a fixed time interval, typically every 10 seconds

throughout the game. All variables such as income ratio, income frequency, damage, and

1Deep Line Wars is open-source and freely available at https://github.com/cair/deep-line-wars and https:
//github.com/cair/deep-line-wars-2

2Note that since the publication of our work, several others have proposed RTS environment such as
SC2LE (Vinyals et al., 2017)
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unit health pools are configurable.

Figure 4.1: The Deep Line Wars environment. Paper B

The primary skillset required to master the Deep Line Wars environment is to:

1. create a unit purchase strategy (planning),

2. place defensive buildings strategically on the map, and

3. maintain a healthy balance between offensive and defensive behavior to maximize

defense, offense, and economy,

and combined, guarantees victory for the best performing participant.

State Space

Deep Line Wars models the game-state as raw game frames as seen in Figure 4.1, or a

3-D matrix where dimensions of the matrix are height × width × features. It is possible

to create state observations containing all relevant board information at the current time.

Each layer in the third dimension of the matrix represents a feature similar to the state

representation in Silver et al., 2016. Deep Line Wars also features possibilities of making

an abstract state-space representation such as a heat-map.

Using heat maps enables the encoding of five-dimensional state information to only three

dimensions, red, green, and blue (RGB). Figure 4.2 demonstrates the state from a player
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Figure 4.2: State abstraction using heat maps. Red pixels illustrate friendly units and

buildings. Green illustrates enemy units and buildings, and light blue illustrates the mouse

cursor.

using colored heat maps, with red pixels as friendly buildings, green pixels as enemy units,

and light blue pixels as the mouse cursor. It is also possible to reduce the state-space to a

one-dimensional matrix using gray-scale intensities. This is useful because Convolutional

Neural Networks (CNN) take significantly less time to train when reducing the state-

space. The state is not fully described heat maps as economics, health, and income are

not encoded. However, extending the heat map to encode 24 bits of vector data in a single

pixel is possible and can fully encode the state-space.

Action-space

Action-spaces in Deep Line Wars are highly configurable using the game API.3 The de-

fault action-space features 12 discrete actions selections, as seen in Table 4.1. Specifically,

the action is a one-hot vector, where 1 indicates to act, and 0 does not perform the action.

Table 4.2 illustrates the continuous action-space and has 4 actions that are any real num-

ber between the specified bounds. For example, action 1.321 for the “Unit Send” action

in the continuous action-space translates to the “send militia” action in discrete space.

Table 4.2: The continous action-space in Deep Line Wars.

Action Min Value Max Value Description
Move Mouse X 0.0 1.0 0.0 is left while 1.0 is far right

Move Mouse Y 0.0 1.0 0.0 is top and 1.0 is bottom

Unit Send 0.0 4.0 Each whole number is a unit

Unit Build 0.0 3.0 Each whole number is a building

3The complete game API definitions are located in the action space.py source file.
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Table 4.1: The discrete action-space in Deep Line Wars. The action column denotes the

action name with a corresponding description column.

Action Description
cursor left Move cursor one step to the left

cursor right Move cursor one step to the right

cursor up Move cursor one step up

cursor down Move cursor one step down

send militia Spawn a militia unit

send footman Spawn a footman unit

send grunt Spawn a grunt unit

send armored grunt Spawn an armored grunt unit

build basic tower Build a basic tower at the cursor

build fast tower Build a fast tower at the cursor

build faster tower Build a faster tower at the cursor

no action Do nothing

Baseline Results

Table 4.3: The table presents baseline results for selected Deep Line Wars map sizes. The

map size is written width× height, and for the score, WR denotes Win-Rate and IC is the

gold income after the match ends.

Map Size Algorithm Opponent Score Source
30x11 Rule-Based Random WR-92.1% Paper B

30x11 DQN Random WR-63.5% Paper B

30x11 Rule-Based Random IC-830 Paper B

30x11 DQN Random IC-645 Paper B

11x11 DQN Rule-Based IC-550 Paper E

11x11 PPO Rule-Based IC-290 Paper E

11x11 DVAE (RNN) Rule-Based IC-350 Paper E

30x30 DQN Rule-Based IC-110 Paper G

30x30 PPO Rule-Based IC-91 Paper G

30x30 DVAE (SAFE) Rule-Based IC-500 Paper G

12x11, 22x22, 40x30, 64x64 Competition WR See Table 6.5

Table 4.3 presents the baseline results of the Deep Line Wars environment from experi-

ments in Paper B, Paper E, and Paper G. Specifically, we demonstrate that DQN, PPO,
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and DVAE beats the rule-based agent implementation.

4.1.3 Summary

Deep Line Wars is a simple but advanced Real-time (strategy) game simulator that fills

the gap between Atari 2600 (Bellemare et al., 2013) and Starcraft II (Vinyals et al., 2017).

We show that algorithms such as DQN and PPO can beat hard-coded expert agents in

the game using implemented observation and action-spaces. Deep Line Wars supports

both continuous and discrete action-spaces, and it is possible to use heat maps in place

of raw pixel observations to reduce observation dimensionality. Finally, the Deep Line

Wars have a configurable interface to adjust income rates, unit properties, and the game

execution speed.

4.2 Deep Maze
The Deep Maze is a flexible learning environment for controlled research in exploration,

planning, and memory for reinforcement learning algorithms. Maze solving is a well-

known problem used heavily throughout the RL literature (Sutton et al., 1999) but is

often limited to small and fully-observable scenarios. The problem is framed as a Markov

Decision Process (MDP) in the fully observable case. Partial Observable Markov Deci-

sion Process (POMDP) is used for mazes with partial observability (see Section 2.1 for

its definition). The Deep Maze game environment adds over 540 pre-configured scenar-

ios, including mazes that are only partial visible (learning to navigate POMDP’s). At

the time of this contribution, there were no similar peer-reviewed maze research envi-

ronments to the best of our knowledge. Later, Chevalier-Boisvert et al., 2019 proposed

Gym-MiniGrid, featuring comparable characteristics to Deep Maze.4

4.2.1 Motivation

Motivation 1 This contribution motivates the use of maze environments, providing a

platform for RL research. Specifically, maze environments address the need to

study RL agents’ exploration-exploitation trade-off, planning, and memory, which

proves valuable for mastering RTS games (Ontanon, 2013).

Motivation 2 Deep Line Wars does not sufficiently address all aspects of an RTS game.

This contribution motivates to create Deep Maze, which can fill the research gap as

there are no existing solutions for grids with POMDP settings.

4Deep Maze is open-source and freely available at https://github.com/cair/deep-maze
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(a) A small maze with fully observable state-
space.

(b) A large maze with fully observable state-
space.

(c) A partially observable maze where the agent
has 3 tiles of vision.

(d) A partially observable maze where the agent
has a ray-tracing vision.

Figure 4.3: Overview of four distinct maze scenarios using Deep Maze.

4.2.2 Baseline Results

Table 4.4 shows the baseline results for Deep Maze from our work. Specifically, the Deep

Maze environment demonstrates capabilities in the DVAE algorithm to reconstruct maze-

environments in Paper D, showing promising results in navigating mazes from imaginary

data. We detail the results in the peer-reviewed work from Paper D and Paper H.

4.2.3 Design Specifications

Figure 4.3 illustrates selected scenarios in the Deep Maze, ranging from small-scale

MDP’s (fully observable mazes) to large-scale POMDP’s (partially observable mazes).

The Deep Maze features custom game mechanics such as dynamic goal positions and

dynamically changing maze structures (i.e., moving walls). Preprocessing of data is es-

sential so that agents can extract features from the input data. Deep Maze has a built-in

state representation for imaging and raw state matrices, similar to Deep Line Wars. The

game engine is modularized and has a software development kit that facilitates the devel-
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Table 4.4: The table presents baseline results for selected Deep Maze map sizes. The map

size is written width × height. The score is percentage-based, where 100% denotes the

optimal path. The episodes column denotes how many times the experiment ran. Note

that for the TRPO-D and PPO-D̂ algorithm, we experiment with replay-buffer in on-

policy algorithms, effectively training them in an offline manner.

Map Size Algorithm Episodes Score Source
11x11 DQN-D̂ 1K 94.56% Paper D

11x11 TRPO-D̂ 1K 96.32% Paper D

11x11 PPO-D̂ 1K 98.71% Paper D

11x11 DQN-D 1K 98.26% Paper D

11x11 TRPO-D 1K 99.32% Paper D

11x11 PPO-D 1K 99.35% Paper D

21x21 DQN-D̂ 1K 64.36% Paper D

21x21 TRPO-D̂ 1K 78.91% Paper D

21x21 PPO-D̂ 1K 89.33% Paper D

21x21 DQN-D 1K 84.65% Paper D

21x21 TRPO-D 1K 92.11% Paper D

21x21 PPO-D 1K 96.41% Paper D

11x11-NoWalls DVAE (CostNet) 100 100% Paper H

11x11-NoWalls PPO 100 52% Paper H

11x11-NoWalls DQN 100 77% Paper H

opment of new scenarios and game logic modes. The design of Deep Maze focuses on

supporting nearly any possible scenario combinations in the realm of maze solving.5

The Deep Maze game environment presents the following scenarios types:

Traditional MDP Traditional MDP mode generates a maze structure randomly with a

specified seed. The state observations are fully visible.

POMDP Similar to the traditional MDP mode, but the state observations are partially

visible. The POMDP mode supports radius-based and ray-tracing-based vision.

Limited POMDP In extension to the POMDP mode, the Limited game mode reveals the

full state observation for a few frames before behaving like a POMDP. This mode

is especially suited for memory-based RL research.

Timed Limited (PO)MDP Extending the Limited POMDP, the Timed version requires

task completion before time runs out.
5The Deep Maze is open-source and publicly available at https://github.com/CAIR/deep-maze.
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All pre-configured scenario setups have a variable map size ranging between 2 × 2 and

56× 56 tiles.

4.2.4 Summary

Deep Maze is a versatile maze game environment for researching planning, memory,

and model-based algorithms in reinforcement learning. We contribute a platform that

supports traditional observation schemes following the MDP framework, including game

configuration for observations following the POMDP framework. We show that it helps

study dynamics models. We provide baseline results for future research and demonstrate

that algorithms learn successfully in the tested environment setups.

4.3 Deep RTS
The Deep RTS game research environment enables studying planning, reasoning, and

control at different difficulty levels. Deep RTS aims to narrow the research gap between

Micro RTS (Ontanon et al., 2013) and StarCraft II (Vinyals et al., 2017). Figure 4.4 illus-

trates the game visuals. Deep RTS compose games as scenarios that define a particular

goal to win the game. For primitive scenarios, the goal is to gather a set amount of gold

before the agent receives a reward signal and the game terminates. On the other hand,

complex scenarios support observability, environmental danger, and other opponents. It

is possible to define delayed actions and rewards to increase the task’s difficulty.6

Figure 4.4: Demonstration of the Deep RTS Deathmatch (10x10-2-FFA) scenario where

two participants battle towards defeating the opposing player.

6Deep Line Wars is open-source and freely available at https://github.com/cair/deep-rts
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4.3.1 Motivation

Motivation 1 The Deep RTS game environment enables research at different difficulty

levels in planning, reasoning, and control. The motivation behind creating Deep

RTS is that the Deep Line Wars environment (Section 4.1) from Paper B can-

not alone fill the gap between Micro RTS (Ontanon et al., 2013) and StarCraft II

(Vinyals et al., 2017), specifically in long-horizon planning and complex reasoning.

Motivation 2 The existing solutions are not sufficiently flexible, which Tian et al., 2017

discover simultaneously. Specifically, Micro RTS does not support complex game

settings and has only a few units and buildings available. On the other hand, Star-

Craft II requires immense computing power to train RL algorithms in an acceptable

timeframe. This contribution motivates to build an environment that supports de-

terministic and non-durative game settings for the simplest configurations, up to

highly complex stochastic environments with durative gameplay.

Motivation 3 Existing solutions, such as Micro RTS and StarCraft II, are not straightfor-

ward to customize for non-standard experimentation. This motivates the creation of

a highly customizable scenario engine to build custom environments trivially. Deep

RTS supports the OpenAI Gym abstractions through our specially crafted Python

API and can easily integrate with Python and C++ applications.

4.3.2 Design Specifications

Game Objective

The Deep RTS objective is to build a base consisting of a town-hall, and then strive to

expand the base using gathered resources to gain the military upper hand. Military units

conduct attacks where the primary goal is to demolish the opponent’s base. Players start

with a worker unit. The primary objective of the worker units is to expand the base offen-

sive, defensive and gather natural resources found throughout the game world. Buildings

can further spawn additional units that strengthen the player’s offensive capabilities. All

opponent units must be destroyed for a player to reach the terminal state.

A regular RTS game can be represented in three stages: early-game, mid-game and late-

game. Early-game is the gathering and base expansion stage. The mid-game focuses on

the military and economic superiority, while the late-game stage is usually a deathmatch

between players until the game ends.
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Table 4.5: A partial list of configuration flags for the Deep RTS game engine.7

Config Name Type Description

instant town hall Bool Spawn Town-Hall at game start.

instant building Bool Non-durative Build Mode.

instant walking Bool Non-durative Walk Mode.

harvest forever Bool Harvest resources automatically.

auto attack Bool Automatic retaliation when being attacked.

Game Mechanics

The game mechanics of the Deep RTS are flexible and can be adjusted before a game

starts. Table 4.5 shows a list of the available game setting parameters. An important

design choice is to allow actions to affect the environment without temporal delay. The

game engine runs tick-based and has a default base tick-rate of 10. The base-tick rate

is the minimal time any action takes to perform, but constructing buildings takes longer.

All tick-timers are adjustable in the configuration file. For each game-loop iteration, the

tick counter increments by one, and actions evaluate promptly. Using a tick-rate-based

game engine allows running high-resolution tick-rates that closely resemble the StarCraft

II dynamic and low-resolution tick-rates to mimick the Micro RTS engine.

Figure 4.5: Unit state evaluation based on actions and current state

All game entities (units and buildings) have a state machine that determines their current

state. Figure 4.5 illustrates the state-machine that evaluates for every game tick. Units and
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buildings start in the “Spawning” state and transition to the “Idle” state after the spawning

process. The Idle state is the default state for all units and buildings. There are primarily

three resources, gold, lumber, and oil, available for workers to harvest. The value range is

practically limited to the number of resources on the game map. The food and unit limits

ensure that the player does not excessively produce units.

Action-space

The Deep RTS action-space separates into two abstract levels. The first level is actions

that directly trigger a state transition: right-click, left-click, move-left, and select-unit.

The second layer of abstraction is actions that combine actions from the previous layer,

typically select-unit → right-click → right-click → move-left. The benefit of such ab-

stractions is that algorithms can focus on specific areas within the game-state and build

hierarchical models that specialize in tasks (planning). Deep RTS initially features 16 dif-

ferent actions in the first layer and six actions in the last abstraction layer, but it is trivial

to add additional actions.

Scenarios

Because Deep RTS targets various reinforcement learning problems, game scenarios such

as resource gathering, military, and defensive tasks present only a fraction of the com-

plexity in a full RTS game. Table 4.6 demonstrates a majority of the present scenarios in

Deep RTS, where:

• The first six scenarios mimicks classical StarCraft II RTS game mode. The map

sizes vary between 10x10 to 31x31, with the ability to have six active players in a

free-for-all setting.

• The Solo-Score scenario features an environment where the objective is to maxi-

mize score and minimize used time. The score is predetermined as a ratio of gath-

ered resources and damage done, but it is easily modified if required.

• Solo-Resources is a game mode that focuses on resource gathering. The agent must

find a balance between base expansion and resource gathering to gather as many

resources as possible optimally (shortest amount of time).

• Solo-Army is a scenario where the primary goal is to expand the military forces

quickly and launch an attack on the enemy player. The enemy player is either idle

or uses a hard-coded strategy.

• Gold-Collect and Lumber-Collect aim towards optimization of the shortest-path

problem. The objective is to maximize the specified resource by minimizing the
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number of walked steps.

• Lava-Maze is a maze map where the aim is to avoid lava tiles. If a player enters

the lava tiles, the game terminates with a negative reward. The objective is for

the player to reach the middle part of the map and harvest gold without suffering

damage. See Figure 6.25 for a snapshot of this game scenario.

Table 4.6: The table shows a partial list of available scenarios in the Deep RTS game

environment. The score column denotes the reward function objective where W/R is

shorthand for Win-Ratio and numbered score follows a scalar output function.

Scenario Name Description Game Length Score Map Size
10x10-2-FFA 2-Player game 600-900 ticks W/R 10x10

15x15-2-FFA 2-Player game 900-1300 ticks W/R 15x15

21x21-2-FFA 2-Player game 2000-3000 ticks W/R 21x21

31x31-2-FFA 2-Player game 6000-9000 ticks W/R 31x31

31x31-4-FFA 4-Player game 8000-11k ticks W/R 31x31

31x31-6-FFA 6-Player game 15k-20k ticks W/R 31x31

Solo-Score Score Accumulation 1200 ticks 0-1K 10x10

Solo-Resources Resource Harvesting 600 ticks 0-1K 10x10

Solo-Army Army Accumulation 1200 ticks 0-1K 10x10

Gold-Collect Resource Accumulation 1000 ticks 0-1K 10x10

Lumber-Collect Resource Accumulation 1000 ticks -500-0 10x10

Lava-Maze Lava Avoidance 1000 ticks 0-113 30x30

State Space and Graphics

The Deep RTS game visuals have several optional backends available in Blend2D, SFML,

and PyGame. These are graphical rendering frameworks. Figure 4.6 shows the graph-

ics of Deep RTS, where Blend2D is the primary backend for drawing graphics. It ren-

ders significantly faster than the alternatives because it can render purely using the CPU

(software-rendering). Although it is common to use hardware-rendering with GPUs in

modern graphics, it poses a challenge because the frame buffer resides in the GPU mem-

ory, making it costly to transfer frames from GPU to CPU memory. The Deep RTS game

aims primarily for algorithmic play, but manual control is possible using the PyGame and

SFML backend. There are several methods of representing the game-state observations.

The first method is to use images of the game graphics or the 3-D matrix representation.

Each layer in the matrix representation depicts a feature, i.e., the units player health at

layer 0 and the owner of the units at layer 1. There is support for 24 distinct features
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Figure 4.6: The image demonstrates a complex scenario with fog of war in the Deep RTS

environment. The filter is manually added for demonstration intents because the game

only supports opaque fog of war.

which the programmer can choose freely. In the context of RL, it is possible to model

the state-space as partially observable, meaning that only parts of the game are visible, as

seen in Figure 4.6. Partial observability adds fog of war to the game, meaning that areas

are hidden where the player lacks map control.
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4.3.3 Baseline Results

Table 4.7: A summary of baseline results for selected Deep RTS scenarios. The 15x15-2-

FFA scenario measures score in win-rate (%) while others use a scoring function, where

values are seen in Table 4.6.

Environment Algorithm Score Source
15x15-2-FFA DQN vs Random 75% Paper C

15x15-2-FFA DQN vs Rule 50% Paper C

Lumber-Collect DQN -179 Paper E

Lumber-Collect DVAE (RNN) -14 Paper E

Lumber-Collect PPO -2 Paper E

Gold-Collect DQN 226 Paper G

Gold-Collect PPO 384 Paper G

Gold-Collect DVAE (SAFE) 498 Paper G

Gold-Collect DQN 389 Paper H

Gold-Collect PPO 551 Paper H

Gold-Collect DVAE (Cost) 669 Paper H

Lava-Maze A2C 91 Table 6.6

Lava-Maze DQN 98 Table 6.6

Lava-Maze RAINBOW 99 Table 6.6

Lava-Maze IMPALA 100 Table 6.6

Lava-Maze PPO 96 Table 6.6

Lava-Maze DVAE (SAFE) 97 Table 6.6

Lava-Maze S-ORACLE 94 Table 6.6

Many of the presented articles evaluate algorithm reward performance using the Deep

RTS game environment. In addition to our peer-reviewed work, many student projects

use Deep RTS to study algorithms for solving RTS games8. Table 4.7 shows results from

peer-reviewed contributions from Paper C, Paper E, Paper G, and Paper H, including the

latest work in Paper M. The scoring model is found in Table 4.6.

4.3.4 Summary

Deep RTS is a novel RTS game environment for research in reinforcement learning algo-

rithms. We show that the Deep RTS game environment has high-performance, with few

8A non-exhaustive list of projects using the Deep RTS engine is located atdocs/PROJECTS.md in the
Deep RTS GIT repository.
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game mechanics that negatively impact the update and frame-rate performance. The most

resource-hungry mechanic of Deep RTS is the pathfinding algorithm, but it is possible to

deactivate by configurations, effectively reducing the game execution time. We show that

reinforcement learning algorithms outperform hard-coded strategies and prove that the

built systems are suitable for reinforcement learning research. Deep RTS supports mini-

games or scenarios that enable research in specific characteristics of agents like long-term

memory, planning, and decision safety. The aim is that Deep RTS can evolve to become a

central platform for RTS game AI control research. We provide baseline results for future

research in Table 4.7.

4.4 Deep Warehouse
Safety during learning in RL has been a less prevalent priority in recent years than im-

proving the performance of existing non-safe algorithms. We argue that this may be due

to the high cost of physical systems to experiment on and that the RL research community

primarily uses games as a benchmarking tool. Naturally, this encourages maximizing the

agent reward performance by trial and error because there is no consequences for failed

actions. Training algorithms in real-world environments have severe safety challenges

and suffer from low sampling speeds (Botvinick et al., 2019). Deep Warehouse has a

wide range of configurations. Furthermore, it is the only open-source implementation

that aims to simulate proprietary automated storage and retrieval systems to the best of

our knowledge. We also refer to the environment as the ASRS-Lab. 9

In the context of warehousing, an Automated Storage and Retrieval Systems (ASRS) is a

composition of computer programs working together to maximize the incoming and out-

coming throughput of items. An item can be any type of material, for example, computer

hardware. Using an ASRS in logistics has many benefits, including high scalability, in-

creased efficiency, reduced operating expenses, and operation safety. This work primarily

considers a cube-based ASRS environment which can be thought of as a 3-dimensional

asymmetrical rectangle with items stored depth-wise. Taxi agents collect and deliver

items to delivery points on the rectangle’s uppermost layer and usually work alongside

other agents. A computer program controls the taxi agent that reads its sensory data to

determine the following action. Although these systems are far better than manual labor

warehousing, there is still significant improvement potential in the current state-of-the-

art. Most ASRS are manually crafted expert systems, which due to the high complexity

of the multi-agent ASRS, only performs sub-optimally (Roodbergen and Vis, 2009). One

such example is the AutoStore warehouse system, one of the world-leading companies

in ASRS. Their approach is to build and optimize their warehouse system virtually using

9Deep Warehouse is open-source and freely available at https://github.com/cair/deep-warehouse
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Figure 4.7: ©Autostore AS. The AutoStore simulation environment replicates the condi-

tions of physical installations with minimal error margins. Taxi agents are red 2x1 rect-

angles with corresponding cart orientation (N = North, S = South) and a unique identifier

number. Single red squares denote the path which a taxi “locks” during path execution.

The blue square is the destination tile. The dark gray tiles are item boxes that the taxis

have placed on top of the grid, where lighter gray gradients represent the depth of item

boxes in the grid. The green and yellow tiles are the delivery station for items.

Figure 4.8: ©Autostore AS. Illustration of a physical installation of an Autostore System.

The red taxi agents gather items from the bins in the grid and deliver them to delivery

points.
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a highly accurate simulation environment (Figure 4.7). They can build a highly efficient

industry-grade warehouse system from simulations, as seen in Figure 4.8. The challenge

is that these systems have a substantial state-space complexity (See Section 4.6.1), mean-

ing that it is nearly impossible to create hand-crafted algorithms with global optimality.

For this reason, it is natural to investigate if RL can provide new directions for safe and

more efficient algorithms for grid warehousing.

4.4.1 Motivation

It is well known that the training of algorithms in real-world environments is complicated

for several reasons mentioned below, which causes non-deterministic side-effects.

Motivation 1 In real-world environments, there is no option to accelerate the sampling

speed to increase training speed since the training speed depends on real-world

time.

Motivation 2 Reinforcement learning builds on trial and error, which is not applicable in

mission-critical systems as an error can have catastrophic consequences. A majority

of used environments measure the risk-neutral performance of the agent.

Motivation 3 In real-world environments, additional uncertainty factors can drastically

change the observable state-space. Most RL algorithms can adapt sufficiently to

slight changes, but with the risk of policy collapse for drastic changes.

Motivation 4 A deterministic simulation environment system is challenging to replicate

in the real world. Because real-world environments are susceptible to external

forces, such environments are prone to become stochastic. For example, if the

power grid goes offline or an earthquake disturbs the operations, these are factors

that training data does not usually reflect in simulated environments. These factors

cause challenges to guarantee safety during training in real-world environments.

4.4.2 Design Specifications

The Deep Warehouse environment is implemented with flexible state, action, and reward

representations with safe reinforcement learning in mind. There are many categories of

ASRS in the real world, and building an environment flexible enough to accommodate all

requirements for any system is challenging. Deep Warehouse could successfully recon-

struct shuttle-based, aisle-based, and grid-based warehouses. For this work, we consider

grid-based ASRS.

Figure 4.9 illustrates the observable state-space from a two-dimensional point of view.

In a simple cube-based ASRS, the environment consists of (B) passive and (C) active
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Figure 4.9: Deep Warehouse. In a simple cube-based ASRS, the environment consists of

(B) passive and (C) active delivery points, (D) pickup points, and (F) taxis (Paper G).
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delivery points, (D) pickup points, and (F) taxis. The goal is to find a positive terminal

state using minimal time with limited actions. One episode of the environment is defined

as follows. The (taxi) agent starts at an arbitrary position on the plane. At the same time,

the agent receives a retrieve order from the ASRS scheduling system. This order describes

a target location for items to be retrieved. The agent must now reach the target location

in minimal time using its controls. Considering that there are many other agents on the

plane, the control task is challenging to learn because each action has a significant risk

of collision with other agents and the outer bounds of the grid system. When an agent

enters a target position, it is rewarded and is assigned a delivery task from the scheduling

system. The agent must now move to the designated location described by the delivery

task. When the agent reaches its destination, a large reward is given.

A taxi can move using a discrete or continuous controller. The agent can increase or

decrease motor thrust in the discrete mode and move in either direction, excluding the

diagonals. For the continuous mode, all of these actions are floating-point numbers be-

tween (off) 0 and (on) 1, giving a significantly harder action-space to learn. The sim-

ulator also features a continuous mode for the state-space, where actions are performed

asynchronously to the game loop. The environment supports custom modules for item

scheduling systems, item sorting, agent controllers, and reward functions.

A notable benefit of Deep Warehouse is that it can accurately model real-world warehouse

environments at high speed. The Deep Warehouse environment runs an order of magni-

tudes faster on a single high-end processing unit compared to real-world systems. The

reward performance is measured by comparing the number of actions a taxi performs in

the real environment versus the virtual environment. The environment can be distributed

on many processing units to increase the computational performance further. Our bench-

marks suggest that the simulator can achieve 1 million state samples per second during the

training of deep learning models using High-Performance Computing (HPC) schemes.
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4.4.3 Baseline Results

Table 4.8: Description of the baseline results in Deep Warehouse. The environment nam-

ing convention is width × height × number of agents. In these experiments, the max

score of 30x30x20 is 500, 41x41-100 is 200, and 11x11x10 is 500.

Environment Algorithm Score Source
30x30-20 DQN 198 Paper E

30x30-20 PPO 293 Paper E

30x30-20 DVAE (RNN) 495 Paper E

41x41-100 DQN 163 Paper G

41x41-100 PPO 200 Paper G

41x41-100 DVAE (SAFE) 200 Paper G

11x11-10 DVAE (SAFE-PPO) 0 Paper I

11x11-10 DVAE (SAFE-DQN) 391 Paper I

11x11-10 DQN 500 Paper I

11x11-10 PPO 500 Paper I

30x30-20 DVAE (SAFE-PPO) 421 Paper I

30x30-20 DVAE (SAFE-DQN) 391 Paper I

30x30-20 DQN 496 Paper I

30x30-20 PPO 139 Paper I

Table 4.8 presents the baseline results of Deep Warehouse. Additional results on safety

are found in Figure 7 and Figure 8 in Paper M. The table is the combined results of

Paper E, Paper G, and Paper I, demonstrating the effectiveness of model-free approaches

and the DVAE algorithm. The environment column describes grid size (width x height)

and the number of taxi agents in the grid (after the dash, namely, 20, 100, 10, and 20).

The algorithm column is which algorithm achieves the corresponding score. The score

measures how efficiently the agents can retrieve and deliver items in the grid.

4.4.4 Summary

The Deep Warehouse environment is especially suited for studying AI Control and rein-

forcement learning agents for industry-near ASRS. Although the Deep Warehouse does

not behave identical to a real-world system, it adequately represents the perceived re-

ality from empirical studies to verify capabilities, training times, decision safety, and

agent reward performance. The Deep Warehouse is versatile with support for discrete and

continuous action-spaces, and the programmer can optionally customize the observation
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space to better fit specific algorithms. The environment is configurable, meaning grid

size and depth, number of agents, and taxi physics can be adjusted to match real-world

installations better. Finally, we provide baseline results in Table 4.8 for future studies.

4.5 CaiRL Environment Suite
The design goal of CaiRL is to have interoperability with OpenAI Gym with significantly

better CPU performance and the flexibility to support environments, agnostic to program-

ming languages. Compatibility with OpenAI Gym is central to CaiRL enabling, devel-

opers and researchers to use CaiRL and OpenAI GYM side-by-side, without significant

amendments to existing code. 10

CaiRL is a new reinforcement learning environment toolkit for high-performance experi-

ments. By designing such a toolkit, reinforcement learning becomes more affordable due

to reduced execution costs and strives to reach more sustainable AI. A bi-effect of these

goals is that experiments run significantly faster, and most CPU cycles on training AI

instead of evaluating game-states. The CaiRL environment toolkit supports classical RL

problems such as, but not limited to:

Classical Environments: Cart-Pole, Acro-Bot, Mountain-Car, and Pendulum

New Environments: e.g., Deep RTS (Paper C), Deep Line Wars (Paper B), Deep Maze

(Paper D), Deep Warehouse (Paper G) and the X1337 Space Shooter (not peer-

reviewed).

Flash Games: Over 1 000 Flash games are available for experimentation11.

Java Games: e.g., Micro RTS and Showdown AI Competition.

4.5.1 Motivation

Motivation 1 Current environments are primarily implemented in high-level languages.

The consequence is that environments use additional CPU cycles, more computa-

tional power, which makes the environment run slower. Therefore, it is crucial to

guide the future development of game environments towards more efficient meth-

ods. This contribution is motivated by the need for a standardized high-performance

toolkit for building reinforcement learning research environments.

Motivation 2 Few works actively report the climate emission produced by environments

or algorithms. This contribution motivates a standardized system to report climate

10CaiRL is open-source and freely available at https://github.com/cair/rl
11The full list of available game environments are found at https://flashrl.per-arne.no/
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emissions for the RL experiments. Furthermore, the contributions aim to signifi-

cantly reduce the CPU load of game environments to actively reduce the climate

footprint, save training, and testing time.

Motivation 3 Many existing game environments are written in languages other than Python,

making it challenging to train RL agents efficiently and seamlessly because of cus-

tom interoperability layers. This contribution motivates standardizing an interoper-

ability layer between programming languages such as Java and C++.

Motivation 4 The Ph.D. work presents many new environments, namely FlashRL in Pa-

per A, Deep Line Wars in Paper B, Deep Maze in Paper D, Deep RTS in Paper C,

and Deep Warehouse in Paper E. This contribution motivates reproducing these en-

vironments collectively in a highly-efficient toolkit so that our contributions stand

complete and accessible for future RL research.

4.5.2 Design Specifications

CaiRL uses C++ with highly performant fast-paths such as Single instruction, multiple

data (SIMD) for vectorized calculation that fits into the processor registry in a single in-

struction. The design mimics OpenAI Gym but relies on templating and const expressions

that enable calculations to evaluate at compile-time instead of runtime.

Module Layer

CaiRL has a modular design with little cross-dependencies between module categories to

decrease compile times. CaiRL splits modules into three categories:

• spaces for action and observation definitions,

• environments for wrappers of supported environments,

• utilities for enriching the framework, such as the tournament module.

Figure 4.10 shows the CaiRL framework with a streamlined dependency structure, where

the primary dependency lies in the CaiRL Env class. The CaiRL env class is the glue that

binds together the environment definition and logic. The spaces module defines classes

for different types of action and state spaces, e.g., n-dimensional matrices and one-hot

vectors. The environment module is the collection of implemented games in CaiRL. The

utility module contains many convenience tools for communicating with remote environ-

ments through Websockets and setting up tournaments for experimental setups. CaiRL

environments are C++ code that compiles down to machine code and wraps to a Python-

compatible binary using Pybind11.
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Figure 4.10: Brief overview over components in CaiRL. The framework splits code into

modules similar to the OpenAI Gym framework: spaces, environments, and utilities. The

modules interface with the CaiRL Env class, from which all environments derive. The

environments compile to a shared library and are callable from python code.

Interaction Layer

There are two ways of building reinforcement learning experiments with CaiRL using

C++ directly or through the Python-to-C++ bindings. CaiRL runs efficiently in both pro-

gramming languages, but there is a computational cost to run the Python interpreted and

translate calls between C++ and Python. The primary goal of the API design is to match

the Gym API closely, enabling developers to choose CaiRL or OpenAI Gym for common

game environments effortlessly.

Listing 4.1 Minimal Example of CaiRL-CartPole-v1 in C++

1 e = Flatten<TimeLimit<200,CartPoleEnv>>()

2 for(int ep = 0; ep < 100; ep++){

3 e.reset();

4 int terminal, steps = 0;

5 while(!terminal){

6 steps++;

7 const auto [s1, r, t, info] =

8 e.step(e.action_space.sample());

9 auto obs = e.render();

10 terminal = t;

11 }

12 }

As seen in Listing 4.1, the C++ interface is similar to OpenAI Gym. The difference is that

CaiRL modules use template classes, as seen in line 2. Templates in C++ define a class
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that can evaluate much of the program logic during compile-time. There are considerable

runtime benefits because code initialization resolves during compile-time at the cost of

longer compile times. Another downside of templates is reduced flexibility because it

is impractical to create environment definitions during runtime, which is required when

building Python-based environment wrappers. However, it is possible to define runtime-

defined environments in Python at the cost of lower performance.

A very central component of CaiRL is the ability to run experiments natively in Python.

This becomes possible through exposing C++ code through wrappers using the Pybind11

library. Pybind11 is a library that provides functions for translating Python to C++ system

calls automatically (and vice versa). Using the Python wrapper code, there is no need for

C++ knowledge, and it is possible to both use and extend CaiRL solely using Python. The

Python interface is similar to the C++ interface but focuses more on compatibility with

the OpenAI Gym interface.

Listing 4.2 Minimal Example of OpenAI and CaiRL CartPole-v1 in Python

1 #e = gym.make("CartPole-v1")

2 e = cairl.make("CartPole-v1") # Use CaiRL

3 for ep in range(100):

4 e.reset()

5 terminal, steps = 0

6 while not terminal:

7 steps++

8 a = e.action_space.sample()

9 s1, r, t, info = e.step(a)

10 obs = e.render()

11 terminal = t

Listing 4.2 illustrates the use of CaiRL in Python compared to OpenAI Gym. In particular,

the only change that is required to switch between the two frameworks is to comment on

Line 1 and comment out Line 2.

FlashRL

Paper A presents preliminary work on providing an RL platform for Flash Games and is

further pursued in CaiRL. The first draft of this method uses external applications to exe-

cute the Flash runtime and uses a virtual frame buffer in combination with remote access

via VNC. CaiRL and Paper M extend this work with the ability to run Flash games with-

out requiring third-party applications, and compared to FlashRL, performs significantly

better. CaiRL extends the LightSpark Flash emulator for Actionscript 3 and falls back to

GNU Gnash for ActionScript 2. CaiRL features a repository of over 1300 Flash games

for conducting AI and RL research.





4.5. CAIRL ENVIRONMENT SUITE

Affordable and Sustainable AI

AI is a constantly growing field of research, and with the active focus on Deep Learning,

the computational requirements increase sharply (Vinyals et al., 2019). Deep Learning

models range from a few thousand parameters up to several billion parameters that re-

quire carefully tuning with algorithms such as stochastic gradient descent. Therefore,

computing power is an essential part of achievable performance for trainable models. The

same applies to Deep Reinforcement Learning, but it also requires live data sampling from

an environment, making it more compute demanding. It is safe to conclude that running

experiments becomes exponentially more expensive and is against more sustainable AI.

CaiRL aims to minimize the cost of reinforcement learning by reducing environment ex-

ecution time. In essence, this has the positive side-effect of reducing the carbon emission

footprint in RL significantly compared to existing solutions and is presented further in

Section 6.5.5.

Design Discussion

A graphics accelerator takes charge of evaluating program code into a graphical repre-

sentation through a renderer. The graphics accelerator runs either as a software imple-

mentation such as program code or a hardware implementation such as graphics cards

with specialized electronics for graphics rendering. It is natural to assume that hardware-

accelerated graphics yield the most performance because of task specialization, but this is

not always the case because the cost to copy the frame buffer from GPU to CPU memory

is often more expensive in simple 2D graphics compared to the CPU render-time.

According to Mileff and Dudra, 2012, software rendering in modern CPU chips performs

2-10x faster due to specialized bytecode instructions. The study concludes that although

GPU can render frames faster, provided that the frame permanently resides in GPU mem-

ory. Having frames in the GPU memory is impractical for machine learning applications

because of the copy between CPU and GPU. The authors in Mendel and Bergström, 2019

propose using Single instruction, multiple data (SIMD) optimizations to improve game

performance. SIMD extends the CPU instruction set for vectorized arithmetic to increase

instruction throughput. The authors find that using SIMD instruction increases perfor-

mance by over 80% compared to traditional CPU rendering techniques.

The findings in these studies suggest that software acceleration is beneficial in some

graphic applications, and similarly, we find it useful in a reinforcement learning con-

text. Empirically, we see that software rendering performs better for simple 2D and 3D

graphic applications due to the high-latency copy operation needed between GPU and

CPU. Much of the CaiRL performance gains lie in the fact that software rendering, while

slower for advanced games such as StarCraft, significantly outperforms hardware render-
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ing for simple graphics. One alternative to improve performance in hardware rendering is

to use pixel buffer objects or equivalent implementations. A Pixel Buffer Object (PBO)

is a buffer storage which allows the user to retrieve frame buffer pixels asynchronously

while a new frame buffer draws to the screen frame buffer. In particular, copying pixels

without PBO is slower because rendering must halt while the buffer is read.

CaiRL aims to increase the game repository over time and encourage submissions of

new environments. For this reason, it is essential to recommend implementation methods

that yield the highest performance. We find that software rendering is the best choice

for simple 2D and 3D-based games, and in complex 3D games such as StarCraft II, the

programmer should implement PBO-based rendering if it is possible to gain access to the

rendering context.

4.5.3 Results

Performance Evaluation

The CaiRL toolkit primarily measures the performance increase compared to OpenAI

Gym and quantifies the potential to reduce climate emissions in RL research. We report

that DQN successfully beat the Multitask environment with early-stopping, as seen in

Paper L, Figure 7. For performance gains of using CaiRL, Table 4.9 demonstrates the

effectiveness compared to OpenAI Gym in training and execution time. We test classical

RL environments such as CartPole, where CaiRL variants are code ports to C++. The

CaiRL and OpenAI Gym columns present the execution time in milliseconds for 100

trials of DQN.

Table 4.9: The performance in execution-time of CaiRL, compared to OpenAI Gym. We

test classical RL environments, namely CartPole, Acrobot, MountainCar, and Pendulum.

CaiRL versions are reimplementations in C++. The CaiRL and OpenAI Gym columns

present the execution time in milliseconds for 100 trials of DQN.

Environment CaiRL OpenAI Gym Source
CartPole-v1 37K 49K Paper L

Acrobot-v1 63K 86K Paper L

MountainCar-v1 41K 89K Paper L

Pendulum-v1 46K 87K Paper L

Carbon Emission Evaluation

The last decade of machine learning innovations has become increasingly more compu-

tational heavy with the inception of deep learning models. Machine learning becomes a
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Table 4.10: The DQN hyperparameters for the carbon emission experiment

Hyperparameter Value
Discount 0.99

Units 32, 32

Activation ELU

Optimizer Adam

Loss Function Huber

Batch Size 32

Learning Rate 3e-4

Target Update Freq 150

Memory Size 50 000

Exploration Start 1.0

Exploration Final 0.01

more substantial problem for the climate because of the carbon emissions of the power

draw. It is possible to quantify carbon emissions using CO2-equivalent (CO2-eq), a stan-

dardized measure used to express the global-warming potential of various greenhouse

gases as a single scalar value, which we use in our estimations.

This section addresses the following question:

Question: Is CaiRL a better alternative for lowering carbon emissions in RL research

than OpenAI Gym?.

To begin answering this question, we run experiments with the novel experiment-impact-

tracker from Henderson et al., 2020b. The experiment-impact-tracker is a drop-in method

to track energy usage, carbon emissions, and compute utilization of the computer system.

The authors propose and encourage researchers to create more sustainable AI. Our ex-

periments run a DQN agent on the classical control environment CartPole-v1 in CaiRL

and OpenAI Gym. We compare toolkits using the console-only version and the graphical

variant. The experiment runs 1 000 000 times in the console version and 10 000 times in

the graphical version.12. Finally, the DQN parameters are shown in Table 4.10.

Table 4.11 shows that CaiRL has a considerably lower carbon emission compared to Ope-

nAI Gym. CaiRL has 20.89 times less carbon emission in the console variant than OpenAI

Gym. The graphical experiment shows a more significant difference with over 147 578

times lower carbon emissions throughout the test period. OpenAI Gym has high emission

rates because the frame buffer draws to screen before the frame is accessible to system

12The experiment code is accessed at https://github.com/cair/rl/blob/main/cairl/examples/benchmarks/
cartpole v0.py
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Table 4.11: Description of the total carbon emission values and power consumption used

during the experiments. The carbon emission is measured in CO2/kg, and the power draw

is measured in milliwatt-hour (mWh).

Measurement Environment CaiRL Gym Ratio
CO2/kg Console 0.000014 0.000067 20.8955

CO2/kg Graphical 0.000051 0.075265 147578.431373

Power (mWh) Console 0.000319 0.001483 21.5104

Power (mWh) Graphical 0.001131 1.673959 148006.9849

memory. The emission rate measurements subtract the DQN training time usage with

the total time used to only account for the environment runtime costs, effectively exclud-

ing the DQN training time. We outline the DQN hyperparameters in Table 4.10. Based

on our empirical experiments, we find CaiRL is a better alternative for lowering carbon

emissions in RL research than OpenAI Gym.

4.5.4 Summary

CaiRL is a novel platform for RL research and aims to reduce experiment execution time

to reduce budget costs and carbon emissions. CaiRL outperforms OpenAI Gym imple-

mentations significantly while also being compatible with existing OpenAI Gym code-

bases. We demonstrate how CaiRL is used, and we draft recommendations for defining

graphical interfaces in games to reduce rendering time. Furthermore, we illustrate that

CaiRL supports many programming languages, including C++, Java, Python, and Action-

Script 2 and 3. CaiRL supports over 1000 games in ActionScript, Several C++ games,

Micro RTS, and Showdown in Java and supports OpenAI Gym Python games out of the

box. In the evaluations of CaiRL, we demonstrate superior performance and a positive

reduction in the carbon footprint when training Q-Learning agents compared to OpenAI

Gym.

4.6 Summary
This chapter contributes five novel environments to the body of science, specifically Deep

Line Wars, Deep Maze, Deep RTS, Deep Warehouse, and CaiRL. Table 4.12 outlines the

resulting source code. The primary motivation for creating a comprehensive test bench is

that existing literature has complexity or performance gaps.
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Table 4.12: An overview of the source-code repositories of our environment contributions.

Additional code can be found at https://github.com/topics/per-arne

Environment Paper Location
Deep RTS Paper C https://github.com/cair/deep-rts

CaiRL Paper L https://github.com/cair/rl

FlashRL Paper A https://github.com/cair/FlashRL

Deep Line Wars Paper B https://github.com/cair/deep-line-wars

Deep Line Wars 2 Paper B https://github.com/cair/deep-line-wars-2

Deep Maze Paper D https://github.com/cair/deep maze

Deep Warehouse Paper M https://github.com/cair/deep-warehouse

4.6.1 Game Complexity

Figure 4.11 shows a comprehensive chart of state-space complexity in our game contri-

butions and other well-known environments. For example, the simplest environments in

StarCraft have a state-space from 101685 to 1036000 (Ontanon et al., 2013). The state-space

lower bound calculation is written 10log(||tile-combinationswidth*height||), where width and height

denote absolute logarithm of the multiplied map dimensions, tile-combinations for the

number of placable units. Micro RTS has similar estimates as the Deep RTS environment

because it features seven different units, building types, and dynamic map size. The prob-

lem with Micro RTS is that it runs only in Java and is significantly slower than Deep RTS.

Because of a considerable state complexity in the environments, we can only provide

conservative lower bounds, but we expect the upper bound to be significantly higher.

Case Study: ASR Systems

Following the study of Beckschäfer et al., 2017, we compare the game environments in

Figure 4.11 to real-world ASRS complexity. The authors study Grid-based Warehouse

systems, similar to Deep Warehouse, specifically testing hand-crated algorithms. While

the authors do not estimate the state-space complexity of their problem, we can derive a

lower bound from their results and written descriptions. For example, if one considers a

20x20 grid with 4987 bins, the grid height is approximately 13 squares. Assuming that

every bin is unique, a static grid’s state-space complexity is 13(202) =∼ 10445. Addition-

ally, we can compute the number of sorting and pickup robots, which is a large part of the

surface plane configuration:

(width× height)!
((width× height)− robots)× sorting-robots!× pickup-robots!

. (4.1)
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Figure 4.11: Estimations of the state-space complexity in a range of games. The y-axis is

in logarithmic scale, and the centered bar-text is the state-space complexity. State-space

complexity is the number of state combinations that exist for the game. The bold items

are our contributions where Deep RTS is from Paper C, Deep Line Wars is from Paper B,

Deep Maze Paper D, and Deep Warehouse is from Paper E.
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Following this equation, we find that the state-space lower bound for ten pickup robots and

ten sorting robots in a 20x20 grid with 4987 bins is∼ 10445+1038 ∼ 10445, which is com-

parable to the Deep RTS-21x21-AllUnits environment. Consequently, on the extreme,

Autostore installations can reach a grid size of 255×255×19 and operate over 400 concur-

rent robots. Such a system has a lower bound state-space estimation of∼ 1083150+101120,

which exceeds the StarCraft II Full-Game environment.

4.6.2 Performance

Table 4.13: FPS comparison of selected environments. For environments with 60 or 144

FPS, it is difficult to (1) uncap the game loop or (2) render above the screen refresh rate.

Environment Frame per second Source
ALE 6,500 Bellemare et al., 2013

Malmo Platform 60-144 Johnson et al., 2016

ViZDoom 8,300 Kempka et al., 2016

DeepMind Lab 1,000 Beattie et al., 2016

OpenAI Gym 60 Brockman et al., 2016

Stratagus 60-144 Ponsen et al., 2005

Micro RTS 11,500 Ontanon, 2013

TorchCraft 2,500 Synnaeve et al., 2016

ELF 36,000 Tian et al., 2017

SC2LE 60-144 Vinyals et al., 2017

Deep RTS 24,000-7,000,000 Paper C

Deep Warehouse 110 000-1 551 000 Paper E

Deep Maze 530 000-956 000 Paper D

Deep Line Wars 1 200 000-400 000 Paper B

Deep Line Wars 2 5 000 000-25 000 000 Paper B

There is a substantial difference between the performance in games targeted research and

those aimed towards gaming. Table 4.13 shows that the frame-rate difference ranges

from 60 to 25 000 000 for selected environments. A high frame rate is essential because

some exploration algorithms often require a quick assessment of future states through

forward-search. Some of the existing environments (e.g., Micro RTS, TorchCraft, ELF,

and SC2LE) have good FPS but cannot compete with the framerate of our contributions.

There are various reasons for lower FPS, but the most prominent reason is that the game

environments have frame and game-loop locks that were difficult to disable. Otherwise,

games like StarCraft II (SC2LE) have a high computation requirement. Our environments

dominate the FPS counter because all environments use software rendering to prevent
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frame buffer copies and are written in efficient low-level C++.







Chapter 5

Algorithm Contributions
This chapter introduces three novel reinforcement learning algorithms, the Dreaming

Variational Autoencoder (DVAE), Deep Variational Q-Networks (DVQN), the Observa-

tion Reward Action Cost LEarning Ensemble (ORACLE), and variations of these. We

present the algorithms ordered by contribution date. ORACLE and DVAE aim to improve

sample efficiency and increase the safety in RL algorithms following a model-based ap-

proach. DVQN move towards interpretability of latent spaces and latent space clustering

for multi-policy hierarchical RL algorithms. The aim is to create an RL algorithm that

has improved safety, is more sample efficient, improves towards the larger goal of solving

industry-grade, safety-critical systems, and succeeds in playing RTS games.

The presentation of algorithm contributions is structured as follows. Algorithms are in-

troduced, following a description of the algorithm and motivations to improve such al-

gorithms. We thoroughly present the algorithm’s architecture and theory, which builds

momentum for the evaluations in Chapter 6. This chapter presents research from Paper

D, Paper E, Paper F, Paper G, Paper H, Paper I, Paper J, Paper K, and Paper M.

5.1 Dreaming Variational Autoencoder (DVAE)
The Dreaming Variational Autoencoder (DVAE) is a model-based reinforcement learning

approach for safe and efficient learning. In model-based RL, the goal is to learn a behav-

ioral policy using a known or unknown dynamics model. A dynamics model describes

the transition probabilities of the environment T (st+1, rt|st, at) (See Section 2.2.4). This

work considers the model unknown and must be learned before deriving a behavioral pol-

icy. While model-based RL is traditionally risk-neutral, it can act as a safety precaution

because it can potentially learn good strategies fully offline without exploring the ground

truth environment and is the driving motivation behind the DVAE algorithm.

5.1.1 Motivation

Motivation 1 Recent studies in the literature concurrently conclude that model-based ap-

proaches have significantly better sample efficiency. This motivates further study

on solving RTS games (Walsh et al., 2010). Paper A, Paper B, and Paper C focuses

85
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on model-free methods, and the conclusion from our studies is that these meth-

ods require immense computational power to learn policies that accomplish good

performance (Thompson et al., 2020).

Motivation 2 Industry applications primarily employ algorithms designed by hand. It is

natural to assume that it is difficult to achieve global optimality in complex systems

with many dynamic variables. RL learns fully autonomous, and recent literature

demonstrates above human performance in many game environments, at the cost of

extensive trial-and-error (Mnih et al., 2015). Industrial systems are often costly in

production, making it difficult to train algorithms directly. These concerns motivate

research towards methods that learn the dynamics of the environment by observing

existing expert systems in live industry installations. The learned dynamics can

then fuel the learning of RL algorithms fully offline.

Motivation 3 Most RL algorithms are risk-neutral, meaning they do not aim to learn

objectives with minimal failure. In extension to Motivation 2, this contribution

motivates to improve the safety of DVAE to make RL more applicable to industry

applications.

5.1.2 The Dreaming Variational Autoencoder

Algorithm 1: The Dreaming Variational Autoencoder - Observe Routine

1 Function DVAE-Observe(T , N ) : D
Init: Experience-Replay D to capacity N

2 for i = 0 to N EPOCHS do
3 Observe starting state, s0 ∼ N (0, 1)

4 while st not TERMINAL do
5 a ∼ Ωθ(S = st) ; // Observe action

6 st+1, rt, tt = T (st, at) ; // Observe transition

7 D(st, at, rt, st+1, terminal) ; // Store experience

8 st ← st+1

9 end
10 end

Return: D
11 end

Assumption: Expert-system Ω

DVAE is an end-to-end solution for predicting probable future states ŝt+n where hat de-

notes a predicted state, t is the timestep, and n is the nth prediction. The goal is to predict

states from an arbitrary state-space S using state-action pairs explored prior to st+n and
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Figure 5.1: A graphical model of the DVAE model. The model takes state st (for

POMDP’s, st = ot) and action at pairs as input and outputs the encoded latent space

variables zt. The latent space variables represent a compressed representation of the tran-

sitioned state (next state) ŝt. The decoder network takes the future state latent variables

zt+1 and outputs a visual representation of the future state. Q(zt|X) is the encoder, zt is

latent space variables, and P(X|zt) is the decoder. DVAE can also use LSTM’s to im-

prove prediction towards longer time horizons.
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Algorithm 2: The Dreaming Variational Autoencoder - Train Routine

Init: Artificial Experience-Replay D̂ to capacity N
Init: Encoder Q(zt|st, at; θ)
Init: Decoder P(ŝ′|zt; θ)
Init: DVAE model T̂θ(ŝ′, r̂t|st, at) = P(ŝ′|zt)|Q(zt|st, at))

1 Function DVAE-Dynamics-Train(dt): T̂
2 st, at, rt, st+1 ← dt ; // Expand ER sample

3 zt ← Q(st, at) ; // Encode X

4 ŝ′ ← P(zt) ; // Decode zt into future state

5 Optimize model using stochastic gradient descent

6 end
7 Function DVAE-Dynamics-Sample(D): D̂
8 for di in D do
9 st, at, rt, st+1 ← Di ; // Expand ER sample

10 X = st, at

11 zt ← Q(X) ; // Encode X

12 ŝ′ ← P(zt) ; // Decode zt into future state

13 D̂(ŝt, at, rt, ŝ′, terminal); // Store experience

14 ŝt ← ŝ′

15 end
Return: D̂

16 end
17 while DVAE-Dynamics model is not trained do
18 for di in D do
19 Train dynamics model DVAE-Dynamics-Train(dt)

20 end
21 end
22 while Model-free algorithm is not trained do
23 Choose action at from policy πθ(at|st)
24 Execute at at state st using dynamics model T̂θ(ŝ′, r̂t|st, at)
25 Perform algorithm specific policy update πθ′ ← πθ

26 end
Outcome: Learned dynamics model T̂θ

27 Hyperparameters: See Table 5.1.
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at. Figure 5.1 depicts a simplistic graphical model of the DVAE model. A state st and

action at is input to the encoder Q(z|X), which predicts the latent state of the environ-

ment dynamics zt . . . zt+n. Then, using the latent state and action can transition the state

to zt + 1, and so forth. The decoder P (X|z) reconstructs the observed state and is part of

the reconstruction objective of the model.

The algorithm splits into two steps seen in Algorithm 1 and Algorithm 2. The observation

algorithm works as follows.

Line 1 The DVAE-Observe function takes the environment T and Experience Replay

(ER) buffer with capacityN as input arguments. The function returns the ER buffer

D on completion. The ER buffer initializes the capacity to N .

Line 2-3 Iterate for N EPOCHS (hyperparameter) and every epoch observe the initial

starting state of the environment

Line 4-9 (L4) While the environment is not in a terminal state. (L5) Let the expert-

system Ω sample actions, (L6) Let the environment transition to st+1, and (7) store

the state-observation, action, reward, and terminal state in ER buffer D.

The training algorithm (Algorithm 2) works as follows.

Init Initialize weights θ for encoder and decoder in the DVAE model T̂ .

Line 1-7 (L1) Define the DVAE-Dynamics-Train function that takes an ER sample as

input and returns the trained dynamics model T̂ (Equation 2.13). (L2) Unpacks

the ER sample and (L3) inputs to the encoder. The decoder predicts the estimated

future state ŝ′. The model updates weights using stochastic gradient descent.

Line 7-16 (L7) Define the DVAE-Dynamics-Sample function that uses the ER buffer from

Algorithm 1. (L8) For all samples in D, (L9) expand the tuple (L10) and encode

state st and action at to X . (L11) Encode X to the latent state variable zt and

(L12) decode to the estimated future state ŝ′. (L13) Store the estimations in the ER

buffer along with ground truth reward, action, and terminal state. (L14) update state

variable.

Line 17-21 Train the dynamics model using samples from the ER buffer until the model

has sufficiently low prediction error. The error function is problem dependant and

is defined separately.

Line 22-26 Using the trained dynamics model, follow the standard training scheme of RL

algorithms but query the dynamics model in place of the ground truth environment.

Update the policy accordingly.
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Figure 5.2: DVAE algorithm for generating states using T̂θ versus the real transition func-

tion T . First, a real state is collected from the replay-memory. DVAE can then produce

new states from the current trajectory τ using the state-action pairs. θ represent the train-

able model parameters.

Figure 5.2 illustrates how the algorithm generates sequences of artificial trajectories using

T̂θ = P(X|Q(z|X)), where z = Q(z|X) is the encoder, and T̂θ = P(X|z) is the decoder.

With state s0 and action Aright as input, the algorithm generates state ŝ1, which in the

table is similar to the real state s1. With the next action input,Adown, DVAE generates the

next state ŝ2 where the goal is that DVAE the prediction is equal to s2. Note that this is

without ever observing state s1. Therefore, the DVAE algorithm needs initialization with

the initial state, s0. The DVAE algorithm primarily uses a one-step prediction scheme

but can optionally serve multi-step predictions, discovered concurrently by Hafner et al.,

2020.

For DVAE to perform well, the requirement is that the environment has coherent and suf-

ficient observability to make learning the hidden dynamics possible. In other words, the

environment cannot be hidden like the pong example that we exemplify in Section 2.1.1.

DVAE can predict trajectories of imaginary data using one-step predictions by calling the

transition function recursively. τ = ŝ1, a1, ŝ2, a2, ŝ3, a3 = Tθ(Tθ(Tθ(s0,Aa0),Aa1),Aa2),
is a example of 3-step trajectory. According to empirical evidence, the DVAE algorithm

can predict imaginary data accurately for approximately 3-timestep. However, com-

pounding errors makes it difficult to predict longer state sequences, as demonstrated in

evaluations in Section 6.1. In addition to the original DVAE model, several contributions

extend the model to better support complex environments, longer horizon predictions, and

safety in Paper F (Generative Adversarial Networks and Stochastic Weight Averaging),

Paper G (Safety), and Paper H (CostNet)

5.1.3 Generative Adversarial Networks

Figure 5.3 illustrates the DVAE-GAN extension. This model introduces the generator

G and discriminator D. The motivation follows an adversarial approach proposed in
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Figure 5.3: The proposed DVAE-GAN architecture. While the original VAE architecture

persists, as seen in Figure 5.1, a new generative adversarial networks component is added

for increased generalization across the latent space.

Makhzani et al., 2015. The generator G(n|St, At) generates samples from Gaussian dis-

tributions, conditioned on current state and action to predict the latent space distribution

zgan. The discriminator D(zvae, zgan) is a neural network that predicts the validity of the

input, in this case, if the latent space variable is from the ground-truth distribution. A

min-max game between the generator and the discriminator fuels learning. The generator

minimizes its error towards the real latent space, and the discriminator learns to distin-

guish between the real and fake latent distributions. The algorithm samples from the VAE

latent space distribution model zvae = αt + (µt × N(0, 1)). The discriminator evaluates

zvae’s authenticity, updates weights and biases according to the confidence in the pre-

diction. The loss function of the discriminator is combined with the original VAE loss,

which empirically demonstrated better stability of the VAE, reducing posterior collapse

frequency drastically.

5.1.4 Stochastic Weight Averaging

SWA is a novel approach to ensemble learning. The objective is to widen the global

optima space to increase the chance of finding and persisting during stochastic gradient

descent updates. The author claims that it trivializes the optimization of the optimization

problem and improves the model generalization (Izmailov et al., 2018).1 Compared to

other ensemble learning techniques, SWA only requires a single model where snapshots

1The author further demonstrated effectiveness in Improving Stability in Deep Reinforcement Learning

with Weight Averaging, but the work is not peer-reviewed. However, Paper F demonstrates similar findings.
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Figure 5.4: The view-reason-control (VRC) architecture of the module-based DVAE vari-

ant. The model compresses an input state st in the view module before evaluating the

time-dependant latent variables ht in the reasoning module. The latent variables evaluate

actions used to transition the environment to the next timestep. Additionally, the DVAE

can train without real environment interactions by directly sending predicted state and

action to the view module, effectively starting a new timestep.

are stored every n epochs that are averaged every m epochs. We use a cyclical learning

rate and average the weights for each training iteration, creating the DVAE model (Smith,

2015). SWA is sensible because the compounding error for predicting longer horizons

increases variance and generally decreases model stability. Due to the larger optima space,

it is more likely that the algorithm recovers from local optima during training.

5.1.5 Module-Based DVAE Architecture

The original DVAE architecture from Paper D has several challenges with modeling com-

plex state spaces. We add several extensions to the model to address these challenges

to improve performance across various environments. These extensions include VAE’s,

LSTMs, and fine-tuned variations. Paper E generalizes the model into three individual

modules, forming the View, Reason, and Control (VRC) model. The VRC model embeds

all improvements into a single model and learns which algorithms to use under certain

conditions in an environment using grid-search strategies. Figure 5.4 shows an overview

of the proposed VRC where the in-figure numbering represents the following:
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1. A state st is observed. This observation stems from the real environment and the

dynamics model during training at inference time. The observation is encoded in

the view component (e.g., via AE or GAN) and outputs an embedding z at time t

w.r.t policy π.

2. The reason component learns the time dynamics between state sequences. Encoded

states are accumulated into a buffer Zt = {zt−n . . . zt} and are then used to pre-

dict the hidden-state ht w.r.t the encoded state sequence. The reason component

typically consists of a model with an RNN-like structure that generalizes well on

sequence data.

3. The hidden state is then used to evaluate an action using policy π, and

4. is sent to the environment and the view for the next iteration.

5. The decoder prepares the hidden-state ht and encoded state zt, producing the suc-

ceeding state ŝt+1. The prediction is then used in the next iteration as current state

st, leading to (1). As an optional mechanism, the controller can use the output

from the decoder instead of the hidden state information. This is beneficial when

working with model-free algorithms such as DQN (Mnih et al., 2015).

5.1.6 Safe Dreaming

The Safe Dreaming Variational Autoencoder (S-DVAE) aims to increase agents’ safety in

environments with catastrophic state outcomes. S-DVAE is a model-based RL approach

for safe and efficient learning. S-DVAE learns a dynamics model similar to DVAE but

emphasizes using an expert system to learn the dynamics model. The algorithm models

the problem as a CMDP (Section 2.3.2) with a combination of risk-directed exploration

and curiosity.

A dynamics model learns the transition dynamics of the real environment. The model

gathers experience by observing an expert system to learn these transitions. Expert sys-

tems usually exist in industrial applications, requiring minimal effort to train the dynam-

ics model. Also, the expert system has a high likelihood of already making safe decisions

but often operates with sub-optimal performance. Therefore, RL algorithms are well

equipped for decision-making in industry-near environments towards improving perfor-

mance and safety with expert system guidance.

Training model-free RL algorithms on top of the DVAE model is safe because it is no

longer required to balance the exploration-exploitation trade-off. It is also sample ef-

ficient because it only requires training on environmental samples during the dynamics

model learning. Deep Q-Networks from 2015 is well suited because it is an off-policy
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Figure 5.5: Learning Strategy. The general idea of S-DVAE is to isolate the agent training

to reduce the risk of catastrophic behavior in the real environment. The dynamics model

observes the sensors of the real environment and estimates its transition function. The

intelligent agent uses the dynamics model to train in an offline setting without the risk of

making mistakes in the real world. After training, the algorithm is deployed to the real

environment, with significantly less chance of entering catastrophic states.

algorithm with convergence guarantees. Therefore, combining the S-DVAE algorithm

and model-free algorithms ensures that learning is performed safely without the risk of

entering catastrophic states, or causing damage to the real-world environment.

Training duration depends on the problem and should rely on some mechanic to determine

the learning stopping criteria. As the algorithm learns an optimal policy for the dynamics

model, it gradually transitions to make actions in the real environment, based on the rate

of catastrophic states. At such a time when the agent interacts directly with the real

environment, it is possible to enter catastrophic states. The algorithm combats exploration

in uncertain state-space regions using curiosity. Several methods in literature use curiosity

to combat local optima policies but can similarly provide a mechanism to quantify nearby

states’ uncertainty and, therefore, avoid such states efficiently (Chiang et al., 2019). We

name the strategy negated curiosity and is a reward bonus to reduce the exploration of

state-space regions with high uncertainty. This way, the fully deployed algorithm will

behave cautiously when the movement towards novel states appears or if the environment

is changed dynamically.

The training procedure illustrated in Figure 5.5 works as follows. (1) The dynamics model

observes and learns the real environment using a sensor model. The same sensor model is

the expert system’s interface for decision-making. (2) The intelligent agent (e.g., an RL

agent) interacts with the dynamics model and improves the behavioral policy. (3) At the

point where the intelligent agent is sufficiently trained, it can replace existing expert sys-

tems with comparable safety and performance. (4) If desirable, the intelligent agent can

train further in the real-world environment to potentially improve reward performance.
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Figure 5.6: Unrolling predictions for S-DVAE. The agent observes a state from the en-

vironment or the dynamics model for each timestep. Furthermore, the agent makes an

action that transitions to the next state with the corresponding reward. M denotes the

dynamics model where ŝ and r̂ is the predicted state and reward.

The execution of S-DVAE is shown in Figure 5.6 and works as follows. The policy π(a|s)
predicts action a for the observed state s. The first action is sent to the real environment

to produce an initial state st = s0. The dynamics model M process the initial state st
and initial action at and outputs predicted future state ŝt+1 and reward r̂t+1. The reward

is used for policy updates during training and the state for further action prediction. The

policy predicts action ât+1 and evaluates the next-step state ŝt+2. The procedure continues

until the algorithm meets the stopping criteria.

Figure 5.7 shows the S-DVAE architecture. The s-encoder transforms raw input data into

a meaningful and compact feature embedding (latent variables). S-DVAE uses VAE’s

primarily for this task, but other methods are also applicable, such as generative adversar-

ial networks (GAN). Depending on the environment and the input data, it is possible to

visualize the embedding zx ∈ Z and manually tune the latent variable values.

The t-encoder learns the transition function T : S × A → S. The t-encoder model com-

putes the future state embedding zt+1 based on previous latent space variables from the

view module Zt = {zt−n . . . zt}. The π denotes the policy under which S-DVAE op-

erates. S-DVAE shows empirically that LSTM’s performs best for learning future state

latent variables.

The control policy π(s|a) is responsible for interaction with the environment and the dy-

namics model (s-encoder and t-encoder). The control is the primary module for making

safe actions and progressing the learning in the right direction. S-DVAE uses DQN with

optimization constraints, risk-directed exploration, and negated curiosity. The negated
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Figure 5.7: Detailed architecture for S-DVAE. Dotted lines illustrate that the procedure is

optional. The algorithm is modular so that compatible algorithms and schemes are usable

and problem independent. The s-encoder transforms raw input data into a meaningful and

compact feature embedding. The t-encoder evaluates the temporal relationship between

latent space variables. The S-DVAE architecture is similar to Figure 5.4, but algorithms

(π(at|st)) have additional safety constraints.

curiosity act as the constrained criterion for the MDP. The input to the algorithm is a

raw-state, commonly a high-dimensional data structure. The benefit of the S-DVAE ar-

chitecture is that the t-model finds latent variables that represent the state with the order of

magnitudes less complexity. S-DVAE also enables initial training fully offline in a dream

version of the real environment.

Exploration and policy update constraints

There are significant improvements to S-DVAE, compared to DVAE for exploration and

policy updates to find safer policies. S-DVAE uses risk-directed exploration (Edith et

al., 2005) by modifying the action-selection strategy, seen in Equation 2.18. The policy

updates have a set of constraints, omitting particular updates to prevent the algorithm from

moving towards unsafe behaviors.

The algorithm receives feedback (rewards) during learning from the real-world environ-

ment. All actions in the action-set have some feedback, although only the selected action’s

feedback is seen during exploration. S-DVAE assumes that all actions that the agent does

make, are unsafe actions. This way, the algorithm gradually maps the unsafe policy space,

as illustrated in Figure 2.4. It is important to note that this mapping does not influence the

agent’s choices when learning the dynamics model. If the agent revisits a state in another
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episode, the agent may select new actions. Such an event labels the new action safe for

positive rewards. Depending on how much the algorithm samples from observing an ex-

pert system, the better understanding the dynamics model gets for the state-risk mapping

of the state-space.

Curiosity-driven Safety

Using expert systems to explore and train off-policy reduces the need for RL algorithms

to perform live decision-making to learn a dynamics model. Collecting observations prior

to RL decision-making increases the accuracy of the dynamics model and entertains the

idea of deriving curiosity-based exploration using the dynamics model. Two very central

works on the topic are Pathak et al., 2017; Schmidhuber, 2010.

Curiosity-driven exploration is composed of extrinsic (the environment) and intrinsic (cu-

riosity) rewards, where the agent is encouraged to enter unexplored states. Curiosity is

demonstrates to work well in problems where the trajectory to the goal-state is highly

non-linear. The agent might come in situations where negative rewards must be endured

to prevent local optima. The problem is that curiosity is counterproductive in decision

safety because we do not wish to explore areas with little information. The agent effec-

tively makes safer decisions by reformulating the agent’s objective to be curious about

known states. The negated-curiosity effect encourages the agent to stay in states where

the dynamics model has low uncertainty. For each dynamics model prediction, we can

calculate the error, which is the difference between the predicted state and the actual state

(the state observed by the agent). The model knows little about the consequences of do-

ing the action for predicted states with high error, indicating that the action may lead

to a catastrophic state. Curiosity is the mean squared error of the predicted future state

features T̂ ( ˆst+1|st, at) and the ground truth future state T (st+1|st, at) where

Cu(T , T̂ ) =
1

2
||T̂ ( ˆst+1|st, at)− T (st+1|st, at;P)||22, (5.1)

defines the curiosity vector Cu that quantifies how curious the agent is for performing a

particular action. In curiosity-driven exploration, the goal is to pursue states that max-

imize curiosity, but we aim to minimize Cu for actions with high uncertainty for safe

exploration. In our approach, the weighted curiosity vector adds to the action probability

distribution such that

U(s, a) = Uri+Cu(s, a) = Uri + αCu (5.2)

where α is the risk-aversion parameter and U extends the risk-directed exploration bonus

from Equation 2.18.

The updated utility is then compatible with Q-Learning updates using a neural network

function approximator with weight θ and the Q-Network. The network is trained by
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sequentially minimizing the loss function Li(θi) where i denotes the iteration, such that,

Li(θi) = Es,a∼p(·)
[
(yi −Q(s, a; θi))2

]
, (5.3)

where yi = Est+1∼E [U + γmaxa′ Q(st+1, a
′; θi−1)|s, a] is the target for iteration i and

p(s, a) is the behavior distribution (Mnih et al., 2015). Finally, the standard differentiated

loss, w.r.t to the weights θ denoted,

∇θiLi(θi) = Es,a∼p(·);st+1∼E

[(
U + γmax

a′
Q(st+1, a

′; θi−1)

−Q(s, a; θi)
)
∇θiQ(s, a; θi)

]
, (5.4)

where U is the modified risk-reward from Equation 5.2.

Analysis of convergence guarantees

S-DVAE combines several approaches that previous work has shown to have convergence

properties. The algorithm models the problem as an MDP, which is proven to have con-

vergence properties in several works (Feinberg et al., 2014; Feinberg and Lewis, 2018;

Haddad and Monmege, 2014; Santos and Rust, 2004). The Markov property is especially

interesting, and the proof is detailed well in Hairer, 2016. The S-DVAE algorithm uses

CMDP’s and is proved to have convergence properties for the discounted case used in this

work (Altman, 1999).

Tabular Q-Learning is known to converge as time goes towards T , but deep learning

variants, specifically DQN, have primarily empirical success. There are efforts such as

Fan et al., 2019 that prove theoretical convergence for simplified DQN, but no proof for

the general case. The proposed approach is based primarily on empirical observations

regarding using neural network estimators for the dynamics model. DVAE uses a similar

approach to Ha and Schmidhuber, 2018a; 2018b; Hafner et al., 2019 where the dynamics

model encoder constructs a variational bound on the data log-likelihood:

lnMd(s1 : T )
△
= ln

∫ T∏

t=1

M(st|st−d)M(st|sot )ds1:T

≥
T∑

t=1

(
Eq(st|sot ))[lnM(sot |st)]︸ ︷︷ ︸

reconstruction

− E
M(st−1|st−d)q(st−d||so≤t−d)

[KL[q(st|sot ≤ t)∥M(st|st−1)]
])

︸ ︷︷ ︸
multi-step prediction

(5.5)

where so denote unprocessed states. We refer the reader to 2019 for the derivation. The

curiosity bonus used in the proposed algorithm works well empirically, but there is no
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Figure 5.8: The encoder and latent-decoder architecture for learning a compact represen-

tation of states. The model is similar to a conditional variational autoencoder.

proof of convergence to the best of our knowledge. S-DVAE demonstrates empirical

safety and reward performance through trial and error, but theoretical convergence re-

mains future work.

5.1.7 CostNet for Goal-Directed Reinforcement Learning

CostNet is a combination of three disciplines in Deep Learning, (1) GDRL (Koenig and

Simmons, 1996), (2) Model-Based RL (Sutton and Barto, 2018), and (3) Variational Au-

toencoders (Kingma and Welling, 2013) and form a novel approach for learning the cost

between states modeled after an MDP, using the DVAE model for state-predictions. The

algorithm accumulates training data using expert systems or random sampling. For sys-

tems where safety is a priority, it is advised to perform sampling according to manually

defined risk constraints at the cost of increased sample complexity (Paper F).

The initial training phase involves training a dynamics model of the environment. Re-

cent work indicates that state-of-the-art models suffer from severe policy drift after a few

predictions, and DVAE-CostNet is no exception to the rule (Andersen et al., 2018b; Ha

and Schmidhuber, 2018a; Janner et al., 2019). Therefore, the problem is redefined to

learning only the one-step predictions. Figure 5.8 illustrates the proposed structure for

the encoder-latent-decoder model for CostNet. The model is a convolutional variational

autoencoder with three layers of convolutions before the latent-vector computation. The

input is an observation ot. The latent space zt forms from an estimated µ, and σ, mean

and standard-deviation respectively, from Gaussians. The ϵ ∼ N denotes sampling with

the reparametrization trick, as described in Kingma and Welling, 2013. On the right-hand

side, the estimated latent variable zt reconstructs into the future state ôt′ . The input is

an image of an arbitrary state. The hidden layers are convolutions with 32, 64, and 128
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Figure 5.9: The proposed DVAE-CostNet architecture. In-total two inputs, z1s and z2s , rep-

resent encoded states (see Figure 5.8. The inputs are sent through two streams (models),

CostNet0θ and CostNet1θ, and learns using two objectives. Both networks must agree on the

answer for gradients to contribute positively during training. The training is completed

when both networks predict the same state to be closest to the goal state. The hidden lay-

ers are standard fully-connected with ReLU activation. The output for CostNet0θ activates

with softmax, and CostNet1θ with sigmoid activation.

filters, a kernel size of 2, and a stride of 2 with Rectified Linear Unit (ReLU) activation.

