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Abstract. Abstract State Machines work with algorithms on the natu-
ral abstraction level. In this paper, we discuss the notion of the natural
abstraction level of an algorithm and how ASM manage to capture this
abstraction level. We will look into three areas of algorithms: the algo-
rithm execution, the algorithm description, and the algorithm semantics.
We conclude that ASM capture the natural abstraction level of the algo-
rithm execution, but not necessarily of the algorithm description. ASM
do also capture the natural abstraction level of execution semantics.
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1 Introduction

Abstract state machines (ASM) [9], originally called Evolving algebras, [20] en-
able a high-level and abstract description of computations. ASM can be consid-
ered formalized pseudo-code, such that ASM programs are readable even without
much introduction. The original purpose of ASM was to improve on the low-level
abstraction provided by Turing machines [43], in order to be able to reason bet-
ter about computability. This original purpose was achieved with the sequential
ASM thesis [21]. It was later extended with an ASM thesis for parallel [3,5,40]
and distributed computations [13].

From there, ASM were developed into different directions. Egon Börger un-
derstood very early that ASM are not only a mathematical tool for computabil-
ity, but also a tool for system design and analysis. For the practical applicability,
several more features were needed for ASM beyond [21], for example time [34]
and distributed computations [38].

Another major ingredient for system design is a method to design systems,
in this case the ground model approach [10]. This approach enables step-wise
systems design, keeping correctness all the way to the final system.

The theoretical track of ASM has achieved a lot of success, and even though
there are still details to be sorted out [36,38], this work is well under way. The
major difference between the Turing machines approach and ASM is that ASM
promise to work on the natural abstraction level for the computation.

It is of essence for every engineer to work on the right level of abstraction, as
problem descriptions are simpler, and solutions are understandable at the right
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level of abstraction. Sometimes, solutions introduce high level of complexity by
being at the wrong level of abstraction [15].

This paper tries to review the concept of abstraction level and identifies the
meaning of natural abstraction in three dimensions: algorithm execution, algo-
rithm description, and algorithm (language) semantics. We focus on sequential
algorithms, although the conclusions also apply to other kinds of algorithms.

This paper starts with a discussion of the concept of algorithm in Section
2 before introducing abstract state machines in Section 3. Then we look into
abstraction levels in executions in Section 4, in descriptions in Section 5, and in
language semantics in Section 6. We conclude in Section 7.

2 What is an Algorithm?

Before looking into abstraction levels, we need to agree what an algorithm is.
Harold Stone proposes the following definition ”...any sequence of instructions
that can be obeyed by a robot, is called an algorithm” (p. 4) [42]. Boolos et. al.
offers a similar definition in [7]: ”... explicit instructions such that they could be
followed by a computing machine”.

This definition includes computer programs, bureaucratic procedures, and
cook-book recipes. Often, the condition that the algorithm stops eventually is
included. In our context, also infinite loops are permitted because we also want
to include server programs. Besides, termination is undecidable. Please note that
the notion of algorithm relies on a basic set of elementary operations or functions.

Turing machines formalize this informal definition. Gurevich writes in [21]:
“. . . Turing’s informal argument in favor of his thesis justifies a stronger thesis:
every algorithm can be simulated by a Turing machine . . . according to Savage
[1987], an algorithm is a computational process defined by a Turing machine”.

From the considerations so far, we conclude that an algorithm has a de-
scription (”a sequence of instructions”) and an execution (”a computational
process”). It is the semantics of the description that leads to the execution.

As an example, let’s look at the Euclidean algorithm which computes the
greatest common divisor gcd from two natural numbers n1 and n2. It can be
expressed in ASM as follows.

IF n1 > n2 THEN

DO IN-PARALLEL

n1 := n2

n2 := n1

ENDDO

ELSEIF n1 = 0 THEN

gcd := n2

ELSE

n2 := n2 − n1

ENDIF
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2.1 Algorithm Execution

For the execution of the Euclidean algorithm we have to know that the parallel
execution of assignments is the standard mode in ASM [9]. The ASM code for
the Euclidean algorithm describes one step of the algorithm, and it is repeated
until there are no more changes.

