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Validation formelle de programmes data-paralleles:
un systeme de preuve par assertions a deux composantes
pour un langage simple

Résumé : Nous présentons un systéme de preuve pour un langage data-parallele simple, le langage
L. Ce systéeme de preuve est fondé sur un langage d’assertions a deux composantes. Nous définissons
un calcul des plus faibles préconditions et analysons ses propriétés de définissabilité. Nous utilisons ce
calcul pour prouver la complétude du systeme de preuve. Nous présentons également une méthodologie
de preuve en deux phases. Les preuves obtenues sont semblables a celles données pour les langages
scalaires. Nous discutons finalement d’autres approches.

Mots-clé : Programmation parallele, spécification et validation de programmes, sémantique des
langages de programmation, langages data-paralleles, systeme de preuve, logique de Hoare, plus faibles
préconditions.
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1 Introduction

Data-parallel languages have recently emerged as a major tool for large scale parallel programming. An
impressive effort is currently being put on developing eflicient compilers for High Performance Fortran
(HPF). DPCE [14], a data-parallel extension of C primarily influenced by Thinking Machine’s C*, is
currently under standardization. Our goal is to provide all these new developments with the necessary
semantic bases. These bases are crucial to design safe and optimized compilers, and programming
environments including parallelizing, data-distributing and debugging tools. They are also the way to
safer programming techniques, so as to avoid the common waste of time and money spent in debugging.

Existing data-parallel languages, such as HPF, C*, HyperC or MPL, include a similar core of data-
parallel control structures. In previous papers, we have shown that it is possible to define a simple but
representative data-parallel kernel language (the £ language) and to give it a formal operational [4]
and denotational semantics [3].

In this paper, we define a proof system for this language, in the style of the usual Hoare’s logic
approach [12]. The originality of our approach lies in the treatment of the extent of parallelism, that is,
the subset of currently active indices at which a vector instruction is to be applied. Previous approaches
led to manipulate lists of indices explicitly (either by manipulating sets of active processors [18, 19]
or by specifying an access sequence for each parallel variable [7]), or to consider context expressions
as assertions modifiers [8]. In contrast, our proof system for £ describes the activity context by a
vector boolean expression distinct from the usual predicates on program variables. The use of such
two-component assertions is particularly well-suited to an intuitive understanding of the assertions
and provides a basis for a two-phase “proof by annotations” method.

In section 2, we give a description of the £ language, together with its natural semantics. Section 3
describes a sound proof system based on our two-component assertions. Section 4 deals with the
definition of a weakest preconditions calculus and with the associated definability question. This
weakest preconditions calculus is the key to establish the completeness of our proof system, which
is treated in Section 5. A two-phase proof methodology, yielding readable and structured proofs, is
described in Section 6. As a conclusion, we present a discussion and some perspectives.

2 A simple data-parallel language and its semantics

2.1 The £ language

In the data-parallel programming model, the basic objects are arrays with parallel access, also called
vectors. Two kinds of actions can be applied to these objects: componentwise operations, or global
rearrangements. A program is a sequential composition of such actions. Each action is associated
with the set of array indices at which it is applied. An index at which an action is applied is said to
be active. Other indices are said to be idle. The set of active indices is called the activity context or
the extent of parallelism following the term coined for the Actus language [17]. It can be seen as a
boolean array where true denotes activity and false idleness.

Observe that all usual data-parallel languages such as Actus, C*, MPL or HPF are deterministic.
Though they specify parallel accesses to data whose scheduling may be non-deterministic, the resulting
semantics ¢s deterministic. We are only of two exceptions: a rather special use of the send operator
in C* where the receiver may require a non-deterministic combining operator; some technical issues
connected with parameter passing in idle contexts. However, we are not concerned with this level of
detail in this paper, and we consider only deterministic data-parallel constructs.

The £ language is designed as a common kernel of data-parallel languages like C* [20], HyperC [16]
or MPL [13]. We do not consider the scalar part of these languages, mainly imported from the C
language. Then, as far as this paper is concerned, we can assume that scalar values are replicated at
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all locations, so that we can identify a scalar variable with a vector having the same value replicated
at all components.

Also, for the sake of simplicity, we only consider integer and boolean values here in this paper, and
we consider that all parallel arrays share a unique geometry. This is reminiscent of the MPL language,
where the common geometry of the plural variables is the physical geometry of the underlying archi-
tecture. Multiple geometries, as allowed by the shapes of C* or the collections of HyperC, could easily
be handled at the price of extra notation and case analysis. This unique geometry is captured here
through a finite domain of indices D equipped with a set of geometric operators such as shift, rotate,
etc. For instance, in MPL, D would be a square [0..1023] x [0..1023], and the associated geometric
operators would be toroidal translations along the axes. The precise structure of the geometric domain
D and the detailed definition of the geometric operators are of little relevance here. In the examples of
this paper, a one-dimensional or two-dimensional domain will be assumed. The only important point
is that we assume the existence of two conversion functions:

> & = itos(u) maps an index u into a scalar value z;
> u = stoi(z) maps a scalar value into an index value.

These functions are reminiscent of the pcoord functions in C*, or the iproc function in MPL. The only
hypothesis is that (stoioitos) is the identity function on indices: u = stoi(itos(u)). If D is [0..N — 1],
then think of itos as embedding [0..N — 1] into the integers and stoi as the mod (N) operator.

All the variables of £ are parallel, and all the objects are vectors of scalars, with one component
at each index. As a convention, the parallel objects are denoted with uppercase initial letters: X, Y,
etc. Indices are denoted u, v, etc. The component of a parallel object X located at index u is denoted
X1,

A wvector expression F can be of the following forms.

> A vector variable X.

> A vector constant of integer or boolean type. Constant 1 denotes the vector whose all components
have value 1, True and False denote the vectors whose all components are respectively true and
false. Constant expression This denotes the vector whose value at index wu is itos(u): this is the
iproc of MPL, the . operator of C*.

> A componentwise combination of vector expressions: for instance, X + Y. All usual scalar
operators are overloaded with their respective vector extension.

> It is useful to define an additional type of vector expressions: conditional vector expressions.
(C?E:F) denotes the vector whose component at index » is £/, if boolean vector expression C
is true at index u, and F|, otherwise.