The latent-vector size is 64 neurons, but it is highly advised to fine-tune these hyper-

parameters as the required embedding capacity varies on the problems state-complexity.

Figure 5.9 shows the proposed architecture for the DVAE-CostNet algorithm and consists

of two models with different objectives. The first model, CostNet0θ, predicts which of

the two states are closest to the goal, stateA or stateB. The output is a vector that de-

scribes the probability of stateA and stateB being closest to the goal. The second model,

CostNet1θ, predicts the absolute distance to a goal state as a real number between 0 and 1,

where 0 is at the goal state, and 1 is at the maximum possible distance. Both networks

train using Mean Squared Error (MSE) loss, where the labels stem from the experience

buffer and the distance label from a backtracking algorithm. The predictions are con-

sidered correct (reliable) when there is an agreement between both networks, i.e., that

CostNet0θ correctly predicts which of stateA or stateB is closest, and CostNet1θ predicts

the actual distance.
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To exemplify, consider the inputs z1s (stateA) and z2s (stateB) where z1s is closest to the

goal state. In this case, the first index in the vector from the CostNet0θ prediction should

be the largest signal, and the predicted distance from CostNet1θ for z1s should be less for

the similar prediction z1s . If this is in place, we claim that the models agree. When the

network agreements are consistent, the training is considered complete.

5.1.8 Hyperparameters

Table 5.1: Tunable parameters in DVAE. Note that this is the complete list for DVAE

with its extensions. The hyperparameter column names the specific parameter, the Values

column is which data type, the Selected column is the proposed setting, and the comment

column summarizes the hyperparameter function.

Hyperparameter Values Selected Comment

Batch Size Z+ 16 Number of sequence batches

Buffer Size Z+ 90 000 Replay buffer

Optimizer Adam

Learning Rate R 1e-08 Low Learning rate to improve stability.

Latent Leaps Z+ 3 The number of multi-step predictions.

Dynamics Model RNN LSTM The first version does not use RNN. Extensions

use LSTM.

Activation Functions ReLU

Reward Prediction B 1 The first version does not predict rewards.

Cost Prediction B 1 The first version does not predict costs.

w R 0.5 Weighted entropy, Paper G Eq 10.

α R 0.99 Risk-Awareness Paper G Eq 11.

Table 5.2: Hyper-parameters of DVAE-CostNet algorithm. The parameter column is the

particular hyperparameter, and the value column is the proposed default value.

Parameter Value

Learning Rate (DQN) 0.01

Discount Factor (DQN) 0.95

ER-Size (DQN) 5000

Optimizer Adam

Optimizer Learning Rate 0.001

Drift-Threshold ψ 0.3





5.2. DEEP VARIATIONAL Q-NETWORKS (DVQN)

5.1.9 Summary

DVAE is a novel approach that aims towards safer and more sample-efficient RL for

RTS and industry-near applications. DVAE is primarily a variational autoencoder (2013).

Still, we investigate several approaches to improve the method, namely using GAN,

SWA, CostNet, and modifying the objective towards more safe learning of model-free

approaches using a learned DVAE model as the training environment. The challenge with

DVAE is to learn stable models for longer time horizons. The study finds that only three

steps predictions produce satisfactory results. However, 3 step predictions provide 77%

improvement in sample efficiency compared to traditional model-free algorithms.

5.2 Deep Variational Q-Networks (DVQN)
The Deep Variational Q-Networks (DVQN) extends the Deep Q-Networks algorithm that

finds good policies in an organized latent space. The algorithm is especially suited for

clustering the state-space and learning multiple policies in a singular clustering model

(See Section 7.5). Empirically, the algorithm shows comparable reward performance to

traditional model-free deep Q-Network variants. DVQN combines two emerging algo-

rithms, VAE (2013) and DQN (Mnih et al., 2015). This work is published in Paper J with

the title Interpretable Option Discovery using Deep Q-Networks and VAEs.

5.2.1 Motivation

Motivation 1 VAEs are highly expressive models that usually model data as Gaussians.

From prior research, it is clear that data in the latent space of VAE’s correlates

highly (e.g., similar data is close). This motivates using VAE’s to create an RL al-

gorithm that can cluster the state-space, enabling different behaviors for individual

clusters.

Motivation 2 Option-based RL is a hierarchical approach that enables algorithms to en-

code/learn several objectives separately. Combined with Motivation 1, this contri-

bution motivates to design a foundation for algorithms that can learn to automati-

cally discover options following the seminal work of Sutton et al., 1999.

5.2.2 Deep Variational Q-Networks

In traditional Deep Q-Networks, hidden layers are treated as a black box. On the contrary,

the objective of the VAE is to reconstruct the input and organize the latent-vector so that

similar (data) states are adjacently modeled as a Gaussian distribution.

By introducing a VAE mechanism into the algorithm, we expect better interpretability
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Figure 5.10: The deep variational Q-Networks architecture.

for creating options in RL, which is the primary motivation for this contribution. VAEs

are, in contrast to DRL, involved with the organization of the latent space representation

and are commonly used to generate clusters of similar data with t-distributed stochastic

neighbor embedding (t-sne) or Principal Component Analysis (PCA) (Zheng et al., 2017).

The DVQN algorithm introduces three significant properties. First, the algorithm fits

the data as a Gaussian distribution. This reduces the policy space, which in practice

reduces the probability of the policy drifting away from global minima. Second, the

algorithm is generative and does not require exploration schemes such as ϵ-greedy because

of the reparametrization noise during training. Third, the algorithm can learn the transition

function and, if desirable, generate training data directly from the latent space parameters,

similar to the work of Ha and Schmidhuber, 2018a.

Figure 5.10 illustrates the architecture of DVQN. The architecture follows general trends

in similar RL literature but has notable additions. First, features are extracted from the

state input, typically using convolutions for raw images and fully connected for vectorized

input. The extracted features are forwarded to a fully connected intermediate layer of a

user-specified size, commonly between 50 to 512 neurons. The intermediate layer splits

into two streams representing the variance µ and standard deviation σ and is used to

sample the latent-vector using a Gaussian distribution. The latent-vector is forwarded to

the decoder for state reconstruction and the Q-Learning stream for action-value (Q-value)

optimization. The decoder and Q-Learning streams have the following loss functions:

LV AE = MSE(s, ŝ) +DKL[qψ(z|s)∥pθ(z|s)] (5.6)

LDQN = Equation 2.11 (5.7)

LDVQN = c1E∼qψ(z|s)[LV AE] + c2Es,a,st+1,D∼r[LDQN ]. (5.8)

The algorithm loss function LDVQN is composed of two local objectives: LDQN and

LV AE . In the VAE loss, the first term is the mean squared error between the input st and

its reconstruction ŝt. The second term is regularization using KL-distance to minimize
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the latent distribution and a Gaussian distribution distance. The DQN loss (Equation 5.7)

is a traditional Deep Q-Networks update, as described in Mnih et al., 2015. Both terms in

LDVQN weights with a constant c ∈ {0 . . . 1}.

Algorithm 3: DVQN: Minimal Implementation
Init: Environment

Init: DVQN model π

Init: Experience-Replay Buffer Dπ

1 for i = 0 to N EPISODES do
2 Dπ ← Collect samples from environment using policy π via the generative

policy sampling.

3 Train model π on a mini-batch from Dπ with objective from Equation 5.8

4 end

Algorithm 4 describes the general routine for the DVQN algorithm. First, the environment

is initialized. Second, the DVQN model from Figure 5.10 is initialized with the desired

hyperparameters, and third, the ER buffer is created. The algorithm samples actions from

the generative policy for exploration and stores these as MDP tuples in the experience

replay for a specified number of episodes. After each episode, the algorithm samples

mini-batches from the experience replay and performs parameter updates using stochastic

gradient descent. The (loss function) optimization objective is described in Equation 5.8.

The process repeats until the algorithm converges.
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5.2.3 Hyperparameters

Table 5.3: Algorithm and hyperparameters used in the experiments. For the Rainbow

algorithm, we used the same hyperparameters described in 2018. The DDQN had target

weight updates every 32k frames.

Algorithm DQN DDQN Rainbow DVQN (ours)
Optimizer Adam RMSProp

Learning Rate 0.003 0.000025

Activation ReLU ELU

Batch Size 32 128

Replay Memory 1m

Epsilon Start 1.0 N/A

Epsilon End 0.01 N/A

Epsilon Decay 0.001 (Linear) N/A

Gamma 0.95

Q-Loss Huber MSE

During the experiments, we found DVQN to be challenging to tune. Initially, the algo-

rithm used ReLU as activation but was discarded due to vanishing gradients resulting

in divergence for policy and reconstruction objectives. Using Exponential Linear Units

(ELU), we found the algorithm to be significantly more stable during the experiments, and

it additionally did not diverge if training continued after convergence. Table 5.3 shows the

hyperparameters used in our experiments where most of the parameters are adopted from

prior work. Recognize that the DVQN algorithm does not use ϵ-greedy methods for ex-

ploration. This is because random sampling is done during training in the VAE part of the

architecture. In general, the algorithm tuning works well across all of the tested domains,

and better results can likely be achieved with extended hyperparameter searches.

5.2.4 Summary

We present the Deep Variational Q-network, a novel algorithm for learning generative

latent space distribution policies. The learned latent space is particularly useful for clus-

tering states that are close to each other for discovering options automatically. The DVQN

algorithm can perform comparably to traditional Deep Q-Networks in the tested environ-

ments. DVQN does not provide the same training stability and is significantly harder to

fine-tune than traditional Deep Q-Networks algorithms. For instance, network capacity

is increased. As a result, the algorithm takes longer to train, and during the experiments,
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only the RMSprop optimizer (Nair and Hinton, 2010) with a small step size provided

convergence. Additionally, the exponential linear units from Clevert et al., 2015 posi-

tively affected stability. The DVQN contributes a novel approach for options discovery in

hierarchical reinforcement learning algorithms on the positive side.

The combination of VAE and reinforcement learning algorithms has exciting properties.

Under optimal conditions, the latent space should follow a Gaussian distribution where

policy evaluations always provide optimal state-action values since these are the built-

in properties of the latent space in any VAE. The difference between traditional Deep

Q-Networks and DVQN primarily lies in reducing sparsity in the latent space. Deep Q-

Networks do not provide a latent space structure reflecting distances between states but

rather a distance between Q-values (Mnih et al., 2015). By using KL-regularization from

VAE, low state-to-state is encouraged. Another benefit of VAE is that we sample from a

Gaussian distribution to learn µ and σ, which is especially satisfying for algorithms with

off-policy sampling and therefore eliminates the need for (ϵ-greedy) random sampling.

Section 6.3 demonstrates the effectiveness of DVQN to structure latent spaces to human-

interpretable formats and shows comparable reward performance to traditional model-free

approaches.

5.3 Observation Reward ActionCost LEarning (ORA-
CLE)

The Observation Reward Action Cost Learning Ensemble (ORACLE) algorithm is a novel

end-to-end architecture for training model-free algorithms on a dynamics model learned

through observations of arbitrary environments.

5.3.1 Motivation

Motivation 1 During our findings in the DVAE Model, we found several shortcomings

in learning expressive models, especially for advanced environments such as Deep-

RTS and StarCraft II. This motivates new directions towards building a more ex-

pressive and capable model for model-based RL.

Motivation 2 DVAE uses traditional VAE’s from Kingma and Welling, 2013 at its core,

prone to posterior collapse. State-space models combined with deep learning tech-

niques, on the other hand, demonstrate less chance of catastrophic local minima

(Fraccaro, 2018). This motivates using states-space models to learn dynamics in

place of VAE’s.

Motivation 3 Driven by Motivation 2, this contribution motivates the study of VQ-VAE’s
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in place of VAE’s. This contribution motivates a study of VQ-VAE’s because they

demonstrate superior performance compared to VAE’s and does not suffer from

posterior collapse. Several of our contributions have sought to experiment with

VQ-VAE’s (Paper G, Section 6 and Paper H, Section 7).

5.3.2 Observation Reward Action Cost LEarning

ORACLE combines state-of-the-art deep learning techniques; Stochastic Recurrent State

Space Models (SRSSM) from 2018, VAE from Kingma and Welling, 2013, and VQ-VAE

from Razavi, van den Oord, and Vinyals, 2019. The vision is that observations from the

environment compress to a compact variable, evaluate the next-step latent variable, and

decompress the next-step observation from the latent-state approximation. The overall

goal of ORACLE is to learn the dynamics model T (st+1|st, at), where the approximation

model denotes T̂ (st+1|st, at).

ORACLE uses deterministic convolutional encoders, stochastic deconvolutional decoders,

SRSSM’s, and a model-free RL policy. Figure 5.11 shows the complete ORACLE archi-

tecture. There are two variants of ORACLE, the risk-neutral variant from Paper K and a

safety-aware variant in Paper M. The difference is that Paper K uses a traditional reward

function. In contrast, Paper M uses several reward-shaping techniques for safe RL.

5.3.3 Encoder and Decoder

This work primarily attends to high-dimensional observations such as images. ORACLE

uses convolutional neural networks to reduce pixel input dimensionality efficiently, and

for simple raw numerical inputs, a regular fully-connected network is sufficient.

The encoder takes observations ot as input and outputs a compressed state xt. It is a three-

layer deterministic convolutional neural network (CNN) that aims to extract information

from pixel observations ot and reduce dimensionality before reshaping the compressed

representation to a vector xt. Using CNN is first proposed in the seminal work of LeCun et

al., 1998. The encoder (and decoder) are learned using the MSE (cross-entropy) between

the predicted observation ôt+1, and after-the-fact observations ot+1,

LOBS = −E[logp(o|z)]. (5.9)

The decoder takes the latent variables zt as input and outputs the decompressed obser-

vation ôt′ . It is a deconvolution neural network that upsamples the compressed latent

variables to the same dimensions of ot. The final convolutional layer predicts µ and σ to

parameterize Gaussian distributions for every output pixel ôt′ . Empirical testing demon-

strates significant reconstruction performance benefits when using stochastic decoders

because it learns data variability better, resulting in far more accurate predictions than
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Figure 5.11: The ORACLE model. The environment produces an initial state st that

feeds into a ConvNet. The flattened representation xt is fed into the posterior distribution

and produces a latent vector zt. Concurrently, the prior distribution, which aims to learn

the dynamics model, uses the previous hidden state to predict a belief of the latent vector

following the intuition from Equation 2.4. The latent vector is the backbone for predicting

a reward and the state-cost. The policy uses trains concurrently where actions are made

to the real environment. Every component of the model trains jointly where each training

block (e.g., the colored squares) plays a part in the final optimization objective.
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deterministic decoders (Rybkin et al., 2021). There are no particular differences during

inference as we sample the mean, which roughly equates to the mean value of determin-

istic neural networks (Fraccaro, 2018).

5.3.4 Dynamics Model

SNN

SNN

Figure 5.12: Detailed overview of the dynamics model forward-pass from Figure 5.11.

The prior network uses last-step information, along with an action (the action that leads

up to state st is denoted at−1), and outputs the computed hidden-state and the sampled

latent-state variable zt. For LSTM, we store the cell state along with the hidden state.

The posterior network takes in the observed information xt and our prior belief state ht
and predicts the informed latent-state variable zt. Although both latent-state variables are

denoted zt, the prior latent-state variable is denoted ẑt during training.

ORACLE estimates the true MDP transition function (Equation 2.2), detailed in Sec-

tion 2.2.4. ORACLE uses deep neural networks to estimate the transition function using

VAE’s (Kingma and Welling, 2013) and SRSSM’s (Fraccaro, 2018) to create a highly

expressive probabilistic model. ORACLE models two distributions, a prior model and a

posterior model, where the goal is to transfer posterior knowledge to the prior distribution

using optimization. Figure 5.12 depicts the forward pass of ORACLE after encoding the

observation ot to a more compact representation xt.

The prior network (generative network) predicts the next state latent space variables zt
using information from the previous timestep; the previous latent variables zt−1, current

action at−1, and the hidden-state ht−1. ORACLE uses an LSTM architecture but is com-

patible with Gated Recurrent Unit (GRU) (Cho et al., 2014) or Liquid-Time Constant

(LTCRNN) networks (Hasani et al., 2021). When using LSTM, it is crucial to preserve

the cell state between training and inference. The primary goal of the RNN layer is to

transition the hidden state ht−1 to the future hidden state ht. In MDP’s, the RNN model

learns the transition function matrix from Equation 2.2. Finally, the stochasticity in the

transition function is the parametrization of Gaussian’s µ and σ to allow sampling of the

latent-state variables zt.

The posterior network (inference model) is simpler than the generative network. First,
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it concatenates the hidden-state ht, the encoded observation xt, and forwards to a feed-

forward layer (NN4) before parameterizing Gaussian distributions, similar to the prior

network. Finally, it predicts informed (after-the-fact) latent space variables zt+1.

The forward-pass of the dynamics model is as follows where the prior model performs

the following operations:

1. Compute ut = concat(zt−1, at−1).

2. Compute RNN state ht = RNN(ut).

3. Parameterize mean µt = NN2(ht) diagonal covariance matrix σ = NN3(ht).

4. Sample from Gaussian distributions SNN(zt|ht; θ) ∼ N (ht;µ, σ).

All steps are performed for every sample and form our prior belief state of the latent

variables. As seen in Equation 5.11, the posterior model depends on previous hidden-

state ht−1, action at−1, and the encoded state-observation xt. The posterior model can be

summarized to the following procedure:

1. Compute ut = concat(ht, xt).

2. Parameterize mean µt = NN5(ut) diagonal covariance matrix σ = NN6(ut).

3. Sample from Gaussian distributions SNN(zt|ht;ψ) ∼ N (xt;µ, σ).

Training takes inspiration from previous work in Paper D using variational inference

(Kingma and Welling, 2013) with the extension of using SRSSM’s from Fraccaro, 2018.

VAE’s and SRSSM’s are highly expressive model classes for learning patterns in time

series data and system identification (e.g., learning dynamics model from observed data)

(Doerr et al., 2018). The algorithm trains similarly to VAE’s using amortized variational

inference since po(zt|xt; θ) =
∫
zt

po(xt|zt;θ)po(zt;θ)
po(xt)

dz is intractable (Zhang, Butepage, et

al., 2019). The generative model (prior) pr and the inference model (posterior) po is

expressed,

Prior Model : pr(zt, ht|ht−1, at−1; θ) (5.10)

Posterior Model : po(zt|xt, ht; θ). (5.11)

Equation 5.10 is the prior distribution that attempts to learn parameters θ that best fit

the posterior distribution (Equation 5.11) by minimizing the Kullback Leibler Divergence

(KL) distance. The intuition is that the posterior model learns dynamics of the MDP

(environment) through observations ot while the prior distribution must learn indirectly

through optimization of the parameters θ. To make the optimization tractable, we use the
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ELBO (Jordan et al., 1999; Kingma and Welling, 2013) such that the optimization term

for the SSM (generative and inference network) becomes,

LSSM = LOBS −DKL[po(z|x; θ)|pr(z; θ)]. (5.12)

5.3.5 Categorical Latents

Figure 5.13: A detailed overview of the vector quantization network for mapping latent

space variables to categories after the generative network has predicted a continuous latent

space variable. The VQ-VAE module is depicted in Figure 5.11 and attempts to map

variables from the generative network (prior) to categories. The dashed lines illustrate

the process during training, while solid lines illustrate inference time computation. The

algorithm finds an appropriate category using the nearest neighbor.

Following the work in Razavi, van den Oord, and Vinyals, 2019, ORACLE uses a varia-

tion of the VQ-VAE architecture, illustrated in Figure 5.13. The VQ-VAE network cate-

gorizes latent variables similar to Paper H and enables policy selection of specific areas

in the state-space. Abstract policy selection is a promising direction towards automating

and generating options in hierarchical RL as proposed in the Options framework by the

seminal work of Sutton et al., 1999. Using VQ-VAE demonstrates benefits for planning

and predictive learning (Ozair et al., 2021) and does not suffer from a posterior collapse

in contrast to VAE’s. We discovered that combining SRSSM’s and VQ-VAE shows more

consistent convergence, reduces the risk of posterior collapse and recovers well from post

mortem posterior collapse if SWA is used to optimize the model parameters.

Inference and training are straightforward where the sampled latent variables from the

SRSSM mapped to a categorical codebook Z1 · · ·ZK with K possible categories of latent

space variables (Table 5.4 for hyperparameters). VQ-VAE outputs the categorical latent

vector closest to the continuous-space SRSSM latent-vector zt ← zkt . Training occurs

jointly with the rest of the model,

LV Q = ||sg [ze]− e||22 + βvq||ze − sg [e] ||22, (5.13)
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where e is the codebook. The first term is the codebook alignment loss which updates the

selected category closer to the SSM latent vector. The sg denotes the stop-gradient oper-

ator, which prevents gradients computation from flowing through the SSM model. This

is because we are only concerned with updating the codebook. The second term moves

the SSM latent-vector towards the codebook, but because SRSSM trains concurrently, it

is desirable to reduce the weight βvq ∼ 0.05, in contrast to Van Den Oord et al., 2017 that

propose a value in the range 0.25 ≤ βvq ≤ 2.0.

5.3.6 Rewards, Risks, and Costs

The learned dynamics model is the foundation for reward and cost estimates as part of the

feedback that fuels the learning of model-free RL agents. The feedback signal originates

from the environment (e.g., the designer creates the reward signal), uncertainty-based risk

quantization, and distance costs. The distance-cost metric measures the distance between

the present state observation and a possible positive terminal state observation. Risk cal-

culation follows the risk-sensitivity scheme (Section 2.3.1) and expresses the return func-

tion according to Equation 2.19. ORACLE learns the reward function R̂ by minimizing

the squared loss between predicted and actual reward and parametrizes a Gaussian dis-

tribution. The cost is learned separately and relies upon reaching a terminal state during

exploration. When a terminal state is reached, experiences from the start state to the goal

state are labeled in a temporal difference manner (e.g., how many steps it took from state

st−n until the terminal state st). The risk measure is a side-effect from model uncertainty

in the reward estimates Risk = Var(R̂) and gives the reward function,

Roracle = R(z)− V ar(R̂) + (1− C(z; θ)). (5.14)

The risk-aware approach in ORACLE comprises two terms that reduce risk during decision-

making in training and inference. The first term in Equation 2.18 is the inference-time risk

reduction. During learning, the agent utilizes Equation 2.18 for action selection and Equa-

tion 2.19 with ω = Var(R̂(zt)). The second term is the cost function C(zt)) that predicts

the normalized distance to a positive goal state. sg denotes the stop-gradient operator. To

optimize and learn the reward function and cost function, we minimize the following,

LRew = E[log pr(R|zt; θ)]︸ ︷︷ ︸
reward−loss

+ sg(E[log pr(C|zt; θ)])︸ ︷︷ ︸
cost−loss

. (5.15)

5.3.7 Actor Policy Ensemble

The actor ensemble’s primary objective is to make informed decisions that lead to a safe

trajectory to a goal state. ORACLE uses an ensemble of model-free algorithms, specifi-

cally A2C, DQN, RAINBOW, IMPALA, and PPO. These algorithms behave differently
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but share the fundamental goal of maximizing rewards. Reward maximization fuels the

motivation for reward function modeling using Equation 5.14. Specifically, all actor algo-

rithms optimize towards the risk-aware reward function, and the goal is that the algorithms

empirically demonstrate better safety during the exploration and exploitation of learned

dynamics. The actor ensemble is defined,

πensemble = MV({πA2C , πDQN , πRAINBOW , πIMPALA, πPPO}). (5.16)

MV is the majority vote operator, and πensemble is the policy that selects action at accord-

ing to the voted action. eπA2C denotes a policy trained using A2C, eπDQN , a policy trained

with DQN, and so on. Recall that policies select actions according to the risk-adjusted

utility function in Equation 2.18 from Edith et al., 2005, but use the predicted reward R̂
instead of the environment reward signalR. The ensemble of policies cannot analytically

guarantee safety during learning but empirically shows a promising step towards safer

algorithms.

5.3.8 Algorithm Description

Algorithm 4: ORACLE Training Routine
Init: Environment

Outcome: Learned dynamics model zt+1 = f(zt, ht, at)

Outcome: Learned ensemble of policies π = { π1 · · · πn }
Hyperparameters: Table 5.4.

1 while dynamics model is not trained do
2 Train poθ(x̂t+1, zt+1|xt, st+1, at; θ) ; // Equation 5.17

3 end
4 while model-free ensemble not trained do
5 Choose action at from policy

6 Execute at at state st and get zt+1, rt, ct via dynamics model

poθ(zt+1, rt+1, ct+1|zt, at)
7 Perform policy update

8 end

Algorithm 4 shows pseudo-code for training ORACLE. ORACLE has two training pro-

cedures. First, the ORACLE sample the environment using a policy. Second, the al-

gorithm proceeds using one of two schemes. Scheme #1 uses the agent ensemble for

exploration and trains concurrently. Scheme #2 uses an expert system to pre-train the dy-

namics model. Using Scheme #1, each algorithm in the ensemble trains either directly as

the samples are observed or stored in a buffer for fully offline training. After learning the

dynamics model, the second training procedure for a model-free algorithm begins. The
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programmer can use any model-free algorithm but should note that the training procedure

is different for off and on-policy algorithms. Optimally, the algorithm should utilize a

replay buffer and sample actions from an external policy, following Scheme #1 to learn

off-policy algorithms. In contrast, on-policy algorithms should train directly without such

storage. When the model-free agent has reached a sufficient level of reward performance,

the ensemble is ready for making decisions in the ground truth environment. In this imple-

mentation, we use majority voting to select a decision and sample randomly when there

is no policy consensus.

5.3.9 Tuning and Training ORACLE

The ORACLE algorithm has many hyperparameters for tuning training stability and re-

ward performance, seen in Table 5.4. Our finding is that ORACLE is relatively robust in

default hyperparameter configuration but requires additional tuning for StarCraft II and

Deep RTS. We test LTC and GRU extensively, but LSTM performs best overall in the

experiments. Another notable hyperparameter choice is the Adaptive Gradient Clipping

(AGC) algorithm, a novel approach to clip the gradient from historical norms (Seethara-

man et al., 2020). Additionally, clipping the gradients for values out of bounds of -100.0

and 100.0 demonstrates better training stability, but the downside risk is to get stuck in a

local optimum. The ORACLE model optimizes all objectives (Equation 5.9, 5.12, 5.13,

and 5.15) jointly,

LORACLE = LOBS + LRew + γLSSM + LV Q, (5.17)

using Stochastic Weight Averaging (SWA) with the AdamW optimizer (Loshchilov and

Hutter, 2019). see Section 5.1.4. The Latent Leap (LL) hyperparameter determines how

many steps into a potential future the algorithm predicts. Specifically, it is expected that

the accuracy of predictions will reduce as the LL parameter becomes larger due to com-

pounding errors. We found that ORACLE works well with LL=30 for the tested environ-

ments.

5.3.10 Summary

We present ORACLE as a novel approach towards safer and more sample-efficient RL for

RTS and industry-near applications. In contrast to related literature, ORACLE makes no

assumptions or premises for prior knowledge at the cost of not guaranteeing safety analyt-

ically. Using an expert system (Scheme #2) to pre-train the dynamics model significantly

decreases the likelihood of entering catastrophic states. Section 6.5 shows that the actor

ensemble performs well within a presumable safe state-space set, without external guid-

ance if pretraining of the dynamics model is allowed. The ORACLE can be summarized

to the following procedure:
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Table 5.4: Set of tunable parameters in ORACLE. In addition to this list, we can adjust

the model complexity, such as neuron count and hidden layer count. The hyperparameter

column names the specific parameter, the Values column is which data type, the Selected

column is the proposed setting, and the comment column summarizes the hyperparameter

function.

Hyperparameter Values Selected Comment

Batch Size Z+ 48 Number of sequence batches

Sequence Size Z+ 48 Number of frames in a sequence

Buffer Size Z+ 9 000 Replay buffer

Reward Scaling R 1.0 Scaling of the reward objective

Cost Scaling R 1.0 Scaling of the cost objective

VQ Scaling R 0.1 Scaling of the VQ objective

KL Scaling R 1.0 Scaling of the KL objective (KL-β)

KL Minimum Nats R 3.0 Minimal information loss

Optimizer AdamW AdamW improves generalization. See 2019

Gradient Clipping R 100.0 ± Clip gradients to increase learning stability

Adaptive GC B 1 Based on the history of gradient norms

(Seetharaman et al., 2020)

Learning Rate R 0.0001 Low Learning rate to improve stability.

Latent Leaps Z+ 30 The number of leaps into future states.

Dynamics Model RNN LSTM

Activation Functions ELU

Enc/Dec Neurons Z+ 1024

Stochastic Reward B 1 Sample rewards under Gaussian assumptions

Stochastic Costs B 1 Sample costs under Gaussian assumptions

Discount Factor γ R 0.96 The discount factor used in value-based algo-

rithms

Risk-Entropy Weight w (Eq 2.16) R 0.6 Risk-Directed Exploration entropy weight

Risk-Utility Function ρ (Eq 2.18) R 0.75 Weight of risk in utility function.

Risk function weight β (Eq 2.19) R 0.40 Weight of the risk functipn ω.

VQ-VAE weight βvq R 0.05 Weight of VQ-VAE encoding updates.





5.4. SUMMARY

1. Read state observation ot

2. Extract features of the observation xt

3. Compute latent-state using xt for the prior and posterior ẑt

4. (Optional) Compute categorical latent-state for latent space using VQ-VAE archi-

tecture zt

5. Predict using latent-state zt

• Decode latent-state in decoder and sample possible future observation ôt

• (Optional) Predict action for policy ensemble given latent-state using majority

voting πensemble(at|zt)
• (Optional) Predict reward of the latent-state r̂t

• (Optional) Predict cost of the separate model using latent-state ĉt

6. Compute gradients jointly following Equations 5.9, 5.12, 5.13, 5.15, and separately

for the policy ensemble and cost network. Use the Adam optimizer with SWA and

gradient clipping.

5.4 Summary
The previous sections present three algorithms for improving sample efficiency and safety

in model-based RL for RTS games and industry applications. RTS games and industry

applications are couples tightly because they have similar complexities and need for deci-

sion safety. In RTS games, the agent loses may lose the game when acting unsafe, and in

industry, the agent may enter catastrophic system states that damage humans and equip-

ment. DVAE aims to improve sample efficiency using observations of expert systems and

address safety through reward shaping and policy constraints (CMDP’s).

ORACLE similarly expands on this notion but focuses more on reward shaping to de-

crease the need for manual constraint designing. ORACLE and DVAE have different

trade-offs. DVAE guarantees safety when using sufficient constraints such as Lyapunov

functions or barrier functions. The downside is that DVAE becomes complex with mul-

titudes of model and environment assumptions, which is not practical for industrial ap-

plications. On the other hand, ORACLE makes no such assumptions at the cost of not

having safety guarantees. However, empirical testing can demonstrate safety, and for

some industrial applications, a combination of ORACLE and an expert system governor

to restrict catastrophic behavior could be sufficient.

The last contribution is the DVQN algorithm that studies the latent space structure to-

wards interpretability and automatic Options selection in hierarchical RL. Although this
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contribution does not address the topic adequately, it builds momentum for the work on

using VQ-VAE’s in ORACLE, which enables multi-policy learning through categorizing

latent variables. However, this approach is not covered in this dissertation but remains

detailed for future work







Chapter 6

Contribution Evaluation
The proposed algorithms are model-based approaches that aim to learn models that can

accurately express environment dynamics and to make safer decisions towards better in-

tegration with safety-critical industrial applications. This chapter presents the empirical

evaluations and results of the algorithms in Chapter 5 using the environments from Chap-

ter 4. We organize the chapter into sections for major components of our contributions,

namely:

1. Risk-neutral DVAE algorithm for model-based RL,

2. safety-aware S-DVAE algorithm for industry applications,

3. the DVQN algorithm towards interpretable and automatic option discovery,

4. ORACLE for RTS game and industry applications, and

5. S-ORACLE for safer learning of model-based RL

6.1 DVAE Evaluations
The goal of DVAE is to learn a dynamics model that can train reinforcement learning

agents with minimal ground truth sampling. DVAE has several extensions, DVAE-GAN,

DVAE-SWA, and DVAE-SWAGAN, aiming to improve the model stability so that DVAE

can produce better quality outputs and latent spaces for environments with continuous

or sparse state-spaces. The methods are detailed in Section 5.1. This section focuses

on empirical evaluations and experiments for the DVAE, DVAE-GAN, DVAE-SWA, and

DVAE-SWAGAN algorithms.

6.1.1 Hypotheses

We would like to evaluate the following hypotheses for the DVAE algorithm.

Hypothesis DVAE 1 DVAE can accurately model simple environments such as the Deep

Maze without walls.
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Figure 6.1: For the 2× 2 scenario, only 50% of the environment is explored, leaving arti-

facts on states where the model is uncertain of the transition function. In more extensive

examples, the player disappears, teleports, or gets stuck in unexplored areas. The upper-

right corner denotes the nth predicted state, e.g., ŝt+n.

Hypothesis DVAE 2 DVAE models complex environments such as Deep Line Wars and

Sonic The Hedgehog without difficulties.

Hypothesis DVAE 3 DVAE outperforms traditional RL methods in reward performance

while having higher sample efficiency.

6.1.2 Standard DVAE

The standard DVAE algorithm is proposed in Paper D and is our first contribution to

model-based RL. The vanilla DVAE algorithm uses a standard VAE to represent the dy-

namics model that predicts states ŝt+1 that fuel training in model-free algorithms such as

DQN.

6.1.2.1 Reconstruction - Deep Maze-No-Wall

The algorithm must generalize over many similar states to model a large state-space for

the deep maze environment. DVAE aims to learn the transition function T (st, at), bring-

ing the state from st to st+1. We use the Deep Maze environment because it provides

simple rules with a controllable state-space complexity. Also, we can omit the impor-

tance of reward for some scenarios.

We trained the DVAE model on two Deep Maze-No-Wall scenarios using grid-size 2× 2

and 8 × 8. The encoder and decoder use the same convolution architecture as Pu et al.,

2016 and trains the algorithm for 1000 episodes in the 2 × 2 scenario and 6000 episodes

in the 8 × 8 scenario. The difference in episodes reflects the task’s difficulty, and it

is expected that DVAE converges faster to simpler environments. For the encoding of

actions and states, we concatenate the flattened state-space and action-space, having a

fully-connected layer with ELU activation before calculating the latent space. We used

the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 3e-05 to update the

parameters. To calculate the loss, we used the same loss function as proposed by Kingma

and Welling, 2013. The rest of the hyperparameters are the defaults, as seen in Table 5.1.

Figure 6.2 illustrates the loss during training of the DVAE algorithm in the No-Wall Deep
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Figure 6.2: The training loss for DVAE in the 2 × 2 No-Wall and 8 × 8 deep maze

scenario. The experiment runs for 1000 episodes for 2 × 2 and 5000 episodes for 8 × 8.

To demonstrate the effectiveness of VAE’s interpolation capacity, we mask the bottom

half of the diagonal of the observable state-space for 2× 2 (POMDP style). For the 8× 8,

the state is fully observable.


 
 
 



 
 
 

 





Figure 6.3: Results of 8 × 8 Deep Maze modeling using the DVAE algorithm. We sim-

plify the experiments using no reward signals to guide the agent. The upper-left caption

describes current state, ŝt . . . ŝt+12, while the bottom-left caption is the action that transi-

tion the state st+1 = T̂ (ŝt, at).
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Text

Figure 6.4: A typical deep maze of size 11 × 11. The lower-right square indicates the

goal state, the dotted line is a retrace of the predicted optimal path for that maze, while

the final square represents the player’s current position in the state-space. The controller

agent is DQN, TRPO, and PPO (from left to right).

Maze scenario. In the 2× 2 scenario, DVAE trains on only 50% of the state-space, which

results in noticeable graphics artifacts in the future state predictions, seen in Figure 6.1.

In the 8× 8 environment, the algorithm trains on all possible states. We observe in Figure

6.3 that the image quality and the capabilities of DVAE are significantly better for the

fully observable case.

6.1.2.2 Performance - Deep Maze-No-Wall

The goal of the performance evaluation is to determine the empirical performance of off-

policy model-free RL agents using an experience-replay buffer generated from the DVAE

algorithm (D̂ from Algorithm 1). We evaluate the performance in the more complex en-

vironments Deep-Maze-11× 11 and Deep-Maze-21× 21. Table 6.1 compares the reward

performance of DQN (Mnih et al., 2015), TRPO (Schulman et al., 2015), and PPO (Schul-

man et al., 2017) using the DVAE generated D̂ to tune the parameters. Note, however,

that TRPO and PPO are on-policy algorithms and, the generated states must be generated

online so that the algorithm remains on-policy-ish (i.e., uses a buffer-size of 1).

Figure 6.4 illustrates three maze variations of size 11 × 11, where the agent has learned

the optimal path. We see that the best performing algorithm, PPO (2017), beats DQN

and TRPO using either D̂ or D. The DQN-D̂ agent did not converge in the 21 × 21

environment. However, value-based algorithms could likely struggle to map inaccurate

states with graphical artifacts generated from the DVAE algorithm. These artifacts sig-

nificantly increase the state-space, but empirical data suggest that on-policy algorithms

perform better on noisy state-spaces.
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Table 6.1: Results of the deep maze 11 × 11 and 21 × 21 environment, comparing DQN

(Mnih et al., 2015), TRPO (Schulman et al., 2015), and PPO (Schulman et al., 2017). The

optimal path yields a score of 100%, while no solution yields 0%. Each of the algorithms

ran 10000 epochs for both map sizes. Converged Epoch represents at which epoch the

algorithm converged during training.

Environment Algorithm Avg Perf. Convergence Episode

11× 11 DQN-D̂ 94.56% 9314

11× 11 TRPO-D̂ 96.32% 5320

11× 11 PPO-D̂ 98.71% 3151

11× 11 DQN-D 98.26% 4314

11× 11 TRPO-D 99.32% 3320

11× 11 PPO-D 99.35% 2453

21× 21 DQN-D̂ 64.36% N/A

21× 21 TRPO-D̂ 78.91% 7401

21× 21 PPO-D̂ 89.33% 7195

21× 21 DQN-D 84.63% 8241

21× 21 TRPO-D 92.11% 4120

21× 21 PPO-D 96.41% 2904

6.1.3 Recurrent Neural Networks

Using Recurrent Neural Networks improves the temporal capabilities of DVAE. We dis-

cover this combination in Paper D. The study expands further in Paper E.

6.1.3.1 Reconstruction - Deep Line Wars

Figure 6.5 illustrates the state quality during training of DVAE in a total of 6000 epochs.

Both players draw actions randomly. The algorithm understands that the player units can

be located in any tiles after only 50 epochs. At 1000 epochs, we observe that the DVAE

makes significantly better predictions of the probability of unit locations (i.e., some units

show more densely in the output state). At the end of the training, the DVAE algorithm

can predict towers and unit locations at any given timestep during the game epoch.
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Epoch 50                          Epoch 1 000                     Epoch 1 500

Epoch 2 000                    Epoch 2 500                     Epoch 3 000

Epoch 3 500                    Epoch 4 000                      Epoch 4 500

Epoch 5 000                     Epoch 5 500                     Epoch 6 000

Figure 6.5: The DVAE algorithm applied to the deep line wars environment. Each epoch

illustrates the quality of generated states in the game, where the left image is the real state

st, and the right image is the predicted state ŝt.
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6.1.3.2 Reconstruction - Sonic The Hedgehog 2

(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Dreaming in Sonic The Hedgehog 2 game from Sega Genesis. The figure

demonstrates the capability of DVAE to reconstruct animated games, and as clearly seen,

the algorithm fails to reconstruct states that are close to the ground truth. The upper image

is the ground truth st, and the bottom is the n-step prediction ŝt+3.
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Figure 6.6 demonstrates the prediction capabilities of DVAE for more complex games.

As clearly seen, DVAE has difficulties predicting future states in Sonic the Hedgehog

2. The first row shows the ground truth observations, while the second row shows the

corresponding predictions. A common problem with VAE’s is that the signal from obser-

vations is too weak, resulting in the decoder ignoring the latent variables. We can think of

the phenomena as the model learning to produce output independently of the observation

space. This results in highly general output, which is essentially a mean of all obser-

vations seen thus far. The problem is infamously characterized as a posterior collapse,

seen in the second row of Figure 6.6a. We further study this problem in Section 6.4.3

in the ORACLE algorithm, which demonstrates a significant reconstruction performance

improvement than DVAE.

6.1.3.3 Performance Evaluation
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Figure 6.7: We compare DVAE with RNN (DVAE-2 in the figure) using two baseline

algorithms, DQN and PPO. The solid curve illustrates the mean of 12 trials, and shaded

regions are the standard deviation between all trials. The x-axis shows the number of

episodes, and the y-axis shows the average return.
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Figure 6.7 demonstrates the average reward performance of DVAE in four tasks; Deep

RTS Paper C, Deep Warehouse Paper F, Deep Line Wars Paper B, and CartPole-v1

(Brockman et al., 2016). We now evaluate the results in an orderly fashion.

Deep Line Wars The DQN policy outperforms the DVAE and PPO policy in the Deep

Line Wars-11 × 11 discrete action-space environment. DVAE uses PPO as the decision

policy and sees a marginal improvement over traditional PPO in a model-free setting

yielding better reward performance and better sample efficiency. DQN quickly learned

the correct Q-values due to the small environment size.

Deep RTS The Deep RTS Wood-Collect experiment tasks the agent to harvest 500

wood resources before the timestep limit is exhausted. The environment scores perfor-

mance from -500 to 0, where 0 is the best possible score. For every wood harvested, the

score increased by 1. The agent masters the task if the score is above -200 score at the

time of the terminal state. DVAE outperforms the baseline algorithms in sample efficiency

but falls behind PPO in reward performance.

Deep Warehouse The DVAE algorithm outperforms PPO and DQN in sampling and

reward performance during 150 000 game steps. The score function is a counter of how

many tasks the agent has performed during the episode. If the agent collects and retrieves

300 packages, the agent has sufficient reward performance to beat many handcrafted al-

gorithms in ASRS. The environment is multi-agent, and in this experiment, we used a

30× 30 grid with 20 taxis running the same policy.

CartPole-v1 DVAE and PPO have similar reward performance, but DVAE has marginally

better sample efficiency after 25 000 timesteps. Using the VRC architecture (Section

5.1.5), the algorithm works best with Convolutional + LSTM and Temporal Convolution

and GAN for continuous control tasks (see Figure 5.4). PPO and DVAE use the same

hyper-parameters and are therefore directly comparable. We use PPO as the policy for

DVAE but observe that DVAE is more sample efficient and performs equally good or

better than model-free PPO in all tested scenarios.

6.1.4 Generative Extensions

DVAE-SWA, DVAE-GAN, and DVAE-SWAGAN aim to better the reconstruction capa-

bilities than DVAE in continuous state-spaces, such as the Deep Line Wars environment.

We evaluate these extensions using the action policy of Deep Line Wars-11 × 11 with

PPO as the action policy. The extension Stochastic Weight Averaging (SWA) is shown
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to improve training stability in supervised learning, and Generative Adversarial Networks

(GAN) is a generative model which has demonstrated good reconstruction performance

in generating high-resolution images.

6.1.4.1 Training Evaluation

Figure 6.8 shows the training loss comparison of DVAE, DVAE-SWA, DVAE-GAN, and

DVAE-SWAGAN for 1000 epochs (x-axis), where the y-axis describes the loss value.

DVAE-SWA, DVAE-GAN, and DVAE-SWAGAN have significantly lower training loss

than DVAE, where DVAE-SWAGAN is the superior model. This results in significantly

better prediction accuracy for environments with animations, such as Deep Line Wars.

6.1.4.2 Reconstruction - Deep Line Wars

Figure 6.9 demonstrates the reconstruction capabilities of DVAE-SWAGAN for the Deep-

Line-Wars 11 × 11 environment. The DVAE-SWAGAN algorithm sampled states after

training for 1000 epochs, as seen in Figure 6.8. Despite that the DVAE-SWAGAN method

still suffers from posterior collapse as in DVAE, the RL agents still learn a policy capable

of beating random agents. We believe this is because similar states often represent similar

value functions. Compared to Figure 6.5, DVAE-SWAGAN performs significantly better,

considering it provides more clear imaging and can reconstruct several dimensions (RGB)

and, while not perfect, can predict the position of towers reasonably well.

6.1.5 CostNet

The main objective of the CostNet extension is to predict distances between two states

in an environment or MDP. We test the DVAE-CostNet algorithm in four environments,

CartPole-v1 from 2016, DeepRTS-GoldCollect Paper C, and DeepMaze StaticNoWalls

Paper D. The experiments compare DVAE-CostNet to DQN (Mnih et al., 2015) and PPO

(Schulman et al., 2017) for 1000000 timesteps during 100 experiments for statistical anal-

ysis of the results.

6.1.5.1 Evaluation Setup

The hyperparameters for DVAE-CostNet are found in Table 5.2. Figure 6.10 shows the

environments used in the experiments. The first environment is CartPole, a common

benchmark for exploratory reinforcement learning research. The objective is to balance

a pole on a cart for 500 timesteps at which the episodes end. The second environment is

DeepRTS- GoldCollect, a simple environment where the goal is to accumulate as much

gold as possible for 5 minutes. The optimal episodic reward for this environment is set

to 1000. Finally, the DeepMaze-StaticNoWalls environment is an 11 × 11 grid structure
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Figure 6.8: Training of DVAE compared to the DVAE-SWA, DVAE-GAN, and DVAE-

SWAGAN extension. (a) describes the total training loss of the model for the respective

models. The total training loss includes reconstruction and regularization. (b) denotes the

reconstruction loss, which typically indicates how well the output corresponds to the true

observation. (c) is the regularizer term measuring the KL-divergence of the prior and the

posterior distributions.
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Figure 6.9: The first row represents the ground truth future state, and the second row is

the predicted future state using DVAE-SWAGAN. The predictions are 3-step future state

predictions.

Figure 6.10: Illustration of the experiments. (a) DeepRTS-GoldCollect. Gather as much

gold as possible in a timeframe of 5 minutes. (b) DeepMaze. The player (white) must

enter the terminal state (black) in the shortest possible time.

where the goal is located at a fixed position. The reward for DeepMaze is the length of

the maze because the agent and goal are located at opposite corners.
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6.1.5.2 Empirical Evaluations

Figure 6.11 compares the performance of DVAE-CostNet against two competing algo-

rithms, DQN and PPO. Every experiment runs for 100 episodes for 1 million timesteps.

DVAE-CostNet shows outstanding performance compared to fully model-free variants

in two of three environments. In CartPole, PPO works best, but DVAE-CostNet closely

follows. The experiments show that increasing the drift-threshold ψ also decreases perfor-

mance and is an indication that CostNet impacts performance positively. Several param-

eters for the drift-threshold parameterψ are tested, but a value of 0.3 seems stable across

several environments. PPO algorithm uses the parameters defined in 2017 and DQN in

Mnih et al., 2015. DVAE-CostNet shows significantly better performance across all en-

vironments in terms of variance, seen clearly in the DeepMaze environment results. The

primary reason is that the algorithm starts with a relatively good idea of the underlying

environment dynamics from learning the dynamics model.

In terms of reward performance, the DVAE-CostNet agent starts at near-optimal perfor-

mance in some environments, such as the DeepRTS-GoldCollect environment. There are

still challenges to be investigated, such as preventing divergence if the policy is already

doing good behavior. Another problem is that DVAE-CostNet demands initial data from

expert systems which, is challenging to guarantee in any environment. Regardless of

these challenges, the algorithm is a good leap in the right direction. DVAE-CostNet with

a modified DQN reward function significantly increases the agent’s reward performance,

especially in more complex environments such as Deep RTS.

6.1.6 Summary

We demonstrate that the DVAE algorithm, with its extension, can predict future states

well in many environments. The algorithm falls short when modeling highly complex

environments such as the Deep Line Wars and Sonic the Hedgehog 2. According to the

performance evaluations, DVAE can perform comparably to the PPO algorithm in terms

of agent reward performance with the added benefit of significantly increasing the sample

efficiency.

Hypothesis DVAE 1 DVAE can accurately model simple environments such as the Deep

Maze without walls.

Evaluation: According to the evidence in Figure 6.1 and Figure 6.3, it is safe to

assume that DVAE can accurately model fully-deterministic, simple environments.

Hypothesis DVAE 2 DVAE models complex environments such as Deep Line Wars and

Sonic The Hedgehog without difficulties.

Evaluation: According to the evidence in Figure 6.5 and Figure 6.6, it is not likely
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that DVAE can model other complex environments better.

Hypothesis DVAE 3 DVAE outperforms traditional RL methods in reward performance

while also having higher sample efficiency.

Evaluation: According to our evaluation, DVAE can outperform traditional RL

methods using the learned latent space as the foundation for policy learning, as

seen in Figure 6.7.

Computational Power

The most decisive factor for training the DVAE algorithm in more complex problems is

the availability of computational power. Training a deep learning model is a complex

endeavor that requires millions of parameters to update many times to find a good point

on the optimization plane. According to AI pioneer Richard S. Sutton:

“The biggest lesson that can be read from 70 years of AI research is that general meth-

Figure 6.11: A comparison of PPO (square), DQN (circle), CostNet (unmarked and di-

amond) performance in CartPole, DeepRTS, and Deep Maze environment. The y-axis

shows the accumulated reward, and the x-axis is at which timestep.
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ods that leverage computation are ultimately the most effective, and by a large margin.”

(Sutton, 2019)

Based on observations from our study, our interpretation of his statement is that algo-

rithms that can saturate computational power well (e.g., guided brute force searches)

demonstrate superior reward performance. DVAE trains using two NVIDIA 2080 RTX TI

GPU cards that, if tuned properly, can operate at approximately 26.9 TFLOPS. Compared

to our computational power, AlphaStar from Vinyals et al., 2019 consumes a total of 6720

TFLOPS considering 16 TPU3 units for a single agent. The AlphaStar algorithm trains

using more than a single agent for several weeks. These observations combined paint a

picture that the leading indicator for successive algorithms is the available computational

power, not the model design. Considering these factors, we believe that the DVAE al-

gorithm, set aside its weaknesses, is a good step in the right direction for an expressive

prediction model that requires little computational power compared to similar work.

6.2 S-DVAE Evaluations
The goal of the Safe Dreaming Variational Autoencoder (S-DVAE) evaluations is to

demonstrate that S-DVAE can learn an accurate dynamics model and learn good poli-

cies while behaving safely during learning. S-DVAE uses risk-directed exploration and

curiosity and integrates with DQN (Mnih et al., 2015) (Section 5.1.6). We compare our

algorithm to RAINBOW (DQN) and PPO. The section evaluates the S-DVAE in various

environments, including the popular Atari 2600 Learning Environment (Bellemare et al.,

2013), Deep RTS (Paper C), Deep Line Wars (Paper B), and Deep Warehouse (Paper E)

for industry-near approximations.

6.2.1 Hypotheses

We carefully address the following hypotheses for the S-DVAE algorithm.

Hypothesis S-DVAE 1 S-DVAE is a safer option than DVAE and model-free approaches.

Hypothesis S-DVAE 2 S-DVAE guarantees safety during training.

Hypothesis S-DVAE 3 Tuning the S-DVAE algorithm is trivial to tune most tested envi-

ronments.

6.2.2 Dynamics Model Evaluations

The dynamics model’s objective is to learn environment dynamics and features to mimic

the environment behavior accurately. Figure 6.12a illustrates the average training loss
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(a) Average dynamics model M reconstruction loss. The loss function is
the mean-squared error between st and ŝt.

(b) Decoder output after training. The decoder output of the dy-
namics model after 5 hours of training without speed accelera-
tion in the Deep Warehouse-41x41 environment.

Figure 6.12: S-DVAE dream constructions in the Deep Warehouse game environment

with the corresponding reconstruction loss. The goal is to reconstruct states which are

visually similar to Figure 4.9.
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Figure 6.13: Cumulative Prediction Error. The y-axis shows the pixel error where each

number represents a 2-dimensional error. For example, an error of 32 means that 32 ×
32 pixels have incorrect values. The x-axis is how many predictions in the future are

made without interaction with the real environment (how many states in the future has the

algorithm “dreamed”

.

for tested environments. The x-axis ranges from 0 to 1 000 000 timesteps, and the loss

is according to Equation 5.4, where lower values indicate better dream predictions. The

trend is for the loss to start high and quickly reduce to only minor weight adjustments

during training. These minor weight adjustments play a significant role in learning accu-

rate embeddings, as illustrated by Figure 6.12b. The dynamics model uses hand-crafted

expert systems designed to perform well in the specific environment during evaluations

and experiments.

A way to measure the prediction capabilities of the dynamics model is to investigate the

cumulative prediction error. Figure 6.13 illustrates this cumulative prediction error for

all tested environments. The experiments show that the prediction error tends towards

exponential growth when the dynamics model predicts longer horizons. Table 6.2 shows

that the dynamics model has an error of∼256 (the observations are 256× 256× 1) which

means that every pixel in the prediction is incorrect, making it difficult to use for training

model-free algorithm.
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Table 6.2: Exponential cumulative prediction error. The cumulative prediction error in-

creases exponentially for all environments. The table shows that the exponential growth

is consistently less extreme for simple environments. The numbers in the header present

the n-th future state.

Environment 10 25 50 75 100

Deep Warehouse-11x11 0.34 2.08 7.47 14.91 25.10

Deep Warehouse-21x21 0.36 1.91 7.53 16.62 28.75

Deep Warehouse-41x41 0.43 2.98 10.50 25.06 43.02

Deep Line Wars 0.54 3.81 13.73 29.41 50.58

DeepRTS-1v1 2.72 16.29 65.98 143.02 255.99

DeepRTS-GoldCollect 0.69 4.55 19.75 46.17 78.00

Acrobot-v1 0.42 2.04 9.15 19.56 34.86

BeamRider-ramNoFrameskip-v4 1.77 9.33 33.99 75.94 135.49

Breakout-ramNoFrameskip-v4 1.52 7.20 28.84 67.37 110.48

CartPole-v0 0.31 1.52 6.13 13.62 22.58

CartPole-v1 0.35 1.50 6.66 14.53 26.01

MountainCar-v0 0.65 3.66 15.31 30.73 49.95

Qbert-ramNoFrameskip-v4 0.77 4.20 18.23 38.69 63.38

SpaceInvaders-ramNoFrameskip-v4 1.04 4.98 21.96 53.11 89.28
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It is sensible to restrict the prediction horizon for advanced or difficult environments. The

downside of limiting the prediction horizon is that the algorithm cannot train fully offline.

However, the algorithm successfully reduces the volume of real training data needed to

converge model-free approaches by magnitudes.

The dynamics model successfully learns several environments sufficiently, including ASRS-

Lab-21x21 (Deep Warehouse), CartPole, and Deep Line Wars. A potential improvement

in the model is to tune the α, w, and learning rate to improve other environments’ accu-

racy. However, hyperparameters remain problem-specific and must be carefully tuned.

6.2.3 Agent Failure Rate

The failure rate measurement counts the number of negative rewards the agent receives

during an episode. The environment has a negative reward for catastrophic states and

positive rewards for other states. Recall that the algorithm should interpret the MDP with

constraints and label catastrophic states accordingly (Figure 2.4).

Figure 6.14 illustrates the failure-rate for S-DVAE with three hyperparameter configura-

tions, α = 0.99, w = 0.01, α = 0.7, w = 0.3, α = 0.5, w = 0.5. Recall that higher α

and lower w values account for safety-aware behavior. Safer configurations of S-DVAE

clearly impacts the rate by which the algorithm makes mistakes.

The algorithm does not always learn good policies, such as in the DeepRTS environment.

The reason is that the reward function does not represent the goal, and further investiga-

tions discover that this is indeed the case for DeepRTS-1v1. S-DVAE outperforms PPO

and DQN significantly for the DeepRTS-GoldCollect environment, with a more direct

(and more straightforward) reward function.

S-DVAE increases safety significantly for most of the environments tested in these eval-

uations. The results from Figure 6.14 show a consistent decrease in failures when tuning

the safety-awareness sensitivity hyperparameter, α, and w. The benefits of having high

values for the safety-awareness parameters are that it increases action safety, but on the

other hand, slows down convergence and increases the chance of getting stuck in local

optima.

6.2.4 Agent Reward Performance

S-DVAE has comparable performance to DQN and PPO in terms of accumulating reward.

Figure 6.15 shows the performance after S-DVAE is pre-trained on the dynamics model.

Experiments use DeepLineWars, DeepRTS-GoldCollect, Acrobot, CartPole, and Deep

Warehouse-41x41. Furthermore, the figure demonstrates that S-DVAE trains successfully

to sufficient behavior level and can train additionally in the real environment after initial
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Figure 6.14: Agent failure rate. We evaluate the rate at which an agent fails during trials

across various environments. The x-axis illustrates the episode number, and the y-axis is

the rate in percentage. Each environment is averaged over 100 trials for 1000 episodes.

We compare three safety configurations of DVAE against DQN (Mnih et al., 2015) and

PPO (Schulman et al., 2017)
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Figure 6.15: Behavioral agent performance. S-DVAE shows good performance when

accumulating reward (y-axis) during training for 1 million timesteps (x-axis). The exper-

iment was averaged across 100 runs and, due to execution time, limited to only a subset

of the environments

training.

S-DVAE is not always stable when training in complex environments, as seen in the

DeepLineWars experiments. Out of 100 trials, the S-DVAE configuration using α = 0.7

and α = 0.5 diverged dramatically, which early-stopped the experiment before reaching

1 million timesteps.

The pretraining was done using a horizon of 40 frames for 2 million timesteps. In practice,

this only results in 50000 timesteps in the real environment, resulting in magnitudes lower

risk of failures. However, sensitivity to hyperparameters is a significant issue that limits

the algorithm from functioning well throughout all tests without extensive hyperparameter

tuning.

6.2.5 Summary

Given the empirical evidence and evaluation, we find that S-DVAE can improve deci-

sion safety in numerous games, including Deep RTS, Deep Line Wars, and industry-near

applications such as Deep Warehouse. We can conclude our evaluation hypotheses as

follows.

Hypothesis S-DVAE 1 S-DVAE is a safer option than DVAE and model-free approaches.

Evaluation: According to the empirical evidence, the methods introduced in S-

DAVE improve safety. By tuning the hyperparameter α and w, we demonstrate that
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S-DVAE gradually becomes more safety-aware, as seen in Figure 6.14. However, it

is not exclusively safer for all environments, but our observation is that tuning the

hyperparameters alleviate instabilities. Perhaps the most considerable challenge

present in both DVAE and S-DVAE is posterior collapse, causing the algorithm to

fail to behave safely.

Hypothesis S-DVAE 2 S-DVAE guarantees safety during training.

Evaluation: S-DVAE cannot guarantee safety during training, and we discuss this

further in our conclusion. Our approach provides safety hints to the agent, push-

ing exploration and decisions towards states that the dynamics model deems safer.

However, to guarantee safety in RL, current literature utilizes policy constraints fol-

lowing many mathematical assumptions about model stability and accuracy, which

is not realistic for industry applications.

Hypothesis S-DVAE 3 Tuning the S-DVAE algorithm is trivial to tune for most tested

environments.

Evaluation: The S-DVAE algorithm has two safety hyperparameters, α, and w.

Although there are few hyperparameters, it is still now fully known which factors

determine the weight of these parameters. However, we have discovered three con-

figurations that appear to work well for the tested environments, as illustrated in

Figure 6.14.

6.3 DVQN Evaluations
We present experiments and perform empirical evaluations in four traditional RL environ-

ments to demonstrate the effectiveness of the DVQN algorithm. The goal of the DVQN

algorithm is to learn structured latent spaces that are interpretable to humans and can

cluster into multiple behavioral policies. The algorithm is further detailed in Section 5.2.

We show that the algorithm can organize the latent space by observation similarities while

maintaining comparable reward performance to model-free Deep Q-Networks algorithms.

6.3.1 Hypotheses

We carefully address the following hypotheses for the DVQN algorithm.

Hypothesis DVQN 1 DVQN can learn interpretable observation/state-spaces.

Hypothesis DVQN 2 DVQN allows clustering of observation spaces towards automatic

option-based learning.

Hypothesis DVQN 3 DVQN provides interpretability while also maintaining a healthy

agent reward performance.
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CartPole-v0 Acrobot-v1

CrossingS9N3-v0 FourRooms-v0

Figure 6.16: The experiment test-bed contains the following environments; CartPole-v0,

Acrobot-v1, CrossingS9N3-v0, and FourRooms-v0

6.3.2 Evaluation Description

We evaluate DVQN in four environments; CartPole-v0, Acrobot-v1, CrossingS9N3-v0,

and FourRooms-v0. Figure 6.16 shows a brief overview of the environments. These

environments are trivial to solve using model-free reinforcement learning. This makes

them excellent for conducting experiments with the sole focus of visualizing the learned

latent space.

The FourRooms-v0 environment is especially suited for option-based RL and can solve

the problem in a fraction of time steps compared to model-free RL. Although the DVQN

algorithm does not use an options-based algorithm, the primary goal is to organize the

latent space so that it is possible to extract meaningful and interpretable options auto-

matically. The scope for this evaluation is to provide comparable reward performance to

variants of Deep Q-Networks (Chen et al., 2016; Hessel et al., 2018; Mnih et al., 2015).

DVQN benchmarks against vanilla DQN, DDQN, and Rainbow.

FourRooms-v0 and CrossingS9N3-v0 are a grid-world environment where the objective

is to reach the terminal-state cell (In the lower right of the image in both environments). In

FourRooms-v0, the agent has to enter several doors and only complete a part of the goal

for each door it enters. FourRooms-v0 is ideal for option-based reinforcement learning

because each door is considered a sub-goal. While the environment is solvable by many

deep reinforcement learning algorithms, option-based RL is more efficient. The agent
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Figure 6.17: The learned latent space for all of the tested environments. DVQN success-

fully trivializes selecting options, as seen in the well-separated state clusters. The circular

points illustrate states with positive rewards, and the cross illustrates negative rewards.

receives small negative rewards for moving and positive rewards for entering the goal-

state (global) or the doors (local). The Crossing is a simpler environment where the agent

has to learn the shortest path to the goal state. The agent can move one cell per time step

in any direction in both grid environments.

To further show that the algorithm works in simple control tasks, we perform experiments

in CartPole-v0 and Acrobot-v1. The objective in CartPole-v0 is to balance a pole on a

cart. Each step generates a positive reward signal while receiving negative rewards if the

pole falls below an angle threshold. The agent can control the direction of the cart at

every time step. The Acrobot-v1 has a similar aim to control the arm to hit the ceiling

in a minimal number of time steps. The agent receives negative rewards until it reaches

the ceiling. The CartPole-v0 and Acrobot-v1 environments origins from Brockman et al.,

2016, while CrossingS9N3-v0 and the FourRooms-v0 origins from Chevalier-Boisvert et

al., 2018.1

6.3.3 Interpretability Evaluations

An attractive property of our model is that the latent space is human interpretable. As seen

in Figure 6.17, the DVQN algorithm can produce clustered latent spaces for all tested en-

1A community-based scoreboard can be found at https://github.com/openai/gym/wiki/Leaderboard.
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Figure 6.18: The relationship between states and the latent space for the CartPole-v0 en-

vironment. DVQN can separate each angle, left, middle, and right into separable clusters,

especially useful in option-based reinforcement learning. Additionally, the visualization

of the latent space that the Q-head uses to sample actions is trivial to interpret.

vironments. For example, in the CartPole-v0 environment, there are three clusters where

two of them represent possible terminal states, and one represents states that give a reward.

To fully utilize the capabilities of DVQN, the latent space can be used to generate options

for identified clusters to promote different behavior for these regions in the observation

space.

The DVQN algorithm can also provide interpretable state safety. As seen in Figure 6.17,

it is possible to visualize which states are safe (positive feedback) and which are unsafe

(negative feedback). A prerequisite for using such a method in industry is a simulation

environment that can visit a fraction of unsafe states. The dynamics model can then

interpolate between states and predict state safety in unvisited states from this fraction.

Figure 6.18 illustrates the visualization of the latent space representation in CartPole-v0.

We find that each cluster represents a specific position and angle of the pole. The latent

space interpolates between these state variations, which explains its shape. Although

the clusters are imperfect, it is trivial to construct separable clusters with high precision.

These clusters enable the automatic construction of initiation and termination boundaries

for options-based policies.

6.3.4 Performance evaluation

Figure 6.19 illustrates a comparison of reward performance between state-of-the-art Deep

Q-Networks variants and the proposed DVQN algorithm. The reward performance mea-
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Figure 6.19: The accumulative sum of rewards of the DVQN compared to other Q-

Learning-based methods in the experimental environments. Our algorithm performs bet-

ter than DQN from Mnih et al., 2015, and performs comparably to DDQN from van

Hasselt et al., 2015 and Rainbow from Hessel et al., 2018. We define an episode thresh-

old for each environment (x-axis) and accumulate the agent rewards as the performance

metric (y-axis) for CartPole-v0 and Acrobot-v1. The scoring metric in CrossingS9N3-v0

and the FourRooms-v0 is based on how many steps the agent used to reach the goal state.
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surement is the average of 100 trials over 1500 episodes for CartPole-v0, CrossingS9N3-

v0, FourRooms-v0, and 3000 episodes for Acrobot-v1. The goal of the Acrobot-v1 is

to reach a score of -70, In CrossingS9N3-v0 and FourRooms-v0, the optimal score is

0, and for CartPole-v0, the optimal score is 200. The DVQN algorithm performs better

than DQN and shows comparable reward performance to DDQN and Rainbow. DVQN

cannot find a good policy in the Acrobot-v1 environment but successfully learns a good

visual representation of the latent space. In general, the DVQN algorithm is significantly

harder to train because it requires the algorithm to find a good policy within a Gaussian

distribution. We found this to work well in most cases, but it required fine-tuning hyper-

parameters. The algorithm is also slower to converge, but we improved training stability

by increasing the batch size and decreasing the learning rate.

6.3.5 Summary

The empirical evaluation suggests that DVQN can learn generative policies from a latent

space distribution. The learned latent space is particularly useful for clustering states that

are close to each other for discovering options automatically. The DVQN algorithm can

perform comparably to traditional Deep Q-Networks In the tested environments.

Hypothesis DVQN 1 DVQN can learn interpretable observation/state-spaces.

Evaluation: DVQN can learn interpretable observation spaces according to Figure

6.17. Figure 6.18 is particularly captivating because it clearly shows that the latent

space is structured to mimic the game objective closely.

Hypothesis DVQN 2 DVQN allows clustering of observation spaces towards automatic

option-based learning.

Evaluation: Figure 6.18 suggests that it is feasible to cluster the learned latent

space such that it is possible to generate options in a hierarchical RL setting auto-

matically. However, this remains future work.

Hypothesis DVQN 3 DVQN provides interpretability while also maintaining a healthy

agent reward performance.

Evaluation: Figure 6.19 demonstrates that DVQN has comparable reward perfor-

mance to DDQN and Rainbow in a majority of the environments, except for the

Acrobot-v1 environment. Future work hopes to address this by fully utilizing the

learned options to achieve better reward performance.
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6.4 ORACLE Evaluations
Observation Reward Action Cost Learning Ensemble (ORACLE) aims to learn a dynam-

ics model capable of multi-step predictions for complex environments. ORACLE uses

SSMs trained with AVI. The ORACLE algorithm is detailed further in Section 5.3. We

evaluate whether ORACLE can perform well across many different environments and out-

performs existing RL. The evaluation takes place in CartPole-v1, Deep RTS Deathmatch,

and HalfCheetahPyBulletEnv-v0 from the open-source PyBullet physics engine.

6.4.1 Hypotheses

We carefully address the following hypotheses for the ORACLE algorithm.

Hypothesis ORACLE 1 ORACLE performs better than state-of-the-art model-based and

model-free algorithms.

Hypothesis ORACLE 2 ORACLE can navigate RTS and industry applications without

significant drawbacks.

Hypothesis ORACLE 3 ORACLE can reconstruct and predict trajectories in animated

environments.

6.4.2 Hyperparameter and Sample Efficiency

These experiments focus on tuning the hyperparameters of the ORACLE algorithm to

improve sample efficiency while maintaining acceptable reward performance. The study

investigates if SWA, VQ, Latent Leaps, and AGC can have an advantageous effect on

sample efficiency and if certain algorithm combinations show improved performance. We

report notable findings and discuss choosing the correct hyperparameters for different en-

vironment types. We run the experiments five times for all environments and average the

results. Experiments run for 1 000 000 steps or until the algorithm reaches a convergence

score. If the algorithm fails to converge in time, we report the score as N/A. Finally, we

use an ensemble of model-free algorithms for decision making, which we detail further

in Section 6.4.5.

Table 6.3 illustrates the sample efficiency measured as convergence rate for different hy-

perparameter settings with separate dynamics models per environment. The results clearly

show that using LL=30, VQ=off, AGC=on, and SWA=on is the best choice for CartPole-

v1. The DeepRTS Deathmatch and HalfCheetahPyBulletEnv-v0 demonstrate good re-

ward performance when enabling VQ. We conclude that VQ performs worse in CartPole

because it is a far simpler environment, meaning the algorithm never learns the problem

slower because of the added model complexity. This makes sense, as the VQ architectures
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Table 6.3: The experiment setup for the limited hyperparameter search. The table clearly

shows that a latent-leap of 30 is superior in reaching a convergence score for all tested

environments.

CartPole-v1
SWA VQ LL AGC Convergence Step
on on 10 on N/A

on on 30 on 755 000

on on 60 on N/A

on off 30 on 390 000
off on 30 off 825 000

DeepRTS Deathmatch
SWA VQ LL AGC Convergence Step
on on 10 on N/A

on on 30 on 600 000
on on 60 on N/A

on off 30 on N/A

off on 30 off N/A

HalfCheetahPyBulletEnv-v0
SWA VQ LL AGC Convergence Step
on on 10 on N/A

on on 30 on 725 000
on on 60 on N/A

on off 30 on N/A

off on 30 off N/A

double the number of trainable parameters in the model. The algorithm cannot generalize

well environments with a few steps before the termination state. The primary function of

the VQ layer is to allow for encoding multiple environments in the same dynamics mod-

els. For this reason, we proceed with experiments training the algorithm using the same

dynamics model for all environments.

Table 6.4 illustrates the sample efficiency of ORACLE when using the same model for

all environments. This experiment aims to see if feeding the latent vector into a VQ

to structure the latent space categorically. The results clearly show that ORACLE can

generalize across several environments using the same parameters, using a VQ layer after

the generative network.
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Table 6.4: The data depicts the average performance using a single dynamics model to

learn all environments. The table clearly shows that enabling VQ has a positive effect on

sample efficiency, and without, the environment can not converge before the step limit

has passed.

SWA VQ LL AGC Average Convergence Step

on on 10 on 895 000

off on 30 on 565 000
on on 60 on N/A

on off 10 on N/A

on off 30 on N/A

on off 60 on N/A

on on 10 off N/A

on on 30 off 695 000

on on 60 off N/A

off on 10 on N/A

off on 30 on 596 000

off on 60 on N/A

off on 10 off N/A

off on 30 off 650 000

off on 60 off N/A

We recommend the following strategy for tuning the ORACLE algorithm based on the

empirical evidence. For simple environments with less than 1 000 timesteps before forced

termination, we recommend disabling VQ and using LL=30. If the environment exceeds

1 000 timesteps, enable VQ. When training the algorithm on all environments, we recom-

mend having all hyperparameters enabled using LL=30.

6.4.3 Reconstruction - Sonic The Hedgehog 2

ORACLE can, similar to DVAE, predict artificial trajectories from a given start state.

DVAE had severe problems with posterior collapse, training instabilities, and poor ca-

pability to reconstruct longer time horizons. We improve these problems in ORACLE.

Figure 6.20 shows the resulting reconstruction capabilities after training where the con-

troller is a hard-coded strategy. The first row is the live game at time t, the second row is

the state at time t − 30, and the third row is the predicted state at time t, given the state

in the second row. We can clearly see that the ground truth state (first row) and the pre-

dicted state (third row) are similar. There are some differences in the location of the Tails
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Figure 6.20: Observation of the Sonic the Hedgehog 2 state and the corresponding 30-

step prediction (LL=30). The first row is the ground truth state. The second row is a past

ground truth state st−30, and the bottom row is the predicted state at st.

character (orange ball) and the piranha in the water, where the prediction suggests there is

a piranha above water. However, compared to Figure 6.6, ORACLE shows significantly

better reconstruction capabilities than DVAE.

We extend the study to include multiple predictions per sample (i.e., generate variations

of the same data), as shown in Figure 6.21. The top row is the ground-truth state, where

the remaining rows are predictions. The trajectory starts at the first available ground truth

state (upper left frame) and uses the previous prediction to predict the next. Figure 6.21a

shows that there are slight variations between each trajectory. There are slight variations,

typically between rows 2 and 5, where the Sonic has walked further in the row 5 trajectory

(e.g., Sonic has progressed more to the right). Figure 6.21b similarly shows that ORACLE

can generate plausible stochastic variations. Row 2 shows sonic in a similar position as

the ground truth trajectory. The other rows illustrate trajectories where Sonic is moving

downwards, more easily seen when observing the grass in the uppermost corner of each

prediction.

The challenge with ORACLE is that it takes substantially longer to train. The training

time for training an accurate model takes approximately 48 hours using an Nvidia 2080TI

in Sonic the Hedgehog 2 for a single level. DVAE trains significantly faster but lacks the

long-horizon prediction capabilities in ORACLE.
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(a) Sample #2

Figure 6.21: Demonstration of Sonic the Hedgehog 2 (top row) and corresponding predic-

tions for four trajectories. The predicted trajectories start before the top left most ground

truth state.
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(b) Sample #3

Figure 6.21: Demonstration of Sonic the Hedgehog 2 (top row) and corresponding predic-

tions for four trajectories. The predicted trajectories start before the top left most ground

truth state.
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6.4.4 Performance - Deep Warehouse

Figure 6.22: A Deep Warehouse 20x20 environment with 30 agents. The ORACLE algo-

rithm controls taxis using the same policy. The observation input marks the selected taxi

to identify better the agent that action is sent.

