archives-ouvertes

The Architecture of BPFS: a Basic Parallel File System
Version 1.0
Robert D. Russell

» To cite this version:

Robert D. Russell. The Architecture of BPFS: a Basic Parallel File System Version 1.0. RR-
3460, INRIA. 1998. <inria-00073230>

HAL Id: inria-00073230
https://hal.inria.fr /inria-00073230
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00073230

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

The Architecture of BPFS:
a Basic Paralld File System
Version 1.0

Robert D. Russdll
LIP, ENS Lyon

No 3460
Juillet 1998

THEME 1

apport
derecherche

V_____\/ RHONE-ALPES

The Architecture of BPFS:
a Basic Parallel File System
Version 1.0

Robert D. Russell *
LIP, ENS Lyon

Théme 1 — Réseaux et systémes
Projet ReMaP

Rapport de recherche n " 3460 — juillet 1998 — 47 pages

Abstract: BPFS is a distributed, modular parallel file system designed to be used on networks of work-
stations. It is specified as a set of active components, functions utilized by the components, and protocols
for communication between the components. The components can be implemented in many different ways,
depending on the hardware and software support systems available, the performance desired, etc. A key
idea is to be able to experiment with different implementations and configurations under different operating
conditions to achieve a completely general, flexible system that is also capable of delivering good perfor-
mance. In particular, it should be possible to implement this system on “commodity, off-the-shelf” (COTS)
hardware and software. However, it should also be possible to implement specialized versions of some or all
components to take advantage of unique hardware or software features.

BPFS is intended to support a wide range of possible applications, including real-time video on demand,
medical and satellite image processing, out-of-core array manipulations, and general parallel computations
that need a high performance file system. The parallel file system is intended to be “always available” for
simultaneous use by any number of different applications. It is also capable of efficiently handling huge files
containing many terabytes of data.

This report describes the architecture of BPFS in terms of the set of components, their organization, the
functions they utilize, and the protocol specifications for communication between them.

Key-words: Parallel File Systems. Distributed File Systems. File Systems. System Architecture. Proto-
cols.

(Résumé : tsup)

* On leave during the 1997-98 academic year as an Associated Professor at the Laboratoire de I'Informatique du Parallélisme,
Fcole normale supérieure de Lyon. Permanent address: Department of Computer Science, Kingsbury Hall, University of New
Hampshire, Durham, NH 03824-3591, USA. Email: rdr@unh.edu

Unité de recherche INRIA Rhone-Alpes
655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN (France)

Téléphone : 04 76 61 52 00 - International: +33 4 76 61 52 00
Télécopie : 04 76 61 52 52 - International: +33 4 76 61 52 52

L’architecture du systéme BPFS:
un systéme basique de fichiers paralléle
Version 1.0

Résumé : BPFS est un systéme de fichiers paralléle, modulaire et distribué, destiné a étre utilisé sur
les réseaux de postes de travail. Il est spécifié comme un ensemble de composants actifs, de fonctions utili-
sées par ces composants et de protocoles pour la communication inter-composants. Les composants peuvent
étre implémentés de fagons diverses selon le matériel et le logiciel disponible, la performance souhaitée, etc.
Une idée clé en est la possibilité d’expérimenter avec des implémentations et des configurations diverses
dans des conditions d’utilisation differentes, afin de réaliser un systéme complétement général et flexible, qui
est aussi capable d’atteindre bonnes performances. En particulier, il devrait étre possible d’implémenter ce
systéme avec du matériel et du logiciel “commodity, off-the-shelf” (COTS). Cependant, des versions spécia-
lisées de certains (voire de tous) composants peuvent étre implémentées afin d’exploiter les caractéristiques
particuliéres de certains matériels ou logiciels.

Le but de BPFS est de soutenir toute une gamme d’applications, y compris la vidéo en temps réel sur
demande, le traitement d’images médicales ou d’images prises par satellite, les manipulations de matrices
en dehors de la mémoire et les calculs paralléles généraux qui nécessitent un systéme de fichiers de haute
performance. Le systéme de fichiers paralléle est congu de fagon & étre “toujours disponible” pour 1'usage
simultané par un grand nombre d’applications diverses. Il est aussi capable de traiter efficacement des fichiers
énormes constitués d’un grand nombre de terabytes de données.

Ce rapport décrit 'architecture de BPFS en termes de I’ensemble des composants, leur organisation, les
fonctions qu’ils utilisent et les spécifications de protocoles de communication.

Mots-clé : Systéme de fichiers paralléle. Systéme de fichiers distribué. Systéme de fichiers. Architecture de
systéme. Protocoles.

1 Introduction

This report describes the architecture of BPFS — a Basic Parallel File System. It is designed to be one
component of a more general system for multi-media parallel computation on groups of workstations in-
terconnected by high-speed communication networks (i.e., Networks of Workstations (NOWs) and Clusters
of Workstations (COWs)). The goal of BPFS is to be a general-purpose distributed block storage server.
Therefore, it does not provide or utilize any mechanisms, such as synchronization, locks, barriers, etc., that
could reasonably be expected to be provided by other components of a parallel computation system and that
may be necessary at the application level to properly coordinate the parallel access to parallel files.

Because of its specification in terms of open protocols between network nodes, the design approach taken
with BPFS is unlike that taken for other parallel file systems reported in the literature. This approach is
very low level and is clearly intended for NOWs and COWs — it makes no sense whatsoever for “traditional”
parallel machines such as the Intel Paragon, for example. The intention is to encourage experimentation with
and evolution of these protocols, and to stress the “glue” between components rather than the components
themselves, so that as newer technology, such as network attached disks, becomes available it can be utilized
within the existing framework rather than requiring a redesign.

The use of the word “basic” in the title is intended to imply “fundamental”, “no frills”, and “low level”. In
particular, it is expected that programmers will not use this file system directly but rather through higher-
level interfaces that are layered on top of it. The specifications in this document are in terms of components
and protocols, not programming interfaces. The bulk of this report will be devoted to specifying the protocols
and the actions they require from the components.

BPFS provides a tool by which files can be stored and accessed “in parallel” on workstation clusters. This
use of the word “parallel” has several parts:

e The data in a single file is stored on several disks on different nodes using a technique known as
“striping” or “declustering”. All disks must therefore be accessed “in parallel” in order to obtain the
complete file.

e Many processes will have simultaneous access the file system as a whole, as well as simultaneous access
to individual files. Thus the active components of BPFS must operate “in parallel” on behalf of many
user applications. This requires attention to the semantics of file access to guarantee consistency and
integrity between file components while allowing files to be shared.

e A single application program will usually consist of several processes on separate network nodes all
operating “in parallel”. Thus BPFS must operate “in parallel” on behalf of a single user application.

The goal of all this parallel activity is to provide user applications with the ability to overlap computation
with T/O, and to obtain higher I/O bandwidth and lower 1/O latency than would be possible with a non-
parallel file system.

The plan for the rest of this report is as follows: Section 2 gives an overview of the BPFS architecture,
introducing the components and showing how they are related. Section 3 gives a brief review of the literature
on parallel file systems, stressing those systems that most influenced the design of BPFS. Section 4 defines
the general tasks associated with each of the four active components. Section 5 describes the functions which
an implementation is required to supply in order to provide some of the flexibility and portability we would
like to have for the active components. The longest section, Section 6, defines the protocols and explains
the detailed actions of the active components as they relate to these protocols. This report concludes with
a short section describing plans for future work. A brief overview of the first implementation is given in an
Appendix.

2 General Overview

BPFS assumes a model of a parallel computing system that consists of a set of heterogeneous “logical nodes”
capable of communicating with each other via a “communication network”. There are three types of logical
nodes: client nodes, manager nodes and server nodes.

A node may contain two types of “components”:

RR n-° 3460

e “active components” — the processes and/or threads that perform the operations of the parallel file
system. There are four types of active components: clients, managers, servers and agents. These active
components communicate with each other by using specific “protocols”.

e “passive components” — the disk storage areas that contain the information in the parallel files. There
are two types of passive components: data and metadata.

Figure 1 1s a diagram showing the organization of logical nodes, the components on each, and their network
connections.

Client Node

Communication Network

—
<

Manager Node
Figure 1: Overview of the logical nodes, components and communication network in BPFS. Solid rectangles

indicate logical nodes, dashed rectangles indicate components, the irregular “cloud” indicates the communi-
cation network and arrows indicate network connections.

INRIA

A single instance of the parallel file system 1s assumed to be “constantly available” to all applications
simultaneously (i.e., it is not restricted to being run as part of a single application). It is assumed that
logical nodes will dynamically join and depart from a running system.

It is further assumed that data is organized, stored and communicated in fixed-size blocks. The exact
size of a block is determined by the implementation, but is expected to be at least the size of a physical disk
block (usually 4096 bytes) and more likely larger. The block size must be the same for all applications using
the same BPFS system. In this report, the symbol BLOCKSIZE is used to represent this implementation-
defined value.

2.1 Logical Nodes

There are three types of logical nodes, although in any real system several different types of logical nodes
may (and usually will) coexist on a single physical node. The types of logical nodes are:

1. Client nodes. A logical client node consists of a user application process (i.e., the end user of the
parallel file system) linked with a client component.

2. Manager nodes. A logical manager node consists of a manager component, some amount of permanent
storage for metadata components that are controlled by the manager, and some subset of the global
file name space controlled by the manager.

3. Server nodes. A logical server node consists of a server component, a number of agent components,
and some large amount of storage for data components that are controlled by the server.

2.2 Network
The network can be:

e A general purpose facility such as TCP over a Local Area Network (LAN), the global Internet, or a
dedicated System Area Network (SAN) such as Myrinet.

e A special purpose facility such as BIP [16] over Myrinet, or SBP [17] over a dedicated Ethernet or
ATM network.

e An integrated communication system such as Nexus [7].

Each active component in BPFS must have a unique “location” in this network. There are two aspects to a
“location” — its internal representation and its external representation — and the contents of each depends
on the implementation of the network layer. The internal representation is an opaque value occupying 8
bytes, which must be in network byte order, since locations are themselves sent over the network between
potentially heterogeneous nodes. The external representation is an ASCII equivalent that can be represented
in a C string and stored as part of the human-readable metadata of a file. Note that there is no automatic
interoperability between different network representations, so if the network layer is changed, parallel files
created with the previous network may no longer be accessible.

In TCP/IP, for example, a “location” consists of an IP address and port number. In the internal rep-
resentation, the opaque value will contain the TP address as a 32-bit binary number and the port number
as a 16-bit binary number, both in network byte order. In the external representation, the location will be
the string representation of an TP address in “dotted-decimal” notation or an equivalent DNS name, followed
by a colon followed by the port number as an integer. The port number can be omitted from the external
representation, in which case a “well known port number” is used by default when the external representation
is converted into internal form.

The implementation must define two functions to convert between the internal and external representa-
tions of a location (see Section 5.2).

RR n-° 3460

2.3 Files

In the BPFS model, a “file” is a contiguous sequence of logical blocks numbered 0, 1,2, ..., n, that are stored
in “permanent” storage under a single name. Each block contains the same fixed number of 8-bit bytes except
possibly the last block in a file, which can be smaller. A “parallel file” consists of one “metadata” component
stored on a manager node, and one or more “data” components each stored on a separate server node. Each
data component consists of a contiguous sequence of relative blocks numbered 0,1,2, ..., k. Different data
components of the same file may contain different numbers of blocks.

A client maps a file onto a parallel file by a “mapping function”, often called a “declustering function”
or “striping function” in the literature. For each logical block in the file, this function determines which
data component contains the block and the corresponding number of the relative block within that data
component.

Metadata consists of the following information:

e The mapping function that defines how logical blocks in the file are mapped onto relative blocks in the
data components.

e A parameter called the “stripe thickness” used by the mapping function.
e The list of server nodes on which the data components are stored.

The single metadata component for a parallel file is stored on a manager node. The data components are
distributed on one or more server nodes. Depending on the implementation, the metadata component and
each data component may be stored as normal files in the underlying host file system using a suitable naming
convention.

The metadata component is stored in human-readable text format. The mapping function and the
thickness parameter are represented by integer numbers. The list of server nodes is represented as a blank-
separated list of server locations in their external representation. Each implementation must define the
exact mechanism by which it loads with the client the executable code for user-defined mapping functions
to correspond with the function numbers in metadata components.

2.4 Active Components

BPFS consists of the following active components:
1. Clients residing on client nodes, any number of clients per logical node.
2. Managers residing on manager nodes, one manager per logical node.
3. Servers residing on server nodes, one server per logical node.

4. Agents residing on server nodes, any number of agents per logical node. Each agent controls a single
open file. All agents on the same server node are controlled by the server component on that node.

There are usually multiple instances of each of these components in a running system. Although there is
only one manager per manager node, and one server per server node, multiple managers (servers) can run
simultaneously on the same physical node provided they operate in non-overlapping domains (for example,
in separate partitions on the node’s disks).

The active components communicate between themselves by the use of special protocols. Figure 2 is
a diagram showing these components, the protocols between them, and the disk I/O performed by each
component.

2.5 Functions

BPFS contains the following functions by which the actions of the components can be tailored to particular
application and system requirements:

1. Functions to supply a manager with a set of default metadata to use when creating new files.
INRTA

Agent Agent
0 K-1
D 7

Figure 2: Overview of active components, protocols and file I/O in BPFS. Squares indicate components,
solid arrows indicate protocols and dashed arrows indicate disk T/0O.

2. Functions to convert between the internal and external representations of a network “location”.

Agent

3. A function to map a file name onto a manager location.

Agent

4. A function to gather the access control information necessary for clients to access files.

5. For each mapping function, a set of striping functions to map logical block numbers onto data compo-
nents and relative block numbers within a data component.

6. For each agent-side cache replacement policy, a set of functions to add, remove, and reorder blocks on

the cache list.

An implementation will define default values for each of these functions, and will provide a mechanism for
users and system administrators to dynamically specify alternative functions, subject to certain constraints.