> A felch expression: E|,. Consider a fixed index w. First, the vector expression A is evaluated,
then the vector expression F. Finally, the result is rearranged so that the value at index w is
fetched at the index which is the value of A at u (converted through function stoi): (El[,)|, =
Elstoi(A|u)' In particular, E|py,;s is merely E. In MPL, this is denoted router[A].E. In C* and

HyperC, this is denoted [A]E.

As an example, consider a typical fragment of a one-dimensional convolution code:

(2% X + X | ppisir + X This1)/4

Note that, strictly speaking, the + of This+ 1 is not the same as the outer +, as it acts on the index
domain D. But there is no real reason to stress this difference any longer, and we will identify both
operators in most cases. Note also that all constructs in £, including communications (fetch), are
deterministic. We can now list the instructions of L.

INRIA
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Assignment: X := F. At each active index u, component X|, is updated with the local value of
vector expression F. Observe that F may be a fetch expression, in which case we obtain a get
communication: get I from A into X is the same as X := F|,. Observe also that we cannot
express send communications in this simple model.

Sequencing: S;7T. On the termination of the last action of S, the execution of the actions of T
starts.

Iteration: loop B do S end. The actions of S are repeatedly executed with the current extent of
parallelism, until boolean vector expression B evaluates to false at each currently active index.
Observe that the activity context is not modified on executing the body, in contrast with the
parallel while of MPL and the whilesomewhere of C*. These constructs can be expressed in £ by
a where nested in a loop. Our form is therefore more general [4].

Conditioning: where B do S end. The active indices whose local value of the boolean vector expres-
sion B evaluates to false become idle during the execution of S. The other ones remain active.
The initial activity context is restored on the termination of S.

The L language is quite simple, but it is sufficient to express usual data-parallel algorithms.
Consider for instance a scan, that is, a prefixed sum, using a classical logarithmic method [11]. The
domain is D = [1..N]. Initially, the component at index u, 1 < u < N, holds an initial value V| , and

we compute S such that Vu : S|, = ij V|- The program in MPL-like syntax is displayed below.
The XnetW[i] construct expresses a fetch of indices at distance ¢ towards low indices.
S=V; i=1;
while (i < N) do { /*scalar whilex*/
if (iproc > i) /*plural ifx/
S += XnetW[i].S;
i *= 2;
}

Its translation in £ is displayed in Figure 1. As £ has no scalar variables, we translate the MPL
scalar variable ¢ into a vector variable I whose all components hold the common value i. The execution
trace shows the successive values of the vector S during the computation, surrounded by its input and
output value. Crossed values tag components inactive in the inner where construct. Arrows denote
fetched values.

S:=V;iI:=1; SOOOUO
loop I < N do 1=t [1]2]2]2]2]2]2]2]
where This > I do
S =S5+ S it

end; =4 |1.]2|3.|4|5|6 |7 |8
I:=2x1
end 1]2]3]a]5]6]7 8]

Figure 1: The scan £-program and an execution trace.

2.2 A natural semantics for £

We describe the semantics of £ in the style of the natural semantics by induction on the syntax of £
programs.

RR n°3033
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An environment o is a function from identifiers to vector values. The set of environments is
denoted by Env. For convenience, we extend the environment functions to the parallel expressions:
o(FE) denotes the value obtained by evaluating parallel expression E in environment . Here are the
most interesting rules:

> o(This)|, = itos(u)
> o(E+E)|, = o(B)], +o(F)],

g

> o(CTE:F)|, = EE)IU if 7(C)], is true

F)|, otherwise

g u

> o (Ely)l, = 0(E)lstoi(o(a)),)

Let o be an environment, X a vector variable and V' a vector value. We denote by o[X + V] the new
environment ¢’ where ¢/(X) =V and ¢/(Y) = o(Y) for all Y # X.

A contezt cis a boolean vector. It specifies the activity at each index. We distinguish a particular
context denoted by True where all components have the boolean value true. For convenience, we
define the activity predicate active.: active.(u) = c|,.

A state s is a pair (o, c) made of an environment o and a context c¢. We distinguish an additional
special state, 1, to denote non-termination.

The semantics [S] of a program S is a strict function from states to states: [S](L) = L. We
extend the function [S] to sets of states as usual. Observe there would not be difficult to extend this
work to non-deterministic programs by defining [S] to be a function from states to sets of states. As
we are only concerned with deterministic data-parallel languages, we disregard this extension in this

paper.

Assignment. At each active index, the component of the parallel variable is updated with the new
value.
[X := E](0,¢) = (', ¢),
with ¢/ = o[X « V] where V|, = o(FE)|, if active.(u), and V|, = o(X)|, otherwise. The
activity context is preserved.

Sequencing. Sequential composition is functional composition.
[5: T](o, ) = [T]([S](o, c)).

Iteration: Iteration is expressed by classical loop unfolding. It terminates when the boolean expres-
sion B evaluates to false at each active index. We have the relation

[loop B do S end]([S](o,¢))
[loop B do S end] (o, ¢) = if Ju : (active.(u) A o(B)],)

(o, c) otherwise
If the unfolding does not terminates, then we take the usual convention:

[loop B do S end](o,¢) = L.

To see that this is well-defined, we can proceed exactly as in the usual case. Define ¢y(0,c)
to be the final state of loop B do S end after evaluating at most k£ times the test. We have
¢0(U7 C) = J—7 and

ok ([S](o,¢)) if Fu : (active (u) A o (B)],)

(0,c) otherwise

bunlo,) = {

INRIA
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It is easy to show that if ¢x(o,c) # L, then ¢y1(0,¢) = ¢r(o,c). Then, we can define

[loop B do S end](o, ¢) = Llcbk(a, c)
k

where | |, denotes the least upper bound for the flat partial order (L < z, z £ y), which clearly
satisfies the relation above.

Conditioning. The denotation of a where construct is the denotation of its body with a new context.
The new context is the conjunction of the previous one with the value of the conditioning
expression B.

[where B do S end](c,c) = (o', ¢),
with [S](o,cA o(B)) = (¢',¢). The value of ¢ is ignored here.

Remark. In this language, the activity context is preserved by terminating executions: for any
program S such that [S](c,c) = (0, ¢’), we have ¢ = ¢. It is no longer true for the extended version
of £ defined in [4], which includes a data-parallel break-like construct.