We measure the performance of ORACLE in the Deep Warehouse environment using a

single DQN for decision-making. The goal of the agents (green squares) is to pick up

assigned items (blue squares are active items) and deliver them to the designated delivery

point (pink is active, red is the inactive delivery points) at which the episode terminates.

The agents can collide or crash in the outer walls, which resets the agent to the spawn area

(cyan). The agent receives negative rewards for every step, a medium reward for picking

up items, and a large reward for delivering the item to the correct pickup point.

Figure 6.23 shows four experiment graphs from training ORACLE in the Deep Ware-

house 20x20 (Figure 6.22) environment using DQN as the decision-making policy. The

deliveries max indicates how many agents can deliver their items before reaching a termi-

nal state. The reward signal gradually increases, suggesting that the algorithms learn to

fit the reward function. We also see that the episode length decreases concurrently with

increasing rewards, meaning that the agents find the goal state (or collides) faster. The

deliveries max charts indicate how many agents were abler to deliver packages before

reaching a terminal state. We can achieve between 15 and 25 deliveries, whereas 30 is

when the policy finds optimal behavior. These findings fuel the need for further study in
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Figure 6.23: Performance chart for ORACLE in Deep Warehouse using DQN as the

decision-making policy. The x-axis is the episode number.

agent safety, which we aim to address in Section 6.5.

6.4.5 Comparative Reward Performance

The comparative performance evaluation aims to understand how the ORACLE performs

compared to state-of-the-art model-based and model-free methods and how to tune the

algorithm for different environments. The experiments compare ORACLE to the model-

free algorithms RAINBOW (2018), and PPO (Schulman et al., 2017), and Dreamer (Hafner

et al., 2020) for model-based methods. The learning ORACLE policy ensemble consists

of PPO, DQN, RAINBOW, A3C, and VPG and performs majority voting for evaluated

actions. In the case of a draw, we randomly select one of the actions. The experiments run

five times where the evaluation metric is the ratio between score and steps. 2 For the com-

parison, we use reference hyperparameters found in Hessel et al., 2018 for RAINBOW

and Schulman et al., 2017, respectively.

Figure 6.24 shows that ORACLE outperforms the tested model-free and model-based ap-

proaches for the selected environments. A dependent factor on ORACLE’s reward perfor-

mance is the latent-leap parameter which represents how many steps the algorithm leaps

into the future before resampling the real environment. Specifically, we see that a latent

leap of 30 is a good compromise between sample efficiency and reward performance.

2We make the reader aware that the experiments are compute-heavy, hence few experiment iterations.
In total, the experiments take ∼ 5 days of wall-clock time to train on consumer-level hardware.
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Figure 6.24: The accumulated reward performance and sample efficiency of PPO, RAIN-

BOW, Dreamer, and ORACLE. We observe that in all environments, ORACLE outper-

forms the state-of-the-art algorithms with L set to 30. The x-axis describes the environ-

ment step, while the y-axis describes the average return.
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6.4.6 Design Conclusion

We next discuss the findings in the hyperparameter tuning experiments and the com-

parative performance evaluation to understand better why ORACLE outperforms prior

approaches.

Specifically, we think that ORACLE has strength in capturing large state-spaces and has

a good ability to generalize well over sparse datasets. The dynamics model is primarily

continuous-space with a combination of deterministic and stochastic variables. A VQ

layer between the continuous probabilistic latent vector transforms the latent vector into

discrete space before reconstructing the output. In parallel to our work, Ozair et al., 2021

have the same conclusion and show outstanding results on solving chess, outperforming

previous methods. We conclude that:

• using VQ in combination with VAE and SRSSM provides a powerful enhancement

to model robustness, but it falls short when used for more simple problems,

• generally, we see that ORACLE is best suited for larger problems with more than 1

000 timesteps, and

• it remains an open question to justify the combination of VAE, SRSSM, and VQ

analytically.

6.4.7 Summary

We present a novel model-based reinforcement learning algorithm for improving sample

efficiency. We test the algorithm in popular game environments and present state-of-

the-art results in Deep RTS Deathmatch and HalfCheetahPyBulletEnv-v1 compared to

Dreamer, PPO, and RAINBOW.

Hypothesis ORACLE 1 ORACLE performs better than state-of-the-art model-based

and model-free algorithms.

Evaluation: After a comprehensive hyperparameter search and empirical exper-

iments (Figure 6.24), ORACLE performs better in the tested environments. How-

ever, we believe that the tested algorithms could potentially see similar improve-

ments with extensive hyperparameter tuning for the tested algorithms. Nonethe-

less, ORACLE demonstrates excellent reward performance and significantly better

reconstruction performance than DVAE from Paper D.

Hypothesis ORACLE 2 ORACLE can navigate RTS and industry applications without

significant drawbacks.

Evaluation: This study demonstrates that ORACLE is a good algorithm for
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RTS games, where it reaches a close maximum score after 1 000 000 timesteps

in the Deep RTS Deathmatch environment. Furthermore it masters CartPole-v1

and HalfCheetahPybulletEnv-v1. This means that ORACLE may become a good

algorithm for safe RL in industry applications while maintaining good reward per-

formance. The most influential lesson from this study is that complex models re-

quire extensive tuning to work well and for ORACLE to succeed, it takes significant

effort to reach good reward performance.

Hypothesis ORACLE 3 ORACLE can reconstruct and predict trajectories in animated

environments.

Evaluation: According to empirical evidence shown in Figure 6.21a-6.20, ORA-

CLE can accurately reconstruct and predict trajectories in animated environments

like Sonic the Hedgehog 2. ORACLE improves significantly from prior work us-

ing the DVAE algorithm to predict 30-steps compared to 3-step using DVAE. The

challenge with Observation Reward Action Cost Learning Ensemble (ORACLE) is

that it takes substantially longer to train the algorithm making it costly to train the

model for many problems.

6.5 S-ORACLE Evaluations
We present a thorough evaluation of the ORACLE with safety extensions, S-ORACLE. S-

ORACLE extends ORACLE to concern decision-making safety at training and test-time.

The algorithm uses goal-directed RL, risk-sensitive RL, and risk-directed exploration,

which we detail in Section 2.3. The algorithm extensions are detailed 5.3.6. The evalua-

tions are two-fold, where the first set of experiments focuses on safety and the second set

of experiments focuses on agent reward performance. We evaluate S-ORACLE in four

Deep RTS, ELF, Micro RTS, StarCraft II environments, and the industry-near environ-

ment Deep Warehouse. The safety evaluations compare S-ORACLE to PPO and DVAE.

We use five model-free algorithms for the agent reward performance evaluations, A2C,

DQN, RAINBOW, IMPALA, PPO, using standard hyperparameters from the respective

literature. Additionally, we test with the DVAE algorithm from Paper G.

6.5.1 Hypotheses

We carefully address the following hypotheses for the S-ORACLE algorithm.

Hypothesis S-ORACLE 1 S-ORACLE is safer than risk-neutral algorithms and DVAE.

Hypothesis S-ORACLE 2 S-ORACLE are more climate-friendly compared to model-

free methods.
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Hypothesis S-ORACLE 3 S-ORACLE outperforms model-free algorithms in terms of

agent reward performance.

6.5.2 Experimental Setup

Experiments allocate one GPU per algorithm from a pool of 2x 2080 TI and 2x 1080 TI

cards, where 1080 TI cards have 37% longer train time to compensate for slower training

speeds. For climate footprint estimations, we limit the GPU power draw to 250w and di-

vide the total energy consumption of the 1080 TI-based experiments to compensate for the

additional time. Model-free algorithms train for 24 hours and model-based trains for 16

hours to demonstrate efficiency. Reward performance is tested for several episodes, where

the number of episodes is specified per environment due to computational limitations.

The experiment’s goal is to demonstrate S-ORACLE reward performance and safety per-

formance. Concurrently, a baseline is constructed for future work. Experiments show

that S-ORACLE generalizes well for multiple problems, although the algorithm still has

improvement potential in reward performance, sample efficiency, and safety. The results

also systematically report S-ORACLE’s energy and carbon footprint compared to other

tested algorithms, as suggested by Henderson et al., 2020a.

6.5.3 Safety Evaluation

S-ORACLE aims to learn an agent agnostic feedback signal that directs the risk-neutral

agents towards safer trajectories during training. S-ORACLE learns in a two-objective

process where the first objective is to learn the dynamics model and the second is to

learn an actor ensemble (see Section 4). S-ORACLE formalize two training schemes for

training the dynamics model:

1. Scheme #1. Train dynamics model and actor ensemble concurrently, balancing the

exploration-exploitation trade-off for risk management.

2. Scheme #2. Train dynamics model using external knowledge, using existing expert

systems known to operate safely in the environment and subsequently, train actor

ensemble offline using dynamics model before carefully evaluate safety in live sys-

tems. This approach is seen as successful in prior work Paper F and Paper G.

The first method is the most versatile because it does not require any knowledge a priori

to solve the problem. However, the first method is at increased risk of entering catas-

trophic states. The second method improves empirical safety but relies on external sys-

tems to succeed. This Section aims to empirically demonstrate the safety performance of

S-ORACLE compared to PPO in Scheme #1 and DVAE in Scheme #2. The experiments
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Figure 6.25: A graphical observation of the Deep RTS Lava Environment. The goal is for

the player (unit) to reach the middle section of the map without walking in lava.

measure the ratio of incoming absolute negative returns to determine safety, normalized

between 0.0 ≤ x ≤ 1.0. For every 100 000 timesteps, the algorithm evaluates for 100

episodes, and the measured min-max variance is illustrated using shades in the plots. S-

ORACLE is evaluated in two environments using the described training schemes:

1. The Deep RTS lava environment is seen in Figure 6.25. The agent performs safe

behavior when avoiding lava states. The goal is to reach the gold in the middle of

the map.

2. Deep Warehouse logistics challenge. Transport items from source to destination

as fast as possible while avoiding collision with other agents. The algorithm con-

trols a single agent, while the remaining agents use a manhattan distance-based

heuristic. Depending on map size, the agent is part of a larger logistics system with

other taxi agents. See Section 4.4 for additional details about the Deep Warehouse

environment.

In Scheme #1, the algorithms balance the exploration-exploitation trade-off during dy-

namics model training. Therefore, they are more susceptible to error states because of

missing knowledge about the dynamics. Figure 6.26a-6.27b shows the safety violations





6.5. S-ORACLE EVALUATIONS

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0
Ab

so
lu

te
 N

eg
at

iv
e 

Re
tu

rn

Algorithm
PPO
S-ORACLE

(a) Deep RTS Lava Maze.
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(b) Deep Warehouse 11× 11.

Figure 6.26: Safety violations rate following training Scheme #1. The y-axis is the

mean absolute negative return where the absolute negative return is averaged per 10 000

timesteps.
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(a) Deep Warehouse 22× 22.
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(b) Deep Warehouse 41× 41.

Figure 6.27: Safety violations rate following training Scheme #1. The y-axis is the

mean absolute negative return where the absolute negative return is averaged per 10 000

timesteps.
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ratio in Deep RTS and Deep Warehouse, respectively. In the Deep RTS Lava environ-

ment, it is clear that S-ORACLE learns to avoid lava, and for Deep Warehouse 11 × 11

(Figure 6.26b), the S-ORACLE gradually reduces the rate of negative returns compared

to PPO. Similarly, for Deep Warehouse 22 × 22 and 41 × 41 (Figure 6.27a and Figure

6.27b), S-ORACLE accumulate fewer negative rewards, but the effect seems to diminish

for more complex state-spaces. Collectively, the figures demonstrate that a risk-neutral

algorithm (PPO) explores negative states at a relatively uniform rate. At the same time,

the risk-averse agent (S-ORACLE) impacts the number of visited error-states significantly

less.

In Scheme #2, the dynamics model is trained from observations of an expert system before

training using the dynamics model occurs for the agent algorithm. The second approach

demonstrated better safety awareness, naturally, because the algorithm learned much of

the environment through the dynamics model before making actions live. Figure 6.28-

6.28 shows the safety-awareness of S-ORACLE compared to DVAE, clearly showing a

downwards trend in the mean absolute negative return. However, as the environment

becomes more complex (Figure 6.29b), the effect seems to diminish in contrast to Figure

6.28b.

The empirical evidence clearly shows that S-ORACLE improves safety in Scheme #1

and Scheme #2 compared to model-free RL algorithms and the prior work of DVAE.

Specifically, as the algorithm learns the environment dynamics, the agent receives fewer

negative rewards than other tested environments.

6.5.4 Performance Evaluations

Deep Line Wars. Table 6.5 shows the reward performance of the tested algorithms against

the hard-coded expert agent. Each algorithm runs 1000 times and is averaged over.

Specifically, we observe that all tested algorithms perform well, even for large

maps. The S-ORACLE agent performs comparably to the tested model-free al-

gorithms and outperforms all tested algorithms on average. The action-space com-

prises 4 actions for cursor position, 4 build actions, and 4 spawn unit actions.

Deep RTS. We evaluate the algorithms for 100 episodes in the Deep RTS Lava Maze

problem and the Deep RTS Deathmatch between the tested algorithms. For the

maze-like environment, results are averaged. Table 6.6 shows the reward perfor-

mance of tested algorithms in the maze environment. All algorithms perform well,

where the best algorithm, IMPALA, consistently found the best path after training.

The other algorithms perform in the ∼ 95% ± 5 range. Table 6.7 shows that S-

ORACLE outperforms 5 out of 7 algorithms and scores comparably to PPO in 1v1

matches. We observed that S-ORACLE plays conservatively and wins by strate-
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(a) Deep RTS Lava Maze.
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(b) Deep Warehouse 11× 11.

Figure 6.28: Safety violations rate following training Scheme #2. The y-axis is the

mean absolute negative return where the absolute negative return is averaged per 10 000

timesteps.
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(a) Deep Warehouse 22× 22.
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(b) Deep Warehouse 41× 41.

Figure 6.29: Safety violations rate following training Scheme #2. The y-axis is the

mean absolute negative return where the absolute negative return is averaged per 10 000

timesteps.





Advances in Safe Deep Reinforcement Learning for
Real-Time Strategy Games and Industry Applications

gically blocking the opponent’s path with houses during experiments. In the long

run, the conservative behavior wins because the cost of units is more expensive than

houses. Additionally, houses allow the players to build larger armies that trivially

defeat opponents with limited housing. The agent had access to 13 discrete actions

at every timestep and received positive rewards for victories and zero during the

game.

ELF: Mini-RTS. The partial observability of Mini-RTS makes the learning task signif-

icantly harder to master compared to Deep RTS. Table 6.8 shows that S-ORACLE

average 83% win ratio but had difficulties defeating the AI-Simple algorithm con-

sistently. The Mini-RTS action-space comprises 9 strategic actions in which the

agent can construct complex strategies. We observe that the average-length game is

approximately 3500 ticks where a positive reward is given for victories, a negative

reward for defeats, and zero rewards in other states. Algorithms are tested for 100

episodes.

Micro RTS. Perhaps the most widely used environment for competitions is the Micro

RTS environment (Ontanon, 2013). We test each algorithm for 100 episodes against

strategies presented in the IEEE Conference on Games (COG-2019) competition.

Table 6.9 shows the results, where each row illustrates the win rate against the col-

umn algorithm. We see that S-ORACLE outperforms the other algorithms, closely

followed by DVAE, PPO, and IMPALA. The action and state-spaces vary between

maps but are thoroughly described in Huang et al., 2021.

StarCraft II. Perhaps the most compute-heavy experiment is the StarCraft II environ-

ments, albeit we only focus on mini-games of the original game. In particular, we

use the mini-games from Vinyals et al., 2017 already standardized in literature, and

we adopt these findings for our comparison. As seen in Table 6.10, no algorithm

remains dominant in all environments, but the professional player from DeepMind

(DM) (2017). However, the S-ORACLE algorithm scores on average better than the

model-free approaches, likely because of the ensemble technique when voting for

actions. The action-space is challenging to implement because it comprises several

hundred actions for every timestep. For this reason, we choose to adopt the same

method as in H. Hu and Wang, 2020.

6.5.5 Sustainability Report

Table 6.11 reports the contribution of CO2
kg

in the experiments following Henderson et al.,

2020a. Algorithm reward performance is tested in 41 experiments and six safety exper-

iments for PPO, DVAE, and S-ORACLE. Note that the model-based approaches have a
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Table 6.5: Deep Line Wars results. Each agent (row) plays against the built-in expert

agent at different map sizes (column). The last column is the average reward performance

for all map sizes. The cell values represent a win ratio ranging from 0 to 1.

Algorithm |Map 12x11 22x22 40x30 64x64 Avg
A2C 1.00 ±0.0 0.96 ±0.01 0.86 ±0.07 0.69 ±0.3 0.88

DQN 1.00 ±0.0 0.92 ±0.03 0.89 ±0.1 0.85 ±0.08 0.92

RAINBOW 1.00 ±0.0 0.95 ±0.03 0.90 ±0.08 0.64 ±0.01 0.87

IMPALA 1.00 ±0.0 0.96 ±0.04 0.95 ±0.04 0.85 ±0.11 0.94

PPO 1.00 ±0.0 0.99 ±0.01 0.95 ±0.01 0.66 ±0.18 0.90

DVAE 1.00 ±0.0 0.99 ±0.01 0.89 ±0.1 0.77 ±0.05 0.91

S-ORACLE 1.00 ±0.0 0.98 ±0.01 0.97 ±0.01 0.87 ±0.07 0.96

Table 6.6: The results of the Deep RTS Maze environment. The environment defines

reward function as rt = optimalRoute × 2 − t. The results are averaged over 100

episodes. The cell values represent accumulated scores ranging from 0 to 113.

.

Algorithm Score

A2C 91 ±5

DQN 98 ±9

RAINBOW 99 ±4

IMPALA 100 ±2

PPO 96 ±6

DVAE 97 ±11

S-ORACLE 94 ±5

Table 6.7: DeepRTS 1v1 results. The row is the win rate of the respective algorithm

against the column-wise algorithm for 100 episodes. The cell values represent a win ratio

ranging from 0 to 1.

Algorithm A2C DQN RAINBOW IMPALA PPO DVAE S-ORACLE Avg

A2C - 0.35 ±0.11 0.23 ±0.05 0.44 ±0.11 0.14 ±0.05 0.39 ±0.11 0.36 ±0.05 0.32

DQN 0.65 ±0.03 - 0.45 ±0.02 0.36 ±0.05 0.25 ±0.03 0.36 ±0.32 0.25 ±0.14 0.39

RAINBOW 0.77 ±0.02 0.55 ±0.15 - 0.59 ±0.05 0.47 ±0.07 0.55 ±0.05 0.45 ±0.02 0.56

IMPALA 0.56 ±0.07 0.64 ±0.11 0.41 ±0.08 - 0.45 ±0.04 0.59 ±0.22 0.36 ±0.18 0.50

PPO 0.86 ±0.07 0.75 ±0.01 0.53 ±0.11 0.55 ±0.02 - 0.52 ±0.05 0.56 ±0.03 0.63
DVAE 0.61 ±0.25 0.64 ±0.05 0.45 ±0.05 0.41 ±0.06 0.48 ±0.05 - 0.25 ±0.02 0.47

S-ORACLE 0.64 ±0.11 0.75 ±0.02 0.55 ±0.09 0.64 ±0.03 0.44 ±0.02 0.75 ±0.02 - 0.63

training budget of 16 hours, and model-free algorithms have 24 hours. The Figure shows

that model-based approaches utilize time significantly more, considering that total CPU
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Table 6.8: ELF: Mini-RTS results. Each experiment runs for 100 episodes and is averaged

over. The cell values represent a win ratio ranging from 0 to 1.

Algorithm AI-Simple AI-Hit-and-run Average
A2C 0.85 ±0.07 0.86 ±0.08 0.86

DQN 0.56 ±0.05 0.85 ±0.02 0.71

RAINBOW 0.75 ±0.11 0.88 ±0.05 0.82

IMPALA 0.66 ±0.02 0.96 ±0.09 0.81

PPO 0.78 ±0.04 0.97 ±0.11 0.88
DVAE 0.73 ±0.05 0.99 ±0.05 0.86

S-ORACLE 0.67 ±0.09 0.98 ±0.04 0.83

Table 6.9: Micro RTS averaged results for all tested mini-games. Results for individual

environments are found in the appendix of Paper M. The cell values represent a win ratio

ranging from 0 to 1.

Agorithm RandomBiasedAI NaiveMCTS Tiamat Droplet UTS Imass Win Ratio
A2C 0.89 ±0.01 0.86 ±0.06 0.84 ±0.11 0.79 ±0.14 0.84 ±0.13 0.84

DQN 0.91 ±0.04 0.86 ±0.12 0.79 ±0.03 0.82 ±0.17 0.7 ±0.26 0.82

RAINBOW 0.89 ±0.1 0.88 ±0.06 0.83 ±0.08 0.79 ±0.21 0.79 ±0.11 0.83

IMPALA 0.88 ±0.05 0.86 ±0.09 0.86 ±0.05 0.87 ±0.06 0.85 ±0.12 0.86

PPO 0.91 ±0.02 0.92 ±0.02 0.83 ±0.07 0.84 ±0.05 0.83 ±0.07 0.86

DVAE 0.90 ±0.07 0.87 ±0.09 0.80 ±0.18 0.90 ±0.07 0.84 ±0.15 0.86

S-ORACLE 0.90 ±0.06 0.88 ±0.02 0.86 ±0.02 0.84 ±0.04 0.86 ±0.05 0.87

and GPU time is close to model-free algorithms. The reason for better utilization is that

model-based RL algorithms better saturate the GPUs when training using the dynamics

model.

According to (Vinyals et al., 2019), for AlphaStar to beat professionals in StaCraft II,

it trains 12 agents for 1056 hours using 32 third-generation Tensor Processing Units

(TPU’s). TPUv3 has a power consumption of 0.450kWh, which results in 14.4kWh for

the TPU’s. Excluding the rest of the system (CPU, memory, disks, and so on), it takes

14.4 ∗ 1056 = 15206.4kW to train AlphaStar without any model tuning. Considering a

carbon intensity of 25, it takes 608.256 CO2
kg

climate emissions to train AlphaStar com-

pared to S-ORACLE with only 6.77 CO2
kg

for a multitude of tested simpler environments.

6.5.6 Summary

This work investigates whether the safer model-based reinforcement learning algorithm

S-ORACLE has (1) better reward performance, (2) sample efficiency, (3) more climate-
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Table 6.10: StarCraft II results. The A2C, A3C, and DM are results from relevant liter-

ature, and the remainder is novel results in this work. We ran the experiments ten times

and averaged the results. The cell values represent the total accumulated return. The table

adopts results from H. Hu and Wang, 2020 for A2C, Zha et al., 2021 for A3C, and Vinyals

et al., 2017 for the DeepMind (DM) results.

Environment A
2C

A
3C

D
M

D
Q

N

R
A

IN
B

O
W

IM
PA

L
A

PP
O

O
R

A
C

L
E

S-
O

R
A

C
L

E

MoveToBeacon 21.3 24 26 26 30 32 35 24 29

DefeatRoaches 72.5 47 41 100 81 91 75 60 77

BuildMarines 0.55 0.6 138 0 0 2 8 12 2

CollectMineralShards 81 45 133 3 12 41 53 55 58

CollectMineralAndGas 3320 371 6880 3978 3911 4251 4102 5212 5102

FindAndDefeatZerglings 22.1 25 46 45 21 23 19 29 35

DefeatBanelingsAndZerglings 56.8 43 729 62 20 423 251 305 530

Average Score 510.6 79.3 1141.8 602 582.1 694.7 649 813.8 833.2

Table 6.11: This work contributed 55.08 kg of CO2eq to the atmosphere and used 1377.0

kWh of electricity. The columns describe the following from left to right: (1) Number

of experiments performed, (2) Average hours of CPU time per experiment, (3) Average

hours of GPU time per experiment, (4) Total CPU time for all experiments, (5) Total

CPU time for all experiments, (6) Total kW for all experiments, and finally, the total CO2
kg

contribution of the experiments.3

Algorithm Num Exp Avg CPU H. Avg GPU H. Tot CPU H. Tot GPU H. Tot. kW CO2
kg

A2C 41 13.53 21.41 554.73 877.81 233.04 9.32

DQN 41 11.71 20.22 480.11 829.02 219.02 8.76

RAINBOW 41 19.24 15.74 788.84 645.34 180.66 7.23

IMPALA 41 15.55 14.55 637.55 596.55 164.76 6.59

PPO 45 16.22 19.22 729.90 864.90 234.11 9.36

DVAE 45 14.33 11.24 644.85 505.80 142.25 5.69

S-ORACLE 49 13.11 12.53 642.39 613.97 169.23 6.77

friendly, and (4) safer than traditional model-free deep RL algorithms. Empirical evidence

suggests that 2-4 hold except for 1, where the algorithm is on-par or inferior to model-free

approaches. Similar conclusions are found in (Janner et al., 2019), emphasizing having

smaller rollout horizons for better model prediction. This Section details further 1 to 4

and concludes the findings of this work.

Hypothesis S-ORACLE 1 S-ORACLE is safer than risk-neutral algorithms and DVAE.
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Evaluation: Figure 6.26 to Figure 6.27 suggests that S-DVAE is safer than PPO. S-

ORACLE is significantly safer in Deep RTS Lava Maze and Deep Ware 11x11 and

has lower variance in the experiments. However, the results indicate that the safety

margin diminishes for more complex environments such as Deep Warehouse 22x22

and Deep Warehouse 41x41. S-ORACLE shows similar results to S-DVAE, where

it outperforms for simpler environments and where the safety effect diminishes for

more complex environments, as seen in Figure 6.29.

Hypothesis S-ORACLE 2 Compared to model-free algorithms, S-ORACLE is more climate-

friendly.

Evaluation: Table 6.11 shows that S-ORACLE trains are more climate-friendly

compared to A2C, DQN, RAINBOW, and PPO but are marginally less efficient

compared to DVAE and IMPALA.

Hypothesis S-ORACLE 3 S-ORACLE outperforms model-free algorithms in terms of

agent reward performance.

Evaluation: S-ORACLE beats the other algorithms in Deep Line Wars, Deep RTS

1v1, and Micro RTS. There are several reasons for this. First, S-ORACLE is exten-

sively tuned from work in Paper K and Paper M, whereas we use the reference val-

ues for the other algorithms. The second reason is that S-ORACLE has the benefits

of optimizing the objective more aggressively towards safer actions. The positive

effect is that the algorithm can avoid many scenarios where risk-neutral algorithms

go in disastrous states. However, this is likely highly dependent on the environment,

and we believe that S-ORACLE might fail in environments where other approaches

thrive. Nonetheless, S-ORACLE performs empirically well in RTS Games.

6.6 Summary
We present results for our contributions, the Deep Variational Q-Networks (DVQN),

Dreaming Variational Autoencoder (DVAE), Observation Reward Action Cost Learning

Ensemble (ORACLE), and its decision-safe variants. We present results for our con-

tributions, the Deep Variational Q-Networks (DVQN), Dreaming Variational Autoen-

coder (DVAE), Observation Reward Action Cost Learning Ensemble (ORACLE), and

its decision-safe variants. We test our algorithms in the proposed game environments,

Deep Line Wars, Deep Maze, Deep RTS, and Deep Warehouse, demonstrating that algo-

rithms learn good strategies. However, there is still room for algorithms to perform better.

Therefore, we believe that the experiments can function as a platform for RL research in

RTS games towards mission-critical ASRS industry systems.

We demonstrate that the Deep Variational Q-Networks (DVQN) can learn latent embed-

dings that visually resemble the target environment. The CartPole-v0 experiment (Figure
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6.18) empirically demonstrates the effectiveness of our algorithm. The embedding clearly

separates into three clusters: one for when the pole is stable and two for pole angles in

either direction. This work builds a foundation for innovations in hierarchical reinforce-

ment learning because it is possible to create separate behavior policies for every cluster.

The study also demonstrates the effectiveness of continuous embeddings (Gaussians) and

presses for future study in categorical embeddings, which we later studied in the ORA-

CLE algorithm with VQ-VAE.

The Dreaming Variational Autoencoder (DVAE) evaluations show that our algorithm

can predict simple environments accurately. We show that DVAE can fully learn the

DeepMaze-8x8-NoWall environment (Figure 6.3) and, combined with model-free algo-

rithms, can navigate autogenerate mazes effectively (Figure 6.4). We show that adding

RNN’s boosts the reconstruction capabilities of DVAE but suffers from posterior collapse

in environments with huge state-spaces, such as Sonic The Hedgehog. DVAE demon-

strates empirically good reward performance, where it performs better or comparably

to DQN and PPO in Deep Line Wars, Deep RTS, Deep Warehouse, and CartPole. We

also suggest that stochastic weight averaging improves the learning stability, effectively

boosting the predictive capabilities (Figure 6.9). Finally, we propose DVAE combined

with CostNet for predicting distance from the current observation state to an estimated

goal observation state. Results show that our method performs better than PPO and DQN

in CartPole, DeepRTS, and Deep Maze (Figure 6.11).

Observation Reward Action Cost Learning Ensemble (ORACLE) proceeds the DVAE al-

gorithm with new fundamentals to dynamics modeling. Specifically, we formalize the

algorithm as a state-space model using recurrent neural networks and stochastic neural

networks following the amortized variational inference training scheme. We show that

our approach performs significantly better than DVAE and traditional model-free algo-

rithms. We perform an extensive hyperparameter tuning experiment and show that train-

ing ORACLE on a single environment, SWA=on, VQ=on, LL=30, and AGC=on, works

best for most environments. If ORACLE should learn a policy for multiple environments,

disabling SWA for multi-policy training works best.

We show that our algorithms can operate more safely using the proposed safety mech-

anism, risk-directed exploration, and risk-sensitive decision-making. We show that our

algorithms perform well in Deep Line Wars, DeepRTS, ELF, Micro RTS, and StarCraft II

while also using resources, therefore, having less climate emission than model-free algo-

rithms (Table 6.11). The reduced compute time corresponds well to the increased sample

efficiency, as empirically verified in Figure 6.26. Although our approach cannot guaran-

tee safety, the algorithm shows a good sign of reducing the failure rate. Therefore, our

contribution is a good step towards versatile reinforcement learning in RTS and industry

applications.





Chapter 7

Conclusion and Future Work
This thesis proposes a novel deep model-based reinforcement learning method towards

mastering RTS games and improving agents’ decision safety in industry-like environ-

ments. We approach the challenges with three divisions of labor. The first challenge in

Chapter 4 is to fill the gap of missing environments in literature for RTS game research.

We contribute six novel environments, Deep Line Wars, Deep Maze, Deep RTS, Deep

Warehouse, CaiRL, and FlashRL, that are especially suited for reinforcement learning

research, having a standardized interface of communications through the OpenAI Gym

toolkit. The second challenge in Chapter 5 addresses model-based reinforcement learn-

ing towards better sample efficiency and better decision safety during learning. The final

challenge in Chapter 6 empirically verifies our environments’ usefulness and concurrently

demonstrates our proposed algorithms’ effectiveness.

7.1 Research Questions
We categorically conclude the research questions of this Ph.D. study towards more sample

efficient algorithms for RTS games and more decision safe RL algorithms for industry-

near applications.

Question 1: To what extent can we improve the complexity gap for game environments

in reinforcement learning research?

Conclusion: We propose six new environments for reinforcement learning research.

Our contributions serve toward creating environments with quantifiable state-

space, which is a longstanding gap in available game environments (Fig-

ure 4.11). There is still room for new environments towards further state-

space diversity and problem difficulty. For this reason, we propose CaiRL,

a high-performance experiment toolkit that provides standardized methods

to implement high-performance environments interoperable with existing en-

vironments toolkits. We study game environments design using high-level

versus low-level languages (Section 4.6.2). From our results, we can con-

clude that SIMD CPU instruction sets and software rendering to avoid frame
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buffer copies are more efficient to use for environments with primitive graph-

ics (CaiRL - Design Discussion). We empirically demonstrate that our envi-

ronment contributions are suited for reinforcement learning research and pro-

vide significantly better reward performance than prior solutions (Table 4.13).

Question 2: How can the sample efficiency of model-free reinforcement learning algo-

rithms be increased to acquire good behavioral policies faster in complex RTS

games?

Conclusion: We introduce two model-based approaches, DVAE and ORACLE,

and compare these against state-of-the-art model-based and model-free al-

gorithms. We compare the sample efficiency of our model-based approach

DVAE and ORACLE against state-of-the-art model-free algorithms such as

PPO and DQN. Experiments empirically verify that learning a dynamics model

using data from existing expert systems, then using the same dynamics model

to train model-free algorithms, significantly reduces the samples needed to

learn a good policy. We find that the sample efficiency dramatically increases

when training traditional model-free algorithms using a dynamics model com-

pared to traditional sampling techniques in the ground-truth environment. Specif-

ically, we show that DVAE and ORACLE outperform other algorithms (Sec-

tion 6.5.4) when operating within a limited computational budget. Furtermore,

it converges faster than traditional model-free reinforcement learning because

of the improved efficiency.

Question 3: How can RTS game environments support reinforcement learning towards

the goal of real-world industrial applications?

Conclusion: We study existing literature on RTS games and industry applications

separately and identify general environment characteristics. Finding such con-

nections is essential because it indicates that RTS games can be directly used

in research towards studying industry AI Control, which drastically lowers the

cost of research. Our study suggests that both disciplines feature sparse re-

wards, partial observability, have high dimensional state-spaces (Figure 4.11)

where it is required to plan safe decisions over longer time horizons. This anal-

ysis introduces the Deep RTS game environment and Deep Warehouse indus-

try environment and shows that using the same algorithms and hyperparame-

ters demonstrates similar learning curves and reward performance. Therefore,

we conclude that using RTS games for research can support the development

of novel AI control systems in industrial applications.
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Question 4: To what extent are deep Variational Autoencoder (VAE)s effective as a mech-

anism to learn the dynamics of virtual environments?

Conclusion: We introduce DVAE, a model-based reinforcement learning approach

for estimating a dynamics model using Variational Autoencoder (VAE)s to

model the observation space. We show that deep VAEs can learn accurate dy-

namics of a virtual environment when supplied with sufficient training data.

We empirically demonstrate that DVAE can predict future states in the Deep

Line Wars environment with gradual improvement during training, demon-

strating that it can successfully map state to latent state encodings without

posterior collapse. For more complex game environments such as Sonic the

Hedgehog 2, DVAE struggles to learn a good policy because there is too much

similarity between state observations which causes the learning to collapse for

even short-horizon predictions. Our study shows that VAEs can learn the dy-

namics of virtual environments and improve with extensions such as recurrent

neural networks and optimization with stochastic weight averaging and is also

later verified by Chien and Chiu, 2021; Gregor, Papamakarios, et al., 2019.

Question 5: How can state-space modeling combined with recurrent neural networks for

planning be used to learn the dynamics of a composite game environment?

Conclusion: We introduce a novel model-based reinforcement learning named OR-

ACLE that learns the dynamics of an environment through active exploration

or passive observation. The model is a leap towards more sample-efficient

algorithms to accommodate the lack of volumetric data in real-world systems.

We use state-of-the-art state-space modeling techniques to form ORACLE for

end-to-end learning of dynamic models in games and industry environments.

We show that using state-space models boosts the prediction capabilities com-

pared to DVAE. We perform an extensive hyperparameter search on core com-

ponents of the ORACLE model and find that the model performs well for

30-step predictions and has mixed results when using separate models per en-

vironment. Using a single ORACLE model for multiple environments further

demonstrates that disabling SWA, enabling VQ, and using AGC is the best

combination of components in the tested environments (Table 6.3). Further-

more, our study shows that ORACLE performs better than DVAE and state-

of-the-art model-free reinforcement learning in composite game environments

such as StarCraft II.

Question 6: How can we improve the decision safety of risk-neutral model-free rein-

forcement learning algorithms?
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Conclusion: We introduce a novel combination of decision safety mechanisms to-

wards improving safety in reinforcement learning agents. We show that it

is possible to extend ORACLE, DVAE, and model-free algorithms to better

account for risk and decision safety. This is done using a combination of

risk-directed exploration, following a risk-sensitive reward scheme described

in Equation 2.19. Unique to DVAE is the CMDP’s ability to limit the policy

search space to eliminate unsafe policies combined with an inverted curiosity

reward bonus to discourage exploration in uncertain parts of the state-space.

We empirically show that the safe DVAE variant predicts states accurately

while having comparable reward performance in a majority of the tested envi-

ronments. It does so with significantly better decision safety than traditional

model-free reinforcement learning algorithms, as Figure 6.14 demonstrates.

The S-ORACLE variant shows better decision safety than DVAE and PPO

(Section 6.5.3). ORACLE and DVAE integrate well with existing model-free

algorithms. Furthermore, the decision safety improves significantly following

the proposed training schemes. Therefore, a model-free reinforcement learn-

ing algorithm can benefit greatly from using the proposed models to train safer

agents.

Question 7: How can we apply deep reinforcement learning algorithms to industry-like

applications without the risk of damaging humans and real-world equipment?

Conclusion: Safety is perhaps the most challenging trait to master in an RL setting

because it is not naturally embedded in the RL framework’s foundation. Per-

haps the first hint is found in the word reinforcement, which is the concept of

building upon something or encouraging or establishing a belief or pattern of

behavior. The RL literature often depicts the analogy of a child in a behavior-

istic way that through sensory stimuli such as vision, hearing, smell, feeling,

and taste, the child learns through trial and error. However, when compar-

ing RL algorithms to a child, we must strip away all its sensory information

and memory and feed it noisy and sparse information about the world. If so,

the child (algorithm) has very few sensory sensations, and at the beginning of

time t does not know the environment. It seems nearly impossible to learn

anything without trial and error. Therefore, the child analogy may be inade-

quate. Drawing parallels to ORACLE and DVAE, the algorithm is expected

to perform erroneous decisions during learning. However, our study suggests

the challenge is best approached using existing algorithms or expert systems

already operational in the target environment (Section 6.5.3, Scheme #2). We

show that using such a training scheme holds sufficient environment statistics

to learn a dynamics model that can train model-free algorithms to make safe
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decisions. The experiments show that using expert-system knowledge to train

the dynamics model works empirically well in the Deep Warehouse environ-

ment.

7.2 Environments
We have proposed six novel environments for research in reinforcement learning agents

for RTS and industry-like applications. We empirically verify our new environments by

training state-of-the-art reinforcement learning methods and systematically measure the

achieved score and reward. The proposed environments help fill the state-space com-

plexity gap in available reinforcement learning environments and are strictly open-source

for peer collaboration and cross-verification of experiments. The environment source

code can be found at https://github.com/topics/per-arne. We show that our proposed al-

gorithms can learn behaviors in simple versions of the proposed environments, but it is

more challenging to master more difficult scenario settings. The algorithm learns effec-

tive strategies using the same hyperparameters in composite game problems such as Star-

Craft II. We present baseline results for all environments, and using Deep Line Wars, we

demonstrate that DVAE outperforms state-of-the-art algorithms in map sizes up to 30x30

(Table 4.3). We show that the Deep Maze environment is useful for studying pathfind-

ing in RTS agents. Experiments show that our approach, the DVAE-CostNet, performs

better than model-free approaches (Table 4.4). We present the most versatile RTS en-

vironment for RL research in recent literature to the best of our knowledge. We show

that our algorithm performs safer while having comparable reward performance (Table

4.7) to state-of-the-art algorithms. Furthermore, we present the Deep Warehouse envi-

ronment for industry-near testing of automated storage and retrieval systems. We show

that our model-based approach, DVAE performs better than state-of-the-art model-free

algorithms in most of the tested warehouse sizes (Table 4.8). Finally, we collect all of

our game environment contributions in a highly efficient experiment engine, CaiRL, that

demonstrates significantly better CPU efficiency. CaiRL provides an easy-to-use frame-

work that is operable with the OpenAI Gym toolkit, with the benefit of substantially

reducing experiment runtimes and the positive side-effect of reducing climate emission of

machine learning research. Specifically, we show that CaiRL has 20.89 times less carbon

emission than OpenAI Gym in console-based applications (no graphics). The graphi-

cal experiment shows a more significant difference with a reduction of 147 578 times

the carbon emissions. This is because OpenAI Game implementations are locked to 60

frames per second (Table 4.11) using much more computational resources than is needed.

The overall conclusion from our study on environments is that by carefully crafting en-

vironments with efficient techniques, experiment time is drastically reduced, saving time,

allowing for more complex models to train faster, reducing the computational cost and
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hence, economic costs. Finally, it contributes towards more sustainable climate emissions

in machine learning research.

7.3 Model-Based Reinforcement Learning Algorithms
With the Dreaming Variational Autoencoder (DVAE), Deep Variational Q-Networks (DVQN),

and Observation Reward Action Cost Learning Ensemble (ORACLE), we introduce three

model-based reinforcement learning approaches towards better agents for RTS games and

industry-like applications. There are many similarities with the DVAE and ORACLE al-

gorithms, but our study indicates a significant difference in training speed. For simple

environments, we found that DVAE converges significantly faster, and because the model

has less components, it also utilizes the GPU better than ORACLE. Below we will present

conclusions regarding our proposed models.

The Dreaming Variational Autoencoder (DVAE) combines VAEs and reinforcement learn-

ing to learn a dynamics model that accurately reproduces state observations in the game

and real-world environments. We demonstrate that the algorithm is effective in simple

environments, such as the Deep Line Wars and Deep Maze, and can accurately predict

3-step future observations in deterministic environments. Our model combines tradi-

tional model-free reinforcement learning algorithms, such as Deep Q-Networks. We

show that learning a dynamics model using DVAE can effectively train model-free al-

gorithms through empirical observations. We also found that the DVAE model performs

poorly in environments with complex state-spaces. To remedy this, we propose exten-

sions to improve the expressive capabilities of the model. We extend the DVAE model

with recurrent neural networks, significantly boosting the learning of temporal depen-

dencies between states. Furthermore, we discover that it is possible to combine GAN

and VAE where the latter is the generator to produce more accurate samples. Further

studies found that using Stochastic Weight Averaging (SWA), an ensemble-like training

technique stabilized training and empirically reduced posterior collapse frequency. Fi-

nally, we combine DVAE with the CostNet model for estimating distances between state

observations in an MDP. We show that these extensions improve reward performance,

although there is still the need for manual hyperparameter tuning depending on the prob-

lem. We present sane default hyperparameters as used throughout our study. The reward

performance experiments show that DVAE is an effective algorithm in industry-like appli-

cations. Specifically, DVAE can converge to 200 points in large 41x41 Deep Warehouse

environments compared to 160 points for Deep Q-Networks (Figure 6.15).

Deep Variational Q-Networks is a novel reinforcement learning algorithm. The goal is

to create an interpretable latent space to cluster similar areas of the observed state-space.

We aim to empirically study if VAEs can function as a model for automatically creating
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initialization and termination signals for options in hierarchical reinforcement learning

using the Options framework. We show that our method can structurally model observed

state-spaces visually and that it is trivial to construct clusters that can act as separate

behaviors for multi-level policies (Figure 6.18). We demonstrate that the algorithm, which

fuels learning of a Q-function policy, performs better than DQN and shows comparable

reward performance to DDQN and Rainbow but is less sample efficient. We conclude that

it is feasible to study the method further, which builds momentum to study the variational

vector-quantization technique that became essential for multi-environment policies in the

ORACLE algorithm.

Observation Reward Action Cost Learning Ensemble extends DVAE in the direction of

state-space modeling in combination with the VAE and recurrent neural networks to form

a highly expressive model for long-horizon predictions. Our model uses state-of-the-art

stochastic recurrent state-space models to learn high dimensional state-spaces from Star-

Craft II, Deep RTS, Deep Warehouse. We show that our model can learn to predict tra-

jectories of 30 steps ahead and demonstrate that in combination with existing model-free

algorithms can significantly increase sample efficiency during learning. Our experiments

show that ORACLE requires hyperparameter tuning for individual environments but can

also learn good policies in multiple environments using a singular model if using vector-

quantization. We compare ORACLE to state-of-the-art model-free algorithms, and ex-

periments show that it scores 14% better in HalfCheetahPyBulletEnv-v1, converges 60%

faster in CartPole-v1, and scores 11% better in Deep RTS Deathmatch.

7.4 Safe Reinforcement Learning
Safety is crucial for an algorithm that is supposed to operate in industry-like production

environments outside the research lab. We propose several novel methods in decision

safety for reinforcement learning agents that are empirically verified in several exper-

iments. DVAE, demonstrates that policy constraints reduce the risk of entering catas-

trophic states by altering the reward signal using risk-directed exploration and inverted

curiosity. Our results show that the proposed safer learning scheme reduces failure in

most tested environments and performs more safely than traditional model-free reinforce-

ment learning (Figure 6.14). We conclude that this approach by no means is the solution

to a perfectly safe algorithm, but it progresses the literature towards safer methods. We

extend the safety study to the ORACLE algorithm and propose following a risk-sensitive

reward signal using the variance of predicted rewards. In combination with the CostNet

mechanism, we form a three-component reward signal (Equation 5.14) that significantly

reduces the agent failure rate in combination with the actor ensemble. As a secondary

measure, we propose two schemes for training the algorithm where Scheme #2 provides
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additional safety through passively learning a dynamics model for pretraining the actor

module. A key contribution in this work is that our methods do not rely on model assump-

tions and are generally model agnostic, meaning that they can integrate directly with or

without model-based learning. Our vision is to perfect the ORACLE algorithm so that

agents can learn without relying on theoretical assumptions that do not work in practice

and can scale to complex real-world environments.

7.5 Future Work
This Ph.D. work presents several new methods in deep reinforcement learning, which

opens up for a future study to improve AI Control agents’ learning in RTS games and

industry applications. This chapter summarizes our contributions to four topics; environ-

ments, dynamics modeling, decision safety, and applied IAI.

Environments: We have proposed a series of environments compatible with the OpenAI

Gym toolkit through the CaiRL toolkit. All contributions are open source and form

a foundation for future work on improving the environments to reach a broader au-

dience in the AI research community. While all proposed environments provide

improvements, it should be noted that the possible future work of CaiRL includes

more efficient use of SIMD instruction sets and future porting of fundamental re-

inforcement learning problems to the platform. This can reduce the execution time

of environments by orders of magnitude and further reduce the climate footprint of

machine learning. There is an increasing uptake in focus to minimize the climate

footprint of algorithms, but little work has been done on environment execution.

Therefore, we hope to increase the attention towards developing and maintaining

efficient game environments for RL research.

Model-Based Reinforcement Learning: We have extensively studied the use of VAEs

and variational inference to learn a dynamics model for training traditional model-

free algorithms. Our work clearly shows that this approach works well. However,

it still has several shortcomings that, if addressed, should significantly improve the

quality of predictions, increase sample efficiency, and consequently increase the

agent reward performance after training. Perhaps the most notable challenge is to

prevent posterior collapse. Several approaches are appealing for addressing poste-

rior collapse. The work from Razavi, van den Oord, Poole, et al., 2019 proposes

δ-VAE, a framework for selecting variational families that prevent posterior col-

lapse without modification of the training objective (ELBO). A list of future re-

search directions to eliminate this problem in the DVAE and ORACLE is found at

https://github.com/sajadn/posterior-collapse-list. The ORACLE algorithm empiri-

cally performs better than DVAE due to the recurrent state-space model. Recent
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work proposed a new class of time-continuous recurrent neural network models

called Liquid Time-constant Networks (Hasani et al., 2021). Our preliminary study

suggests that these networks can better learn temporal data to increase the expres-

sive capabilities of ORACLE for longer prediction sequences.

Hierarchical Reinforcement Learning with Options: We present DVQN for continu-

ous space interpretability of state-space and study categorical latent spaces in OR-

ACLE. This work builds momentum for a branch of novel RL option discovery

methods that enable learning multi-level policies and potentially allow for more

reusable RL algorithms where different behavioral policies are learned separately.

Specifically, we demonstrate that combining clustering with DVQN enables sepa-

rate behaviors, and for ORACLE, we demonstrate that using VQ-based models can

better encode multiple environments.

Decision Safety: We present several novel techniques for improving safety in model-

based reinforcement learning agents during training and inference. Our method

primarily focuses on reward shaping techniques that guide the agent to goal states

more safely. However, it cannot guarantee safety. On the other hand, CMDP’s, as

initially used in the DVAE model, can provide theoretical guarantees for conver-

gences given that the model is known or can be learned accurately. Existing work

has seen success with using Lyapunov functions. We wish to investigate if it is

possible to model the problem similarly, with fewer assumptions. One appealing

approach is Han et al., 2021, which shows how RL with UUB guarantee can be

applied to control dynamic systems with safety constraints. The authors show that

the proposed method can achieve superior performance in maintaining safety.

Industry-Near Environments: The proposed algorithms demonstrate good empirical

reward performance in virtual industry-near environments, but we have not had

the opportunity to test our algorithms in real-world systems. The hope is that fu-

ture work can include resources to test the algorithm in grid-like storage systems,

alternatively using miniature physical toy installations. This can provide valuable

data on how to train algorithms in environments where external energy can create

stochastic behaviors in an otherwise deterministic environment.
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de S. Braga, A. P., & Araújo, A. F. R. (1998). Goal-Directed Reinforcement Learning

Using Variable Learning Rate. Springer, Berlin, Heidelberg. https://doi.org/10.

1007/10692710 14

Debnath, S., Sukhatme, G., & Liu, L. (2018). Accelerating Goal-Directed Reinforcement

Learning by Model Characterization. IEEE International Conference on Intelli-

gent Robots and Systems, 8666–8673. https : / / doi . org / 10 . 1109 / IROS . 2018 .

8593728

del R. Millán, J. (1995). Reinforcement learning of goal-directed obstacle-avoiding reac-

tion strategies in an autonomous mobile robot. Robotics and Autonomous Systems,

15(4), 275–299. https://doi.org/10.1016/0921-8890(95)00021-7

Ding, Z., & Dong, H. (2020). Challenges of Reinforcement Learning. Deep Reinforce-

ment Learning: Fundamentals, Research and Applications, 249–272. https://doi.

org/10.1007/978-981-15-4095-0 7

Doerr, A., Daniel, C., Schiegg, M., Duy, N.-T., Schaal, S., Toussaint, M., & Sebastian, T.

(2018). Probabilistic Recurrent State-Space Models. In J. Dy & A. Krause (Eds.),

Proceedings of the 35th international conference on machine learning (pp. 1280–

1289). PMLR. http://proceedings.mlr.press/v80/doerr18a.html

Eddy, S. R. (2004). What is a hidden Markov model? Nature Biotechnology 2004 22:10,

22(10), 1315–1316. https://doi.org/10.1038/nbt1004-1315

Edith, L. L., Melanie, C., Doina, P., & Bohdana, R. (2005). Risk-directed Exploration in

Reinforcement Learning. IJCAI 2005 Workshop on Planning and Learning in A

Priori Unknown or Dynamic Domains.

Fan, J., Wang, Z., Xie, Y., & Yang, Z. (2019). A Theoretical Analysis of Deep Q-Learning

(tech. rep.). Princeton University.

Fathy, I., Aref, M., Enayet, O., & Al-Ogail, A. (2010). Intelligent online case-based plan-

ning agent model for real-time strategy games. Proceedings, Intelligent Systems



https://aaai.org/ocs/index.php/AIIDE/AIIDE17/paper/view/15916
https://aaai.org/ocs/index.php/AIIDE/AIIDE17/paper/view/15916
http://arxiv.org/abs/1511.07289
https://doi.org/10.18637/jss.v041.i01
https://doi.org/10.18637/jss.v041.i01
https://doi.org/10.1007/10692710_14
https://doi.org/10.1007/10692710_14
https://doi.org/10.1109/IROS.2018.8593728
https://doi.org/10.1109/IROS.2018.8593728
https://doi.org/10.1016/0921-8890(95)00021-7
https://doi.org/10.1007/978-981-15-4095-0_7
https://doi.org/10.1007/978-981-15-4095-0_7
http://proceedings.mlr.press/v80/doerr18a.html
https://doi.org/10.1038/nbt1004-1315


BIBLIOGRAPHY

Design and Applications (ISDA), 2010 10th International Conference on IEEE,

445–450. https://doi.org/10.1109/ISDA.2010.5687225

Feinberg, E. A., Kasyanov, P. O., & Zgurovsky, M. Z. (2014). Convergence of value

iterations for total-cost MDPs and POMDPs with general state and action sets.

IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learn-

ing (ADPRL), 8. https://doi.org/10.1109/ADPRL.2014.7010613

Feinberg, E. A., & Lewis, M. E. (2018). On the convergence of optimal actions for Markov

decision processes and the optimality of ( s , S ) inventory policies. Naval Research

Logistics, 65(8), 619–637. https://doi.org/10.1002/nav.21750

Fraccaro, M. (2018). Deep latent variable models for sequential data (Doctoral disserta-

tion). Technical University of Denmark. DTU Compute. https://orbit.dtu.dk/en/

publications/deep-latent-variable-models-for-sequential-data

Garcı́a, J., & Fernández, F. (2015). A Comprehensive Survey on Safe Reinforcement

Learning. Journal of Machine Learning Research, 16, 1437–1480.

Gaskett, C. (2003). Reinforcement learning under circumstances beyond its control. Pro-

ceedings of the international conference on computational intelligence for mod-

elling control and automation. http://www.his.atr.co.jp/cgaskett/

Geibel, P., & Wysotzki, F. (2005). Risk-Sensitive Reinforcement Learning Applied to

Control under Constraints. Journal of Artificial Intelligence Research, 24, 81–108.

https://doi.org/10.1613/jair.1666

Gosavi, A. (2009). Reinforcement learning: A tutorial survey and recent advances. IN-

FORMS Journal on Computing, 21(2), 178–192.

Gregor, K., Jimenez Rezende, D., Besse, F., Wu, Y., Merzic, H., & van den Oord, A.

(2019). Shaping Belief States with Generative Environment Models for RL. In

H. Wallach, H. Larochelle, A. Beygelzimer, F. Alché-Buc, E. Fox, & R. Garnett
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Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information processing sys-

tems 32 (pp. 14837–14847). Curran Associates, Inc. http://papers.nips.cc/paper/

9625-generating-diverse-high-fidelity-images-with-vq-vae-2

Rodriguez, A., Parr, R., & Koller, D. (2000). Reinforcement Learning Using Approxi-

mate Belief States. In S. Solla, T. Leen, & K. Müller (Eds.), Advances in neural

information processing systems (pp. 1036–1042). MIT Press. https://proceedings.

neurips.cc/paper/1999/file/158fc2ddd52ec2cf54d3c161f2dd6517-Paper.pdf

Romoff, J., Henderson, P., Piche, A., Francois-Lavet, V., & Pineau, J. (2018). Reward

Estimation for Variance Reduction in Deep Reinforcement Learning. In A. Billard,

A. Dragan, J. Peters, & J. Morimoto (Eds.), Proceedings of the 2nd conference



https://doi.org/10.1109/ACCESS.2020.3042874
https://doi.org/10.1007/S10846-017-0468-Y
https://pdfs.semanticscholar.org/d005/87160d3b37c70f238ebd92c71454479e829e.pdf
https://pdfs.semanticscholar.org/d005/87160d3b37c70f238ebd92c71454479e829e.pdf
http://papers.nips.cc/paper/6528-variational-autoencoder-for-deep-learning-of-images-labels-and-captions.pdf
http://papers.nips.cc/paper/6528-variational-autoencoder-for-deep-learning-of-images-labels-and-captions.pdf
http://papers.nips.cc/paper/6528-variational-autoencoder-for-deep-learning-of-images-labels-and-captions.pdf
https://doi.org/10.1007/978-3-030-57321-8_5
https://doi.org/10.1007/978-3-030-57321-8_5
https://doi.org/10.1016/S0927-0507(05)80172-0
https://doi.org/10.1016/S0927-0507(05)80172-0
https://openreview.net/forum?id=BJe0Gn0cY7
http://papers.nips.cc/paper/9625-generating-diverse-high-fidelity-images-with-vq-vae-2
http://papers.nips.cc/paper/9625-generating-diverse-high-fidelity-images-with-vq-vae-2
https://proceedings.neurips.cc/paper/1999/file/158fc2ddd52ec2cf54d3c161f2dd6517-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/158fc2ddd52ec2cf54d3c161f2dd6517-Paper.pdf


BIBLIOGRAPHY

on robot learning (pp. 674–699). PMLR. https : / / proceedings . mlr. press / v87 /

romoff18a.html

Roodbergen, K. J., & Vis, I. F. A. (2009). A survey of literature on automated storage and

retrieval systems. European Journal of Operational Research. https://doi.org/10.

1016/j.ejor.2008.01.038

Rybkin, O., Daniilidis, K., & Levine, S. (2021). Simple and Effective VAE Training with

Calibrated Decoders. Proceedings of the 38th International Conference on Ma-

chine Learning.

Santos, M. S., & Rust, J. (2004). Convergence Properties of Policy Iteration. SIAM Jour-

nal on Control and Optimization, 42(6), 2094–2115. https : / /doi .org /10 .1137/

S0363012902399824

Saunders, W., Sastry, G., Stuhlmüller, A., & Evans, O. (2018). Trial without Error: To-

wards Safe Reinforcement Learning via Human Intervention. Proceedings of the

17th International Conference on Autonomous Agents and MultiAgent Systems,

2067–2069.

Schmidhuber, J. (2010). Formal theory of creativity, fun, and intrinsic motivation (1990-

2010). IEEE Transactions on Autonomous Mental Development, 2(3), 230–247.

https://doi.org/10.1109/TAMD.2010.2056368

Schön, T. B., Wills, A., & Ninness, B. (2011). System identification of nonlinear

state-space models. Automatica, 47(1), 39–49. https : / / doi . org / 10 . 1016 / J .

AUTOMATICA.2010.10.013

Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015). Trust Region Policy

Optimization. In F. Bach & D. Blei (Eds.), Proceedings of the 32nd international

conference on machine learning (pp. 1889–1897). PMLR. http://proceedings.mlr.

press/v37/schulman15.html

Schulman, J., Moritz, P., Levine, S., Jordan, M. I., & Abbeel, P. (2016). High-dimensional

continuous control using generalized advantage estimation. 4th International Con-

ference on Learning Representations, ICLR 2016 - Conference Track Proceedings,

1–14.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Policy

Optimization Algorithms. arxiv preprint arXiv:1707.06347. http://arxiv.org/abs/

1707.06347

Seetharaman, P., Wichern, G., Pardo, B., & Roux, J. L. (2020). Autoclip: Adaptive gra-

dient clipping for source separation networks. IEEE International Workshop on

Machine Learning for Signal Processing, MLSP, 2020-Septe, 1–6. https://doi.org/

10.1109/MLSP49062.2020.9231926

Sethy, H., Patel, A., & Padmanabhan, V. (2015). Real Time Strategy Games: A Rein-

forcement Learning Approach. Procedia Computer Science, 54, 257–264. https:

//doi.org/10.1016/J.PROCS.2015.06.030



https://proceedings.mlr.press/v87/romoff18a.html
https://proceedings.mlr.press/v87/romoff18a.html
https://doi.org/10.1016/j.ejor.2008.01.038
https://doi.org/10.1016/j.ejor.2008.01.038
https://doi.org/10.1137/S0363012902399824
https://doi.org/10.1137/S0363012902399824
https://doi.org/10.1109/TAMD.2010.2056368
https://doi.org/10.1016/J.AUTOMATICA.2010.10.013
https://doi.org/10.1016/J.AUTOMATICA.2010.10.013
http://proceedings.mlr.press/v37/schulman15.html
http://proceedings.mlr.press/v37/schulman15.html
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1109/MLSP49062.2020.9231926
https://doi.org/10.1109/MLSP49062.2020.9231926
https://doi.org/10.1016/J.PROCS.2015.06.030
https://doi.org/10.1016/J.PROCS.2015.06.030


Advances in Safe Deep Reinforcement Learning for
Real-Time Strategy Games and Industry Applications

Sharma, J., Andersen, P.-A., Granmo, O.-C., & Goodwin, M. (2020). Deep Q-Learning

With Q-Matrix Transfer Learning for Novel Fire Evacuation Environment. IEEE

Transactions on Systems, Man, and Cybernetics: Systems. https://doi.org/10.1109/

tsmc.2020.2967936

Shen, Y., Tobia, M. J., Sommer, T., & Obermayer, K. (2013). Risk-sensitive Reinforce-

ment Learning. Neural Computation, 26(7), 1298–1328. https://doi.org/10.1162/

NECO a 00600

Shleyfman, A., Komenda, A., & Domshlak, C. (2014). On combinatorial actions and

CMABs with linear side information. Frontiers in Artificial Intelligence and Ap-

plications, 263, 825–830. https://doi.org/10.3233/978-1-61499-419-0-825

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,

Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,

Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mastering the game of Go

with deep neural networks and tree search. Nature, 529(7587), 484–489. https :

//doi.org/10.1038/nature16961

Silver, D., Singh, S., Precup, D., & Sutton, R. S. (2021). Reward is enough. Artificial

Intelligence, 299, 103535. https://doi.org/10.1016/J.ARTINT.2021.103535

Smirnov, Y., Koenig, S., Veloso, M. M., & Simmons, R. G. (1996). Efficient goal-directed

exploration. Proceedings of the National Conference on Artificial Intelligence, 1.

Smith, L. N. (2015). Cyclical Learning Rates for Training Neural Networks. http://arxiv.

org/abs/1506.01186

Starke, S., Zhao, Y., Zinno, F., & Komura, T. (2021). Neural Animation Layering for

Synthesizing Martial Arts Movements. ACM Transactions on Graphics, 40(4).

https://doi.org/10.1145/3450626.3459881

Sutton, R. S. (1990). Integrated Architectures for Learning, Planning, and Reacting Based

on Approximating Dynamic Programming. Machine Learning Proceedings 1990,

216–224. https://doi.org/10.1016/B978-1-55860-141-3.50030-4

Sutton, R. S. (2019). The Bitter Lesson. Retrieved June 29, 2019, from http : / / www.

incompleteideas.net/IncIdeas/BitterLesson.html

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.).

A Bradford Book. https://dl.acm.org/doi/book/10.5555/3312046

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: A frame-

work for temporal abstraction in reinforcement learning. Artificial Intelligence,

112(1-2), 181–211.

Synnaeve, G., Nardelli, N., Auvolat, A., Chintala, S., Lacroix, T., Lin, Z., Richoux, F.,

& Usunier, N. (2016). TorchCraft: a Library for Machine Learning Research on

Real-Time Strategy Games. arxiv preprint arXiv:1611.00625. http://arxiv.org/abs/

1611.00625



https://doi.org/10.1109/tsmc.2020.2967936
https://doi.org/10.1109/tsmc.2020.2967936
https://doi.org/10.1162/NECO_a_00600
https://doi.org/10.1162/NECO_a_00600
https://doi.org/10.3233/978-1-61499-419-0-825
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1016/J.ARTINT.2021.103535
http://arxiv.org/abs/1506.01186
http://arxiv.org/abs/1506.01186
https://doi.org/10.1145/3450626.3459881
https://doi.org/10.1016/B978-1-55860-141-3.50030-4
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://dl.acm.org/doi/book/10.5555/3312046
http://arxiv.org/abs/1611.00625
http://arxiv.org/abs/1611.00625


BIBLIOGRAPHY

Tang, Y., & Kucukelbir, A. (2017). Variational Deep Q Network. Advances in Neural

Information Processing Systems 30. http://arxiv.org/abs/1711.11225

Thompson, N. C., Greenewald, K., Lee, K., & Manso, G. F. (2020). The Computational

Limits of Deep Learning. https://arxiv.org/abs/2007.05558v1

Tian, Y., Gong, Q., Shang, W., Wu, Y., & Zitnick, C. L. (2017). ELF: An Extensive,

Lightweight and Flexible Research Platform for Real-time Strategy Games. Ad-

vances in Neural Information Processing Systems, 2656–2666. http://arxiv.org/

abs/1707.01067

Tijsma, A., Drugan, M., & Wiering, M. (2017). Comparing exploration strategies for Q-

learning in random stochastic mazes. 2016 IEEE Symposium Series on Computa-

tional Intelligence, SSCI 2016. https://doi.org/10.1109/SSCI.2016.7849366

Turchetta, M., Kolobov, A., Shah, S., Krause, A., & Agarwal, A. (2020). Safe Reinforce-

ment Learning via Curriculum Induction. In H. Larochelle, M. Ranzato, R. Had-

sell, M. F. Balcan, & H. Lin (Eds.), Advances in neural information processing

systems (pp. 12151–12162). Curran Associates, Inc. https://proceedings.neurips.

cc/paper/2020/file/8df6a65941e4c9da40a4fb899de65c55-Paper.pdf

Van Den Oord, A., Vinyals, O., & Kavukcuoglu, K. (2017). Neural discrete representation

learning. Advances in Neural Information Processing Systems, 2017-Decem, 1–

11.

Van Otterlo, M., & Wiering, M. (2012). Reinforcement learning and markov decision

processes. Adaptation, Learning, and Optimization, 12, 3–42. https://doi.org/10.

1007/978-3-642-27645-3 1

van Hasselt, H., Guez, A., & Silver, D. (2015). Deep Reinforcement Learning with Dou-

ble Q-learning. Proceedings, The Thirtieth AAAI Conference on Artificial Intelli-

gence, 13. http://arxiv.org/abs/1509.06461

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi,

D. H., Powell, R., Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Dani-

helka, I., Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M., . . . Silver, D.

(2019). Grandmaster level in StarCraft II using multi-agent reinforcement learn-

ing. Nature 2019 575:7782, 575(7782), 350–354. https://doi.org/10.1038/s41586-

019-1724-z

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A. S., Yeo, M., Makhzani,
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Abstract

Reinforcement Learning (RL) is a research area that has blossomed tremendously in re-

cent years and has shown remarkable potential in among others successfully playing com-

puter games. However, there only exists a few game platforms that provide diversity in

tasks and state-space needed to advance RL algorithms. The existing platforms offer RL

access to Atari- and a few web-based games, but no platform fully expose access to Flash

games. This is unfortunate because applying RL to Flash games have potential to push

the research of RL algorithms.

This paper introduces the Flash Reinforcement Learning platform (FlashRL) which at-

tempts to fill this gap by providing an environment for thousands of Flash games on a

novel platform for Flash automation. It opens up easy experimentation with RL algo-

rithms for Flash games, which has previously been challenging. The platform shows

excellent performance with as little as 5% CPU utilization on consumer hardware. It

shows promising results for novel reinforcement learning algorithms.

Norwegian ICT conference for research and education, Oslo, Norway
Submitted 28. Aug, 2017, Accepted 20. Oct 2017
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1 Introduction
There are several challenges related to developing algorithms that can interact with

human-level performance in real-world environments, such as computer games. Re-

searchers often use toy experiments when working with Reinforcement Learning (RL),

because it is easier, cheaper and consumes less time to orchestrate. With several applica-

tions for RL in daily life, it has become an essential field of research [11, 3]. However,

existing learning platforms for games have major limitations such as few game environ-

ments and little environment control.

OpenAI is a non-profit company that is currently one of the leading researchers of RL.

OpenAI Universe is a software platform that has several game environments aimed at

artificial research. The problem with this software is that individual developers are not

directly permitted to supplement new environments to the repository, and there is little

documentation on how to contribute to new environments. FlashRL changes this with our

proposed architecture as the control is given back to each researcher.

Adobe Flash is a multimedia software platform used for the production of applications

and animation. The Flash run-time was recently declared deprecated by Adobe, and by

2020, no longer supported. Flash is still frequently used in web applications, and there are

several thousand games created for this platform. Several browsers have removed support

for Flash, making it impossible to access the mentioned game environments. Games

have proven to be an excellent area of machine learning benchmarking, due to size and

diversity of its state-space. It is therefore essential to preserve Flash as an environment

for reinforcement learning.

Automating Flash applications is a relatively untouched area. The technology has been

succeeded by several better options for web development, for example, HTML5. This

makes it hard for algorithms to control Flash environments programmatically. There are

already reinforcement learning platforms that support Flash games as part of their game

library, but these use browsers to execute the Flash run-time.

Figure 1: Interacting with Flash through browser automating

Figure 1 illustrates how interaction with the Flash environment would typically be carried

out through browser automation software such as Selenium. Selenium can automate most

modern browsers. It does not directly support Flash automation, but can easily be used
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for this purpose with minimal customisation [4]. With the loss of browser support, the

difficulty of controlling Flash applications increases, and there is a significant risk that

excellent game environments for reinforcement learning are lost.

FlashRL is unique for reinforcement learning as it allows researchers to use any desired

Flash environment. It gives full control of the game environment and is not based on

running Flash applications in the browser.

FlashRL is targeted research in reinforcement learning, but can also be used in other ma-

chine learning algorithms. It supports all kinds of Flash applications but is primarily used

for agent-based gameplay. Several thousand game environments are included in the first

release of the software1. Multitask 2 is a Flash game that is excellent for reinforcement

learning as it requires the agent to perform several tasks simultaneously. We show in

this paper that our learning platform can be used to train novel reinforcement algorithms

without any customisation.

In Section 2, we discuss related work for existing learning platforms in machine learning.

We also argue why web browsers are no longer viable as Flash run-time. Section 3 briefly

outline what reinforcement learning is and explains how Q-Learning works. Section 4

outlines the proposed platform and thoroughly describe its underlying architecture. In

Section 5 we show initial results of utilizing the proposed learning platform for reinforce-

ment learning. At Section 6 summarises the work and argue why the proposed learning

platform is used for reinforcement learning research. Section 7 outlines a road-map for

further development of the platform.

2 Related Work
With the increasing popularity in RL, there is a need for flexible learning platforms. Sev-

eral learning platforms exist that can run a limited number of games, but no platform that

features an open-source interface with possibility to run any Flash game.

Bellemare et al. provided in 2012 a learning platform Arcade Learning Environment

(ALE) that enabled scientists to conduct edge research in general deep learning [1]. The

package provided hundreds of Atari 2600 environments that in 2013 allowed Minh et

al. to do a breakthrough with Deep Q-Learning and A3C. The platform has been a key

component in several breakthroughs in RL research. [8, 9, 7]

In 2016, Brockman et al. from OpenAI released GYM which they referred to as "a toolkit

for developing and comparing reinforcement learning algorithms" [2]. GYM provides

various types of environments from following technologies [2]: Algorithmic tasks, Atari

2600, Board games, Box2d physics engine, MuJoCo physics engine, and Text-based en-

1Author of this paper takes no credit for any game environments
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vironments. OpenAI also hosts a website where researchers can submit their performance

for comparison between algorithms. GYM is open-source and encourages researchers to

add support for their environments.

OpenAI recently released a new learning platform called Universe. This environment fur-

ther adds support for environments running inside VNC. It also supports running Flash

games and browser applications. However, despite OpenAI’s open-source policy, they do

not allow researchers to add new environments to the repository. This limits the possibil-

ities of running any environment. Universe is, however, a significant learning platform as

it also has support for desktop games like Grand Theft Auto IV, that allow for research in

autonomous driving [6].

Selenium is a software for automating web browsers and is used primarily for unit-testing

of web content. There were some efforts to create a version that allowed to interact with

Flash content, but it was quickly abandoned. There is limited support for interacting with

Flash, by selecting the DOM-Element in HTML and sending key-presses via Javascript.

Several learning platforms utilize this method, but due to the deprecation of Flash in

browsers, it is no longer a viable option.

3 Reinforcement Learning
Reinforcement learning can be considered hybrid between supervised and unsupervised

learning. We implement what we call an agent that acts in our environment. This agent is

placed in the unknown environment where it tries to maximize the environmental reward

[12].

Markov Decision Process (MDP) is a mathematical method of modeling decision-making

within an environment. We often use this technique when utilizing model-based RL al-

gorithms. In Q-Learning, we do not try to model the MDP. Instead, we try to learn the

optimal policy by estimating the action-value function Q∗(s, a), yielding maximum ex-

pected reward in state s executing action a. The optimal policy can then be found by

π(s) = argmaxaQ
∗(s, a) (1)

This is derived from Bellman’s Equation, because we can consider U(s) = maxaQ(s, a),

the utility function to be true. This gives us the ability to derive following update-rule

equation from Bellman’s work:

Q(s, a)← Q(s, a) + α︸︷︷︸
LR

(
R(s)︸︷︷︸
Reward

+ γ︸︷︷︸
Discount

maxa′Q(s
′
, a

′
)︸ ︷︷ ︸

New Q

−Q(s, a)︸ ︷︷ ︸
Old Q

)
(2)
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This is an iterative process of propagating back the estimated Q-value for each discrete

time-step in the environment. It is guaranteed to converge towards the optimal action-

value function, Qi → Q∗ as i→∞ [12, 8]. At the most basic level, Q-Learning utilize a

table for storing (s, a, r, s
′
) pairs. But we can instead use a non-linear function approxima-

tion in order to approximate Q(s, a; θ). θ describes tunable parameters for approximator.

Artificial Neural Networks (ANN) are a popular function approximator, but training using

ANN is relatively unstable.

4 Flash Reinforcement Learning (FlashRL)
The proposed platform is an interface that acts as a bridge between the Gnash Flash player

and the reinforcement learning algorithms. Flash Reinforcement Learning (FlashRL) is

a new platform that allows researchers to run algorithms on any Flash-based game effi-

ciently.

Figure 2: FlashRL Architecture Overview

The learning platform is developed primarily for the operating system Linux but is likely

to run on Cygwin with few modifications. There are several key components that FlashRL

uses to operate adequate, see Figure 2. It uses a Linux library called XVFB to create a

virtual frame-buffer that is used for graphics rendering [5]. Inside this frame-buffer, a

Flash game chosen by the researcher is executed by a third party flash player, for example,

Gnash. A VNC server serves the XVFB frame-buffer and allows FlashRL to access it by

utilizing a VNC Client. The VNC Client can then issue commands like keyboard presses

and mouse movements. The VNC Client pyVLC was specially made for this learning

platform. The code base originates from python-vnc-viewer [13]. The last component

of FlashRL is the Reinforcement Learning API that allows the developer to access the
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input/output of the VNC client. This makes it easy to develop sequenced algorithms by

using the API callbacks or manually by threading.

Figure 3: Frame-buffer Access Methods

Figure 3 illustrates two methods of accessing the frame-buffer from the Flash Game. Both

approaches are sufficient to perform reinforcement learning, but each has its strength and

weaknesses. Method 1, seen in Figure 3 allows the developer to get frames served at a

fixed rate, for example, 60 frames per second. Method 2 does not restrict the frequency

of how fast the frame-buffer is captured. This is preferable for developers that do not

require images from fixed time-steps as it requires less processing power per frame. The

framework was developed with deep learning in mind and is proven to work with Keras

and Tensorflow.

Figure 4: Selected environments from the FlashRL game repository

Several thousand game environments are shipped with the initial version of FlashRL.