RR n-° 3460

2.6 Protocols

BPFS specifies protocols for each of the following component to component communications:
1. Client — manager
2. Client — agent
3. Manager — server
4. Server — agent

These protocols are designed to be efficient on both 32- and 64-bit architectures. Numeric fields are
never bigger than 32 bits, and major data structures within messages are aligned on 8-byte boundaries and
are multiples of 8 bytes in size. However, the limitation to 32-bit values does not mean that file sizes are
limited to 232 bytes. This is due to the fact that BPFS deals only with block numbers, not byte numbers.
Therefore, a file is limited to BLOCKSIZE x 232 bytes. If BLOCKSIZE is 4096 (2'2) bytes, the file size
would be limited to 2%* bytes, which is more than 17 terabytes. Obviously larger block sizes would allow
correspondingly larger file sizes. Of course, this assumes that the underlying file system is capable of storing
and addressing such large files.

The bulk of this report will be devoted to specifying these protocols and the actions they require from
the active components.

3 Background and Related Work

This work was inspired by the large number of parallel and distributed file systems that have been developed
in the past few years. A number of these along with their key ideas are discussed here.

RAMA [12] (Rapid Access to Massive Archive) was designed by Miller and Katz at the University of
California at Berkeley. Their key innovation was the use of a system-wide hashing function that pseudo-
randomly distributed blocks in a parallel file across many disks. This function could be computed directly
by a client application on any node in the system, thereby allowing each application direct access to any
block without consulting a central node. This approach had two important consequences: it provided good
performance across a wide variety of workloads without any effort on the part of the programmer to place data
advantageously; and 1t scaled to a large number of nodes and disks. They provide simultations showing that
their strategy of random block placement can perform within 10 to 15% of the optimum explicit placement,
and is a factor of four or more better when the explicit placement is poor. In BPFS we have generalized their
notion of a system-wide function for direct client-to-server block mapping to allow applications to provide
arbitrary block mapping functions with each file.

PPFS [5] [9] (Portable Parallel File System) was developed by Reed and Chien at the University of
Illinois at Urbana-Champaign. This is a portable user-level input/output library designed to permit rapid
and flexible experimentation with policies for buffering, caching, data distribution and prefetching parallel
files. They provided predefined policies for all necessary functions, but also allowed users to specify file
layouts, access patterns, and prefetching patterns. In BPFS we have generalized this notion to allow many
of the file system functions to be provided by the application programmer and/or the system implementor.

PPFS assumes three things for portability: an underlying UNIX-like file system, a parallel machine
environment which supports message passing, and a C4++ programming language environment running on
the UNIX operating system. The corresponding requirements for the design of BPFS are more fundamental:
any host file system, including raw disk access, any networking technology, and a standard C programming
language environment running on the UNIX operating system. A key difference in design philosophy is
that BPFS is intended to be a utility that is always up and running, and that simultaneously serves all
applications for all users on the physical hardware. With PPFS, on the other hand, each user’s parallel
virtual machine gets its own copy of PPFS that is independent of other copies in other virtual machines on
the same physical hardware.

The work by Gibson on SPSS [8] (Scotch Parallel Storage Systems) at Carnegie Mellon University in-
corporates into a running system earlier work by Patterson and Gibson [15] stressing the importance of

INRIA

prefetching and caching on parallel file system performance. BPFS provides two mechanisms for prefetching:
the ability to request groups of blocks at once, and the ability to request streams of blocks in which the agent
“pumps” data to the client at a specified rate. Control of these mechanisms lies in the layers above BPFS
itself, as does any client-side caching mechanism. Agent-side caching on a per-file basis is provided directly
in BPFS, although it can be controlled by higher levels. BPFS also follows the SPSS philosophy of providing
just a basic parallel storage component within a broader parallel programming system. In particular, neither
BPFS nor SPSS provide any of the common synchronization or locking mechanisms that applications may
need to properly coordinate parallel access to parallel files. These mechanisms would have to be provided
by a “message passing” subsystem, such as MPI [6], that would be used from a layer on top of BPFS.

DPSS [10] (Distributed Parallel Storage System), developed by Tierney at the Lawrence Berkeley Na-
tional Laboratory, is a collection of disk servers operating in parallel over a wide area network to provide
logical block level access to large data sets. The implementation is based on user-level software running on
UNIX workstations interconnected by an ATM Internet. Tt was built from commercial, off-the-shelf (COTS)
components; which is also a major goal for BPFS.

xFS [1] was developed by Anderson at Berkeley. It was based on the use of a striped log-structured file
system, in which new blocks are always written at the end of the available file storage space and old blocks
are reclaimed later via a background collection procedure. The complexity of this system made it difficult to
implement and debug, and it required some changes to the operating system kernel which becomes a serious
impediment to portability. The design of BPFS attempts to avoid these complexities. It also avoids the
cooperative caching designed into xFS, taking instead the same view as SPSS that such synchronization and
process cooperation properly belong in higher-level layers built on top of the basic file system.

The work of Kotz at Dartmouth on the Galley file system [11] [14] also stresses the philosophy that
a single strategy for various aspects of parallel file systems, such as caching, cannot suit all applications.
He stresses the idea of building a simple, general purpose core storage system, and then layering a set of
high-level libraries on top of it to provide many different application programmer interfaces (APIs). This is
exactly the philosophy adopted by BPFS. The ViC* preprocessor [4] developed by Cormen at Dartmouth, the
PASSTION Runtime Library [3] (Parallel and Scalable Software for Input-Output) developed by Choudhary
at Syracuse, and the Panda Library [2] developed by Seamons and Winslett at the University of Illinois at
Urbana-Champaign, illustrate different high-level tools that are layered on top of a “commodity” parallel file
system to provide a convenient API for manipulating large, “out of core” arrays.

Even the MPI-TIO interface [13], which is considered “low level” compared to Panda and ViC* is still
considered “high level” by BPFS, and a companion report will describe our implementation of MPI-IO on
top of BPFS using the ADIO (Abstract Device Interface for Implementing Portable Parallel-/O Interfaces)
developed by Thakur et al. [18]

4 Active Components

4.1 The Client

The client is that portion of a user process that deals with all access to parallel files by users. It may
be accessed directly by a user application program, but more likely will be accessed indirectly through a
standardized interface such as MPI-10. If a user application consists of several processes, any communication
between those processes in order to coordinate the use of a parallel file must occur either in the user program
itself or in the interface between the user program and BPFS. BPFS itself assumes no communication or
coordination between clients (i.e., it assumes that all clients are independent of each other).

The client software is usually implemented as a library package that handles all the communication with
the other commponents of BPFS over the network. The first implementation uses TCP /TP, but versions are
planned that would use other network communication facilities, such as BIP and SBP.

The functionality provided by a client consists of two types of functions:

1. Functions necessary to manage a file, such as deleting it, renaming it, and obtaining information about
it (i.e., its size, its access permissions, its locations, etc.).

2. Functions necessary to read and write data from/to the file.

RR n-° 3460

As shown in Figure 2, clients never deal directly with storage of the metadata or data — they always go
through either a manager or an agent. All management functions require communication between the client
and the file’s manager. All read and write operations require the client to first communicate with the file’s
manager to “open” the file and set up a connection between the client and each of the file’s agents. Once
these connections are established, all data flows directly between the client and the agents with no further
intervention by either the manager or the server until the client is finished with the file and wishes to “close”
it, at which time the client must again contact the manager.

To perform a read or write operation, the user software provides the number of the affected block to the
client software. The client software is responsible for applying the file’s mapping function to this logical block
number to obtain the connection to the appropriate agent and the relative block number on that agent’s
data component. The client will then send a request for that relative block directly to that agent, and will
receive a response directly from that agent. Note that data is always transfered in units of fixed-size blocks
— any mapping of arbitrary byte sequences onto blocks must be done by the interface between the client
and the user software. For example, the MPI-TO interface has been implemented on top of a client to provide
the file “view” facility as defined in the MPI-1O standard.

Each file indicates its own mapping function which is supplied and utilized by the client software in user
space. This allows an application great flexibility to provide functions suited to their particular needs. For
example, mapping functions can be provided that utilize different data layouts for different parts of a file,
or that interact dynamically with other parts of the application program to determine the best data layout,
ete.

4.2 The Manager

Each manager is an independent daemon process running on a manager node whose task is to create,
delete and maintain metadata stored on that node about a set of parallel files. Each file has exactly one
manager and all clients wishing to access that file must first go through that manager. There can be multiple
simultaneous managers, each managing a subset of the total universe of parallel files. The mechanism by
which a file is mapped onto a manager must be known to all clients, but is itself a lower-level function in
BPFS that can be different from implementation to implementation (see Section 5.3).

The manager is responsible for coordinating the actions of the set of servers on which the data components
of a parallel file reside. The manager maintains the integrity and consistency of the file during system
operation. For example, most file operations must be performed on all of the data components simultaneously,
and many of them must be done in an atomic fashion with respect to other operations on the same file. If
any server is unable to perform an operation for any reason, then none of the other servers must be allowed
to perform it either. The manager is responsible for coordinating and ensuring this consistency.

By “off-loading” these functions onto a separate management process, BPFS clients can potentially in-
crease their gain from parallelism, since they can overlap their computation with the tasks performed by the
manager.

The client interacts with a manager when performing “management” functions on the file, and when a
file is opened or closed. Management functions effect only the metadata of the file, and make no access to
the data contained in the file (unless it is to delete the file entirely). The types of management functions
available are:

1. Obtain status information about a file (its size, its location(s), its mapping function, its access permis-
sions, etc.).

2. Delete the file.
3. Rename the file.
4. Link the file to an additional name.

In order to access the data in a file, the client must first send an “open” request to the manager of the
file. The manager obtains the metadata for an existing file, or creates it for a new file, and verifies that the
access requested by this client is legitimate. This requires that the manager contact each of the servers on

INRIA

which the file data itself resides. The manager must coordinate the setup of these servers and obtain their
agreement on the validity of the client’s request (for example, if the client wants to write to the file does he
have permission on each server?). Once this is done, the manager returns the necessary information to the
client. The manager does not participate in any way during the data transfer to/from the file, which occurs
directly between the client and the agent. In fact, the manager retains no knowledge that the file is open —
that is the job of the servers. When the client wishes to close the file it must recontact the manager in order
to coordinate the closing among all the servers.

4.3 The Server

Each server is an independent daemon process running on a server node whose task is to create and maintain
the data components stored on the disks of that node for a set of parallel files. In the first implementation,
the server process utilizes the underlying local UNIX file system on the server node to store data. However,
the basic design makes it possible to utilize other existing file systems, or to dedicate a disk to a server that
utilizes “raw” access to manage disk blocks directly.

Upon receiving a request from a manager, a server will open a data component and verify that the request
is legitimate. If necessary, it will then set up a new agent, or contact an existing agent, to control all data
access to/from the file. Tt is the server’s task to enforce consistent access semantics to a file by all clients.
These semantics are:

1. Shared read-only: One or more clients may access the file simultaneously, but only to read data.
2. Exclusive write-only: Exactly one client may access the file at a time to write data.

3. Shared read-write: One or more clients may access the file simultaneously, and any client may either
read or write data.

4.4 The Agent

The agent is a process or thread spawned by the server, one agent for each unique active data component
on the server. The task of the agent is to read and write all data from/to the data component on behalf of
all the clients. If several clients are simultaneously accessing the same file, they will all be dealing with the
same agent on each server node, although over different connections.

When a manager determines from its communication with the servers that all data components of a
client’s open request can in fact participate consistently in the request, it will return to the client a table of
locations for each component’s agent. The client will then use these locations to establish a direct network
connection to each agent, and all file data will flow over the network directly and independently between the
client and each agent.

The agent 1s responsible for enforcing the consistency semantics of this data, and for maintaining a cache
of data blocks as may be appropriate for the access patterns of the clients. It is also responsible for “pushing”
data to clients at regular time intervals during data streaming operations.

In the initial implementation, each agent is a separate child process spawned by the server. However,
future implementations could use threads to implement agents.

5 Functions

The BPFS functions are user-supplied or implementation-supplied functions that allow BPFS to adapt to
different environments and applications. These functions can be grouped into two general categories: those
defined once per implementation by the BPFS implementor, and those defined once per file by the BPFS
user. Each implementation will define a mechanism by which these functions can be supplied by users and
system administrators. If possible, this mechanism should allow dynamic modification of a running parallel
file system. The following table categorizes these functions and also indicates which software component
invokes them.

RR n-° 3460

5.1

Function Defined by Called by
default metadata | implementation | manager

“location” conversion | implementation | manager
manager mapping | implementation | client
access control info gathering | implementation | client
file striping user client

agent caching | implementation | agent

Default Metadata Functions

These functions are invoked by a manager in order to obtain default metadata for use in the creation of new

files.

There are two functions, one to define the default list of servers known to the manager, and one to

define the default striping function to map files onto those servers. Both of these functions are fixed for a
given implementation.

extern int getdefaultserverlist(unsigned int listlen,

char *1list);

extern void getdefaultstriping(unsigned int *default_mapping,

unsigned int *default_thickness);

5.1.1 getdefaultserverlist

The default server list function is called once by the manager when it starts up in order to obtain a default
list of servers onto which it can store data components. For example, this information might be obtained
from the manager’s environment variables or configuration files in a system-dependent manner.

Input parameters:

listlen — an unsigned int containing the number of bytes in the output parameter list allocated by
the caller for storing the result. This value should be positive.

Output parameters:

list — a null-terminated C string containing the list of comma- or blank-separated server locations.
Each item in the string should have the implementation-defined external representation of a network
location. For a TCP/IP network, this form will be the DNS name or the dotted-decimal TP address,
followed by an optional colon and port number. The items in this list should be convertable to
their equivalent internal representations by the implementation-defined function “q_ strtolocation” (see
Section 5.2). The storage for this string must be allocated by the caller, and must contain listlen
bytes.

Function result:

the number of characters stored in string list by this function, excluding the null terminator. If this
value is positive, it is the same as strlen(list) and will never be larger than listlen — 1. If this value
is zero, no default server list was obtained, and list will be the empty string. If this value is negative,
it means that listlen was not big enough to hold the entire list, and its absolute value is the number
of additional bytes needed to store the entire list as a null-terminated string. In this case, the first
listlen — 1 bytes of the list will be stored in list, followed by the null-terminator.

5.1.2 getdefaultstriping

The default striping function is called by the manager in order to obtain the default function and its parameter
to use to stripe data across the servers.

INRIA

Input parameters:
None.