3 A two-component assertional proof system for £ programs

3.1 Why do we need two components?

We define a proof system for the partial correctness of £ programs in the lines of [1]. A specification
is denoted by a formula {Pre} S {Post} where S is the program text, and Pre and Post are logical
assertions on variables of S. This formula means that, if precondition Pre is satisfied in the initial
state of program S, and if S terminates, then postcondition Post is satisfied in the final state. A
proof system gives a formal method to derive such specification formulas by syntax-directed induction
on programs. Axioms correspond to statements, and inference rules to control structures. Then,
proving that a program meets its specification is equivalent to derive the specification formula { Pre}
S {Post} in the proof system. A crucial property of axiomatic semantics in the usual sequential case is
compositionalily. To achieve this goal, the assertion language has to include suflicient information on
variable values. Similarly, our assertion language has to include some information about the current
activity context as well as variable values.

Our proposition is to define two-component assertions { P, C'}, where P is a predicate on the vector
variables of the program, and C'is a boolean vector expression which evaluates into the current activity
context. To see the benefits of this approach, consider a typical £ program and its annotation whose
as shown on Figure 2. Assertion {..., {rue} means that all indices are active. Assertion {..., By A By}
means that the active indices are precisely those indices u such that By|, A By, is true. We will
show in this paper that such an annotation is always valid if no variable of the context expressions
B; are modified by the program. The proof of a data-parallel program with our method can thus be
factorized into two phases:

1. partially annotate with context expressions;
2. complete each annotation with its predicate component.

Part 1 is mostly straightforward up to variable conflicts. Part 2 is very similar to proving sequential
programs. Proving a data-parallel program in our approach looks thus very much like proving ordi-
nary scalar programs. In particular, the complexity of the proof does not depend on the size of the
underlying domain.

RR n°3033
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{...,true}

where B; do

{...B1}
where B; do
where B; do

where B; do {...B1 A By}
end end
where Bs do where Bs do
{....B1 A B3}
end ..
end
end {...B1}
end

{...,true}

Figure 2: A typical £ program and its annotation by two-component assertions.

3.2 Vector predicates and assertions
The structure of predicates on vector variables has to be made precise here.

> An index expression is either an index variable (u, v, etc), or an index constant (0, 1, etc, if a
one-dimensional domain is assumed for instance), or a combination of index expressions with a
geometric operator (u + 1, v — 1 in the one-dimensional case), or the function stoi applied to a
scalar expression.

> A scalar expression is either a scalar variable (z,y,...), or a scalar constant (0, {rue, false, etc.),
or a combination of scalar expressions with some scalar operator, or a vector expression of the
programming language subscripted by an index expression F|,, or the function itos applied to
an index expression.

> A formula is either a scalar expression of boolean type, or the combination of formulas with
logical operators, or a formula quantified on a scalar variable, or an index variable (in this last
case, the quantification implicitly ranges on the index domain D).

> A (vector) predicate is a formula which is closed with respect to all index and scalar variables.
External universal quantification is sometimes left implicit.

For instance, the following are vector predicates:

Vu:X|, =0 All components of X have value 0
Vu:Vv: X|, =X|, All components of X are equal
Vu: X|, =Y], X and Y have the same value

at each index
= X|,) At all even indices,
the right component is

Vu : even(u) = (X|,
the same as the local one

Ji:Vu: X[, =1 X is a constant vector
INRIA
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Observe there is no quantification on vector variables in vector predicates. Observe also that X =Y
is not a predicate, but a boolean vector expression defined pointwise. The usual equality predicate is
Vu: X|, =Y|,, which we denote by X =Y.

Because a vector predicate is a formula closed with respect to index and scalar variables, we can
define its truth value with respect to an environment in the usual way. Observe that scalar variables
range over integers or booleans, whereas index variables range over D. If the predicate P is true in
the environment o, then we write o = P. We are now in position to define the validity of an assertion
in a program state.

Definition 1 (Satisfiability) Let (o,c) be a state, {P,C'} an assertion. We say that the state (o, c)
satisfies the assertion {P,C'}, and write (o,¢) = {P,C}, if o E P and o(C) = ¢. By convention, L
satisfies any assertion. The set of states satisfying {P,C'} is denoted by [{P,C}].

Consider two assertions {P,C'} and {Q, D}. We say that {P,C'} = {Q, D} if for a state (o, ¢), {Q, D}
holds as soon as {P,C'} holds:

1. if ¢ |E P, then o | Q;
2. if o = P and o(C) = ¢, then o(D) = c.

Definition 2 (Assertion implication) Let {P,C} and {Q, D} be two assertions. We say that as-
sertion { P,C'} implies assertion {Q, D} w.r.t. context, written {P,C'} = {Q, D}, if for any environ-
mento, 0 =P =Q ando =P =VYu: (C|,=D|,).

Proposition 1 Let {P,C} and {Q, D} be two assertions. Then, {P,C'} = {Q,D} iff [{P,C}] C
[{@, D}

We introduce a substitution mechanism for vector variables. Let P be a predicate or any vector
expression, X a vector variable, and E a vector expression. P[E/X] denotes the predicate, or expres-
sion, obtained by substituting all the occurrences of X in P with E. Note that all vector variables are
free by definition of our assertion language. The key result is that the usual substitution lemma [1]
extends to this new setting.

Lemma 1 Let P be a predicate on vector variables, X a vector variable, and F a vector expression.
o | P[E/X] off o[ X «+o(E)|EP

Proof This is easily proved

by induction on the structure of vector predicates and vector expressions. The crucial point is
that we only consider here the substitution of a vector X as a whole, in contrast with [1] where

the substitution of a particular component X [u] is supported. a

3.3 Proof system

We can define the validity of a specification of a £ program with respect to its natural semantics.
Because L satisfies any assertion, our definition of validity is relative to partial correctness, i.e. we
are not concerned by the proof of the program termination.

Definition 3 (Validity) Let S be a L program, {P,C'} and {Q, D} two assertions. We say that the
specification {P,C} S {Q, D} is valid, denoted by = {P,C} S {Q, D}, if, for any state (o,c),

(0 AR CY = [S](o,¢) E{@Q, D}
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Our goal is to catch valid formulas through a finite set of simple axioms and inference rules. Unfor-
tunately, this turns out to be more difficult than in the usual case.