These game environments were gathered from different sources on the web. FlashRL has

a relatively small code-base and to preserve this size, all of the Flash games are hosted
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remotely. The quality varies, and some of the games are not tested or labeled. Most games

are however tested and can be played without issues, see Figure 4.

5 Experiments
This section presents experiments of reinforcement learning algorithms applied in

FlashRL. We use the game Multitask 2 2 to test the learning platform. Multitask 2 was

chosen because it challenges the algorithm to master four different mini-games simulta-

neously.

The experiments are grouped in two. The first experiment determines the hardware re-

quirements of the platform and benchmarks the speed of critical operations. The second

experiment is an implementation of standard Deep Q-Learning trained on raw state im-

ages from Multitask 2 to perform game actions. The latter is meant as a proof of concept

that RL algorithms can be applied in FlashRL.

All experiments were conducted on Ubuntu Linux 17.04 x64 running Python 3.5.3. The

machine has 64GB memory, Nvidia GeForce 1080TI, and Intel I7-7770k as hardware.

Figure 5: In-game footage of the game Multitask

2Multitask 2 - http://multitaskgames.com/multitask-2.html
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5.1 Multitask 2

Figure 5 illustrates the game-play of Multitask 2. The game is split into four-game phases.

The first phase (lower right corner in Figure 5) is a single paddle that the player must

balance a ball on. In state two (lower left corner in Figure 5) , the player must control the

second paddle to avoid arrows traveling towards it. The third phase (upper right corner

in Figure 5) consist of an arrow with mechanics relatable to the game Flappy Bird [10].

In the final phase (upper left corner in Figure 5), the player must additionally jump over

holes on the ground. For the player to succeed the game, he must control eight actions

simultaneously. The score is calculated by adding a single point for each second survived

in the game.

5.2 Experiment 1: Hardware Requirements

Recall from section 4 that there are two methods of accessing the frame-buffer. The first

method (Method 1) is based on retrieving the frame-buffer at fixed time intervals. The

second method (Method 2) does not have any interval restriction. This makes Method 2

faster because it does not require sleep between frames. This causes the framework to

consume all available CPU, which is not always preferable.

Figure 6: Hardware benchmark

We can see from Figure 6 that using Method 1 with the interval set to 30 fps uses approx-

imately 5% of the CPU. Increasing the interval to 300 increases it to 13%. We gradually

increased the interval until the CPU ran at maximum. A single I7-7700k can compute

approximately 6300 fps images from the frame-buffer before struggling to keep up.
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The GPU Did not recognize any load during these test because the Flash environment is

software rendered. Memory consumed were between 200MB and 500MB depending on

the speed. We believe that the reason for memory increase is that Python does not garbage

collect old frame-buffer snapshots between iterations, and therefore gets an increased

memory load.

5.3 Experiment 2: Reinforcement Learning

Deep Q-Network (DQN) is a novel algorithm architecture developed by Minh et al. at

Google DeepMind. It combines Q-Learning estimating Q-Values from a neural network.

[8]

In our tests we used Double Q-Learning from Hasselt et al. [14]. We also used Dueling

from Wang et al. that increases the learning precision by using two estimators: state-

value and action-advantage function [15]. We used a discount factor of 0.99, learning rate

of 0.001 and mini-batch of 16. We used exploration/exploitation strategy with ε-greedy

where it started at 0.9 and finished at 0.1. The ε annealing was set to 10 000 steps. This is

a relatively low epsilon phase. But it seemed to work well in this environment.

Figure 7: Deep Q-Learning Training

Figure 7 illustrates the training of DQN, where the x-axis represents episodes of the game

and y-axis score before reaching the terminal state. The agent had troubles adapting to the

third phase (see Section 5.1). Phase 3 is relatively hard to master because it requires the

user balance the arrow in the air. At around 230 episodes we saw a drop in score. This is

because the network seems to prioritize the first phase of the game. It reached the second

phase a few times but was not able to successfully control the paddle for longer periods
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of time. This is why it stales at approximately 400 episodes. We believe that the network

could have performed better with additional training time. It trained for a total of two

days. Hopefully, it will be easier to train the network when FlashRL can speed-forward

games, see section 7. The results are overall acceptable as we can see that FlashRL deliver

quality states that a reinforcement learning agent can learn from.

6 Conclusion
FlashRL offers an easy-to-use architecture for performing RL in Flash-based games. It is

demonstrated to work well for Multitask 2, one of the environments included. FlashRL

fills the gap that emerged with the deprecation of Flash, Its main focus is RL, but can

also be used for other machine learning genres. This paper shows that FlashRL can be

used to train RL algorithms, in particular, Multitask 2. The work shows promising results

and continuing to expand the game repository may provide new insights about RL in the

future.

FlashRL will be kept alive as long as flash environments are an asset to the machine learn-

ing community. It is available to the public at https://github.com/UIA-CAIR/

FlashRL, and can easily be adapted to every research requirement.

7 Future Work
Several improvements are planned for FlashRL. This paper outlined features of the initial

version of the FlashRL, and it is by far sufficient for simple reinforcement learning re-

search. As seen in section 5, a Deep Q-Learning based agent can successfully learn from

the environment Multitask and gradually perform better.

7.1 Speed-forward Option

Learning algorithms often require several thousand episodes to gain expert knowledge

of the environment. FlashRL is currently limited to the speed of which the game loop

is executed (usually 30 fps in real-time). An important improvement would be to lift

this restriction and allow algorithms to train at an accelerated rate. This would certainly

improve training duration of feedback based algorithms.

7.2 Game Repository Analysis

The game repository features many unlabeled, unrated and untested games. Some games

are potentially useless in a machine learning setting and require a review. The review

phase is time-consuming, and authors of this paper did not have enough time to analyze
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each of the environments manually. The goal is to add labels and categorize all games in

the repository gradually.

7.3 Website

A future goal is to allow execution of algorithms from a web interface and to add gamifica-

tion aspects to the library. This would potentially create competition between researchers

much like Kaggle and OpenAI Universe.

7.4 Cross-Platform Support

FlashRL is in the initial version, only supported in Python 3 on the Linux platform. The

goal is to extend it so that it also can run without modifications on Microsoft Windows

operating systems.
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Abstract

There have been numerous breakthroughs with reinforcement learning in the recent years,

perhaps most notably on Deep Reinforcement Learning successfully playing and winning

relatively advanced computer games. There is undoubtedly an anticipation that Deep

Reinforcement Learning will play a major role when the first AI masters the complicated

game plays needed to beat a professional Real-Time Strategy game player. For this to

be possible, there needs to be a game environment that targets and fosters AI research,

and specifically Deep Reinforcement Learning. Some game environments already exist,

however, these are either overly simplistic such as Atari 2600 or complex such as Starcraft

II from Blizzard Entertainment.

We propose a game environment in between Atari 2600 and Starcraft II, particularly tar-

geting Deep Reinforcement Learning algorithm research. The environment is a variant of

Tower Line Wars from Warcraft III, Blizzard Entertainment. Further, as a proof of con-

cept that the environment can harbor Deep Reinforcement algorithms, we propose and

apply a Deep Q-Reinforcement architecture. The architecture simplifies the state space

so that it is applicable to Q-learning, and in turn improves performance compared to cur-

rent state-of-the-art methods. Our experiments show that the proposed architecture can

Thirty-seventh SGAI International Conference on Artificial Intelligence (AI-2017), Cambridge England
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learn to play the environment well, and score 33% better than standard Deep Q-learning

which in turn proves the usefulness of the game environment.

Keywords: Reinforcement Learning, Q-Learning, Deep Learning, Game Environment

1 Introduction
Despite many advances in AI for games, no universal reinforcement learning algorithm

can be applied to Real-Time Strategy Games (RTS) without data manipulation or cus-

tomization. This includes traditional games such as Warcraft III, Starcraft II, and Tower

Line Wars. Reinforcement Learning (RL) has been applied to simpler games such as

games for the Atari 2600 platform but has to the best of our knowledge not successfully

been applied to RTS games. Further, existing game environments that target AI research

are either overly simplistic such as Atari 2600 or complex such as Starcraft II.

Reinforcement Learning has had tremendous progress in recent years in learning to con-

trol agents from high-dimensional sensory inputs like vision. In simple environments,

this has been proven to work well [1], but are still an issue for complex environments

with large state and action spaces [2]. In games where the objective is easily observ-

able, there is a short distance between action and reward which fuels the learning. This

is because the consequence of any action is quickly observed, and then easily learned.

When the objective is more complicated the game objectives still need to be mapped to

the reward function, but it becomes far less trivial. For the Atari 2600 game Ms. Pac-Man

this was solved through a hybrid reward architecture that transforms the objective to a

low-dimensional representation [3]. Similarly, the OpenAI’s bot is able to beat world’s

top professionals at 1v1 in DotA 2. It uses reinforcement learning while it plays against

itself, learning to predict the opponent moves.

Real-Time Strategy Games, including Warcraft III, is a genre of games much more compa-

rable to the complexity of real-world environments. It has a sparse state space with many

different sensory inputs that any game playing algorithm must be able to master in order

to perform well within the environment. Due to the complexity and because many action

sequences are required to constitute a reward, standard reinforcement learning techniques

including Q-learning are not able to master the games successfully.

This paper introduces a two-player version of the popular Tower Line Wars modification

from the game Warcraft III. We refer to this variant as Deep Line Wars. Note that Tower

Line Wars is not an RTS game, but has many similar elements such as time-delayed

objectives, resource management, offensive, and defensive strategy planning. To prove

that the environment is working we, inspired by recent advances from van Seijen et al.

[3], apply a method of separating the abstract reward function of the environment into

smaller rewards. This approach uses a Deep Q-Network using a Convolutional Neural
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Figure 1: Deep Q-Learning architecture

Network to map actions to states and can play the game successfully and perform better

than standard Deep Q-learning by 33%.

Rest of the paper is organized as follows: We first investigate recent discoveries in Deep

RL in section 2. We then briefly outline how Q-Learning works and how we interpret

Bellman’s equation for utilizing Neural Networks as a function approximator in section

3. We present our contribution in section 4 and present a comparison of other game

environments that are widely used in reinforcement learning. We introduce a variant of

Deep Q-Learning in section 5 and present a comparison to other RL models used in state-

of-the-art research. Finally we show results in section 6, define a roadmap of future work

in section 7 and conclude our work in section 8

2 Related Work
There have been several breakthroughs related to reinforcement learning performance in

recent years [4]. Q-Learning together with Deep Learning was a game-changing moment,

and has had tremendous success in many single agent environments on the Atari 2600

platform [1]. Deep Q-Learning as proposed by Mnih et al. [1] as shown in Figure 1 used

a neural network as a function approximator and outperformed human expertise in over

half of the games [1].

Hasselt et al. proposed Double DQN, which reduced the overestimation of action values

in the Deep Q-Network [5]. This led to improvements in some of the games on the Atari

platform.

Wang et al. then proposed a dueling architecture of DQN which introduced estimation of

the value function and advantage function [6]. These two functions were then combined

to obtain the Q-Value. Dueling DQN were implemented with the previous work of van

Hasselt et al. [6].
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Harm van Seijen et al. recently published an algorithm called Hybrid Reward Architecture

(HRA) which is a divide and conquer method where several agents estimate a reward and

a Q-value for each state [3]. The algorithm performed above human expertise in Ms. Pac-

Man, which is considered one of the hardest games in the Atari 2600 collection and is

currently state-of-the-art in the reinforcement learning domain [3]. The drawback of this

algorithm is that generalization of Minh et al. approach is lost due to a huge number of

separate agents that have domain-specific sensory input.

There have been few attempts at using Deep Q-Learning on advanced simulators specif-

ically made for machine-learning. It is probable that this is because there are very few

environments created for this purpose.

3 Q-Learning
Reinforcement learning can be considered hybrid between supervised and unsupervised

learning. We implement what we call an agent that acts in our environment. This agent is

placed in the unknown environment where it tries to maximize the environmental reward

[7].

Markov Decision Process (MDP) is a mathematical method of modeling decision-making

within an environment. We often use this method when utilizing model-based RL algo-

rithms. In Q-Learning, we do not try to model the MDP. Instead, we try to learn the

optimal policy by estimating the action-value function Q∗(s, a), yielding maximum ex-

pected reward in state s executing action a. The optimal policy can then be fosund by

π(s) = argmaxaQ
∗(s, a) (1)

This is derived from Bellman’s Equation, because we can consider U(s) = maxaQ(s, a),

the Utility function to be true. This gives us the ability to derive following update-rule

equation from Bellman’s work:

Q(s, a)← Q(s, a) + α︸︷︷︸
Learning Rate

(
R(s)︸︷︷︸
Reward

+ γ︸︷︷︸
Discount

maxa′Q(s
′
, a

′
)︸ ︷︷ ︸

New Estimate

− Q(s, a)︸ ︷︷ ︸
Old Estimate

)
(2)

This is an iterative process of propagating back the estimated Q-value for each discrete

time-step in the environment. It is guaranteed to converge towards the optimal action-

value function, Qi → Q∗ as i→ ∞ [7, 1]. At the most basic level, Q-Learning utilize a

table for storing (s, a, r, s
′
) pairs. But we can instead use a non-linear function approxima-

tion in order to approximate Q(s, a; θ). θ describes tunable parameters for approximator.
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Artificial Neural Networks (ANN) are a popular function approximator, but training using

ANN is relatively unstable. We define the loss function as following.

L(θi) = E
[
(r + γmaxa′Q(s

′
, a

′
; θi)−Q(s, a; θi))2

]
(3)

As we can see, this equation uses Bellman equation to calculate the loss for the gradient

descent. To combat training instability, we use Experience Replay. This is a memory

module which stores memories from experienced states and draws a uniform distribution

of experiences to train the network [1]. This is what we call a Deep Q-Network and are as

described in its most primitive form. See related work for recent advancements in DQN.

4 Deep Line Wars
For a player to play RTS games well, he typically needs to master high difficulty strate-

gies. Most RTS strategies incorporate

• Build strategies,

• Economy management,

• Defense evaluation, and

• Offense evaluation.

These objectives are easy to master when separated but become hard to perfect when

together. Starcraft II is one of the most popular RTS games, but due to its complexity,

it is not expected that an AI-based system can beat this game anytime soon. At the very

least, state-of-the-art Deep Q-Learning is not directly applicable. Blizzard entertainment

and Google DeepMind has collaborated on an interface to the Starcraft II game. [8, 9].

Starcraft II is for many researchers considered the next big goal in AI research. Warcraft

III is relatable to Starcraft II as they are the same genre and have near identical game

mechanics.

Current state-of-the-art algorithms struggle to learn objectives in the state-space because

the action-space is too abstract. [10]. State and action spaces define the range of possible

configurations a game board can have. Existing DQN models use pixel data as input and

objectively maps state to action [1]. This works when the game objective is closely linked

to an action, such as controlling a paddle in Breakout, where the correct action is quickly

rewarded, and a wrong action quickly punished. This is not possible in RTS games. If the

objective is to win the game, an action will only be rewarded or punished after minutes

or even hours of gameplay. Furthermore, gameplay would consist of thousands of actions

and only combined will they result in a reward or punishment.
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Figure 2: Properties of selected game environments

Collected data in Figure 2 argues that games that have been solved by current state-of-the-

art is usually non-stochastic and is fully observable. Also, current AI prefers environments

which are not simultaneous, meaning they can be paused between each state transition.

This makes sense because hardware still limits advances in AI.

By doing rough estimations of the state-space in-game environments from Figure 2, it

is clear that state-of-the-art has done a big leap in recent years. With the most recent

contribution being Ms. Pac-Man [3]. However, by computing the state-space of a reg-

ular Starcraft II map only taking unit compositions into account, the state space can be

calculated to be (128x128)400 = 16384400 = 101685 [11].

The predicament is that the difference in complexity between Ms. Pac-Man and Star-

craft II is tremendous. Figure 3 illustrates a relative and subjective comparison between

state-complexity in relevant game environments. State-space complexity describes ap-

proximately how many different game configurations a game can have. It is based on

map size, unit position, and unit actions. The comparison is a bit arbitrary because the

games are complex in different manners. However, there is no doubt that the distance

between Ms. Pac-Man, perhaps the most advanced computer game mastered so far, and

Starcraft II is colossal. To advance AI solutions towards Starcraft II, we argue that there is

a need for several new game environments that exceed the complexity of existing games

and challenge researches on multi-agent issues closely related to Starcraft II [12]. We,

therefore, introduce Deep Line Wars as a two-player variant of Tower Line Wars. Deep
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Figure 3: State-space complexity of selected game environments

Line Wars is a game simulator aimed at filling the gap between Atari 2600 and Starcraft

II. It features the most important aspects of an RTS game.

Figure 4: Graphical Interface of Deep Line Wars

The objective of this game is as seen in Figure 4 to invade the opposing player with units

until all health is consumed. The opposing player’s health is reduced for each friendly unit

that enters the red area of the map. A unit spawns at a random location on the red line of
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Figure 5: Game-state representation

the controlling player’s side and automatically walks towards the enemy base. To protect

your base against units, the player can build towers which shoot projectiles at enemy units.

When an enemy unit dies, a fair percentage of the unit value is given to the player. When

a player sends a unit, the income variable is increased by a defined percentage of the unit

value. Players gold are increased at regular intervals determined in the configuration files.

To master Deep Line Wars, the player must learn following skill-set:

• offensive strategies of spawning units,

• defending against the opposing player’s invasions, and

• maintain a healthy balance between offensive and defensive in order to maximize

income

and is guaranteed a victory if mastered better than the opposing player.

Because the game is specifically targeted towards machine learning, the game-state is

defined as a multi-dimensional matrix. Figure 5 represents a 5x30x11 state-space that

contains all relevant board information at current time-step. It is therefore easy to cherry-

pick required state-information when using it in algorithms. Deep Line Wars also features

possibilities of making an abstract representation of the state-space, seen in Figure 6. This

is a heat-map that represent the state (Figure 5) as a lower-dimensional state-space. Heat-

maps also allows the developer to remove noise that causes the model to diverge from the

optimal policy, see Formula 3.
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Figure 6: State abstraction using gray-scale heat-maps

We need to reduce the complexity of the state-space to speed up training. Using heat-maps

made it possible to encode the five-dimensional state information into three dimensions.

These dimensions are RGB values that we can find in imaging. Figure 6 show how the

state is seen from the perspective of player 1 using gray-scale heatmaps. We define

• red pixels as friendly buildings,

• green pixels as enemy units, and

• teal pixels as the mouse cursor.

We also included an option to reduce the state-space to a one-dimensional matrix using

gray-scale imaging. Each of the above features is then represented by a value between 0

and 1. We do this because Convolutional Neural Networks are computational demanding,

and by reducing input dimensionality, we can speed up training. [1] We do not down-scale

images because the environment is only 30x11 pixels large. The state cannot be described

fully by these heat-maps as there are economics, health, and income that must be inter-

preted separately. This is solved by having a 1-dimensional vectorized representation of

the data, that can be fed into the model.

5 DeepQRewardNetwork
The main contribution in this paper is the game environment presented in Section 4. A

key element is to show that the game environment is working properly and we, therefore,

introduce a learning algorithm trying to play the game. This is in no way meant as a

perfect solver for Deep Line Wars, but rather as a proof of concept that learning algorithms

can be applied in the Deep Line Wars environment. In our solution we consider the

environment as a MDP having state set S, action set A, and a reward function set R.
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Figure 7: Separation of the reward function

Each of the weighted reward functions derives from a specific agent within the MDP and

defines the absolute reward of the environment Renv with following equation:

Renv(s, a) =
n∑

i=1

wiRi(s, a) (4)

Where Renv(s, a) is the weighted sum wi of reward function(s) Ri(s, a). The proposed

algorithm model is a method of dividing the ultimate problem into separate smaller prob-

lems which can be trivialized with certain kinds of generic algorithms.

When reward for the observed state is calculated, we calculate the Q-value of Q(s, a)

utilizing Renv by using a variant of DQN.

6 Experiments
We conducted experiments with several deep learning algorithms in order to benchmark

current state-of-the-art put up against a multi-agent, multi-sensory environment. The ex-

periments were conducted in Deep Line Wars, a multi-agent, multi-sensory environment.

All algorithms were benchmarked with identical game parameters.

We tested DeepQNetwork, a state-of-the-art DQN from Mnih et al[1], DeepQRewardNet-

work, rule-based, and random behaviour. Each of the algorithms was tested with several

configurations, seen in Figure 8. We did not expect any of these algorithms to beat the

rule-based challenge due to the difficulty of the AI. The extended execution graph algo-

rithm (see Section 7) was not part of the test bed because it was not able to compete with

any of the simpler DQN algorithms without guided mouse management.

Tests were done using Intel I7-4770k, 64GB RAM and NVIDIA Geforce GTX 1080TI.

Each of the algorithms was trained/executed for 1500 episodes. Each episode is consid-

ered to be a game that either of the players wins, or the 600 seconds time limit is reached.

DQN had a discount-factor of 0.99, learning rate of 0.001 and batch-size of 32.
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Figure 8: Property matrix of tested algorithms

Figure 9: Income after each episode
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Throughout the learning process, we can see that DeepQNetwork and DeepQReward-

Network learn to perform resource management correctly. Figure 9 illustrates income

throughout learning from 1500 episodes. The random player is presented as an aggre-

gated average of 1500 games, but the remaining algorithms are only single instances. It is

not practical to perform more than a single run of the Deep Learning algorithms because

it takes several minutes per episode to finish which sums up to a huge learning time.

Figure 9 shows that the proposed algorithms outperform random behavior after relatively

few episodes. DeepQRewardNetwork performs approximately 33% better than Deep-

QNetwork. We believe that this is because the reward function R(s, a) is better defined

and therefore easier to learn the optimal policy in a shorter period of time. These results

show that DeepQRewardNetwork converges towards the optimal policy better, but as seen

in Figure 9 diverges after approximately 1300 games. The reason for the divergence is that

experience replay does not correctly batch important memories to the model. This causes

the model to train on unimportant memories and diverges the model. This is considered

a part of future work and is addressed more thoroughly in section 7. The rule-based al-

gorithm can be regarded as an average player and can be compared to human level in this

game environment.

Figure 10: Victory distribution of tested algorithms

Figure 10 shows that DeepQNetwork and DeepQRewardNetwork have about 63-67% win

ratio throughout the learning process. Compared to the rule-based AI it does not qualify

to be near mastering the game, but we can see that it outperforms random behavior in the

game environment.
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7 Future Work
This paper introduced a new learning environment for reinforcement learning and applied

state-of-the-art Deep-Q Learning to the problem. Some initial results showed progress

towards an AI that could beat a rule-based AI. There are still several challenges that must

be addressed for an unsupervised AI to learn complex environments like Line Tower Wars.

Mouse input based games are difficult to map to an abstract state representation, because

there are a huge number of sequenced mouse clicks that are required, to correctly act in

the game. DQN cannot at current state handle long sequences of actions and must be

guided in-order to succeed. Finding a solution to this problem without guiding is thought

to be the biggest blocker for these types of environments, and will be the focus for future

work.

DeepQNetwork and DeepQRewardNetwork had issues with divergence after approxi-

mately 1300 episodes. This is because our experience replay algorithm did not take into

account that the majority of experiences are bad. It could not successfully prioritize the

important memories. As future work, we propose to instead use prioritized experience

replay from Schaul et al. [13].

Figure 11: Divide & Conquer Execution graph

Figure 7 show that different sensors separate the reward from the environment to obtain a

more precise reward bound to an action. In our research, we developed an algorithm that

utilizes different models based on which state the player has. Figure 11 show the general

idea, where the state is categorized into three different types Offensive, Defensive, and
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No Action. This state is evaluated by a Convolutional Neural Network and outputs a one-

hot vector that signal which state the player is currently in. Each of the blocks in Figure

11 then represents a form of state-modeling that is determined by the programmer. Our

initial tests did not yield any promising results, but according to the Bellman equations, it

is a qualified way of evaluating the state and successfully perform learning, on an iterative

basis.

8 Conclusion
Deep Line Wars is a simple but yet advanced Real-Time (strategy) game simulator, which

attempts to fill the gap between Atari 2600 and Starcraft II. DQN shows promising initial

results but is far from perfect in current state-of-the-art. An attempt in making abstrac-

tions in the reward signal yielded some improved performance, but at the cost of a more

generalized solution. Because of the enormous state-space, DQN cannot compete with

simple rule-based algorithms. We believe that this is caused by specifically the mouse

input which requires some understanding of the state to perform well. This also causes

the algorithm to overestimate some actions, specifically the offensive actions, because the

algorithm is not able to correctly build defensive without getting negative rewards. It is

imperative that a solution of the mouse input actions are found before DQN can perform

better. A potential approach could be using the StarCraft II API to get additional training

data, including mouse sequences [14].
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Abstract

Reinforcement learning (RL) is an area of research that has blossomed tremendously in

recent years and has shown remarkable potential for artificial intelligence based opponents

in computer games. This success is primarily due to the vast capabilities of convolutional

neural networks, that can extract useful features from noisy and complex data. Games are

excellent tools to test and push the boundaries of novel RL algorithms because they give

valuable insight into how well an algorithm can perform in isolated environments without

the real-life consequences.

Real-time strategy games (RTS) is a genre that has tremendous complexity and challenges

the player in short and long-term planning. There is much research that focuses on applied

RL in RTS games, and novel advances are therefore anticipated in the not too distant

future. However, there are to date few environments for testing RTS AIs. Environments

in the literature are often either overly simplistic, such as microRTS, or complex and

without the possibility for accelerated learning on consumer hardware like StarCraft II.

This paper introduces the Deep RTS game environment for testing cutting-edge artificial

intelligence algorithms for RTS games. Deep RTS is a high-performance RTS game made
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specifically for artificial intelligence research. It supports accelerated learning, meaning

that it can learn at a magnitude of 50 000 times faster compared to existing RTS games.

Deep RTS has a flexible configuration, enabling research in several different RTS scenar-

ios, including partially observable state-spaces and map complexity. We show that Deep

RTS lives up to our promises by comparing its performance with microRTS, ELF, and

StarCraft II on high-end consumer hardware. Using Deep RTS, we show that a Deep

Q-Network agent beats random-play agents over 70% of the time. Deep RTS is publicly

available at https://github.com/cair/DeepRTS.

Keywords: Real-Time Strategy Game, Deep Reinforcement Learning, Deep Q-Learning

1 Introduction
Despite many advances in Artificial Intelligence (AI) for games, no universal Reinforce-

ment learning (RL) algorithm can be applied to complex game environments without

extensive data manipulation or customization. This includes traditional Real-time strat-

egy games (RTS) such as WarCraft III, StarCraft II, and Age of Empires. RL has recently

been applied to simpler game environments such as those found in the Arcade Learning

Environment [1](ALE) and board games [2] but has not successfully been applied to more

advanced games. Further, existing game environments that target AI research are either

overly simplistic such as ALE or complex such as StarCraft II.

RL has in recent years had tremendous progress in learning how to control agents from

high-dimensional sensory inputs like images. In simple environments, this has been

proven to work well [3], but are still an issue for complex environments with large state

and action spaces [4]. The distinction between simple and complex tasks in RL often lies

in how easy it is to design a reward model that encourages the algorithm to improve its

policy without ending in local optima [5]. For simple tasks, the reward function can be

described by only a few parameters, while in more demanding tasks, the algorithm strug-

gles to determine what the reward signal is trying to accomplish [6]. For this reason, the

reward function is in literature often a constant or single-valued variable for most time-

steps, where only the final time-step determines a negative or positive reward [7–9]. In

this paper we introduce Deep RTS, a new game environment targeted deep reinforcement

learning (DRL) research. Deep RTS is an RTS simulator inspired by the famous StarCraft

II video game by Blizzard Entertainment.

This paper is structured as follows. First, Section 2 and Section 3 thoroughly outlines

previous work and central achievements using game environments for RL research. Next,

Section 4 introduces the Deep RTS game environment. Section 5 presents the Deep RTS

performance, a comparison between well-established game environments and Deep RTS,
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and experimental results using Deep Q-Network as an agent in Deep RTS. Subsequently,

Section 6 concludes the contribution of this paper and outlines a roadmap for future work.

2 Related Game Environments
There exist several exciting game environments in the literature that focus on state-of-

the-art research in AI algorithms. Few game environments target the RTS-genre. One

the reason may be because these environments are by nature challenging to solve, and

there are few ways to fit results with preprocessing tricks. It is, however, essential to

include RTS as part of the active research of deep reinforcement learning algorithms as

they feature long-term planning. This section outlines a thorough literature review of

existing game platforms and environments and is summarized in Table 1.

Table 1: Selected game environments that is actively used in reinforcement learning re-

search

Platform RTS Complex1 Year Solved Source
ALE No No 2012 Yes [10]

Malmo Platform No Yes 2016 No [11]

ViZDoom No Yes 2016 No [12]

DeepMind Lab No Yes 2016 No [13]

OpenAI Gym No No 2016 No [14]

OpenAI Universe No Yes 2016 No [15]

Stratagus Yes Yes 2005 No [16]

microRTS Yes No 2013 No [17]

TorchCraft Yes Yes 2016 No [18]

ELF Yes Yes 2017 No [19]

SC2LE Yes Yes 2017 No [8]

Deep RTS Yes Yes 2018 No -

2.1 Stratagus

Stratagus is an open source game engine that can be used to create RTS-themed games.

Wargus, a clone of Warcraft II, and Stargus, a clone of StarCraft I are examples of games

implemented in the Stratagus game engine. Stratagus is not an engine that targets machine

learning explicitly, but several researchers have performed experiments in case-based rea-

soning [20, 21] and q-learning [22] using Wargus. Stratagus is still actively updated by

contributions from the community.
1A Complex environment has an enormous state-space, with reward signals that are difficult to correlate

to an action.
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2.2 Arcade Learning Environment

Bellemare et al. provided in 2012 the arcade learning environment that enabled re-

searchers to conduct cutting-edge research in general deep learning [10]. The package

provided hundreds of Atari 2600 environments that in 2013 allowed Minh et al. to do a

breakthrough using Deep Q-Learning and A3C. The platform has been a critical compo-

nent in several advances in RL research. [1, 3, 23]

2.3 microRTS

microRTS is a simple RTS game, designed to conduct AI research. The idea behind mi-

croRTS is to strip away the computational heavy game logic to increase the performance

and to enable researchers to test theoretical concepts quickly [17]. The microRTS game

logic is deterministic, and include options for full and partially-observable state-spaces.

The primary field of research in microRTS is game-tree search techniques such as varia-

tions of Monte-Carlo tree search and minimax [17, 24, 25].

2.4 TorchCraft

In 2016, a research group developed TorchCraft, a bridge that enables research in the game

StarCraft. TorchCraft intends to provide the reinforcement learning community with a

way to allow research on complex systems where only a fraction of the state-space is

available [18]. In literature, TorchCraft has been used for deep learning research [26,27].

There is also a dataset that provides data from over 65,000 StarCraft replays [28].

2.5 Malmo Platform

The Malmo project is a platform built atop of the popular game Minecraft. This game is

set in a 3D environment where the object is to survive in a world of dangers. The paper

The Malmo Platform for Artificial Intelligence Experimentation by Johnson et al. claims

that the platform has all characteristics qualifying it to be a platform for general artificial

intelligence research. [11]

2.6 ViZDoom

ViZDoom is a platform for research in visual reinforcement learning. With the paper ViZ-

Doom: A Doom-based AI Research Platform for Visual Reinforcement Learning Kempka

et al. illustrated that an RL agent could successfully learn to play the game Doom, a

first-person shooter game, with behavior similar to humans. [29]
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2.7 DeepMind Lab

With the paper DeepMind Lab, Beattie et al. released a platform for 3D navigation and

puzzle solving tasks. The primary purpose of DeepMind Lab is to act as a platform for

DRL research. [13]

2.8 OpenAI Gym

In 2016, Brockman et al. from OpenAI released GYM which they referred to as ”a toolkit

for developing and comparing reinforcement learning algorithms”. GYM provides var-

ious types of environments from following technologies: Algorithmic tasks, Atari 2600,

Board games, Box2d physics engine, MuJoCo physics engine, and Text-based environ-

ments. OpenAI also hosts a website where researchers can submit their performance for

comparison between algorithms. GYM is open-source and encourages researchers to add

support for their environments. [14]

2.9 OpenAI Universe

OpenAI recently released a new learning platform called Universe. This environment fur-

ther adds support for environments running inside VNC. It also supports running Flash

games and browser applications. However, despite OpenAI’s open-source policy, they do

not allow researchers to add new environments to the repository. This limits the possibili-

ties of running any environment. The OpenAI Universe is, however, a significant learning

platform as it also has support for desktop games like Grand Theft Auto IV, which allow

for research in autonomous driving [30].

2.10 ELF

The Extensive Lightweight Flexible (ELF) research platform was recently present at NIPS

with the paper ELF: An Extensive, Lightweight and Flexible Research Platform for Real-

time Strategy Games. This paper focuses on RTS game research and is the first platform

officially targeting these types of games. [19]

2.11 StarCraft II Learning Environment

SC2LE (StarCraft II Learning Environment) is an API wrapper that facilitates access to

the StarCraft II game-state using languages such as Python. The purpose is to enable

reinforcement learning and machine learning algorithms to be used as AI for the game

players. StarCraft II is a complex environment that requires short and long-term planning.

It is difficult to observe a correlation between actions and rewards due to the imperfect
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state information and delayed rewards, making StarCraft II one of the hardest challenges

so far in AI research.

3 Reinforcement Learning in Games
Although there are several open-source game environments suited for reinforcement

learning, few of them are part of a success story. One of the reasons for this is that current

state-of-the-art algorithms are seemingly unstable [30], and have difficulties to converge

towards optimal policy in environments with multi-reward objectives [31]. This section

exhibits the most significant achievements using reinforcement learning in games.

3.1 TD-Gammon

TD-Gammon is an algorithm capable of reaching an expert level of play in the board

game Backgammon [7, 32]. The algorithm was developed by Gerald Tesauro in 1992

at IBM’s Thomas J. Watson Research Center. TD-Gammon consists of a three-layer

artificial neural network (ANN) and is trained using a reinforcement learning technique

called TD-Lambda. TD-Lambda is a temporal difference learning algorithm invented by

Richard S. Sutton [33]. The ANN iterates over all possible moves the player can perform

and estimates the reward for that particular move. The action that yields the highest

reward is then selected. TD-Gammon is the first algorithm to utilize self-play methods to

improve the ANN parameters.

3.2 AlphaGO

In late 2015, AlphaGO became the first algorithm to win against a human professional

Go player. AlphaGO is a reinforcement learning framework that uses Monte-Carlo tree

search and two deep neural networks for value and policy estimation [9]. Value refers to

the expected future reward from a state assuming that the agent plays perfectly. The policy

network attempts to learn which action is best in any given board configuration. The

earliest versions of AlphaGO used training data from previous games played by human

professionals. In the most recent version, AlphaGO Zero, only self-play is used to train

the AI [34]. In a recent update, AlphaGO was generalized to work for Chess and Shogi

(Japanese Chess) only using 24 hours to reach a superhuman level of play [2].

3.3 DeepStack

DeepStack is an algorithm that can perform an expert level play in Texas Hold’em poker.

This algorithm uses tree-search in conjunction with neural networks to perform sensi-

ble actions in the game [35]. DeepStack is a general-purpose algorithm that aims to solve
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problems with imperfect information. The DeepStack algorithm is open-source and avail-

able at https://github.com/lifrordi/DeepStack-Leduc.

3.4 Dota 2

DOTA 2 is a complex player versus player game where the player controls a hero unit.

The game objective is to defeat the enemy heroes and destroy their base. In August 2017,

OpenAI invented a reinforcement learning based AI that defeated professional players in

one versus one games. The training was done by only using self-play, and the algorithm

learned how to exploit game mechanics to perform well within the environment. DOTA 2

is used actively in research where the next goal is to train the AI to play in a team-game

based environment.

4 The Deep RTS Learning Environment
There is a need for new RTS game environments targeting reinforcement learning re-

search. Few game environments have a complexity suited for current state-of-the-art re-

search, and there is a lack of flexibility the existing solutions.

The Deep RTS game environment enables research at different difficulty levels in plan-

ning, reasoning, and control. The inspiration behind this contribution is microRTS and

StarCraft II, where the goal is to create an environment that features challenges between

the two. The simplest configurations of Deep RTS are deterministic and non-durative.

Actions in the non-durative configuration are directly applied to the environment within

the next few game frames. This makes the correlation between action and reward easier

to observe. The durative configuration complicates the state-space significantly because

it then becomes a temporal problem that requires long-term planning. Deep RTS sup-

ports the OpenAI Gym abstraction through the Python API and is a promising tool for

reinforcement learning research.

4.1 Game Objective

The objective of the Deep RTS challenge is to build a base consisting of a town-hall, and

then strive to expand the base using gathered resources to gain the military upper hand.

Military units are used to conduct attacks where the primary goal is to demolish the base of

the opponent. Players start with a worker unit. The primary objective of the worker units

is to expand the base offensive, defensive and to gather natural resources found throughout

the game world. Buildings can further spawn additional units that strengthen the offensive

capabilities of the player. For a player to reach the terminal state, all opponent units must

be destroyed.
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A regular RTS game can be represented in three stages: early-game, mid-game and late-

game. Early-game is the gathering and base expansion stage. The mid-game focuses on

the military and economic superiority, while the late-game stage is usually a deathmatch

between the players until the game ends.

Table 2: An overview of available scenarios found in the Deep RTS game environment

Scenario Name Description Game Length Map Size

10x10-2-FFA 2-Player game 600-900 ticks 10x10

15x15-2-FFA 2-Player game 900-1300 ticks 15x15

21x21-2-FFA 2-Player game 2000-3000 ticks 21x21

31x31-2-FFA 2-Player game 6000-9000 ticks 31x31

31x31-4-FFA 4-Player game 8000-11k ticks 31x31

31x31-6-FFA 6-Player game 15k-20k ticks 31x31

solo-score Score Accumulation 1200 ticks 10x10

solo-resources Resource Harvesting 600 ticks 10x10

solo-army Army Accumulation 1200 ticks 10x10

Because Deep RTS targets a various range of reinforcement learning tasks, there are game

scenarios such as resource gathering tasks, military tasks, and defensive tasks that narrows

the complexity of a full RTS game. Table 2 shows nine scenarios currently implemented

in the Deep RTS game environment. The first six scenarios are regular RTS games with

the possibility of having 6 active players in a free-for-all setting. The solo-score scenario

features an environment where the objective is to only generate as much score as possi-

ble in shortest amount of time. solo-resources is a game mode that focuses on resource

gathering. The agent must find a balance between base expansion and resource gathering

to optimally gather as many resources as possible. solo-army is a scenario where the pri-

mary goal is to expand the military forces quickly and launch an attack on an idle enemy.

The Deep RTS game environment enables researchers to create custom scenarios via a

flexible configuration interface.

4.2 Game Mechanics

The game mechanics of the Deep RTS are flexible and can be adjusted before a game

starts. Table 3 shows a list of configurations currently available. An important design

choice is to allow actions to affect the environment without any temporal delay. All

actions are bound to a tick-timer that defaults to 10, that is, it takes 10 ticks for a unit to

move one tile, 10 ticks for a unit to attack once, and 300 ticks to build buildings. The

tick-timer also includes a multiplier that enables adjustments of how many ticks equals a

second. For each iteration of the game-loop, the tick counter is incremented, and the tick-

C

Paper C: Deep RTS: A Game Environment for Deep Reinforcement Learning in
Real-Time Strategy Games



Table 3: Central configuration flags for the Deep RTS game engine

Config Name Type Description

instant town hall Bool Spawn Town-Hall at game start.

instant building Bool Non-durative Build Mode.

instant walking Bool Non-durative Walk Mode.

harvest forever Bool Harvest resources automatically.

auto attack Bool Automatic retaliation when being attacked.

durative Bool Enable durative mode.

timers are evaluated. By using tick-timers, the game-state resembles how the StarCraft II

game mechanics function while lowering the tick-timer value better resembles microRTS.

Target is grass
Target is 
resource

Yes

No

Yes

No Target is hostileRight Click

Yes

No

Walking Harvesting Combat

Enemy Dead

Yes

Inventory Full

Yes No No

At Target

Yes

No

Idle

Building Spawining

Complete

Yes

No

Complete

Yes

No

Figure 1: Unit state evaluation based on actions and current state

All game entities (Units and Buildings) have a state-machine that determine its current

state. Figure 1 illustrates a portion of the logic that is evaluated through the state-machine.

Entities start in the Spawning state transitioning to the Idle state when the entity spawn

C

Paper C: Deep RTS: A Game Environment for Deep Reinforcement Learning in
Real-Time Strategy Games



process is complete. The Idle state can be considered the default state of all entities and

is only transitioned from when the player interacts with the entity. This implementation

enables researchers to modify the state-transitions to produce alternative game logic.

Table 4: The available economic resources and limits available to players in Deep RTS

Player Resources

Property Lumber Gold Oil Food Units
Range 0 - 106 0 - 106 0 - 106 0 - 6000 0 - 2000

Table 4 shows the available resources and unit limits in the Deep RTS game environment.

There are primarily three resources, gold, lumber, and oil that are available for workers

to harvest. The value range is practically limited to the number of resources that exist on

the game map. The food limit and the unit limit ensures that the player does not produce

units excessively.

4.3 Graphics

The Deep RTS game engine features two graphical interface modes in addition to the

headless mode that is used by default. The primary graphical interface relies on Python

while the second is implemented in C++. The Python version is not interactive and can

only render the raw game-state as an image. By using software rendering, the capture

process of images is significantly faster because the copy between GPU and CPU is slow.

The C++ implementation, seen in Figure 2 is fully interactive, enabling manual play of

Deep RTS. Figure 3 shows how the raw game-state is represented as a 3-D matrix in

headless mode. Deep learning methods often favor raw game-state data instead of image

representation as sensory input. This is because raw data is often more concrete with clear

patterns.

4.4 Action-space definition

The action-space of the Deep RTS game environment is separated into two abstract lev-

els. The first level is actions that directly impact the environment, for instance, right-click,

left-click, move-left, and select-unit. The next layer of abstraction is actions that combine

actions from the previous layer, typically select-unit→ right-click→ right-click→move-

left. The benefit of this abstraction is that algorithms can focus on specific areas within

the game-state, and enable to build hierarchical models that each specialize in tasks (plan-

ning). The Deep RTS initially features 16 different actions in the first layer and 6 actions

in the last abstraction layer, but it is trivial to add additional actions.
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Figure 2: Overview of a battle in the fully-observable Deep RTS state-space using the

C++ graphical user interface

4.5 Summary

This section presents some of the central parts what the Deep RTS game environment

features for reinforcement learning research. It is designed to measure the performance of

algorithms accurately having a standardized API through OpenAI Gym, which is widely

used in the reinforcement learning community.

5 Experiments

5.1 Performance considerations in Deep RTS

The goal of Deep RTS is to simulate RTS scenarios with ultra high-performance accu-

rately. The performance is measured by how fast the game engine updates the game-state,

and how quickly the game-state can be represented as an image. Some experiments sug-
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Figure 3: Illustration of how the raw state is represented using 3-D matrices

gest that it is beneficial to render game graphics on the CPU instead of the GPU. Because

the GPU has a separate memory, there is a severe bottleneck when copying the screen

buffer from the GPU to the CPU.

Figure 4a shows the correlation between the frame-rate and size of the game map. Observ-

ing the data, it is clear that the map-size has O(n) penalty to the frame-rate performance.

It is vital to preserve this linearity, and optimally have the constant performance of O(1)

per game update. Figure 4 extends this benchmark by testing the impact a unit has on

the game performance, averaging 1 000 games for all map-sizes. The data indicates that

entities have an exponential impact on the frame-rate performance. The reason for this

is primarily the jump-point-search algorithm used for unit path-finding. The path-finding

algorithm can be disabled using custom configurations.

The Deep RTS game environment is high-performance, with few elements that signifi-

cantly reduce the frame-rate performance. While some mechanics, namely path-finding

is a significant portion of the update-loop it can be deactivated by configurations to opti-

mize the performance further.

5.2 Comparing Deep RTS to existing learning environments

There is a substantial difference between the performance in games targeted research and

those aimed towards gaming. Table 5 shows that the frame-rate difference ranges from

60 to 7 000 000 for selected environments. A high frame-rate is essential because some

exploration algorithms often require a quick assessment of future states through forward-

search. Table 5 shows that microRTS, ELF, and Deep RTS are superior in performance
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Figure 4: FPS Performance in Deep RTS

compared to other game environments. Deep RTS is measured using the largest available

map (Table 2) having a unit limit of 20 per player. This yields the performance of 24 000

updates-per-second. The Deep RTS game engine can also render the game state with up

to 7 000 000 updates-per-second using the minimal configuration. This is a tremendous

improvement on previous work and could enable algorithms with a limited time budget

to do deeper tree-searches.
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Table 5: Comparison of the FPS for selected environments. The Deep RTS benchmarks

are performed using minimum and maximum configurations

Environment Frame per second Source
ALE 6,500 [10]

Malmo Platform 60-144 [11]

ViZDoom 8,300 [12]

DeepMind Lab 1,000 [13]

OpenAI Gym 60 [14]

OpenAI Universe 60 [15]

Stratagus 60-144 [16]

microRTS 11,500 [17]

TorchCraft 2,500 [18]

ELF 36,000 [19]

SC2LE 60-144 [8]

Deep RTS 24,000, 7,000,000 -

Figure 5: Overview of the Deep Q-Network architecture used in the experiments. Inspired

by the work seen in [1]

5.3 Using Deep Q-Learning in Deep RTS

At the most basic level, Q-Learning utilizes a table for storing (s, a, r, s
′
) pairs, where s

is the states, a is the actions, r the rewards, and s′ the next state. Instead, a non-linear

function approximation can be used to approximate Q(s, a; θ). This is called Deep-Q
Learning. θ describes the tunable parameters (weights) for the approximation function.

Artificial neural networks are used as an approximation function for the Q-Table but at

the cost of stability [3]. Using artificial neural networks is much like compression found

in JPEG images. The compression is lossy, and some information is lost during the com-

pression. Deep Q-Learning is thus unstable, since values may be incorrectly encoded

during training [36].

This paper presents experimental results using the Deep Q-Learning architecture from

[3, 37]. Figure 5 shows the network model, and figure 6 illustrates the averaged training

loss of 100 agents. The agent uses gray-scale image game-state representations with an
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Figure 6: Training loss of the Deep Q-Network. Each episode consists of approximately

1 000 epochs.

additional convolutional layer to decrease the training time, but can also achieve com-

parable results after approximately 800 episodes of training with the exact architecture

from [3]2. The graph shows that the agent quickly learns the correlation between game-

state, action and the reward function. The loss quickly stabilizes at a relatively low value,

but it is likely that very small optimizations in the parameters have a significant impact on

the agent’s performance.

Figure 7a shows the win-rate against an AI with a random-play strategy. The agent quickly

learns how to perform better than random behavior, and achieves 70 % win-rate at episode

1 250. Figure 7b illustrates the same agent playing against a rule-based strategy. The

graph shows that the Deep Q-Network can achieve an average of 50 % win-rate over a 1

000 games. This strategy is considered an easy to moderate player, where its strategy is

to expand the base towards the opponent and build a military force after approximately

600 seconds. Figure 2 shows how the rule-based player (blue) expands the base to gain

the upper hand.

The experimental results presented in this paper show that the Deep RTS game environ-

ment can be used to train deep reinforcement learning algorithms. The Deep Q-Network

does not achieve super-human expertise but performs similarly to a player of easy to mod-

erate skill level, which is a good step towards a high-level AI.

6 Conclusion and Future Work
This paper is a contribution towards the continuation of research into deep reinforcement

learning for RTS games. The paper summarizes previous work and outlines the few but

2Each episode contains approximately 1 000 epochs of training with a batch size of 16
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Figure 7: Performance comparison of agents using Deep Q-Network, random-play, and

rule-based strategies

essential success stories in reinforcement learning. The Deep RTS game environment is

a high-performance RTS simulator that enables rapid research and testing of novel rein-

forcement learning techniques. It successfully fills the gap between the vital game sim-

ulator microRTS, and StarCraft II, which is the ultimate goal for reinforcement learning

research for the RTS game genre.

The hope is that Deep RTS can bring insightful results to the complex problems of

RTS [17] and that it can be a useful tool in future research.
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Although the Deep RTS game environment is ready for use, several improvements can be

applied to the environment. The following items are scheduled for implementation in the

continuation of Deep RTS:

• Enable LUA developers to use Deep RTS through LUA bindings.

• Implement a generic interface for custom graphics rendering.

• Implement duplex WebSockets and ZeroMQ to enable any language to interact

with Deep RTS

• Implement alternative path-finding algorithms to increase performance for some

scenarios

• Add possibility for memory-based fog-of-war to better mimic StarCraft II
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Abstract

Reinforcement learning has shown great potential in generalizing over raw sensory data

using only a single neural network for value optimization. There are several challenges

in the current state-of-the-art reinforcement learning algorithms that prevent them from

converging towards the global optima. It is likely that the solution to these problems lies

in short- and long-term planning, exploration and memory management for reinforce-

ment learning algorithms. Games are often used to benchmark reinforcement learning

algorithms as they provide a flexible, reproducible, and easy to control environment. Re-

gardless, few games feature a state-space where results in exploration, memory, and plan-

ning are easily perceived. This paper presents The Dreaming Variational Autoencoder

(DVAE), a neural network based generative modeling architecture for exploration in envi-

ronments with sparse feedback. We further present Deep Maze, a novel and flexible maze

engine that challenges DVAE in partial and fully-observable state-spaces, long-horizon

tasks, and deterministic and stochastic problems. We show initial findings and encourage

further work in reinforcement learning driven by generative exploration.

Thirty-eight SGAI International Conference on Artificial Intelligence (AI-2018), Cambridge England
Submitted 04. Jul, 2018, Accepted 10. Sep 2018, Published 16. Nov, 2018
Awarded the prize for student-paper in the technical stream of SGAI-2018
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1 Introduction
Reinforcement learning (RL) is a field of research that has quickly become one of the

most promising branches of machine learning algorithms to solve artificial general intel-

ligence [2,10,12,16]. There have been several breakthroughs in reinforcement learning in

recent years for relatively simple environments [6,14,15,21], but no algorithms are capa-

ble of human performance in situations where complex policies must be learned. Due to

this, a number of open research questions remain in reinforcement learning. It is possible

that many of the problems can be resolved with algorithms that adequately accounts for

planning, exploration, and memory at different time-horizons.

In current state-of-the-art RL algorithms, long-horizon RL tasks are difficult to master

because there is as of yet no optimal exploration algorithm that is capable of proper state-

space pruning. Exploration strategies such as ε-greedy is widely used in RL, but can-

not find an adequate exploration/exploitation balance without significant hyperparameter-

tuning. Environment modeling is a promising exploration technique where the goal is for

the model to imitate the behavior of the target environment. This limits the required inter-

action with the target environment, enabling nearly unlimited access to exploration with-

out the cost of exhausting the target environment. In addition to environment-modeling, a

balance between exploration and exploitation must be accounted for, and it is, therefore,

essential for the environment model to receive feedback from the RL agent.

By combining the ideas of variational autoencoders with deep RL agents, we find that it

is possible for agents to learn optimal policies using only generated training data samples.

The approach is presented as the dreaming variational autoencoder. We also show a new

learning environment, Deep Maze, that aims to bring a vast set of challenges for reinforce-

ment learning algorithms and is the environment used for testing the DVAE algorithm.

This paper is organized as follows. Section 3 briefly introduces the reader to preliminaries.

Section 4 proposes The Dreaming Variational Autoencoder for environment modeling to

improve exploration in RL. Section 5 introduces the Deep Maze learning environment

for exploration, planning and memory management research for reinforcement learning.

Section 6 shows results in the Deep Line Wars environment and that RL agents can be

trained to navigate through the deep maze environment using only artificial training data.
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2 Related Work
In machine learning, the goal is to create an algorithm that is capable of constructing a

model of some environment accurately. There is, however, little research in game envi-

ronment modeling in the scale we propose in this paper. The primary focus of recent RL

research has been on the value and policy aspect of RL algorithm, while less attention has

been put into perfecting environment modeling methods.

In 2016, the work in [3] proposed a method of deducing the Markov Decision Process

(MDP) by introducing an adaptive exploration signal (pseudo-reward), which was ob-

tained using deep generative model. Their method was to compute the Jacobian of each

state and used it as the pseudo-reward when using deep neural networks to learn the state-

generalization.

Xiao et al. proposed in [22] the use of generative adversarial networks (GAN) for model-

based reinforcement learning. The goal was to utilize GAN for learning dynamics of the

environment in a short-horizon timespan and combine this with the strength of far-horizon

value iteration RL algorithms. The GAN architecture proposed illustrated near authentic

generated images giving comparable results to [14].

In [9] Higgins et al. proposed DARLA, an architecture for modeling the environment us-

ing β-VAE [8]. The trained model was used to extract the optimal policy of the environ-

ment using algorithms such as DQN [15], A3C [13], and Episodic Control [4]. DARLA

is to the best of our knowledge, the first algorithm to properly introduce learning without

access to the target environment during training.

Buesing et al. recently compared several methods of environment modeling, showing that

it is far better to model the state-space then to utilize Monte-Carlo rollouts (RAR). The

proposed architecture, state-space models (SSM) was significantly faster and produced

acceptable results compared to auto-regressive (AR) methods. [5]

Ha and Schmidhuber proposed in [7] World Models, a novel architecture for training RL

algorithms using variational autoencoders. This paper showed that agents could success-

fully learn the environment dynamics and use this as an exploration technique requiring

no interaction with the target domain.

3 Background
We base our work on the well-established theory of reinforcement learning and formulate

the problem as a MDP [20]. An MDP contains (S,A, T , r) pairs that define the environ-

ment as a model. The state-space, S represents all possible states while the action-space,

A represents all available actions the agent can perform in the environment. T denotes
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Figure 1: Illustration of the DVAE model. The model consumes state and action pairs,

yielding the input encoded in latent-space. Latent-space can then be decoded to a probable

future state. Q(z|X) is the encoder, zt is latent-space, and P(X|z) is the decoder. DVAE

can also use LSTM to better learn longer sequences in continuous state-spaces.

the transition function (T : S×A → S), which is a mapping from state st ∈ S and action

at ∈ A to the future state st+1. After each performed action, the environment dispatches

a reward signal,R : S → r.

We call a sequence of states and actions a trajectory denoted as

τ = (s0, a0, . . . , st, at) and the sequence is sampled through the use of a stochastic policy

that predicts the optimal action in any state: πθ(at|st), where π is the policy and θ are the

parameters. The primary goal of the reinforcement learning is to reinforce good behavior.

The algorithm should try to learn the policy that maximizes the total expected discounted

reward given by, J (π) = E(st,at)∼p(π) [
∑T

i=0 γ
iR(si)] [15].

4 The Dreaming Variational Autoencoder
The Dreaming Variational Autoencoder (DVAE) is an end-to-end solution for generat-

ing probable future states ŝt+n from an arbitrary state-space S using state-action pairs

explored prior to st+n and at+n.

The DVAE algorithm, seen in Figure 1 works as follows. First, the agent collects experi-

ences for utilizing experience-replay in the Run-Agent function. At this stage, the agent

explores the state-space guided by a Gaussian distributed policy. The agent acts, observes,

and stores the observations into the experience-replay buffer D. After the agent reaches
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Algorithm 1 The Dreaming Variational Autoencoder
1: Initialize replay memory D and ∧D to capacity N
2: Initialize policy πθ
3: function RUN-AGENT(T , D)

4: for i = 0 to N EPISODES do
5: Observe starting state, s0 ∼ N (0, 1)

6: while st not TERMINAL do
7: at ← πθ(st = s)

8: st+1, rt, terminalt ← T (st, at)
9: Store experience into replay buffer D(st, at, rt, st+1, terminalt)

10: st ← st+1

11: end while
12: end for
13: end function
14: Initialize encoder Q(z|X)

15: Initialize decoder P(X|z)
16: Initialize DVAE model Tθ = P(X|Q(z|X))

17: function DVAE

18: for di in D do
19: st, at, rt, st+1 ← di . Expand replay buffer pair

20: Xt ← st, at

21: zt ← Q(Xt) . Encode Xt into latent-space

22: ŝt+1 ← P(zt) . Decode zt into probable future state

23: Store experience into artificial replay buffer ∧D(ŝt, at, rt, ŝt+1, terminalt)

24: ŝt = ŝt+1

25: end for
26: return ∧D
27: end function
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terminal state, the DVAE algorithm encodes state-action pairs from the replay-buffer D

into probable future states. This is stored in the replay-buffer for artificial future-states D̂.

Table 1: DVAE algorithm for generating states using Tθ versus the real transition function

T . First, a real state is collected from the replay-memory. DVAE can then produce new

states from current the trajectory τ using the state-action pairs. θ represent the trainable

model parameters.

1 0 0 1 0 0
Real States

0 0
T (s0,Aright)

0 0
T (s1,Adown)

0 1

s0 s1 s2

0 1 0 0
Generated States N/A Tθ(s0,Aright, θ)

0 0
Tθ(ŝ1,Adown, θ)

0 1

ŝ1 ŝ2

Table 1 illustrates how the algorithm can generate sequences of artificial trajectories using

Tθ = P(X|Q(z|X)), where z = Q(z|X) is the encoder, and Tθ = P(X|z) is the decoder.

With state s0 and action Aright as input, the algorithm generates state ŝ1 which in the

table can be observed is similar to the real state s1. With the next input,Adown, the DVAE

algorithm generates the next state ŝ2 which again can be observed to be equal to s2. Note

that this is without ever observing state s1. Hence, the DVAE algorithm needs to be

initiated with a state, e.g. s0, and actions follows. It then generates (dreams) next states,

The requirement is that the environment must be partially discovered so that the al-

gorithm can learn to behave similarly to the target environment. To predict a trajec-

tory of three timesteps, the algorithm does nesting to generate the whole sequence:

τ = ŝ1, a1, ŝ2, a2, ŝ3, a3 = Tθ(Tθ(Tθ(s0,Arnd),Arnd),Arnd). The algorithm does this

well in early on, but have difficulties with long sequences beyond eight in continuous

environments.

5 Environments
The DVAE algorithm was tested on two game environments. The first environment is

Deep Line Wars [1], a simplified Real-Time Strategy game. We introduce Deep Maze,

a flexible environment with a wide range of challenges suited for reinforcement learning

research.
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(a) A Small, Fully Observable MDP (b) A Large, Fully Observable MDP

(c) Partially Observable MDP having a vision dis-
tance of 3 tiles

(d) Partially Observable MDP having ray-traced vi-
sion

Figure 2: Overview of four distinct MDP scenarios using Deep Maze.
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5.1 The Deep Maze Environment

The Deep Maze is a flexible learning environment for controlled research in exploration,

planning, and memory for reinforcement learning algorithms. Maze solving is a well-

known problem, and is used heavily throughout the RL literature [20], but is often limited

to small and fully-observable scenarios. The Deep Maze environment extends the maze

problem to over 540 unique scenarios including Partially-Observable Markov Decision

Processes (POMDP). Figure 2 illustrates a small subset of the available environments for

Deep Maze, ranging from small-scale MDP’s to large-scale POMDP’s. The Deep Maze

further features custom game mechanics such as relocated exits and dynamically changing

mazes.

The game engine is modularized and has an API that enables a flexible tool set for third-

party scenarios. This extends the capabilities of Deep Maze to support nearly all possible

scenario combination in the realm of maze solving.1

5.1.1 State Representation

RL agents depend on sensory input to evaluate and predict the best action at current

timestep. Preprocessing of data is essential so that agents can extract features from the

input. For this reason, Deep Maze has built-in state representation for RGB Images,

Grayscale Images, and raw state matrices.

5.1.2 Scenario Setup

The Deep Maze learning environment ships with four scenario modes: (1) Normal, (2)

POMDP, (3) Limited POMDP, and (4) Timed Limited POMDP.

The first mode exposes a seed-based randomly generated maze where the state-space is

modeled as an MDP. The second mode narrows the state-space observation to a config-

urable area around the player. In addition to radius based vision, the POMDP mode also

features ray-tracing vision that better mimic the sight of a physical agent. The third and

fourth mode is intended for memory research where the agent must find the goal in a

limited number of time-steps. In addition to this, the agent is presented with the solution

but fades after a few initial time steps. The objective is the for the agent to remember the

solution to find the goal. All scenario setups have a variable map-size ranging between

2× 2 and 56× 56 tiles.

1The Deep Maze is open-source and publicly available at https://github.com/CAIR/deep-
maze.
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Figure 3: The Graphical User Interface of the Deep Line Wars environment.

5.2 The Deep Line Wars Environment

The Deep Line Wars environment was first introduced in [1]. Deep Line Wars is a real-

time strategy environment that makes an extensive state-space reduction to enable swift

research in reinforcement learning for RTS games.

The game objective of Deep Line Wars is to invade the enemy player with mercenary

units until all health points are depleted, see Figure 3). For every friendly unit that enters

the far edge of the enemy base, the enemy health pool is reduced by one. When a player

purchases a mercenary unit, it spawns at a random location inside the edge area of the

buyers base. Mercenary units automatically move towards the enemy base. To protect

the base, players can construct towers that shoot projectiles at the opponents mercenaries.

When a mercenary dies, a fair percentage of its gold value is awarded to the opponent.

When a player sends a unit, the income is increased by a percentage of the units gold

value. As a part of the income system, players gain gold at fixed intervals.

6 Experiments

6.1 Deep Maze Environment Modeling using DVAE

The DVAE algorithm must be able to generalize over many similar states to model a vast

state-space. DVAE aims to learn the transition function, bringing the state from st to

st+1 = T (st, at). We use the deep maze environment because it provides simple rules,
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Figure 4: The training loss for DVAE in the 2×2 No-Wall and 8×8 Deep Maze scenario.

The experiment is run for a total of 1000 (5000 for 8 × 8) episodes. The algorithm only

trains on 50% of the state-space to the model for the 2 × 2 environment while the whole

state-space is trainable in the 8× 8 environment.

ŝt+1 ŝt+2 ŝt+3 ŝt+4 ŝt+5 ŝt+6 ŝt+7 ŝt+8 Right Down Left Up Down Right Up

Figure 5: For the 2 × 2 scenario, only 50% of the environment is explored, leaving arti-

facts on states where the model is uncertain of the transition function. In more extensive

examples, the player disappears, teleports or gets stuck in unexplored areas.

with a controllable state-space complexity. Also, we can omit the importance of reward

for some scenarios.

We trained the DVAE model on two No-Wall Deep Maze scenarios of size 2×2 and 8×8.

For the encoder and decoder, we used the same convolution architecture as proposed

by [17] and trained for 5000 epochs for 8× 8 and 1000 epochs for 2× 2 respectively. For

the encoding of actions and states, we concatenated the flattened state-space and action-

space, having a fully-connected layer with ReLU activation before calculating the latent-

space. We used the Adam optimizer [11] with a learning-rate of 1e-08 to update the

parameters.

Figure 4 illustrates the loss of the DVAE algorithm in the No-Wall Deep Maze scenario.

In the 2 × 2 scenario, DVAE is trained on only 50% of the state space, which results in

noticeable graphic artifacts in the prediction of future states, see Figure 5. Because the

8 × 8 environment is fully visible, we see in Figure 6 that the artifacts are exponentially

reduced.
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Table 2: Results of the deep maze 11 × 11 and 21 × 21 environment, comparing DQN

[15], TRPO [18], and PPO [19]. The optimal path yields performance of 100% while no

solution yields 0%. Each of the algorithms ran 10000 episodes for both map-sizes. The

last number represents at which episode the algorithm converged.

Algorithm Avg Performance 11× 11 Avg Performance 21× 21

DQN-∧D 94.56% @ 9314 64.36% @ N/A

TRPO-∧D 96.32% @ 5320 78.91% @ 7401

PPO-∧D 98.71% @ 3151 89.33% @ 7195

DQN-D 98.26% @ 4314 84.63% @ 8241

TRPO-D 99.32% @ 3320 92.11% @ 4120

PPO-D 99.35% @ 2453 96.41% @ 2904

ŝt+1 ŝt+2 ŝt+3 ŝt+4 ŝt+5 ŝt+6 

ŝt+7 ŝt+8 ŝt+9 ŝt+10 ŝt+11 ŝt+12 

Right Right Up Up Up Left

Left Down Down Down Down

Figure 6: Results of 8× 8 Deep Maze modeling using the DVAE algorithm. To simplify

the environment, no reward signal is received per iteration. The left caption describes cur-

rent state, st, while the right caption is the action performed to compute, st+1 = T (st, at).
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6.2 Using ∧D for RL Agents in Deep Maze

The goal of this experiment is to observe the performance of RL agents using the gener-

ated experience-replay ∧D from Figure 1 in Deep Maze environments of size 11× 11 and

21×21. In Table 2, we compare the performance of DQN [14], TRPO [18], and PPO [19]

using the DVAE generated ∧D to tune the parameters.

Text

Figure 7: A typical deep maze of size 11 × 11. The lower-right square indicates the

goal state, the dotted-line indicates the optimal path, while the final square represents the

player’s current position in the state-space. The controller agent is DQN, TRPO, and PPO

(from left to right).

Figure 7 illustrates three maze variations of size 11 × 11, where the AI has learned the

optimal path. We see that the best performing algorithm, PPO [19] beats DQN and TRPO

using either ∧D or D. The DQN-∧D agent did not converge in the 21× 21 environment, but

it is likely that value-based algorithms could struggle with graphical artifacts generated

from the DVAE algorithm. These artifacts significantly increase the state-space so that

direct-policy algorithms could perform better.

6.3 Deep Line Wars Environment Modeling using DVAE

The DVAE algorithm works well in more complex environments, such as the Deep Line

Wars game environment [1]. Here, we expand the DVAE algorithm with LSTM to im-

prove the interpretation of animations, illustrated Figure 1.

Figure 8 illustrates the state quality during training of DVAE in a total of 6000 episodes

(epochs). Both players draw actions from a Gaussian distributed policy. The algorithm

understands that the player units can be located in any tiles after only 50 epochs, and at

1000 we observe the algorithm makes a more accurate statement of the probability of unit

locations (i.e., some units have increased intensity). At the end of the training, the DVAE

algorithm is to some degree capable of determining both towers, and unit locations at any

given time-step during the game episode.
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Epoch 50                          Epoch 1 000                     Epoch 1 500

Epoch 2 000                    Epoch 2 500                     Epoch 3 000

Epoch 3 500                    Epoch 4 000                      Epoch 4 500

Epoch 5 000                     Epoch 5 500                     Epoch 6 000

Figure 8: The DVAE algorithm applied to the Deep Line Wars environment. Each epoch

illustrates the quality of generated states in the game, where the left image is real state s

and the right image is the generated state ŝ.
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7 Conclusion and Future Work
This paper introduces the Dreaming Variational Autoencoder (DVAE) as a neural net-

work based generative modeling architecture to enable exploration in environments with

sparse feedback. The DVAE shows promising results in modeling simple non-continuous

environments. For continuous environments, such as Deep Line Wars, DVAE performs

better using a recurrent neural network architecture (LSTM) while it is sufficient to use

only a sequential feed-forward architecture to model non-continuous environments such

as Chess, Go, and Deep Maze.

There are, however, several fundamental issues that limit DVAE from fully modeling

environments. In some situations, exploration may be a costly act that makes it impossible

to explore all parts of the environment in its entirety. DVAE cannot accurately predict the

outcome of unexplored areas of the state-space, making the prediction blurry or false.

Reinforcement learning has many unresolved problems, and the hope is that the Deep

Maze learning environment can be a useful tool for future research. For future work, we

plan to expand the model to model the reward function R̂ using inverse reinforcement

learning. DVAE is an ongoing research question, and the goal is that reinforcement learn-

ing algorithms could utilize this form of dreaming to reduce the need for exploration in

real environments.
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Abstract

Deep reinforcement learning has over the past few years shown great potential in learning

near-optimal control in complex simulated environments with little visible information.

Rainbow (Q-Learning) and PPO (Policy Optimisation) have shown outstanding perfor-

mance in a variety of tasks, including Atari 2600, MuJoCo, and Roboschool test suite.

While these algorithms are fundamentally different, both suffer from high variance, low

sample efficiency, and hyperparameter sensitivity that in practice, make these algorithms

a no-go for critical operations in the industry.

On the other hand, model-based reinforcement learning focuses on learning the transition

dynamics between states in an environment. If these environment dynamics are ade-

quately learned, a model-based approach is perhaps the most sample efficient method

for learning agents to act in an environment optimally. The traits of model-based rein-

forcement are ideal for real-world environments where sampling is slow and for mission-

critical operations. In the warehouse industry, there is an increasing motivation to min-

imise time and to maximise production. Currently, autonomous agents act suboptimally

using handcrafted policies for significant portions of the state-space.

In this paper, we present The Dreaming Variational Autoencoder v2 (DVAE-2), a model-

based reinforcement learning algorithm that increases sample efficiency, hence enable al-
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gorithms with low sample efficiency function better in real-world environments. We intro-

duce Deep Warehouse, a simulated environment for industry-near testing of autonomous

agents in grid-based warehouses. Finally, we illustrate that DVAE-2 improves the sample

efficiency for the Deep Warehouse compared to model-free methods.

Keywords: Deep Reinforcement Learning, Model-based Reinforcement Learning, Rein-

forcement Learning, Neural Networks, Variational Autoencoder, Markov Decision Pro-

cesses, Exploration, Artificial Intelligence

1 Introduction
The goal of reinforcement learning is to maximise some notion of feedback through in-

teraction with an environment [23]. The environment can be known, which makes this

learning process trivial, or have hidden state information, which typically increases the

complexity of learning significantly. In model-free reinforcement learning, actions are

sampled from some policy that is optimised indirectly through direct policy search (Pol-

icy gradients), a state-value function (Q-learning), or a combination of these (Actor-

Critic). There are many recent contributions to these algorithms that increase sample

efficiency [8], reduce variance [10], and increase training stability [21].

It is challenging to deploy model-free methods in real-world environments because cur-

rent state-of-the-art algorithms require millions of samples before any optimal policy

is learned. Due to this, model-based reinforcement learning is an appealing approach

because it has significantly better sample efficiency compared to the model-free meth-

ods [17]. The goal of model-based algorithms is to learn a predictive model of the real

environment that is used to learn the controller of an agent. The downside of model-based

reinforcement learning is that the predictive model may become inaccurate for longer

time-horizons, or collapse entirely in areas of state-space that has not observed.

We propose a model-based reinforcement learning approach for industry-near systems

where a predictive model is learned without direct interaction with the environment. We

use Automated Storage and Retrieval Systems (ASRS) to benchmark our proposed al-

gorithm. Learning a predictive model of the environment is isolated from the physical

environment, which guarantees safety during training. If a predictive model is sufficiently

trained, a model-free algorithm, such as DQN [19] can be trained off-line. Training can

be done in a large-scale distributed setting, which significantly reduces the training time.

When the model-free algorithm is trained sufficiently, it will be able to replace a sub-

optimal expert-system with minimal effort.

The paper is organised as follows. Section 2 discusses the current state of the art in model-

based reinforcement learning, and familiarise the reader of recent work in ASRS systems.

Section 3 briefly outlines relevant background literature on reinforcement learning. Sec-
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tion 4 introduces the DVAE-2 algorithm and details the architecture thoroughly. Section 5

proposes the Deep Warehouse, a novel high-performance environment for industry-near

testing of reinforcement learning algorithms. Section 6 presents our results using DVAE-2

in various environments, including complex environments such as Deep Warehouse, Deep

RTS and Deep Line Wars. Finally, section 7 concludes our work and outlines a roadmap

for our future work.

2 Literature Review
Reinforcement Learning is a maturing field in artificial intelligence, where a significant

portion of the research is concerned with model-free approaches in virtual environments.

Reinforcement learning methods in large-scale industry-near environments are virtually

absent from the literature. The reason for this could be that (1) model-free methods do not

give the sample efficiency required and that (2) there is little evidence that model-based

approaches achieve reliable performance. In this section, we briefly discuss the previ-

ous work in ASRS systems and present promising results for model-based reinforcement

learning.

2.1 Automated Storage and Retrieval Systems (ASRS)

There is to our knowledge no published work where reinforcement learning schemes are

used to control taxi-agents in ASRS environments. The literature is focused on heuristic-

based approaches, such as tree-search and traditional pathfinding algorithms. In [20], a

detailed survey of the advancements in ASRS systems which categorise an ASRS system

into five components; System Configuration, Storage Assignment, Batching, Sequenc-

ing, and Dwell-point. We adopt these categories in search of a reinforcement learning

approach for ASRS systems

2.2 Model-based Reinforcement Learning

In model-based reinforcement learning, the goal is to learn state-transitions based on ob-

servations from the environment, the predictive model. If the predictive model is stable,

with low variance and improves monotonically during training, it is, to some degree, pos-

sible to learn model-free agents to act optimally in environments that have never been

observed directly.

Perhaps the most sophisticated algorithm for model-based reinforcement learning is the

Model-based policy optimisation (MBPO) algorithm, proposed by Janner et al. [16] The

authors empirically show that MBPO performs significantly better in continuous control

tasks compared to previous methods. MBPO proves to be monotonically improving given
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that the following bounds hold:

η[π] ≥ η̂[π]− C

where η[π] denotes the returns in the real environment under a policy whereas η̂[π] denotes

the returns in the predicted model under policy π. Furthermore, the authors show that as

long as they can improve the C, the performance will increase monotonically [16].

Gregor et al. proposed a scheme to train expressive generative models to learn belief-

states of complex 3D environments with little prior knowledge. Their method was effec-

tive in predicting multiple steps into the future (overshooting) and significantly improve

sample efficiency. In the experiments, the authors illustrated model-free policy training in

several environments, including DeepMind Lab. However, the authors found it difficult

to use their predictive model in model-free agents directly. [11]

Neural Differential Information Gain Optimisation (NDIGO) algorithm by Azar et al. is

a self-supervised exploration model that learns a world model representation from noisy

data. The primary features of NDIGO are its robustness to noise due to their method to

cancel out negative loss and to give positive learning more value. The authors show in

their maze environment that the model successfully converges towards an optimal world

model even when introducing noise. The author claims that the algorithm outperforms

previous state-of-the-art, being the Recurrent World Model from. [4]

The Dreaming Variational Autoencoder (DVAE) is an end-to-end solution for prediction

the probable future state p(ŝt+1|st, at. The authors showed that the algorithm successfully

predicted next state in non-continuous environments and could with some error predict

future states in continuous state-space environments such as the Deep Line Wars envi-

ronment. In the experiments, the authors used DQN, PPO, and TRPO using an artificial

buffer to feed states to the algorithms. In all cases, the DVAE algorithm was able to create

buffers that were accurate enough to learn a near-optimal policy. [3]

The algorithm VMAV-C is a combination of VAE and attention-based value function

(AVF), and mixture density network recurrent neural network (MDN-RNN) from [12].