Output parameters:

¢ default _mapping — an unsigned integer value representing the mapping function to be used as the
default striping function. A value of 1 means “regular striping”. A value of 2 means “pseudo-random
block placement”. Other values indicate application-defined functions.

o default thickness — an unsigned integer value representing the default “thickness” used by the
default striping function. This is the number of consecutive logical blocks that are mapped into
consecutive relative blocks on one server in each stripe of the file.

Function result:
None.

5.2 Location Conversion Functions

These functions convert between the internal and external representations of an implementation-defined
network “location”.

extern int q_strtolocation(const char *name,
const char *default_name,
struct q_location *location);

extern int q_locationtostr(struct q_location *location,
unsigned int namelen,
char *name);

5.2.1 q_ strtolocation

This function converts the external representation of a location given in the name parameter into an equiva-
lent internal representation stored in location. The additional input parameter, default name, is used to
supply any components missing from name that are necessary for the formation of location. For example,
in TCP/IP, a “well known port number” supplied in the default name parameter would be used if there
were no explicit port number specified in name.

Input parameters:

e name — a null-terminated C string containing the implementation-defined external representation of
a location.

e default name — a null-terminated C string containing the implementation-defined external repre-
sentation of a default location. Components missing in name will be taken from default name.

Output parameters:

e location — the opaque 8-byte structure containing the implementation-defined internal representation
of a location.

Function result:

e 0 if this function was able to perform the conversion, -1 if not, in which case the value in the output
parameter is undefined.

RR n-° 3460

5.2.2 q_locationtostr

This function converts the internal representation of a location given in the location parameter into an
equivalent external representation that it stores in name. The additional input parameter, namelen, gives
the number of bytes in name available for storing the result. The return value is the length of the string
actually stored in name.

Input parameters:

¢ location — the opaque 8-byte structure containing the implementation-defined internal representation
of a location.

e namelen — an unsigned int containing the number of bytes in the output parameter name allocated
by the caller for storing the result. This value should be positive.

Output parameters:

e name — a null-terminated C string containing the implementation-defined external representation of
the location given by location. The storage for this string must be allocated by the caller, and must
contain namelen bytes.

Function result:

e the number of characters stored in string name by this function, excluding the null terminator. If
this value is positive, it is the same as strlen(name) and will never be larger than namelen — 1. If
this value is negative, it means that namelen was not big enough to hold the entire name, and its
absolute value is the number of additional bytes needed to store the entire name as a null-terminated
string. In this case, the first namelen — 1 bytes of the name will be stored in name, followed by the
null-terminator.

5.3 Manager Mapping Function

The manager mapping function is used by client software to find the location of a manager for a file. The
internal representation of a “location” is an opaque 8-byte value defined by the underlying network layer (see
Section 2.2). This location can be used by the client software to establish a connection to the manager in
order to communicate using the client-manager protocol. This function is fixed for a given implementation.

extern int getmanagerlocation(const char *filename,
struct q_location *man_addr);

5.3.1 getmanagerlocation

This function is given as input a file name in the form of a null-terminated C string and computes as output
the location of the manager that controls the metadata for the named file.
Input parameters:

e filename — the null-terminated C string containing the name of the file to be managed. The value of
the file name is supplied by the client software wishing to utilize the file. If this parameter is NULL,
the function should determine whether or not there will be only one manager for all files, regardless of
their names. If so, it should return the internal representation of the location of that manager. If not,
it should return an error indication. This enables the client software to connect once to a manager and
to leave that connection open.

Output parameters:

e man addr — the location of the manager.

Function result:

e (if this function was able to determine a manager location, -1 if not, in which case the value in the
output parameter is undefined.

INRIA

5.4 Access Control Information Gathering Function

The access control information gathering function enables an implementation to gather the necessary infor-
mation about a user in order to establish and verify access rights to a file. This function is fixed for a given
implementation.

extern unsigned long gatheruserinfo(char *here);

5.4.1 gatheruserinfo

This function is executed by the client software to gather whatever identification information about the
running process must be sent to the manager in order to establish or verify the access rights this user has
for parallel files.

Input parameters:

e here — the 8-byte aligned address of a storage area into which this function should store, in network
byte order, the information it gathers. This storage area will, in fact, be in a buffer where the client
software 1s building a message to send to the manager in order to open a file.

Output parameters:
None.
Function result:

e the number of bytes of data stored by this function in the area pointed to by here. This value is used
by the client software when computing the length of the message to send to the manager.

5.5 File Striping Functions

The file striping functions enable a user to specify how logical blocks in a parallel file are mapped onto
data components and relative block numbers within a data component. Each file must specify as part of its
metadata a mapping function number and a thickness parameter. The mapping function number is used
by the client to select the proper set of striping functions that apply to the file. The number itself is an
arbitrary label used for purposes of identification only, and in no way implies any sort of coding or hashing
in the functions themselves.

Each set must contain the following three functions, which are all executed by the client software:

extern void from_actual(unsigned int mapfun,
unsigned int thickness, unsigned int nservers,
unsigned int actual, unsigned int *serverno,
unsigned int *blockno);

extern unsigned int to_actual(unsigned int mapfun,
unsigned int thickness, unsigned int nservers,
unsigned int serverno, unsigned int blockno);

extern unsigned int predict_stride(unsigned int mapfun,
unsigned int thickness, unsigned int nservers,
unsigned int startblock, unsigned int stride,
unsigned int totalblocks, unsigned int this_stridel[],
unsigned int first[], unsigned int numblocks[],
unsigned int order[]);

In these functions a server is refered to by its “ordinal number”. If there are N servers specified in the
metadata for this file, their ordinal numbers are given by the numbers 0... N — 1 according to the position
of the server in the metadata list of servers.

RR n-° 3460

5.5.1 from actual

This function is given as input a logical block number and computes as output the number of the server on
which this block is located, and its relative block number on that server.
Input parameters:

e mapfun — the number of the mapping function. Since each mapping function defines its own version
of from actual, this parameter may not be used. However, it’s presence allows several mapping
functions to share a single version of from actual if that is convenient for the implementor. This
value is obtained from the metadata of the file.

e thickness — the stripe thickness, which is the number of consecutive logical blocks that are mapped
into consecutive relative blocks in each stripe. This value is obtained from the metadata of the file.

e nservers — the stripe width, which is the number of servers that are participating in the storage of
this file. This value is obtained from the metadata of the file.

e actual — the logical block number in the file. This value is supplied by the client software that wants
to do the mapping.

Output parameters:

e serverno — the ordinal number of the server on which the actual block resides.
e blockno — the relative block number on this server where the actual block resides.
Function result:
None.
5.5.2 to_actual

This function is given as input a server number and a relative block number, and computes as output the
corresponding logical block number in the file. It is the inverse function of from actual.
Input parameters:

e mapfun — the number of the mapping function. Since each mapping function defines its own version of
to_actual, this parameter may not be used. However, it’s presence allows several mapping functions
to share a single version of to__actual if that is convenient for the implementor. This value is obtained
from the metadata of the file.

e thickness — the stripe thickness, which is the number of consecutive logical blocks that are mapped
into consecutive relative blocks in each stripe. This value is obtained from the metadata of the file.

e nservers — the stripe width, which is the number of servers that are participating in the storage of
this file. This value is obtained from the metadata of the file.

e serverno — the ordinal number of a server. This value is supplied by the client software that wants
to do the mapping and must be less than the value of nservers.

e blockno — a relative block number on this server. This value is supplied by the client software that
wants to do the mapping.

Output parameters:
None.

Function result:

e the corresponding logical block number in the file.

INRIA

5.5.3 predict_stride

This function determines if a request to read a set of logical blocks separated by a given “stride” value can be
mapped into a set of requests, one for each server, in which there is a single “relative stride” value between
relative blocks on that server (each server can have a different “relative stride” value).

Input parameters:

mapfun — the number of the mapping function. Since each mapping function defines its own version
of predict _stride, this parameter may not be used. However, it’s presence allows several mapping
functions to share a single version of predict _stride if that is convenient for the implementor. This
value is obtained from the metadata of the file.

thickness — the stripe thickness, which is the number of consecutive logical blocks that are mapped
into consecutive relative blocks in each stripe. This value is obtained from the metadata of the file.

nservers — the stripe width, which is the number of servers that are participating in the storage of
this file. This value is obtained from the metadata of the file.

startblock — the first logical block in the sequence. This value is supplied by the client software that
wants to perform the request.

totalblocks — the total number of logical blocks in the sequence, including the first. This value is
supplied by the client software that wants to perform the request. A value of zero means “the rest of

the file”.

Output parameters:

this _stride — an array with one entry for each server that should be set to the “relative stride” value
for this server as determined by this function. The array is indexed by the server’s ordinal number.

first — an array with one entry for each server that should be set to the number of the first relative
block on this server as determined by this function. The array is indexed by the server’s ordinal
number.

numblocks — an array with one entry for each server that should be set to the number of relative
blocks on this server as determined by this function. The array is indexed by the server’s ordinal
number. An entry with a zero value means that the corresponding server does not participate in this
request. In the case when the value of input parameter totalblocks is 0, indicating “the rest of the
file”, then the non-zero values in this array correspondingly indicate “the rest of this data component”
and should not be taken to mean “exactly this many blocks”.

order — an array with one entry for each server that should be set to the order of first use of blocks
from this server in the request as determined by this function. The array is indexed by the server’s
ordinal number. The values in this array are in the range 0...K — 1, where K is the number of
servers participating in this request as determined by the function result. The only items in this array
containing valid values are those with the same subscripts (i.e., server numbers) as non-zero items in

the numblocks array.

Function result:

the number of servers participating in this request as determined by this function. If this value is zero,
the request cannot be satisfied and the values in all the output parameters are undefined. This number
should be the number of non-zero entries returned in the array numblocks.

RR n-° 3460

5.6 Agent Cache Replacement Functions

Each agent may maintain a cache of blocks for the file it is serving. The size of this cache and the policies
it follows can be controlled from the clients through the use of the SETCACHE operation. One of the
parameters to the SETCACHE is a “cache replacement number”. Each such number refers to a set of three
functions used by the agent to enforce the corresponding policy. The system administrator can define new
cache replacement policies by defining a set of functions that implement the new policies. The implementation
will define the mechanism by which a set is associated with a number in the agent software.

Each set must contain the following three functions, which are all executed by the agent software:

extern void addition_function(struct buffer_record *new_buf,
unsigned int policy, unsigned int n_in_cache,
struct buffer_record **head,
struct buffer_record **tail);

extern struct buffer_record *removal_function(
unsigned int policy, unsigned int n_in_cache,
struct buffer_record **head,
struct buffer_record **tail);

extern void promotion_function(struct buffer_record #*buf,
unsigned int policy, unsigned int n_in_cache,
struct buffer_record **head,
struct buffer_record **tail);

The agent software maintains a doubly-linked list of buffers that constitutes its cache. Each implementa-
tion can define its own buffer structure which has the type “struct buffer record” in the declarations above.
In all of these functions, the first buffer in the cache list is pointed to by the parameter head, the last
buffer in the list is pointed to by the parameter tail, the total number of buffers in the list is given by
the parameter n_in_cache, and the replacement policy number is given by the parameter policy. The
purpose of these functions is to maintain this list in the order required by the indicated policy. In general,
each policy will be implemented by a different set of functions, so that the policy parameter will not be
used. However, its presence allows a single function to implement several different policies at the convenience
of the implementor.

Every implementation will supply a set of functions for three standard replacement policies: FIFO
(policy = 1), LRU (policy = 2), and RANDOM (policy = 3). Note that these functions manipulate
only the links which thread buffers on the cache list — they do not manipulate the contents of the buffers
nor the hash table in any way. They specifically do not read or write buffers to disk, nor do they worry
about whether buffers are “dirty” or not.

5.6.1 addition function

This function is given as input a new buffer which it should add to the cache list at whatever position is
appropriate for the indicated policy. For all three standard policies, the new buffer is added to the end of
the list. This function must set the forward and backward links of the new buffer, must modify the links of
its neighbors in the list, and may modify the values of the head and tail of the list, if appropriate.

Input parameters:

e new_buf — a pointer to the new buffer which is to be added to the cache list.
e policy — the number of the cache replacement policy.

e n_in_cache — the number of buffers in the cache before this new buffer is added (i.e., not including
new _buf).

Input/Output parameters:

INRIA

e head — a pointer to the first buffer in the cache list. The value pointed to will change if the new
buffer is added at the front of the list.

e tail — a pointer to the last buffer in the cache list. The value pointed to will change if the new buffer
is added at the end of the list.

Function result:
None.

5.6.2 removal function

This function returns a buffer which it has removed from the cache list at whatever position is appropriate
for the indicated policy. For the FIFO and LRU policies, this buffer is always removed from the front of the
list. For the RANDOM policy, the buffer is removed from a random position in the list. This function must
modify the forward and backward links of the buffer’s neighbors in the list, and may modify the values of
the head and tail of the list, as appropriate.

Input parameters:

e policy — the number of the cache replacement policy.

e n_in_cache — the number of buffers in the cache before this buffer is removed (i.e., including the
buffer returned by this function).

Input/Output parameters:

e head — a pointer to the first buffer in the cache list. The value pointed to will change if the new
buffer is added at the front of the list.

e tail — a pointer to the last buffer in the cache list. The value pointed to will change if the new buffer
is added at the end of the list.

Function result:

e new buf — a pointer to the buffer which has been removed from the cache list, or NULL if the list
was already empty.

5.6.3 promotion_function

This function is called whenever the agent references a buffer that is already in the cache. It given as input
a pointer to that buffer, which is already in the cache list and which should be moved within the list to
whatever position is appropriate for the indicated policy. For the FIFO and RANDOM policies, the buffer
is left where 1t is. For the LRU policy, the buffer is moved to the end of the list. This function must modify
the forward and backward links of the buffer and of its neighbors in the list, and may modify the values of
the head and tail of the list, as appropriate.

RR n-° 3460

Input parameters:

e buf — a pointer to a buffer which is already in the cache list and which is to be moved within the list.
e policy — the number of the cache replacement policy.
e n_in_cache — the number of buffers in the cache (i.e., including buf).

Input/Output parameters:

e head — a pointer to the first buffer in the cache list. The value pointed to will change if the buffer is
moved to the front of the list and it was not already there.

e tail — a pointer to the last buffer in the cache list. The value pointed to will change if the buffer is
moved to the end of the list and it was not already there.

Function result:
None.