Consider the assignment statement z := e of usual sequential languages. The associated backward
axiom is {Ple/z]} z := e {P}. A direct generalization to the £ language should be

{P[(C?E:X)/X],C} X = E {P,C}.

In this axiom, we express that the local assignment X|, := E/|, is carried out only at the active indices,

that is those indices where C' evaluates to true. Thus, the former value of X|  is E|, if C|, is true, and

it is left unchanged otherwise. This is exactly (C?7E:X)|, according to our definition in Section 2.1.
Unfortunately, this generalization is not correct in all cases. The specification

{true,Y =2} X :=1 {true,Y = 2}

is valid. Yet,
{true, X =2} X :=1 {true, X = 2}

is not valid: the (unchanged) activity context is no longer described by the boolean expression X = 2
after the assignment X := 1, since variable X has been modified. This generalization is correct only
if the variables of the current context expression C' are not modified by executing the assignment
X:=F.

Following the notation of [1], let Var(S) be the set of variables appearing in the program S. Let
Change(S) be the set of variables appearing on the left hand side of assignments in the program S.
Only these variables can have their values changed by executing S. Let Var(C') be the set of variables
appearing in the expression C'. The value of C' depends on these variables only. We describe below a
restricted proof system where we always assume that context expressions are not modified by program

bodies: Change(S) N Var(C) = 0.

Rule 1 (Assignment: X := F) We extend the usual backward axiom by taking into consideration
that the vector variable X is modified only at the active indices.

X ¢ Var(C)
{P[(C?E:X)/X],C} X := E {P,C}

For instance, consider the postcondition {Vu : (Y|, = X|,),Y = 2}: vectors X and Y have all their
components equal, and the active indices are precisely those such that the component of Y has value
2. The following specification is valid:

{¥u s (Y], = (Y], = 2)71:X],),Y =2}
X =1

It boils down to:

(Vu: (Y], =2=Y|, = )A(Y|, £2= Y|, =X]|),Y =2}

T x =1 '
that is
{Vu: (Y], #2) A (Y], = X][,),Y =2}
X:=1
{Vu: (Y], =X[,),Y =2}

INRIA
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Rule 2 (Sequencing: S;T) It is a straightforward generalization of the usual case.

{P,C} S{R,C}, {R,C} T {Q,C}
{P,C} S;TA{Q,C}

Rule 3 (Iteration: loop B do S end) The usual loop invariant assertion has here to be invariant with
respect to both the variables values and the activity context.

{INJu: (C|,ABJ,),C}S{I,C}
{I,C} loop Bdo Send {I AVu: (C|,= —B|,),C}

Rule 4 (Conditioning: where B do S end) Following the natural semantics, the context part is the
conjunction of the previous context expression and the condition of the conditioning construct.

{P,(CAB)} S{Q,D}, Change(S)n Var(C) =10
{P,C} where B do S end {Q,C}

Consider for instance the following valid specification:
{Vu: X[, >0,X>1} X:=X+1{Vu: X[, >0,X>2}
The rule above applies and yields:

{Vu:X|, >0, True}
where X > 1do X := X + 1 end
{Vu. X|, >0, True}

Observe that the resulting activity context expression D is ignored, very much like the resulting activity
context ¢ in the natural semantics (Section 2.2) and that we do not need to assume Change(S) N

Var(B) = 0.
Rule 5 (Consequence rule) Following Definition 2, we can state the consequence rule.

{P.CY=A{P,Ci}, {P,C1} S {Q1, D1}, {Q1, Di} = {Q, D}
{P,C} S {Q, D}

This rule allows us to strengthen preconditions, and to weaken postconditions of specifications.
If a specification {P,C} S {Q, D} can be derived in this proof system, we write

F{P,C} S{Q,D}

Proposition 2 (Soundness) This proof system is sound: if - {P,C} S {Q, D} then = {P,C} S
{Q, D}.

3.4 Example

Let us prove the correctness of the small program given on section 2.1.

S=V;I:=1;
loop I < N do
where This > I do
5 =54 Slqnis_1
end;
I1:=2x1

end
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To find an invariant assertion, we express that only those components whose index u is greater than
scalar value ¢ can fetch an additional value S|, ;. The other components already hold the final result.
Let us define the following vector predicate: Const expresses that vector I is a constant vector whose
value is i; Inv expresses that the partial sum is already computed from index 1 to 7. The predicate
part of the invariant assertion is Const A Inv. For the sake of conciseness, V| denotes ]]ziz Vi, 1
denotes I|;, and we drop all stoi/itos conversions for simplicity.

Const = Yu:(I|, =1)
Inv = Yu:(1<u<i= S|, =V|[))
AN (<usN=S5,=V[_i)
Pred = Const A\ Inv

The sketch of the partial correctness proof is expressed by the program annotated with assertions
shown on Figure 3.  The steps of the proof derivation are to check the correctness of invariant
assertion {Pred, True}: (b) = (c), and that it implies the final specification: (j) = (k). In as-
sertion (e), note how context expression This > [ is generated by the conditioning expression of
the enclosing where block. Assertion (e) is obtained from assertion (f) by substituting S with
(This > I?7(S 4+ S|pis_;):S). Thatis, Sy is substituted with S|, 4 S|,_; if u > i. The new boundary
2 %1 (that is, 2 * [|;) substituted in the invariant comes from the assignment statement for counter /
in context True.

4 Weakest preconditions of £ programs

The weakest liberal precondition of a program S with respect to a set of states £, wip(S, &), is the set
of all the states s such that, whenever S is activated in s and properly terminates, the resulting state
is in €. In contrast, the weakest strict precondition of S with respect to &, (or weakest precondition
for short when no confusion may arise), wp(S, ), is the set of all the states s such that whenever
S is activated in s # L, it is guaranteed (o lerminale and the final state is in £. For the sake of
conciseness, we define the convergence predicate conv(S, s) by

conv(S,s) = s#L=[S](s) # L.

Definition 4 (Weakest preconditions) Let & be a set of states, S a L-program. We define the
weakest liberal preconditions as

wlp(S, &) ={s | [S](s) € EU{L}}
and the weakest (strict) preconditions as
wp(S, €) = wip(S, £) N {s | conv (S, s)}
Lemma 2 (Consequence Lemma)
FA{P.C} 5 {Q,D} iff [{P,C}] C wip(S,{Q, D}).