A sample execution of the ASM algorithm for the numbers n1 = 1071
and n2 = 462 leads to the following sequence of pairs (n1, n2): (1071, 462),
(462, 1071), (462, 609), (462, 147), (147, 462), (147, 315), (147, 168), (147, 21),
(21, 147), (21, 126), (21, 105), (21, 84), (21, 63), (21, 42), (21, 21), (21, 0), (0, 21).
The result is then gcd = 21. Please note that gcd would be present in all states.

We will look at the execution of algorithms in Section 4.

2.2 Algorithm Description

Algorithms can be expressed in many kinds of notation, including natural lan-
guages, pseudo code, flowcharts, programming languages or control tables.

When we use Java to express the same algorithm, it looks something like that.
Please note the extra temporary variable t for swapping n1 and n2. In addition,
there is an enclosing while loop which is not needed in ASM. Java does not
provide natural numbers as types; we silently assume that the parameters are
non-negative.

public static int gcd(int n1, int n2) {
while (n1 > 0) {

if (n1 > n2) {
int t = n1;
n1 = n2;
n2 = t;

} else {
n2 = n2− n1;

}
}
return n2;

}

Now we look at a version of the algorithm in Lisp. The solution is recursive
as is customary in Lisp. Again, we assume that the typing of the parameters is
correct.

(defun gcd (n1 n2)
(if (= n1 0)

n2
(if (> n1 n2)

(gcd n2 n1)
(gcd n1 (- n2 n1))

)
)
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Finally, we can also use Prolog for the algorithm as follows. Here, we need to
use an extra parameter for the result. This solution is again recursive and the
typing is assumed to be correct.

gcd(0, N2, Result):- !, N2=Result.
gcd(N1, N2, Result):- N1 > N2, gcd(N2, N1, Result).
gcd(N1, N2, Result):- N1 =< N2, N2New is N2-N1, gcd(N1, N2New, Result).

We will look at the description (languages) of algorithms in Section 5.

2.3 Algorithm Semantics

All possible executions of an algorithm are the semantics of the algorithm. This
means that the semantics of the algorithm connects the description of the al-
gorithm with the execution of the algorithm. More precisely, the description is
written in a language, and the semantics of the language provides the execu-
tion(s), see also [28] and [17].

This way, the semantics of the algorithm description is implied by the seman-
tics of the language which is used for the description. There is not a semantics
for each and every description, but a general semantics for the language of the
descriptions. Therefore, algorithm semantics is in fact language semantics.

We will look at semantics in Section 6.

3 Abstract State Machines

The central concepts in abstract state machines (ASMs) are (abstract) states
with locations and transition rules with updates. Their definitions can be found
in many sources, including, but not limited to [2,4,6,8,9,12].

An abstract state machine (ASM) program defines abstract states and a
transition rule that specifies how the ASM transitions through its states. ASM
states are defined using a signature of names (function symbols), where each
name has an arity. This allows to construct expressions using the names in the
usual way. ASM names can be typed in the usual way.

The states are then interpretations of the names over a base set of values.
Each name with arity zero is interpreted as a single element of the base set,
while each name with arity n is interpreted as an n-ary function. Expressions
are interpreted recursively.

ASM names are classified into static names whose interpretation does not
change (e.g. True), and dynamic names which are subject to updates. Each
ASM signature includes the predefined static names True, False and Undefined,
interpreted as three distinct values. All ASM functions are total, and the special
value Undefined is used to model partial functions.

An ASM transition rule (program) looks like pseudo-code and can be read
without further explanation. The rules include assignments, if, forall, and some
other statements. We refer to [9] for a formal definition.
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The basic unit of change is an assignment, written as loc := e. Executing this
assignment means to change the interpretation of the location loc to the value
of the expression e in the given state.

Locations (loc = f(e1, . . . , en)) are constructed of an n-ary name (f) and n
expressions ei. More precisely, a unary function symbol u is a location, and any
function symbol f with a number of locations li as arguments of f is a location
as well. In each state, each location has a value.

An update is given by two locations, one on the right-hand side and one on
the left-hand-side. The value of the left-hand side location is replaced by the
value of the right-hand side location, such that lhs = rhs will be true in the new
state, unless the value of rhs is also changed in the state change. Formally, the
assignment creates an update, which is a pair of a location and a value. All the
applicable updates are collected into an update set, thereby implementing the
parallel execution mode. Applying the update set to the current state (executing
it) leads to the changes in the next state.