6 Protocols

This section describes the four protocols defined in BPFS. For simplicity, all four protocols use the same
message format consisting of a fixed-size header part followed by a variable length data part. In order to
simplify the buffering and caching schemes, the length of any data part must be no greater than the system-
wide BLOCKSIZE. Since BLOCKSIZE 1s expected to be at least 4096 bytes, this restriction does not appear
to 1mpose a severe limitation.

6.1 The Message Header

The message header always contains 24 bytes broken into 7 fields as follows (the “normal” function of each
field is indicated — the exact use of a field depends on the particular protocol):

e 4 bytes — the total length (in bytes) of the entire message (> 24)

e 2 bytes — the operation code of the message.

2 bytes — an open file identification for the file to which this message refers.

4 bytes — a message identification code for this message.

e 4 bytes — the block number.

4 bytes — the block length.
e 4 bytes — more blocks, an indication of the number of blocks in an operation.

All 7 fields contain unsigned integral values. When sent or received over a network, the value in each field of
the message header must be in “network byte order”. The function htons (htonl) must be used to transform
2 (4) byte integer values from the host byte order into the network byte order before sending. The function
ntohs (ntohl) must be used to transform 2 (4) byte integer values from the network byte order into the
host byte order upon reception.

In most cases a communication is initiated by one “request” message sent from component “A” to com-
ponent “B”, and terminates by one “reply” message from “B” back to “A”. One of the protocol conventions is
that a reply message always has an operation code value of zero (0) if the request was successfully satisfied,
and non-zero if there was an error. The identification code field is used to match a reply with a request if
necessary.

INRIA

6.2 Message Operation Codes

There are currently 15 defined operation codes, although not all codes are used by all four protocols. The
following table indicates the possibilities and their general use:

e ABORT - abort a previous request.

e CLOSEFILE — close a previously opened parallel file.

e CONFIRM - confirm a previous request.

e DELETEFILE — delete a parallel file.

e ERASEFILE — erase a parallel file or fragments of a parallel file.

o GETSTATUS — get status information about a parallel file.

e LINKFILE - link an existing parallel file to an additional name.

e MOVEFILE — change the name of an existing parallel file.

¢ RDWRBLOCK - open a parallel file for reading and writing simultaneously.
¢ READBLOCK - open a parallel file for reading, or read a block of data.
e SETCACHE — get or set agent cache parameters for an open file.

e STARTSTREAM - start streaming a parallel file.

e STOPSTREAM - stop streaming a parallel file.

e SYNCFILE - force onto disk all data previously written to a parallel file.

e WRITEBLOCK - open a parallel file for writing, or write a block of data.

6.3 The Protocol between Client and Manager

The connection between the client and the manager is established when the client does a connect to the
“location” returned by the implementation-defined “getmanagerlocation” function (see Section 5.3). The
input parameter to this function is the name of the file that the client wishes to process. This connection
can be kept open for as long as the client desires. Either it can be closed at the end of each operation and
reopened at the start of the next (even if on the same file), or it can be opened once and kept open until the
client terminates.

The manager is “stateless” because it keeps no record of past operations on behalf of clients, other than
the “permanent” metadata it stores about files. In particular, the manager does not keep a record of which
files are open — this is the task of the servers.

There are nine different operations in the protocol between client and manager. These can be grouped
into two general classes: five self-contained operations to manage a file (GETSTATUS, DELETEFILE,
ERASEFILE, LINKFILE, MOVEFILE), and four operations to open or close the file for subsequent data
transfer (READBLOCK, WRITEBLOCK, RDWRBLOCK, CLOSEFILE). The five management operations
are discussed first, since they are simpler. Once a file has been opened successfully by a client, the only one
of the five management operations allowed on that file by any client is GETSTATUS. In other words, once
a file is “in use” by some client, no client is allowed to change or remove any of the metadata for that file.
This restriction is enforced by the servers, since the manager is stateless and therefore does not know if a
file is “in use”.

All nine commands in this protocol start with a request from a client to a manager and finish when
the client receives a reply back from the manager. The client creates a unique identification code for each
operation that is sent in the request and returned in the reply so that the reply can be matched with the
request.

RR n-° 3460

For the five management commands, a request message consists of the 24-byte header followed by a
variable length data part. This data part contains two null-terminated C strings, one immediately following
the other. The first string is the “old” name of the existing file to which this command refers. The second
string is the “new” name required only by the LINKFILE and MOVEFILE commands. This string will
be empty (i.e., it will consist of just the null terminator) for the GETSTATUS, DELETE, and ERASE
commands.

The general format of the request header for the five management commands is:

Field Value Meaning
total length | 244+ n 42 n = strlen(old) + strlen(new)
op code #0 one of 5 management op codes
file id 0 unused
id | identification | to match reply with request
block number 0 unused
block length | BLOCKSIZE | number of bytes per block in file
more blocks 0 unused

The manager will process this request and will always send back a reply that indicates either “success”
or “failure” of the operation. The general format of a reply indicating “failure” consists of a 24-byte header
followed by the text of an error message describing the failure. The general format of the “failure” reply
header is:

Field Value Meaning
total length | 24+ n+1 | n = strlen(error message)
op code #0 requested op was not successful
file id 0 unused
id | id of request | to match reply with request
block number 0 unused
block length 0 unused
more blocks 0 unused

The data portion of a “failure” reply contains the text of an error message in the form of a null-terminated
C string. In case of multiple errors, the manager arbitrarily chooses one to report to the client.

The format of a reply indicating “success” depends on the type of request to which 1t is a reply. For the
GETSTATUS command it consists of a 24-byte header followed by the status information returned by each
server as explained in Section 6.3.1 below. For the four commands DELETEFILE, ERASEFILE, LINKFILE,
and MOVEFILE;, it consists of just a 24-byte header. The general format of the “success” reply header for
these four commands is:

Field Value Meaning
total length 24 length of header
op code 0 requested op was successful
file id 0 unused
id | id of request | to match reply with request
block number 0 unused
block length 0 unused
more blocks 0 unused

INRIA

6.3.1 GETSTATUS

This function allows a client to retrieve status information about a parallel file. This information includes:
e The stripe thickness used to map blocks onto servers.
e The number of servers on which data components of this file reside.
e For each data component, its location, file protection codes, and size.

In a GETSTATUS request the “new” name in the variable length data part is empty.

Upon receipt of a GETSTATUS request, the manager will read the metadata for the file named in the
request, will forward the request to all the servers mentioned in the metadata, and will wait for their replies.
Each server is expected to determine if its data component exists, and to reply with its current size and
protection codes on that server. If all the servers reply with this information, the manager will format and
send a “success” reply back to the client. If any of the servers is unable to obtain status information about
its data component, the manager will send a “failure” reply back to the client.

For the GETSTATUS request, the “success” reply header is followed by an array of 24-byte items, one
for each of the N servers. The format of the GETSTATUS “success” reply header is:

Field Value Meaning
total length | 24 4+ N x 24 | length of header plus array
op code 0 requested op was successful
file id 0 unused
id | id of request | to match reply with request
block number N the number of servers used by the file
block length >1 the stripe thickness of the file
more blocks >1 the mapping function used by the file

Each 24-byte item in the array contains the following structures:

e 8 bytes — the location of this server.

e 2 bytes — the protection codes on this server.

e 2 bytes — unused.

e 4 bytes — the number of full blocks on this server.

e 4 bytes — the number of extra bytes in any partial last block.

e 4 bytes — unused.

The internal representation of a server “location” is an opaque value defined by the implementation of
the underlying network layer (see Section 2.2). All the other items are unsigned integral values in network
byte order. The size of the data component on each server is expressed as the number of full blocks plus
the number of extra bytes in any partial last block. If a file is striped in a regular fashion over N servers
numbered 0...N — 1, the total size (in bytes) of the parallel file is given as:

N-—
(full blocks; x BLOCKSIZE + extra bytes;)
0

—_

1=

Note that if the file uses an irregular mapping function, such as the pseudo-random mapping, then there
may well be unused blocks included in the size of each data component, and the sum given above will be
larger than the actual amount of data stored in the parallel file.

RR n-° 3460

6.3.2 DELETEFILE

This function exists to delete all the metadata and data components of a parallel file. The difference between
this operation and ERASEFILE is that DELETEFILE succeeds only if the parallel file is correctly constructed
and would be accessible (i.e., all the servers are currently up and running). If any error is detected, such as
missing metadata or an undeletable data component, nothing is deleted and the error is reported back to
the client.

ERASEFILE always erases whatever components of a parallel it can find. For example, if one of the data
components indicated in the metadata is missing or its server is inaccessible, the rest of the data components
and the metadata are nonetheless deleted. If the metadata itself is missing, the manager will contact all the
servers it knows about to erase any lingering data components. ERASEFILE is useful for cleaning up when
bugs or system crashes lead to incorrectly constructed parallel files.

In a DELETEFILE request the “new” name in the variable length data part is empty.

Upon receipt of a DELETEFILE request, the manager will read the metadata for the file named in the
request, will forward the request to all the servers mentioned in the metadata, and will then wait for their
replies. If all the servers reply that they would be able to delete their data component of this file (or that
it does not exist), the manager deletes the metadata and sends a confirm message to all of the servers and
awaits their replies to that. It is only upon receipt of this confirm from the manager that each server will
actually delete the file and send another (final) reply back to the manager indicating the delete has been
performed. Once this final reply has been received from all the servers the manager will format and send a
“success” reply back to the client.

If any of the servers determines that it is unable to delete its data component, the manager will send an
abort message to all the other servers that indicated they would be able to perform the delete (so that none
of them will actually delete an existing data component). The manager will then send a “failure” reply back
to the client. In this case neither the metadata nor any of the data components are deleted.

6.3.3 ERASEFILE

This function exists to erase (i.e. delete) all the metadata and data components of a parallel file. The
difference between this operation and DELETEFILE is that ERASEFILE will erase components even if the
parallel file is not correctly constructed and would not be usable by other commands (for example, because
one of the servers is down).

ERASEFILE always erases whatever components of a parallel it can find. For example, if one of the data
components indicated in the metadata is missing or its server is inaccessible, the rest of the data components
and the metadata are nonetheless deleted. If the metadata itself is missing, the manager will contact all the
servers it knows about to erase any lingering data components. ERASEFILE is useful for cleaning up when
bugs or system crashes lead to incorrectly constructed parallel files.

In an ERASEFILE request the “new” name in the variable length data part is empty.

Upon receipt of an ERASEFILE request, the manager will read the metadata for the file named in the
request, will forward the request to all the servers mentioned in the metadata, and will then wait for their
replies. If the metadata does not exist for this file, the manager will forward the request to all the servers to
which 1t 1s connected. If all the servers reply that they succeeded in erasing their data component of this file,
or that it does not exist, the manager will format and send a “success” reply back to the client. If any of the
servers is unable to erase its data component, or if the manager is unable to erase the metadata component
(in both cases this could be caused by the client’s lack of permission to delete the corresponding file), the
manager will send a “failure” reply back to the client. However, unlike DELETEFILE, in the failure case the
metadata and as many of the data components as possible are erased by ERASEFILE.

6.3.4 LINKFILE

This function exists to link an existing parallel file to a new name. It is an error if any metadata or data
components for the new name exist prior to this operation. (In UNIX parlance this is a “link” to the file.
Most people would call it a “synonym” or “alias”.)

INRIA

In a LINKFILE request both the “file” name and “new” name strings in the variable length data part
must each contain at least 1 character.

Upon receipt of a LINKFILE request, the manager will read the metadata for the file named in the
request, and will attempt to link that metadata component to the new name. If the metadata does not exist
for this file, or if the manager cannot link the existing metadata component to the new name, the manager
will immediately return a “failure” reply to the client without contacting the servers. Otherwise, the manager
will forward the request to all the servers mentioned in the metadata, and will then wait for their replies.
If all the servers reply that they succeeded in linking their data component of this existing file to the new
name, the manager will send a confirm message to all of the servers and will then await their replies to that.
When this final reply has been received from all the servers, the manager will format and send a “success”
reply back to the client.

If any of the servers is unable to link its data component to the new name, the manager will send an
abort message to all of the other servers that indicated success and will send a “failure” reply back to the
client. Upon receiving an abort message a server will unlink (delete) the link it just created to the new
name. A server would not be able to create a link, for example, if either there is no data component with
the indicated file name, or a component with the new name already exists.

6.3.5 MOVEFILE

This function exists to change the name of an existing parallel file. It is an error if any metadata or data
components for the new name exist prior to this operation. (In UNIX parlance this is a “move” of the file.
Most people would call it a “rename”.)

In a MOVEFILE request both the “file” name and “new” name strings in the variable length data part
must each contain at least 1 character.

Upon receipt of a MOVEFILE request, the manager will read the metadata for the file named in the
request, and will attempt to link that metadata component to the new name. If the metadata does not exist
for this file, or if the manager cannot link the existing metadata component to the new name, the manager
will immediately return a “failure” reply to the client without contacting the servers. Otherwise, the manager
will forward the request to all the servers mentioned in the metadata, and will wait for their replies. If all
the servers reply that they succeeded in linking their data component of this existing file to the new name,
the manager will send a confirm message to all of the servers and will then await their replies to that. It
is only upon receipt of this confirm message that each server will delete the old name and will then reply
to the manager once again. When this final reply has been received from all the servers, the manager will
format and send a “success” reply back to the client.

If any of the servers is unable to link its data component to the new name, the manager will send an
abort message to all of the servers that indicated success and will send a “failure” reply back to the client.
Upon receiving an abort message a server will unlink (delete) the link it just created to the new name, but
will leave the existing data component unchanged. A server would not be able to create a link to the new
name, for example, if either there is no data component with the indicated file name, or a component with
the new name already exists.

6.3.6 READBLOCK, WRITEBLOCK, RDWRBLOCK

In the protocol between the client and the manager, these three operations are sent by the client in order
to open a parallel file for reading, for writing, and for updating (i.e., reading and writing simultaneously)
respectively.

A file opened with READBLOCK becomes “shared read only” — it can also be opened simultaneously
by the same or other clients using READBLOCK, but it cannot be opened for writing or updating, and any
attempt to do so will be refused by the servers.

A file opened by WRITEBLOCK becomes “exclusive write only”. As long as it remains open, all other
attempts to open it in any mode are refused by the servers.