Proof Assume = {P,C} S {Q, D}. Then, for all (o,c) € [{P,C}], we have
[51(o,c) E{Q, D}. Thus, [{P,C}] C wip(5,{Q, D}).
Conversely, let us assume [{P,C'}] C wip(S,{Q, D}). Consider (o,c) € [{P,C}]. By hypothesis,
(0,¢) € wip(S,{Q, D}). Thus, [S](o,c) E{Q, D}. a

INRIA
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(a) {true, True}
S:=V; I:=1;
(b) {Pred, True}
loop I < N do
(¢) {Pred Ni< N, True}
(d) {Const A
Vu: (1<u<i= S|, =VI{)
AN (t<u<2xi= S|, +5],_;,=VI[)
AN 2xi<u<N=S8|,+95],_= V|Z—i*2+1)v
True}
where This > I do
(e) {ConstA
Vu: (1<u<i= S|, =VI)
A (i<u<2xi= S|, +S],_; =V
AN 24i<u<N= S|u + Slu—i = V|Z_i*2+1)v
This > I}
S =5+ S his_r

(f) {Const A
Vu: (1<u<ix2=S5| =VI)
A (i*2<u§N:>S|u:V|Z—i*2+1)v

This > I}
end;
(9) {Const A
Vu: (1<u<ix2=S5| =VI)
AN (ix2<u< N=S|,=V]i_iam)
True}
I:=2x1
(h) {Const A
Vu: (1<u<i= S|, =VI[{)
AN (i<u<N=Sl,=V[_i)
True}
(2) {Pred, True}
end

(7) {Pred Ni> N, True}
(k) {Vu:1<u<N =8|, =V, True}

Reminder: We write ¢ for I|; as Const expresses that I is a constant vector. We drop all
stoi/itos conversions.

Figure 3: The annotated scan program
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4.1 The definability problem

We restrict our study of the weakest preconditions to those subsets of states which can be described by
some assertion. In classical Hoare’s logic, the Definability Property states that the weakest precondi-
tions of a program, with respect to a set of states described by some assertion, can itself be described
by some assertion. In our framework, the Definability Problem can be stated as follows.

Given a program S and an assertion {Q), D}, does there exist any assertion {P,C'} such
that

wlp(5,{Q, D}) ={P,C} (resp. wp(5,{Q, D})={P,C})
If so, can it be expressed from S, ), D?

It can be shown [1] that this properties holds for the classical Hoare’s logic under some assumptions
on the expressivity of the assertion language. In our setting, the form of the assertions introduces a
limitation on their expressive power. Specifying the context by an additional independent component
lets it depend functionally on the variable values. The price to pay for simpler proofs is a more complex
theory. Alternative approaches are discussed in Section 4.5.

Fact 1 (Restricted expressive power of assertions) Let {P,C} be an assertion. For any envi-
ronment o, there exists at most one activity context ¢ such that (o,c) € [{P,C}], namely ¢ = o(C).

An easy consequence is that the weakest liberal preconditions of some £ programs cannot be defined
by any assertion. This is a major difference with the usual case. Consider for instance

S = loop True do X := X end

Consider postcondition {irue, True}. This postcondition is satisfied either if S terminates with context
True or if S diverges. The former cannot occur because of the semantics of the loop construct. The
latter occurs if and only if there is at least one active index, that is, context ¢ may satisfy the condition
Ju : ¢|, = true. We have thus

wlp(S, {true, True}) = {(o,¢) | Ju : ¢|, = true} U{L}

As two different activity contexts ¢ may produce a divergence for the same environment o, this
set of states cannot be defined by any assertion by the fact above. In contrast, the weakest strict
preconditions exclude divergence, and one can check that

wp(S, {true, True}) = {1}

Now, the set of states { L} can be for instance defined as [{false, False}].
Unfortunately, the definability property does not hold for the weakest preconditions either. Let

S=X=X+1
Consider wp(S,{Q, D}), with
Q=Wu:X|,=1)vV(Vu:X|,=2) and D= (X=2)

Let o be an initial state such that Yu : (X)|, = 1. Let ¢’ be the corresponding final state. If all indices
are active, then the assignment occurs everywhere, and Vu : ¢/(X)|, = 2. Thus D evaluates to True in
o’ and the final state satisfies {Q, D}. If all indices are idle, then nothing changes: Vu : ¢/'(X)|, = 1.
Thus D evaluates to False in o’ and the final state satisfies {@, D}, too. We thus have

(o, True) € wp(S,{Q, D}) and (o, False) € wp(S,{Q, D})

If wp(S,{Q, D}) was described by some assertion {P,C}, then o(C) should be equal both to True
and to False. This is thus impossible. However, we shall see that a suitable restriction on the syntax
of context expressions yields the definability property for weakest preconditions.
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4.2 Discussion

These preliminary remarks show that our choice of two-component assertions { P, C'} leads to difficulties
when the variables of C' are modified by the program

wlp(X = X +1,{Q, X =2))
with @ = (Vu: X[, =1)V (Vu : X|, = 2) is not definable whereas
wlp(Y =Y +1,{Q,X = 2))

is definable, as shown later.
Two alternatives can be considered here.

1. Change the assertion language to support more general dependencies between ¢ and c¢. In our
setting, we consider explicit functional dependencies only:

(o,c) E{P,C} iff ¢ EP and c=0(C)

A possible extension would be to consider implicit logical dependency: introduce a new name, say
% along the Actus terminology [7], to denote the current context as a value in the environment.
We then can consider generalized assertions of the form P(4), with

(0,0) EP(1) iff ot =P(1)
This supports sets of context: take for instance
P() = Vu : (4], = true) v Vu : (4], = false)
A two-component assertion {P,C'} is nothing more than the special case

P@) = PAVe: (8], =Cl,)-

This direction has been explored by Le Guyadec and Virot in [10]. We discuss its relationship
with our work in Section 4.5. The main drawback is that it does not support a two-phase proof
methodology any more.