This modification to the original World Models algorithm improved performance in the

Cart Pole environment. They used the on-policy algorithm PPO to learn the optimal pol-

icy from the latent representation of the state-space [18].

Deep Planning Network (PlaNet) is a model-based agent that interpret the pixels of a

state to learn a predictive model of an environment. The environment dynamics are stored

into latent-space, where the agent sample actions based on the learned representation. The

proposed algorithm showed significantly better sample efficiency compared to model-free

algorithms such as A3C [14].
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Figure 1: The agent-environment interaction in a Markov decision process [23]

In Recurrent World Models Facilitate Policy Evolution, a novel architecture for training

RL algorithms using variational autoencoders. This paper showed that agents could suc-

cessfully learn the environment dynamics and use this as an exploration technique requir-

ing no interaction with the target domain. The architecture is mainly three components;

vision, controller, and model, the vision model is a variational autoencoder that outputs

a latent-space variable of an observation. The latent-space variable is processed in the

model and is fed into the controller for action decisions. Their algorithms show state-of-

the-art performance in self-supervised generative modelling for reinforcement learning

agents. [12]

Chua et al. proposed Probabilistic Ensembles with Trajectory Sampling (PETS). The

algorithm uses an ensemble of bootstrap neural networks to learn a dynamics model of

the environment over future states. The algorithm then uses this model to predict the best

action for future states. The authors show that the algorithm significantly lowers sampling

requirements for environments such as half-cheetah compared to SAC and PPO. [9]

DARLA is an architecture for modelling the environment using β-VAE [15]. The trained

model was used to learn the optimal policy of the environment using algorithms such as

DQN [19], A3C, and Episodic Control [5]. DARLA is to the best of our knowledge,

the first algorithm to introduce learning without access to the ground-truth environment

during training.

3 Background
Markov decision processes (MDP’s) are a mathematical framework commonly used to

define reinforcement learning problems, as illustrated in Figure 1. In an MDP, we consider

the tuple (S,A, r, P , P0, γ) 1where S is the state space,A is the action space available to

the agent, r : S × A → R is the expected immediate reward function, P is the transition

function which defines the probability P(s′, s, a) = Pr(s′|s, a) and P0 is the probability

for the initial state s0.

1S and A is defined for discrete or continuous spaces. r : S ×A → R where r is commonly referred to
asR(s, s′) in the literature.
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The goal of a reinforcement learning agent is to encourage good behaviour and to discour-

age bad behaviour. Optimal behaviour is achieved when the agent finds a composition of

parameters that maximise its performance, thus finds the optimal policyπ∗. Consider

π∗ = argmax
π∈Π

J(π), (1)

where J(π) is the objective function for maximising the expected discounted reward de-

fined as

J(π) = Es0,a0,s1,...

[ ∞∑

t=0

γtr(st, at) | π, s0 ∼ P0

]
, (2)

where γ ∈ (0, 1) is the discounting factor of future rewards. If γ = 1, all future state

rewards are accounted for equally, while γ = 0, we are only concerned about the current

state.

4 Learning policies using predictive models
The Dreaming Variational Autoencoder v2 (DVAE-2) is an architecture for learning a

predictive model of arbitrary environments [3]. In this work, we aim to improve the

first version of the DVAE for better performance in real-world environments. A common

problem in model-based reinforcement learning is that it takes millions of samples to

generalise well across sparse data. We aim to approve sample efficiency from the original

DVAE and if possible, surpass the performance of model-free methods.

4.1 Motivation and Environment Safety

Figure 2 shows an abstract overview of DVAE-2 training in an environment. In real-world,

industry-near environments, there is little room for interruptions. In model-free reinforce-

ment learning, the agent interacts with the environment to learn its policy. Because this is

not possible in many real-world environments, the DVAE-2 algorithm only observes dur-

ing training. During training, the DVAE-2 algorithm learns how the transition function

behaves and learns an estimated state-value function V that represent the value of being

in that current state.

4.2 The Dreaming Variational Autoencoder v2

The original DVAE architecture had severe challenges with modelling of continuous state-

spaces [3], and many algorithms were added to the model to improve performance across

various environments including autoencoders, LSTMs, and fine-tuned variations of these.

The DVAE-2 extends this with a split into three individual components; forming the View,

E

Paper E: Towards Model-Based Reinforcement Learning for Industry-near Environments



Real	Environment Sensor	Model

Expert	System

Prediction	Model 

Intelligent	Agent��

�����������	��������� 

Figure 2: The proposed model isolates the intelligent agent from the mission-critical sen-

sor model. The real environment projects onto a sensor model that the expert system uses

to control taxis in a real environment. The predictive model observes the behaviour of the

sensor model and the actions performed by the expert system. The predictive model is

trained using error gradients, where the loss is the distance between the sensor model and

the predictive model. When the error becomes sufficiently low, an intelligent agent can

be trained using only data from the predictive model. Assuming that the intelligent agent

converges to some performance threshold, it can be deployed as a drop-in replacement to

the expert system.

SWA

GAN

RNN/LSTM 

SWAGAN

Convolutional

Feedforward

Temporal

Convolutional

Deep	Q-Learning

Policy	Gradients

Genetic	Algorithms

ℎ�

�

��

�

��

�

��

���� �����������������

� ̂ �
�+1 � ̂ �

�

←�� � ̂ �
�+1

Inference

Optional 

�������

Training

(1)
(2)

(3)

(4)

(5)

…

…

��

�

(6)

Decoder

…

Figure 3: The component-based DVAE-2 architecture.
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Reason and Control (VRC) model. The VRC model embeds all improvements into a sin-

gle model and learns which algorithms to use under certain conditions in an environment

Figure 3 shows an overview of the proposed VRC. (1) A state st is observed. During

training, this observation stems from the real-environment while at inference time, from

the predictive model. The observation is encoded in the view component (e.g. via AE or

GAN) and outputs an embedding z at time t w.r.t policy π. (2) The reason component

learns the time dynamics between state sequences. Encoded states are accumulated into

a buffer Zπ
t = {zt−n . . . zt}π and are then used to predict the hidden-state hπt w.r.t the

encoded state sequence. The reason component typically consists of a model with RNN-

like structure that generalises well on sequence data. (3) The hidden state is then used

to evaluate an action using policy π, and (4) is sent to the environment and the view for

the next iteration. (5) The decoder, prepares the hidden-state hπt and encoded state zπt ,

producing the succeeding state ŝπt+1. The prediction is then used in the next iteration as

current state st, which leads back to (1). As an optional mechanism, the controller can

use the output from the decoder, instead of the hidden state information. This is beneficial

when working with model-free algorithms such as deep q-networks [19].

4.3 Model selection

During technique selection in the components, we perform the following evaluation. An

observation st is sent to the view component of DVAE-2. All of the view techniques

are initially assumed to be uniformly qualified to encode and predict future states. For

each iteration, the computed error is summarised as a score, and during inference, the

technique with the lowest score is used2. We use the same method for determining the

best reasoning algorithm in a specific environment.

4.4 Implementation

The implementation of the DVAE-2 algorithm with dynamic component selection enabled

several significant improvements to over the previous DVAE model [3]. Notably, the k-

step model rollout from [16] is implemented to stabilise training. We found that using

shorter model-rollouts provided better control policies, but at the cost of higher sample

efficiency. Also, by embedding time into the encoded state improved the model stability

and prediction capabilities [13]. The DVAE-2 algorithm is defined as follows.

2In this setting, the lowest score is the technique with least accumulated error.
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Algorithm 1 DVAE-2: Minimal Implementation
1: Initialize policy πθ(st|at), predictive model pψ(ŝt+1, r̂, ht|st, aπt )
2: Let Z = {zπt−n . . . zπt }, a vector of encoded states

3: Initialize encoder ENC(zπt |st, aπt ), temporal reasoner TR(hπt |Z)
4: for N epochs do
5: Denv ← Collect samples from penv under predefined policy π

6: Train model pψ on data batch Denv via MLE3

7: for M epochs do
8: Sample initial state s0 ∼ U(0, 1) from Denv
9: Construct {Dpψ |t < k, TR(hπθt |ENC(zt|st, at)πθ), st = s0}

10: Update policy πθ using pairs of (ŝt, at, r̂t, ŝt+1)
πθ

Algorithm 1 works as follows. (Line 1) We initialise the control policy and the predictive

model (DVAE-2) parameters. (Line 2) The Z variable denotes a finite set of sequential

view model (ENC) predictions that are used to capture time dependency between states in

the reason model (TR). (Line 5) We collect samples from the real environment penv under

a predefined policy, such as an expert system, see Figure 2. (Line 6) The predictive model

pψ is then trained using the collected data Denv via maximum likelihood estimation. In

our case, we use mean squared error to measure the error distanceMSE(pψ‖penv). When

the DVAE-2 algorithm has trained sufficiently, the model-free algorithm will train for M

epochs (Line 7) using the predictive model pψ instead of penv. (Line 8) First, we sample

the initial state s0 uniformly from the real dataset Denv. (Line 9) We then construct a

prediction dataset Dpψ and predict future states using the control policy (i.e. sampling

from the predictive model). (Line 10) The parameterised control policy is then optimised

using (ŝt, at, r̂t, ŝt+1)
πθ pairs during rollouts.

5 The Deep Warehouse Environment
Training algorithms in real-world environments is known to have severe safety challenges

during training and suffers from low sampling speeds [6]. It is therefore practical, to

create a simulation of the real environment so that researches can quickly test algorithm

variations with quick feedback on its performance.

This section presents the Deep Warehouse4 environment for discrete and continuous ac-

tion and state spaces. The environment has a wide range of configurations for time and

3We use the mean squared error (MSE) loss in our implementation.
4The deep warehouse environment is open-source and freely available at https://github.com/

cair/deep-warehouse

E

Paper E: Towards Model-Based Reinforcement Learning for Industry-near Environments



agent behaviour, giving it tolerable performance in simulating proprietary automated stor-

age and retrieval systems.

5.1 Motivation

In the context of warehousing, an Automated Storage and Retrieval System (ASRS) is

a composition of computer programs working together to maximise the incoming and

outcoming throughput of goods. There are many benefits of using an ASRS system,

including high scalability, increased efficiency, reduced operating expenses, and operation

safety. We consider a cube-based ASRS environment where each cell is stacked with

item containers. On the surface of the cube, taxi-agents are collecting and delivering

goods to delivery points placed throughout the surface. The taxi-agents are controlled by

a computer program that reads sensory data from the taxi and determines the next action.

Although these systems are far better than manual labour warehousing, there is still signif-

icant improvement potential in current state-of-the-art. Most ASRS systems are manually

crafted expert systems, which due to the high complexity of the multi-agent ASRS sys-

tems only performs sub-optimally. [20].

5.2 Implementation

Figure 4 illustrates the state-space in the deep warehouse environment. In a simple

cube-based ASRS configuration, the environment consists of (B) passive and (C) active

delivery-points, (D) pickup-points, and (F) taxis. Also, the simulator can model other

configurations, including advanced cube and shelf-based automated storage and retrieval

systems. In the deep warehouse environment, the goal is to store and retrieve goods from

one location to another where each cell represents several layers of containers that a taxi

can pick up. A taxi (F) receives feedback based on the time used on the task it performs.

A taxi can move using a discrete or continuous controller. In discrete mode, the agent

can increase and decrease thrust, and move in either direction, including the diagonals.

For the continuous mode, all of these actions are floating point numbers between (off) 0

and (on) 1, giving a significantly harder action-space to learn. The simulator also features

continuous mode for the state-space, where actions are performed asynchronously to the

game loop. It is possible to create custom support modules for mechanisms such as task

scheduling, agent controllers and fitness scoring.

A significant benefit of the deep warehouse is that it can accurately model real warehouse

environments at high speed. The deep warehouse environment runs 1000 times faster on a

single high-end processor core compared to real-world systems measured from the speed

improvement by counting how many operations a taxi can do per second. The simulator

can be distributed across many processing units to increase the performance further. In
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Figure 4: Illustration of the graphical interface in the deep-warehouse environment using

cube-based ASRS configuration.

our benchmarks, the simulator was able to collect 1 million samples per second during

the training of deep learning models using high-performance computing (HPC).

6 Experimental Results
In this section, we present our preliminary results of applied model-based reinforcement

learning using DVAE-2. We aim to answer the following questions.

(1) Does the DVAE-2 algorithm improve sample efficiency compared to model-free meth-

ods? (2) How well do DVAE-2 perform versus model-free methods in the deep warehouse

environment? (3) Which of DVAE-2 VRC components is preferred by the model?

6.1 The importance of compute

According to AI pioneer Richard S. Sutton “The biggest lesson that can be read from 70

years of AI research is that general methods that leverage computation are ultimately the

most effective, and by a large margin.” [22]. It is therefore not surprising that compute

is still the most decisive factor when training a large model, also for predictive models.

DVAE-2 was initially trained using two NVIDIA 2080 RTX TI GPU cards that, if tuned

E

Paper E: Towards Model-Based Reinforcement Learning for Industry-near Environments



0k 100k 200k
step

0

200

400

600

av
er

ag
e 

re
tu

rn

Deep Line Wars

0k 100k 200k
step

400

200

av
er

ag
e 

re
tu

rn

Deep RTS

0k 50k 100k 150k
step

0

200

400

av
er

ag
e 

re
tu

rn

Deep Warehouse

0k 25k 50k 75k
step

50

100

150

200

av
er

ag
e 

re
tu

rn

CartPole

DQN PPO DVAE-2 convergence

Figure 5: We compare DVAE-2 using two baseline algorithms, DQN and PPO. The solid

curve illustrates the mean of 12 trials and shaded regions is the standard deviation between

all trials. The x-axis shows the number of episodes performed and the y-axis shows the

average return.

properly, can operate at approximately 26.9 TFLOPS. For simpler problems, such as grid-

warehouses of size 5 × 5 and CartPole, the compute was enough to train the model in 5

minutes, but for larger environments, this time grew exponentially. To somewhat miti-

gate the computational issue for larger environments, we performed the experiments with

approximately 1.25 PFLOPS of compute power. This led to significantly faster training

speeds, and made large experiments feasible5

6.2 Results

Figure 5 shows that the average return value of DVAE-2 training four tasks, including

Deep RTS [2], Deep Warehouse, Deep Line Wars [1] and CartPole [7].

Deep Warehouse: The environment is a contribution in this paper for industry-near test-

ing of autonomous agents. The DVAE-2 algorithm outperforms both PPO and DQN in

terms of sampling and performance during 150000 game steps. The score function is a

counter of how many tasks the agent has performed during the episode. If the agent man-

ages to collect and retrieve 300 packages, the agent has sufficient performance to beat

5We recognise large experiments to consist of environments where the agents require significant sam-
pling to converge.
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many handcrafted algorithms in ASRS systems. The environment is multi-agent, and in

this experiment, we used a 30× 30 grid with 20 taxis running the same policy.

Deep RTS is a flexible real-time strategy game (RTS) engine with multiple environments

for unit control and resource management. In this experiment, we used the resource

harvester environment where the goal is to harvest 500 wood resources before the time

limit is up. The score is measured from -500 to 0, where 0 is the best score. For every

wood harvested, the score increase with 1. We consider the task mastered if the agent has

less than -200 score at the terminal state. DVAE-2 outperform the baseline algorithms in

terms of sample efficiency but falls behind PPO in terms of score performance. [2]

Deep Line Wars: Surprisingly, the DQN policy outperforms the DVAE-2 and PPO pol-

icy in 11× 11 discrete action-space environment. Because we used PPO as the policy for

DVAE-2, we still see a marginal improvement over the same algorithm in a model-free

setting yielding better performance and better sample efficiency. We found that DQN

quickly learned the correct Q-values due to the small environment size. In future ex-

periments, we would like to include larger map sizes that would increase the state-space

significantly, hence making Q-values more challenging to learn. [1]

CartPole: As a simple baseline environment, we use CartPole from the OpenAI Gym

environment suite [7]. The goal of this environment is to balance a pole on a moving cart

using a discrete action-space of 2 actions. We found that DVAE-2 and PPO had similar

performance, but DVAE-2 had marginally better sample efficiency after 25000 steps.

In terms of VRC, the algorithm tended to choose Convolutional + LSTM and Temporal

Convolution and GAN for continuous control tasks (see Figure 1). It should be noted

that PPO and DVAE-2 are presented with the same hyper-parameters, and are therefore

directly comparable. We used PPO as our policy for DVAE-2, and we see that DVAE-2

is more sample efficient and performs equally good or better than model-free PPO in all

tested scenarios.

7 Conclusion and Future Work
In this paper, we present DVAE-2, a novel model-based reinforcement learning algorithm

for improved sample efficiency in environments where sampling is not available. We also

present the deep warehouse environment for training reinforcement learning agents in

industry-near ASRS systems. This section concludes our work and defines future work

for DVAE-2..

Although the deep warehouse does not behave identical to a real-world system, it is ad-

equate to determine the training time and performance. DVAE-2 is presented as a VRC

model for training reinforcement learning algorithms with a learned model of the envi-
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ronment. The method is tested in the Deep warehouse several continuous game environ-

ments. Our algorithm reduces training time and depends less on data sampled from the

real environment compared to model-free methods.

We find that a carefully tuned policy gradient algorithms can converge to near-optimal

behaviour in simulated environments. Model-free algorithms are significantly harder to

train in terms of sample efficiency and stability, but perform better if there is unlimited

sampling available from the environment.

Our work shows promising results for reinforcement learning agents in ASRS. There are,

however, open research questions that are essential for safe deployment in real-world

systems. We wish to pursue the following questions to achieve safety deployment in

real-world environments. (1) How do we ensure that the agent acts within defined safety

boundaries? (2) How would the agent act if parts of the state-space changes to unseen data

(i.e. a fire occurs, or a collision between agents.) (3) Can agents with a non-stationary

policy function well in a multi-agent setting?
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Abstract

Reinforcement learning is a broad scheme of learning algorithms that, in recent times,

has shown astonishing performance in controlling agents in environments presented as

Markov decision processes. There are several unsolved problems in current state-of-the-

art that causes algorithms to learn suboptimal policies, or even diverge and collapse com-

pletely. Parts of the solution to address these issues may be related to short- and long-term

planning, memory management, and exploration for reinforcement learning algorithms.

Games are frequently used to benchmark reinforcement learning algorithms as they pro-

vide a flexible, reproducible, and easy to control environments. Regardless, few games

feature the ability to perceive how the algorithm performs exploration, memorization,

and planning. This paper presents The Dreaming Variational Autoencoder with Stochas-

tic Weight Averaging and Generative Adversarial Networks (DVAE-SWAGAN), a neu-

ral network based generative modeling architecture for exploration in environments with

sparse feedback. We present deep maze, a novel, and flexible maze game-engine that chal-

lenges DVAE-SWAGAN in partial and fully-observable state-spaces, long-horizon tasks,
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and deterministic and stochastic problems. We show results between different variants of

the algorithm and encourage future work in reinforcement learning driven by generative

exploration.

Keywords: Deep Reinforcement Learning; Environment Modeling; Neural Networks;

Variational Autoencoder; Markov Decision Processes; Exploration; Artificial Experience-

Replay, Generative Adversarial Networks, Model-Based RL, Generative Modeling

1 Introduction
Reinforcement learning (RL) is a field of research that has quickly become one

of the most promising branches of machine learning algorithms to solve artificial

general intelligence ([Kaelbling et al., 1996, Li, 2017, Arulkumaran et al., 2017], and

[Mousavi et al., 2018]). There have been several breakthroughs in reinforcement learning

research in recent years for environments such as the Atari Arcade ([Mnih et al., 2013,

Mnih et al., 2015]), AlphaZero ([Silver et al., 2017]), OpenAI Five, and AlphaStar

([Arulkumaran et al., 2019]), but no algorithms are capable of human performance with-

out extensive hardware requirements that are accessible to only a few institutions, such

as Deep Mind and Open AI. Due to this, reinforcement learning still has several open

research questions to address before the general public can deploy these algorithms suc-

cessfully. It is possible that many of the issues in the current state of the art can be

resolved with algorithms that adequately accounts for planning, exploration, and memory

efficiency at different time-horizons.

In current state-of-the-art RL algorithms, long-horizon RL tasks are difficult to master

because there is as of yet no optimal exploration algorithm that is capable of proper state-

space pruning. Exploration strategies such as ε-greedy are widely used in RL, but can-

not find an adequate exploration/exploitation balance without exhaustive hyperparameter-

tuning. Environment modeling is a promising exploration method where the goal is to

imitate the behavior of a target environment. By constructing an artificial model of the

environment, the need to interact with the ground-truth environment is reduced signifi-

cantly. This enables the RL-algorithm to explore large parts of the state space without

the cost of exhausting the ground-truth environment. A balance between exploration and

exploitation must be accounted for to learn the underlying dynamics of the environment.

The algorithm must, therefore, select observations carefully to only learn essential fea-

tures during the exploration phase.

By combining generative modeling with deep reinforcement learning, we find that it is

possible for agents to learn optimal policies using only generated training data samples.

The approach that we present is the dreaming variational autoencoder with two exten-

sions, based on generative adversarial networks and stochastic weight averaging. We also
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present a new learning environment, deep maze, that aims to bring a vast set of chal-

lenges for reinforcement learning algorithms and is the environment used for testing the

presented algorithms.

This paper is organized as follows. Section 2 surveys recent work in the field. Section

3 briefly introduces the reader to preliminaries. Section 4 proposes The Dreaming Vari-

ational Autoencoder for environment modeling to improve exploration in RL. Section 5

introduces the deep maze learning environment for exploration, planning and memory

management research for reinforcement learning. Section 6 shows results in the deep line

wars environment and that RL agents can be trained to navigate through the deep maze

environment using only artificial training data. Finally, we summarize our findings and

outlines future work in Section 7.

2 Literature Review
In machine learning, the goal is to create an algorithm that is capable of accurately rep-

resenting a target environment. There is, however, little literature on generative modeling

for game environments on the scale we propose in this paper. The primary focus of recent

RL research has been through improvements in on and off policy algorithms, while less

attention has been put into generative exploration. This section introduces a thorough

literature review of reinforcement based generative modeling.

[Bangaru et al., 2016] proposed a method of deducing the Markov Decision Process

(MDP) by introducing an adaptive exploration signal (pseudo-reward), which was ob-

tained using deep generative model. Their approach was to compute the Jacobian of each

state and used it as the pseudo-reward when using deep neural networks to learn the state-

generalization.

[Xiao and Kesineni, 2016] proposed the use of generative adversarial networks (GAN) for

model-based reinforcement learning. The goal was to utilize GAN for learning dynamics

of the environment in a short-horizon timespan and combine this with the strength of far-

horizon value iteration RL algorithms. The GAN architecture proposed illustrated near

authentic generated images giving comparable results to [Mnih et al., 2013].

[Higgins et al., 2017] proposed DARLA, an architecture for modeling the environment

using β-VAE ([Higgins et al., 2016]). The trained model was used to learn the op-

timal policy of the environment using algorithms such as Deep Q-Networks (DQN)

([Mnih et al., 2015]), Asynchronous Actor-Critic Agents (A3C) ([Mnih et al., 2016]), and

Episodic Control ([Blundell et al., 2016]). DARLA is to the best of our knowledge, the

first algorithm to introduce learning without access to the ground-truth environment dur-

ing training.
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Buesing et al. recently compared several methods of environment modeling, showing that

it is far better to model the state-space then to utilize Monte-Carlo rollouts (RAR). The

proposed architecture, state-space models (SSM) was significantly faster and produced

acceptable results compared to auto-regressive (AR) methods. ([Buesing et al., 2018])

The algorithm VMAV-C is a combination of VAE and attention-based value func-

tion (AVF), and mixture density network recurrent neural network (MDN-RNN) from

[Ha and Schmidhuber, 2018]. This modification to the original World Models algorithm

improved performance in the Cart Pole environment. They used the on-policy algo-

rithm PPO to learn the optimal policy from the latent representation of the state-space

([Liang et al., 2018]).

Deep Planning Network (PlaNet) is a model-based agent that interpret the pixels of a

state to learn the dynamics of an environment. The environment dynamics are stored into

latent-space, where the agent sample actions based on the learned representation. The

proposed algorithm showed significantly better sample efficiency compared to algorithms

such as A3C ([Hafner et al., 2018]).

[Chua et al., 2018] recently proposed Probabilistic Ensembles with Trajectory Sampling

(PETS). The algorithm uses an ensemble of bootstrap neural networks to learn a dynamics

model of the environment over future states. The algorithm then uses this model to predict

the best action for future states. The authors show that the algorithm significantly lowers

sampling requirements for environments such as half-cheetah compared to SAC and PPO.

Stochastic optimal control with latent representations (SOLAR) is an algorithm that learns

the dynamics of the environment by exploiting the knowledge from a reinforcement learn-

ing policy. This enables the algorithm to learn local models which are used in policy

learning for complex systems. SOLAR is built around a probabilistic graphical model

(PGM) structure that allows efficient learning of the environment model. By exploiting

the locality of the model, the authors show that the gradients give good direction for pol-

icy improvements during training. The algorithm was compared to model-free methods

and showed significantly better performance and data efficient compared to algorithms

such as LQR-FLM. ([Zhang et al., 2018])

[Ha and Schmidhuber, 2018] proposed in Recurrent World Models Facilitate Policy Evo-

lution, a novel architecture for training RL algorithms using variational autoencoders.

This paper showed that agents could successfully learn the environment dynamics and

use this as an exploration technique requiring no interaction with the target domain. The

architecture is mainly three components; vision, controller, and model, the vision model

is a variational autoencoder that outputs a latent-space variable of an observation. The

latent-space variable is processed in the model and is fed into the controller for action de-
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cisions. Their algorithms show state-of-the-art performance in self-supervised generative

modeling for reinforcement learning agents.

One of the most recent advancements in generative modeling for reinforcement learn-

ing is the Neural Differential Information Gain Optimisation (NDIGO) algorithm by

[Azar et al., 2019], a self-supervised exploration model that learns a world model rep-

resentation from noisy data. The primary features of NDIGO are its robustness to noise

due to their method to cancel out negative loss and to give positive learning more value.

The authors show in their maze environment that the model successfully converges to-

wards an optimal world model even when introducing noise. The author claims that the

algorithm outperforms previous state-of-the-art, being the Recurrent World Model from.

3 Background
We base our work on the well-established theory of reinforcement learning originally

formulated in [Sutton et al., 1999], defining the problem as a MDP as 〈S,A,R, T 〉 pairs.

The state-space, S represents all possible states while the action-space, A represents all

available actions the agent can perform in the environment. R is the reward function

while T denotes the transition function (T : S × A → S), which is a mapping from

state st ∈ S and action at ∈ A to the future state st+1. After each performed action, the

environment dispatches a reward signal,R : S → r.

We call a sequence of states and actions a trajectory denoted as

τ = (s0, a0, . . . , st, at) and the sequence is sampled through the use of a stochastic policy

that predicts the optimal action in any state: πθ(at|st), where π is the policy and θ are the

parameters. The primary goal of the reinforcement learning is to reinforce good behavior.

The algorithm should try to learn the policy that maximizes the total expected discounted

reward given by, J (π) = E(st,at)∼p(π) [
∑T

i=0 γ
iR(si)] [Mnih et al., 2015].

Several algorithms try to address the problem of reinforcement learning, commonly di-

vided into three categories; Value Iteration, Policy Iteration and Actor-Critic Algorithms,

with variations of on-policy, and off-policy learning.

Autoencoders are commonly used in supervised learning to encode arbitrary input to a

compact representation, and using a decoder to reconstruct the original data from the

encoding. The purpose of autoencoders is to store redundant data into a densely packed

vector form. In its simplest form, an autoencoder consists of feed-forward neural network

where the input and output layer is of equal neuron capacity and the hidden layer smaller,

used to compress the data. Such autoencoder can be defined as: φ : X → Z , ψ : Z →
X , where φ, ψ : argmin

φ,ψ
||X − (φ × ψ) ∧X ||2. In this notation, X defines the input, Z ,

the encoding and ∧X as the reconstructed data. There are, however several issues with
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Algorithm
Branch

Sample Effi-
cient

Sequential
Data

Generative
Modeling

Labeled Data

Reinforcement

Learning

No Yes No No

Variational

Autoencoders

Yes Yes Yes Yes

Generative

Adversarial

Networks

Yes No Yes Yes

DVAE-GAN Yes Yes Yes Yes

Table 1: A comparison of features in general reinforcement learning, variational autoen-

coders, and generative adversarial networks. The purpose of this illustration is to show

that the proposed algorithm uses generative modeling to inherit sample efficient genera-

tive modeling for sequential data for use in reinforcement learning algorithms.

autoencoders, as they are not generative, in the sense that they can transition between

features in the input data. To remedy this, [Kingma and Welling, 2013] proposed the

Variational Autoencoder (VAE) algorithm that enables interpolation between features in

the latent space. The interpolation is done by introducing a vector of means µ and a

vector of standard deviations σ. These vectors, along with the additional KL-Loss gives

the algorithm the ability to learn variations in the input data, enabling the output to be

vastly more diverse.

Our background for choosing the following branch of algorithms are described in Table

1. Algorithms based on reinforcement learning learns by hands-on interaction. Experi-

ence is attained by exploring the environment, but in some cases, the environment may be

exhausted before the agent can learn to behave optimally. To remedy this, we introduce a

model-based exploration approach using VAE to model the environment with sequential

data as input. This increase the sampling efficiency of the RL algorithm by a signifi-

cant amount. To increase the performance of the environment model, GAN is used to

strengthen the quality of the environment-model, where the VAE and GAN continually

reinforce each other’s performance.

4 The Dreaming Variational Autoencoder
The Dreaming Variational Autoencoder (DVAE) is an end-to-end solution for generating

probable future states ŝt+n from an arbitrary state-space S using state-action pairs ex-

plored prior to st+n and at+n. Figure 1 illustrates the DVAE model, where Algorithm

1 works as follows. First, the agent collects experiences for utilizing experience-replay
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Figure 1: Illustration of the DVAE model. The model consumes state and action pairs,

yielding the input encoded in latent-space. Latent-space can then be decoded to a probable

future state. Q(z|X) is the encoder, zt is latent-space, and P(X|z) is the decoder. DVAE

can also use LSTM to better learn longer sequences in continuous state-spaces.

in the Run-Agent function. At this stage, the agent explores the state-space guided by a

Gaussian distributed policy. The agent acts, observes, and stores the observations into the

experience-replay buffer D. After the agent reaches terminal state, the DVAE algorithm

encodes state-action pairs from the replay-buffer D into probable future states. This is

stored in the replay-buffer for artificial future-states D̂.

N/A

Real	States 

Generated	States 

 ( , )�0 ���ℎ�  ( , )�1 ����

( , , �)� �0 ���ℎ� ( , , �)� � ̂ 1 ����
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� ̂ 1 � ̂ 2

Figure 2: DVAE algorithm for generating states using Tθ versus the real transition function

T . First, a real state is collected from the replay-memory. DVAE can then produce new

states from current the trajectory τ using the state-action pairs. θ represent the trainable

model parameters.

Table 2 illustrates how the algorithm can generate sequences of artificial trajectories using

Tθ = P(X|Q(z|X)), where z = Q(z|X) is the encoder, and Tθ = P(X|z) is the decoder.

With state s0 and action Aright as input, the algorithm generates state ŝ1 which in the
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Algorithm 1 The Dreaming Variational Autoencoder
1: Initialize replay memory D and ∧D to capacity N
2: Initialize policy πθ
3: function RUN-AGENT(T , D)

4: for i = 0 to N EPOCHS do
5: Observe starting state, s0 ∼ N (0, 1)

6: while st not TERMINAL do
7: at ← πθ(st = s)

8: st+1, rt, terminalt ← T (st, at)
9: Store experience into replay buffer D(st, at, rt, st+1, terminalt)

10: st ← st+1

11: end while
12: end for
13: end function
14: Initialize encoder Q(z|X)

15: Initialize decoder P(X|z)
16: Initialize DVAE model Tθ = P(X|Q(z|X))

17: function DVAE

18: for di in D do
19: st, at, rt, st+1 ← di . Expand replay buffer pair

20: Xt ← st, at

21: zt ← Q(Xt) . Encode Xt into latent-space

22: ŝt+1 ← P(zt) . Decode zt into probable future state

23: Store experience into artificial replay buffer ∧D(ŝt, at, rt, ŝt+1, terminalt)

24: ŝt = ŝt+1

25: end for
26: return ∧D
27: end function
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Figure 3: The proposed DVAE-GAN architecture. While the original VAE architecture

persist, as described in Algorithm 1, a new generative adversarial networks component is

added for increased generalization across the latent-space.

table can be observed is similar to the real state s1. With the next input,Adown, the DVAE

algorithm generates the next state ŝ2 which again can be observed to be equal to s2. Note

that this is without ever observing state s1. Hence, the DVAE algorithm needs to be

initiated with a state, e.g. s0, and actions follows. It then generates (dreams) next states,

The requirement is that the environment must be partially discovered so that the al-

gorithm can learn to behave similarly to the target environment. To predict a trajec-

tory of three timesteps, the algorithm does nesting to generate the whole sequence:

τ = ŝ1, a1, ŝ2, a2, ŝ3, a3 = Tθ(Tθ(Tθ(s0,Arnd),Arnd),Arnd). The algorithm does this

well early on, but have difficulties with longer state sequences in continuous state-spaces.

Generative Adversarial Network Approach (DVAE-GAN) To combat the divergence

behavior in continuous state-space, we extend the model to use generative adversarial

networks. The most common cases of divergence are found where there are (1) complex

state-transitions, (2) many state-transitions, and (3) sparse state-transitions. In general,

we find these properties in continuous and stochastic environments. By using an adver-

sarial approach, we see that DVAE-GAN better generalize for such problems and is far

more stable due to increased diversity compared to DVAE (See table 2 for a detailed

comparison).

Figure 3 illustrates the proposed DVAE-GAN extension to the original DVAE architec-

ture. In this model, two new components; the generator G and discriminator D is intro-
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duced. This is an adversarial approach previously proposed by [Makhzani et al., 2015].

The generatorG(n|St, At) samples from a Gaussian distribution, while being conditioned

on the current state and action, to predict the latent-space distribution zgan. The discrimi-

nator D(zvae, zgan) is a neural network that tries to predict the validity of the input, in this

case, if the latent-space variable is from the ground-truth distribution. A min-max game

between the generator and the discriminator fuels learning where the generator minimizes

its error towards the real latent-space and the discriminator learns to distinguish between

the real and fake latent distribution. In the VAE model, the latent-space distribution is

sampled from zvae = αt + (µt × N(0, 1)) as proposed by [Kingma and Welling, 2013].

The discriminator should then evaluate zvae to be genuine, and its parameters are updated

according to the confidence of the prediction. To increase the stability of the VAE, we

add the loss of the discriminator to the VAE loss, where we use the original loss function

first proposed by [Kingma and Welling, 2013].

Stochastic Weight Averaging Approach (DVAE-SWAGAN) We introduced DVAE-

GAN which tries to combat divergence for complex environments. The GAN architec-

ture increases the diversity of the latent-space, but model collapse and instability become

a problem. Table 2 outlines a quick overview of the benefits of each of the introduced

generative models. VAE is known for its stability but has limited capabilities in its latent-

space capacity. The quality of VAE is good but suffers from a severe blurring of the

decoded latent-space. Compared to other algorithms, the VAE architecture does not gen-

eralize well to a diverse data set. The generative adversarial networks have gotten in-

creased attention due to their diverse latent-space. The images of GANs are known for its

sharpness, but they suffer from artifacts in the produced output. These networks are state-

of-the-art in the sense that they generalize well to the data set. DVAE-GAN as proposed

by [Makhzani et al., 2015] have few artifacts, which is an improvement from the regular

GAN architecture. There is, however, high variance in the model which makes it unsta-

ble beyond what is seen in vanilla VAE and GAN. To improve the model instability, we

introduce Stochastic weight averaging (SWA), first proposed by [Izmailov et al., 2018].

DVAE-SWAGAN is a combination of VAE, SWA, and GAN to significantly reduce the

variance of the predictions. The algorithm is in principle the averaged ensemble of DVAE-

GAN along the trajectory of SGD. We use a cyclical learning rate ([Smith, 2015]) and

average the weights each training iteration creating the DVAE-SWAGAN model, seen in

Figure 4.
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Table 2: Feature overview of VAE, GAN, DVAE-GAN, and DVAE-SWAGAN. The high-

lighted text outlines the benefits of the model.

Model Features Image Quality Data Gen-
eralization

VAE
• Converge to local minimum

• Stable
• Few Artifacts
• Blurry

• Low

GAN
• Converge to saddle points
• Unstable

• Artifacts

• Sharp
• Medium

DVAE-

GAN

• Converge to saddle points

• Unstable

• Few Artifacts
• Sharp

• Medium

DVAE-

SWAGAN

• Converge to saddle points

• Stable
• Few Artifacts
• Sharp

• High

DVAE-GAN1 DVAE-GAN2 DAVAE-GANn-1
....... 

DAVAE-GANn 

DVAE-SWAGAN OutputInput

Figure 4: By using ensembles of DVAE-GAN models, the training is significantly more

stable and prediction across sparse states yield better results for sequential input.

F

Paper F: Increasing Sample Efficiency in Deep Reinforcement Learning using
Generative Environment Modelling



(a) A Small, Fully Observable MDP(b) A Large, Fully Observable MDP

(c) Partially Observable MDP hav-
ing a vision distance of 3 tiles

(d) Partially Observable MDP hav-
ing ray-traced vision

Figure 5: Overview of four distinct MDP scenarios using deep maze.

5 Environments
The DVAE algorithm was tested in two environments. The first environment is the deep

line wars that were introduced by [Andersen et al., 2017], a simplified Real-Time Strat-

egy game. We present deep maze, a flexible environment with a wide range of challenges

suited for reinforcement learning research. The deep line wars environments feature a

continuous environment where complex strategies must be planned. The deep maze en-

vironment provides simpler rules and a non-continuous action and state-space that in-

comparison is far simpler then deep line wars.

The Deep Maze Environment The deep maze is a flexible learning environment for

controlled research in exploration, planning, and memory for reinforcement learning al-

gorithms. Maze solving is a well-known problem, and is used heavily throughout the RL

literature [Sutton et al., 1999], but is often limited to small and fully-observable scenarios.

The deep maze environment extends the maze problem to over 540 unique scenarios in-

cluding Partially-Observable Markov Decision Processes (POMDP). Figure 5 illustrates

a small subset of the available environments in the deep maze, ranging from small-scale

MDP’s to large-scale POMDP’s. The deep maze further features custom game mechanics

such as relocated exits and dynamically changing mazes. RL agents depend on sensory

input to evaluate and predict the best action at the current timestep. Preprocessing of

data is essential so that agents can extract features from the input data. For this reason,

F

Paper F: Increasing Sample Efficiency in Deep Reinforcement Learning using
Generative Environment Modelling



Figure 6: The Graphical User Interface of the deep line wars environment.

deep maze has built-in state representation for imaging and raw state matrices. The game

engine is modularized and has an SDK that enables the development of third-party sce-

narios. This extends the capabilities of deep maze to support nearly all possible scenario

combination in the realm of maze solving.1

The deep maze learning environment presents the following scenarios. (1) Normal, (2)

POMDP, (3) Limited POMDP, and (4) Timed Limited POMDP. The first mode exposes

a seed-based randomly generated maze where the state-space an MDP. The second mode

narrows the state-space observation to a configurable area around the player. In addition to

radius based vision, the POMDP mode also features ray-tracing vision that better mimic

the sight of a physical agent. The third and fourth mode is intended for memory research

where the agent must find the goal in a limited number of time-steps. In addition to

this, the agent is presented with the solution but fades after a few initial time steps. The

objective is for the agent to remember the solution to find the goal. All scenario setups

have a variable map-size ranging between 2× 2 and 56× 56 tiles.

5.1 The Deep Line Wars Environment

The deep line wars environment was originally introduced in [Andersen et al., 2017].

Deep line wars is a real-time strategy environment that makes an extensive state-space

reduction to enable swift research in reinforcement learning for RTS games.

The game objective of deep line wars is to invade the enemy player with mercenary units

until all health points are depleted, see Figure 6. For every friendly unit that enters the

far edge of the enemy base, the enemy health pool is reduced by one. When a player

purchases a mercenary unit, it spawns at a random location inside the edge area of the

buyers base. Mercenary units automatically move towards the enemy base. To protect the

1The deep maze is open-source and publicly available at https://github.com/CAIR/deep-
maze.
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base, players can construct towers that shoot projectiles at the opponent’s mercenaries.

When a mercenary dies, a fair percentage of its gold value is awarded to the opponent.

When a player sends a unit, the income is increased by a portion of the units gold value.

As a part of the income system, players gain gold at fixed intervals.

6 Experiments
We center our experiments around the DVAE, DVAE-GAN, DVAE-SWA, and DVAE-

SWAGAN. The goal of the proposed extensions is to improve the model stability so that

the DVAE algorithm can produce better quality output for continuous and sparse state-

spaces. In this section, we show results of model-based reinforcement learning using

DVAE in the deep-maze and deep-line wars environment. We show the performance of

encoding raw pixel input to a compact representation and to decode this representation to

probable future states.

6.1 The Dreaming Variational Autoencoder

Deep Maze For the deep maze environment, the algorithm must be able to generalize

over many similar states to model a large state-space. DVAE aims to learn the transition

function T (st, at), bringing the state from st to st+1. We use the deep maze environment

because it provides simple rules, with a controllable state-space complexity. Also, we can

omit the importance of reward for some scenarios.

We trained the DVAE model on two No-Wall deep maze scenarios of size 2 × 2 and

8 × 8. For the encoder and decoder, we used the same convolution architecture as pro-

posed by [Pu et al., 2016] and trained for 5000 epochs2 in the 8 × 8 scenario and 1000

epochs for 2×2 respectively. The reasoning behind different epoch lengths is because we

expect simpler environments to converge faster. For the encoding of actions and states,

we concatenate the flattened state-space and action-space, having a fully-connected layer

with ELU activation before calculating the latent-space. We used the Adam optimizer

[Kingma and Ba, 2015] with a learning-rate of 3e-05 to update the parameters. To calcu-

late the loss we used the same loss function as proposed by [Kingma and Welling, 2013].

Figure 7 illustrates the loss during the training phase for the DVAE algorithm in the No-

Wall Deep Maze scenario. In the 2 × 2 scenario, DVAE is trained on only 50% of the

state space, which results in noticeable graphics artifacts in the prediction of future states,

seen in Figure 8. In the 8 × 8 environment, the algorithm is allowed to train on all

possible states, and we observe in Figure 9 that there is significantly better image quality

throughout the sampling process.

2We regard the term epoch as an episode, which is frequently in literature.
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Figure 7: The training loss for DVAE in the 2× 2 No-Wall and 8× 8 deep maze scenario.

The experiment is run for a total of 1000 (5000 for 8 × 8) epochs. The algorithm only

trains on 50% of the state-space to the model for the 2 × 2 environment while the whole

state-space is trainable in the 8× 8 environment.

ŝt+1 ŝt+2 ŝt+3 ŝt+4 ŝt+5 ŝt+6 ŝt+7 ŝt+8 Right Down Left Up Down Right Up

Figure 8: For the 2 × 2 scenario, only 50% of the environment is explored, leaving arti-

facts on states where the model is uncertain of the transition function. In more extensive

examples, the player disappears, teleports or gets stuck in unexplored areas.

ŝt+1 ŝt+2 ŝt+3 ŝt+4 ŝt+5 ŝt+6 

ŝt+7 ŝt+8 ŝt+9 ŝt+10 ŝt+11 ŝt+12 

Right Right Up Up Up Left

Left Down Down Down Down

Figure 9: Results of 8× 8 Deep Maze modeling using the DVAE algorithm. To simplify

the environment, no reward signal is received per iteration. The left caption describes cur-

rent state, st, while the right caption is the action performed to compute, st+1 = T (st, at).
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Table 3: Results of the deep maze 11 × 11 and 21 × 21 environment, comparing DQN

[Mnih et al., 2015], TRPO [Schulman et al., 2015], and PPO [Schulman et al., 2017].

The optimal path yields performance of 100% while no solution yields 0%. Each of the

algorithms ran 10000 epochs for both map-sizes. Converged Epoch represents at which

epoch the algorithm converged during training.

Algorithm 11× 11 Avg Perf. Converged

Epoch

21× 21 Avg Perf. Converged

Epoch

DQN-∧D 94.56% 9314 64.36% N/A

TRPO-∧D 96.32% 5320 78.91% 7401

PPO-∧D 98.71% 3151 89.33% 7195

DQN-D 98.26% 4314 84.63% 8241

TRPO-D 99.32% 3320 92.11% 4120

PPO-D 99.35% 2453 96.41% 2904

Training RL-Agents using ∧D replay-buffer The goal of this experiment is to observe

the performance of RL-agents using the generated experience-replay ∧D from Algorithm 1

in Deep Maze environments of size 11 × 11 and 21 × 21. In Table 3, we compare

the performance of DQN [Mnih et al., 2013], TRPO [Schulman et al., 2015], and PPO

[Schulman et al., 2017] using the DVAE generated ∧D to tune the parameters. Because

TRPO and PPO are on-policy algorithms, the generated states must be generated on-the-

fly so that the algorithm remains on-policy.

Text

Figure 10: A typical deep maze of size 11 × 11. The lower-right square indicates the

goal state, the dotted-line is a retrace of the predicted optimal path for that maze, while

the final square represents the player’s current position in the state-space. The controller

agent is DQN, TRPO, and PPO (from left to right).

Figure 10 illustrates three maze variations of size 11 × 11, where the agent has learned

the optimal path. We see that the best performing algorithm, PPO [Schulman et al., 2017]

beats DQN and TRPO using either ∧D or D. The DQN-∧D agent did not converge in

the 21 × 21 environment, but it is likely that value-based algorithms could struggle to
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map inaccurate states with graphical artifacts generated from the DVAE algorithm. These

artifacts significantly increase the state-space significantly, but empirical data suggest that

on-policy algorithms perform better on noisy state-spaces.

Deep Line Wars The DVAE algorithm works well in more complex environments, such

as the deep line wars game environment [Andersen et al., 2017]. Here, we expand the

DVAE algorithm with LSTM to improve the capability of generating time-bound data,

such as animations seen in Figure 1.

Epoch 50                          Epoch 1 000                     Epoch 1 500

Epoch 2 000                    Epoch 2 500                     Epoch 3 000

Epoch 3 500                    Epoch 4 000                      Epoch 4 500

Epoch 5 000                     Epoch 5 500                     Epoch 6 000

Figure 11: The DVAE algorithm applied to the deep line wars environment. Each epoch

illustrates the quality of generated states in the game, where the left image is real state s,

and the right image is the generated state ŝ.

Figure 11 illustrates the state quality during training of DVAE in a total of 6000 epochs.

Both players draw actions from a Gaussian distributed policy. The algorithm understands

that the player units can be located in any tiles after only 50 epochs, and at 1000 epochs

we observe the algorithm makes significantly better predictions of the probability of unit

locations (i.e., some units show more densely in the output state). At the end of the
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training, the DVAE algorithm is to some degree capable of determining both towers, and

unit locations at any given time-step during the game epoch.

6.2 Extending The Dreaming Variational Autoencoder

The goal of DVAE-SWA, DVAE-GAN and DVAE-SWAGAN is to perform better in con-

tinuous state-spaces, such as the deep line wars environment. The experiments were per-

formed using a map size of 11× 11 sampling actions from a PPO policy.
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(b) Autoencoder loss (L2) for the algorithms.
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Figure 12: Training of DVAE compared to the DVAE-SWA, DVAE-GAN and DVAE-

SWAGAN extension.

Figure 12 shows the training loss of the algorithms DVAE, DVAE-SWA, DVAE-GAN,

and DVAE-SWAGAN for 1000 epochs (x-axis), where the y-axis describes the loss value.

The new architectures perform significantly better than DVAE across all loss components

of the architecture. The consequence of lower loss is better image quality (autoencoder

loss), and better transitions (variational loss). For these experiments, we tried to model the

deep line wars environment using RGB input. Figure 13 illustrates the resulting images
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Figure 13: The first row represents the ground truth future state, while the second row is

the predicted future state. The DVAE-SWAGAN algorithm sampled states after training

for 1000 epochs, see Figure 12. Notice that the quality is notably better compared to

Figure 11. We found that states were generalized too much producing some inaccurate

predictions. Despite this inaccuracy, the RL agents learned a policy capable of beating

random agents. We believe this is because similar states often represent similar value

functions.

for each of the algorithms. Here, we see that DVAE-SWAGAN perform significantly best,

in terms of quality and accuracy.

7 Conclusion and Future Work
This paper introduces The Dreaming Variational Autoencoder along with its extensions

DVAE-SWA, DVAE-GAN and DVAE-SWAGAN as a neural network based generative

modeling architecture to enable exploration in environments with sparse reward.

The DVAE algorithm successfully generates authentic world models in non-continuous

state-spaces where the dynamics of the environment is simple. It works well for small

environments but is limited when the state-sequence become too large. The algorithm

performs marginally better when using LSTM for sequence prediction, but is a significant

performance drop due to the increased model complexity. For most environments, such

as deep line wars and deep maze, it is sufficient to run DVAE using only fully-connected

nodes.

F

Paper F: Increasing Sample Efficiency in Deep Reinforcement Learning using
Generative Environment Modelling



The DVAE-SWAGAN improves the original model significantly and enables the al-

gorithm to imitate environment models with continuous state-space better. DVAE-

SWAGAN performs better in all environments including deep line wars and most en-

vironments found in the GYM reinforcement learning environment.

There are, however, several fundamental issues that limit DVAE, and DVAE-SWAGAN

from fully modeling environments. In some situations, exploration may be a costly act

that makes it impossible to explore all parts of the environment in its entirety. The al-

gorithms cannot accurately predict the outcome of unexplored areas of the state-space,

making the prediction blurry or incorrect. To combat this, the model should be improved

further to include some sense of logic, and understanding of the environment dynamics.

In current state-of-the-art, this frequently introduced as domain knowledge that is manu-

ally crafted by the programmer, but the hope is that future research will find a method for

self-supervised domain knowledge modeling.

Reinforcement learning has many unresolved problems, and the hope is that the deep

maze and the deep line wars learning environment can be a useful tool for future research.

For future work, we plan to introduce an inverse reinforcement learning component to

learn the reward function R̂. We also plan to explore non-parametric variants. DVAE and

environment modeling is an ongoing research question, and the goal is that reinforcement

learning algorithms could utilize this form of dreaming to make the algorithm far more

sample efficient.

References
[Andersen et al., 2017] Andersen, P.-A., Goodwin, M., and Granmo, O.-C. (2017). To-

wards a deep reinforcement learning approach for tower line wars. In Bramer, M. and

Petridis, M., editors, Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 10630

LNAI, pages 101–114.

[Arulkumaran et al., 2019] Arulkumaran, K., Cully, A., and Togelius, J. (2019). AlphaS-

tar: An Evolutionary Computation Perspective. Technical report.

[Arulkumaran et al., 2017] Arulkumaran, K., Deisenroth, M. P., Brundage, M., and

Bharath, A. A. (2017). Deep reinforcement learning: A brief survey. IEEE Signal

Processing Magazine, 34(6):26–38.

[Azar et al., 2019] Azar, M. G., Piot, B., Pires, B. A., Grill, J.-B., Altché, F., and Munos,
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Abstract

Reinforcement learning has shown to be profoundly successful at learning optimal poli-

cies for simulated environments using distributed training with extensive compute capac-

ity. Model-free reinforcement learning uses the notion of trial and error, where the error

is a vital part of learning the agent to behave optimally. In mission-critical, real-world en-

vironments, there is little tolerance for failure and can cause damaging effects on humans

and equipment. In these environments, current state-of-the-art reinforcement learning is

not sufficient to learn optimal control policies safely.

On the other hand, model-based reinforcement learning tries to encode environment tran-

sition dynamics into a predictive model. The transition dynamics describes the mapping

from one state to another, conditioned on an action. If this model is accurate enough, the

predictive model is sufficient to train agents for optimal behavior in real environments.

The paper presents the Dreaming Variational Autoencoder (DVAE) for learning good

policies safely with a significantly lower risk of catastrophes occurring during training.

The algorithm combines variational autoencoders, risk-directed exploration, and curios-

ity to train deep-q networks inside “dream” states. We introduce a novel environment,
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ASRS-Lab, for research in the safe learning of autonomous vehicles in grid-based ware-

housing. The work shows that the proposed algorithm has better sample efficiency with

similar performance to novel model-free deep reinforcement learning algorithms while

maintaining safety during training.

Keywords: Deep Reinforcement Learning, Model-based Reinforcement Learning, Re-

inforcement Learning, Neural Networks, Variational Autoencoder, Markov Decision Pro-

cesses, Exploration, Artificial Intelligence, Safe Reinforcement Learning

1 Introduction
Reinforcement learning has recently demonstrated a high potential to learn efficient

strategies in environments where there are noisy or incomplete data [1]. We find these

achievements in many domains, such as robotics [2], wireless networking [3], and game-

playing [4]. The common denominator between these domains is that they can be

computer-simulated with significant resemblance to real-world environments. For this

reason, reinforcement learning algorithms train at accelerated rates without the risk of

compromising the safety of real-world systems [5].

The goal of reinforcement learning algorithms is to learn a policy (or behavior) that stim-

ulates optimal actions based on sensory input and feedback from an environment. A

policy is a parameterized model that is constructed in (exact) tabular form or using an

(approximation) neural network with algorithms such as gradient descent [6]. The algo-

rithm performs an iterative process of (sampling) exploration, exploitation, and (learning)

policy updates that moves the policy in the direction of the desired behavior. Exploration

is commonly performed using a separate policy, such as a (random sampling) Gaussian

distribution. It is crucial that the algorithm balance exploration and exploitation with

schemes such as ε-greedy [7] so that the policy updated towards a generalization of the

whole environment.

The problems of guaranteed safety during reinforcement learning are many. (1) It re-

quires a tremendous amount of sampling to learn a good policy [8]. (2) Stable and safe

policies are challenging to achieve in non-deterministic and even deterministic, for fast-

changing environments [9]. (3) Conventional model-free exploration methods are not

safe in mission-critical environments. (4) Reinforcement learning methods depend on

negative feedback to avoid catastrophic states and should be avoided for mission-critical

systems [10]. Most reinforcement learning techniques are not designed for safe learning,

and therefore, few solutions exist for mission-critical real-world environments [11].

Automated Storage and Retrieval Systems (ASRS) are a modern method of perform-

ing warehouse logistics where the system is partially or fully automated [12]. In industry,

including ASRS, it is common to rely on complex expert systems to perform tasks such
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as control, storage, retrieval, and scheduling. If-else statements and traditional pathfind-

ing algorithms drive these tasks. The benefit of expert systems is that it is trivial to model

operative safety bounds that limit the system from entering catastrophic states. The down-

side is that expert systems do not adapt to changes automatically, and requires extensive

testing if the environment is modified [13]. While it may be possible and perhaps trivial to

construct safe routines with an expert system, it is inconceivable to expect optimal behav-

ior due to the complexity of most real-world environments [14]. Reinforcement learning

is perhaps the most promising approach to solve these problems because it can generalize

well across many domains [4], and is designed to work in noisy environments with partial

state-space visibility [15].

We propose The Dreaming Variational Autoencoder (DVAE), an algorithm for safer

learning in real-world environments. DVAE is an improved version of previous work

in [16] that emphasize on more reliable learning in mission-critical environments. The

algorithm tries to address the problems (1, 2, 3, 4) that concern safe and sample efficient

reinforcement learning. The algorithm does not require direct access to the real-world

environment or prior knowledge to learn a stable policy. It is, however, possible to inject

prior knowledge of catastrophic states to strengthen safer learning.

The key contributions of this paper are summarized as follows:

• DVAE, a predictive model for n-state predictions,

• safety constraints using a constrained MDP scheme,

• safe exploration through risk-directed exploration and curiosity,

• ASRS-Lab for industry near testing of the proposed approach,

• and analysis of empirical results.

The organization of the paper follows. Section 2 outlines progress in the field, including

automated storage and retrieval systems, model-based reinforcement learning, and safe

reinforcement learning. Section 3 presents the theoretical background of the proposed

algorithm. Section 4 details the DVAE algorithm thoroughly and discuss the convergence

guarantee for the algorithm. Section 5 introduces The ASRS-Lab, an industry-near learn-

ing environment that simulates real-world ASRS systems. The results are presented in

Section 6 and show that the algorithm act safer than model-free reinforcement learning.

The paper is finally summarized in Section 7 and proposes future work in the field of safe

reinforcement learning.
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2 Related Work
Recently, advancements in reinforcement learning have more frequent and included sub-

stantial performance improvements in numerous domains [17]. Many aspects play a role,

but notwithstanding increased publicity, which attracts new institutions to work with re-

inforcement learning. This section presents work that relates to reinforcement learning in

industry-near environments and research that attempts to address safety in these domains.

2.1 Reinforcement Learning

Reinforcement learning is applied previously in industry-near environments, and perhaps

the most widespread application is autonomous vehicles. The proposed method in this

paper uses an auxiliary policy to label data for supervised training. With only 12 hours

of labeled data, [18] illustrates learning performant policies using a direct perception

approach with convolutional neural networks. This approach is much like a variational

autoencoder that simplifies the perception of the world significantly. This simplifaction

of the input significantly speeds up inference, which enables the system to issue control

commands more frequently. Many other significant contributions in autonomous vehicle

control directly relate to control in ASRS environments, such as [19, 20, 21].

2.2 Model-based RL

In model-based reinforcement learning, the goal is to learn state-transitions based on ob-

servations from the environment, the predictive model. If the predictive model is stable,

with low variance and improves monotonically during training, it is, to some degree, pos-

sible to learn model-free agents to act optimally in environments that have never been

observed directly.

Perhaps the most sophisticated algorithm for model-based reinforcement learning is the

Model-based policy optimization (MBPO) algorithm, proposed by Janner et al. [22] The

authors empirically show that MBPO performs significantly better in continuous control

tasks compared to previous methods. MBPO proves to be monotonically improving, given

that the following bounds hold:

η[π] ≥ η̂[π]− C

where η[π] denotes the returns in the real environment under a policy whereas η̂[π] denotes

the returns in the predicted model under policy π. Furthermore, the authors show that as

long as they can improve the C, the performance will increase monotonically [22].

Gregor et al. proposed a scheme to train expressive generative models to learn belief-

states of complex 3D environments with little prior knowledge. Their method was effec-

G

Paper G: Towards Safe Reinforcement-learning in Industrial Grid-warehousing



tive in predicting multiple steps into the future (overshooting) and significantly improve

sample efficiency. In the experiments, the authors illustrated model-free policy training in

several environments, including DeepMind Lab. However, the authors found it difficult

to use their predictive model in model-free agents directly. [23]

Neural Differential Information Gain Optimization (NDIGO) algorithm by Azar et al. is

a self-supervised exploration model that learns a world model representation from noisy

data. The primary features of NDIGO are its robustness to noise due to their method to

cancel out negative loss and to give positive learning more value. The authors show in

their maze environment that the model successfully converges towards an optimal world

model even when introducing noise. The author claims that the algorithm outperforms

the state-of-the-art, such as Recurrent World Models [24].

The Dreaming Variational Autoencoder (DVAE) is an end-to-end solution for predicting

the probable future state p(ŝt+1|st, at). The authors showed that the algorithm success-

fully predicted the next state in non-continuous environments and could, with some error,

predict future states in continuous state-space environments such as the Deep Line Wars

environment. In the experiments, the authors used DQN, PPO, and TRPO using an artifi-

cial buffer to feed states to the algorithms. In all cases, the DVAE algorithm was able to

create buffers that were accurate enough to learn a near-optimal policy. [16]

The algorithm VMAV-C is a combination of VAE and attention-based value function

(AVF), and mixture density network recurrent neural network (MDN-RNN) from [25].

This modification to the original World Models algorithm improved performance in the

Cart Pole environment. They used the on-policy algorithm PPO to learn the optimal pol-

icy from the latent representation of the state-space [26].

Deep Planning Network (PlaNet) is a model-based agent that interprets the pixels of a

state to learn a predictive model of an environment. The environment dynamics are stored

into latent-space, where the agent sample actions based on the learned representation. The

proposed algorithm showed significantly better sample efficiency compared to model-free

algorithms such as A3C [27].

In Recurrent World Models Facilitate Policy Evolution, a novel architecture for training

RL algorithms using variational autoencoders. This paper showed that agents could suc-

cessfully learn the environment dynamics and use this as an exploration technique requir-

ing no interaction with the target domain. The architecture is mainly three components;

vision, controller, and model, the vision model is a variational autoencoder that outputs

a latent-space variable of an observation. The latent-space variable is processed in the

model and feeds into the controller for action decisions. Their algorithms show state-

of-the-art performance in self-supervised generative modeling for reinforcement learning

agents. [25]
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Chua et al. proposed Probabilistic Ensembles with Trajectory Sampling (PETS). The

algorithm uses an ensemble of bootstrap neural networks to learn a dynamics model of

the environment over future states. The algorithm then uses this model to predict the best

action for future states. The authors show that the algorithm significantly lowers sampling

requirements for environments such as half-cheetah compared to SAC and PPO. [28]

DARLA is an architecture for modeling the environment using β-VAE [29]. The trained

model was used to learn the optimal policy of the environment using algorithms such as

DQN [4], A3C, and Episodic Control [30]. DARLA is, to the best of our knowledge,

the first algorithm to introduce learning without access to the ground-truth environment

during training.

For further details on model-based RL, we refer the reader to [31].

2.3 Safe Reinforcement Learning

A majority of established systems in the industry, an expert system already acts as the

controller for the environment. In real-world environments, the need for safe and stable

learning is critical so that existing routines are not interrupted.

Similar to the proposed algorithm, [32] assumes a predictive model that learns the dy-

namics of the environment. The authors propose that the policy should be limited to a

safe-zone, called the Region Of Attraction (ROA). Everything within the bounds of the

ROA is considered “safe states” that the policy can visit, and during training, the ROA

gradually expands by carefully exploring unknown states. The algorithm shrinks the ROA

to ensure stability if the feedback indicates movement towards catastrophic states.

The proposed algorithm encodes the observations as latent embeddings using a variational

autoencoder (VAE) similar to the View model in [25]. In the world model approach, the

authors define three components. The (VAE) view encodes observations to a compact

latent embedding. The model (MDM-RNN)1 is the predictive model used to learn the

(predictive model) world model. Finally, the (C) controller is a general framework that

enables model-free algorithms to interact with the world model.

3 Background
The optimization problem is modeled as Markov Decision Processes (MDP). The MDP

consists of the tuple (S,A,R, P, γ) where S is the set of possible states, A is the set of

possible actions, R : S×A×S → R is the reward function, P : S×A×S → [0, 1] is the

transition probability function (where P (s′|s, a) denotes the probability of transitioning

1Mixture Density Network combined with a Recurrent Neural Networks.
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to next state s′ given that the agent takes action a in state s), and γ ∈ [0, 1] is the discount

factor for future rewards.

A policy (π) is a parameterized model that maps together (input) observations and (output)

actions to form behavior. The goal of the reinforcement learning agent is to select actions

in a way that maximizes future rewards [6].

Gt =
T∑

t′=t

γt
′−trt′ (1)

Equation 1 denotes the discounted cumulative future rewards, often referred to as the

discounted return in literature [6]. We assume that if the policy adjusts its parameters to

find actions towards maximizing the return, the policy will ultimately converge optimally.

π∗ = arg max
π

V π(s) ∀s ∈ S (2)

Equation 2 denotes the optimal policy and is a policy that yields the highest attainable

state-value V π(s) for all states while under the control of the policy π [4]. The state-value

function is denoted

V π(s) = Eπ[Gt|St = s] = Eπ[Rt+1 + γV π(St+1)|St = s], (3)

and quantifies how good it is for an agent to be in a particular state. Furthermore, the

state-action function indicates how good it is for the agent to take any possible action

being in state s [4], where

V ∗(s) = max
a∈A

Q∗(s, a) ∀s ∈ S (4)

describes the relationship between the state-value and state-action function. As long as

the agent selects actions that maximize the Q-values, the state-value is also optimal [6].

Therefore,

π∗ = arg max
a∈A

Q∗(s) ∀s ∈ S (5)

the optimal policy is found at the point where the agent always makes actions that maxi-

mize the Q-value.

Traditional RL learns the optimal policy according to an optimization criterion. This

optimization criterion varies with different algorithms but is commonly implemented to

minimize time or to maximize reward. The return maximization criterion is frequently

used in Q-Learning, where

Qπ(st, at)← Qπ(st, at) + α[rt+1 + γmax
a∈A

Qπ(st+1, a)−Qπ(st, at)]
2 (6)

2The equation illustrates the Q-Learning algorithm without any extensions and without deep learning
considerations.
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backpropagates the Q-estimate of the following state to the former state.

It becomes evident that there is no safety guarantee in the traditional view of reinforce-

ment learning [32]. The primary focus is for the agent to find the policy that maxi-

mizes some feedback signal, and through dynamic programming, monte-carlo methods,

or temporal-difference, find a way to learn by trial and error. For mission-critical envi-

ronments, reinforcement learning is insufficient, and therefore, we seek a method to learn

good policies while reducing the number of catastrophic states.
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Figure 1: Illustration of an MDP where actions are made according to a policy π. The

colors are in the view of the policy where green is safety, red is danger, gray is non-

terminal states, and orange is actions in a stochastic environment. On the left, the policy

follows traditional RL optimization where trial and error occurs in order to map recognize

bad states. On the right, the policy has some notion of danger (red area) for actions leading

to states with negative feedback.

Figure 1 illustrates a stochastic MDP in the view of a traditional RL agent (left) and an

agent that is safety-aware (right). The MDP considers state-space S = {s0 . . . s9} and

an action-space A = {a0 . . . a2} controlled with the probabilistic policy π(a|s), with

the probability of transitioning to the next state P (s′|s, a) (stochastic transition). The

traditional model-free RL agent must explore to learn a policy that would keep a distance

from catastrophic states. This means that the agent would eventually take action a0 in

state s0 and enter state s1, which leads to a catastrophic outcome. The motivation for a

safer learning system becomes evident, and the idea is to find a method to define good

(green) and bad (red) state-space regions before the agent starts exploration.
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Policy-space Π

Constrained	policy	space Γ

Figure 2: The policy-space (blue) Π and the subset of policies (red) Γ ⊆ Π, where each

policy π ∈ Γ must satisfy the constraints ci ∈ C.

3.1 Safe Policy Selection

Risk is a function that indicates the danger of making an action under the policy π(a|s)
[33]. It is founded on the uncertainty associated with future events and is inevitable

since the consequences of actions are unknown at the time when an action is made[34].

There are numerous definitions of the term risk, namely Risk-Sensitive Criterion [35],

Worst Case Criterion [36], and Constrained Criterion [37]. A policy that disregards risk

evaluation is risk-neutral, and the learning objective is to maximize the expectation of the

return,

max
π∈Π

Eπ(G) = max
π∈Π

Eπ(
T∑

t′=t

γt
′−trt′) (7)

where it becomes apparent that Equation 7 is the same objective as Equation 1. This gives

motivation for modification of the objective function so that the policy is risk-aware when

maximizing the return.

The Constrained Criterion is an appealing approach as it extends the standard MDP

framework described as the tuple (S,A,R, P, γ, C), whereC is a set of constraints applied

to the policy. The goal of the constraint set is to, with high probability, eliminate policies

such as the unsafe example in Figure 1, similar to the work in [32]3. The general form of

the constrained criterion is defined,

max
π∈Π

Eπ(G) subject to ci ∈ C, ci = {hi R αi} (8)

where ci is the ith constraint in the set C that must be satisfied by the policy π. Addi-

tionally, hi is a function related to the return G that is an upper or lower bound to the

threshold value αi. Consider all constraints satisfied, then the policy-space is reduced to

a subset Γ ⊆ Π, and the policy exists only within this subset π ∈ Γ. The idea is that the

constraints lead to a significantly smaller policy-space, where it is more likely that a safe

solution is found, seen in Figure 2. Given that the algorithm selects policies only from the

3Equation 3 leading up to Algorithm 1 use constraints similar to the proposed approach here.
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safe subset Γ, the objective function can be written as

max
π∈Γ

Eπ(G) (9)

which is the standard notion of expected return from Equation 1, but with respect to the

subset of safe policies Γ.

Constraint Selection is a delicate user-defined process, which largely depends on a spe-

cific problem [35]. It is possible to form constraints from any metric originating from

the MDP. Our approach attempts to use a general approach for safe policy updates across

various domains. In the proposed algorithm, only a single constraint is formed using the

error (uncertainty) of a predictive model [38]. The α parameter acts as a threshold for

how much risk we allow when evaluating a policy. Higher the value, the constraint is

more restrictive, and for lower values, more permissive [39].

3.2 Safe Exploration

Policies with a constrained criterion do not guarantee safety in the short term because it is

challenging to choose parameters within the subset of safe policies Γ initially. Therefore,

we also consider safer exploration as a means to guide the agent towards making safe

actions in the short term.

Risk-directed Exploration uses a notion risk to determine in which direction the agent

should explore. We refer the reader to [40] for an in-depth definition. There are several

ways to define risk, such as keeping below a variance threshold [41], but our approach

uses normalized expected return with weighted sum entropy [40, 42].

The risk of taking action in a particular state is given by

Risk(s, a) = R(s, a) = wH(s, a)− (1− w)
E[G]

max
a∈A
|E[G]| , (10)

where H is the policy entropy, and the second term describes how good the action is for

the particular state. The weight w ∈ [0 . . . 1] determines the balance between entropy and

return, where higher values of w indicate more risk due to less deterministic behavior.

The utility function is then updated as follows

Utilityrisk(s, a) = Uri(s, a) = αR(s, a) + (1− α)π(a|s). (11)

where α ∈ [0 . . . 1] controls the risk-awareness of the agent. At α = 0, the agent does not

perform risk-directed exploration but considers safety more as α → 1. The risk function

R(s, a) outputs a vector describing the risk of each action in the action space. The risk

vector adds to the probabilities and state-action values for the current state (π(a|s)). The

updated utility function Uri(s, a) ensures that sampling is performed in favor of safe and
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conservative (less exploratory) actions, depending on the weight parameter w, and risk

aversion parameter α [40].

3.3 Safe predictive model

In model-based reinforcement learning, the goal is to efficiently learn a predictive model

that accurately learns the environment dynamics to predict future states given the cur-

rent state and action[27]. During the learning of a predictive model, explorative agents

are frequently used. However, in a real-world environment where catastrophic states ex-

ist, it is little room for errors. However, these environments are often eligible for the

deployment of expert systems. Therefore, it is possible to collect observations, with a

sub-optimal agent for a user-specified amount of time. The collected observations signifi-

cantly increase the accuracy of the predictive model, which enables the use of the concept

of curiosity [43] to create constraints to increase safety. Curiosity-driven exploration is

composed of two rewards, extrinsic (the environment) and intrinsic (curiosity) reward,

where the agent is encouraged to enter unexplored states. For this work, we negate this

effect and encourage the agent to stay in states where the predictive model has low uncer-

tainty. For each evaluation using the predictive model, we can calculate the error, which

is the difference between the predicted state and the actual state (the state observed by

the agent). For predicted states with high error, the model knows little about the conse-

quences of doing the action, indicating that the action will lead to a catastrophic state.

Curiosity is the mean squared error of the predicted future state features M̂( ˆst+1|st, at)
and the ground truth future stateM(st+1|st, at;P ) where

Cu(M,M̂) =
1

2
||M̂( ˆst+1|st, at)−M(st+1|st, at;P )||22 (12)

defines the curiosity vector. In curiosity-driven exploration, the goal is to pursue states

that maximize curiosity, but for safe exploration, we aim to minimize Cu for actions

with high uncertainty. In our approach, the weighted curiosity vector adds to the action

probability distribution such that

U(s, a) = Uri+Cu(s, a) = Uri + αCu (13)

where α is the risk-aversion parameter previously defined in Equation 11.

The updated utility is then compatible with Q-Learning updates using neural network

function approximator with weight θ ad the Q-Network. The network is trained by se-

quentially minimizing the loss function Li(θi) where i denotes the iteration, such that,

Li(θi) = Es,a∼p(·)
[
(yi −Q(s, a; θi))

2

]
, (14)

where yi = Es′∼E [U+γmaxa′ Q(s′, a′; θi−1)|s, a] is the target for iteration i and p(s, a) is

the behavior distribution[44]. Finally, the standard differentiated loss, w.r.t to the weights
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θ denoted,

∇θiLi(θi) = Es,a∼p(·);s′∼E
[(
U + γmax

a′
Q(s′, a′; θi−1)

−Q(s, a; θi)

)
∇θiQ(s, a; θi)

]
, (15)

where U is the modified reward from Equation 13.

4 Safe Dreaming
This paper aims to increase the safety of agents that act in environments with catastrophic

state outcomes. The Dreaming Variational Autoencoder (DVAE) is a model-based rein-

forcement learning approach for safe and efficient learning. A predictive model learns

the dynamics of the environment and acts as a safety precaution as the agent learn fully

offline from the real environment. Additionally, the algorithm models the problem as a

constrained MDP with a combination of risk-directed exploration and negated curiosity.

The algorithm performs learning three steps, predictive model learning, RL training, and

transition to the real environment, and describes as follows.

A predictive model learns the transition dynamics of the real environment. To learn

these transitions, the model gathers experience through observation of an expert system.

An expert system quite regularly in use already; hence, minimal effort is required to

train the predictive model. Also, the expert system already makes safe decisions because

of hand-crafted features but often operate at a sub-optimal performance. Therefore, a

reinforcement learning algorithm is well suited for decision making in industry-near en-

vironments, as it can improve performance and safety with the learning guidance of a

predictive model.

Training model-free RL algorithms using the learned predictive model is safe and effi-

cient in terms of sampling efficiency. Deep Q-Learning from [44] is well suited because it

converges with off-policy data. A combination of the DVAE algorithm and model-free re-

inforcement learning ensures that learning is performed safely without the risk of entering

catastrophic states or cause damage to the real-world environment.

Training duration depends on the problem, and should, therefore, rely on some mechanic

to determine the learning stopping criteria. As the algorithm learns an optimal policy

for the predictive model, it gradually transitions to make actions in the real environment

based on the rate it enters catastrophic states. At such a time, when the agent interacts

directly with the real environment, it is possible to enter catastrophic states. The algorithm

adds a negated curiosity bonus to reduce the exploration of state-space regions with high

uncertainty. This way, the fully deployed algorithm will behave cautiously when the

movement towards novel states appears, or if the environment is changed dynamically.