A file opened by RDWRBLOCK becomes “shared read and write” (i.e., shared updating). As long as it
remains open, other attempts to open it must also be with RDWRBLOCK or they will be refused by the
servers.

RR n-° 3460

These restrictions are summarized in the following table.

New Attempt to Open as
Now Open as || READBLOCK | WRITEBLOCK | RDWRBLOCK

READBLOCK ok refused refused
WRITEBLOCK refused refused refused
RDWRBLOCK refused refused ok

The general format of the request header for an open is:

Field Value Meaning

total length | 244+ n+ K | n= (strlen(name) + 2+ T)& ~ 7
op code #0 one of 3 open op codes
file id >0 protection codes
id | identification | to match reply with request
block number >0 attributes

block length | BLOCKSIZE | number of bytes per block in file
more blocks n offset to metadata parameters

In this header, the attributes value stored in the “block number” field is treated as a sequence of four
independent bytes, and hence is not converted to/from network byte order when sending/receiving (because
independent bytes are always in network order). At present only 2 of these bytes are actually used:

e Byte 0 1s the “truncate” attribute which can have 2 values:

0 indicating “do not truncate” an existing file on open.

1 indicating “truncate” an existing file on open.

This attribute is utilized only when opening with WRITEBLOCK and is ignored by the other opens.
Truncation means that all data in an existing file i1s erased at the time of the open, so that the file size
becomes 0.

e Byte 1 is the “create” attribute which can have 3 values:

0 indicating “never create” the file if it does not already exist.
1 indicating “always create” the file if it does not already exist.

2 indicating “create as needed”, which creates the file if and only if it does not already exist.

This attribute is ignored by READBLOCK, since a file to be read must always exist. The servers will
report errors if this attribute is “never create” and the file does not already exist, or if this attribute is
“always create” and the file does already exist.

The variable length data part of an open request message contains the file name (which must contain
at least 1 character) as a null-terminated C string, followed by an empty null-terminated C string, followed
by a data structure containing metadata parameters, followed by a structure containing implementation-
defined information to identify the current user. Each of these structures is aligned on the first 8-byte
boundary after the previous information in the message. The byte offset to the start of the first structure
within the data part is indicated by n in the “more blocks” field of the header shown above. The total
length of both structures (indicated by K included in the “total length” field of the header shown above) is
K = ((12+ strlen(list) + 1 + 7)& ~ 7) + M, where M is the length of the second structure and list is a field
in the first structure, as described below.

The first structure contains metadata parameters that will actually be used by the manager if and only
if a new file 1s created by this open. However, this information must always be sent as part of every open
request. The fields in this structure are described next:

INRIA

e a 4-byte unsigned integer giving the number of the mapping function to use when declustering logical
blocks onto the servers. This value is 0 to indicate the default mapping (1). Functions defined so far
are:

1. regular striping with each stripe having a “thickness” given by the next value. The “width” of the
stripe (i.e., the number of servers participating in storing the data) is given by the value following
that.

2. pseudo-random placement with a “thickness” given by the next value and a “width” given by the
value following that.

e a 4-byte unsigned integer giving the “thickness” parameter to the mapping function. This is the number
of consecutive blocks per server in each stripe across the disks. This value is 0 to indicate the default

thickness (1).

e a 4-byte unsigned integer giving the “stripe width”, which is the number of servers on which data
components of this file are stored. This value is 0 to indicate the default width, which means all the
servers in the following list if that list is not empty, otherwise it is all the servers currently available
to the manager.

e a null-terminated C string containing a comma- or blank- separated list of the names of servers to be
used to store data components of this file. If this list is empty, the data is striped across “stripe width”
servers selected from the list of all servers currently available to the manager. In this case it is an error
if “stripe width” is greater than the number of currently available servers. If this list is not empty, the
data is striped across the first “stripe width” servers in this list. In this case it is an error if “stripe
width” is greater than the number of servers in this list. The form of a server “name” depends on the
underlying network layer used by BPFS. When the network layer is TCP/IP, a “name” is either the
DNS name or the IP address in dotted decimal notation, followed by an optional port number that is
separated from the name by a colon (for example, “magenbitter:3775” or “140.77.11.38:3775”).

The second structure is an M-byte block of data containing user identification information that will allow
the manager to establish (for new files) or verify (for existing files) the access rights of this user for this file.
This data is gathered and put into the message by the implementation-defined function “gatheruserinfo”,
which returns M, the total number of bytes in this block of information. Note that this structure always
begins on the first 8-byte boundary following the null-terminator that ends the list in the first structure.

When the manager receives an open request, it will attempt to read the metadata for an existing file, or
create the metadata for an new file using the metadata parameters supplied in the request. It then forwards
the request to all the servers and waits for their replies. Each server must attempt to open the file “non
destructively”, which means that no data should be lost as a consequence of this open. This implies that a
new file can be created, but an existing file should not yet be truncated by this open.

If all the servers reply that they were able to open the file in the correct mode (except for truncation),
the manager will send back a confirm message if the “truncate” attribute was set and the operation was
WRITEBLOCK. It is only upon receipt of this confirm that an existing file is truncated by the server and
another reply is sent back to the manager. If a truncation is not needed, or when all the additional replies
after a truncation have been received by the manager, the manager will send a “success” reply back to the
client.

If any server replies that it was unable to open the file, the manager will send an abort message to all
the other servers that were able to open the file, will delete the metadata component if it was newly created
by this request, and will then send a “failure” reply back to the client. Upon receipt of an abort in this case,
the server will simply close the file, deleting it if it was newly created. Note that since the first open did not
truncate an existing file, no data will be lost should it have to be closed as a result of an abort. In this way
file consistency i1s maintained across all servers containing data components of a single parallel file.

The format of the “failure” reply to an open is the same as that returned by any of the five management
operations explained previously on page 22: a 24-byte header followed by the text of an error message.
The format of the “success” reply to an open is the same as that returned by the GETSTATUS operation
explained previously in Section 6.3.1 on page 23: a 24-byte header followed by an array of 24-byte items, one

RR n-° 3460

for each server participating in storing this file. However, the contents of 24-byte array items are different,
as shown in the following:

e 8 bytes — the location of agent handling this file on this server.
e 2 bytes — unused.

e 2 bytes — open file id for this file on this server.

e 4 bytes — unused.

e 4 bytes — unused.

e 4 bytes — unused.

Note that the “location” field is now the internal representation of the location of the agent that is
handling this file on behalf of the server, not the location of the server as it was in the GETSTATUS reply.
The client must use each of these agent “location” values to establish direct connections to the agents for
this file running on each server node. All data will then flow over these direct connections between client
and agent. The “open file id” must be copied into the header of all messages between client and agent in
order to identify (redundantly) the file to which the message refers.

6.3.7 CLOSEFILE

In order to close a previously opened parallel file, the client must first close 1ts connections to all the file’s
agents, and then send a CLOSEFILE request to the manager. This request will be forwarded to all the
servers by the manager. Upon receipt of a reply from all the servers, the manager will send a reply back to
the client.

The format of a CLOSEFILE request consists of the usual 24-byte header followed by a variable length
data part. The request header has the same format as that for the other requests from a client to a manager,
except that the “block number” and “more blocks” fields now contain useful information, as shown next:

Field Value Meaning
total length | 244+ n+ 24 x N | n = (strlen(name) + 24+ 7)& ~ 7
op code | CLOSEFILE | close an open file

file id 0 unused
id identification to match reply with request
block number N number of servers in use
block length BLOCKSIZE number of bytes per block in file
more blocks n offset to array

The variable length part of a close request consists of two null-terminated C strings (the first containing
the file name, the second is empty), followed by an array of 24-byte items, one for each of the N servers.
This array starts on the next 8-byte boundary after the null character that terminates the second (empty)
string. The byte offset to the start of this array within the data part is indicated by n in the “more blocks”
field of the header shown above.

The items in this array have the same format and value as the items obtained earlier by this client in
the “success” reply to the request that opened this file. Only the “location” and “open file 1d” fields contain
useful information, the other fields should contain zeroes.

For both the “success” and “failure” cases, the reply to a CLOSEFILE sent by a manager back to a client
has a format identical to the format of a reply to any of the four management commands DELETEFILE,
ERASEFILE, LINKFILE, and MOVEFILE, as discussed previously on page 22.

INRIA

6.4 The Protocol between Client and Agent

This protocol begins when the client connects to an agent using the “location” information returned to the
client by the manager in a “success” reply to an open request. That reply contains information for a separate
connection between the client and each agent. The protocol ends when the client closes this connection prior
to sending a CLOSEFILE request to the manager. All data flow between a file and a client is accomplished
by this protocol. All the operations in this protocol identify the file to the agent by using an “open file id”
that was returned to the client by the manager in the “success” reply to the open.

There are six operations in this protocol:

1. READBLOCK — to request a set of blocks to be read from the disk by the agent and sent to the
client.

2. WRITEBLOCK — to send one block from the client to the agent for writing onto the disk.

3. STARTSTREAM — to initiate a “stream” whereby the agent will read blocks from the disk and send
them to the client without specific READBLOCK requests by the client.

4. STOPSTREAM — to stop a “stream”.
5. SYNCFILE — to force onto the disk of the agent all blocks previously sent by WRITEBLOCK requests.
6. SETCACHE — to obtain or change parameters effecting the agent’s use of a buffer cache on an open
file.
6.4.1 READBLOCK

This operation is sent from the client to the agent in order to request that a set of blocks be read from the
disk by the agent and sent back to the client. It begins with a request from the client, and ends when the
last block requested is sent by the agent. It is acceptable to an agent only if the file was previously opened
successfully in READBLOCK or RDWRBLOCK mode.

A READBLOCK request message consists of just the 24-byte header in the following format:

Field Value Meaning

total length 24 number of bytes in header
op code | READBLOCK | read N blocks
file id >0 open file id of this file
id | 1identification | to match reply with request
block number >0 relative number of block

block length | BLOCKSIZE | number of bytes per block in file
more blocks N(>0) total number of blocks to read

With this message the client is requesting the agent to read and send back N blocks, where N is the
value in the “more blocks” field. Even if this value 1s zero, at least one block will be sent back. Each block
will be sent in a separate reply message, all of which will contain identical copies of the “file id” and “id”
fields from the request. The “file id” field contains the open file identification code returned to the client by
the manager in the “success” reply to the open request that established this connection. The “id” field is
an arbitrary value defined by the client to match replies with the request. The first block is read from disk
using the value in the “block number” field as the relative block number for this agent. Successive blocks
are taken from successive relative blocks. The agent will not accept any more input requests from the client
until the last of these successive blocks has been sent back to the client.

Each reply consists of a 24-byte header followed by a variable length data part.

For a “failure” reply, the variable length part contains the error message as a null-terminated C string.
The format of the “failure” header is:

RR n-° 3460

Field Value Meaning
total length | 244+ n+1 | n= strlen(error message)

op code #0 READBLOCK was not successful
file id >0 same as in request
id | id of request | to match reply with request
block number >0 relative number of block in error

no data read

block length

more blocks

0
0

no more blocks follow

For a “success” reply, the variable length part contains the actual bytes of user data, which can never be
more than BLOCKSIZE bytes, and will usually be exactly BLOCKSIZE bytes, except possibly for the last
block in the file, which may be shorter. If an end of file is read, the variable length part will be empty. The
length of this variable length part is returned in the “block length” field of the reply header (so that a value
of 0 means end of file). The “more bytes” field in the reply indicates the number of blocks that are expected
to follow this block as part of the same request. Therefore, a “success” reply containing the last block in a
sequence (including a sequence cut short by reading an end of file) will always have a zero in this field. The
format of the “success” header is:

Field Value Meaning
total length 24+ N N = bytes of data read successfully
op code 0 READBLOCK was successful
file id >0 same as in request

id | id of request | to match reply with request
relative number of block read
0) bytes of data read successfully
0 number of blocks to follow

block number
block length N

more blocks

v
V'Y

v =

After a “success” reply indicating end of file, or after any “failure” reply, the agent will stop sending replies
to this READBLOCK request, regardless of how many blocks were left unread, and begin accepting new
requests again from this client.

6.4.2 WRITEBLOCK

This operation is sent from the client to the agent in order to request that a block of data contained in the
request be written to the disk by the agent. It is acceptable to an agent only if the file was previously opened
successfully in WRITEBLOCK or RDWRBLOCK mode.

A WRITEBLOCK request message consists of the 24-byte header followed by a variable length part
containing the data bytes to be written to disk by the agent. The length of this variable length part must
be greater than zero and not greater than BLOCKSIZE. Except for the last block in a file, it should always
be exactly BLOCKSIZE. The header format for a WRITEBLOCK request is as follows:

Field Value Meaning

total length 244+ N N = number of bytes of data
op code | WRITEBLOCK | write one block of N bytes
file id >0 open file id of this file
id identification to match reply with request
block number >0 relative number of block

block length N(>0) number of bytes of data
more blocks Oorl 0 for reply, 1 for none

The “more blocks” field contains 0 if the client wishes to receive a reply from the agent indicating the
success or failure of the write operation. If “more blocks” is 1, the agent does not send a reply to this request
whether 1t succeeds or fails. The “file id” field contains the open file identification code returned to the client

INRIA

by the manager in the “success” reply to the open request that established this connection. The “id” field is
an arbitrary value defined by the client to match the reply with the request. The block is written to disk
using the value in the “block number” field as the relative block number for this agent.

If a reply is indicated, it consists of a 24-byte header followed by a variable length data part.

For a “failure” reply, the variable length part contains the error message as a null-terminated C string.
The format of the “failure” header is:

Field Value Meaning

total length | 24+ n+1 | n = strlen(error message)
op code #0 WRITEBLOCK was not successful
file id >0 same as in request
id | id of request | to match reply with request
block number >0 relative number of block in error

block length 0 no data written
more blocks 0 reply requested

For a “success” reply, the variable length part i1s empty. The format of the “success” header is:

Field Value Meaning

total length 24 length of header
op code 0 WRITEBLOCK was successful
file id >0 same as in request
id | id of request | to match reply with request
block number >0 relative number of block written

block length N(>0) bytes of data written successfully
more blocks 0 reply requested

6.4.3 STARTSTREAM

This operation is sent from the client to the agent in order to put the agent into “stream” mode. In this mode,
the agent reads blocks from the disk and sends them to the client without receiving explicit READBLOCK
requests from the client. In stream mode an agent continues to send blocks to the client until either the
end of file is read, an error occurs, the total number of blocks specified in the STARTSTREAM are sent, or
the agent receives a STOPSTREAM request. A client can have no more than one stream per file active at
any time, and while a stream is active on a file no other read operations can be requested for that file. The
STARTSTREAM operation begins with a request from the client, and ends when a reply is sent back by
the agent. Tt is acceptable to an agent only if the file was previously opened successfully in READBLOCK
mode.