2. Keep this assertion language and improve the proof system to circumvent this lack of definability.
This is done in Section 5, using an additional rule to handle hidden variables in assertions.
We show in Section 6 that it actually leads to a two-phase proof methodology where context
expressions and predicates on vector variables are handled separately.

4.3 Definability of the weakest strict preconditions of linear programs

For now on, we restrict ourselves to the most basic case, which consists in £ programs without loops,
and context expressions not modified by programs. The extension to the general case is discussed in
the end of this section. The following notion will be useful in this section.

Definition 5 (Linear £ programs) A L program S is linear if it is made of assignments, sequen-
cing and conditioning only.

Note that a linear program may not diverge, and that its weakest liberal preconditions are thus
identical to its weakest strict preconditions. We can thus safely drop the distinction.

Definition 6 (Plain specification) A pair (S,{Q,D}) is said to be plain if we have Var(D) N
Change(S) = 0. A specification formula {P,C} S {Q, D} is said to be plain if (S,{Q, D}) is plain.

We call the weakest preconditions of a plain pair (S,{Q, D}) a plain weakest precondition.
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Weakest preconditions of basic constructs
Let us first consider the weakest precondition of assignment and sequential composition.
Proposition 3 (Assignment) If X ¢ Var(D), then

wp(X := E,{Q, D}) = {QI(D?E:X)/X], D}

Proof Let
(0,¢) € wlp(X := E,{Q, D}). Assume, [X := E](o,c) = (¢,¢). Then, (¢',¢) € [{Q, D}]. As
X ¢ Var(D), we have 6(D) = o'(D) = c. By definition, 0’ = 0[X + o(D?E:X)] E Q. By the
Substitution Lemma, we deduce o |= Q[(D?7E:X)/X].
Conversely, let (o,¢) € [{Q[(D?E:X)/X],D}]. By definition, we have o | Q[(D?E:X)/X]
and o(D) = ¢. Let (¢',¢) = [X := E](0,¢). By definition, ¢’ = o[X + o(D?E:X)]. By the
Substitution Lemma, as o |= Q[(D?FE:X)/X], we deduce ¢' = Q. As above, o/(D) = (D) = ¢
and (o', ¢) € [{Q, D}]. a

Proposition 4 (Sequential composition)
wp(S;T,{Q, D}) = wp(S, wp(T',{Q, D}))
Proof By definition

wp(S;T,4Q, DY) = {s[[9;T](s) € [{Q, DI}

{s | IT](IS1(s)) € [{Q, D31}

{s [ [S1(s) € {s' | [TI(s) € {@, DI}
{s [ [S1(s) € wp(T,{Q, D})}

= wp(S,wp(T,{Q, D}))

Weakest preconditions of a conditioning construct

We now turn to the conditioning construct. We start with the easy case where the conditioned body
does not modify the context expressions.

Proposition 5 Assume (5,{Q, D A B}) is plain. If
wp(5,{Q, DA B}) = {P,C}

then
wp(where B do S end, {Q,D})={P, D}

The proof uses an additional technical lemma. It expresses that the activity context is left unchanged
by a program. It may thus be captured by the same boolean vector expression as soon as its variables
are not changed by the program.

Lemma 3 Let (5,{Q, D}) be plain. Assume
EA{P,C} S{Q,D} and Vs € [{P,C}] : conv(S,s).
Then [{P,C}] = [{P, D}]. In particular, we have

E{P,D} S {Q,D} and Vs € [{P, D}] : conv(S,s)
INRIA
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Proof Assume 0 = P. Let ¢ = o(C)

and ¢ = o(D). By hypothesis, we have conv(S, (o,c)) and [S](o,c) = (¢',¢) € [{Q, D}]. We
deduce o'(D) = ¢. Since Var(D) N Change(S) = (), we have ¢/ = o(D) = o'(D) = ¢, too. We
deduce {P,C} < {P, D}, and thus [{P,C}] = [{P, D}]. a

Without the above assumption of convergence, this lemma is not true. Consider for instance

S=loop X =0doY :=Y end

We have

but

E{Ju: X|,=0,X=0}S5 {Vu: X|, #0,X # 0}

EA{Ju: X|,=0,X#0} S {Vu: X|, #0,X # 0}

As an important consequence of the preceding lemma, we obtain the following result.

Lemma 4 (Extension Lemma) Assume (5,{Q, D}) is plain. If

then

wp(S, {Qv D}) = {P7 C}v

wp(5,{Q, D}) = {P, D}.

We can now give the proof of Proposition 5.

Proof Let (o, ¢) € wp(where B do S end, {Q), D}). By definition,

[where B do S end](o, ¢) = (o', ¢) € [{Q, D},

with o' such that (o',cANo(B)) = [S](c,cANo(B)). As (Var(D)U Var(B)) N Change(S) = 0, we
have

o'(D) = o(D) = ¢ and ¢'(B) = (B).

Thus, ¢ A o(B) = o'(D A B), and (¢',c A o(B)) € [{Q,DA B}]. By assumption, we have
(o,¢cANo(B)) € [{P,C}], and o = P. Thus, (0,¢) € [{P, D}] as wanted.

Conversely, let (o,c) € [{P, D}]. Observe first that, by Lemma 4,
wp(S.4Q, DA BY) = {P,C} = {P,D A B},
Thus, [S](c,cAo(B)) = (¢',c) € [{Q, D A B}], and o' = Q. Thus, [where B do S end] (o, c) =

(0',¢). As Var(D) N Change(S) = 0, o'(D) = o(D) = ¢, and we have (¢',¢) € [{Q, D}] as
wanted. O

To remove the restriction on variables in expression B, let us consider cases where Var(B) N
Change(S) # 0. We can then introduce a new variable T'mp and transform program where B do S end

into

Tmp := B;where Tmp do S end

Assume wp(S,{Q, DA Tmp}) = {P,C}. Then, using the preceding results, we can see that

wp(T'mp := B;where Tmp do S end, {Q, D})
— {P{(D?B:Tmp)/ Tmp], D)

This transformation can in fact be encapsulated in a single rule for wp.
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Proposition 6 Assume (S,{Q, D}) is plain and let Tmp be a (new) variable such that Tmp ¢
(Var(Q) U Var(S)U Var(D)). If

wp(57 {Q7 DA Tmp}) = {P7 C}

then
wp(where B do S end, {Q, D}) = {P[B/Tmp], D}

Proof Let (o, ¢) € wp(where B do S end, {Q), D}). By definition,
[where B do S end](o, ¢) = (o', ¢) € [{Q, D},
with o’ such that
[S1(o,cAa(B)) = (o', c A o(B)).
We have o' = Q, and ¢o'(D) = c¢. As Var(D) N Change(S) =0, o(D) = o'(D) = c.
Let 01y = o[Tmp < o(B)] and o] = o'[Tmp < o(B)].