An ASM run starts with an initial state, being a state as defined above. For
each state, the transition rule produces an update set which leads to the next
state, thereby creating a sequence of states. Each state change (or step or move)
updates the interpretation of its symbols given by a set of updates according to
the assignments used.

4 Executing Algorithms

For the execution of algorithms, we need to look at the runtime, which is basically
the same as operational semantics [16,24,35]. Runtime has two aspects, namely
runtime structure including a set of initial states and runtime changes (steps)
[37,39]. These same aspects are also identified in the sequential time postulate
in [21], which postulates the existence of a set of states including initial states,
and a one-step transformation function between states. We look into states and
steps in the sequel.

4.1 Runtime Structure (States)

There is agreement between the theoretical [21]1 and the practical [39] under-
standing of runtime states as follows.

– States have a structure (States are first-order structures).
– The possible runtime states are fixed (All states have the same vocabulary

and no transformations change the base set of states).
– There are several ways to implement states (They are closed under isomor-

phisms).

The difference between theoretical and practical runtime states is that states are
object structures in [39], while they are value structures in [21]. This difference is

1 This is given by the abstract state postulate.



6 Andreas Prinz

not serious, as objects can be considered as object IDs, and properties of objects
are then functions over objects IDs. As usual, methods of objects just get an
implicit parameter which is their enclosing object.

There are two perspectives to runtime structure, namely low-level (defined
by the machine), and high-level (defined by the language). Low-level structure
is given by the general von-Neumann architecture [31] which involves a CPU,
a memory unit and input and output devices. High-level structure depends on
the language used. As an example, for Java the runtime structure includes a
set of objects, a program counter, threads, a stack, and exception objects [27].
There is also a part of the high-level runtime structure that depends on the
algorithm itself, for example objects of Java classes. For Prolog, the runtime
structure includes a (local) stack with environments and choice points, a heap
(global stack) with terms, and a trail with variable bindings as described in the
Warren Abstract Machine [44].

Of course, a computation cannot be run on an abstract or a virtual machine,
some real (physical) machine has to be there to do the work. For example,
the Java virtual machine (JVM) is typically implemented on top of a general-
purpose machine, which again is based on machine code, which again is based on
circuits, which again is based on electronics, which again is based on electrons,
which again is based on quarks. A similar argument can be made for ASM,
where the semantics of ASM has to be implemented on a standard computer.
In ASM, a state change is done as one step, whereas in an implementation on a
real computer, it would amount to a series of steps.

Which of these levels is the natural level for the algorithm? We can safely
assume that the natural level is the highest of them, in the JVM example it would
be the level of JVM operations. This means that the language of formulating
the algorithm is essential, as the runtime structure can be different for different
languages. Writing the same algorithm in Prolog versus in Java would imply
serious changes in the runtime, i.e. the execution of the algorithm is different.

Although it is easy to forget, the runtime structure also needs a specification
of the initial runtime state.

We see that ASMs provide the flexibility to use or define structures that
fit the user’s natural understanding of the algorithm. ASM makes explicit the
implicit runtime elements of typical programming languages, e.g. the program
counter. This is possible because ASM does not have any fixed runtime elements
implied by the language.

4.2 Runtime Changes

Based on the runtime structure, runtime changes define what happens at runtime
(dynamics), i.e. what is a computation step and what changes are done. As the
runtime structure is given, only the changes are relevant. This relates to a finite
set of changes on locations in the runtime structure, as already defined in [21] by
the bounded exploration postulate. Bounded exploration has not been important
for practical considerations of runtime structure, as boundedness is implied by
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the underlying machine. In practical terms, ways to express the changes have
been more important.

Minsky [29] has demonstrated that Turing completeness requires only four
instruction types: conditional GOTO, unconditional GOTO, assignment, and
HALT. There is one implied instruction which is sequential composition. Nowa-
days, GOTO is considered bad and related to ”spaghetti code”, so ASM intro-
duce the same level of Turing completeness using structured programming with
update (assignment), parallel composition, and if-then-else. For ease of writing,
also a let and a forall are provided. In ASM, sequential composition is not avail-
able because there is no predefined program counter. HALT is implicit as the
execution stops when there are no more changes, i.e. the update set is empty2.