The STARTSTREAM request message from the client to the agent consists of the 24-byte header followed
by a 24-byte data part. The header for a STARTSTREAM request is in the following format:

Field Value Meaning
total length 48 fixed length of header and data
op code | STARTSTREAM | start a stream
file id >0 open file id of this file
id identification to match reply with request
block number >0 first relative block in stream
block length BLOCKSIZE number of bytes per block in file
more blocks >0 number of blocks in stream

The data part of a STARTSTREAM request contains 24 bytes of information in the following order:

RR n-° 3460

1. a 4-byte unsigned integer giving the “stride” value to be used to generate successive relative block
numbers in the stream. If this value is 0 the agent will use a stride of 1.

2. a 4-byte unsigned integer giving the numerator of the “rate fraction”.

3. a 4-byte unsigned integer giving the denominator of the “rate fraction”.

4. a 4-byte unsigned integer giving the relative order of this server in this stream.

5. a 4-byte unsigned integer giving the total number of servers participating in this stream.

6. a 4-byte unsigned integer giving the id to be used by the agent when sending blocks back to the client
as part of this stream.

Upon receiving a STARTSTREAM request, the agent will take appropriate action to set up a stream
back to the client. The first block to be read from disk as part of the stream is that indicated by the relative
block number in the “block number” field of the STARTSTREAM request header. The relative block number
of each successive block in the stream is computed by adding the “stride” value to the block number of the
previous block. The “more blocks” field in the header indicates the total number of blocks to send. However,
if this field 1s 0, then the stream continues to the end of file. The rate at which blocks are sent is determined
from the fraction obtained by dividing the “numerator” field by the “denominator” field. This rate gives the
number of blocks per second to be sent by the agent. If either the “numerator” or “denominator” fields are
zero, blocks will be send “as fast as possible”. Note that in order to express a rate in terms of bytes per second,
the “numerator” field should contain this rate and the “denominator” field should contain BLOCKSIZE.

The “relative order” and “total number of servers” fields in the data part are used to compute the delay
for the first block in the stream as a fraction of the delay interval between successive blocks determined from
the rate. The “relative order” is a value in the range 0... N — 1, where N is the “total number of servers”.
If either the “server order” or the “total number of servers” fields i1s zero, the first block will be sent out
with no delay. These two fields are ignored if blocks are being sent “as fast as possible”. The accuracy of all
timings will clearly depend on the granularity of time resolution available to the agent and the ability of the
implementation to meet real-time deadlines.

Blocks sent back to the client by the agent contain in the “id” field of their header the identification code
sent by the client to the agent as the last field of the data part of the STARTSTREAM message. This enables
the client to establish whatever identification is appropriate to recognize the data blocks in this stream. The
“file 1d” field will contain a copy of the “file id” field from the STARTSTREAM request header. The rest of
the fields in the data block headers of a stream will be set identically to the fields in the data block headers
sent as replies to a READBLOCK request.

If the stream is successfully set up, the agent sends back a “success” reply consisting of just the 24-byte
header in the following format:

Field Value Meaning

total length 24 number of bytes in header
op code 0 STARTSTREAM was successful
file id >0 same as in request
id | identification | to match reply with request
block number 0 unused

block length 0 unused
more blocks 0 unused

The first data block from this stream will follow this “success” reply, possibly delayed by an appropriate
amount of time as determined by the rate information of the stream.

If the agent encounters an error when attempting to set up a stream, it sends back a “failure” reply
consisting of a 24-byte header followed by a variable length data part containing the text of an error message
as a null-terminated C string. The format of the “failure” header is:

INRIA

Field Value Meaning
total length | 244+ n+1 | n = strlen(error message)
op code #0 STARTSTREAM was not successful
file 1d >0 same as in request
id | id of request | to match reply with request
block number 0 unused
block length 0 unused
more blocks 0 unused

Clearly no data blocks from this stream will follow a “failure” reply.

6.4.4 STOPSTREAM

This operation 1s sent from the client to the agent in order to stop any previously started stream on this
file. This operation begins with a request from the client, and ends when a reply is sent back by the agent.
Such a request is acceptable to an agent only if the file was previously opened successfully in READBLOCK
mode. To be successful, it does not matter whether there is currently a stream in progress between this
agent and this client or not, but if there is, it will be stopped. The format of the STOPSTREAM request is

a message containing only the 24-byte header in the following format:

Field Value Meaning

total length 24 number of bytes in header
op code | STOPSTREAM | stop a stream
file 1d >0 open file id of this file
id identification to match reply with request
block number 0 unused

block length 0 unused
more blocks 0 unused

If the STOPSTREAM is successful, the agent sends back a “success” reply consisting of just the 24-byte

header in the following format:

Field Value Meaning

total length 24 number of bytes in header
op code 0 STOPSTREAM was successful
file id >0 same as in request
id | identification | to match reply with request
block number 0 unused

block length 0 unused
more blocks 0 unused

After receiving this “success” reply, a client can be sure that it will not receive any additional data blocks

from this stream.

If the agent encounters an error when attempting to perform a STOPSTREAM, it sends back a “failure’
reply consisting of a 24-byte header followed by a variable length data part containing the text of an error

message as a null-terminated C string. The format of the “failure” header is:

Field Value Meaning
total length | 244+ n+1 | n= strlen(error message)
op code #0 STOPSTREAM was not successful
file id >0 same as in request
id | id of request | to match reply with request
RR n° 3460 block number 0 unused
block length 0 unused
more blocks 0 unused

6.4.5 SYNCFILE

This operation is sent from the client to the agent in order to force onto disk all blocks previously written to
the indicated file. This will flush the cache for this file in the agent, and will also cause the agent to perform
whatever operations are necessary on the server node to ensure that previously written blocks are in fact on
permanent disk storage. In POSIX this is refered to as “synchronized 1/0 data integrity completion”.

This operation begins with a request from the client, and ends when a reply is sent back by the agent. It
is acceptable to an agent only if the file was previously opened successfully in WRITEBLOCK or RDWR-
BLOCK mode.

The SYNCFILE request message from the client to the agent consists of just the 24-byte header in the
following format:

Field Value Meaning
total length 24 number of bytes in header
op code | SYNCFILE | force written blocks to disk
file id >0 open file id of this file
id | identification | to match reply with request
block number 0 unused
block length 0 unused
more blocks 0 unused

Upon receiving a SYNCFILE request, the agent will take appropriate action to flush its buffer cache
(if any) for this file, and then force all previously written data blocks for this file onto the permanent disk
storage. If this is successful, the agent sends back a “success” reply consisting of just the 24-byte header in
the following format:

Field Value Meaning
total length 24 number of bytes in header
op code 0 SYNCFILE was successful
file id >0 same as in request
id | identification | to match reply with request
block number 0 unused
block length 0 unused
more blocks 0 unused

If the agent encounters an error when attempting to perform a SYNCFILE;, it sends back a “failure” reply
consisting of a 24-byte header followed by a variable length data part containing the text of an error message
as a null-terminated C string. The format of the “failure” header is:

Field Value Meaning

total length | 24+ n+1 | n= strlen(error message)
op code #0 SYNCFILE was not successful
file id >0 same as in request
id | id of request | to match reply with request
block number 0 unused

block length 0 unused
more blocks 0 unused

INRIA

6.4.6 SETCACHE

This operation is sent from the client to the agent in order to obtain or change the parameters used by the
agent to perform buffer caching on an open file.

This operation begins with a request from the client, and ends when a reply is sent back by the agent.
It is acceptable to an agent only if the file was previously opened successfully in any mode.

The SETCACHE request message consists of the 24-byte header followed by a 24-byte data part. The
header format is:

Field Value Meaning
total length 48 length of header and data part
op code | SETCACHE | set agent cache parameters
file id >0 open file id of this file
id | identification | to match reply with request
block number 0 unused
block length 0 unused
more blocks 0 unused

The data part is an array containing 6 4-byte unsigned integer values in the following order:

e an option to determine the action taken by the agent in response to this request. It can have the
following values:
0 turns agent caching off. In this case the rest of the items in this array are ignored by the agent.
1 turns agent caching on.

2 leaves agent caching unchanged. In this case the rest of the items in this array are ignored by the
agent.

a value indicating the “cache replacement strategy”. It can have the following values:

0 leave unchanged or use the implementation-defined default replacement strategy.
1 use a “First-In, First-Out” (FIFO) replacement strategy.

2 use a “Least Recently Used” (LRU) replacement strategy.

3 use a “RANDOM?” replacement strategy.

a value indicating the “cache write-through policy”. It can have the following values:

0 leave unchanged or use the implementation-defined default write-through policy.
1 use the policy that every write into the cache is also immediately written to disk (“write through”).

2 use the policy that a buffer is written to disk only when it is about to be replaced in the cache
(“write behind”).

e a value indicating the number of hash bins to use for the cache. A value of 0 means to leave this value
unchanged or use the implementation-defined default.

e a value indicating the maximum number of buffers to keep in the cache. A value of 0 means to leave
this value unchanged or use the implementation-defined default.

e currently unused.

Upon receiving a SETCACHE request, the agent will take the action indicated by the option value in
the first item of the array. If the option is to leave caching unchanged, the agent will simply send back a
“success” reply indicating the current status of the cache.

If the option is to turn caching off, any dirty buffers currently in the cache will be flushed to disk before
the agent replies to this command.

RR n-° 3460

If the option is to turn caching on when it is off, then any items in the array containing a value of zero
are interpreted to mean “use the implementation-defined default”.

If the option is to turn caching on and it is already on, then any items in the array containing a value of
zero are interpreted to mean “leave the current value unchanged”. Each value changed will require appropriate
action by the agent before it sends a reply back to the client. If the “write through” policy changes from
“write behind” to “write through”, the agent must flush the cache. If the number of hash bins changes, all the
buffers in the cache must be re-hashed. If the maximum number of buffers to keep in the cache decreases,
the agent may have to remove some buffers from the cache to get below the new maximum.

Note that an agent services all clients accessing the same file, so it is possible that different clients will
have different caching needs. BPFS offers no solution to this problem, since each client is free to impose its
own caching parameters to the agent and the agent will utilize the “most recent” values sent to it. If this
is a problem, a higher-level layer above BPFS can be implemented to coordinate the actions of the clients,
perhaps scheduling them in a sequence such that only clients with similar caching requirements will run in
parallel.

If the agent detects any error it will send back a “failure” reply consisting of a 24-byte header followed by
the text of an error message in the form of a null-terminated C string. The format of the “failure” header is:

Field Value Meaning

total length | 244+ n+1 | n= strlen(error message)
op code #0 SETCACHE was not successful
file id >0 same as in request
id | id of request | to match reply with request
block number 0 unused

block length 0 unused
more blocks 0 unused

A “success” reply consists of a 24-byte header followed by a data part containing an array of 6 4-byte
unsigned integer values that represent the current status of the agent’s cache. The format of the “success”
header is:

Field Value Meaning
total length 48 length of header and status data
op code 0 SETCACHE was successful
file id >0 same as in request
id | identification | to match reply with request
block number 0 unused
block length 0 unused
more blocks 0 unused

The 6 unsigned integer items in the data part following the header are as follows:

o the current activity state of the agent’s cache: (0 means caching is off (in which case all following values
in this array will be 0); 1 means caching is on.

e the current buffer replacement strategy in use: 1 means FIFO, 2 means LRU, 3 means RANDOM.
e the current write-through policy in use: 1 means write-through, 2 means write-behind.

e the current number of hash bins in the hash table.

e the maximum number of buffers that can be kept in the cache.

e the number of buffers currently in the cache.

INRIA

6.5 The Protocol between Manager and Server

This protocol is the means by which a manager communicates with the data servers. There are two basic
types of message exchange expressed in this protocol:

1. the manager forwards client requests to servers and gets back the servers’ responses.
2. the manager sends a “confirm” or “abort” message to the server and gets back the servers’ responses.

When the manager starts up, it must establish communication with a set of data servers. This is done
by invoking the implementation-defined function “getdefaultservers”, which returns the number of servers, a
list of their locations, and a list of their names (to be used in metadata). This set becomes the “default” set
of data servers that the manager will use when creating new files for which the client has not specified an
explicit list of servers. There is a separate connection between the manager and each server. The manager
may keep each connection open “forever”, or may close and reopen connections as necessary.

6.5.1 Forwarded Operations

The nine possible operations sent from the client to the manager are the same nine operations in this protocol
that the manager will forward to the servers. In most cases the manager makes only two changes to the
message received from a client before forwarding it to each server.

1. The manager replaces the “identification” field in the header with its own unique identification, so that
it can match the replies from the servers with this request.

2. The manager stores in the “block length” field of the header the ordinal number of this server in this
file as determined by the list of servers in the metadata for this file. For example, if the metadata list
for the requested file contains 4 servers A, B, C, and D, then the “block length” field in the header sent

to server A will be 0, that in the header sent to B will be 1, that to C will be 2, and that to D will be

3.

The only other change the manager makes to a request received from a client before forwarding it to
each server is that for the three open operations READBLOCK, WRITEBLOCK, and RDWRBLOCK, if
the create attribute in the “block number” field in the request was 2, indicating “create as needed”, then the
manager will change this attribute to 0 if the metadata component already existed, and to 1 if it had to
create the metadata component. This ensures that the creation of the data components by servers will be
consistent with the creation of the metadata component by the manager.

Note that for the open and close operations, the messages sent by the manager to the servers contain the
full variable-length data part sent to the manager by the client. If necessary to conform to implementation-
defined naming conventions for the metadata and data components, the file name strings in this data part
can be modified appropriately by the manager before forwarding to the client.

Upon receipt of a request for one of these nine operations forwarded from the client, the server will
attempt to process it. If the server detects any error during this attempt, it will send a “failure” reply
message back to the manager, otherwise it will send back a “success” reply.