By definition, we have o1(Tmp) = o(B) = o1(Tmp). As Tmp ¢ Var(D), 01(D) = o(D) = ¢,
and o0}(D) = o'(D) =c. As Tmp ¢ Var(Q) and o' = Q, o] E Q, too.

As Tmp ¢ Var(S),
[S1(o1, A 0(B)) = (o, ¢ A (B)) = (o}, 0D A Tip))

As (01,01(D A Tmp)) € [{Q, DA Tmp}], (o1,cAo(B)) € [{P,C}]. Thus, oy = P. By the
Substitution Lemma, o = P[B/Tmp], and (o, c) € [{P[B/Tmp], D}].

Conversely, let (o,¢) € [{P[B/Tmp],D}]. Let 0y = o[Tmp « o(B)]. By the Substitution
Lemma, o1 = P. Also, as Tmp does not appear in D, o1(D) = o(D) = ¢. Thus,

(o1,c Aoy (Tmp)) =E{P,DA Tmp}.

By Lemma 4, we have wp(S,{Q, DA Tmp}) ={P,C} ={P,D A Tmp}. Thus, there exists some
o1 such that

[S1(o1, ¢ Aot (Tmp)) = (o1, c Aoy (Tmp)) E{Q, DA Tmp}.
In particular, o] = Q. As Tmp does not appear in S, we have

[S1(e, e A a(B)) = (¢',e AN o(B)),

too, with o' = o{[Tmp < o(Tmp)]. As o} E Q, and Tmp does not appear in ), we have o' = Q
as well. By the semantics of the conditioning construct, we deduce finally

[where B do S end](a,c) = (¢/,¢) € {Q, D}

as wanted. ]

Theorem 1 (Plain WP for linear £-programs are definable) Let S be a linear L
program (that is, without loop construct), and let (S,{Q, D}) be plain. Then, there exists a predicate
P such that wp(S,{Q,D})={P,D}.

Proof By induction on the structure

of S. The case of assignment and sequential composition are trivial. Let S = where B do T end.
Let Tmp be a new variable not in Var(Q)) U Var(D) U Var(S). By induction hypothesis, there
exists an assertion {P,C'} such that wp(T,{Q, DA Tmp}) = {P,C}. By Proposition 6, we have
wp($,1Q, D}) = {P[B/ Tmp), D}. .
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The example at the end of section 4.1 shows that the theorem is no longer true if the restriction
Var(D) N Change(S) = () is removed. In this case, the set wp(S, {Q, D}) cannot be defined by any
assertion {P,C'} in general.

Yet, we can obtain a weaker result as follows. Let g be a new variable. We can observe that

(0,¢) e [{Q, D}] iff (o[t ¢ c],¢) e {@ A= D, D}]

Note then that
[{@ng=D, D} =[{Q i=D,2}].

As 4 is a new variable, we are able to apply the previous theorem to wp(S,{Q A 4= D,4}). It yields
some assertion {P,C'} which defines this set (observe § may occur in P). By the Extension Lemma,

it is described by { P, f} as well.

Theorem 2 Let {Q), D} be an assertion, and S be a linear L program. Let 4 be a new variable not in
Var(D) U Var(S) U Var(Q). Then, there exists a predicate P such that

wp(S,{Q, D}) ={(0,¢) | o[t & ] | P}

Proof Let {P, 4} = wp(S,{Q N = D,4}). Consider
a state (o, c) such that o[f < ¢] E P. Let 01 = o[f « ¢]. Then o1 = P. Also, 01(4) = ¢. Thus
(01,¢) € [{P,4}]. Let (o1,c) = [S](o1,c). We have (o}, ¢c) € [{Q A4 = D,d}]. It is then routine
to show that [S](o,c) € [{Q, D}]. The converse proof is of the same vein. R

It is interesting to notice that Theorem 1 is a special case of Theorem 2. Actually, assume that

Var(D) N Change(S) = 0. Consider wp(S,{Q, D}), and apply Theorem 2. We have
wp(S,{Q, D}) ={(0,¢) | o[t & ] | P}

where § is a new variable. As Var(D) N Change(S) =0, o(D) = ¢. This set of states is thus equal to
{(o,0) | olt = a(D)] = P Ao(D) = ¢}

that is
{(o,¢) | o = P[D/{]Ao(D) = c}
that is precisely [{P[D/4], D}], as announced in Theorem 1.

4.4 Definability of weakest liberal preconditions

Except for the where construct, the basic definability properties of weakest strict preconditions for
assignment and sequencing still hold for the weakest liberal preconditions with similar proofs. We
concentrate here on the case of the conditioning construct, and we show that no result analogous
to Theorem 1 may be expected. Of course, this only concerns non-linear programs. With the two-
component assertional proof system, the data-parallel case turns out to be much more complex than
the usual sequential one.

The difficulty to be addressed is the following. In presence of divergence, we cannot infer the initial
activity contexts from postassertions. We could expect a property of the form:

If
{P,C/\B} = wlp(S, {QvD/\B})v

then
{P,C'} = wlp(where B do S end,{Q, D}).
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An easy partial result is given by the proof rule for the where construct.

Proposition 7 Assume change(S) Nvar(C)=0. If
{P,CA B} Cwlp(S,{Q, DA B},

then
{P,C'} C wlp(where B do S end,{Q,C}).

Unfortunately, the preceding proposition does not hold if we replace inclusions by equalities, as shown
by the following example.

Consider the following program S over a one-dimensional domain D = [1..M]. Intuitively, the
value of X| is initially set to false at each active index. Then, the values of X|;, X|,, etc. are
repeatedly fetched, until the value false is found. Remember that we assume that function stoi is
defined everywhere, so that fetching makes sense for any address (think for instance of some cyclic
numbering scheme as in MPL).