G

Paper G: Towards Safe Reinforcement-learning in Industrial Grid-warehousing



Real	Environment Sensor	Model

Expert	System

Prediction	Model 

Intelligent	Agent��

�����������	��������� 

Figure 3: Isolation of the real environment. The general idea of DVAE is to isolate the

agent training to reduce the risk of catastrophic behavior in the real environment. The

predictive model observes the sensors of the real environment and estimates its transition

function. The intelligent agent uses the predictive model to train in an offline setting,

without the risk of making mistakes in the real world. After training, the algorithm is

deployed to the real environment, with significantly less chance of entering catastrophic

states.

The training procedure illustrated in Figure 3 works as follows. (1) The predictive

model observes and learns the real environment using a sensor model. The same sensor

model is the interface that the expert system uses for making actions. (2) The intelligent

agent (i.e., a reinforcement learning agent) interact with the predictive model and improve

its policy. (3) At the point where the intelligent agent is sufficiently trained, it can replace

existing expert systems with comparable performance. (4) If desirable, the intelligent

agent can train further in the real-world environment.

The execution graph of DVAE is shown in Figure 4 and works as follows. The policy

π(a|s) predicts the best action a for the observed state s. The first action is sent to the

real environment to produce initial state st = s0. The initial state st and initial action at is

processed by the predictive model M and outputs predicted future state ŝt+1 and reward

r̂t+1. The reward is used for policy updates during training and the state for further action

prediction. The policy predicts a ŝt+1 and is sent to the predictive model, now to predict

the two-step predicted state ŝt+2. The procedure continues until the algorithm meets the

stopping criteria.

A detailed illustration of the DVAE-architecture is shown in Figure 5, including the

encoder, decoder, policy, and environment. Initially, the interaction is between the pre-

dictive model M and the policy π(s|a). The encoder takes a state st and predicted action

at as input and outputs the embedding zt. An embedding is a compression of the input

and leads to faster training and better performance. Considering that the replay-buffer

RB holds millions of embedding, the memory footprint is significantly reduced. The
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Figure 4: Prediction of future states. For each time-step, the agent observes a state

from the environment or the predictive model. The agent makes an action that results in

a transition to the next state with the corresponding reward. M denotes the predictive

model where ŝ and r̂ is the predicted state and reward.

replay-buffer generates sequential batches of embeddings that are input to the t-encoder

enct.

The s-encoder is responsible for transforming raw input data into a meaningful and com-

pact feature embedding. DVAE uses a variational autoencoder primarily for this task, but

other methods are also applicable, such as generative adversarial networks (GAN). De-

pending on the environment and the input data, it is possible to visualize the embedding

zx ∈ Z by manually altering its values. In Figure 7, we illustrate this with a (green) agent

in an empty grid-world. The embedding layer consists of two neurons where the first and

second neuron learns the vertical and horizontal location, respectively.

The t-encoder learns the time dependency between states, or in MDP terms, the transition

function T : S × A → S. The t-encoder model computes the future state embedding

zπt+1 based on a batch of previous embeddings from the view Zπ
t = {zt−n . . . zt}π. The

π denotes the policy which DVAE operates under. In DVAE, long short-term memory

(LSTM) performed best when learning the future state embedding.

The control policy π(s|a) is responsible for interaction with the environment and the

predictive model (s-encoder and t-encoder). The control is the primary model for mak-

ing actions that are safe and progress the learning in the right direction. In DVAE, we

consider Deep Q-Networks (DQN) using a constrained optimization criterion and for
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exploration, risk-directed exploration, and negated curiosity. The negated curiosity act

as the constrained criterion for the MDP. The input to the algorithm is a raw-state, com-

monly a high-dimensional data structure that is difficult to interpret spatial information.

The benefit of the DVAE architecture is that the t-model finds an embedding that can rep-

resent the state with the order of magnitudes less complexity. The DVAE algorithm also

enables initial training fully offline in a dream version of the real environment.

Algorithm 1 DVAE with Deep Q-Learning

1: Initialize policy πθ(st|at)
2: Initialize predictive model Mψ(ŝ′, r̂′|s, aπ)

3: Initialize encoder enc(zt|st, at)
4: Initialize replay-buffer RB(Zt|{zt . . . zt+n})
5: Initialize t-encoder enct(ht|Zt),

ŝ-decoder decs(ŝt|ht),

r̂-decoder decr(r̂t|ht)
. Training of the predictive model

6: while predictive model needs training; episode = 1, E do
7: Make decisions using predefined expert system policy

8: Store transition (st, at, rt, st+1) in buffer D

9: Train predictive model Mψ on data batch d ⊆ D using MLE loss

. Training of the Deep Q-Network (or similar RL algorithm)

10: for episode = 1, E do
11: Sample initial state s0 from D

12: Predict action using policy π(a|s; θ)
13: Predict future state using the predictive model Mψ where,

14: Encode input state and action to embedding enc(zt|st, at)
15: Store zt in RB and form sequential subset of n-elements Zt ⊆ RB

16: Encode sequence of embeddings w.r.t time enct(ht|Zt)
17: Decode future state and reward encs+r(ŝ′, r̂′|ht)
18: Update policy πθ with pairs of (ŝt, at, r̂t, ŝt+1)πθ according to Equation 15

The definition of the DVAE algorithm, seen in Algorithm 1, has the following proce-

dure. (Line 1-5) The πθ, predictive model Mψ with corresponding encoder enc(zt|st, at),

replay-buffer RB(Zt|{zt . . . zt+n}) t-encoder enct(ht|Zt), ŝ-decoder decs(ŝt|ht) where

each component is a function approximator, is initialized with random weights.

(Line 6) starts the training procedure of the predictive model for E episodes. (Line 7-8)
A expert system algorithm makes decisions and is recorded into buffer D. This step is

primarily for observation of the environment to learn the sensor model transition dynam-
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ics.(Line 9) initiates training of the predictive model using mini-batch stochastic gradient

descent with MLE-loss.

(Line 10) initiates a for loop of E episodes to train the reinforcement learning algorithm

using the learned predictive model from the procedure at line numbers 6-9. Line 11-12
is similar to the standard reinforcement learning loop, but instead of taking actions in the

real environment, the decision is sent to the predictive modelMψ. (Line 13) the predictive

model outputs the estimated future state from the agent decision with the following steps.

(Line 14) encode current state st and action at into the embedding zt. (Line 15) The

embedding is stored in the replay buffer and is retrieved in batches of n-elements to form

Zt. (Line 16) encode the sequential batch of embeddings to capture transition dynamics

between states, yielding ht. (Line 17) The decŝ+r̂ decoder outputs the predicted future

state and the corresponding reward. Finally, using the predicted values, the reinforcement

learning policy is updated using Equation 15 (Line 18), similar to [44]. The process

is repeated separately for the predictive model and the reinforcement learning algorithm

until reaching an acceptable convergence threshold.

4.1 Exploration and policy update constraints

There are significant improvements to the exploration and policy update for finding safe

policies in DVAE. During sampling, the policy the uses risk-directed exploration bonus

[40]. This is added to the probability distribution over actions before sampling is per-

formed, as described in Section 3. The policy updates are constrained to a set of criteria

defined as follows. During the learning of the predictive model, feedback is received from

the real-world environment. All actions are bound to some feedback even though only 1

of these are received depending on which action the agent performed. In our model, we

assume that all actions that were not chosen by the agent are considered unsafe. This

way, the algorithm gradually maps the unsafe policy space, as illustrated in Figure 1. It

is important to note that this mapping does not influence the choices of the agent when

learning the predictive model. When the agent revisits a state, the agent may select an-

other action, and this will label the state safe. Depending on how much the expert system

behavior is observered, the better understanding the predictive model gets, as well as the

state-risk mapping of the state-space.

4.2 Analysis of convergence guarantees

The Dreaming Variational Autoencoder combines several approaches that previous work

has shown to have convergence properties. The algorithm model the problem as an MDP,

which is proven to have convergence properties in several works [46, 47, 48, 49]. The

markov property is especially interesting, and the proof is detailed well in [50]. The
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DVAE algorithm use constrained MDP and is proved to have convergence properties for

the discounted case used in this work [51].

Tabular Q-Learning is known to converge as time goes towards T , but deep learning

variants, specifically neural network estimated Deep Q-Networks has primarily empirical

success. There are efforts such as [52] that prove theoretical convergence for simplified

DQN, but, no proof for the general case. In regards to using neural network estimators

for the predictive model, the proposed approach is based primarily on empirical observa-

tions. DVAE uses a similar approach to [38, 25, 27] where the predictive model encoder

constructs a variational bound on the data log-likelihood:

lnMd(s1 : T )
4
= ln

∫ T∏

t=1

M(st|st−d)M(st|sot )ds1:T

≥
T∑

t=1

(
Eq(st|sot ))[lnM(sot |st)]︸ ︷︷ ︸

reconstruction

− E
M(st−1|st−d)q(st−d||so≤t−d)

[KL[q(st|sot ≤ t)‖M(st|st−1)]
])

︸ ︷︷ ︸
multi-step prediction

(16)

where so denote unprocessed states. We refer the reader to [27] for the derivation. The

curiosity bonus used in the proposed algorithm is shown to work well empirically, but

there is, to the best of our knowledge, no proof of convergence. Through trial and error,

the proposed algorithm converges empirically, but theoretical convergence remains future

work.

5 The ASRS Lab
Safety during learning in RL has been a less prevalent priority in recent years compared to

improve the performance of existing non-safe algorithms. We argue that this may be due

to the high cost of physical systems to experiment on and that the RL research community

primarily uses games as a benchmark tool, which naturally encourages to maximize the

agent performance by trial and error. In this section, we propose the Automated Storage

and Retrieval System Lab (ASRS-Lab), a flexible and industry-near environment for rein-

forcement learning research. The ASRS-Lab environment focuses on how RL algorithms

can learn good policies with minimal negative feedback and enable auxiliary policies to

create a predictive model that can be used for safe offline training of reinforcement learn-

ing algorithms.
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5.1 Motivation

It is well known that the training of algorithms in real-world environments is complicated

for several quintessential reasons, which causes non-deterministic side-effects. First, in

real-world environments, there is no option to accelerate the sampling speed to increase

training speed since the training speed depends on real-world time. Second, reinforce-

ment learning builds on trial and error, which is not applicable for many mission-critical

systems as an error can have catastrophic consequences. Third, in real-world environ-

ments, there are additional uncertainty factors that can alter the state-space. Most RL

algorithms can adapt sufficiently to slight changes, but with the risk of policy collapse for

drastic changes. Fourth, a system which in simulation is deterministic will because of

the side-effects mentioned above, in a real-world environment becomes stochastic. All of

these factors cause challenges to guarantee safety during training in real-world environ-

ments.

5.2 Implementation

With safe reinforcement learning in mind, the ASRS-Lab is implemented with flexible

options for state, action, and reward-representations. There are many categories of ASRS

systems in the real-world, and to build an environment flexible enough to accommodate all

requirements for all systems was unfeasible. However, the ASRS-Lab could successfully

reconstruct shuttle-based, aisle-based, and grid-based warehouses. For this paper, we

consider the grid-based architecture.

Figure 8 illustrates the observable state-space from a two-dimensional point of view. In a

simple cube-based ASRS system, the environment consists of (B) passive and (C) active

delivery-points, (D) pickup-points, and (F) taxis. The goal of the environment is to find

a positive terminal state using minimal time with a limited set of actions. One episode of

the environment is defined as follows. The (taxi) agent starts at an arbitrary position on

the plane. At the same time, the agent receives a retrieve order from the ASRS scheduling

system. This order describes a target location for goods to be retrieved. The agent must

now reach the target location in minimal time using its controls. Considering that there

are many other agents on the plane, the control task is challenging to learn because each

action has a significant risk of collision with other agents, as well as the outer bounds of

the grid system. When an agent enters a target position, it is rewarded and is assigned a

delivery task from the scheduling system. The agent must now move to the designated

location described by the delivery task. When the agent reaches its destination, a large

reward is given.

A taxi can move using a discrete or a continuous controller. In the discrete mode, the

agent can increase and decrease thrust and move in either direction, including the diag-
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onals. For the continuous mode, all of these actions are floating-point numbers between

(off) 0 and (on) 1, giving a significantly harder action-space to learn. The simulator

also features a continuous mode for the state-space, where actions are performed asyn-

chronously to the game loop. The environment supports custom modules for mechanisms

such as the scheduling system, agent controllers, and fitness scoring.

5.3 Benefits

A notable benefit of the ASRS-Lab is that it can accurately model real-world warehouse

environments at high speed. The ASRS-Lab environment runs an order of magnitudes

faster on a single high-end processing unit compared to real-world systems. The per-

formance is measured by comparing the number of actions a taxi performs in the real

environment versus the virtual environment. The environment can be distributed on many

processing units to increase the performance further. In our benchmarks, the simulator

was able to collect 1 million samples per second during the training of deep learning

models using high-performance computing (HPC).

6 Results
In state-of-the-art model-free reinforcement learning algorithms, it is common to perform

a (random) gaussian-based exploration method to map the return to states. These algo-

rithms are excellent at finding an average point on the optimization plane that generalizes

well across multiple domains. The issue, however, is that there are no guarantees that

the learned policy avoids catastrophic states. In this section, we show that DVAE is ca-

pable of learning an accurate predictive model for model-free algorithms and learn good

policies while behaving safely during exploration. We apply the proposed constrained

criterion to the policy updates and use risk-directed exploration to enforce safer actions

as described in Section 3. DVAE is integrated with Deep Q-Network (DQN) [53] and

compared against DQN (Rainbow) and Proximal Policy Optimization (PPO). The algo-

rithm tests across various environments, including popular Atari 2600 games [54], Deep

RTS [55], Deep Line Wars [56], and the industry-near environment, ASRS-Lab [31].
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6.1 Predictive Model
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(a) Average predictive model M loss.

(b) Decoder output after training. The decoder

output of the predictive model after 5 hours of

training without speed acceleration.

Figure 9

The prediction model’s objective is to learn environment dynamics and features so that

it can accurately mimic the environment behavior. Figure 9a illustrates the average loss

for all tested environments. The predictive trains using specially crafted expert systems
that perform well in each of the tested environments. The trend is for the loss to start

high, and quickly reduce to only minor weight adjustments during training. These minor

weight adjustments play a significant role in learning accurate embeddings, as illustrated

by Figure 9b

A way to measure the accuracy of the predictive model is to investigate the cumula-

tive prediction error. Figure 10 illustrates this cumulative prediction error for all tested

environments. The experiments show that the prediction error tends towards exponential

growth when the predictive model makes predictions for longer time horizons. As seen in

Table 1, the predictive model has an error of 284 (the decoded state is 284× 284) for the

Deep RTS environment at predictions done for 100 timesteps in the future. This means

that every pixel in the predicted state is incorrect, and hence, difficult to use for training

model-free algorithms.

It is sensible to limit the prediction horizon for environments that are too advanced or

difficult to extract the dynamics from . The downside of limiting the prediction horizon

is that the algorithm is not able to train fully offline. However, the algorithm reduces the

volume of real training data needed to converge model-free approaches by magnitudes

successfully.

G

Paper G: Towards Safe Reinforcement-learning in Industrial Grid-warehousing



Table 1: Exponential cumulative prediction error. Depending on the environment, the

cumulative prediction error increase exponentially for all environments. The table shows

that the exponential growth are consistently less extreme for simple environments. The

numbers in the header presents the state n-th in the future.

Environment 10 25 50 75 100

ASRS-Lab-11x11 0.34 2.08 7.47 14.91 25.10

ASRS-Lab-21x21 0.36 1.91 7.53 16.62 28.75

ASRS-Lab-41x41 0.43 2.98 10.50 25.06 43.02

Acrobot-v1 0.42 2.04 9.15 19.56 34.86

BeamRider-ramNoFrameskip-v4 1.77 9.33 33.99 75.94 135.49

Breakout-ramNoFrameskip-v4 1.52 7.20 28.84 67.37 110.48

CartPole-v0 0.31 1.52 6.13 13.62 22.58

CartPole-v1 0.35 1.50 6.66 14.53 26.01

DeepLineWars 0.54 3.81 13.73 29.41 50.58

DeepRTS-1v1 2.72 16.29 65.98 143.02 255.99

DeepRTS-GoldCollect 0.69 4.55 19.75 46.17 78.00

MountainCar-v0 0.65 3.66 15.31 30.73 49.95

Qbert-ramNoFrameskip-v4 0.77 4.20 18.23 38.69 63.38

SpaceInvaders-ramNoFrameskip-v4 1.04 4.98 21.96 53.11 89.28
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The predictive model successfully learns several environments sufficiently, including

ASRS-Lab-21x21, CartPole, and Deep Line Wars. It is likely that tuning the α, w,

and learning-rate would improve accuracy for other environments, but parameters remain

problem-specific and must be carefully tuned.

6.2 Agent Failure Rate

The failure rate is measured by counting the number of negative rewards the agent receives

during an episode while training. The environment has a negative reward for catastrophic

states and positive on the contrary. Recall that the algorithm should interpret the MDP

with constraints and label catastrophic states accordingly, see Figure 1.

Figure 11 illustrates the failure-rate for DVAE with three hyperparameter configura-

tions, α = 0.99, w = 0.01, α = 0.7, w = 0.3, α = 0.5, w = 0.5. Recall that higher α

and lower w values account for safe-aware behavior. Safer configuration of DVAE clearly

impacts the rate by which the algorithm makes mistakes.

The algorithm does not always learn good policies, such as in the DeepRTS environ-

ment. The reason is perhaps that the reward function does not represent the goal, and

further investigations discovered that this is the case for DeepRTS. For the DeepRTSGold

environment DVAE outperformed PPO and DQN significantly

DVAE increases safety significantly for the majority of the environments tested in this

paper. The results from Figure 11 shows a consistent decrease in failures when increasing

the safety-awareness sensitivity using the α andw hyperparameter. The benefits of having

high safety-awareness increase action safety, but at the cost of slower convergence or

local minima problems.

6.3 Agent performance

DVAE has comparable performance to DQN and PPO in terms of accumulating reward

during training. Figure 12 shows the performance after the DVAE algorithm is pre-trained

on the predictive model. We perform these tests on DeepLineWars, DeepRTSGold, Ac-

robot, CartPole, and ARS-Lab-41x41. The figure clearly shows that DVAEsuccessfully

trains the algorithm to a sufficient behavior level, and can improve further when training

on the real environment.

DVAE is not always stable when training in complex environments, as seen in the

DeepLineWars plot. Out of 100 trials, the DVAEconfiguration using α = 0.7 and α = 0.5

diverged, and hence, was stopped before reaching 1 million timesteps.
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The pretraining was done using a horizon of 40 frames for 2 million timesteps. In prac-

tice, this only results in 50000 timesteps in the real environment, resulting in magnitudes

lower risk of failures.

Sensitivity to hyperparameters is, however, a significant issue that limits the algorithm

from functioning well throughout all tests, without extensive tuning.

7 Conclusion and Future Work
The Dreaming Variational Autoencoder increases safety during the training of rein-

forcement learning agents. Section 6 shows that,

1. Agents have significantly lower failure-rate when pretraining using the predictive

model,

2. has similar performance, in terms of accumulative reward, to state-of-the-art algo-

rithms, including DQN and PPO, and

3. can predict longer time-horizons with usable training quality, however, the predic-

tion error grows exponentially.

Despite that DVAE is less stable than model-free approaches and is, which is the biggest

challenge of using a dream model for safety-critical tasks, the sample efficiency is sig-

nificantly improved. As is common in many other models, the proposed algorithm re-

quires significant hyperparameter tuning to function well, and it could be difficult to

find general parameters that work across many environments. However, we found that

α = 0.99, w = 0.01, α = 0.7, w = 0.3, and α = 0.5, w = 0.5 to perform best during the

experiments.

The most considerable achievement is that DVAE improves sample efficiency signifi-

cantly when using the predictive model when pretraining the agent. The algorithm can

predict future-state sequences of up to 100 frames with an accuracy sufficient for pretrain-

ing. This reduces the need for interacting with the real environment and hence defeats the

potential risk of entering catastrophic states.

Continued research of this work is dedicated to better combine proximal policy opti-

mization with the presented methods for safe reinforcement learning. In the DVAE t-

model, we would like to investigate if temporal convolutional networks [58] could further

improve the performance of learning the predictive model. Also, we hope to experiment

with the recent vector quantized variational autoencoder [59] for more accurate latent

space (embedding) encoding. While this paper contributes new findings in safe reinforce-

ment learning, it is still room for improvement, in which we hope to contribute more in

the future.
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Figure 5: Architecture overview of DVAE. The architecture of the proposed predictive

model. The predictive model M takes action a and state s as input to the encoder. The

input to the encoder is transformed into the embedding zt and is stored in the replay-

buffer RB. The t-encoder (temporal-encoder) retrieve Zt ⊆ RB (size determined by

hyperparameter) to learn the transition dynamics ht w.r.t time. The ŝ − decoder and

r̂−decoder decodes ht into a predicted future state and reward, which feeds into the policy

for decision making and training. The dotted lines illustrate the standard reinforcement

learning interaction between agent and environment [45], which the algorithm uses after

training.
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Figure 6: Detailed architecture for DVAE. The algorithm is modular so that compatible

algorithms and schemes are usable and problem independent.
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Figure 7: Learned features of the encoder. The table illustrates a two-parameter embed-

ding of a grid-world environment where the learned embedding refers to the location of

the player. The idea is that the state information, a n×m grid is compressed significantly

and can be retrieved by decoding the embedding.
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Figure 8: Visual observation of the ASRS-Lab environment using cube-based ASRS con-

figuration.
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Figure 10: Cumulative Prediction Error The y-axis shows the pixel error where each
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32 × 32 pixels has incorrect values. The x-axis is how many predictions in the future is

made without interaction with the real environment (how many states in the future has the

algorithm “dreamed”).
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Figure 11: Agent failure rate. We evaluate the rate of which an agent fails during tri-

als across various environments where the x-axis illustrates the episode number, and the

y-axis the rate in percentage. Each environment is averaged over 100 trials for 1000

episodes. We compare three safety configurations of DVAE against DQN [44] and PPO

[57]
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Figure 12: Behavioral agent performance. DVAE shows good performance when accu-

mulating reward (y-axis) during training for 1 million timesteps (x-axis). The experiment

was averaged across 100 runs and due to execution time, limited to only a subset of the

environments
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Abstract

Reinforcement Learning (RL) is a general framework concerned with an agent that seeks

to maximize rewards in an environment. The learning typically happens through trial

and error using explorative methods, such as ε-greedy. There are two approaches, model-

based and model-free reinforcement learning, that show concrete results in several disci-

plines. Model-based RL learns a model of the environment for learning the policy while

model-free approaches are fully explorative and exploitative without considering the un-

derlying environment dynamics. Model-free RL works conceptually well in simulated

environments, and empirical evidence suggests that trial and error lead to a near-optimal

behavior with enough training. On the other hand, model-based RL aims to be sample

efficient, and studies show that it requires far less training in the real environment for

learning a good policy.

A significant challenge with RL is that it relies on a well-defined reward function to

work well for complex environments and such a reward function is challenging to define.

Goal-Directed RL is an alternative method that learns an intrinsic reward function with

emphasis on a few explored trajectories that reveals the path to the goal state.

Fortieth SGAI International Conference on Artificial Intelligence (AI-2020), Cambridge England
Submitted 3. Jul, 2020, Accepted 1. Sep 2020, Published 08. Dec, 2020
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This paper introduces a novel reinforcement learning algorithm for predicting the distance

between two states in a Markov Decision Process. The learned distance function works

as an intrinsic reward that fuels the agent’s learning. Using the distance-metric as a re-

ward, we show that the algorithm performs comparably to model-free RL while having

significantly better sample-efficiently in several test environments.

Keywords: Reinforcement Learning, Markov Decision Processes, Neural Networks,

Representation Learning, Goal-directed Reinforcement Learning

1 Introduction
Goal-directed reinforcement learning (GDRL) separates the learning into two phases,

where phase one aims to solve the goal-directed exploration problem (GDE). To solve

the GDE problem, the agent must determine at least one viable path from the initial state

to the goal state. In phase two, the agent uses the learned path to find a near-optimal path.

The two phases iterate until the agent policy is converged.

Reinforcement learning (RL) classifies into two categories of algorithms. Model-free

RL learns a policy or a value-function by interaction with the environment and succeeds

in various simulated areas, including video-games [19, 25], robotics [12, 15], and au-

tonomous vehicles [7, 24], but comes at the cost of efficiency. Specifically, model-free

approaches suffer from low sample efficiency and are a fundamental limitation for appli-

cation in real-world physical systems.

On the other hand, Model-based reinforcement learning (MBRL) aims to learn a predic-

tive model of the environment to increase sample efficiency. The agent samples from the

learned predictive model, which reduces the required interaction with the environment.

However, it is challenging to achieve good accuracy of the predictive model for many do-

mains, specifically for high complexity environments. With high complexity comes high

modeling error (model-bias) and it is perhaps the most common problem for unstable and

collapsing policies in model-based RL. Recent work in model-based RL focuses primar-

ily on learning high-dimensional and complex predictive models with graphics as part of

the MDP. This complicates the model severely and limits long-horizon predictions as the

prediction-error increases exponentially.

This paper address this issue with a combination of GDRL and MBRL by learning a

predictive model and a distance model that describes the distance between two states.

The learned predictive model abstracts the state-space to distance between state and goal,

which reduce the state-complexity significantly. The learned distance is applied to the

reward-function of Deep Q-Learning (DQN) [18] and accelerates the learning effectively.

The proposed algorithm, CostNet, is an end-to-end solution for goal-directed reinforce-

ment learning where the main contributions are summarized as follows.
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1. CostNet for estimating the distance between arbitrary states and terminal states,

2. modified objective for DQN for efficient goal-directed reinforcement learning, and

3. the proposed method demonstrates excellent performance in simulated grid-like

environments.

The paper is organized as follows. Section 2 details the preliminary work for the proposed

method. Section 3 presents a detailed overview of related work. Section 4 introduces

CostNet, a novel algorithm for cost-directed reinforcement learning. Section 5 thoroughly

presents the results of the proposed approach, and Section 6 summarizes the work and

propose future work in Goal-Directed Reinforcement learning.

2 Background
Model-based reinforcement learning builds a model of the environment to derive its be-

havioral policy. The underlying mechanism is a Markov Decision Process (MDP), which

mathematically defines the synergy between state, reward, and actions as a tuple M =

(S,A, T,R), where S = {sn, . . . , st+n} is a set of possible states andA = {an, . . . , at+n}
is a set of possible actions. The state transition function T : S × A × S → [0, 1], which

the predictive model tries to learn is a probability function such that Tat(st, st+1) is the

probability that current state st transitions to st+1 given that the agent choses action at.

The reward function R : S × A → R where Rat(st, st+1) returns the immediate reward

received on when taking action a in state st with transition to st+1. The policy takes the

form π = {s1, a1, s2, a2, . . . , sn, an} where π(a|s) denotes chosen action given a state.

Model-based reinforcement learning divides primarily into three categories: 1) Dyna-

based, 2) Policy Search-based, and 3) Shooting-based algorithms in which this work con-

cerns Dyna-based approaches. The Dyna algorithm from [26] trains in two steps. First,

the algorithm collects experience from interaction with the environment using a policy

from a model-free algorithm (i.e., Q-learning). This experience is part of learning an esti-

mated model of the environment, also referred to as a predictive model. Second, the agent

policy samples imagined data generated by the predictive model and update its parameters

towards optimal behavior.

Autoencoders are commonly used in supervised learning to encode arbitrary input to a

compact representation, and using a decoder to reconstruct the original data from the en-

coding. The purpose of autoencoders is to store redundant data into a densely packed

vector form. In its simplest form, an autoencoder consists of a feed-forward neural net-

work where the input and output layer is of equal neuron capacity and the hidden layer

smaller, used to compress the data. The model consists of an encoder Q(z|X), latent

variable distribution P (z), and decoder P (X̂|z). The input X is a vector that repre-
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sents only a fraction of the ground truth. The objective is for the autoencoder to learn

the distribution of all possible training samples, including data not in the training data,

but nevertheless, part of the distribution P (X). The final objective for the model is

E[logP (X|z)]−DKL[Q(z|X)‖P (z)], where the first term denotes the reconstruction loss,

similar to standard autoencoders and the second term the distance between the estimated

latent-space and the ground truth space. The ground truth latent-space is difficult to de-

fine, and therefore it is assumed to be a Gaussian, and hence, the learned distribution

should also be a Gaussian.

3 Related Work
Pioneering work of the goal-directed viewpoint of reinforcement learning, uniformly sug-

gests that pre-processing of the state-representation (i.e., model-based RL) and careful

reward modeling is the preferred method to perform efficient GDRL. The following sec-

tion introduces related work in GDRL and relevant model-based reinforcement learning

methods1.

3.1 Goal-Directed Reinforcement Learning

Earlier studies have contributed significantly to improve the abilities to solve reinforce-

ment learning problems with a goal-directed approach. Perhaps the most well-known

study of the Goal-Directed Reinforcement Learning problem begins with Koenig and

Simmons [13]. Their approach splits the problem into two phases, known as Goal-

directed exploration (GDEP) and knowledge exploitation. The study finds that the con-

vergence of GDRL-based Q̂- and Q-learning closely relates to the state representation

and volume of prior knowledge. Furthermore, their work shows that computationally

intractable problems are tractable with minor modifications to the state- representation.

Braga and Araújo apply GDRL in [5], using temporal-difference learning to collect prior

knowledge and to create a reward and penalty surface explaining the environment dy-

namics. The map acts as an expert advisor for the TD algorithm and proves the policy

performance. Their work shows that the concept of GDRL works well in grid-based en-

vironments and includes significantly better sample efficiency compared to Q-Learning.

In [17], the authors study the importance of reward function and initial Q-values for

GDRL. The authors thoroughly studied the effect of different initial states of the Q-table

and found it challenging to design a generic algorithm for initially setting optimal parame-

ters. However, they found that initial values impact the performance and sample efficiency

considerably. Furthermore, the author shows that adding a goal bias leads to much faster

1The reader is referred to [20] for an in-depth survey of MBRL-based methods.
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learning and recommends an adjustable continuous reward function. More recently, Deb-

nath et al. propose a hybrid approach, formalized as a GDRL problem, where the first

phase optimizes a predictive model of the environment with samples from a model-free

reinforcement learning policy. The second phase exploits the learned predictive model to

improve the policy further, similar to [3]. The authors show that GDRL-based algorithms

accelerate learning and improve sample efficiency considerably [6].

3.2 Model-Based Reinforcement Learning

The Model-Ensemble Trust-Region Policy Optimization (ME-TRPO), formally proposed

by [14], is a Dyna-based algorithm for learning a predictive model. The ME-TRPO

method uses an ensemble of neural networks to form the predictive model, which sig-

nificantly reduces model-bias, increasing its generalization abilities. The ensemble in-

dividually trains using single-step L2 loss in a supervised setting. After training of the

algorithm, the authors use Trust-Region Policy Optimization from [22] as the model-free

approach. The work shows significantly faster convergence in several continuous control

tasks.

The ME-TRPO method extends to Stochastic Lower Bound Optimization (SLBO) [16].

In comparison, SLBO modifies the single-step L2 loss to multi-step L2-norm loss to the

train ensemble predictive model. The authors present a mathematical framework for the

guaranteed monotonic improvement of the predictive model.

In [10], the authors analyze previous methods and their capability to generalize well for

longer time horizons. Their analysis suggests that the performance is good for shorter

time horizons, but exponentially decrease as uncertainty appears when predicting longer

rollouts. The proposed algorithm is called Model-based Policy Optimization (MBPO)

and balance a trade-off between sample efficiency and performance. The paper suggests a

prediction horizon between and 1-15 states, up to 200 states. In conclusion, MBPO shows

that model-based approaches can outperform state-of-the-art model-free reinforcement

learning when tuning appropriately.

4 CostNet for Goal-Directed RL
CostNet is a combination of four disciplines in Deep Learning, 1) Goal Directed RL [13],

2) Model-Based RL [27], and 3) Variational Autoencoders [11] and forms a novel ap-

proach for learning the cost between states modeled after an MDP. The algorithm accu-

mulates training data from using expert systems or random sampling. For systems where

safety is a priority, it is advised to perform sampling according to manually defined risk

constraints at the cost of increased sample complexity [3].
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Figure 1: The encoder-latent-decoder architecture for learning a compact representation

of states. The model is a convolutional variational autoencoder with three layers of con-

volutions before the latent-vector computation. The input is a state st. The latent-space,

z forms from an estimated µ, and σ, mean and standard-deviation respectively, from a

Gaussian. The ε ∼ N denotes sampling using the reparametrization trick, as described

in [11]. On the right-hand side, the estimated latent-variable z reconstructs into the future

state ŝt+1

The initial phase of training revolves around training a predictive model of the environ-

ment. Recent work indicates that state-of-the-art models suffer from sever policy drift

after a few predictions [2, 8, 10], and CostNet is no exception. Therefore, the problem is

redefined to learning only the one-step prediction under a policy φ(ŝt+1|st, at)π, where φ

denotes the predictive model. The predictive model is a variational autoencoder (VAE),

where the goal is to map input (state) to latent-vectors that describes best possible de-

scribe the input. Figure 1 illustrates the proposed structure for the encoder-latent-decoder

model for CostNet. The input is an image of an arbitrary state, and the hidden layers

are convolutions with 32, 64, and 128 filters, a kernel size of 2, and a stride of 2 with

ReLU activation, respectively. The latent-vector size is 64 neurons, but it is highly ad-

vised to fine-tune these hyper-parameters as the required embedding capacity varies on

the state-complexity.

The model-based approach to encode states as is developed as a method to improve the

performance of the feed-forward neural network. Figure 2 shows the proposed architec-

ture for the CostNet algorithm and consists of two models with different objectives. The

first model, CostNet0θ, predicts which of the two states are closest to the goal, stateA, or

stateB. The output is a vector that describes the probability of both stateA and stateB
being closest to the goal. The second model, CostNet1θ, predicts the absolute distance to a
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Figure 2: The proposed CostNet architecture. There are in-total two inputs, z1s and z2s , that

represent encoded states (see Figure 1. The inputs are sent through two streams (models),

CostNet0θ, and CostNet1θ, and learns two separate objectives using MSE. During training,

both networks must agree on the answer for gradients to contribute in a positive direction.

When both networks predict the same state to be closest to the goal state, the training

is completed. The hidden layers are regular fully-connected with ReLU activation. The

output for CostNet0θ activates with softmax, and CostNet1θ with sigmoid activation.
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Figure 3: Illustration of the reformulation of the model-based MDP problem. State 0, 7,

and 13 illustrate the usual state complexity for each node in the MDP graph; a pixel-based

(full-state) representation. CostNet, on the other hand, simplifies the state nodes to only

a single metric: distance. This simplifies the complexity of the state-space significantly,

and for GDRL-based approaches is sufficient representation.

goal state as a real number between 0 and 1, where 0 is at the goal state, and 1 is at maxi-

mum possible distance. Both networks train using mean squared error (MSE) loss, where

the labels stem from the experience-buffer and the distance label from a backtracking

algorithm. The predictions are considered correct (reliable) when there is an agreement

between both networks, i.e. that CostNet0θ correctly predicts which of stateA or stateB is

closest, and CostNet1θ predict the actual distance.

To exemplify, consider the inputs z1s (stateA) and z2s (stateB) where z1s is closest to the

goal state. In this case, the first index in the vector from the CostNet0θ prediction should be

the largest signal, and the predicted distance from CostNet1θ for z1s should be less for the

similar prediction z1s . If this is in place, we claim that the models are in agreement. When

the agreement between the networks is consistent, the training is considered complete.

Figure 3 shows how the MDP is reduced to only focus on the distance to the goal-state.

In regular MDP’s the whole state information is represented at each node, illustrated by

the inner square in state s0, s7, ands13. However, in this work, the MDP nodes only try

to model the distance from one node to an arbitrary goal node. The problem with this

formulation is that 1) there may be many goal states, and 2) agent must visit a goal state
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at least once. Therefore, the goal-directed approach works best in environments with less

stochasticity in terms location of the goal states.

Algorithm 1: CostNet with Deep Q-Learning
Result: Optimized policy π given a set of states S, actions A)

1 Hyperparameters: Discount factor γ ∈ [0 . . . 1], Learning-rate α ∈ [0 . . . 1], and

Drift threshold ψ ∈ [0 . . . 1]

2 Assumptions: Experience-Replay (ER) from expert-system or random sampling, Ω

3 while training do
4 Train predictive model φ(ŝt+1, zt|st, st+1, at) from ER using objective

E[logP (X|z)]−DKL[Q(z|X)‖P (z)]

5 if φ ¡ ψ then
6 Train first supervised CostNet C1

θ using zt, ẑt+1 from φ(zt|st) and

φ(ẑt+1|ŝt+1) with MSE loss.

7 Train second supervised CostNet C2
θ using zt from φ(zt|st) with MSE loss.

8 if C1
θ
∼= C2

θ for most predictions (agreement) then
9 training = false

10 end
11 end
12 end
13 while training DQN do
14 Choose action a based on ε-greedy Execute a at state s and get st+1, r Perform

Q-Update:

15 Li(θi) = Es,a,r,s′∼ρ(.) [(yi −Q(s, a; θi))
2] where

yi = r
1−C2

θ
+ γmaxa′ Q(s′, a′; θi−1)

16 end

Predictive model. The algorithm is summarized in the following line-by-line procedure.

(Line 1) Initialize hyper-parameters for γ, α, and ψ where the drift-threshold evaluates

for n future predictions. When the algorithm is consistently below the threshold, training

is complete. (Line 4) Train the predictive model using the ER-buffer using the objective

from [11] where Q(z|X) is the encoder to latent-space, P (z) is the distribution of latent-

space, and P (X|z) is the decoder distribution. The object splits into two terms. The first

term is the reconstruction loss (MSE), and the second term computes the KL distance be-

tween the predicted latent distribution Q(z|X) and the assumed normal distributed space

P (z) ∼ N(0, 1). (Line 5) when the predicted model is below the drift-threshold ψ, the

training concludes.

CostNet. (Line 6, Line 7) The CostNet0θ model trains with encoded states zt and zt+1

as input and produces a vector that predicts a probability for each of the states being
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Table 1: Hyper-parameters of CostNet algorithm

Parameter Value

Learning Rate (DQN) 0.01

Discount Factor (DQN) 0.95

ER-Size (DQN) 5000

Optimizer Adam

Optimizer Learning Rate 0.001

Drift-Threshold ψ 0.3

closest to the goal state. A second model, CostNet1θ predicts the distance for a single

state, and when the predictions align consistently, the training concludes2. (Line 13) The

training CostNet is complete, and regular model-free RL is performed, using DQN [18]

respectively.

Model-free RL. (Line 14, Line 15) The agent performs regular sampling to accumulate

ER for training. The training is performed similarly to [18], but modifies the reward signal

to account for the distance from the goal state. When the distance signal is weak, the agent

receives little reward and otherwise large rewards for states close to the goal state.

5 Results and Discussion
The CostNet algorithm is tested in four environments, CartPole-v1 from [4], DeepRTS

GoldCollect [1]3, and DeepMaze StaticNoWalls [2]4. The experiments compare Cost-

Net to DQN [18], and PPO [23] for 1000000 timesteps during 100 experiments for sta-

tistical analysis of the results5.

5.1 Results

The hyper-parameters for CostNet are shown in Table 1. Figure 4 shows the environments

used in the experiments. The first environment is CartPole, a common benchmark for

exploratory reinforcement learning research. The objective is to balance a pole on a cart

for 500 timesteps at which the episodes end. The second environment is DeepRTS Gold-

Collect, a simple environment where the goal is to accumulate as much gold as possible

for 5 minutes. The optimal episodic reward for this environment is 1000. Finally, the

DeepMaze StaticNoWalls environment is an 11 × 11 grid structure where the goal is

2CostNetxθ where θ is the parameters that are optimized for the model.
3The DeepRTS environment is available at: https://github.com/cair/deep-rts
4The DeepMaze environment is available at: https://github.com/cair/deep-maze
5The experiments are available here https://github.com/cair/CostNet
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(a) (b) (c)

Figure 4: Illustration of the experiments. (a) Cart Pole. Goal is to balance the pole until

terminal state occurs. (b) DeepRTS GoldCollect. Gather as much gold as possible in a

time-frame of 5 minutes. (c) DeepMaze. The player (white) must enter the terminal state

(black) in shortest possible time.

located at a fixed position. The reward for DeepMaze is the length of the maze because

the agent and goal are located at opposite corners.

Figure 5 compares the performance of CostNet against two competing algorithms, DQN

and PPO. Several parameters for the drift-threshold parameterψ is tested, but a value of

0.3 seems to be stable across several environments. The PPO algorithm uses the parame-

ters defined in [23] and for DQN in [19]. CostNet shows significantly better performance

across all environments in terms of variance, seen clearly in the DeepMaze environment

results. The primary reason for this is that the algorithm starts with a relatively good idea

of the underlying environment dynamics from learning the predictive model. Further-

more, in terms of raw performance, the CostNet agent starts at near-optimal performance

in some environments, such as the DeepRTS Gold-Collect environment. There are still

challenges to be investigated, such as preventing divergence if the policy is already do-

ing good behavior. Another problem is that CostNet demands initial data from expert

systems which, is not possible in all environments. Regardless of these challenges, the

algorithm is a good leap in the right direction and clearly CostNetwith a modified DQN

reward-function, significantly increases the agent’s performance, especially in more com-

plex environments such as Deep RTS.

5.2 Discussion

This paper’s contribution shows that it is possible to learn distances between states in

an MDP reliably and that the learned distance is useful for generic reward functions.

The significance of applicability for CostNet spans across several disciplines. Games
are perhaps the most obvious application for the algorithm as it is not always trivial to
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Figure 5: A comparison of PPO (square), DQN (circle), CostNet (unmarked and diamond)

performance in CartPole, DeepRTS ,and Deep Maze environment. The y-axis shows the

accumulated reward, and the x-axis is at which timestep. Every experiment runs for 100

episodes for 1 million timesteps. CostNet shows outstanding performance compared to

fully model-free variants in two of three environments. In CartPole, PPO is superior, but

CostNet closely follows. The experiments show that increasing the drift-threshold ψ also

decreases performance and are an indication that CostNet impacts performance positively.
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design reward functions generic enough to describe every state a complex MDP. While the

proposed algorithm also suffers from generalization for multi-objective environments, it is

still more accurate in learning reward functions compared to manually crafted functions.

Industry the CostNet algorithm is applicable to the industry, especially in areas where

the goal is stationary for all timesteps. One example is grid-warehousing, where agents

operate on an A-to-B objective. However, upholding safety is a big concern when using

RL-based algorithms, and therefore, GLDR-based approaches should be used with care.

6 Future Work and Conclusion
One question that merits future investigation is how to define optimal encode the state-

space into latent-vectors. Using VAE is efficient, but still suffers from severe policy-shift

for many-step future predictions. The proposed method is generic and should yield sig-

nificant benefits from encoders that surpass VAE. Specifically, the VQ-VAE2 [21] shows

promise, surpassing VAE in several disciplines. It would be interesting to see the effect

VQ-VAE’s discrete latent representation has on the overall performance when calculating

state-to-state distances.

Another enticing direction for future work is analytical work for the CostNet architec-

ture. The algorithm shows promising results empirically, which is often the case for

deep reinforcement learning, but it remains future work to analytically prove the algo-

rithm. Furthermore, in the extension of this work, the goal is to test the algorithm in

many environments such as the MuJoCo, Atari Arcade, and DeepMind Lab environment

to investigate its capabilities to generalize.

CostNet is a novel architecture for accelerating model-free reinforcement learning by

combining goal-directed reinforcement learning and model-based reinforcement learning.

The hybrid approach learns a predictive model, similar to [9], but learns a simpler model,

CostNet, which captures only the distance between any given state and a terminal state.

The algorithm outperforms DQN and PPO in several environments and shows outstanding

stability during learning. Furthermore, CostNet shows promise for several disciplines,

including games, industry, and autonomous driving. The hope is that future studies will

lead to many more successes.
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Abstract

In mission-critical, real-world environments, there is typically a low threshold for failure,

which makes interaction with learning algorithms particularly challenging. Here, current

state-of-the-art reinforcement learning algorithms struggle to learn optimal control poli-

cies safely. Loss of control follows, which could result in equipment breakages and even

personal injuries.

On the other hand, a model-based reinforcement learning algorithm aims to encode en-

vironment transition dynamics into a predictive model. The transition dynamics define

the mapping from one state to another, conditioned on an action. A sufficiently accurate

predictive model should learn optimal behavior, also even in real environments.

The paper’s heart is the introduction of the novel, Safer Dreaming Variational Autoen-

coder, which combines constrained criterion, external knowledge, and risk-directed explo-

ration to learn good policies. Using model-based reinforcement learning, we show that

the proposed method performs comparably to model-free algorithms safety constraints,

with a substantially lower risk of entering catastrophic states.

Keywords: Deep Reinforcement Learning, Model-based Reinforcement Learning, Neu-

ral Networks, Variational Autoencoder, Markov Decision Processes, Exploration
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1 Introduction
Reinforcement learning has recently demonstrated a high capacity to learn efficient strate-

gies in environments where there are noisy or incomplete data [7]. We find achievements

in many domains, such as robotics [12], wireless networking [20], and game-playing [13].

The common denominator between these domains is that they can be computer-simulated

with significant resemblance to real-world environments, and therefore, let algorithms

train at accelerated rates with strong safety guarantees.

The goal of reinforcement learning algorithms is to learn a behavioral policy that produces

optimal actions based on sensory input and feedback from an environment. A policy is a

parameterized model that is constructed in exact tabular form or using an approximation

neural network with gradient descent [17]. The algorithm performs an iterative process

of exploration (often through sampling) , exploitation, and learning policy updates that

moves the policy in the direction of better behavior. Exploration is commonly performed

using a separate policy, such as random sampling from a Gaussian distribution. It is

crucial that the algorithm balance exploration and exploitation with schemes such as ε-

greedy so that the policy learns with the best possible data distribution.

The challenges towards achieving safer reinforcement learning are many. The main lim-

itations of current state-of-the-art in this context are (1) It requires a tremendous amount

of sampling to learn a good policy. (2) Stable and safe policies are challenging to achieve

in dynamic environments. (3) Model-free exploration methods are not safe in mission-

critical environments. (4) Reinforcement learning methods depend on negative feedback

through trial and error and is therefore not applicable to mission-critical systems. Most

reinforcement learning techniques are not designed for safe learning, and therefore, few

solutions exist for mission-critical real-world environments.

Automated Storage and Retrieval Systems (ASRS) is a modern method of performing

warehouse logistics where the system is partially or fully automated. In industry, in-

cluding ASRS, it is common to rely on complex expert systems to perform tasks such

as control, storage, retrieval, and scheduling. If-else statements and traditional pathfind-

ing algorithms drive these tasks. The benefit of expert systems is that it is trivial to model

operative safety bounds that limit the system from entering catastrophic states. The down-

side is that expert systems do not adapt to changes automatically, and requires extensive

testing if altered. While it may be possible and perhaps trivial to construct safe routines

with an expert system, it is inconceivable to expect optimal behavior due to the complex-

ity of the environment. Reinforcement learning is possibly the most promising approach

to solve these problems because it can generalize well across many domains [13] and is

designed to work in noisy environments with partial state-space visibility [18].

I

Paper I: Safer Reinforcement Learning for Agents in Industrial Grid-Warehousing



This paper presents The Safer Dreaming Varational Autoencoder (DVAE-S), an algorithm

for safe reinforcement learning in real-world environments. DVAE-S is based on previous

work in [2], where a model-based approach was proposed for training fully off-line with-

out direct access to the real environment. However, the algorithm suffers from making

catastrophic actions, a common problem in reinforcement learning and, therefore, does

not satisfy the safety requirements. The following research question was raised.

How to ensure that the agent acts within defined safety boundaries?

DVAE-S address this question by eliminating catastrophic states from the state-space and

utilizing external knowledge from previously hand-crafted algorithms

The rest of the paper is structured as follows. Section 2 discusses related work to the

proposed algorithm. Section 3 introduces preliminaries. Section 4 presents the DVAE-

S algorithm for safe reinforcement learning. Section 5, presents an approach for safer

learning of ASRS agents using the DVAE-S algorithm. Finally, Section 6 concludes the

work and proposes a roadmap for future work in safe reinforcement learning.

2 Related Work
This section address related work to applied reinforcement learning in industry-near en-

vironments and on improving safety in reinforcement learning. Advancements in rein-

forcement learning have recently been more frequent and with substantial performance

improvements in various domains [4]. Trial and error is central in standard reinforcement

learning and therefore, little attention is given to safety during training.

Reinforcement learning is previously applied to industry-near environments, and perhaps

the most widespread application is autonomous vehicles. The proposed method in this

paper uses an auxiliary policy to label data for supervised training. With only 12 hours

of labeled data, [19] shows that it is possible to learn a performant policy using a direct

perception approach with convolutional neural networks. This approach is much like a

variational autoencoder that simplifies the perception of the world significantly. This sim-

plifaction of the input significantly speeds up inference, which enables the system to issue

control commands more frequently. Many other significant contributions in autonomous

vehicle control directly relate to control in ASRS environments, such as [15].

2.1 Safe Reinforcement Learning

In the majority of established systems in the industry, an expert system acts as the

controller for the environment. It is critical for safe and stable learning in real world-

environments so that ongoing operations are not interrupted.
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Similar to this work, [5] assumes a predictive model that learns the dynamics of the envi-

ronment. The authors propose that the policy should be limited to a safe-zone, called the

Region Of Attraction (ROA). Everything within the bounds of the ROA is “safe states”

that the policy can visit, and during training, the ROA gradually expands by carefully ex-

ploring unknown states. The algorithm shrinks the ROA to ensure stability if the feedback

signal indicates movement towards catastrophic states.

The proposed algorithm encodes observations as latent embeddings or vectors using a

variational autoencoder (VAE), similar to the View model in [10]. The World Model

approach defines three components. The view (VAE) encodes observations to a compact

latent embedding. The model (MDM-RNN)1 is the predictive model used to learn the

world model. Finally, the controller (C) is an interoperability abstraction that enables

model-free algorithms to interact with the world model.

3 Background
This work is modeled according to an Markov Decision Process (MDP) described

formally by a tuple (S,A, T,R), where S is the state-space, A is the action-space,

T : S ×A→ S is the transition function and R : S ×A→ R is the reward function [17].

3.1 Safer Policy Updates

A policy π in reinforcement learning is a parametrized2 model that maps (input)

observations to (output) actions. The goal is to find an optimal policy π∗ =

arg maxπ V
π(s) ∀s ∈ S where maxπ V

π(s) denotes the highest possible state-value

under policy π.

In traditional RL, the algorithm learns according to an optimization criterion. This opti-

mization criterion varies with different algorithms but is commonly implemented to min-

imize time or to maximize reward. Any cost metric can be used and is defined by the

algorithm designer. The return maximization criterion is one example where the agent

seeks a policy that achieves the highest possible reward, where R =
∑∞

t=0 γ
trt denotes

the expected cumulative future discounted reward. γ ∈ [0, 1] is the discount factor that

determines the importance of future rewards. The problem with the return maximization

criterion is that it is not sufficient for environments with catastrophic states. We adopt the

term risk from [11], which is a metric that explains the risk of doing actions using a policy

π. There is several proposed criterion methods to improve safer policy updates, namely

Risk-Sensitive Criterion [9], Worst Case Criterion [8], and Constrained Criterion [14].

1Mixture Density Network combined with a Recurrent Neural Networks.
2All models in this paper are neural network approximations.
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Figure 1: The policy-space (blue) Π and the subset of policies (red) Γ ⊆ Π, where each

policy π ∈ Γ must satisfy the constraints ci ∈ C.

This paper use the Constrained Criterion, where the objective is modified to maximize

the return, similar to [5]. The difference from the traditional objective function is that it

introduces additional constraints to the policy objective function. These constraints act

as a lower or upper bound for the maximization of the return. The general form of the

constrained criterion is defined

max
π∈Π

Eπ(R) subject to ci ∈ C, ci = {hi R αi} (1)

where ci is the ith constraint in C that must be satisfied by the policy π, additionally

ci = {hi R αi} must specify a function related to the return hi with a threshold value αi.

Figure 1 illustrates that a constrained policy-space eliminates a considerable portion of

possible policies. The objective of the constraints is to maximize the number of elim-

inated states that lead to catastrophic outcome and minimize elimination of safe states.

The objective function is denoted maxπ∈ΓEπ(R) given that only updates from the con-

strained subset of policies Γ is used. This increases the safety of policy updates far more

than the traditional return maximization methods. Depending on the application, the con-

straints can be tuned using the threshold value α. Higher the value, the constraint is more

permissive, and for lower values, more restrictive.

3.2 Safe Exploration

Policies with a constrained criterion do not guarantee safety in the short term. Risk-
directed Exploration is a good approach to improve short term safety and uses risk to

determine in which direction the agent should explore. There are many possible ways to

define a risk metrics, but this paper uses normalized expected return with weighted sum

entropy [6].

Risk(s, a) = R(s, a) = wH(X)− (1− w)
E[R(s, a, s′)]

maxa∈A |E[R(s, a, s′)]| (2)

where the entropy is defined as

H(s, s) = E [−π(a|s) log π(a|s)]. (3)
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The resulting utility function denotes as follows:

Utility(s, a) = U(s, a) = p(1−R(s, a)) + (1− p)π(s, a). (4)

The calculated risk is multiplied with the action probability distribution for states in the

MDP. The updated utility function ensures that sampling is performed in favor of safe

and conservative actions, depending on the weight parameter w, and interpolation param-

eter p [6]. The risk-directed exploration plays well with introducing external knowledge

from existing expert systems. The proposed method works well with external knowledge

originating from expert systems already running in an environment. Initial knowledge sig-

nificantly boosts the accuracy of risk and therefore improves the safety and performance

of the agent. The downside of using external knowledge is that the predictive model be-

comes biased and may not learn well when entering unvisited areas of the state-space.

However, the benefit is that large portions of the state-space are quickly labeled, which

provides better safety guarantees during learning.

4 Safer Dreaming Variational Autoencoder
This work extends the Dreaming Varational Autoencoder (DVAE) from [2, 3] to reduce

the risk of entering catastrophic states in mission-critical systems. DVAE is a model-based

reinforcement learning approach where the objective is two-fold.

1. The algorithm learns a predictive model of the environment. The goal of the pre-

dictive model is to capture the (T : S × A → S) dynamics between states and to

learn the (R : S × A→ R) reward function.

2. The DVAE algorithm uses the learned predictive model to train model-free al-

gorithms, where the interaction during training is primarily with the predictive

model.

Figure 2 demonstrates the algorithm procedure in the following steps. (1) The predictive

model observes and learns the real environment dynamics using a sensor model. The

same sensor model is the interface that the expert system uses for making actions. (2) The

intelligent agent (i.e., reinforcement learning agent) interacts with the predictive model

and learns a policy. (3) When the intelligent agent is sufficiently trained, it replaces exist-

ing expert systems with comparable performance. (4) The intelligent agent can optionally

train further in the real-world environment for improved performance, at the risk of mak-

ing catastrophic actions.
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Figure 2: The predictive model of DVAE-S learns the sensor model behavior. The intelli-

gent agent uses the predictive model to train entirely off-line, without the risk of making

mistakes in the real environment. After training, the algorithm performs inference in the

real environment, with significantly less chance of making actions that lead to catastrophic

states.

4.1 Implementation

The DVAE-S algorithm is composed of the following three models: The View, Reason,

and Control (VRC).

The view model is responsible for transforming raw input data into a meaningful and

compact feature embedding. DVAE-S uses a variational autoencoder primarily for this

task, but there exist alternative methods, such as generative adversarial networks (GAN).

It is possible to visualize the embedding zx ∈ Z by manually altering input values. This

is especially useful when predicting long horizon futures. Figure 3 illustrates this with a

(green) agent in an empty grid-world. The embedding layer consists of two neurons where

the first and second neuron learns the vertical and horizontal location, respectively. The

reason model learns the time dependency between states, or in MDP terms, the transition

function T : S × A → S. The reason model computes the future state embedding zπt+1

based on a batch of previous embeddings from the view Zπ
t = {zt−n . . . zt}π. The policy

π denotes the behavior that DVAE-S follows. DVAE-S uses the long short-term memory

(LSTM) architecture as it was found best learn the transition between states.

The control model is responsible for interaction with the environment. The control is the

primary model for performing actions that are safe and progress the learning in the right

direction. DVAE-S uses primarily Deep Q-Networks (DQN) and Proximal Policy Op-

timization (PPO) with constrained optimization criterion and the risk-directed explo-
ration method. The input to the algorithm is a raw-state, commonly a high-dimensional

data structure that is difficult to interpret for humans. The benefit of the DVAE-S architec-

ture is that the reason model finds an embedding that is describes states with significantly

I

Paper I: Safer Reinforcement Learning for Agents in Industrial Grid-Warehousing



Figure 3: Four distinct (table) embedding value sets and its (grid-world) decoded output.

fewer dimensions. The DVAE-S algorithm also enables initial training entirely off-line in

a dream version of the real environment.

Algorithm 1 The DVAE-S algorithm

1: Initialize policy πθ(st|at), predictive model pψ(ŝt+1, r̂, ht|st, aπt )

2: Let Z = {zπt−n . . . zπt }, a vector of encoded states

3: Initialize encoder ENC(zπt |st, aπt ), temporal reasoner TR(hπt |Z)

4: for N epochs do
5: Denv ← Collect samples from penv under predefined policy π

6: Train model pψ on data batch Denv via MLE

7: for M epochs do
8: Sample initial state s0 ∼ U(0, 1) from Denv
9: Construct {Dpψ |t < k, TR(hπθt |ENC(zt|st, at)πθ , st = s0)}

10: Update policy πθ using pairs of (ŝt, at, r̂t, ŝt+1)πθ discard if πθ /∈ Γ

Algorithm 1 works as follows. (Line 1) Initialize the control policy and the predictive

model parameters. (Line 2) The Z variable denotes a finite set of sequential predictions

from the view model (ENC) that captures time dependency between states from the reason

model (TR). (Line 5) Collect samples from the real environment penv under a predefined

policy (i.e, expert system), see Figure 2. (Line 6) The predictive model pψ trains using

the collected data Denv. The loss is calculated using maximum likelihood estimation

(MLE) or mean squared error MSE(pψ‖penv) until the loss is sufficiently low. (Line
7)Training of the control model now starts using the predictive model pψ in place of the

real environment penv. (Line 8) The first state s0 is sampled from the real dataset Denv
and the control policy makes action in the prediction model to create an artificial dataset
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of simulated states (sampling from the predictive model). (Line 10) The parametrized

control policy is optimized using (ŝt, at, r̂t, ŝt+1)πθ /∈Γ pairs under the constrained policy

where “hat” denotes predicted values.

4.2 Exploration and policy update constraints

There are significant improvements to the exploration and policy update for finding safe

policies in DVAE-S. During sampling, the control model uses the risk-directed explo-

ration bonus [6]. This bonus is added to the probability distribution over actions before

sampling is performed, as described in Section 3. The policy updates are constrained to a

set of criterion defined as follows. During the learning of the predictive model, feedback

is received from the real-world environment. The model assumes that all actions that were

not chosen by the agent are considered unsafe. This way, the algorithm gradually maps

the unsafe policy space. It is important to note that this mapping does not influence the

choices of the agent when learning the predictive model. When the agent revisits a state,

the agent may select another action, and this will label the state as safe.

5 Results
The content of this section summarizes experiments with the following contributions.

The ASRS-Lab and Deep RTS is introduced as the test environment for the experiments.

The proposed method is then applied to Deep Q-Networks [13] , which we refer to as

DVAE-S-DQN, and Proximal Policy optimization, which we refer to as DVAE-S-PPO,

[16] and tested in three environments, respectively, ASRS-Lab 11x11, ASRS-Lab 30x30,

and DeepRTS Gold-Collect. Each experiment is averaged over 100 separate runs. Finally,

the predictive model performance and safety performance is discussed with the resulting

output from decoded embeddings.

The ASRS Lab3 is a detailed simulator for research into autonomous agents in grid-

warehousing [3]. The simulator’s purpose is to create a framework that would efficiently

represent a real-world environment without the risk of damaging costly equipment. Cost

is perhaps the reason that safety in reinforcement learning is less prevalent than standard

model-free approaches. There are many categories of ASRS systems in the real world,

and the ASRS Lab environment supports a subset of existing setups. The ASRS-Lab fea-

tures a shuttle-based, aisle-based, and grid-based warehouse simulation where this work

focus on solving the grid-based architecture.

DeepRTS4 is a lightweight game engine specifically designed for reinforcement learning

research [1]. The motivation behind DeepRTS is to set up scenarios that this easily repro-
3https://github.com/cair/deep-warehouse
4https://github.com/cair/deep-rts
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Figure 4: Training loss of the DVAE-S predictive model including the resulting decoded

latent-space variables for the DQN variant. The DVAE-S-DQN move towards conver-

gence while DVAE-S-PPO fails to improve. The bottom row illustrates the quality of

predicted future states after applying median filtering.

ducible quickly. This paper focuses on solving the “DeepRTS Gold-Collect” environment

where the goal is to accumulate as much gold as possible before a predefined timer runs

out.

5.1 Predictive Model

The predictive model trains with a learning rate of 0.0003 using Adam optimizer. The

observations originate from expert systems, a manhattan-distance agent in ASRS-Lab,

and rule-based agent for DeepRTS Gold-Collect5 Note that the experiments are performed

after the safe policy pretraining. Figure 4 shows the training loss for the predictive model

for each environment. The second row is the decoded embeddings when predicting future

states using the DVAE-S-DQN model. The model achieves this embedding and decoding

quality using a learning rate of 0.002, batch size of 16 (previous states) with the adam

optimizer. For the DVAE-S-DQN model, the performance gradually decreases for ASRS

environments with similar results. The loss in the Deep RTS environment increased in

early training but converged after approximately 500000 timesteps. The DVAE-S-PPO

method cannot reproduce the DQN variant’s performance because of divergence during

agent training.

5The agent in DeepRTS walks to the nearest gold deposit when the inventory is empty. When inventory
is full, it returns the gold to the base.
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Figure 5: A comparative study of DQN and PPO using DVAE-S. Each plot shows re-

sults in an environment, respectively, ASRS-Lab-11x11, ASRS-Lab-30x30, and Deep-

RTS Gold-Collect. The topmost row shows the failure rate of agents, and the bottom row

illustrates the accumulated reward during the experiment. All plots have a duration of 1

million frames. The plots clearly show that DVAE-S-DQN performs comparably to stan-

dard DQN while having a significantly lower failure rate. On the contrary, DVAE-S-PPO

performs worse than vanilla PPO.
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5.2 Failure Rate

The failure-rate experiment measures how often an agent makes actions that lead to catas-

trophic states in the environment where 1.0 consistently failure and 0 is error-free behav-

ior. The accumulated reward is recorded simultaneously to verify that the agent learns a

better behavior. The parameters for risk-directed exploration is w=0.7, and p=0.85, and

α = 0.4 for all constraints.

Figure 1 shows that DQN agents using the DVAE-S algorithm significantly reduces the

frequency of catastrophic states during a training period of 1 000 000 timesteps. The

expert systems form the baseline performance of an accumulated reward of 300 in the

ASRS-Lab environments and 1300 for the DeepRTS environment. The DVAE-S-DQN

performs comparably to vanilla DQN, but the empirical evidence suggests that using con-

strained criterions and risk-directed exploration reduces the failure rate significantly. The

PPO variant did not perform better, and it remains future work to investigate why it poses

a challenge to combine direct-policy search algorithms and DVAE-S.

Setting the low performance of DVAE-S-PPO aside, the DQN variant shows impressive

results where it performs significantly better than vanilla DQN and above the in the Deep-

RTS Gold-Collect environment. The performance of DVAE-S-DQN is marginally lower

in the ASRS-Lab environment but at the benefit of increased safety, which is the primary

concern addressed in this work.

6 Conclusion and Future Work
The results in this paper show that the combination of DVAE, constrained criterion, and

risk-directed exploration is a promising approach for improving safety while maintaining

comparable behavioral performance. The empirical evidence suggests a strong relation-

ship between control performance and predictive model performance, where good policies

lead to good predictive models and the contrary for bad policies.

By using the constrained criterion for policy updates and risk-directed exploration, the

DVAE-S architecture significantly improves the safety of learned policy in some algo-

rithms. The DVAE-S-DQN algorithm performs comparably to agents without safety con-

straints but has a significantly lower risk of entering catastrophic states. The DVAE-S ar-

chitecture is a novel approach for reinforcement learning in industry-near environments.

This work’s continued research is dedicated to better combine proximal policy optimiza-

tion with DVAE-S for safe reinforcement learning. Temporal convolutional networks

look promising for improving the performance of the predictive model. We also hope to

experiment with the novel vector quantized variational autoencoders for better embedding

high-dimensional states. While this paper contributes new findings in safe reinforcement
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learning, it is still room for significant improvements, in which we hope to contribute

more in the future.
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Abstract
Deep Reinforcement Learning (RL) is unquestionably a robust framework to train au-

tonomous agents in a wide variety of disciplines. However, traditional deep and shallow

model-free RL algorithms suffer from low sample efficiency and inadequate generaliza-

tion for sparse state spaces. The options framework with temporal abstractions [18] is

perhaps the most promising method to solve these problems, but it still has noticeable

shortcomings. It only guarantees local convergence, and it is challenging to automate

initiation and termination conditions, which in practice are commonly hand-crafted.

Our proposal, the Deep Variational Q-Network (DVQN), combines deep generative- and

reinforcement learning. The algorithm finds good policies from a Gaussian distributed

latent-space, which is especially useful for defining options. The DVQN algorithm uses

MSE with KL-divergence as regularization, combined with traditional Q-Learning up-

dates. The algorithm learns a latent-space that represents good policies with state clusters

for options. We show that the DVQN algorithm is a promising approach for identify-

ing initiation and termination conditions for option-based reinforcement learning. Ex-

periments show that the DVQN algorithm, with automatic initiation and termination, has

comparable performance to Rainbow and can maintain stability when trained for extended

periods after convergence.
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Keywords: Deep Reinforcement Learning, Clustering, Options, Hierarchical Reinforce-

ment Learning, Latent-space representation

1 Introduction
The interest in deep Reinforcement Learning (RL) is rapidly growing due to significant

progress in several RL problems [2]. Deep RL has shown excellent abilities in a wide

variety of domains, such as video games, robotics and, natural language progressing

[16, 14, 13]. Current trends in applied RL has been to treat neural networks as black-

boxes without regard for the latent-space structure. While unorganized latent-vectors are

acceptable for model-free RL, it is disadvantageous for schemes such as options-based

RL. In an option-based RL, the policy splits into sub-policies that perform individual

behaviors based on the current state of the agent. A sub-policy, or option, is selected

with initialization criteria and ended with a termination signal. The current state-of-the-

art in option-based RL primarily uses hand-crafted options. Option-based RL algorithms

work well for simple environments but have poor performance in more complicated tasks.

There is, to the best of our knowledge, no literature that addresses good option selection

for difficult control tasks. There are efforts for making automatic options selection [17],

but no method achieves notable performance across various environments.

This paper proposes a novel deep learning architecture for Q-learning using variational

autoencoders that learn to organize similar states in a vast latent-space. The algorithm de-

rives good policies from a latent-space that feature interpretability and the ability to clas-

sify sub-spaces for automatic option generation. Furthermore, we can produce human-

interpretable visual representations from latent-space that directly reflects the state-space

structure. We call this architecture DVQN for deep Variational Q-Networks and study the

learned latent-space on classic RL problems from the Open AI gym [4].

The paper is organized as follows. Section 3 introduces preliminary literature for the

proposed algorithm. Section 4 presents the proposed algorithm architecture. Section 5

outlines the experiment setup and presents empirical evidence of the algorithm perfor-

mance. Section 2 briefly surveys work that is similar to our contribution. Finally, Section

6 summarises the work of this paper and outlines a roadmap for future work.

2 Related Work
There are numerous attempts in the literature to improve interpretability with deep learn-

ing algorithms, but primarily in the supervised cases. [22] provides an in-depth survey of

interpretability with Convolutional Neural Networks (CNNs). Our approach is similar to

the work of [20], where the authors propose an architecture for visual perception of the
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DQN algorithm. The difference, however, is primarily our focus on the interpretability

of the latent-space distribution via methods commonly found in variational autoencoders.

There are similar efforts to combine Q-Learning with Variational Autoencoders, such

as [19, 11], and shows promising results theoretically but with limited focus on inter-

pretability. [1] did notable work on interpretability among using a distance KL-distance

for optimization but did not find convincing evidence for a deeper understanding of the

model. The focus of our contribution deviates here and finds significant value in a shallow

and organized latent-space.

Options The learned latent-space is valuable for the selection of options in hierarchical

reinforcement learning (HRL). There is increasing engagement in HRL research because

of several appealing benefits such as sample efficiency and model simplicity [3]. Despite

its growing attention, there are few advancements within this field compared to model-

free RL. The options framework [18] is perhaps the most promising approach for HRL

in terms of intuitive and convergence guarantees. Specifically, the options framework

defines semi-Markov decision processes (SMDP), which is an extension of the traditional

MDP framework [21]. SMDP features temporal abstractions where multiple discrete time

steps are generalized to a single step. These abstract steps are what defines an option,

where the option is a subset of the state-space. In the proposed algorithm, the structure of

the latent-space forms such temporal abstractions for options to form.

3 Background
The algorithm is formalized under conventional Markov decision processes tuples <

S,A, P,R, γ > where S is a (finite) set of all possible states, A is a (finite) set of all

possible actions, P defines the probabilistic transition function P (St+1 = s′|s, a) where

s is the previous state, and s′ is the transition state. R is the reward function R(rt+1|s, a).

Finally, the γ is a discount factor between γ ∈ [0 . . . 1] that determines the importance

of future states. Lower γ values decrease future state importance while higher values

increase.

4 Deep Variational Q-Networks
Our contribution is a deep Q-learning algorithm that finds good policies in an organized la-

tent space from variational autoencoders. 1 Empirically, the algorithm shows comparable

performance to traditional model-free deep Q-Networks variants. We name our method

the Deep Variational Q-Network (DVQN) that combines two emerging algorithms, the

variational autoencoder (VAE) [12] and deep Q-Networks (DQN) [14].

1The code will be published upon publication.
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Figure 1: The deep variational Q-Networks architecture.

In traditional deep Q-Networks, the (latent-space) hidden layers are treated as a black-

box. On the contrary, the objective of the variational autoencoder is to reconstruct the

input and organize the latent-vector so that similar (data) states are adjacently modeled

as a Gaussian distribution.

In DQN, the latent-space is sparse and is hard to interpret for humans and even option-

based machines. By introducing a VAE mechanism into the algorithm, we expect far

better interpretability for creating options in RL, which is the primary motivation for

this contribution. Variational autoencoders are, in contrast to deep RL, involved with the

organization of the latent-space representation, and commonly used to generate clusters of

similar data with t-SNE or PCA [23]. The DVQN algorithm introduces three significant

properties. First, the algorithm fits the data as a Gaussian distribution. This reduces the

policy-space, which in practice reduces the probability of the policy drifting away from

global minima. Second, the algorithm is generative and does not require exploration

schemes such as ε-greedy because it is done in re-parametrization during training. Third,

the algorithm can learn the transition function and, if desirable, generate training data

directly from the latent-space parameters, similar to the work of [8].

Figure 1 illustrates the architecture of the algorithm. The architecture follows general

trends in similar RL literature but has notable contributions. First, features are extracted

from the state-input, typically by using convolutions for raw images and fully-connected

for vectorized input. The extracted features are forwarded to a fully connected interme-

diate layer of a user-specified size commonly between 50 to 512 neurons. The interme-

diate layer splits into two streams that represent the variance µ and standard deviation

σ and is used to sample the latent-vector using a Gaussian distribution through the re-

parameterization. The latent-vector is forwarded to the decoder for state reconstruction

and the Q-Learning stream for action-value (Q-value) optimization. The decoder and

Q-Learning streams have the following loss functions:

LV AE = MSE(s, ŝ) +DKL[qψ(z|s)‖pθ(z|s)] (1)
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LDQN = (r + γQ(s′, arg max
a′

Q(s′, a′; θi); θi)−Q(s, a; θi))
2 (2)

LDVQN = c1E∼qψ(z|s)[LV AE] + c2Es,a,s′,D∼r[LDQN ]. (3)

The global loss function LDVQN is composed of two local objectives: LDQN and LV AE .

In the VAE loss, the first term is the mean squared error between the input s and its

reconstruction ŝ. The second term is regularization using KL-distance to minimize the

distance between the latent distribution and a Gaussian distribution. The DQN loss is a

traditional deep Q-Learning update, as described in [14].

Algorithm 1 DVQN: Minimal Implementation
1: Initialise Ω

2: Initialise DVQN model π

3: Initialise replay-buffer Dπ

4: for N episodes do
5: Dπ ← Collect samples from Ω under the untrained policy π via the generative

policy sampling.

6: Train model π on a mini-batch from Dπ with objective from Equation 3

Algorithm 1 shows a general overview of the algorithm. First, the environment is initial-

ized. Second, the DVQN model from Figure 1 is initialized with the desired hyperparam-

eters, and third, the replay-buffer is created. For a specified number of episodes, the algo-

rithm samples actions from the generative policy for exploration and stores these as MDP

tuples in the experience replay. After each episode, the algorithm samples mini-batches

from the experience replay and performs parameter updates using stochastic gradient de-

scent. The (loss function) optimization objective is described in equation 3. The process

repeats until the algorithm converges.

5 Experiments and Results
In this section, we conduct experiments against four traditional environments to demon-

strate the effectiveness of the DVQN algorithm. We show that the algorithm can organize

the latent-space by state similarity while maintaining comparable performance to model-

free deep Q-learning algorithms.

5.1 Experiment test-bed

We evaluate the DVQN in the following environments; CartPole-v0, Acrobot-v1,

CrossingS9N3-v0, and FourRooms-v0, shown in Figure 2. These environments are triv-

ial to solve using model-free reinforcement learning and hence, excellent for visualizing
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CartPole-v0 Acrobot-v1

CrossingS9N3-v0 FourRooms-v0

Figure 2: The experiment test-bed contains the following environments; CartPole-v0,

Acrobot-v1, CrossingS9N3-v0, and FourRooms-v0

the learned latent-space. The FourRooms-v0 environment is especially suited for option-

based RL and can solve the problem in a fraction of time steps compared to model-free

RL. Although the DVQN algorithm does not quantify options for analysis (see Section

6), the primary goal is to organize the latent-space so that it is possible to extract meaning-

ful and interpretable options automatically. The aim is to have comparable performance
to vanilla deep Q-Network variants found in the literature [14, 5, 10]. DVQN benchmarks

against vanilla DQN, Double DQN, and Rainbow.