The ASM algorithm could also be written using different syntax, for example
traditional programming language syntax. Using Java syntax, we can express the
ASM Euclidean algorithm (syntactically) as follows. Warning: This is not Java,
just Java syntax for ASM.

if (n1 > n2) {
n1 = n2;
n2 = n1;

} else if (n1 == 0) {
gcd = n2;

} else {
n2 = n2− n1;

}

Remember that the execution mode is parallel here. We have changed the
names such that they fit the Java conventions.

This formulation reveals that the syntax is not too important for ASM and
it has not been focused upon much. Instead, constructs in ASM are often con-
sidered abstract syntax that can be written in different ways, as is customary in
mathematics. In the abstract syntax of ASM, we need locations, updates, choices
and parallel blocks.

In each state, the complete ASM program is executed. This deviates slightly
from the idea of regular programming languages, where only the current state-
ment is executed, identified by the program counter. For example, during the
execution of the Java code as given in Section 1, the program counter keeps
track of the current code position during execution. In addition, there is an
extra temporary variable t for the swap between n1 and n2.

The execution in Lisp includes a number of function activation records to keep
track of all the recursive calls. We have a similar situation with Prolog execution,
which adds a number of variable unifications into the runtime structure.

In-place state transformations can also be expressed by transformation lan-
guages like QVT [32] or ATL [23]. We do not go into more detail of those

2 In some sense, this turns HALT from a syntactic element into a semantic element.
Minsky would have been able to avoid the HALT if there was a rule that the execution
stops when moving (GOTO) out of the program.
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languages, as they do not add more possibilities than the languages we already
discussed.

Operational semantics languages also provide possibilities to express runtime
changes. The Euclidean algorithms can be expressed using SOS [35] as follows.

〈n1 > n2, s〉 ⇒ true

(s) −→ (s ] {n1 7→ n2, n2 7→ n1})

〈n1, s〉 ⇒ 0

(s) −→ (s ] {gcd 7→ n2})

〈n1 > n2, s〉 ⇒ false, 〈n1 > 0, s〉 ⇒ true

(s) −→ (s ] {n2 7→ n2 − n1})
In this situation, ASM are an effective formalization of pseudo-code, as they

are dedicated to describing one transition only3.
What is needed for the runtime changes is navigation of the runtime structure

for reading and writing of locations. In SOS [35] and also in ASM, the current
program is outside the runtime state. That is possible in ASM, as the program
is constant and it is always applied as one. SOS wants to keep the current
execution position, but does not use a program counter. Instead, the program
is a parameter of the SOS rules. Changing the PC amounts to changing the
program for the next runtime state.

We see that ASM allow an explicit description of the runtime changes based
on the explicit description of the runtime structure. This works for all kinds of
runtime changes, be it program executions or movements of knitting needles. If
the algorithm includes a sequence of actions, advancing through the sequence
step by step can be considered the natural level of abstraction, such that an
implicit program counter would be needed. This is standard in imperative pro-
gramming languages, and can also be provided by extended ASM variants. We
discuss this aspect of the user perspective in the next section.

5 Describing Algorithms

When describing an algorithm, the focus is not on the execution of the algorithm,
but the understanding on the part of the user. Algorithms are ubiquitous, and we
find them nearly in all aspects of life. What is the natural level of abstraction in
this case? In a first attempt, we distinguish three abstraction levels of algorithm
descriptions, see also [41].

High-level descriptions are given by prose and ignore implementation details
like a UML use case description.

An implementation description is still prose and details how the high-level
description is turned into something executable, for example as UML classes
and activity diagrams.

3 There are also advanced ASM concepts to handle structured executions, often called
Turbo-ASM [9].
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A formal description gives all the detail and makes the algorithm executable,
for example in Java.

It is possible to have an executable understanding of all these levels, but they
differ in the level of abstraction and detail. ASMs contribute to lifting the level
of formality and executability even to the high-level descriptions. The same is
achieved with model-driven development, see Section 6.

One might argue that ASM fit the bill again, as they are proven to provide the
natural level of abstraction for algorithms as discussed in Section 4. However,
this is only true from the point of view of the machine. In many cases, this
is the same point of view as for the designer and the user. As an example,
computer scientists often think of algorithms in terms of the machine, and there
the argument with ASM applies.