The format of the “failure” reply is nearly identical to the format of a “failure” reply sent by the manager
to a client. It consists of a 24-byte header followed by the text of an error message describing the failure.
The general format of the “failure” reply header is:

Field Value Meaning

total length | 24+ n+1 | n = strlen(error message)
op code #0 requested op was not successful
file id 0 reply to manager’s request
id | id of request | to match reply with request
block number 0 unused

block length >0 ordinal number of this server in file
more blocks 0 unused

RR n-° 3460

The data portion of a “failure” reply contains the text of an error message in the form of a null-terminated
C string.

Likewise, the format of a “success” reply sent by a server back to a manager is similar to the “success” reply
sent by the manager back to the client. For the four operations GETSTATUS, READBLOCK, WRITE-
BLOCK, and RDWRBLOCK, it consists of a 24-byte header followed by 24 bytes giving the status of the
data component on this server. The general format of the “success” reply header is:

Field Value Meaning
total length 48 length of header and status info
op code 0 requested op was successful
file id 0 reply to manager’s request
id | id of request | to match reply with request
block number 0 unused
block length >0 ordinal number of this server in file
more blocks 0 unused

The data part of the “success” reply contains the following 24 bytes of status information:

e 8 bytes — the location of the agent on this server.

e 2 bytes — the protection codes on this server.

e 2 bytes — an open file id on this server

e 4 bytes — the number of full blocks on this server.

e 4 bytes — the number of bytes in any partial last block.

e 4 bytes — currently unused

For the five operations CLOSEFILE, DELETEFILE, ERASEFILE, LINKFILE, and MOVEFILE, the

“success” reply consists of just a 24-byte header in the following format:

Field Value Meaning
total length 24 length of header
op code 0 requested op was successful
file id 0 reply to manager’s request
id | id of request | to match reply with request
block number 0 unused
block length >0 ordinal number of this server in file
more blocks 0 unused

6.5.2 Confirming or Aborting Server Actions

In order to ensure that all servers perform the same actions in a consistent manner, many operations require
two exchanges between the manager and each server. The first exchange, described above, involves forwarding
the client’s request to each server and getting back a reply from each server. The second exchange, to be
described next, involves sending to each server a CONFIRM request and getting back a reply to that, or
sending to some of the servers an ABORT request, which requires no reply.

Between the time a server receives a request and the time it receives the relevant CONFIRM or ABORT,
the file effected is blocked to all other operations except GETSTATUS.

If in the first exchange any server detects an error that prevents it from carrying out the requested
operation, it will send a “failure” reply to the manager. This server is now finished with the operation and
has made no change to any files or agents as a result of the failed operation. After all replies have been

INRIA

received, the manager determines whether any of them were failures. If there was at least one failure, the
manager may send an ABORT request to each of the other servers (if any) that sent back a “success” reply.
It also sends a “failure” reply back to the client without waiting for a reply to the ABORT from the servers.

If all servers sent back “success” replies in the first exchange, the manager may send a CONFIRM request
to each server. It then waits to receive a reply from each server before sending a “success” reply back to the
client.

The use of the second exchange depends on the operation being performed and whether it was a success
or failure. The following table illustrates the possibilities:

CONFIRM sent | ABORT sent

Operation on success on failure
CLOSEFILE no no
ERASEFILE no no
GETSTATUS no no
RDWRBLOCK no yes
READBLOCK no yes
WRITEBLOCK | if truncate is 1 yes
DELETEFILE yes yes
LINKFILE yes yes
MOVEFILE yes yes

The steps taken by the server in each of these cases is as follows:

CLOSEFILE When the server receives the original CLOSEFILE request in the first exchange, it closes
the file if at all possible. The only reason it might not be able to do so is that it did not have the file
open in the first place (and so it is effectively already closed). Tt is assumed that if a server was able
to open a file successfully, it must be able to close that file. Whether or not the close succeeds, this
server should no longer have it open. Therefore, neither a CONFIRM nor an ABORT is necessary.

ERASEFILE When the server receives the original ERASEFILE request in the first exchange, it
deletes the file if at all possible. The only reason it might not be able to do so is that it did not have
permission. Whether or not the erase succeeds, the server should have no access to it. By definition,
ERASEFILE (unlike DELETEFILE) erases as much as possible without the need for everything to
be erased. Therefore, the actions of one server do not need to be coordinated with the actions of any
other server for this file, and neither a CONFIRM nor an ABORT is necessary.

GETSTATUS When the server receives the original GETSTATUS request in the first exchange, it
obtains the information about the file if at all possible. The only reason it might not be able to do
so 1s that the file does not exist. This is a completely passive command as far as the state of the
file is concerned, and therefore, whether or not the GETSTATUS succeeds, the actions of one server
do not need to be coordinated with the actions of any other server for this file. Therefore, neither a

CONFIRM nor an ABORT is necessary.

RDWRBLOCK When the server receives the original RDWRBLOCK request in the first exchange, it
opens the file for reading and writing if at all possible. If it succeeds, there is no need for a CONFIRM
because there is nothing further for the server to do in this case — the file is already open. However,
if some other server failed, then this server must be made to close the file, and therefore an ABORT is
necessary.

READBLOCK The situation is identical to that of RDWRBLOCK, except that the file is opened only
for reading.

WRITEBLOCK When the server receives the original WRITEBLOCK request in the first exchange, it
opens the file for writing without truncation if at all possible. If it succeeds, and if the user requested
truncation, there is a need for a CONFIRM because the truncation cannot be performed unless all the

RR n-° 3460

servers have been able to open the file for writing successfully. If some other server failed, the manager
will send an ABORT to each successful server so that it will close the file without truncation.

DELETEFILE When the server receives the original DELETEFILE request in the first exchange, it
must determine whether or not the file can be deleted without actually performing the delete. In
UNIX, for example, this can be done by attempting to link the file to some other non-existant name in
the same directory — if this succeeds, then the user has access rights which allow him to change the
directory containing this file and a delete is possible.

In its reply to the DELETEFILE, the server reports to the manager whether or not it can delete the
file. If it cannot, this is a “failure” reply and the server is finished with this operation. If 1t can, this
is a “success” reply and the server must away either a CONFIRM from the manager, indicating to go
ahead and actually delete the file, or an ABORT from the manager, indicating to leave the file intact.

LINKFILE When the server receives the original LINKFILE request in the first exchange, it creates
the link to the new name if at all possible and reports back its success or failure to the manager. If
any server fails, then the manager must send an ABORT to all those that succeeded so that they will
destroy the newly created link. If all servers succeed, then the manager must send a CONFIRM to all
of them so that they can unblock this file for other control operations.

MOVEFILE When the server receives the original MOVEFILE request in the first exchange, it creates
the link to the new name if at all possible, but does not destroy the old name. It then reports back its
success or failure to the manager. If any server fails, then the manager must send an ABORT to all
those that succeeded so that they will destroy the newly created link. If all servers succeed, then the
manager must send a CONFIRM to all of them so that they can delete the old name.

Both the CONFIRM and ABORT requests sent by the manager consist of just a 24-byte header in the

following format:

Field Value Meaning

total length 24 length of header
op code >0 CONFIRM or ABORT
file id >0 open file id
id | identification | to match reply with request
block number 0 unused

block length >0 ordinal number of this server in file
more blocks 0 unused

The “file i1d” field contains the open file identification code sent back to the manager by this server in
its “success” reply to this operation. Its presence in the CONFIRM or ABORT request allows the server to
identify which operation is being confirmed or aborted. Note that neither a CONFIRM nor an ABORT will
ever be sent to a server that sent back a “failure” reply.

A CONFIRM always requires a reply, which consists of just a 24-byte header in the following format:

Field Value Meaning
total length 24 length of header
op code 0 requested op was successful
file id | CONFIRM | reply to manager’s CONFIRM
id | id of request | to match reply with request
block number 0 unused
block length >0 ordinal number of this server in file
more blocks 0 unused
Note that this is a “success” reply — it is not possible for the server to send back a “failure” reply to

a CONFIRM because it is expected that the operation will succeed (otherwise this server would not have
replied “success” in the first exchange).

INRIA

6.6 The Protocol between Server and Agent

The relationship between a server and its agents is different than the relationship between any other active
components because these two components normally will reside on the same logical node and therefore do
not have to communicate via a network. This is due to the fact that, in most implementations, the agent is
expected to be a child process or thread spawned by the server. At the time it creates an agent, the server is
able to communicate information to the new agent via shared memory. The server-agent protocol therefore
only involves subsequent exchanges of information after the initial creation. The exact mechanism used
for this exchange i1s implementation dependent, but is expressed in this report by using a message passing
paradigm with the expectation that, in UNIX at least, pipes will be the chosen mechanism.

When the server first creates an agent, it assigns to that agent a unique 16-bit “open file identification”
number. This number must be made known to the agent at the time of its creation, since the agent must
include it in the header of all replies it sends to the server. This is called an "open file identification", but
it could equally well be called an "active agent identification", because each file opened by the server is
associated with a single agent, and all open requests for the same file are directed by the server to the same
agent. This identification number is used by the server to associate the agent and messages from the agent
with the internal information it keeps about the file.

In this protocol there are only two types of request that a server can send to an agent:

1. READBLOCK, WRITEBLOCK or RDWRBLOCK — to inform the agent that the server has suc-

cessfully accepted from the manager a new open in one of these three modes.

2. ABORT — to inform the agent that the server has just received an ABORT request from the manager
that aborts a previously accepted open.

After acting on the request, the agent is expected to reply to a READBLOCK, WRITEBLOCK or
RDWRBLOCK, but not to an ABORT. The agent will also send “unsolicited” replies to the server whenever
a client connects or disconnects with the agent. This enables the server to keep track of the number of
clients connected to the agent and ultimately to decide when to terminate the agent process or thread. As
explained below, with this protocol it is possible for a server to reuse an idle agent on a new file rather than
to terminate an agent each time it becomes idle and then recreate it on each new file open.

6.6.1 READBLOCK, WRITEBLOCK, RDWRBLOCK
The server sends a READBLOCK, WRITEBLOCK, or RDWRBLOCK request to an existing agent whenever

the server itself successfully processes one of these new file open requests from the manager. The server will
delay sending its reply for this request back to the manager until it receives the corresponding reply from the
agent. This is clearly necessary, since if the agent replies with a “failure”, the server must report this back to
the manager. Note that these open requests are not sent to a newly created agent, only to an existing agent
that is expected to handle an additional request beyond the one that caused the server to create the agent
in the first place.

The open request to the agent consists of a 24-byte header that may be followed by the name of the file.
The header has the following format:

Field Value Meaning

total length 244+ n length of header and data
op code #0 one of 3 open op codes
file id >0 open file id
id | identification | to match reply with request
block number 0 unused

block length 0 unused
more blocks 0 unused

The “file id” field contains the open file identification code generated by the server when the agent was
created. It should always be the same in every request sent by the server to this particular agent. The server
will also send this code in a reply back to the manager if the agent sends a “success” reply to this operation.

RR n-° 3460

If the value of n in the “total length” field is zero, this request is reporting a new open of the same file
in the same mode as the previous open and there is no additional data in the message following the header.
However, if this value is non-zero, then it will have the value n = (strlen(name) + 1), where name is the
null-terminated C string containing the name of a file to be opened by the agent in place of the current file.
(Tt could, of course, be the same name as the current file, but in that case the open mode will be different).
This string follows the message header.

Upon receiving an open request that includes a file name, the agent will attempt to close the existing
file and open the named file in the new mode. The agent will never have to create or truncate a file in such
an open, because those tasks are always done by the server — by the time the open request arrives at the
agent all the agent has to do is open the named file for reading, writing or updating. Note that a server will
never ask an agent to close a file that is still in use. This mechanism exists so that the server can effectively
“reuse” idle agent processes or threads without incurring the overhead of terminating and recreating them.

A READBLOCK, WRITEBLOCK or RDWRBLOCK request always requires a reply, which can be
either a “success” or “failure” reply depending on whether or not the agent was able to process the open
request successfully. The “success” reply consists of just a 24-byte header in the following format:

Field Value Meaning
total length 24 length of header
op code 0 requested op was successful
file id >0 same as in request

id | id of request | to match reply with request
block number | CONFIRM | reply to an open request
block length 0 unused

more blocks 0 unused

The “failure” reply consists of a 24-byte header followed by the text of an error message in the form of a
null-terminated C string. The format of the “failure” reply header is as follows:

Field Value Meaning
total length | 24+n+1 | n = strlen(error message)
op code #0 requested op was not successful
file id >0 same as in request

id | id of request | to match reply with request
block number | CONFIRM | reply to an open request
block length 0 unused

more blocks 0 unused

6.6.2 ABORT

The server forwards an ABORT request to an agent whenever the server itself receives such a request from
the manager after a successful file open. It means that some other server participating in this parallel file
was not able to open its data component successfully, and therefore the previously successful open on this
server and agent must be aborted. For the agent, this means that it should no longer expect a connection
from a new client.

The ABORT request consists of just a 24-byte header in the following format:

Field | Value Meaning
total length 24 length of header

op code | ABORT | abort a previous open
file id >0 open file id

id 0 no reply to this request
block number 0 unused
block length 0 unused INRIA
more blocks 0 unused

The “file 1d” field contains the open file identification code sent back to the manager by this server in its
“success” reply to the operation being aborted. It should always be the same in every request sent by this
server to this particular agent.

The server does not require or expect a reply from the agent after an ABORT request.

6.6.3 Unsolicited Replies from Agent to Server

Whenever a client opens or closes a network connection to an agent, the agent reports this to the server in
charge of that agent by sending an “unsolicited reply” message to that server. The server is able to identify
the source of these replies because the header must contain the unique “open file identification” number of
the agent that was assigned by the server when it first created the agent. At the time a new connection is
opened to a client, the agent assigns the client an arbitrary identification number that it will copy into the
“block length” field in the header of all unsolicited replies it sends to the server.

The unsolicited replies an agent sends to the server consist of a 24-byte header followed by an 8-byte
data part containing the location of the client as an implementation-defined opaque structure in network
byte order.

The 24-byte header of these unsolicited messages has the following format:

Field | Value | Meaning
total length 32 length of header plus client location

op code successful operation
file 1d 0 | open file id
id unsolicited reply

RDWRBLOCK or CLOSEFILE

client identification

block number
block length

more blocks

IV oIV o
o O

unused

The “block number” field will contain RDWRBLOCK to indicate a client connect, and CLOSEFILE to
indicate a client disconnect.