FourRooms-v0 and CrossingS9N3-v0 are a grid-world environment where the objective

is to reach the terminal-state cell (In the lower right of the image in both environments).

In FourRooms-v0, the agent has to enter several doors and only complete a part of the

goal for each door it enters. FourRooms-v0 is an ideal environment for option-based

reinforcement-learning because each door is considered a sub-goal. While the environ-

ment is solvable by many deep reinforcement learning algorithms, option-based RL is

more efficient. The agent receives small negative rewards for moving and positive re-

wards for entering the goal-state (global) or the doors (local). The Crossing is a simpler

environment where the agent has to learn the shortest path to the goal state. In both

grid-environments, the agent can move in any direction, one cell per time step.

To further show that the algorithm works in simple control tasks, we perform experiments

in CartPole-v0 and Acrobot-v1. The objective in CartPole-v0 is to balance a pole on a cart.
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Algorithm DQN DDQN Rainbow DVQN (ours)
Optimiser Adam RMSProp

Learning Rate 0.003 0.000025

Activation ReLU ELU

Batch Size 32 128

Replay Memory 1m

Epsilon Start 1.0 N/A

Epsilon End 0.01 N/A

Epsilon Decay 0.001 (Linear) N/A

Gamma 0.95

Q-Loss Huber MSE

Table 1: Algorithm and hyperparameters used in the experiments. For the Rainbow algo-

rithm, we used the same hyperparameters described in [10]. The DDQN had target weight

updates every 32k frames.

Each step generates a positive reward signal while receiving negative rewards if the pole

falls below an angle threshold. The agent can control the direction of the cart at every time

step. The Acrobot-v1 has a similar aim to control the arm to hit the ceiling in a minimal

number of time steps. The agent receives negative rewards until it reaches the ceiling.

The CartPole-v0 and Acrobot-v1 environments origins from [4] while CrossingS9N3-v0

and the FourRooms-v0 origins from [6].2

5.2 Hyperparameters

During the experiments, we found DVQN to be challenging to tune. Initially, the algo-

rithm used ReLU as activation but was discarded due to vanishing gradients resulting in

divergence for both policy and reconstruction objectives. By using ELU, we found the al-

gorithm to be significantly more stable during the experiments, and it additionally did not

diverge if training continued after convergence. We will explore the underlying cause of

our future work. Table 1 shows the hyperparameters used in our experiments where most

of the parameters are adopted from prior work. Recognize that the DVQN algorithm does

not use ε-greedy methods for exploration. The reason for this is that random sampling

is done during training in the variational autoencoder part of the architecture. In general,

the algorithm tuning works well across all of the tested domains, and better results can

likely be achieved with extended hyperparameter searches. For DVQN, we consider such

tuning for our continued work on DVQN using options, see Section 6.

2A community-based scoreboard can be found at https://github.com/openai/gym/wiki/
Leaderboard.
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Figure 3: The learned latent space for all of the tested environments. DVQN successfully

trivialise the selection of options as seen in the well-separated state clusters. The circular

points illustrate states with positive reward while cross illustrates negative rewards.

5.3 Latent-Space evaluation

An attractive property of our model is that the latent-space is a Gaussian distribution.

As seen in Figure 3, the DVQN algorithm can produce clustered latent-spaces for all

tested environments. For example, in the CartPole-v0 environment, there are three clus-

ters where two of them represent possible terminal states and one that represents states

that give a reward. To fully utilize the capabilities of DVQN, the latent-space can be used

to generate options for each cluster to promote different behavior for every region of the

state-space.

Figure 4 illustrates the visualization of the latent-space representation in CartPole-v0. We

find that each cluster represents a specific position and angle of the pole. The latent-

space interpolates between these state variations, which explains its shape. Although the

clusters are not perfect, it is trivial to construct separate classification for each cluster with

high precision, and this way automatically construct initiation and termination signals for

options.
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Figure 4: The relationship between states and the latent-space for the CartPole-v0 envi-

ronment. DVQN can separate each angle, left, middle and right into separable clusters,

which are especially useful in option-based reinforcement learning. Additionally, the vi-

sualization of the latent space that the Q-head uses to sample actions is trivial to interpret.

5.4 Performance evaluation

Figure 5 illustrates a comparison of performance between state-of-the-art Q-Learning al-

gorithms and the proposed DVQN algorithm. The performance measurement is the mean

of 100 trials over 1500 episodes for CartPole-v0,

CrossingS9N3-v0, FourRooms-v0, and 3000 episodes for Acrobot-v1. The performance

is measured in accumulated rewards and is therefore negative for environments where

each time step yields a negative reward.

The DVQN algorithm performs better than DQN and shows comparable performance to

DDQN and Rainbow. DVQN is not able to find a good policy in the Acrobot-v1 environ-

ment but successfully learns a good visual representation of the latent space. In general,

the DVQN algorithm is significantly harder to train because it requires the algorithm to

find a good policy within a Gaussian distribution. We found this to work well in most

cases, but it required fine-tuning of hyperparameters. The algorithm is also slower to

converge, but we were able to improve training stability by increasing the batch-size and

decreasing the learning-rate.

6 Conclusion and Future Work
This paper introduces the deep variational Q-network (DVQN), a novel algorithm for

learning policies from a generative latent-space distribution. The learned latent-space is
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Figure 5: The accumulative sum of rewards of the DVQN compared to other Q-Learning

based methods in the experimental environments. Our algorithm performs better than

DQN from [14], and shows comparable results to DDQN from [9] and Rainbow from [10].

We define an episode threshold for each of the environments (x-axis) and accumulate the

agent rewards as the performance metric for CartPole-v0 and Acrobot-v1. The scoring

metric in CrossingS9N3-v0 and the FourRooms-v0 is based on how many steps the agent

used to reach the goal state.
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particularly useful for clustering states that are close to each other for discovering op-
tions automatically. In the tested environments, the DVQN algorithm can achieve com-
parable performance to traditional deep Q-networks. DVQN does not provide the same

training stability and is significantly harder to fine-tune than traditional deep Q-learning

algorithms. For instance, network capacity is increased. As a result of this, the algorithm

takes longer to train, and during the experiments, only the RMSprop optimizer [15] with a

small step size was able to provide convergence. Additionally, the exponential linear units

from [7] had a positive effect on stability. On the positive side, the DVQN contributes a

novel approach for options discovery in hierarchical reinforcement learning algorithms.

The combination of VAE and reinforcement learning algorithms has interesting prop-

erties. Under optimal conditions, the latent-space should, in most cases follow a true

Gaussian distribution where policy evaluations always provide optimal state-action val-

ues, since this is the built-in properties of the latent space in any VAE. The difference

between traditional deep Q-networks and DVQN primarily lies in the elimination of a

sparse and unstructured latent-space. In deep Q-Networks, optimization does not provide

a latent-space structure that reflects a short distance between states but rather a distance

between Q-values [14]. By using KL-regularization from VAE, low state-to-state is en-

couraged. Another benefit of VAE is that we sample from a Gaussian distribution to

learn µ and σ, which is especially satisfying for algorithms with off-policy sampling and

therefore eliminates the need for (ε-greedy) random sampling.

In the continued work, we wish to do a thorough analysis of the algorithm to justify

its behavior and properties better. A better understanding of the Gaussian distributed

latent-space is particularly appealing because it would enable better labeling schemes for

clustering, or perhaps fully automated labeling. Finally, we plan to extend the algorithm

from model-free behavior to hierarchical RL with options. The work of this contribution

shows that it is feasible to produce organized latent-spaces that could provide meaningful

options, and the hope is that this will result in state-of-the-art performance in a variety of

tasks in RL.
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Abstract

Reinforcement Learning (RL) algorithms seek to maximize some notion of reward. There

are two categories of RL agents, model-based or model-free agents. In the case of model-

free learning, the algorithm learns through trial and error in the target environment in

contrast to model-based where the agent train in a learned or known environment instead.

Model-free reinforcement learning shows promising results in simulated environments

but falls short in the case of real-world environments. This is because trial and error

do not fit with the reality where errors are related to an economic burden. On the other

hand, Model-based reinforcement learning (MBRL) aims to exploit a known or learned

dynamics model, which substantially increases sample efficiency. This paper focuses on

learning a dynamics model and use the learned model to train several model-free algo-

rithms by directly sampling the dynamics model. However, it is challenging to achieve

good accuracy on dynamics models for highly complex domains due to stochasticity and

compounding noise in the system. A majority of model-based RL focuses on dynamics

models that derive policies from observation space. Deriving policies from observation

space is problematic because it is often high dimensional with significant complexity.
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This paper proposes an end-to-end model-based reinforcement learning algorithm for

learning model-free algorithms to act in environments without trial and error in the real

environment. This method is beneficial for existing installations that employ existing

decision-making systems, such as an expert system. The proposed algorithm has the same

fundamental learning principles as the Dreaming Variational Autoencoder but is substan-

tially different architecturally. We show that the algorithm is more sample efficient and

performs comparably with existing model-free approaches. We also demonstrate how

the algorithm is actor agnostic, enabling existing model-free algorithms to operate in a

model-based context.

Keywords: Reinforcement Learning, Markov Decision Processes, Neural Networks,

State space models, Model-based Reinforcement Learning

1 Introduction
Reinforcement Learning (RL) continues to be fruitful in many applications in recent lit-

erature. To mention a few, we have seen tremendous progress in learning computers

to perform many tasks, such as complex strategies in games via self-play learning [25],

autonomous driving [20], health care applications such as sequential decision making in

tumor classification [30], and in industry decision making and efficiency optimization [8].

It is clear that RL has a significance in the present time, but also in going forward to un-

derstand and define artificial intelligence.

While reinforcement learning shows promise, it is still far from achieving super-

intelligence and lacks sufficient generalization capabilities for mass adoption in disci-

plines such as industry. The various existing reinforcement learning algorithms suffers

from catastrophic forgetting [29], Low sample efficiency [3], Few safety guarantees on

decisions [11], and requires extensive hyper-parameter tuning [10] for optimal perfor-

mance. On the bright side, RL algorithms often only have one of these negative traits

making it possible to circumvent these issues altogether by choosing the correct algo-

rithm for the correct task.

Reinforcement learning separates into two main categories, Model-based and Model-Free

Reinforcement Learning. In Model-free RL, the goal is to derive a policy from samples,

either in an on-policy or off-policy manner. Policy Gradients is an on-policy method and

learns directly using samples collected from its policy. On-policy methods are regarded

as less sample efficient and stable but can often reach higher convergence targets. On the

other hand, off-policy algorithms use historic data sampled from previous policy snap-

shots or Monte-Carlo sampling. The benefit of reusing more distant experiences to pre-

vent catastrophic forgetting and is widely accepted as more sample-efficient. On the other
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hand, Model-based reinforcement learning (MBRL) aims to exploit a known or learned

dynamics model, which drastically increases sample efficiency and policy stability [21].

This paper focuses on learning a dynamics model and use the learned model to train sev-

eral model-free algorithms by sampling directly from the dynamics model. However, it

is challenging to achieve good accuracy on dynamics model trajectories for highly com-

plex domains due to stochasticity and compounding noise in the system. A majority of

model-based RL focuses on dynamics models to derive policies from observation space.

Deriving policies from observation space is problematic because it is often high dimen-

sional with significant complexity. One approach that we investigate in this work is to

reduce the learning complexity by learning policies from latent space variables directly.

This paper attempts to address some fundamental issues with model-based RL by learning

several agents concurrently using ensemble learning. The ensemble consists of on-policy

and off-policy model-free algorithms that learn from samples of a learned world model.

Each agent learns in parallel from interaction with its separate dream environment and,

during inference, forms a majority voting system. The world model is trained separately

by first observing expert systems or RL agents interact with the environment and finally

learn its dynamics in a supervised manner. The world model learns markovian state tran-

sitions, rewards, state cost for measuring goal distance. ORACLE solve traditional rein-

forcement learning problems and shows promising progress on complex state-of-the-art

test environments. The contributions of this work summarize as follows.

• A novel world-model approach based on stochastic recurrent neural networks

(SRNN) from [9] for end-to-end model based RL.

• Ensemble Learning using multiple of model-free algorithms with majority voting

for action selection

We organize the paper as follows. Section 2 presents a in-depth background into rein-

forcement learning topics that ORACLE builds on and moves on to detail the algorithm

architecture, design decisions and theoretical justifications. Section 3 presents empirical

results in classical reinforcement learning problems, game environments, and in complex

real-time strategy scenarios. We show that ORACLE outperforms both on and off-policy

model-free alternatives in sample efficiency while maintaining comparable performance

in most experiments. Section 4 presents recent related work in the field of model-based

reinforcement learning. Finally, Section 5 discusses the good, the bad, and the ugly of

ORACLE and concludes on the significance of our findings, We lay forth potential future

paths of research for improving ORACLE performance and sample efficiency.
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2 ORACLE: Observations Rewards Actions Costs En-
semble Learning

The Observations Rewards Actions Costs Learning Ensemble (ORACLE) is a novel end-

to-end architecture for training model-free algorithms on a dynamics model of the ground

truth environment. The ORACLE is a combination of several state-of-the-art deep learn-

ing techniques such as SRNN [9], variational autoencoders [18], and vector-quantization

for latent space [24], and state-space models (SSM) [9]. This section aims to detail the

algorithm and give the reader thorough insight into how ORACLE operates to learn a

dynamics model for planning and executing decision-making.

Model-based reinforcement learning learns a dynamics model of a environment to de-

rive a policy for decision making. The underlying mechanism is a Markov Decision

Process (MDP), which mathematically defines the synergy between states, actions, re-

wards, and transitions. The problem is formalized as a tuple M = (S,A, T,R), where

S = {sn, . . . , st+n} is a set of possible states and A = {an, . . . , at+n} is a set of pos-

sible actions. The state transition function T : S × A × S → [0, 1], which the dy-

namics model tries to learn is a probability function such that Tat(st, st+1) is the proba-

bility that current state st transitions to st+1 given that the agent choses action at. The

reward function R : S × A → R where Rat(st, st+1) returns the immediate reward re-

ceived on when taking action a in state st with transition to st+1. The policy takes the

form π = {s1, a1, s2, a2, . . . , sn, an} where π(a|s) denotes chosen action given a state.

Model-based reinforcement learning divides primarily into three categories: 1) Dyna-

based, 2) Policy Search-based, and 3) Shooting-based algorithms in which this work con-

cerns Dyna-based approaches. The Dyna algorithm from [28] trains in two steps. First,

the algorithm collects experience from interaction with the environment using a policy

from a model-free algorithm (i.e., Q-learning). This experience is part of learning an esti-

mated model of the environment, also referred to as a dynamics model. Second, the agent

policy samples imagined data generated by the dynamics model and update its parameters

towards optimal behavior.

Dynamics model: ORACLE’s most crucial component is the dynamics model. The aim

is to learn some parameters such that we can predict st+1 = F (st, at, θ), the future state

of a system or environment. Our approach is a combination of Variational Autoencoders

(VAE) from [18] and Stochastic Recurrent State Space Models (SRSSM) from [9]. VAE

and SRSSM’s are highly expressive model classes for learning patterns in time series data

and for system identification [7]. System identification, i.e. learning dynamics models

from data is central in model-based reinforcement learning [6] and hence is a attractive

concept for learning a functional dynamics model. We train the algorithm similarly to

VAE’s using amortized variational inference where we have two models, the generative
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Table 1: Set of tunable parameters in ORACLE. In addition to this incomplete list, the

algorithm has options for controlling model complexity such as neuron counts and number

of layers.

Hyperparameter Values Selected Comment

Batch Size Z+ 48 Number of sequence batches

Sequence Size Z+ 48 Number of frames in a sequence

Buffer Size Z+ 9 000 Replay buffer

Reward Scaling R 1.0 Scaling of the reward objective

Cost Scaling R 1.0 Scaling of the cost objective

VQ Scaling R 0.1 Scaling of the VQ objective

KL Scaling R 1.0 Scaling of the KL objective (KL-β)

KL Minimum Nats R 3.0 Minimal information loss

Optimizer AdamW AdamW improves generalization, see [19]

Gradient Clipping R 100.0 Clip gradients to increase learning stability

Adaptive GC B 1 Based on the history of gradient norms [27]

Learning Rate R 0.0001 Low Learning rate to improve stability.

Latent Leaps Z+ 30 Number of leaps into future states.

Dynamics Model RNN LSTM

Activation Functions ELU

Enc/Dec Neurons Z+ 1024

Stochastic Reward B 1 Sample rewards under Gaussian assumptions

Stochastic Costs B 1 Sample costs under Gaussian assumptions K
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model (prior) prθ and the inference model (posterior) poθ.

Prior Model : pr(zt, ht|ht−1, at−1) (1)

Posterior Model : po(zt|xt, ht−1, at−1) (2)

Equation 1-2 define our models where at is the event that triggers the transition from

observation ot to ot+1 in the real dynamics system. The prior model has a recursive

dependency on previous hidden state ht−1, action at−1, and outputs the hidden state ht
including the latent state zt as seen in equation 1. Internally, the prior performs the fol-

lowing operations:

1. Compute ut = concat(ht−1, at−1)

2. forward concatenation to RNN such that ht = RNN(ut)

3. parameterize mean µt = NN1(ht) diagonal covariance matrix σ = NN2(ht)

4. sample from Gaussian distribution pθ(zt|ht) ∼ N (zt;µ, σ)

where all steps are performed for every sample and forms our prior beliefs of the latent

variables. Note that we do input any information about the visual landscape (observation)

into the prior, but the objective function, which we will describe later aims to learn these

dynamics implicit via the posterior function.

We now move the attention to calculating the latent variable through a posterior model.

As seen in equation 2, the posterior depends on the previous hidden state ht−1, action at−1
but has exclusive access to the encoded ground truth observation xt. Similarly to the prior

model, the input are concatenated and directly parameterize a Gaussian distribution. The

posterior model can be summarized to the following procedure:

1. Compute ut = concat(ht−1, at−1, xt−1)

2. parameterize mean µt = NN3(ut) diagonal covariance matrix σ = NN4(ut)

3. sample from Gaussian distribution pψ(zt|ht) ∼ N (zt;µ, σ)

To optimize the dynamics model, we use variational bayes where the goal is to fit

the posterior approximation such that prθ(z) = poθ(z|x), however, since po(z|x) =∫
z
po(x|z)po(z)

po(x)
dz, it becomes intractable as we are concerned with computing the integral

over the entire latent space z. For this reason, we approximate the posterior using poθ(z)

and choose the Kullback-Leibler distance to approximate. Following the work in [18], we

end up with Evidence Lower BOund [17] given by

(E[logpr(X|z)]︸ ︷︷ ︸
transition−loss

+E[logpr(R|z)]︸ ︷︷ ︸
reward−loss

+E[logpr(C|z)]︸ ︷︷ ︸
cost−loss

)− γ ·DKL[poθ(z|X)‖prθ(z)]︸ ︷︷ ︸
KL−divergence

(3)
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where log-likelihoods forms the reconstruction loss for observations, rewards, and costs,

and KL-divergence act as a regularizer.

Rewards and Costs: ORACLE can predict rewards and costs using its dynamics model.

During a transition in MDP’s a feedback signal is emitted, which reinforcement learning

agents utilize to fuel learning. We propose a novel, goal-directed approach where a cost-

metric is added to the reward signal. This way, the reward signal is motivated by reaching

the goal terminal state quickly.

Learning Ensemble : After ORACLE has trained in a supervised manner, an ensemble

of model-free algorithms are trained on the dynamics model. Each actor learns separately

in concurrent dynamics models. When the algorithm is sufficiently trained1, the ensemble

can perform decision making in the real environment. ORACLE can be configured to use

the ensemble for decision making via majority voting or to use a single agent’s decision.

Vector Quantization (VQ): We follow the VQ-VAE architecture from [24], and the mo-

tivation is to transform continuous latent-space variables into discrete latent variables,

which has shown to be significantly better for reasoning planning, and predictive learn-

ing. Furthermore, VQ-VAE can model very long-term dependencies as it has a high

compression rate compared to continuous space. [24]

Stochastic Weight Averaging (SWA) is a novel approach to ensemble learning where

the objective is to widen the optima space such that it is easier to find and to give a better

generalization of the model [16]. Compared to other ensemble learning techniques, SWA

only requires a single model where snapshots are stored every n epochs. And are after m

epochs averaged over. SWA has different learning rate strategies (i.e., cyclical learning

rate), but we choose a fixed learning rate throughout training.

Hyperparameters: The ORACLE algorithm has a magnitude of different hyperparame-

ters for tuning stability and performance. During the experiments, we found the algorithm

to be rather robust to small changes in hyperparameters, and hence, we limit the scope to

analyzing VQ, SWA, and Adaptive Gradient clipping (AGC) in section 3. ORACLE sup-

ports numerous hyperparameters, and to limit the scope, we have focused on only a few

in this work. The motivation for having such a substantial set of hyperparameters is that

different environments have different requirements to learn a good generalized model.

Specifically, we choose a long-short term memory (LSTM) layer in the Dynamics model

for our deterministic prediction of a future state. Another notable choice is to enable adap-

1The definition of ’sufficient’ is to train up until a satisfactory performance in terms of average return.
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tive gradient clipping, a novel approach to clip the gradient from historical norms [27].

Additionally, we clip the gradient if it exceeds 100.0 to limit training steps.

Algorithm 1: ORACLE Training Routine

1 Result 1: Learned ensemble of policies π = { π1 · · · πn }
2 Result 2: Learned dynamics model zt+1 = f(zt, ht, at)

3 Hyperparameters: See Table 1.

4 Assumptions: Expert-system Ω

5 while dynamics model is not trained do
6 Train dynamics model poθ(ôt+1, zt+1|ot, st+1, at) using equation 3

7 end
8 while training model-free ensemble is not trained do
9 Choose action a from policy strategy

10 Execute a at state s and get zt+1, r, c via dynamics model poθ(zt+1, rt+1, ct+1|zt)
11 Perform policy update (depedening on algorihm)

12 end

Algorithm 1 shows pseudo-code for training ORACLE2. In essence, the algorithm has two

training steps. First, the algorithm observes some policy-making decisions in the ground

truth environment. The algorithm trains either directly as the samples are observed or

store them in a buffer for delayed training. When the dynamics model is trained, which

is indicated by learning objective graphs, the second training procedure for a model-free

algorithm begins. The programmer is allowed to use any model-free algorithm but should

note that the training procedure is different for off and on-policy algorithms. In off-policy

algorithms, the algorithm should utilize a replay buffer and sample actions from an exter-

nal policy for exploration, while on-policy algorithms should train directly without such

storage. Each model-free algorithm is assigned a fixed number of batches, each represent-

ing a dream-world instance. When the model-free agent has reached a sufficient level of

performance, the ensemble is ready for making decisions in the ground truth environment.

In this implementation, we use majority voting, and when there is no consensus, random

actions are selected.

3 Experiments
This section reveals that ORACLE can perform well across many different environments

and outperforms existing RL approaches in the classical RL environment CartPole where

the aim is to balance a pole on a moving cart. Furthermore, we show promising results in

Deep RTS Deathmatch, a one versus one real-time strategy game [1]. Finally, we evaluate

2We refer the reader to https://github.com/perara/oracle for a detailed implementation in
python.
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performance in the HalfCheetahPyBulletEnv-v0 from PyBullet, an open-source physics

engine [5].3 Our experimental evaluation aims to study the following questions:

• How well does ORACLE perform on reinforcement learning problems, compared

to state-of-the-art model-based and model-free algorithms?

• What conclusions can we draw about ORACLE performance and are there any

lessons for future study?

3.1 Hyperparameter and Sample Efficiency Evaluations

In the sample efficiency evaluations, we focus on how we can tune the ORACLE algo-

rithm to improve sample efficiency while also maintaining acceptable performance. In

this study, we only look at ORACLEbut significantly increase the number of hyperparam-

eter variations in the experiments. We will investigate if SWA, VQ, latent leap (LL), and

AGC have an advantageous effect on sample efficiency and if certain combinations show

better performance. We intentionally leave out many hyperparameters that did not im-

pact the performance in any meaningful capacity. However, we will detail our significant

findings and discuss a guideline for choosing the correct hyperparameters for different

environment types. We run the experiments five times for all environments and average

the results. The round the convergence step to the nearest thousand and the algorithms

fails the experiment if exceeding 1 million steps without reaching convergence. Finally,

we use a ensemble of model-free algorithms for decision making, which we detail further

in section 3.2

Table 2 illustrates the sample efficiency in terms of convergence rate for different hyper-

parameter settings with separate dynamics models per environment. The results clearly

show that latent leap set to 30, AGC enabled, VQ disabled, and SWA enabled is the

best choice for CartPole. For DeepRTS Deathmatch and HalfCheetahPyBulletEnv-v0,

we observe the best results when VQ is enabled. We conclude that VQ performs worse

in CartPole because it is a far simpler environment, and the algorithm cannot generalize

well environments with few steps before termination state. This makes sense, as the VQ

architectures double the number of trainable parameters in the model. The primary func-

tion of the VQ layer is to allow for encoding multiple environments in the same dynamics

models, and hence it is natural to continue the experiments by using the same dynamics

model for all environments.

Table 3 illustrates the sample efficiency of ORACLEwhen using the same model for all

environments. This experiment aims to see if it is beneficial to feed the latent vector into a

3We take this opportunity to welcome the RL community to consider open-source benchmarks for easier
comparison of scientific results.
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Table 2: The experiment setup for the limited hyperparameter search. The table clearly

shows that a latent-leap of 30 is superior in reaching a convergence score for all tested

environments.

CartPole-v1

SWA VQ LL AGC Convergence Step
on on 10 on N/A

on on 30 on 755 000

on on 60 on N/A

on off 30 on 390 000
off on 30 off 825 000

DeepRTS Deathmatch

SWA VQ LL AGC Convergence Step
on on 10 on N/A

on on 30 on 600 000
on on 60 on N/A

on off 30 on N/A

off on 30 off N/A

HalfCheetahPyBulletEnv-v0

SWA VQ LL AGC Convergence Step
on on 10 on N/A

on on 30 on 725 000
on on 60 on N/A

on off 30 on N/A

off on 30 off N/A
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Table 3: The data depicts the average performance using a single dynamics model to

learn all environments. The table clearly shows that enabling VQ has a positive effect on

sample efficiency, and without, the environment can not converge before the step limit

has passed.

SWA VQ LL AGC Average Convergence Step

on on 10 on 895 000

off on 30 on 565 000
on on 60 on N/A

on off 10 on N/A

on off 30 on N/A

on off 60 on N/A

on on 10 off N/A

on on 30 off 695 000

on on 60 off N/A

off on 10 on N/A

off on 30 on 596 000

off on 60 on N/A

off on 10 off N/A

off on 30 off 650 000

off on 60 off N/A
K
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Figure 1: The figure illustrates the accumulated return performance and sample efficiency

of PPO, RAINBOW, Dreamer, and ORACLE. We observe that in all environments, OR-

ACLE outperform the state-of-the-art algorithms with LL set to 30. The x-axis describes

the environment step, while the y-axis describes the average return.

VQ to structure the latent space categorically. The results clearly show that ORACLE can

generalize across several environments using the same parameters, using a VQ layer after

the generative network.

We make the following conclusions on how to tune ORACLE. For simple environments

with less than 1 000 timesteps before forced termination, we recommend disabling VQ

and using LL=30. If the environment exceeds 1 000 timesteps, enable VQ. When training

the algorithm on all environments, we recommend having all hyperparameters enabled

using LL=30.

3.2 Comparative performance Evaluation

In our comparative performance evaluation, we aim to understand how the ORACLE al-

gorithm performs in contrast to state-of-the-art model-based and model-free methods and

how to tune the algorithm for different environments properly. We compare the ORA-

CLE to RAINBOW [15] and PPO [26] for model-free and Dreamer [12] for model-based

methods. We select PPO, DQN, RAINBOW, A3C, and VPG as the ensemble and per-

form majority voting for each evaluated action. In the case of a draw, we randomly select

one of the actions. We run each experiment 5 times and measure steps for model-free

algorithms parallel with training and model-based methods towards the real environment

every 5 000 steps.4 For the comparison, we use reference hyperparameters found in [15]

for RAINBOW and [26] respectively.

As seen in figure 1 ORACLE outperforms both model-free and model-based approaches

for the selected environments. A dependent factor on how good ORACLE performs is

4We make the reader aware that the experiments are compute-heavy, hence few experiment iterations.
In total, the experiments take ∼5 days of wall-clock time to train on consumer-level hardware.
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the latent-leap parameter which represents how many steps the algorithm leaps into the

future before resampling the real environment. Specifically, we see that a latent leap of

30 is a good compromise between sample efficiency and return performance.

3.3 Design Evaluation

We next discuss the findings in the hyperparameter tuning experiments and the com-

parative performance evaluation to understand better why ORACLE outperforms prior

approaches.

Specifically, we think that ORACLE has strength in capturing large state-spaces and has

a good ability to generalize well over sparse datasets. The dynamics model is primarily

continuous with a combination of deterministic and stochastic variables, and it is well

understood in the literature that variational inference is an excellent approach to model

powerful generative models. Putting a VQ layer between the continuous probabilistic

latent vector and transform it into a discrete latent vector before reconstructing the output.

In parallel to our work [22] has the same conclusion and shows outstanding results on

solving chess, outperforming previous methods. We conclude

• Using VQ in combination with VAE and SRSSM provides a powerful enhance-

ment to model robustness, but it falls short when used for more simple problems,

• generally, we see that ORACLEis best suited for larger problems with more than

1 000 timesteps, and

• it remains an open question to justify the combination of VAE, SRSSM, and VQ

analytically.

4 Recent Related Work
Recent literature shows that Model-based RL is becoming the frontier with several new

algorithms that outperform model-free variants with a large margin. The most recent

achievement takes form as discrete world models with DreamerV2 from Hafner et al. [14].

DreamerV2 is the first reinforcement learning agent that achieves human-level perfor-

mance on the Atari benchmark by learning behaviors fully offline in a world-model. Prior

work in [12] use similar architecture to [2] by deriving latent dynamics that form esti-

mations of future observations given an action. Very Recently, Ozair et al. proposed

Vector Quantized Models for planning in Reinforcement Learning [22]. The authors use

a stochastic variant of the Monte Carlo tree search algorithm to plan the agent’s actions

and the discrete latent variables representing the system’s dynamics model. This approach

shows state-of-the-art results in chess and illustrates that the approach scales to DeepMind

K

Paper K: ORACLE: End-to-End Model Based Reinforcement Learning



Lab, a first-person 3D environment with complex visual state observations with only par-

tial observability.

Deep Planning Network (PlaNet) is a model-based agent that interpret the pixels of a

state to learn the dynamics of an environment. The environment dynamics are stored into

latent-space, where the agent sample actions based on the learned representation. The

proposed algorithm showed significantly better sample efficiency compared to algorithms

such as A3C ( [13]).

[4] recently proposed Probabilistic Ensembles with Trajectory Sampling (PETS). The

algorithm uses an ensemble of bootstrap neural networks to learn a dynamics model of

the environment over future states. The algorithm then uses this model to predict the best

action for future states. The authors show that the algorithm significantly lowers sampling

requirements for environments such as half-cheetah compared to SAC and PPO.

5 Discussion and Future Work
We have investigated if the model-based reinforcement learning algorithm ORACLE per-

forms well in classical and novel environments through a theoretical and empirical ap-

proach. We have shown that using state-space models combined with recurrent neural

networks and variational inferences yields promising results towards advanced artificial

intelligence that can perform well in tasks without directly interacting with the target

environment. While it is difficult to explain the model analytically fully, we can show

empirically that the model can generalize well in all tested environments. Furthermore,

we show empirically that ORACLE substantially outperforms all tested model-free algo-

rithms in performance and sample efficiency in tested environments, which is required

for industry-near mission-critical environments. However, the algorithm still has several

shortcomings, which we intend to approach in our continued work. First, we wish to

increase the robustness to posterior collapse, a well-known problem in variational infer-

ence. Second, we wish to expand the scope of our experiments to include a substantially

more comprehensive quantitive study with qualitative support to better understand the

algorithm’s strengths and weaknesses. Otherwise, we wish to

• Adopt the work in [23] to alleviate the posterior collapse phenomena and hope-

fully be able to provide better stability guarantees for the training procedure,

• Experiment with liquid time-constant networks (LTC) [27] for better learning the

environment dynamics in the state-space model
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Abstract

This paper addresses the dire need for a platform that efficiently provides a framework

for running reinforcement learning (RL) experiments. We propose CaiRL Environment

Toolkit as an efficient, compatible, and more sustainable alternative for training learning

agents and details recommendations on developing efficient simulations.

There is an increasing focus on developing sustainable artificial intelligence, but little

effort has been made to improve the environmental efficiency for running simulations.

The most popular development toolkit for reinforcement learning, OpenAI Gym, is built

using Python, a powerful but slow programming language. To overcome the slowness of

Python, we propose a platform on C++ that gives the same flexibility but at magnitudes

faster speeds.

CaiRL also presents the first reinforcement learning Toolkit with a built-in Adobe Flash

emulator for running legacy flash games for reinforcement learning research. We empiri-

cally demonstrate that CaiRL performs significantly better through a thorough comparison

of the classic control domains and further illustrate that CaiRL is fully compatible with

OpenAI Gym for running reinforcement learning experiments.

Keywords: Reinforcement Learning, Environments, Sustainable AI

IEEE Conference on Games
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1 Introduction
Reinforcement Learning (RL) is a machine learning area concerned with sequential

decision-making in real or simulated environments. RL has a strong theoretical back-

ground and has shown outstanding capabilities in learning to maneuver in unknown non-

stationary state-spaces [1–3]. In most recent literature, Deep RL has mastered many com-

plex games such as Go [4], StarCraft II [5] and progressively moves towards mastering

autonomous control [1]. Furthermore, RL has potential in health care for tumor classifi-

cation [6], Finances [7], and Industry-4.0 [8] applications. RL solves problems iteratively

and needs to interact with a model, also referred to as an environment.

There are, however, fundamental challenges with how RL operates when learning to be-

have correctly. First, trial and error are seldom compatible with real-world systems, as

they often require safety throughout the learning process. RL defines a reward function

that the algorithm actively attempts to maximize, and it is suggested that an RL system

can learn only following reward signals [9]. Given that it is feasible to craft an optimal

reward function, agents can quickly learn to reach the desired behavior but require mak-

ing uneducated guesses during their learning trajectory. RL also requires many samples

to learn optimal trajectories, rendering it challenging to learn optimal behaviors promptly.

While there are efforts into addressing the safety and sample efficiency concerns in RL,

it remains an open question [10]. However, the problem is that the training procedure is

time-consuming, which leads to a large climate footprint and is compute-budget ineffi-

cient.

While it is not trivial to change the concepts of RL in favor of better computation times,

there are ways to reduce the time used on evaluating the RL model and the environment

model. Environment models in RL take the form of a mathematical model or a computer

program. The model is expressed using a programming language where Python dominates

the ML and RL field in both cases. Python is a dynamically typed interpreted language

used much due to its simplicity reducing the prototyping time drastically. Interpreted

languages are considerably slower than compiled languages because

• computer code is read line for line and translated to machine code on the fly com-

pared to statically compiled programming languages such as C++ [11]

• programs written in Python are not trivial to parallelize because Python uses a

global interpreted lock (GIL)

• dynamically typed languages are slower due to the extra computation cost of in-

ferred data types.
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Due to the shortcomings mentioned above of RL, a significant portion of research in RL

takes place in simulated environments. By learning in a simulated environment, the agent

can freely make decisions that lead to catastrophic results without any harm to the real

system, and it is multitudes faster sample efficiency than real-world systems. Currently,

a majority of environments are implemented in Python and runs using the OpenAI Gym

toolkit [12]. OpenAI Gym is an interface to generalize the execution of environments so

that it is trivial to test algorithms across several environments. Nevertheless, it suffers a

significant performance cost because of its implementation in Python. Consequently, re-

inforcement learning experiments yield unnecessary computing costs, computation time,

and a high carbon emission footprint.

CaiRL approaches these negative side-effects by improving computation efficiency to

reduce computing costs and lower the carbon emission footprint for a more sustainable

AI.

We propose the CaiRL Environment toolkit to fill the gap of a flexible and high-

performance toolkit for running reinforcement learning experiments. CaiRL uses C++

as its programming language and focuses on being close to the computer hardware while

maintaining ease of use to reduce experiment setup times. The toolkit uses a combination

of templating and const expression functions to move a considerable amount of comput-

ing to compile-time, leaving less work for run-time. CaiRL aims to have a near-identical

interface to OpenAI Gym to ensure that migrating existing code requires minimal effort.

To the best of our knowledge, we present the first Adobe Flash compatible reinforcement

learning interface with support for Actionscript 2 and 3 without installing third-party ap-

plications. CaiRL embeds the Java Virtual Machine (JVM) and Python interpreter, en-

abling the toolkit to run Java and Python-based environments seamlessly if porting to

C++ is impractical. This contribution aims to

1. implement a more efficient solution to running reinforcement learning experi-

ments,

2. introduce novel problems for reinforcement learning research

3. briefly tutorial the reader on adding new environments

4. show the effectiveness of the proposed solution

5. empirically show that reinforcement learning agents learn faster

6. show the effectiveness in reducing the carbon emission footprint following [13]

The paper is organized as follows. In Section 2, we dive into the existing literature on

reinforcement learning game design and compare the existing solution to find the gap for
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our research question. Section 3 details reinforcement learning and sets it in perspective

to the problem CaiRL set out to solve. Section 4 details the design choices of CaiRL and

provides a thorough justification for design choices. Section 5 presents our empirical find-

ings of performance, adoption challenges, and how they are solved, and finally compares

the interface of the CaiRL framework to OpenAI Gym. Section 6 presents a brief design

recommendation for developers of new environments aimed at reinforcement learning re-

search. Finally, we conclude our work and outlines a path forwards for adopting CaiRL.

2 Background

2.1 Reinforcement Learning

Reinforcement Learning is modeled according to an Markov Decision Process (MDP)

described formally by a tuple (S,A, T,R, γ, s0), where S is the state-space, A is the

action-space, T : S × A → S is the transition function, R : S × A → R is the reward

function [14], γ is the discount factor, and s0 is starting state. RL operates iteratively

until reaching a terminal state, of which the program terminates. Q-Learning is an off-

policy RL algorithm and seeks to find the best action to take given the current state. The

algorithm operates off a Q-table, an n-dimensional matrix that follows the shape of state

dimensions where the final dimension is the q-values. Q-Values quantify how good it is

to act a at time t. In this paper, we replace the Q-table with a function approximator,

specifically a neural network. This forms the algorithm Deep Q-Network (DQN), which

is one of the first deep learning-based approaches to RL and is commonly known to solve

ATARI 2600 with superhuman performance [15]. In section 6.3, we use DQN to measure

the run-time and carbon emission performance to validate the usefulness of CaiRL.

2.2 Graphics Acceleration

A graphics accelerator takes charge of evaluating program code into a graphical repre-

sentation through a renderer. The graphics accelerator runs either as a software imple-

mentation such as program code or a hardware implementation such as graphics cards

with specialized electronics for graphics rendering. It is natural to assume that hardware-

accelerated graphics yield the most performance because of task specialization, but this is

not always the truth in simple 2D graphics where the use-case is to copy the drawn frame

to CPU memory.

According to [16], software rendering in modern CPU chips performs 2-10x faster due

to specialized bytecode instructions. The study concludes that although GPU can ren-

der frames faster, provided that the frame permanently resides in GPU memory. Having

frames in the GPU memory is impractical for machine learning applications because of
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the copy between CPU and GPU. The authors in [17] propose to use Single Instruction

Multiple Data (SIMD) optimizations to improve the performance in games. SIMD is an

extension to the CPU instruction set for doing vectorized arithmetic to increase instruc-

tion throughput. The authors find that using SIMD instruction increases performance by

over 80% compared to traditional CPU rendering techniques.

The findings in these studies suggest that software acceleration is beneficial in some

graphic applications, and similarly, we find it useful in a reinforcement learning con-

text. Empirically, we see that software rendering performs better for simple 2D and 3D

graphic applications due to the high-latency copy operation needed between GPU and

CPU. Much of the success in CaiRL lies in the fact that software rendering, while being

slower for advanced games such as StarCraft, significantly outperforms hardware render-

ing for simple graphics. One alternative to improve performance in hardware rendering

is to pixel buffer objects or equivalent implementation. A pixel buffer object (PBO) is a

buffer storage which allows the user to retrieve frame buffer pixels asynchronously while

a new frame buffer draws to the screen frame buffer. In particular, copying pixels without

PBO is slow because rendering must halt while the buffer is read.

CaiRL aims to increase the game repository over time and encourage submissions of

new environments. For this reason, it is essential to recommend implementation methods

that yield the highest performance. We find that software rendering is the best choice

for simple 2D and 3D-based games, and in complex 3D games such as StarCraft II, the

programmer should implement PBO-based rendering if it is possible to gain access to the

rendering context.

2.3 Programming Languages

Historically, many different programming languages are used to perform machine learn-

ing research and application development. In more recent history, the Python language is

used more frequently among the scientific community and more specifically in machine

learning, and deep learning [11]. Unfortunately, Python’s most used implementation is

CPython, a single-threaded implementation with little regard for efficiency compared to

compiled languages. However, Python’s most popular toolkits for machine learning are

implemented in a compiled languages and use glue code to interact to increase perfor-

mance. A study from Zehra et al. suggests that C++ has approximately a 50 times

performance advantage over Python, and Python has advantages in code readability for

beginners in programming [18]. It is clear from these studies that Python is great for

prototyping and learning programming but falls behind for time-consuming tasks. It falls

natural to seek an approach that can preserve the simplicity of Python while also main-

taining good performance to reduce the task execution time.
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The choice of programming language is essential in CaiRL because it aims to be efficient

and reduce the carbon emission footprint as much as possible. C++ seems like a natural

choice as it is mature, has a stable standard library, and is trivial to maintain, compared to

C. It is also possible to compile C++ code to a python compatible binary.

Pybind11 is one such framework that provides a method to create an efficient bridge be-

tween C++ and python code. pybind11 is a lightweight library that exposes C++ types in

Python and vice versa but focuses mainly on exposing C++ code paths to python applica-

tions. There is a minor performance penalty during conversion between Python and C++

objects. Hence implementations in C++ will run near-native performance in Python. For

this reason, we follow the path of implementing an efficient experiment toolkit for rein-

forcement learning in C++ with binding code to allow Python to interface with CaiRL.

3 Design Specifications
The design goal of CaiRL is to have interoperability with OpenAI Gym, but with mag-

nitudes better performance and flexibility to support environments in a multitude of pro-

gramming languages. Keeping full compatibility with OpenAI Gym is central to trivialize

the two frameworks without significant amendments to existing code.

CaiRL is a novel reinforcement learning environment toolkit for running experiments

with high performance. By designing such a toolkit, reinforcement learning becomes

more affordable due to reduced execution costs and strives to reach more sustainable AI.

A bi-effect of these goals is that experiments run significantly faster and most CPU cycles

on training AI instead of evaluating game-states. The CaiRL environment toolkit supports

classical RL problems such as (1) Cart-Pole, Acro-Bot, Mountain-Car, and Pendulum, (2)

Novel high-complexity games such as Deep RTS [19], Deep Line Wars, X1337 Space

Shooter, and (3) over 1 000 flash games available for experimentation. 1

The engine of CaiRL relies upon C++ with highly performant fast-paths such as Single

instruction, multiple data (SIMD) for vectorized calculation that fits into the processor

registry in a single instruction. The design mimics OpenAI Gym but relies on templating

and const expressions that enable calculations to evaluate at compile-time instead of run-

time. CaiRL is split into modules, and we dedicate this section to describe the design

decision and the resulting interaction layer and benefits compared to similar solutions.

3.1 Module Layer

CaiRL has a modular design aiming towards having little cross-dependencies between

module categories to decrease compile times. CaiRL splits into three categories:

1We invite the reader to http://github.com/cair/rl for in-depth documentation.
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Figure 1: Brief overview over components in CaiRL. The framework is split into mod-

ules similar to Gym: spaces, environments, and utilities. The modules interface with the

CaiRL Env class, from which all environments derive. The environments compile to a

shared library and are callable from python code.

• Spaces for action and observation definitions,

• Environments for wrappers of supported environments,

• Utilities for enriching the framework, such as the tournament module.

As seen in Figure 3.1, the CaiRL framework has a streamlined dependency structure,

where the primary dependency lies in the CaiRL Env class. The CaiRL Env class is the

glue that binds together the environment definition and logic. Finally, the environment

is compiled to machine code and wrapped to a python compatible format as described in

section 2.3.

3.2 Interaction Layer

There are two ways of building reinforcement learning experiments with CaiRL using

C++ directly or through the Python to C++ bindings. CaiRL runs efficiently in both

programming languages, but there is a computational cost to run the Python interpreted

and translate calls between C++ and Python. The primary goal of the API design is to

match the Gym API as close as possible to reduce the needed effort of migrating existing

codebases to CaiRL.

1 e = Flatten<TimeLimit<200,CartPoleEnv>>()
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2 for(int ep = 0; ep < 100; ep++){

3 e.reset();

4 int terminal, steps = 0;

5 while(!terminal){

6 steps++;

7 const auto [s1, r, t, info] =

8 e.step(e.action_space.sample());

9 auto obs = e.render();

10 terminal = t;

11 }

12 }

Listing 1: Minimal Example of CaiRL-CartPole-v1 in C++

As seen in listing 1, the C++ interface is similar to OpenAI Gym. The difference is that

CaiRL modules use template classes, as seen in line 2. A template defines a class that

can evaluate much of the program logic during compile-time. There are considerable

run-time benefits because code initialization resolves during compile-time at the cost of

longer compile times. Another downside of templates is reduced flexibility because it

is impractical to create environment definitions during run-time, which is required when

building Python-based environment wrappers. However, it is possible to define run-time-

defined environments in Python at the cost of performance.

A very central component of CaiRL is the ability to run experiments natively in Python.

This becomes possible through exposing C++ code through wrapper code in pybind11.

Pybind11 is a tool that provides methods to translate between the python interpreter au-

tomatically and the CaiRL C++ shared library. Using the Python wrapper code, there is

no need for C++ experience, and it is possible to both use and extend CaiRL solely using

Python. The Python interface is very similar to the C++ interface but focuses more on

compatibility with the OpenAI Gym interface.

1 #e = gym.make("CartPole-v1")

2 e = cairl.make("CartPole-v1") # Use CaiRL

3 for ep in range(100):

4 e.reset()

5 terminal, steps = 0

6 while not terminal:

7 steps++

8 a = e.action_space.sample()

9 s1, r, t, info = e.step(a)

10 obs = e.render()

11 terminal = t

Listing 2: Minimal Example of OpenAI and CaiRL CartPole-v1 in Python
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Listing 2 illustrates the use of CaiRL in Python as compared to Gym. In particular, the

only change that is required to switch between the two frameworks is to comment on Line

1 and comment out Line 2.

3.3 Affordable and Sustainable AI

AI is a constantly growing field of research, and with the shifted focus on Deep Learn-

ing, it is well understood that the need for computing power has increased sharply. Deep

Learning models have a range of a few thousand parameters, up to several billion pa-

rameters that require carefully tuning with algorithms such as stochastic gradient descent.

Hence, compute power plays an essential role in the performance of the trained model. In

Deep Reinforcement Learning, the same applies but also requires extensive data sampling

from an environment. It is safe to conclude that running experiments becomes exponen-

tially more expensive and goes against more sustainable AI. CaiRL aims to minimize the

cost of reinforcement learning by reducing environment execution time. In essence, this

has the bi-effect of reducing the carbon emission footprint in RL significantly compared

to existing solutions, as observed in section 6.1.

4 Supported Games

4.1 Java Applications

Java is a popular language that runs in the Java Virtual Machine (JVM). While Java is

not the dominant language for developing games in the industry, there are a few notable

examples such as MicroRTS [20] and the Showdown AI competition [21]. These envi-

ronments have shown significant value to several research communities in reinforcement

learning, evolutionary algorithms, and planning-based AI. Configuration for integrating

java games in CaiRL is minimal but requires defining a CMakeList configuration that

builds Java source code to a Java archive (JAR) file. Then the programmer must define a

C++ class that extends the abstract Env interface. The bindings procedure uses the Java

Native Interface (JNI) to initialize a Java Virtual Machine (JVM). Through the JNI, it is

possible to interact with Java code from C++ and hence becomes trivial to create bind-

ing code that runs efficiently through the C++ library but at the expense of performance

drawbacks of the JVM.

4.2 Python Applications

Python is perhaps the most used programming language for machine learning research in

recent literature. Consequently, many of the popular reinforcement learning environments
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run natively in Python. We approach this task with two possible solutions where. The

first approach is to automatically convert python code into C++ using the Nuitka package

found at https://github.com/Nuitka/Nuitka. For complex environments with

many third-party dependencies, CaiRL can wrap python code by embedding the python

interpreter. The benefit of the latter approach is that the original code remains untouched

but at the cost of significantly less performance. All third-party environments reside in the

cairl.contrib package and are freely available through the C++ and Python interface.

For an environment to be fully compatible with the CaiRL interface, the environment must

inherit the abstract Env class and implement the step(action), reset() , and render()

function.

4.3 Flash Games

The most notable feature of CaiRL is the ability to run flash games without external ap-

plications at an accelerated speed. CaiRL extends the LightSpark flash emulator for Ac-

tionscript 3 and falls back to GNU Gnash for ActionScript 2. CaiRL features a repository

of over 1300 flash games for conducting AI research and reinforcement learning research.

Figure 2: The figure shows a few select flash games in CaiRL. Flash environments are an

excellent playground for RL and Machine Learning algorithms.

Figure 4.3 illustrate a subset of the implemented games from [22]. The first game, Multi-

task and Multitask 2 is similar to CartPole but requires the agent to perform different tasks

concurrently. If the agent fails one of the tasks, the game terminates. The reward function

is defined as positive rewards while the game is running and negative rewards when the

game is shut down, indicating that the game is lost. The game observations are either raw

pixels or memory, and the actions-space is discrete. The Mousetastic game is a contin-
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uous action space with mouse cursor positions. The goal of the game is to collect black

blocks while avoiding every red object. The reward function is a positive reward for all

states except for terminal states. Similarly, the remaining games in figure 4.3 are games

with simple objectives but are novel experiments for reinforcement learning research.

4.4 Puzzle Games

The initial version of CaiRL supports a comprehensive collection of puzzles from the

Simon Tatham collection [23]. This collection aims to provide logical puzzles that are

solvable either by humans or by algorithms. While reinforcement learning is not mainly

known for solving logical puzzles, we find it excellent to add them for future research.

Some literature suggests that reinforcement learning works for solving puzzles [24] in-

cluding the options framework from [25]. All puzzles include a heuristic-based solver,

which enables transfer and curriculum learning research.

5 Competition Platform
The CaiRL features a competition platform for running tournaments in multi-player

games. Although the Gym interface is incompatible with two-player games, the CaiRL

interface allows for such setups. It is possible to run tournaments in two different con-

figurations, but creating custom configurations through the abstract tournament class is

possible. The tournament and competition are useful at conferences, workshops, or aca-

demic game jams. Currently, CaiRL supports the single-elimination model and the swiss

tournament model [26].

Single elimination model. As seen in figure 5, the single-elimination model is perhaps

the most simple setup for tournaments. The tournament starts with a randomized selection

of matches for the first round. Winning participants from round 1 match together and

losing participants are eliminated from the tournament. The same procedure continues

until only one participant is standing as the tournament’s winner.

Swiss tournament model. A major drawback with the single-elimination model is that

players that lose are not able to compete for the rest of the tournament. As a consequence

of this, it is difficult to measure the overall performance of all participating players. The

Swiss tournament system is a bracket-based system that allows players to play for the

whole tournament. The tournament initialization starts with matching players using ELO

rating or by random selection. Figure 5 illustrates the tournament setup formed as brack-

ets. Winners of the first match are transferred to the winning bracket, denoted as 1 − 0

bracket, while the losers play in the 0−1) bracket. This procedure continues until players

are eliminated such as in bracket 0 − 2, 1 − 1, 2 − 0, 2 − 1. There are several ways to
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Figure 3: Minimal example of the CaiRL single-elimination tournament model

determine winners of the tournament, and the system in CaiRL enables to either end the

tournament when there are winners from three brackets or match all players until there is

a single winner. The Swiss tournament system is widely used in e-sports, and competitive

board games [27]

6 Evaluations

6.1 Performance Evaluation

To evaluate the performance of CaiRL, we compare the classic control environments from

OpenAI Gym with a similar implementation in CaiRL. We run the experiments 100 000

times averaged over 100 trials. We test the environments with graphical rendering and

without graphical rendering.

Figure 6.1 clearly shows that CaiRL performs 5x faster in simulations and over 80x faster

on rendering compared to the OpenAI Gym equivalent.
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Figure 4: The picture illustrates a minimal example of the CaiRL Swiss tournament

model. The green color illustrates the winner of a tournament match, while the red il-

lustrates an eliminated player.

6.2 Algorithm Evaluation

We evaluate the DQN algorithm in the classical control environments and compare the

agent performance between CaiRL and Gym. Furthermore, we test DQN in the Multitask

game and report our findings. We use the standard hyperparameters from [15] and use

raw images as input to the algorithm.

Figure 6.2 clearly shows that the CaiRL environment runs magnitudes faster in a training

context. The algorithms are trained until mastering the task and are averaged over 100

trials. As expected, the algorithm performs similarly in both Gym and CaiRL, but in terms

of sustainability, using CaiRL reduces the environmental footprint by approximately 30%

for all tested environments.

As seen in Figure 6.2, the DQN algorithm successfully solves the multitask environment

after approximately 1 500 000 frames averaged over ten trials. The simulation ran in 140

frames per second, which amounts to 4.6x faster execution than real-time. Each training

trial took approximately 6 hours to finish, and in total, the experiment lasted for 60 hours.
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6.3 Carbon Mission Evaluation

In this section, we aim to answer the following question: Is CaiRL a better alternative for

lowering carbon emissions in RL. To begin answering this question, we rerun experiments

with the novel experiment-impact-tracker from [13]. The experiment-impact-tracker is a

drop-in method to track energy usage, carbon emissions, and compute utilization of the

system and is recently proposed to encourage the researcher to create more sustainable

AI. Our experiments run a DQN agent on the classical control environment CartPole-v1

in CaiRL and OpenAI Gym. We compare the toolkits using the console-only version

and the graphical variant. We use the following environment configurations and DQN

parameters:

Table 1: The DQN hyperparameters for the carbon emission experiment

Hyperparameter Value
Discount 0.99

Units 32, 32

Activation elu

Optimizer Adam

Loss Function Huber

Batch Size 32

Learning Rate 3e-4

Target Update Freq 150

Memory Size 50 000

Exploration Start 1.0

Exploration Final 0.01

The experiment runs for 1 000 000 times in the console version and 10 000 times for the

graphical version2

Table 2: The table descripts the total carbon emission values and power consumption used

during the experiments. The carbon emission is measured in CO2/kg and power draw is

measured in milliwatt-hour (mWh).

Measurement Environment CaiRL Gym Ratio

CO2/kg Console 0.000014 0.000067 20.8955

CO2/kg Graphical 0.000051 0.075265 147578.431373

Power (mWh) Console 0.000319 0.001483 21.5104

Power (mWh) Graphical 0.001131 1.673959 148006.9849

Table 2 shows that CaiRL has a considerably lower carbon emission compared to OpenAI

Gym. In the console variant, CaiRL has 20.89x less carbon emission compared to Gym.
2The experiments code be accessed at https://git.io/JEPzR.
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The graphical experiment shows a more significant difference with over 147578x less

carbon emissions. The reason OpenAI Gym has high emission rates is that it is locked to

capturing images from the game window. We measure the emissions by subtracting the

DQN time usage with the total time to only account for the environment run-time costs.

7 Conclusion
CaiRL is a novel platform for RL and AI research and aims to reduce program execu-

tion time for experiments to reduce budget costs and the carbon emission footprint of AI.

CaiRL outperforms OpenAI Gym implementations significantly while also being com-

patible with existing OpenAI Gym experiments. We have demonstrated how CaiRL is

used and outlined recommendations for defining a graphical interface for games to reduce

the rendering time. Furthermore, we have illustrated that CaiRL supports many program-

ming languages, including C++, Java, Python, and ActionScript 2 and 3. CaiRL supports

over 1000 games in ActionScript, Several C++ games, MicroRTS, and Showdown in Java

and supports building python games out of the box. In the evaluations of CaiRL, we

demonstrate superiority in performance and positively impact the carbon footprint of AI.

8 Future Work
This paper has presented CaIRL, a reinforcement learning toolkit for running a wide range

of environments in a unified framework.

CaiRL is an ambitious project to improve the tools required to conduct efficient rein-

forcement learning research. In fulfilling its role, the complexity of the toolkit demands

extensive testing and verification to ensure that all experiments are run deterministically

and provide reliable results. While CaiRL is now released, we intend to work towards

improving the framework in several ways. For the continuation of this project, we intend

to

• Improve documentation of the framework to increase ease-of-use

• Build easier to use Java, Python, and Flash support modules so that it requires less

work for researchers to add new games

• Add support for other programming languages, for instance, Rust and LUA.

• Increase awareness of CaiRL and create an interactive scoreboard and discussion

channel for environment and algorithms, much like the efforts of OpenAI Gym
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Figure 5: Performance evaluation between CaiRL and OpenAI Gym in the classical con-

trol tasks. The figure clearly shows that CaiRL uses significantly less time running the

experiments. The figure illustrates how much time the environment toolkit uses to execute

100 000 episodes of the game.
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Figure 6: DQN tested in all classical control environments. The CaiRL environment

toolkit clearly reduce the wall-clock execution time which in turn, reduce the environ-

mental footprint.
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Figure 7: DQN performance in the Multitask environment. The algorithm solves the en-

vironment after approximately 3 000 000 frames where the training procedure is averaged

over 10 trials.

L

Paper L: CaiRL: A High-Performance Reinforcement Learning Environment Toolkit



L

Paper L: CaiRL: A High-Performance Reinforcement Learning Environment Toolkit



M

Paper M

Title: Towards Safe and Sustainable Reinforcement Learning for Real-Time

Strategy Games

Authors: Andersen, Per-Arne et al.

Affiliation: Department of ICT, University of Agder, Grimstad Norway

Journal: In Review: Artificial Intelligence . Impact factor in 2020: 9.088

Year: 2021

471

https://www.journals.elsevier.com/artificial-intelligence


M



Towards Safe and Sustainable Reinforcement
Learning for Real-Time Strategy Games

Per-Arne Andersen
Department of ICT

University of Agder

Grimstad, Norway

per.andersen@uia.no

Morten Goodwin
Department of ICT

University of Agder

Grimstad, Norway

morten.goodwin@uia.no

Ole-Christoffer Granmo
Department of ICT

University of Agder

Grimstad, Norway

ole.granmon@uia.no

Abstract

The combination of Deep Neural Networks and Reinforcement Learning, namely

Deep Reinforcement Learning (DRL), shows continued success in solving complex

problems across many areas such as medicine, industry, and game playing. Perhaps

most notably, DRL has shown outstanding performance in advanced Real-Time Strategy

(RTS) games such as StarCraft II and Dota 2, arguably the most challenging games

used in RL literature to date. RTS games have highly uncertain environments with little

observable information, making them perfect for evaluating the robustness and safety of

RL algorithms.

There are, however, still significant limitations with DRL algorithms in the litera-

ture, such as an ever-increasing computational cost and little focus on safety-aware

approaches. Most published algorithms are computationally expensive to train, mak-

ing it near-impossible to retrain without significant resources. A consequence is an

ever-increasing gap between state-of-the-art algorithms trained on supercomputers and

algorithms trained on commodity hardware. Training these computationally intensive

DRL algorithms impacts CO2 emission significantly, which is arguably not sustainable.
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A majority of RL algorithms in the literature are risk-neutral, are demanding to deploy

in safety-critical systems, and can result in catastrophic failures. While there are some

efforts to improve RL safety, few methods transfer well from theoretically verified

scenarios to complex real-world autonomous systems validated experimentally.

This article presents a novel model-based DRL approach for tackling complex en-

vironments with the aim to reduce the need for failures during training. Specifically,

our approach demonstrates successful learning while still considering robust safety

awareness, minimizing risk, and reducing computational costs compared to model-free

RL methods.

Our approach, the Safe Observations Rewards Actions Costs Learning Ensemble

(S-ORACLE), is empirically verified in multiple complex and uncertain game envi-

roments: Deep RTS, ELF: MiniRTS, MicroRTS, Deep Warehouse, and StarCraft II,

outperforming state-of-the-art model-free and model-based approaches.

Keywords: Reinforcement Learning, Markov Decision Processes, Neural Networks,

State-space models, Model-based Reinforcement Learning, Risk-aware RL, Mission-

critical safety

1 Introduction
The desired property of artificial intelligence is its ability to solve complex real-world

challenges. Reinforcement Learning (RL) is a field of study which concerns agents that

ought to do sequential decision making in a dynamic system or environment. RL takes

inspiration from nature and the art of learning through trial and error and seeks to learn

optimal behavior policy adjusting through feedback after each consecutive action. The

theoretical background of RL stems from Markov chains, with augmentations to form

Markov decision processes (MDP) [1]. This mathematical framework describes the prob-

ability of transitioning from one state to another given a decision. However, because RL

aims to maximize rewards long-term, the likelihood of entering catastrophic states in-

creases dramatically. RL classifies into two categories of algorithms. [2]

• Model-free RL (MFRL) algorithms aim to find the behavior policy without a known

transition probability distribution and the corresponding reward function but instead learn

through balancing the exploration/exploitation dilemma under the assumption of an un-

known MDP [2].

• Model-based RL (MBRL) aims to learn its policy through a known model of the en-

vironment. It consists of a state transition probability function and a reward function and

is referred to as a dynamics model in the literature. A dynamics model is either known
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a priori or learned through estimations based on observations and interactions with the

environment. In real-world and complex computational tasks, the complete state infor-

mation is rarely available, and hence, the estimated dynamics models often inherit the

uncertainty about missing information. Model-based RL is shown to have better sample

efficiency and more flexibility for safe RL, which are appealing traits for mission-critical

and sustainable applications. [3]

• Safety is a central problem to RL because algorithms deployed in the real world risk

damaging equipment or humans during the learning process. This gives us clear motiva-

tion to address these shortcomings in the realm of safe reinforcement learning (safe RL)

[4]. Safe RL aims to learn a policy that maximizes rewards while also maintaining safety.

There are several directions in the literature towards safer RL, and we discuss this more

closely in Section 3.

• Sustainability meets the needs of the present without compromising the ability of future

generations to meet their own needs. Machine Learning has a notorious reputation for an

ever-increasing computational cost, demonstrated well through reports of state-of-the-art

results using millions of dollars in computing to achieve high accuracy [5]. The compu-

tation growth is not sustainable and produces a high amount of climate emission gasses

during experiments, negatively impacting the environment. However, recent literature

from Henderson et al. proposes a systematic method of reporting climate emission for

experiments that aim to reduce the overall climate footprint of machine learning research.

[6] To the best of our knowledge, this is the first article presenting safe reinforcement

learning that systemically reports climate emission, detailed in Section 6.3.

• Recent literature shows that RL can perform at a superhuman level several complex

problems [7] such as robotic control [8]; optimizing portfolio and performing algorithmic

trading in stock markets [9]; database optimization [10]; planning and path optimization

[11]; medical applications such as breast cancer classification and biological sciences

[12, 13]; autonomous control in vehicles [14, 15]. Much of the recent success of ap-

plied RL stems from research into solving complex game environments. Recent literature

shows that RL algorithms can learn purely from pixels, such as DQN in the Atari 2600

environment suite [16], mastering board games such as Chess and Go using a combina-

tion of tree-search and Deep RL [17, 18]. RL can likewise learn highly complex games

such as Real-Time Strategy (RTS) games, a highly complex stochastic environment with

near-infinite state spaces and action spaces [5]. While the mentioned studies perform well

according to a reward signal, no approach exists to maximize safety, minimize risk, or

address the unsustainable computational costs during training and inference, which real-

world applications often demand. M
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1.1 Challenges

Although there is steady advancement in solving complex tasks using RL, there are many

challenges left unchecked in RL algorithms for the broad adoption of industry, real-world,

and safety-critical applications. These challenges include:

• safe learning without a priori knowledge [4],

• sample efficiency [2],

• high carbon emission footprint [6],

• exploration (trial and error)-exploitation dilemma [2],

• challenging to design reward structures [19],

• hyperparameter-sensitivity [20],

• and a clear gap between affordable RL and state-of-the-art [21]

It is well understood that RL requires millions of training samples to converge in com-

plex tasks, and hence it naturally follows a high cost of computational power. The high

computational power increases the demand for hardware which directly impacts the cli-

mate footprint negatively [6]. Furthermore, it is seldom that an RL algorithm functions

well without extensive hyperparameter tuning and careful reward design; hence requires

several training sessions to find a composition that yields an excellent behavioral policy.

Combining these problems makes it difficult to reproduce algorithms and makes RL less

suitable for applied intelligence in the industry. The consequence is that most RL research

concerns risk-neutral algorithms with the primary goal of performing well in simulated

environments, with little regard for applicability in safety-critical systems. Lastly, there

is a significant gap in the literature where prior state-of-the-art solved simple RTS game

setups such as MicroRTS [22], and DeepRTS [23] wherein contrast, the latest state-of-the-

art beats the world champion in Dota 2 [24] and achieves Grandmaster rank in Starcraft

II [5]. We believe that the research in RTS games is far from solved and by no means

mastered, considering that recent state-of-the-art does not transfer well to real-world ap-

plications and is not safe, affordable, or sustainable in long-term operations.

1.2 Motivation

Solving a complex game environment is an exciting feat because it illustrates that RL

gradually matures towards the ultimate challenge of solving advanced and complex real-

world problems in a safe manner[21]. RL is still in its infancy, and while many fundamen-

tal problems are solved, there is still room for improvement in sample efficiency, safety,

and generalization [7]. In the interim, RTS games are an appealing platform to benchmark
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Table 1: RTS games share many characteristics with Real-World applications. The table

draws parallels between central challenges in Real-world and RTS games.

Challenge Real World RTS Game

Reward Spar-

sity

Taking actions towards less cli-

mate emissions are rewarded sev-

eral years later. [6]

Immediate actions are rewarded

when a game ends and not after

each consecutive action [19]

Partial Ob-

servability

Autonomous driving having an un-

known number of participants in the

traffic with the uncertainty of which

actions other cars will make. [14]

Parts of the game are hidden in

”Fog of War”. The opponent makes

changes to the environment without

the agent knowing. [22]

High Dimen-

sionality

Data from patients with thousands

of dimensions (features) or high-

resolution images from cameras

[13]

RTS games have large maps (e.g.,

256x256) with the ability to have

500 units with 100 different actions

at each timestep. [5]

Planning over

long time hori-

zons

Autonomous driving requires plan-

ning from the start point to the des-

tination point [12]

To succeed in RTS games, the

player must plan ahead hundreds of

time steps to beat the opponent.[5]

Learning

Safely

Learning to drive a car happens un-

der the supervision of an experi-

enced (arguably expert) driver, and

no accident must occur during the

learning phase or after learning to

drive the car.

Many RTS games have environ-

mental damage that regresses the

agent’s progress. The agent must

learn to avoid this damage, prefer-

ably without damage ever occur-

ring. [20]
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algorithms because they share similar characteristics to real-world problems [25]. Table

1 demonstrate common characteristics between RTS games and real-world dynamics. It

falls natural to use RTS games as a platform for researching task solvability to find tech-

niques applicable in safety-critical real-world applications [26]. The hope is that RL can

play a substantial role in solving safety-critical real-world applications through learning

problems virtually. These problems range from minor optimizations such as vehicle rout-

ing to major problems such as driving autonomously in traffic and optimizing the climate

emissions of the engine exhaust system [27].

1.3 Contributions

The contribution of this article is composed of four highlights:

1. This work presents the Safe Observations Rewards Actions Costs Learning

Ensemble (S-ORACLE), a novel model-based RL approach that aims towards

safer, more sustainable, and more efficient performance. The algorithm uses an

ensemble of originally risk-neutral model-free approaches to make decisions mo-

tivated using risk-averse reward signals and is trained purely on a model learned

on a fraction of samples compared to only using model-free training.1

2. We perform a thorough performance evaluation of the proposed algorithm in RTS

problems against well-known model-free approaches such as DQN, PPO, A2C,

and RAINBOW in six environments; Deep RTS, Deep Line Wars, ELF: MiniRTS,

StarCraft II, Deep Warehouse, and MicroRTS. The work presents baseline results

of obtained performance in the tested environments and extensively evaluates the

carbon emissions budget for used algorithms in the tested environment.

3. Safety of the proposed method is evaluated in the Deep RTS Lava environment and

Deep Warehouse environment, an industry-like grid-warehouse simulator. The

work demonstrates that the proposed algorithm outperforms risk-neutral RL algo-

rithms while also being significantly more sample efficient.

4. Lastly, safety is discussed in context to RL, what the limits are and possible ap-

proaches towards truly generalizable safe algorithms, and concludes the findings

of this work.

1.4 Outline

This article is organized in the following manner. Section 2 thoroughly details the theo-

retical background of S-ORACLE. It details Markov decision processes, model-free RL,
1The source code is located at https://github.com/s-oracle/s-oracle

M

Paper M: Towards Safe and Sustainable Reinforcement Learning for Real-Time Strategy
Games



Figure 1: The agent-environment synergy in a Markov decision process [2]. The agent

makes actions in the environment, which transitions the environment to the next state.

The agent observes the new state with the corresponding reward signal.

model-based RL, and risk-aware RL techniques. Section 3 outlines a selection of funda-

mental research in the field of safe RL and explains the concepts thoroughly. Section 4

presents the RTS and safety-critical environments used in the evaluation of S-ORACLE

and summarizes the configurations utilized during experiments. Section 5 presents the

S-ORACLE algorithm and details the algorithm thoroughly seen from the perspective of

safety and performance. Section 6 details the empirical evaluation of S-ORACLE in com-

parison to other state-of-the-art algorithms. Specifically, the Section presents safety eval-

uations and performance evaluations. Lastly, we report and document the sustainability

in terms of computational costs and climate emissions. Section 7 reflects on performance

and safety and possibilities of safety-aware RL. Finally, Section 8 concludes the presented

work and lays a path for future research.

2 Background

2.1 Markov Decision Processes

The essence of Reinforcement Learning is learning machine algorithms to make a se-

quence of decisions in a dynamic system. Markov decision processes (MDP’s) are a

mathematical framework that defines a class of stochastic sequential decision processes

and are the fundamental building block of RL algorithms. In this article, we are con-

cerned with games with a finite number of states and actions, and hence, we consider

finite MDP’s. The MDP framework is visualized in Figure 1 as a discrete-time sequential

process of making decisions and then observe ot with its corresponding reward rt. The

observation is either fully-observable such that ot = st or partially-observable such that

ot 6= st. [28]

Definition 1 An MDP model is expressed as a tuple M = 〈S,A,P ,R, γ〉 where S
is the state space, A is the action space available to the agent at every time-step, P :
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S×R×S×A → [0, 1] is the transition function,R : S×A → R is the reward function,

and γ → [0, 1] is the discount-factor [29].

The transition function P with four-arguments and describes the probability of transition-

ing from a particular state s to s′ with the corresponding reward r after taking action a.

The transition function contains all information about the MDP,

P(s′, r|s, a) = Pr [St+1 = s′, Rt+1|St = s, At = a]

=
∑

s′∈S

∑

r∈R
p(s′, r|s, a) = 1, (1)

where P is defined for the next state s′, ∀s ∈ S, and ∀a ∈ A(s). From the four-argument

transition function, we can derive a state-transition function T : S × S ×A → [0, 1] and

a reward functionR : S ×A → R for all state-action pairs. The state-transition function

is defined,

T (s′|s, a) = Pr [St = s′|St−1 = s, At−1 = a]

=
∑

r∈R
P(s′, r|s, a),

(2)

where the probability of entering the next state s′ is dependent on the current state s and

the taken action a. The reward function is defined,

R(s, a) = E [Rt+1|St = s, At = a]

=
∑

r∈R
r
∑

s′∈S
P(s′, r|s, a), (3)

where R is the expected reward that the agent receives after making action a to transi-

tion to state s′. An environment has the Markov property if it is possible to predict the

next state and expected next reward given only the current state and action. The Markov

property exists for a MDP only if,

Pr [St+1 = s′, Rt+1 = r|st, at, . . . s0, a0]

= Pr [St+1 = s′, Rt+1 = r|st, at] .
(4)

For complex game environments or real-world applications, the Markov property is rarely

present because full observations of the system dynamics are hidden (ot 6= st), making it

difficult to characterize the next state given the current observed state fully. [30].

2.2 Partially Observable MDP

In complex games such as Starcraft II and Dota 2, only partial information of the state is

accessible and, therefore, the agent must use that partial observation or construct beliefs of

what the true state may be. Partially Observable Markov Decision Processes (POMDP)’s

are a generalization of MDPs that accounts for partial observability of the state and is
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Figure 2: A POMDP system. o, a, s, r denotes observations, actions, states, and rewards,

respectively. The agent can only observe o0 . . . on after making an action where the un-

derlying state st . . . sn is hidden from the agent.

Figure 3: A Belief MDP. b, a, s, r denotes belief-state distributions, actions, states, and

rewards, respectively. In contrast to POMDP’s, the underlying state s is replaced with a

belief state distribution. States sampled from the belief state distribution are used to make

decisions in the MDP, which has similar traits to fully observable MDP’s.

therefore widely used in literature to formalize optimization problems in game environ-

ments. POMDP is defined as a tuple MPOMDP = 〈S,A,Ω,P ,R,O, γ〉 of three sets and

three functions. The definition is similar to regular MDP’s but extends with a set of obser-

vations Ω = {o1, o2, . . . , on} and the agent perception model O : S × A → Π(Ω) where

Π(Ω) represent the probability distribution on Ω. [31]. Figure 2 illustrates a POMDP

where the agent only can make actions at that are dependent on observations ot. The

problem with observations is that they may not capture the necessary information to suc-

ceed in the environment. For example, if we consider a game of pong where the observa-

tion is a pixel image, the agent cannot determine the direction or velocity of the ball. To

alleviate these problems, the agent can make decisions based on a history of observations.