However, many other users do not look at algorithms from the point of view
of the machine. Examples are algorithms that describe recipes, or knitting algo-
rithms, or algorithms to calculate loan security, or how to assemble a piece of
furniture, see Figure 1. Typically, there are experts that know how to cook or to
knit, and they will describe their algorithms in a way related to their expertise.
This is usually connected to the area of domain-specific languages (DSL) [18].

Fig. 1. Different sample algorithm descriptions

There is extensive research in the area of DSL, and the general result is that
a good DSL captures the concepts of the domain in question, rather than the
concepts of the underlying machine. Instead, there is a transformation process
from the DSL to some lower-level language in terms of model-drivel development
(MDD) [1], which is standardized in the model-driven architecture (MDA) of
OMG [25]. ASM can be related here as a transformation target language.

ASM cannot and will not be the universal description language, because it
is impossible to have just one language for all purposes. The language with
the natural level of abstraction has to be found and developed in the domain
where it is used, together with its users. The examples in Figure 1 are algorithm
descriptions in DSLs that are not readily captured by ASM syntax.

Of course, ASMs were never intended to replace languages, especially not
their concrete syntax. However, ASMs can be used to take the abstract syntax
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of a language and define its semantics. This has been done with UML state
diagrams [11], the programming language Java[14], the specification language
SDL [19], and could also be done with the music sheet and a knitting pattern.
We discuss this aspect in the next section.

Even for regular algorithms, ASM are missing several essential language fea-
tures of modern languages, for example classes, exceptions, namespaces, gener-
ics, inheritance, and iterators. These features might not be needed for simple
algorithms, but they are essential for system-level complex algorithms.

We see that ASMs do not provide the description of algorithms in a concrete
syntax on the natural level of abstraction in the same way as DSLs. Of course,
this is not the intention of ASMs. Using ASM, we can define the behavior, as
discussed in Section 4. We look at how ASMs can define languages (DSLs) in
the next section.

6 Language Semantics

In connection with DSLs, there is a need to describe languages formally. How else
would a DSL come to life if not using a description. Typically, meta-languages
are used to describe languages, see for example the well-known OMG stack of
modelling languages in Figure 2.

Level Example Description

M3 MOF
Defines a language for specifying

metamodels

M2 UML
Defines a language for specifying

models

M1 model of a bank
Defines a language that describes

a semantic domain

M0
a runtime state Contains runtime instances of the

of the bank model model elements defined in the model

Fig. 2. OMG stack

In the OMG stack, specifications (descriptions of algorithms - Section 5) are
placed on level M1, while the language they are written in is on level M2. An
algorithm written in ASM would be on M1, while ASM itself is on M2. The
execution of the algorithm (Section 4) is on the base level M0. The level M3 is
dedicated to meta-languages, i.e. languages that are used to describe languages.
Often, meta-languages are already languages on their own, such they could be
placed both on M2 and on M3. The definition of the meta-languages themselves
is done using the same meta-languages, where the language definition languages
used are found on M3, while the languages defined are on M2 (bootstrapping).

Is ASM a good language to describe languages? To answer this question, we
have to consider what it takes to define a language, i.e. which meta-languages
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we need. As it turns out, there are several elements that need to be described
for a language, namely abstract syntax (also called structure), concrete syntax,
constraints being a part of structure, and semantics (translational or operational)
[22,30], see Figure 3. We will consider these aspects one by one.

Fig. 3. Language Aspects

6.1 Structure (Abstract Syntax)

The abstract syntax of a language contains the concepts of the language and
their relationships with each other. Class diagrams are the method of choice to
describe abstract syntax, as shown in MOF [33]. Even though ASM also allow
describing structure, class diagrams are not supported in ASM. However, it is
possible to use MOF diagrams to show ASM structure definitions. This way,
MOF gets an ASM semantics. It should be noted that abstract syntax typically
entails an abstract syntax tree, and tree structures can be expressed using ASM.

This way, ASM has support for the abstract syntax of structure definitions,
but not the concrete syntax as given by MOF. Moreover, classes with inheritance
are not supported by ASM, which is mainly a typing issue.