7 Conclusions and Future Work

This report has described the architecture of BPFS, a basic parallel file system. The design is specified in
terms of four protocols between four active components. It provides for the basic services needed to create,
manage, read, write and delete parallel files stored on a set of disks distributed throughout a network. It is
an “open” set of specifications to encourage experimentation with and evolution of the design.

BPFS itself is “low level”, and is not designed for direct programming at the application level. Indeed,
no programming interface is included in the specifications. It is expected that some features often found in
parallel file systems, such as client side caching, parity redundancy for fault recovery, and collective 1/0, will
be implemented as separate layers on top of BPFS.

We have created an application programmer interface called “API0” that allows higher-level access to
the functionality provided by BPFS. Several test programs have been written using this interface, and some
performance measurements have been taken with these programs. In addition, a UNIX-like “Standard 1/0”
interface, and an MPI-IO interface (based on the ADIO concept [18]) have been written to go on top of
APIO. All these interfaces and their performance tests will be described in a forthcoming report.

The first implementation of BPFS, for UNIX using TCP/IP, is described briefly in the Appendix. Because
this first implementation is on “generic UNIX”, it does not use any of the advanced features now appearing
in many UNIX implementations, such as threads, asynchronous I/0O, and other POSIX real-time features.
However an attempt was made to follow at least the spirit of the design specifications in providing an
asynchronous “look and feel” to the active components and the API0 layer. This was done by interposing an
extra software layer just above the UNIX operating system that simulates asynchronous network I/0. This
too will be described in a separate report.

RR n-° 3460

Finally, a group at ENS-Lyon is working on the more general parallel computation system of which BPFS
is just one part. We plan to implement video streaming and video editing applications, as well as out-of-core
array manipulation packages. We also plan to try other networking technologies which promise much higher
network bandwidth and lower latency than is possible with TCP/IP. We would also like to try some of the
newer disk technologies, such as network attached disks, to increase the performance of the file system.

References

[1] AnpERson, T. E., DanrLiN, M. D., NErerE, J. M., ParTERSON, D. A., RoseLL1, D. S., AND WaNg, R. Y.
Serveless network file systems. In 5th Symposium on Operating Systems Principles, ACM Transactions on
Computer Systems (1995).

[2] CHEN, Y., WINSLETT, M., SEaMoONS, K. E., Kvo, S., CHo, Y., AND SUBRAMANIAM, M. Scalable message
passing in Panda. In Proceedings of the Fourth Workshop on Input/Output in Parallel and Distributed Systems
(Philadelphia, May 1996), ACM Press, pp. 109-121.

[3] CHouDHARY, A., BORDAWEKAR, R., MoRE, S., SivaraM, K., AND THAKUR, R. PASSION runtime library
for the Intel Paragon. In Proceedings of the Intel Supercomputer User’s Group Conference (June 1995).

[4] CormMEN, T. H., aAND CorviN, A. ViC*: A preprocessor for virtual-memory C*. Tech. Rep. PCS-TR94-243,
Dept. of Computer Science, Dartmouth College, November 1994.

[5] ELrorp, C., Kuszmaur, C., HUBER, J., AND MADHYASTHA, T. Portable parallel file system detailed design.
Tech. rep., University of Illinois at Urbana-Champaign, November 1993.

[6] Forum, M. P. I. MPI-2: Extensions to the message-passing interface. Tech. rep., University of Tennessee,
Knoxville, Tennessee, July 1997.

[7] FosTERr, I., KEsseLMAN, C., AND TUECKE, S. The nexus approach to integrating multithreading and commu-
nication. Journal of Parallel and Distributed Computing 37, 1 (August 1996), 70-82.

[8] GiBson, G. A., StopoLsky, D., CHAaNG, P. W., CourTrigHT 1T, W. V., DEMETRIOU, C. G., GINTING, E.,
HorrLanp, M., Ma, Q., NEaL, L., PatTERsoN, R. H., Su, J., Yousser, R., AND ZELENKA, J. The Scotch
parallel storage systems. In Proceedings of 40th IEEE Computer Society International Conference (COMPCON
95) (San Francisco, Spring 1995), pp. 403-410.

[9] HuBer, J., Evrorp, C. L., REED, D. A., CHIEN, A. A., AND BLUMENTHAL, D. S. PPFS: A high perfor-
mance portable parallel file system. In Proceedings of the 9th ACM International Conference on Supercomputing
(Barcelona, July 1995), ACM Press, pp. 385-394.

[10] JounsTON, W. E., HERZOG, H., Hoo, G., JiN, G., LEE, J., CHEN, L. T., AND RoTEM, D. Distributed
parallel data storage system: A scalable approach to high speed image servers. In Proceedings of ACM Multimedia
- San Francisco (October 1994).

[11] KoTz, D., AND NIEUWEJAAR, N. Flexibility and performance of parallel file systems. ACM Operating Systems
Review 30, 2 (April 1996), 63-73.

[12] MiLLEr, E. L., anp Katz, R. H. RAMA: An easy-to-use, high-performance parallel file system. Parallel
Computing 23, 4 (June 1997), 419-446.

[13] MPI-2: Extensions to the message-passing interface. The MPI Forum, July 1997.

[14] NieuwEJAAR, N., AND KoTz, D. The Galley parallel file system. In Proceedings of the 10th ACM International
Conference on Supercomputing (Philadelphia, PA, May 1996), ACM Press, pp. 374-381.

[15] PaTTERSON, R. H., GiBsoN, G. A., GINTING, E., SToDOLSKY, D., AND ZELENKA, J. Informed prefetching and
caching. In Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles (Copper Mountain,
CO, December 1995), ACM Press, pp. 79-95.

[16] PryLLI, L., AND TOURANCHEAU, B. BIP: A new protocol designed for high performance networking on myrinet.
In Workshop PC-NOW, IPPS/SPDP (1998).

[17] RusseLL, R. D., aND HaTcHER, P. J. Efficient kernel support for reliable communication. In 13th ACM
Symposium on Applied Computing (1998).

[18] THakur, R., GRoPP, W., AND LuUsk, E. An abstract-device interface for implementing portable parallel-1/O
interfaces. In Proceedings of the Sizth Symposium on the Frontiers of Massively Parallel Computation (October
1996), pp. 180-187.

INRIA

Appendix

This appendix gives a brief overview of the first implementation of BPFS. All the software was written
in ANSI Standard C for a basic “POSIX 1003.1 standard” UNIX extended with the BSD 4.3 socket interface
to the TCP/IP protocol stack. This software was tested on the following platforms:

e Linux 2.0.29 on Intel Pentium processors interconnected by Myrinet and 10 Mbps ethernet.
e SunOS 5.5.1 on SUN SPARC and i86pc processors interconnected by 10 Mbps ethernet.
e OSF1 4.0 on DEC ALPHA processors interconnected by 10 Mbps ethernet.

In principle this software should be trivially portable onto any collection of UNIX-based workstations inter-
connected by a TCP /TP network.

Standard UNIX does not provide real-time or asynchronous 1/0 facilities. These have been simulated in
this implementation using an extra software layer called the “g-interface” (described in a separate report).
This layer provides a time resolution of 1 microsecond for data streaming operations. It also serves to isolate
the use of TCP/IP networking from the rest of BPFS, so that to utilize a different protocol stack would
require changing only this layer. Part of this isolation includes providing message transmission to the rest
of BPFS by efficiently maintaining message boundaries in the TCP byte stream.

A.1 Network Locations

A network “location” is represented internally as a 32-bit binary IP address and a 16-bit binary port number,
both in network byte order. Externally, a “location” is represented as an IP address in “dotted-decimal”
notation, followed by a colon (:) followed by a port number as an integer, for example “140.77.11.38:3775”.
The colon and port number are optional when a “location” is provided by the user, in which case a “well

know port number” of 3774 is assigned to manager components, and 3775 is assigned to server components.

A.2 Data and Metadata Storage

Both metadata and data components are stored as normal UNIX files in the host file system on each node.
The following naming convention has been adopted. If the client wishes to call a file “xxx”, then BPFS will
store the metadata in a file called “xxx.meta” on the manager node, and each of the data components in a
file called “xxx” on each server node. Before using a file name sent to it by a client, the manager explicitly
looks for and strips off the suffix “.meta”.

The BLOCKSIZE is 16384, although this value is simply a compile-time constant, so it can be easily
changed by just modifying one header file and recompiling everything. This BLOCKSIZE allows BPFS to
handle files containing up to 68 terabytes of data, assuming that much disk space is available and addressable
on the server nodes.

UNIX stores a file as an ordered sequence of bytes. BPFS partitions this sequence into fixed-size subse-
quences called blocks, each containing BLOCKSIZE bytes. The byte position of the first byte in a block is
determined by simply multiplying the block number by BLOCKSIZE. It is common for a UNIX implemen-
tation on a 32-bit machine to limit byte position numbers to 32 bits, which means a data component stored
as a UNIX file can contain at most 4 Gigabytes (assuming there is enough disk space to store this much
data on a single server node). Therefore, on such systems, BPFS with a BLOCKSIZE of 16384 is restricted
to data components containing no more than 262,144 blocks.

A.3 Active Components

The client is implemented as a library whose interface is called “API0”. This interface will be described in a
separate report. User applications use BPFS by calling functions in this library.

The manager and server components are implemented as separate daemons running as user processes —
they have not yet been implemented as “root” processes. They store relative file names (i.e., names starting

RR n~° 3460

with a character other than “/”) relative to the directories in which the manager and server daemons are
started. It is therefore essential that the manager and all servers be started on their respective nodes in the
same position in the directory hierarchy. Absolute file names (i.e., names starting with “/”) are used directly
as full absolute path names on each node. Because they are not “root” processes, the manager, server and
agent components all access files with the user id and group id they were started with. If these ids are not
the same as those of the client, the client may not be able to access his files outside of BPFS.

Each agent component is a child process “forked” (but not “execed”) by a server. On the agent, caching is
off by default. If a client turns caching on, the default “cache replacement strategy” is FIFO (1), the default
“write-through policy” is WRITE_THRU (1), the default number of hash bins is 251, and the default
maximum number of buffers allowed in the cache is 128.

A.4 Functions

The “getdefaultserverlist” function, which is called by the manager, obtains its list of servers by looking
for the environment variable “BPFS SERVERS” in the environment of the manager. The value of this
environment variable must be a comma- or blank-separated list of DNS names and/or dotted-decimal TP
addresses which the manager will use as its list of default servers. Optional port numbers can also be supplied
as part of each item in this list using the “colon” notation. This function returns a pointer to this list. If
this variable is not defined in the environment, this function will return a NULL pointer.

The “getdefaultstriping” function, which is called by the manager, obtains the number of the default
mapping function by looking for the environment variable “BPFS_MAPPING” in the environment of the
manager. If this variable is not defined in the environment, this function will return a value of 0 for it. This
function also obtains the default thickness by looking for the environment variable “BPFS THICKNESS” in
the environment of the manager. If this variable is not defined in the environment, this function will return
a value of 0 for it.

The “q_strtolocation” and “q_ locationtostr” functions, which convert between the internal and external
representations of a location and are used throughout BPFS, are provided by the q_interface layer. The
formats were explained in Section A.1 above.

The default “getmanagerlocation” function, which is called by a client to locate the manager for a file,
maps all file names onto a single manager process. It obtains the location of this manager by looking for
the environment variable “BPFS MANAGERS” in the environment of the client. The value of this variable
must be the DNS name or dotted-decimal TP address of the node on which the manager daemon is running.
An optional port number can also be supplied. If no such variable is defined in the environment, the client
looks for the manager on the same node as the client.

The default “gatheruserinfo” function, which is called by a client, obtains the current “umask” of the
client process and the login name of the client as a text string.

The two standard file striping functions (regular, pseudo-random) have been implemented. There is
currently no mechanism to dynamically load new mapping functions. A user can provide his own functions,
but they must be compiled and loaded with the client software. There are three tables, one for each of
the three striping functions, defined in the source file for API0. The standard mapping functions occupy
slots one and two in each table. To add new functions, simply add references to them in the initialization
associated with each table.

The three standard cache replacement strategies (FIFO, LRU, RANDOM), and the two standard write-
through policies have been implemented. There is currently no mechanism to dynamically load new replace-
ment functions. A system administrator can provide his own functions, but they must be compiled and
loaded with the server software. There are three tables, one for each of the three replacement functions,
defined in the server source file. The standard replacement functions occupy slots one, two, and three in
each table. To add new functions, simply add references to them in the initialization associated with each
table.

A.5 Startup

In order to run BPFS, the server daemons must be started first, then the manager daemon, and then the
user applications (which are linked to the APTO0 client interface). Once started, the server and manager

INRIA

daemons run “forever”, and must be manually terminated (by the use of Control-C, for example). All user
applications utilize the same manager and server daemons.

When the server daemon is started, it can be provided with a command-line parameter giving the external
representation of a location at which it is supposed to register itself as a server. Clearly this must be an
interface (with optional port number) available on the node on which it is running. If no such parameter is
provided, the server listens on “any” interface available on the node on which it is running.

When the manager daemon is started, it can be provided with one, two or three optional command-line
parameters. (Obviously if the first parameter is missing, the second and third parameters must also be
missing.)

1. The first command-line parameter is a comma- or blank-separated list of DNS names and/or dotted-
decimal TP addresses which the manager will use as its list of default servers. Optional port numbers
can also be supplied as part of each item in this list using the “colon” notation. If this parameter is
missing, or if the list is empty, the manager will call the “getdefaultserverlist” function to obtain a list
of default servers. If this function returns NULL or an empty list, the manager expects to find a single
server on the same node as the manager to use as its default server.

2. The second optional command-line parameter is the number of the default mapping function. If this
parameter is missing or has the value 0, the manager uses the value returned by the “getdefaultstriping”
function. If this function returns a value of 0 for this variable, the manager uses a default file mapping
function of 1, which performs regular striping with uniform thickness across the indicated set of servers.

3. The third optional command-line parameter is the default stripe thickness. If this parameter is missing
or has the value 0, the manager uses the value returned by the “getdefaultstriping” function. If this
function returns a value of 0 for this variable, the manager uses a default file striping thickness of 1.

RR n-° 3460

/<

Unit e de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit e de recherche INRIA Rhéne-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr

ISSN 0249-6399