However, keeping a history of prior observations is infeasible for games with near-infinite

states and hence, is not a sufficient method for complex games.

2.3 Belief MDP

Another approach to capture information from history is to encode observations into a be-

lief state using belief MDPs. A belief state b is a summarization of previous observations

into a probability distribution over all states s ∈ S , where b(s) = Pr(st|o1...t), represents

the probability that the environment is in state s [32]. Given that we have an initial belief
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state b0, we can compute belief states,

b′(s′) = P (s′|o, a, b)
∝ P (o|s′, a, b)P (s′|a, b)
∝ O(o|s′, a)P (s′|a, b)
∝ O(o|s′, a)

∑

s∈S
P (s′|a, b, s)P (s|a, b)

∝ O(o|s′, a)︸ ︷︷ ︸
Observation Model

∑

s∈S
T (s′|s, a)︸ ︷︷ ︸
State-Transition

b(s)︸︷︷︸
belief

,

(5)

which is a sufficient statistic for bt ≡ o1...t. The reward function R(s, a) requires

hidden-state information, but we can introduce belief states such that R(b, a) =∑
s∈S b(s)R(s, a). The belief state distribution b can memorize historical observations

and we assume that this is enough information to represent the hidden-state st so that we

can treat the POMDP similarly to fully-observable MDP’s, seen in Figure 3. [31, 33]

2.4 Reinforcement Learning

Analogous to human intelligence, a behavior policy is considered the brain of the algo-

rithm and expresses parameters for a function that aims to behave optimally in a given

problem. This Section is dedicated to explain classical RL commonly uses tables or

simple function approximators to parameterize the behavior policy. These methods are

shown to work well for simple problems, but for games or real-world applications, both

fall inadequate because of large state and action spaces. [2]

The ultimate goal of a reinforcement learning agent is to find the optimal policy π∗. A

policy represents a mapping from a state observation to action probabilities π(a|s). RL

algorithms categorize into three learning types; value-based, policy-based, and a com-

bination called actor-critic-based algorithms, where our work is based on value-based

approaches. There are also variations of on-policy and off-policy where off-policy al-

gorithms can learn using historical data. Lastly, there are model-based and model-free

algorithms where model-based algorithms learn using a predicted model or a known en-

vironment model, in contrast to model-free algorithms that learn solely by trial and error

in an unknown environment. An RL problem is commonly modeled as an MDP and

usually have an update procedure as follows:

1. Read current observation st

2. Make a decision based on observation π(a|st)

3. Receive reward rt

4. Update policy estimates with a learning algorithm. Go back to step 1.
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The optimal policy π∗ is the policy in policy-space that maximize the return,

π∗ = arg max
π∈Π

E [G|π] (6)

where the return Gt,

Gt = Rt+1 + γRt+2 + γ2Rt+3

=
∞∑

k=0

γkRt+k+1,
(7)

is the cumulative discounted return. The discount factor 0 ≤ γ ≤ 1 quantifies the im-

portance between immediate rewards and distant rewards where γ = 0 considers only

immediate rewards and γ = 1 weights immediate and distant rewards equally. [2]. Per-

haps the most central Equation of RL is the Bellman Expectation Equations,

vπ(s) = Eπ [Gt|St = s]

= Eπ [Rt+1 + γvπ(St+1)|St = s)]
(8)

where vπ(s) quantifies how good it is for the agent to be in state st following policy π

henceforth [15]. The Bellman Equation, famously from dynamic programming, defines

a recursive function that expresses the relationship between the value of a state and the

successor state [34, 2]. However, the state-value function is not practical when quantifying

how good actions are in state st because it summarizes all actions. The state-action value

function Q : S ×A→ R quantifies how good action at being in state st. The state-action

value function,

Qπ(s, a)

= Eπ [Rt+1 + γv(St+1)|St = s, At = a]

= E[Rt+1 + γEa∼πQ(St+1, a) | St = s, At = a],

(9)

is similar to the state-value function Qπ(s, a) but decomposes the value-function into

values for individual actions. [35]. Consequently, we know that the optimal policy π∗ is

found indirectly if Q∗(s, a) or V ∗(s) is known through solving the Bellman Equation,2

[7],

Q∗(s, a) = E[Rt+1 + γmax
a′

Q∗(St+1, a)]. (10)

2.5 Model-Based RL

Model-based RL follows the standard MDP derivation and involves learning the

transition-function T from observed data [37]. The goal is to find some parameters θm
2RL theory has significantly more ground to cover, but we have left out non-essential parts for this

article. We recommend [36] for further reading.
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so that the estimated transition function P̂(s′, r|s, a; θm) ∼= P(s′, r|s, a). In this work, we

learn to derive the reward-function R̂ : S × A and state-transition function T̂ : S × A
because we aim to quantify the uncertainty of the reward function estimates for risk-

sensitive RL, which is further detailed in Section 2.9. While it is common to incorporate

decision-making into the model with algorithms such as cross-entropy methods (CEM),

we have a model agnostic approach that allows model-free algorithms (e.g., Q-learning).

Model-free approaches are more studied, hence has a significantly better performance

than model-based approaches [5]. Contrary to model-free algorithms, model-based al-

gorithms are much more sample efficient [38, 39] and in combination with a learned

dynamics model, the aim is to get the best of two worlds: sample efficiency, performance,

and risk-awareness incorporated together.

• Dynamics Model. The goal of an estimated dynamics model T̂ : S × A is to learn

parameters θm that best can reflect the behavior of the unknown dynamics T from Equa-

tion 2. The estimated predictive model is with this referred to as a dynamics model and is

defined,

T̂ (ŝ′|ŝ, a; θm) ∼= T (s′|s, a) (11)

where we assume that the estimated model is in some way captures information of the

unknown MDP similar to HMM’s [40]. There are many approaches to learning such

models, and this article focuses on a combination of variational autoencoders (VAE) [41],

state-space models [42], and recurrent neural networks [43].

• Variational Autoencoder is a generative autoencoder that uses neural networks to

parametrize probability distributions used to define a probabilistic latent variable model

efficiently. VAE’s define a generative model and an inference network used to learn the

parameters that best fit observed data. The generative model is the joint probability distri-

bution prθ(x, z) = prθ(x|z)prθ(z) where prθ(z) = N (z; 0, I) and the decoder is usually

prθ(x|z) = N (x;µ, σ) with µ and σ being neural network estimators [41]. The inference

network or the encoder allows computing a posterior approximation given a particular

data point (e.g., an observation of a game). In particular, we use amortized variational

inference that shares parameters overall observed data points [41]. The posterior approxi-

mation is defined as p(z|x) = N (z;µ, σ) following the same principles as for the decoder.

Parameter learning is performed using Evidence LOwer Bound (ELBO), which consists

of a reconstruction term and a regularization term (Equation 24 and 26) where the first

term encourages good reconstruction and the second term aims to model the data simi-

larly to the prior (e.g., a Gaussian distribution). Intuitively, the aim is to create a generative

model, meaning it is possible to reconstruct belief data over unseen data given the best

estimates of data seen thus far. This fits well with a model in RL but requires adjustments

to account for temporal dimensions. Motivated by the challenges of posterior collapse in

VAE, Oord et al. proposed a categorical generative network, detailed in Section 5 [44].
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• State-Space Models are particularly interesting because their background is founded in

estimating trajectories such as the Apollo project in the ’60s [42]. There are three types

of SSMs, filtering, prediction, and smoothing, but we use prediction in this work and

assumes the SSM model as a non-linear Gaussian function similar to VAE. The goal is

to predict a future latent vector pθ(zt|bt−1, at−1) where bt−1 is the belief state and at−1 is

the action performed. Here we combine amortized variational inference from VAE’s with

learning a prediction model conditioned on belief states and actions from RL. 3

• Recurrent Neural Networks are interesting because they aim to learn data dependen-

cies stretched through time. While we have tested Liquid-Time Constant (LTC) networks

and Gated Recurrent Units (GRU), we found that Long Short-Term Memory (LSTM) net-

works perform better in several tested environments. Following the theory of Belief MDP,

we can learn a belief distribution with sufficient statistics of observations bt ≡ o1...t. We

use an LSTM layer in our generative network to produce belief states bt dependant on

previous belief state bt−1 and action at−1 but only use the notation zt after stochasticity is

added to the LSTM prediction 4.

• To summarize, the proposed predictive dynamics model is a probabilistic state-space

model that using LSTMs to learn the belief distribution that parameterizes a Gaussian

prior, learned using amortized variational inference from VAE’s.

2.6 Q-Learning

Arguably the most central algorithm for fundamental RL is the Q-Learning algorithm

[46]. Q-Learning is a value-based algorithm and uses the Q-function from Equation 9

as the basis for updating the policy parameter. Q-Learning is a model-free algorithm it

meaning that it works independently of the underlying MDP dynamics T and is an off-

policy algorithm, meaning that it can learn from samples collected by other policies. The

Q-Learning algorithm follows the Bellman equations (9), where

Q(st, at)← Q(st, at) + αδt, (12)

where 0 ≤ α ≤ 1.0 is the learning rate, and δt is the Bellman residual,

δt = Rt+1 + γmax
a∈A

Q(st+1, a)
︸ ︷︷ ︸

off-policy

−Q(st, at). (13)

The Bellman residual δt denotes the temporal-difference (TD) error between current and

subsequent state estimates. This procedure is named bootstrapping, e.g., we update our es-

timates of Q(st, at) with another estimation maxa∈AQ(s′, a) where Q-Learning assumes
3We recommend [41] for further reading of VAE and [45] for SSM’s.
4The belief-state is deterministic from the LSTM, and we found the latent-space variable much better if

modeling as a Gaussian distribution
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best action is taken given current knowledge [47]. The max operator assumes that all

future actions are optimal, which allows other policies to make decisions in an off-policy

manner. It is also possible to derive another popular algorithm, SARSA (state-action-

reward-state-action), by omitting the max operator such that the bellman residual,

δSARSAt = Rt+1 + γ Q(st+1, at+1)︸ ︷︷ ︸
on-policy

−Q(st, at) (14)

is an on-policy TD update instead. The Q-Values are usually stored in a table in computer

memory. However, it becomes infeasible to use traditional RL in larger problems because

the algorithms store information in tables in the computer memory. For this reason, we

use function approximators to learn a latent representation of the state-action value table.

2.7 Deep Q-Networks

Since traditional RL relies on tables to store parameters, it becomes impossible to assume

an exact function to solve our policy optimization problem [2]. Instead, function ap-

proximation and specifically using neural networks is an appealing approach as they have

demonstrated the capability to learn high-dimensional functions [16]. Deep Q-Networks

tries to estimate the Q-table so that Q(s, a; θ) ≈ Q ∗ (s, a). Learning of the parameters θ

is done through minimizing the following loss-objective,

L(θi) = Es,a,r,s′∼P(.)

[
(δi|θi)2

]
, (15)

where δi is the bellman residual from Equation 13. The first term is the reward, the second

term is the greedy estimation from the target Q-network, and the third term is the inference

Q-network.

2.8 Policy Gradient Algorithms

In contrast to value-based methods, Policy Gradient (PG) algorithms aim to find an opti-

mal behavior policy through direct policy search. The policy is defined as a parametrized

function with respect to θ and computes gradients based on an objective function,

J(θ) =
∑

s∈S
dπθ(s)vπθ(s)

=
∑

s∈S
dπθ(s)

∑

a∈A
πθ(a|s)Qπθ(s, a)

∝ Es,a,r,s′∼P(.) [lnπθ(a|s)Qπθ(s, a)]

(16)

where dπθ(s) denotes the stationary distribution for πθ. [48]. Updates are performed using

gradient ascent, that is, we wish to find parameters θ for πθ that yields the highest return,
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written as θ ← θ + α∇θJ(θ). The gradient theorem [2] find that the gradient respect to θ

of the objective function J(θ) is,

∇θJ(θ) = Eπθ [Qπθ(s, a)∇θ ln πθ(a|s)] (17)

where Qπθ(s, a) is interchangeable with any return based function (e.g., advantage func-

tion) and Eπθ indicates the empirical average over a finite set of samples, sampled using

the algorithm [49]. Many algorithms build on the policy gradient framework and perhaps

most notably the Proximal Policy Optimization (PPO) for its substantial empirical perfor-

mance and simplicity. PG algorithms are notoriously difficult to train because estimates

have high variance and no bias. Vanilla PG is perhaps most known for this behavior, mak-

ing the algorithm more susceptible to local optima and perform poorly across larger state

spaces. Many algorithms build on the policy gradient framework, and perhaps the most

promising direction is the Proximal Policy Optimization (PPO) family for its substantial

empirical performance and simplicity [50]. We define the ratio rot(θ) between current

policy πθ(at|st) and previous policy πθold(at|st) such that rot(θ) = πθ(at|st)
πθold

. Substituting

ln πθ(a|s) in Equation 16, the objective becomes,

JCPI(θ) = Es,a,r,s′∼P(.) [ro(θ)Qπθ(s, a)] , (18)

which is the Trust Region Policy Optimization (TRPO) objective in [51]. The problem

with JCPI is that maximization leads to excessively large policy updates, hence learning

becomes unstable. The work on PPO propose a clipping Scheme to reduce the size of

policy updates,

JCLIP (θ) = Es,a,r,s′∼P(.) [min(ro(θ)Qπθ(s, a), clip(ro(θ), 1− ε, 1 + ε)Qπθ(s, a))] ,

(19)

where ε is a hyperparameter 0 ≤ ε ≤ 1, typically set in the range of ε ≈ 0.2.

2.9 Risk-Aware RL

From a traditional RL view, most algorithms are considered risk-neutral, as clearly seen

in the update Equation for Q-Learning (Equation 9) and its deep learning counterpart

(Equation 15.) The problem with risk-neutrality is that for safety-critical systems such

as the Deep Warehouse simulator, traditional algorithms fail to learn without relying on

experience from catastrophic states [20]. This work draws parallels to a safety-critical

system using the Deep Warehouse and Deep RTS Lava environment5 mini-game (Section

6), where the goal is to retrieve gold without entering catastrophic lava states.

• Uncertainty. One approach to safe RL is to quantify the epistemic or aleatoric uncer-

tainty and define it as a notion of risk. Aleatoric uncertainty stems from the observations
5The Deep RTS Lava mini-game can be found at https://git.io/JzpnJ
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done of the environment. An environment might have some inherent noise and stochastic-

ity that is not controllable by the agent, which further amplifies belief MDP (however, the

belief distribution is epistemic uncertainty) and POMDP’s because of added uncertainty

beyond the observable state-space. Generally, we think of aleatoric uncertainty as some-

thing that is not changeable but quantifiable. On the other hand, epistemic uncertainty is

the model uncertainty, or in other words, the uncertainty of whether our prediction is cor-

rect with current knowledge. However, epistemic uncertainty is learnable and is reduced

as the model becomes more certain of predictions. [52] In a stochastic process such as

an MDP, several measurable uncertainties exist, such as model uncertainty, reward un-

certainty, and value uncertainty [53]. Model uncertainty considers the uncertainty in

transition function P of an MDP and has successfully guided agents during learning [54].

This article only consider MDP’s where the transition function is unknown, and hence,

we must estimate the model, which adds even more uncertainty to the model. Reward
uncertainty defines the uncertainty of receiving a specific reward rt at state st given the

action made. Most notably is the intrinsic motivation from [55] that defines an auxiliary

reward signal from the extrinsic reward function R. Work from [56] similarly proposes

a dynamics-based prediction error that is used as a secondary reward signal. Value un-
certainty considers the value function vπ(s) as a source of risk. Due to the recursive

nature of the Bellman equations (Equation 8), the value-function estimates increasingly

accumulate errors as time t→∞.

• Risk-directed exploration. Following the work of [57], risk-directed exploration is an

auxiliary signal that guides action selection in RL algorithms. We quantify exploration

risk Ψ : S ×A → R,

Ψ(s, a) = wH− (1− w)
E[R(s, a)]

max
a∈A
|E[R(s, a)]| , (20)

where H is the entropy,

H(s, a) = −T̂ (s′|s, a) log T̂ (s′|s, a). (21)

The entropy H of a stochastic process is a measurement uncertainty that suits well for

quantifying risk. The risk is denoted Ψ and, as seen in Equation 20, is used as a trade-

off between normalized expected return and system entropy [58]. The risk is weighted

0 ≤ w ≤ 1 where w ≥ .5 values the stochastic nature of the system more as a notion of

risk. Furthermore, we define a utility function U : S ×A → R,

U(s, a) = ρ(1−Ψ(s, a)) + (1− ρ)π(a|s), (22)

where ≤ ρ ≤ 1 controls the risk-awareness of the agent. For ρ = 0, risk awareness is

disabled, and as ρ → 1, the agent becomes increasingly aware of risk during decision

making. Note that the utility function U is policy agnostic and works with policy-based
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and value-based methods, and is usable with sampling techniques such as ε-greedy and as

a Boltzmann distribution (softmax). [57, 59]

• Risk-Sensitive RL refers to the branch of safe RL, which expresses a balance between

a weighted risk and the return,

max
π∈Π

(Eπ(R(s, a))− βω). (23)

The first term of Equation 23 is the expectation of the return (Equation 3), and the second

term is the weight 0 ≤ β ≤ 1 of the risk-function ω : R× S × A → R (note that this is

omega ω not to be confused with w in Equation 20) [60]. Literature has studied different

definitions of risk, such as using uncertainty from the TD-Error [61, 62], reward uncer-

tainty [63], and using a set of error-states [60]. We use two sources of uncertainty in the

system, particularly the dynamics model entropy and the variance of a set n predicted re-

wards, similar to [63]. This article follows the work of [64] but uses the measured variance

as a risk signal for a more risk-averse agent. We combine risk-sensitive RL with Equa-

tion 20, where safety is adjusted long term with exploration [57] and short term through

risk-averse weighting of the return function. We detail further our particular approach in

Section 5.

•Goal-directed RL is not directly a technique for reducing risk but has appealing proper-

ties that reduce the probability of entering catastrophic states and hence, is used in litera-

ture towards risk reduction [65]. Goal-directed reinforcement learning (GDRL) separates

the learning into two phases, where phase one aims to solve the goal-directed exploration

problem (GDE). To solve the GDE problem, the agent must determine at least one viable

path from the initial state to the goal state. In phase two, the agent uses the learned path

to find a near-optimal path. The two phases iterate until the agent policy is converged.

[66] The modeling task is to compute costs using neural network approximators that fol-

low an episodic training Scheme. During exploration, the algorithm records a buffer of

visited states, and at the time the agent enters a terminal state, the buffer is labeled with

the corresponding Euclidean distance from the goal. The training is a supervised learning

problem, and if enough data is collected, the estimator can accurately predict the distance

between the current state and the terminal state. We denote the cost ct ∈ C in Section 5

as the normalized distance from the current observed state to the goal state.

3 Related Work
In the majority of established systems in the industry, an expert system made from human

reasoning acts as the controller for the environment [67]. It is critical for safe and stable

learning in real-world environments so that ongoing operations are not interrupted, and

this Section details related work that aims towards improving and solving safe model-

based RL (SMBRL).
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• Lyapunov-functions. Perhaps the most notable recent work in solving SMBRL prob-

lems is the work of Berkenkamp et al. proposing a region of attraction-based method

that is guaranteed safe constrained to a set of safe-states. The author presents a learning

algorithm with two assumptions (1) the model is Lipschitz continuous, and (2) a reli-

able and well-calibrated statistical model exists to allow accurate exploration, close to the

ground truth model function (the environment). The author adopts the region of attrac-

tion from control theory and uses Lyapunov functions that constrain the problem to an

invariant set of the policy space. Furthermore, the author finds that a Lyapunov function

is derivable from the value function vπ(s), given that all rewards are positive. The exper-

iments and theoretical justifications demonstrate that the algorithm functions well for the

inverted pendulum environment and that their proposed algorithm improves performance

while also holding safety constraints. [68]. Chow et al. similarly use Lyapunov functions

to solve constrained MDP (CMDP) problems with the assumption of a feasible baseline

policy. The author proposes updating the Lyapunov function using bootstrapping and

showing that the method integrates well with Q-Learning. The author does not provide

convergence proof to the optimal policy but empirically demonstrates that their approach

performs better than Lagrangian methods. [69].

• Barrier Functions. Similar to Lyapunov-based approaches, the use of barrier function

aims to constrain the policy-space to a safe-set of possible policies that are guaranteed

to work safely. Cheng et al. propose a combination of model-based dynamics learning,

shielded RL, and model-free algorithms as actors. Barrier functions are forward invariant,

similar to Lyapunov functions, and uses a temperature hyperparameter to determine how

constrained the policy space is. The method guarantees safety. However, it builds on the

assumption that a determined set of safety policies are given before training. The authors

demonstrate that their method outperforms novel model-free algorithms in sample effi-

ciency and safety but at the cost of return performance. [70]. In a similar direction, Yang

et al. propose a novel actor-critic barrier function structure for multi-agent safety-critical

systems. Specifically, the authors propose a two-player game architecture for guaranteed

safety during learning and solve a known model with safety guarantees [71].

• Human Intervention. One of the fundamental questions to raise in a safety-critical en-

vironment is when to trust your model. In earlier work on Human Intervention techniques,

Saunders et al. propose a simple framework for training an algorithm safely using human

intervention for catastrophic states. For every timestep in the environment, a human par-

ticipant evaluated the state and proposed action of the algorithm, and for catastrophic

actions, the human corrects the agent and gives negative feedback. While this is set in a

model-free context, the human can be considered a corrected model of the policy space,

and the authors found their method to perform well but failed to scale due to the time used

by the human. [72]. Similarly, Turchetta et al. propose a curriculum-based approach, Cur-

riculum Induction for Safe Reinforcement Learning (CISR), which assumes a teacher that
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intervenes in the event of catastrophic states. The teacher policy guides the student, in-

tervenes, and puts the student in safe states if the CMDP criteria are not met. The author

describes the CISR framework as a meta-learning framework where the teacher policy

is an optimizable hyperparameter. However, the algorithm makes assumptions that there

exists an intervention set defined before learning. The authors demonstrate that the stu-

dent policy performs significantly better in the Frozen Lake environment when erroneous

states are intervened compared to no intervention. [73]

• Summary. Throughout the last decade, many different approaches have been proposed

toward improving safety in RL algorithms. While this article is out of scope to describe

all methods, this Section describes promising directions in safe RL. This article draws

inspiration from several other works in safe RL, which the respective authors best de-

scribed in [57, 60, 61, 62, 64, 65, 53, 74], but otherwise referred to throughout this work.

Furthermore, a brief overview of traditional safe-RL work is described in [4].

4 Environments
In the extreme pace that RL is moving, it is essential to use benchmarks that provide triv-

ially replicable environment conditions. It is also important to have flexible benchmarks

and can grow alongside the progress of research. Game-Complexity is a metric to deter-

mine the difficulty of a task, and while it does not account for uncertainty or stochasticity

in the environment, it is often in literature. For example, Chess has state-complexity of

∼ 1050, Go (19x19) = ∼ 10360, and for StarCraft II, some estimations range from 101685

to 1036000 [78]. As iterated, there is a clear gap in the literature of experimental environ-

ments, and the goal is that efforts such as MicroRTS [22], ELF [76], along with Deep

Line Wars [75], Deep Warehouse [20], and Deep RTS [23] help fill the gap. In particular,

all of these environments are flexible in that they allow to design of mini-games of nearly

any state-complexity and allow configuration that tests the safety of algorithms. This Sec-

tion thoroughly presents the experimental environments used in Section 6 and outlines the

evaluation setup for each environment.

4.1 Deep Line Wars

The Deep Line Wars (DLW) RTS environment provides a lightweight version of the Deep

RTS game that offers a way to train algorithms on offensive and defensive strategies. Fig-

ure 4a illustrates the graphical observation, and to succeed in the DLW environment, the

player should master a balance between (1) base construction, (2) economy management,

(3) defensive planning, and (4) offensive evaluation.

These objectives seem trivial to master individually but pose a significant challenge when

combined. The DLW game is a two-player RTS game where the goal is to build a base
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(a) Deep Line Wars [75] (b) Deep RTS Maze Ob-
jective [23]

(c) Deep RTS One Versus
One [23]

(d) MicroRTS [22] (e) ELF: Mini-RTS [76] (f) StarCraft II Mini-Games
[77]

(g) Deep Warehouse. In a simple cube-based ASRS
system, the environment consists of (B) passive and
(C) active delivery-points, (D) pickup-points, and (F)
taxis.[20]M
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Table 2: MicroRTS maps with the corresponding map-size.

Map Size

basesWorkers8x8A 8× 8

basesWorkers16x16A 16× 16

BWDistantResources32x32 32× 32

(4)BloodBath.scmB 64× 64

FourBasesWorkers8x8 8× 8

TwoBasesBarracks16x16 16× 16

NoWhereToRun9x8 9× 8

DoubleGame24x24 24× 24

and send units towards your opponent’s base. DWL supports several modes from fully

deterministic and observable state-space to partial observable stochastic state-spaces. The

observations are available as a compact vector representation and represented as pixel

images [75].

4.2 Deep RTS

The Deep RTS game environment enables research at different difficulty levels in plan-

ning, reasoning, and control. Deep RTS aims to narrow the research gap between Micro

RTS [79] and StarCraft II [77]. Deep RTS compose games as scenarios that define a

particular goal to win the game. For the most primitive scenario, the goal is to gather

a set amount of gold before the agent receives a reward signal and the game terminates.

The most complex environments support observability, environmental danger, and other

opponents. It is possible to define delayed actions and delayed rewards to increase the

difficulty of the task.

4.3 Micro RTS

Micro RTS is a simple RTS game designed to conduct AI research. The idea behind

Micro RTS is to strip away the computational heavy game logic and graphics, seen in

Figure 4d, to increase the performance and enable researchers to test theoretical concepts

quickly [22]. The microRTS game logic is deterministic and includes options for fully and

partially observable state spaces. The primary field of research in microRTS is game-tree

search techniques such as variations of Monte-Carlo tree search and minimax [80, 22, 81]

but is also used for deep learning techniques, especially in the larger maps, seen in Table

2.
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Table 3: List of mini-game maps in SC2LE

Map

MoveToBeacon

DefeatRoaches

BuildMarines

CollectMineralShards

CollectMineralAndGas

FindAndDefeatZerglings

DefeatBanelingsAndZerglings

4.4 ELF: Mini-RTS

The goal in Mini-RTS is for the agent to destroy the opponent’s base with its troops.

Players have units, resources, and a base and must balance economics for defensive and

offensive planning. It is possible to expand the base with the worker unit type to build

barracks and expand the offensive powers. The ELF game engine is tick-driven, meaning

that the agent must make a decision per tick. Mini-RTS is partially observable due to the

fog-of-war, and thus the agent is only presented with imperfect information. However,

compared to StarCraft II, Mini-RTS is significantly less complex both logic-wise and

graphically wise, seen in Figure 4e. The Mini-RTS environment features two built-in

strategies; AI-Simple, AI-Hit-and-run where both are used in the experiments.

4.5 StarCraft II

SC2LE (StarCraft II Learning Environment) bridges the programming language Python

and the StarCraft II state-space and action space. SC2LE is an initiative from Blizzard

and DeepMind to demonstrate the capabilities of AI in RTS. StarCraft II is depicted in

Figure 4f and is a complex environment that requires short and long-term planning. It is

difficult to observe a correlation between actions and rewards due to the imperfect state

information and delayed rewards, making StarCraft II one of the hardest challenges for RL

algorithms to solve [77]. In addition to the full-game case, SC2LE features mini-games

suitable for RTS research, as seen in Table 3.

4.6 Deep Warehouse

Training algorithms in real-world environments have severe safety challenges during

training and suffer from low sampling speeds [82]. The Deep Warehouse environment

features discrete and continuous action and state spaces. The environment has a wide
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range of configurations and is the only open-source implementation that aims to simulate

proprietary automated storage and retrieval systems to the best of our knowledge6.

In the context of warehousing, an Automated Storage and Retrieval System (ASRS) is

a composition of computer programs working together to maximize the incoming and

outcoming throughput of goods. Using an ASRS system in logistics has many benefits,

including high scalability, increased efficiency, reduced operating expenses, and operation

safety. We consider a cube-based ASRS environment which can be thought of as a 3-

dimensional asymmetrical rectangle with goods stored depth-wise. Taxi agents collect

and deliver goods to delivery points on the rectangle’s uppermost layer and usually work

alongside other agents. A computer program controls the taxi agent that reads its sensory

data to determine the following action. Although these systems are far better than manual

labor warehousing, there is still significant improvement potential in the current state-of-

the-art. Most ASRS systems are manually crafted expert systems, which due to the high

complexity of the multi-agent ASRS systems, only performs sub-optimally. [83]. The

Deep Warehouse experiments use a grid-size of 11× 11 with 10 agents, 22× 22 with 50

agents, and 41× 41 with 100 agents, respectively.

4.7 Summary

Zooming out on the landscape of RL for RTS games, it is clear that the challenge is far

from mastered when considering sustainability, safety, or flexibility. There is, without

doubt, a progressive pace towards methods that perform better within specific environ-

ments, but as of yet, StarCraft remains the ultimate goal for sustainable RL algorithms

[48, 79]. For the experiments in Section 6, we use the following environments:

• Deep Line Wars
For the experiments, we use three map sizes in Section 6, 12 × 11 , 22 × 22, and

40× 30, respectively, where the opponent uses the built-in expert strategy.

• Deep RTS
In Section 6, we present results for two scenarios in Deep RTS where the first

is a single-player objective to navigate through a maze and find gold, seen in

Figure 4b. This environment is used to evaluate safety during training in RTS

games. The second scenario, seen in Figure 4c is a one versus one, 10 × 10 map

with four available units, four available buildings, and over 100 possible action

combinations every game state update.

6The deep warehouse environment is open-source and freely available at https://github.com/
cair/deep-warehouse
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• Deep Warehouse
To demonstrate safety improvement of S-ORACLE compared to fully model-free

methods, we train the algorithms on three grids with various concurrent agents in

each grid size. The experiments run in grid-sizes of 11× 11, 22× 22, and 41× 41

with 10, 50, and 100 manhattan-distance based co-agents, respectively.

• MicroRTS
We use the same environments as in the IEEE Conference of Games for recent

and previous years, listed in Table 2

• ELF: Mini-RTS
The Mini-RTS environment features two built-in strategies; AI-Simple, AI-Hit-

and-run where both are used in the experiments.

• Starcraft II
We use all mini-games available to SC2LE, which are listed in Table 3.

5 Learning dynamics for Planning and control
The S-ORACLE algorithm is a novel end-to-end architecture for training model-free al-

gorithms on a dynamics model learned through observations of the true environment. S-

ORACLE is a combination of state-of-the-art deep learning techniques; stochastic recur-

rent state-space models (SRSSM) [84], variational autoencoders (VAE) [41], and vector-

quantization [85]. The model contains a deterministic encoder and a stochastic decoder,

a stochastic dynamics model, and a policy. The full architecture is visualized in Fig-

ure 4 and the scope of this Section is to describe each component of the S-ORACLE

model explain the desired outcome running model-free algorithms for safer planning and

decision-making.

5.1 Deterministic Encoder and Stochastic Decoder

When the agent observes a high-dimensional input such as images, we must reduce di-

mensional to reduce computational complexity. The convolutional layers are interchange-

able with fully connected layers for vector-based inputs, but we consider pixels for this

article.

• The decoder is a deconvolution network that upsamples the compressed latent variables

to the spatial structure of the input variable ot. The last layer of convolutions predicts µ

and σ that parameterize gaussian distributions for all output pixels in ôt+1. Experiments

revealed significant performance benefits of a stochastic decoder output because it added

variability during training, making the predictions far more accurate than fully determin-

istic layers. There are no particular differences during inference, as we sample the mean,
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Figure 4: The S-ORACLE model. The environment produces an initial state st that feeds

into a ConvNet. The flattened representation xt is fed into the posterior distribution and

produces a latent vector zt. Concurrently, the prior distribution uses the previous hidden-

state to predict a belief of the latent vector. The latent vector is the backbone for predicting

a reward and the state-cost. The policy use trained parameters to predict an action and is

sent to the environment. Every component of the model trains jointly in where each

training-block (e.g., the colored squares) plays a part in the final optimization objective.
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which roughly equates to the mean value of deterministic neural networks [84].

• The encoder is a three-layer deterministic convolutional neural network (CNN) that

aims to capture information from pixel observations ot and consequently reduce dimen-

sionality before reshaping the compressed representation to a vector xt[86]. The idea is

that we compress observation to a compact representation, compute an internal state in the

dynamics model, and decompress the internal representation. During training, the overall

goal is for the dynamics model to resemble the same behavior as T (s′|s, a), where the

model is denoted T̂ (s′|s, a). The encoder and decoder are learned using the MSE (cross-

entropy) between the predicted observation ŝt+1, and the after-the-fact observation st+1,

LOBS = −E[logp(o|z)]. (24)

5.2 Dynamics Model

SNN

SNN

Figure 5: Detailed overview of the dynamics model forward-pass from Figure 4. The

prior network uses last-step information, along with an action (the action that leads up to

state st is denoted at−1), and outputs the computed hidden-state and the sampled latent-

state variable zt. For LSTM, we store the cell memory along with the hidden-state. The

posterior network takes in the observed information xt and our prior belief state ht and

predicts the informed latent-state variable zt. Although both latent-state variables are

denoted zt, the prior latent-state variable is denoted ẑt during training.

S-ORACLE is a model-based approach and attempts to estimate the true MDP transition

function, described in Section 2.5. We use neural networks to estimate and combine VAE

and SRSSM to create a highly expressive probabilistic model. S-ORACLE models two

distributions, a prior model and a posterior model. Figure 5 depicts the forward pass of

S-ORACLE after the observation ot encodes to xt.

• The prior network (generative network predicts the next state latent-space variables zt
using information from the last time-step; the latent-state zt−1, current action at−1, and

hidden-state ht−1. Note that for LSTM, which is used in the experiments, the cell-state

is preserved between inferences when using LSTM. The RNN node calculates the next

hidden-state splits into µ and σ to parameterize Gaussians that predict zt.
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• The posterior network (inference model) concatenates hidden-state ht and the encoded

observation xt and parametrizes Gaussian distributions similar to the prior network, which

predicts informed after-the-fact latent-space variables.

• The forward-pass of the dynamics model is as follows where the prior model performs

the following operations:

1. Compute ut = concat(zt−1, at−1)

2. Compute RNN state ht = RNN(ut)

3. Parameterize mean µt = NN2(ht) diagonal covariance matrix σ = NN3(ht)

4. Sample from Gaussian distributions SNNθ(zt|ht) ∼ N (ht;µ, σ)

where all steps are performed for every sample and form our prior beliefs of the latent

variables. The posterior model, seen in Equation 25b, depends on previous hidden-state

ht−1, action at−1 including the encoded state-observation xt. The posterior model can be

summarized to the following procedure:

1. Compute ut = concat(ht, xt)

2. Parameterize mean µt = NN5(ut) diagonal covariance matrix σ = NN6(ut)

3. Sample from Gaussian distributions SNNψ(zt|ht) ∼ N (xt;µ, σ)

• Training takes inspiration from previous work in [87] using variational inference [41]

combined with Stochastic Recurrent State Space Models (SRSSM) from [84]. VAE and

SRSSM are highly expressive model classes for learning patterns in time series data and

system identification (e.g., learning dynamics model from observed data) [88]. We train

the algorithm similarly to VAE’s using amortized variational inference since poθ(z|x) =∫
z
poθ(x|z)poθ(z)

poθ(x)
dz is intractable [89]. The generative model (prior) prθ and the inference

model (posterior) poθ is denoted,

Prior Model : prθ(zt, ht|ht−1, at−1) (25a)

Posterior Model : poθ(zt|xt, ht), (25b)

where Equation 25a is the prior distribution that attempts to learn parameters θ that best

fit the posterior distribution (Equation 25b) by minimizing the Kullback-Leibler (KL) dis-

tance. The intuition is that the posterior model learns dynamics of the MDP (environment)

through observations xt while the prior distribution must learn indirectly through opti-

mization (parameters θ). To make the optimization tractable, we use the ELBO [41, 90]

such that the optimization term for the SSM (generative and inference network) becomes,

LSSM = LOBS −DKL[poθ(z|x)|prθ(z)]. (26)
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5.3 Categorical Latents

Figure 6: A detailed overview of the vector quantization network for mapping latent-space

variables to categories after the generative network has predicted a continuous latent-

space variable. The VQ-VAE module is depicted in Figure 4 and attempts to map variables

from the generative network (prior) to categories. The dashed lines illustrate the process

during training, while solid lines illustrate inference time computation. The algorithm

finds an appropriate category using the nearest neighbor.

Following the work in [85], we use a variation of the VQ-VAE architecture, seen in Figure

6. However, we use it to categorize latent variables similar to [66] that allows for selecting

policies to specific areas of the state-space and is a promising approach towards automat-

ing the options selected in the options framework [91]. Furthermore, VQ-VAE shows

efficiency for planning and predictive learning [92] and does not suffer from posterior

collapse. We observe that the dynamic model recovers from posterior collapse combined

with stochastic weight averaging (SWA) combined with categorical latent motivate using

VQ-VAE.

Inference and training is straightforward where the sampled latent-variables from the

SSM mapped to a categorical codebook Z1 · · ·ZK with K (hyperparameter, see Table

18) possible categories of latent-space variables. The output is the category closest to the

input, and we updated the latent variable zt ← zkt . Training occurs jointly with rest of the

model,

LV Q = ||sg [ze]− e||22 + βvq||ze − sg [e] ||22, (27)

where e is the codebook. The first term is the codebook alignment loss which updates

the selected category closer to the SSM latent vector. The sg denotes the stop-gradient

operator, which prevents gradients computation for the SSM as this term only concerns

updating the codebook. The second term moves the SSM latent-vector towards the code-

book but we wish to limit the influence on SSM, hence, βvq ≈ 0.05 in contrast to [44]

using 0.25 ≤ βvq ≤ 2.0.
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5.4 Rewards, Risks, and Costs

Using the learned dynamics model, we estimate rewards and costs as part of the feedback

that fuels the learning of the RL agent. The feedback signal comprises regular rewards,

uncertainty-based risk rewards, and costs that measure the distance between the current

state and a positive terminal state. We follow the background in Section 2.9 and use

Equation 23 to define the return function. The reward function R̂ is a parameterized

Gaussian distribution learned using the squared loss between predicted and actual reward

during training. The cost is learned separately after a terminal state is experienced by

labeling previous states with the temporal difference (e.g., how many steps it took from

state st−n until the terminal state st). The risk feedback is learned as a byproduct of

the learned predictive reward model as we are interested in using uncertainty as a risk

measurement Risk = Var(R̂), which gives us the reward function,

Roracle = R(z)− V ar(R̂) + (1− C(z)). (28)

The S-ORACLE risk-aware approach summarizes in two steps for reducing risk during

training and action inference. The first term in Equation 22 is the inference-time risk

reduction, while during learning, the agent utilizes 22 for action selection and Equation

23 with ω = Var(R̂(z)). The second term is the Cost function C(z)) that predicts the

normalized distance to a positive goal state. To optimize and learn the reward function

and cost function, we minimize the following,

LRew = E[logpr(R|z)]︸ ︷︷ ︸
reward−loss

+ sg(E[logpr(C|z)])︸ ︷︷ ︸
cost−loss

. (29)

5.5 Actor Policy Ensemble

The actor ensemble’s primary objective is to make informed decisions that lead to safe

trajectories to a goal state. In this work, S-ORACLE uses an ensemble of model-free

approaches, specifically A2C, DQN, RAINBOW, IMPALA, and PPO. While all of the

algorithms are different, they fundamentally share the objective of maximizing rewards

which fuel the motivation for modeling the reward function in Equation 28. Specifically,

all actor algorithms optimize towards the risk-aware reward function and empirically im-

prove safety significantly. The actor ensemble is defined,

πensemble = majority vote({πA2C(a|z), πDQN(a|z), πRAINBOW (a|z), πIMPALA(a|z), πPPO(a|z))},
(30)

where πensemble is the majority voting policy that selects action at. Note that all policies

select actions according to the risk-adjusted utility function in Equation 22 first proposed
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by [57], but using R̂ instead of the environment reward signal R̂. Although the ensemble

actor does not guarantee safety during training or learning, it shows a promising leap to-

wards safer algorithms empirically, and Section 8 discusses the implications and possible

methods to improve safety further.

5.6 Tuning and Training S-ORACLE

The S-ORACLE algorithm has many hyperparameters for tuning stability and perfor-

mance, and is located in Table 18. Experiments illustrate S-ORACLE robust between

most environments but required additional hyperparameter tuning for StarCraft II and

Deep RTS. LTC and GRU were tested but found LSTM to perform better for tested en-

vironments. Another notable hyperparameter choice enables adaptive gradient clipping

(AGC), a novel approach to clip the gradient from historical norms [93]. Additionally,

gradients are clipped between -100.0 and 100.0 to increase training stability. The S-

ORACLE model optimizes all objectives jointly,

LORACLE = LOBS + LRew + γLSSM + LV Q, (31)

using Stochastic Weight Averaging (SWA) with the AdamW optimizer [94]. SWA is

a novel approach to ensemble learning where the objective is to widen the optima space

such that it is easier to find and to give a better generalization of the model [95]7.Compared

to other ensemble learning techniques, SWA only requires a single model where snapshots

are stored every n epochs that are averaged every m epochs. SWA has different learning

rate strategies (e.g., cyclical learning rate), and a linear cyclical learning rate is chosen for

S-ORACLE.

5.7 Summary

This Section summarizes S-ORACLE as a novel approach towards safer reinforcement

learning in RTS and industry-near environments. In contrast to prior work, no assump-
tions on prior knowledge at the cost of not guaranteeing safety if left unsupervised.

However, using an expert system significantly decreases the likelihood of entering catas-

trophic states if used to pre-train the dynamics model. Section 6 shows that the actor
ensemble performs well within a presumable safe state-space set, without external
guidance if pretraining of the dynamics model is allowed. The S-ORACLE is summa-

rized to the following procedure:

1. Read state observation ot
7The author further demonstrated effectiveness in Improving Stability in Deep Reinforcement Learning

with Weight Averaging but the work is not peer-reviewed. However similar results are demonstrated in [96]
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2. Extract features of the observation xt

3. Compute latent-state using xt for the prior and posterior ẑt

4. Compute categorical latent-state for latent-space using VQ-VAE architecture zt

5. Predict using latent-state zt

• Decode latent-state in decoder and sample possible future observation ôt

• Predict action for policy ensemble given latent-state using majority voting

πensemble(at|zt)
• Predict reward of the latent-state r̂t

• Predict cost of the separate model using latent-state ĉt

6. Compute gradients jointly following Equations 24, 26, 27,29, and separately for

the policy ensemble and cost network. Use the Adam optimizer with SWA and

gradient clipping.

6 Empirical Evaluation
This Section presents empirical results from the five RTS environments Deep RTS, ELF,

MicroRTS, StarCraft II, and Deep Warehouse, for safety evaluations. The background

for the environments is found in Section 4. Each environment is tested with five different

model-free algorithms, A2C, DQN, RAINBOW, IMPALA, PPO using standard hyperpa-

rameters from the respective literature. Additionally, we test with the DVAE algorithm, a

model-based approach that uses variational autoencoders to learn a dynamics model that

is later used to train a PPO policy [96].

• Experiment Setup. The experiments are allocated one GPU per algorithm from

a pool of 2x 2080 TI and 2x 1080 TI cards. Experiments allocated with a 1080 TI

are given 37% longer train time to compensate for slower training speeds. For cli-

mate footprint estimations, we limit the GPU power draw to 250w and divide the

total energy consumption of the 1080 TI-based experiments to compensate for the

additional time. Model-free algorithms train for 24 hours and model-based trains

for 16 hours to demonstrate efficiency. Performance is tested for several episodes,

where the number of episodes is specified per environment due to computational

limitations.

• Experiment Scope. The goal of the experiment is to demonstrate the raw per-
formance and safety performance of S-ORACLE. Concurrently, a baseline is

constructed for future work. Experiments demonstrate that S-ORACLE gener-

alizes well for multiple problems, although the algorithm still has improvement
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potential in behavior performance, sample efficiency, and safety. The results also

systematically report S-ORACLE’s energy and carbon footprint compared to other

tested algorithms as suggested by Henderson et al. [6].

6.1 Safety Evaluation

S-ORACLE aims to learn an agent agnostic feedback signal that directs the risk-neutral

agents towards safer trajectories during training. S-ORACLE learns in a two-objective

process where the first objective is to learn the dynamics model and the second is to learn

an actor ensemble (see Section 5). S-ORACLE offer two training schemes to training the

predictive model:

1. Scheme #1. Train dynamics model and actor ensemble concurrently, balancing

the exploration-exploitation dilemma for risk management.

2. Scheme #2. Train dynamics model using external knowledge, using existing ex-

pert systems known to operate safely in the environment and subsequently, train

actor ensemble off-line using dynamics model before carefully evaluate safety in

live systems. This approach is seen as successful in prior work [96, 20].

The first method is the most versatile because it does not require any knowledge a priori

to solving the problem. However, the first method is at increased risk of entering catas-

trophic states. The second method improves empirical safety but relies on external sys-

tems to succeed. This Section aims to empirically demonstrate the safety performance of

S-ORACLE compared to PPO in Scheme #1 and DVAE in Scheme #2. The experiments

measure the ratio of incoming absolute negative returns to determine safety, normalized

between 0.0 ≤ x ≤ 1.0. For every 100 000 timesteps, the algorithm is evaluated for

100 episodes, and the measured min-max variance is illustrated using shades in the plots.

S-ORACLE is evaluated in two environments using the described training schemes:

1. Deep RTS lava environment, seen in Figure 4b. The agent performs safe behavior

when avoiding lava states. The goal is to reach the gold in the middle of the map.

2. Deep Warehouse logistics challenge. Transport goods from source to destination

as fast as possible while avoiding collision with other agents. The algorithm con-

trols a single agent, while the remaining agents use a manhattan distance-based

heuristic. The agent is part of a larger logistics system with other taxi agents,

depending on map size (see Section 4).

Using Scheme #1, the algorithms balance the exploration-exploitation dilemma during

dynamics model training. Hence they are more susceptible to error states because of miss-

ing knowledge about the dynamics. Figure 7a-7d shows the safety violations ratio in Deep

M

Paper M: Towards Safe and Sustainable Reinforcement Learning for Real-Time Strategy
Games



0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ab
so

lu
te

 N
eg

at
iv

e 
Re

tu
rn

Algorithm
PPO
S-ORACLE

(a) Deep RTS Lava.

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ab
so

lu
te

 N
eg

at
iv

e 
Re

tu
rn

Algorithm
PPO
S-ORACLE

(b) Deep Warehouse 11× 11.
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(c) Deep Warehouse 22× 22.
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(d) Deep Warehouse 41× 41.

Figure 7: Safety violations rate following training Scheme #1. The y-axis is the mean ab-

solute negative return where the absolute negative return is averaged per 10 000 timesteps.
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(a) Deep RTS Lava.
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(b) Deep Warehouse 11× 11.
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(c) Deep Warehouse 22× 22.
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(d) Deep Warehouse 41× 41.

Figure 8: Safety violations rate following training Scheme #2. The y-axis is the mean ab-

solute negative return where the absolute negative return is averaged per 10 000 timesteps.

RTS and Deep Warehouse, respectively. In the Deep RTS Lava environment, it is clear

that S-ORACLE learns to avoid lava, and for Deep Warehouse 11 × 11 (Figure 7b), the

S-ORACLE gradually reduce the rate of negative returns compared to PPO. Similarly, for

Deep Warehouse 22× 22 and 41× 41 (Figure 7c and Figure 7d), S-ORACLE accumulate

fewer negative rewards, but the effect seems to diminish for more complex state-spaces.

Collectively, the figures demonstrate that a risk-neutral algorithm (PPO) explores nega-

tive states at a relatively uniform rate, while the risk-averse agent (S-ORACLE) impacts

the number of visited error-states significantly less.

In Scheme #2, the dynamics model is trained from observations of an expert system before

training using the dynamics model occurs for the agent algorithm. The second approach

demonstrated better safety awareness, naturally, because the algorithm learned much of

the environment through the dynamics model before making actions live. Figure 8 shows

the safety-awareness of S-ORACLE compared to DVAE, clearly showing that there is

a downwards trend in the mean absolute negative return. However, as the environment

becomes more complex (Figure 8d), the effect seems to diminish in contrast to Figure 8b.

The empirical evidence clearly shows that S-ORACLE improves safety in Scheme #1

and Scheme #2 compared to model-free RL algorithms and the prior work of DVAE.
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Specifically, as the algorithm learns to navigate the environment, the agent receives fewer

negative rewards than other tested environments.

6.2 Performance Evaluations

• Deep Line Wars. Table 4 shows the performance of the tested algorithms against

the hard-coded expert agent. Each algorithm runs 1000 times and is averaged

over. Specifically, we observe that all tested algorithms perform well, even for

large maps. The S-ORACLE agent performs comparably to the tested model-free

algorithms and outperforms all tested algorithms on average. The action space

comprises 4 actions for cursor position, 4 build actions, and 4 spawn unit actions.

• Deep RTS. We evaluate the algorithms for 100 episodes in a maze-line problem

as seen in Figure 4b and in a one-versus-one as in Figure 4c between the tested al-

gorithms. For the maze-like environment, results and averaged. Table 5 shows the

performance of tested algorithms in the maze-environment. All algorithms per-

form well, where the best algorithm, IMPALA, consistently found the best path

after training. The other algorithms performed in the ∼ 95% ± 5 range. Table

6 shows that S-ORACLE outperforms 5 out of 7 algorithms and scores compara-

bly with PPO in 1v1 matches. We observed that S-ORACLE plays conservatively

and wins by strategically blocking the opponent’s path with houses during exper-

iments. In the long run, the conservative behavior wins because the cost of units

is more expensive than houses, and additionally, houses allow the player to build

a larger army that trivially defeats the opponent with limited housing. The agent

had access to 13 discrete actions at every timestep and received positive rewards

for victories and zero during the game.

• ELF: Mini-RTS. The partial observability of Mini-RTS makes the learning task

significantly harder to master compared to Deep RTS. Table 7 shows that S-

ORACLE average 83% win ratio but had difficulties defeating the AI-Simple al-

gorithm consistently. The Mini-RTS action space comprises 9 strategic actions in

which the agent can construct complex strategies. We observe that the average-

length game is approximately 3500 ticks where a positive reward is given for vic-

tories, a negative reward for defeats, and zero rewards in other states. Algorithms

are tested for 100 episodes.

• MicroRTS. Perhaps the most widely used environment for competitions is the

MicroRTS environment [22]. We test each algorithm for 100 episodes against

strategies presented in the IEEE Conference on Games (COG-2019) competition.

Table 8 shows the results, where each row illustrates the win rate against the col-

umn algorithm. We see that S-ORACLE outperforms the other algorithms, closely
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followed by DVAE, PPO, and IMPALA. The action space and state-space vary be-

tween maps but are thoroughly described in [97].

• StarCraft II. Perhaps the most compute-heavy experiment is the StarCraft II envi-

ronments, albeit we only focus on mini-games of the original game. In particular,

we use the mini-games from [77] already standardized in literature, and we adopt

these findings for our comparison. As seen in Table 9 no algorithm remains dom-

inant in all environments, but the professional player from DeepMind (DM) [77].

However, the S-ORACLE algorithm scores on average better than the model-free

approaches, likely because of the ensemble technique when voting for actions.

The action space is challenging to implement because it comprises several hun-

dred actions for every timestep. For this reason, we choose to adopt the same

method as in [98].

Table 4: Deep Line Wars result. Each agent (row) plays against the built-in expert agent

at different map-sizes (column). The last column is the average performance for all map-

sizes. The cell values represent win ratio ranging from 0 to 1.

Algorithm |Map 12x11 22x22 40x30 64x64 Avg

A2C 1.00 ±0.0 0.96 ±0.01 0.86 ±0.07 0.69 ±0.3 0.88

DQN 1.00 ±0.0 0.92 ±0.03 0.89 ±0.1 0.85 ±0.08 0.92

RAINBOW 1.00 ±0.0 0.95 ±0.03 0.90 ±0.08 0.64 ±0.01 0.87

IMPALA 1.00 ±0.0 0.96 ±0.04 0.95 ±0.04 0.85 ±0.11 0.94

PPO 1.00 ±0.0 0.99 ±0.01 0.95 ±0.01 0.66 ±0.18 0.90

DVAE 1.00 ±0.0 0.99 ±0.01 0.89 ±0.1 0.77 ±0.05 0.91

S-ORACLE 1.00 ±0.0 0.98 ±0.01 0.97 ±0.01 0.87 ±0.07 0.96

6.3 Sustainability Report

Table 10 reports the contribution of CO2
kg

of the experiments following the work of Hen-

derson et al. [6]. Algorithm performance is tested in 41 experiments and additional

six safety experiments for PPO, DVAE, and S-ORACLE. Note that the model-based ap-

proaches have a training budget of 16 hours, and model-free algorithms have 24 hours.

The Figure shows that model-based approaches utilize time significantly more, consider-

ing that total CPU and GPU time is close to model-free algorithms. The reason for better

utilization is that model-based RL algorithms better saturate the GPUs when training us-

ing the dynamics model.
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Table 5: The results of the Deep RTS Maze environment. The environment as seen in 4b

defines the reward function as rt = optimalRoute× 2− t. The results are averaged over

100 episodes. The cell values represent accumulated score ranging from 0 to 113.

.

Algorithm Score

A2C 91 ±5

DQN 98 ±9

RAINBOW 99 ±4

IMPALA 100 ±2

PPO 96 ±6

DVAE 97 ±11

S-ORACLE 94 ±5

Table 6: DeepRTS 1v1 results. The row is the win rate of the respective algorithm agains

the column wise algorithm for 100 episodes. The cell values represent win ratio ranging

from 0 to 1.

Algorithm A2C DQN RAINBOW IMPALA PPO DVAE S-ORACLE Avg

A2C - 0.35 ±0.11 0.23 ±0.05 0.44 ±0.11 0.14 ±0.05 0.39 ±0.11 0.36 ±0.05 0.32

DQN 0.65 ±0.03 - 0.45 ±0.02 0.36 ±0.05 0.25 ±0.03 0.36 ±0.32 0.25 ±0.14 0.39

RAINBOW 0.77 ±0.02 0.55 ±0.15 - 0.59 ±0.05 0.47 ±0.07 0.55 ±0.05 0.45 ±0.02 0.56

IMPALA 0.56 ±0.07 0.64 ±0.11 0.41 ±0.08 - 0.45 ±0.04 0.59 ±0.22 0.36 ±0.18 0.50

PPO 0.86 ±0.07 0.75 ±0.01 0.53 ±0.11 0.55 ±0.02 - 0.52 ±0.05 0.56 ±0.03 0.63
DVAE 0.61 ±0.25 0.64 ±0.05 0.45 ±0.05 0.41 ±0.06 0.48 ±0.05 - 0.25 ±0.02 0.47

S-ORACLE 0.64 ±0.11 0.75 ±0.02 0.55 ±0.09 0.64 ±0.03 0.44 ±0.02 0.75 ±0.02 - 0.63

Table 7: ELF: Mini-RTS results. Each experiment runs for 100 episodes and is averaged

over. The cell values represent win ratio ranging from 0 to 1.

Algorithm AI-Simple AI-Hit-and-run Average

A2C 0.85 ±0.07 0.86 ±0.08 0.86

DQN 0.56 ±0.05 0.85 ±0.02 0.71

RAINBOW 0.75 ±0.11 0.88 ±0.05 0.82

IMPALA 0.66 ±0.02 0.96 ±0.09 0.81

PPO 0.78 ±0.04 0.97 ±0.11 0.88
DVAE 0.73 ±0.05 0.99 ±0.05 0.86

S-ORACLE 0.67 ±0.09 0.98 ±0.04 0.83

7 Discussion
Performance is not the dominant factor in safety-critical systems. However, the niceness

of performing superhuman or beyond existing expert systems is appealing if the algorithm
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Table 8: MicroRTS averaged results for all tested mini-games. Results for individual

environments are found in appendix A. The cell values represent win ratio ranging from

0 to 1.

Agorithm RandomBiasedAI NaiveMCTS Tiamat Droplet UTS Imass Win Ratio

A2C 0.89 ±0.01 0.86 ±0.06 0.84 ±0.11 0.79 ±0.14 0.84 ±0.13 0.84

DQN 0.91 ±0.04 0.86 ±0.12 0.79 ±0.03 0.82 ±0.17 0.7 ±0.26 0.82

RAINBOW 0.89 ±0.1 0.88 ±0.06 0.83 ±0.08 0.79 ±0.21 0.79 ±0.11 0.83

IMPALA 0.88 ±0.05 0.86 ±0.09 0.86 ±0.05 0.87 ±0.06 0.85 ±0.12 0.86

PPO 0.91 ±0.02 0.92 ±0.02 0.83 ±0.07 0.84 ±0.05 0.83 ±0.07 0.86

DVAE 0.90 ±0.07 0.87 ±0.09 0.80 ±0.18 0.90 ±0.07 0.84 ±0.15 0.86

S-ORACLE 0.90 ±0.06 0.88 ±0.02 0.86 ±0.02 0.84 ±0.04 0.86 ±0.05 0.87

Table 9: StarCraft II results. The A2C, A3C, and DM are results from relevant literature,

and the remainder is novel results in this work. We ran the experiments ten times and

averaged the results. The cell values represent total accumulated return.

Environment A
2C

[9
8]

A
3C

[9
9]

D
M

[7
7]

D
Q

N

R
A

IN
B

O
W

IM
PA

L
A

PP
O

O
R

A
C

L
E

S-
O

R
A

C
L

E

MoveToBeacon 21.3 24 26 26 30 32 35 24 29

DefeatRoaches 72.5 47 41 100 81 91 75 60 77

BuildMarines 0.55 0.6 138 0 0 2 8 12 2

CollectMineralShards 81 45 133 3 12 41 53 55 58

CollectMineralAndGas 3320 371 6880 3978 3911 4251 4102 5212 5102

FindAndDefeatZerglings 22.1 25 46 45 21 23 19 29 35

DefeatBanelingsAndZerglings 56.8 43 729 62 20 423 251 305 530

Average Score 510.6 79.3 1141.8 602 582.1 694.7 649 813.8 833.2

can provide safety guarantees. S-ORACLE cannot provide safety guarantees, but it pro-

vides empirical evidence of acceptable performance while lowering erroneous agent deci-

sions. The algorithm demonstrates that, although following a generic and noise-inducing

risk-averse reward signal, the algorithm demonstrates that good policies are possible to

obtain and to perform adequately in most tested environments.

Safety is perhaps the most challenging trait to learn in an RL setting because it is not

naturally present in the foundation of which the framework builds. Perhaps the first hint

is found in the word reinforcement and the most understanding of the concept is to build

upon something or the process of encouraging or establishing a belief or pattern of be-

havior. The RL literature often depicts the analogy of a child in a behavioristic way that

through sensory stimuli such as vision, hearing, smell, feeling, and taste, the child learns

through trial and error. However, to compare RL algorithms to a child, we must strip
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Table 10: This work contributed 55.08 kg of CO2eq to the atmosphere, and used 1377.0

kWh of electricity. The columns describes the following from left to right: (1) Number

of experiments performed, (2) Average hours of CPU time per experiment, (3) Average

hours of GPU time per experiment, (4) Total CPU time for all experiments, (5) Total CPU

time for all experiments, (6) Total kWh for all experiments, and finally, the total CO2
kg

contribution of the experiments.

Algorithm Num Exp Avg CPU H. Avg GPU H. Tot CPU H. Tot GPU H. Tot. kWh CO2
kg

A2C 41 13.53 21.41 554.73 877.81 233.04 9.32

DQN 41 11.71 20.22 480.11 829.02 219.02 8.76

RAINBOW 41 19.24 15.74 788.84 645.34 180.66 7.23

IMPALA 41 15.55 14.55 637.55 596.55 164.76 6.59

PPO 45 16.22 19.22 729.90 864.90 234.11 9.36

DVAE 45 14.33 11.24 644.85 505.80 142.25 5.69

S-ORACLE 49 13.11 12.53 642.39 613.97 169.23 6.77

away all its sensory information and memory and feed it noisy and sparse information

about the world. If so, the child (algorithm) has very few sensory sensations, and at the

beginning of time t do not know the environment, it seems impossible to learn anything

without trial and error. Or hence, the child analogy is inadequate. Drawing parallels

to S-ORACLE, it is only natural that the algorithm performs erroneous decisions during

learning. While there are methods to provide true safety guarantees via prior information

and policy constraints [68], no method exists for learning a task perfectly without balanc-

ing the exploration-exploitation dilemma. Drawing further parallels to the mission-critical

industry setting, One approach to alleviate this problem is to use existing algorithms or

expert systems operational in the environment to build a world model accurate enough

to guide model-free algorithms towards safe policies. As seen in the experiments us-

ing expert-system knowledge to train the dynamics model works empirically well in the

Deep Warehouse environment. S-ORACLE cannot theoretically guarantee safety but em-

pirically shows that it improves safety significantly compared to risk-neutral approaches

during learning and inference. Combined with generalizable self-tuning constraints, the

hope is that future work brings such work to allow fully safe decision-making in safety-

critical systems.

8 Conclusion and Future Directions
This work investigates whether the safer model-based reinforcement learning algorithm

S-ORACLE has (1) better performance, (2) sample efficient, (3) more sustainable, and (4)

safer than traditional model-free deep RL algorithms. Based on experiments in Section 6,

empirical evidence suggests that 2-4 hold except for 1, where the algorithm is on-par or
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inferior to model-free approaches.8 This Section details further 1 to 4 and concludes the

findings of this work.

Performance is evaluated through the empirical score the algorithm obtained during ex-

periments. Generally, we find S-ORACLE less performant and to have a larger spread in

obtained scores. While S-ORACLE is not performing better, it closely follows in most

experiments, although there is still work that needs addressing lesser performance. Our

analysis is that the agent performs more conservative action sequences, which leads to

defeat as the opponent gain territory dominance in the RTS games. However, in Deep

Warehouse, we observe that the algorithm is on par with PPO and DQN, which is a good

measurement of how performance is in industry-like environments (e.g., stationary envi-

ronments). One possible solution would also allow for longer training, but at the cost of a

less climate-sustainable model.

Sample Efficiency is significantly better than model-free algorithms, as naturally ex-

pected of a model-based approach. However, we do not S-ORACLE as a high sample

efficient algorithm. For instance, we expect work such as [101] to have better sample effi-

ciency. Our findings in Section 6 indicate that the model prediction error closely follows

the sample efficiency. For instance, the StarCraft II environment is notoriously difficult to

learn, and hence, it takes far longer to obtain a good model. In future work, we would like

to improve the prediction model by using discrete latent space techniques more closely to

work in [101].

Sustainability is an increasingly important topic in machine learning because most state-

of-the-art algorithms in the literature have a high computational cost which has an imme-

diate impact on global warming. For this reason, we have thoroughly evaluated our model

through the lens of sustainability, that is, how much power draw our model takes to train.

We follow the work of [6], and while this approximation is far from perfect, it is a good

indication of the overall sustainability of the model. Unfortunately, we could not find any

model that reports CO2 emissions, but we hope that our work serves as a good baseline

for future work in safe model-based RL.

Safety is crucial for an algorithm that aims to reach industry-like production environments

outside the research lab, and by no means are S-ORACLE the answer to a perfectly safe

algorithm, but rather towards a more safe alternative. In our experiments, we quantify

the occurrences of catastrophic states during learning, and we observe that S-ORACLE

has significantly fewer error-states visited than fully model-free approaches. Our vision is

for an algorithm without assumptions built on assumptions that work in practice and can

scale to more complex environments. To the best of our knowledge, there is no similar

8Similar conclusions are found in [100] emphasizing having smaller rollout horizons for better model
prediction.
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work in safe RL for complex games such as RTS games, and we hope that future work

may include impressive progress towards more safety-aware agents than S-ORACLE.

Summary We present a novel, safer model-based RL agent for RTS games and industry-

like applications. We empirically show that it performs well while maintaining better

safety decision-making and is more sustainable than model-free approaches.

Future work will attempt to address several shortcomings in our model and simplify the

model where possible, similar to the works on TRPO and PPO. One particular problem is

that the algorithm is susceptible to posterior collapse during training, well known in vari-

ational inference. Specifically, [102] is an appealing approach to increase stability, which

we aim to address in future work. Lastly, we aim to reduce the number of model hyper-

parameters resulting from immense testing of theoretically justified methods. However,

some hyperparameters are found to work only for particular values. Hence it is sensible to

better define hyperparameters in closed sets compared to definitions for any real number,

as seen in 18
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A Micro RTS Results

Table 11: MicroRTS-basesWorkers8x8A results.

basesWorkers8x8A
Agorithm RandomBiasedAI NaiveMCTS Tiamat Droplet UTS Imass Win Ratio

A2C 0.99 ±0.01 0.88 ±0.06 0.46 ±0.06 0.65 ±0.27 0.46 ±0.19 0.69

DQN 0.99 ±0.01 0.86 ±0.06 0.67 ±0.07 0.56 ±0.11 0.64 ±0.24 0.74

RAINBOW 1 0.89 ±0.07 0.76 ±0.16 0.62 ±0.27 0.67 ±0.09 0.79

IMPALA 0.99 ±0.01 0.79 ±0.08 0.51 ±0.27 0.73 ±0.2 0.42 ±0.4 0.69

PPO 1 0.92 ±0.06 0.66 ±0.3 0.83 ±0.12 0.75 ±0.25 0.83

DVAE 0.96 ±0.03 0.87 ±0.03 0.42 ±0.07 0.73 ±0.03 0.56 ±0.19 0.71

S-ORACLE 0.98 ±0.02 0.87 ±0.01 0.63 ±0.32 0.75 ±0.08 0.57 ±0.41 0.76

Table 12: MicroRTS-basesWorkers16x16A results.

basesWorkers16x16A
Agorithm RandomBiasedAI NaiveMCTS Tiamat Droplet UTS Imass Win Ratio

A2C 0.93 ±0.05 0.75 ±0.12 0.54 ±0.36 0.47 ±0.02 0.61 ±0.1 0.66

DQN 0.91 ±0.01 0.72 ±0.21 0.57 ±0.3 0.75 ±0.21 0.52 ±0.04 0.69

RAINBOW 0.9 ±0.05 0.63 ±0.15 0.73 ±0.25 0.55 ±0.31 0.75 ±0.15 0.71

IMPALA 0.85 ±0.06 0.64 ±0.16 0.66 ±0.07 0.76 ±0.19 0.57 ±0.26 0.7

PPO 0.87 ±0.03 0.7 ±0.24 0.46 ±0.36 0.86 ±0.09 0.57 ±0.19 0.69

DVAE 0.9 ±0.1 0.7 ±0.04 0.66 ±0.22 0.67 ±0.15 0.77 ±0.18 0.74

S-ORACLE 0.94 ±0.06 0.75 ±0.23 0.61 ±0.03 0.66 ±0.18 0.75 ±0.21 0.74

Table 13: MicroRTS-BWDistantResources32x32 results.

BWDistantResources32x32
Agorithm RandomBiasedAI NaiveMCTS Tiamat Droplet UTS Imass Win Ratio

A2C 0.87 ±0.03 0.67 ±0.12 0.86 ±0.13 0.66 ±0.04 0.83 ±0.12 0.78

DQN 0.84 ±0.08 0.87 ±0.12 0.77 ±0.04 0.86 ±0.06 0.82 ±0.12 0.83

RAINBOW 0.81 ±0.16 0.99 ±0.01 0.76 ±0.05 0.89 ±0.08 0.86 ±0.13 0.86

IMPALA 0.87 ±0.11 0.94 ±0.05 0.97 ±0.02 0.95 ±0.04 0.91 ±0.07 0.93

PPO 0.9 ±0.08 0.97 ±0.02 0.93 ±0.01 0.91 ±0.01 0.81 ±0.02 0.9

DVAE 0.9 ±0.03 0.95 ±0.01 0.78 ±0.19 0.97 ±0.02 0.78 ±0.03 0.88

S-ORACLE 0.91 ±0.05 0.94 ±0.06 0.97 ±0.02 0.91 ±0.02 0.83 ±0.11 0.91
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Table 14: MicroRTS-DoubleGame24x24 results.

DoubleGame24x24
Agorithm RandomBiasedAI NaiveMCTS Tiamat Droplet UTS Imass Win Ratio

A2C 0.78 ±0.01 0.97 ±0.03 0.89 ±0.09 0.89 ±0.05 0.95 ±0.05 0.9

DQN 0.81 ±0.13 0.91 ±0.04 0.94 ±0.02 0.89 ±0.03 0.32 ±0.67 0.77

RAINBOW 0.8 ±0.13 0.95 ±0.02 0.84 ±0.14 0.69 ±0.25 0.64 ±0.16 0.78

IMPALA 0.84 ±0.16 0.92 ±0.02 0.88 ±0.1 0.96 ±0.02 0.85 ±0.11 0.89

PPO 0.85 ±0.01 0.99 ±0.01 0.89 ±0.03 0.68 ±0.04 0.85 ±0.1 0.85

DVAE 0.75 ±0.04 0.96 ±0.03 0.93 ±0.07 0.96 ±0.03 0.95 ±0.01 0.91

S-ORACLE 0.73 ±0.27 0.92 ±0.08 0.95 ±0.05 0.91 ±0.03 0.91 ±0.01 0.88

Table 15: MicroRTS-FourBasesWorkers8x8 results.

FourBasesWorkers8x8
Agorithm RandomBiasedAI NaiveMCTS Tiamat Droplet UTS Imass Win Ratio

A2C 1.0 ±0.0 0.91 ±0.08 0.95 ±0.05 0.84 ±0.14 0.81 ±0.17 0.9

DQN 1.0 ±0.0 0.89 ±0.03 0.78 ±0.03 0.64 ±0.12 0.71 ±0.08 0.8

RAINBOW 1.0 ±0.0 0.96 ±0.02 0.76 ±0.12 0.75 ±0.23 0.64 ±0.09 0.82

IMPALA 1.0 ±0.0 0.67 ±0.09 0.75 ±0.25 0.77 ±0.11 0.8 ±0.06 0.8

PPO 1.0 ±0.0 0.87 ±0.02 0.81 ±0.1 0.75 ±0.08 0.81 ±0.01 0.85

DVAE 1.0 ±0.0 0.75 ±0.12 0.75 ±0.03 0.96 ±0.03 0.64 ±0.36 0.82

S-ORACLE 1.0 ±0.0 0.87 ±0.02 0.82 ±0.13 0.67 ±0.24 0.78 ±0.02 0.83

Table 16: MicroRTS-NoWhereToRun9x8 results.

NoWhereToRun9x8
Agorithm RandomBiasedAI NaiveMCTS Tiamat Droplet UTS Imass Win Ratio

A2C 1.0 ±0.0 0.86 ±0.13 0.75 ±0.14 0.85 ±0.03 0.89 ±0.02 0.87

DQN 1.0 ±0.0 0.88 ±0.04 0.66 ±0.1 0.81 ±0.19 0.86 ±0.02 0.84

RAINBOW 0.98 ±0.01 0.82 ±0.17 0.89 ±0.05 0.86 ±0.02 0.84 ±0.16 0.88

IMPALA 1.0 ±0.0 0.93 ±0.02 0.96 ±0.02 0.87 ±0.02 0.88 ±0.01 0.93

PPO 0.99 ±0.01 0.96 ±0.02 0.88 ±0.07 0.84 ±0.11 0.82 ±0.14 0.9

DVAE 0.99 ±0.01 0.91 ±0.04 0.75 ±0.23 0.83 ±0.15 0.88 ±0.07 0.87

S-ORACLE 1.0 ±0.0 0.91 ±0.02 0.89 ±0.03 0.88 ±0.12 0.89 ±0.05 0.91
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Table 17: MicroRTS-TwoBasesBarracks16x16 results.

TwoBasesBarracks16x16
Agorithm RandomBiasedAI NaiveMCTS Tiamat Droplet UTS Imass Win Ratio

A2C 0.97 ±0.01 0.91 ±0.04 0.97 ±0.01 0.89 ±0.07 0.89 ±0.04 0.93

DQN 0.96 ±0.02 0.9 ±0.02 0.89 ±0.1 0.89 ±0.1 0.78 ±0.03 0.88

RAINBOW 0.96 ±0.02 0.97 ±0.03 0.88 ±0.05 0.83 ±0.1 0.8 ±0.18 0.89

IMPALA 0.96 ±0.03 0.98 ±0.02 0.92 ±0.04 0.88 ±0.12 0.92 ±0.06 0.93

PPO 1.0 ±0.0 0.99 ±0.01 0.98 ±0.01 0.85 ±0.1 0.97 ±0.02 0.96

DVAE 0.96 ±0.01 0.89 ±0.03 0.85 ±0.02 0.99 ±0.01 0.86 ±0.12 0.91

S-ORACLE 0.97 ±0.01 0.9 ±0.04 0.82 ±0.06 0.9 ±0.09 0.88 ±0.04 0.89
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B Hyperparameters

Table 18: Set of tunable parameters in S-ORACLE. In addition to this incomplete list,

the algorithm has options for controlling model complexity such as neuron counts and

number of layers.

Hyperparameter Values Selected Comment

Batch Size Z+ 48 Number of sequence batches

Sequence Size Z+ 48 Number of frames in a sequence

Buffer Size Z+ 9 000 Replay buffer

Reward Scaling R 1.0 Scaling of the reward objective

Cost Scaling R 1.0 Scaling of the cost objective

VQ Scaling R 0.1 Scaling of the VQ objective

KL Scaling R 1.0 Scaling of the KL objective (KL-β)

KL Minimum Nats R 3.0 Minimal information loss

Optimizer AdamW AdamW improves generalization, see [94]

Gradient Clipping R 100.0 ± Clip gradients to increase learning stability

Adaptive GC B 1 Based on the history of gradient norms[93]

Learning Rate R 0.0001 Low Learning rate to improve stability.

Latent Leaps Z+ 30 Number of leaps into future states.

Dynamics Model RNN LSTM

Activation Functions ELU

Enc/Dec Neurons Z+ 1024

Stochastic Reward B 1 Sample rewards under Gaussian assumptions

Stochastic Costs B 1 Sample costs under Gaussian assumptions

Discount Factor γ R 0.96 Discount factor used in value-based algorithms

Risk-Entropy Weight w (Eq 20) R 0.6 Risk-Directed Exploration entropy weight

Risk-Utility Function ρ(Eq 22) R 0.75 Weight of risk in utility function.

Risk function weight β (Eq 23) R 0.40 Weight of the risk functipn ω.

VQ-VAE weight βvq R 0.05 Weight of VQ-VAE encoding updates.
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