A second part of Structure is related to constraints, often expressed as OCL
formulas. Logical formulas are well within the capabilities of ASM, so this part
would be possible to express. The main part of the logical formulas is a way to
navigate the syntax tree, and this is commonly done using expressions. More
advanced DSLs for name resolution [26] are beyond the capacities of ASM. Still
the semantics of all these languages can be formalized using ASM.

6.2 (Concrete) Syntax

Concrete syntax has two main forms, namely textual syntax and graphical syn-
tax. Textual syntax is commonly given by grammars, which ASMs do not pro-
vide. Again, using grammars for analysis will finally lead to syntax trees, which
can be expressed by ASM. Still, the notation of choice in this case would be
grammars. Graphical syntax could be given by graph grammars, which again
cannot be written in ASM. A similar argument as before applies also here.
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As for concrete syntax, ASMs do not provide the concrete syntax on the
natural abstraction level. However, the semantics of grammars can be described
using ASM.

6.3 Semantics

We consider two essential kinds of semantics, translational semantics and exe-
cution semantics (operational semantics), see [30] for a more detailed discussion
of other kinds of semantics.

Translational Semantics refers to semantics that is given as a translation into
a languages which has a given semantics already. Semantically, a translation is a
simple function and it could be given by various forms of function definition. It
has become customary to define transformations between abstract syntax, such
that the connection between the language constructs becomes visible. In princi-
ple, ASM can define functions, but in order to define structural transformations,
more dedicated languages should be used [32,23].

Dedicated transformation languages allow the specification of input and out-
put patterns for the transformation. In addition, templates can be used to specify
the result of the transformation. The semantics of transformation languages is
often a function or a series of functions.

As with the previous language definition elements, ASM are able to capture
the aspects semantically, but do not provide the syntax on the natural abstrac-
tion level.

Execution Semantics describes how a program is executed at runtime. It
includes the runtime structure and the runtime changes as discussed in Section
4. ASM are very well suited to describe runtime with both runtime state and
runtime changes. This is already discussed in section 4. This is also the way that
language semantics is given using ASM, see for example [14] and [19].

There are only few dedicated languages for the definition of execution seman-
tics, and ASM provides all features that are needed. For application of ASM in
an object-oriented language definition context, where both the language struc-
ture and the runtime environment are object-oriented, the availability of classes
and inheritance in ASM would be an advantage.

SOS [35] is a DSL for the description of execution semantics. The example
of SOS in Section 4 shows that its expressive power is comparable to ASM.

6.4 Summary

ASM shines for the formulation of execution semantics on the natural level of
abstraction, which relates very well to its power in describing algorithm execu-
tions. This implies that the semantics of all meta-languages can be formalized
using ASM. On the syntax side, DSLs are on a more natural abstraction level.
The same applies to transformations.
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7 Conclusion

We have considered the abstraction level of Abstract State Machines and whether
the ASM capture the natural abstraction level of an algorithm. We have looked
into three aspects of natural abstraction level, namely abstraction of executions,
abstraction of descriptions, and abstraction of language semantics.

As it turns out, ASM are on the correct level of abstraction for algorithm
execution, which is already established in [21]. The consideration of runtime
environments brings the same result from a different perspective.

For the description of algorithms, ASMs cannot provide the correct abstrac-
tion level, as this depends on the application domain of the algorithm. Domain-
specific languages are the way to provide such good descriptions, and no single
language can provide the correct abstraction level.

This leads to the discussion how languages can be formalized, and whether
ASM are on a natural abstraction level as a meta-language. Language design
has several areas, and ASM are not on the right abstraction level for abstract
syntax and concrete syntax. ASM can be used for some aspects of constraints
and of transformation semantics. However, the strength of ASM is that it is on
the natural abstraction level for operational semantics, which essentially is the
same as repeating that ASM are on the natural abstraction level for algorithm
execution.

When we connect these results to the OMG modelling levels as presented in
Figure 2, then ASM is strong on level M0 (executions), and not strong on level
M1 (descriptions). On level M2, the strength of ASM is again on the execution
semantics side, i.e. the connection of the description with the executions. We
can interpret this such that ASM is a semantic language with little concern for
syntax. It provides support to explicitly capture executions on the correct level of
abstraction, and it avoids predefined execution patterns like a program counter.

This way, ASMs give just the right level of freedom for describing all execution
situations on the natural level of abstraction.
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