X := Fulse;
where This = 1 do
N :=1; X := True;

loop X |, do
N =N+1
end
end

Define
P=Mu#1:X|, = lrue) and C = (This=1)

Fact 2 S diverges from (o, c) iff (o,¢) € [{P,C}].

Proof S diverges iff
index 1 is active on entering the loop and no X|,, is spotted to be false. Because of the initial
assignment X := False, X|, is false iff index u is initially active. Thus, all indices u # 1 have
to be idle initially for divergence to occur. That is, the initial context is described by This = 1.
Also, each X|, has to be true initially (except for u=1). O

The first crucial observation is now that the value of C' does not depend on the environment.

Fact 3 wip(S,{true, C})={true, C}.

Proof Assume (o, ¢) € [{true,C}]. If S diverges from this state, then we are done. If S
converges, then the final context is the same as the initial one, and we are done again.

Conversely, let s such that [S](s) € [{true,C}]. If S diverges from this state, then s € [{P,C}] C
[{true,C}]. If it converges, then its context is still described by C, as C' does not depend on
the environment. a

The second crucial observation is that the context described by C'is not identically active.

Fact 4 wip(where C'do S end,{true, True}) is not definable by any assertion.

Proof Fix an environment o |= P. Then both (o, True)
and (0,0(C')) belong to wlp(where C do S end, {true, True}). As o(C) # True, this set cannot
be described by any assertion, as remarked in Section 4.1. Q

Yet, the definability property holds for the weakest liberal preconditions of the where construct,
modulo the set of divergent states.
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Proposition 8 Assume Var(D)N Change(S) =0 and let Tmp be a (new) variable such that Tmp ¢
(Var(Q) U Var(S)U Var(D)). If

wp(S,{Q, DA Tmp}) C [{P, DA Tmp}] C wip(S,{Q, DA Tmp})

then
wp(where B do S end, {Q, D})
< [PB/Tmp], Di]
C  wlp(where B do S end,{Q, D})
Proof The first inclusion is a part of Proposition 5.

The proof of the second inclusion is very similar to the corresponding proof for the weakest
preconditions.

Consider a state (o,¢) = {P[B/Tmp],D}. Let 01 = o[Tmp < o(B)]. By the Substitution
Lemma, o = P. If S diverges from the state (o,c A o(B)), then the result trivially holds.
Otherwise, let ¢4 = ¢ A o(B). There exists an environment o' such that [S](o,c1) = (¢/,¢1). As
Tmp does not appear in S, we have [S](o1,¢1) = (01, ¢1) too, with o] = o'[Tmp + o(Tmp)].
By definition, we have o(B) = o1(Tmp). As Tmp does not appear in D, 01(D) = o(D) = c.
Thus,

(o1,¢1) E{P, DA Tmp}.

We deduce [S](o1,¢1) E {Q, DA Tmp}. In particular, of = Q. As Tmp does not appear in
Q, o' = Q as well. As Var(D) N Change(S) =0, ¢'(D) = (D) = ¢. By the semantics of the

conditioning construct, we finally have

[where B do S end](c,¢) = (¢/,¢) E {Q, D}.

4.5 Discussion: extending the assertion language?

So far, we have shown that plain weakest preconditions of linear programs are always definable by
some two-component assertion, but that weakest liberal preconditions of non-linear program are not
in general. The two-component assertion language is not expressive enough to denote its own weakest
preconditions.

In Theorem 2, we have shown an alternative to the description of weakest preconditions. By the
introduction of some auxiliary variable Auz, which denotes the context, we can find a predicate P
which denotes the weakest preconditions. This auxiliary variable Auz is precisely the counterpart of
the symbol g introduced by Le Guyadec and Virot in citeLG.VI1.95.1. In [21], it is shown this theorem
is true in all cases, including weakest liberal preconditions of non-linear programs (this uses a Godel
encoding of computations, very much as in the completeness proof of the classical Hoare’s logic in [1]).

Going back to the counterexamples of Section 4.1, reconsider the first program

S1 = loop True do X := X end

we have

wlp(Sy, {true, True}) = {(o,¢) | o[Auz  c] |= Ju : Auz|, = true}

For the second program, let

Sy = X=X +1,
Q = Vu:X|,=1)V (Vu:X]|,=2),
D = (X=2).

RR n°3033



22 L. bouge, ). Cachera, Y. Le Guyadec, G. Ulara, b. Virot

We have
wlp(527 {Qv D})

{(o,¢) | o[Auz ] = Q N [(Vu : Auzx|, = true) vV (Yu : Auz|, = false)]}

Moreover, we have a logical link between valid specifications and weakest preconditions denoted
by a predicate with some auxiliary variable. It is stated in the following property (see [21] for further
details), which generalizes the Consequence Lemma 2.

Proposition 9 Let S be a L-program, {Q, D} be an assertion. Let W be a predicate and Aux be a
new variable not in Var(S)U Var(Q) U Var(D), such that

wlp(5,{Q, D}) ={(0,c) | o[Auz ] E W}
For any assertion {P,C'} such that
F{prC} 51{Q, D}
we have

E(PA(Vu:C|, = Auz|,)) = W

This direction has been explored by Cachera and Utard in [6].

5 Completeness of the proof system

We now want to establish the completeness for our proof system. We restrict ourself to linear £-
programs. It is well-known that proving completeness in presence of a loop requires some complex
machinery: invariant predicates, variant expressions, etc. (see [1] for instance), which would obscure
the main line of our work at this point.

The proof of the completeness is constructed in an incremental way. We start from a basic case:
completeness for a restricted form of specification (restrictions on the program and on the assertions.)
We introduce auziliary variables and a rule to handle them, which allow us to remove step by step all
restrictions. The following notion is the restricted form of programs we first consider.

Definition 7 (Regular program) A program P is regular if, for any subprogram of P of the form
where B do S end, we have Var(B) N Change(S) = 0.

The results of the previous section can be restated as follows. As we assume the specifications to be
plain and the programs to be regular, we call it restricted definability.

Proposition 10 (Restricted definability of WP for regular programs) Let S be a regular,
linear L program, and let (5,{Q, D}) be plain. Then, there exists an assertion {P,C} such that

[{P, C} = wp(5,{Q, D})
In particular, = {P,C} S {Q,D}.
We aim at proving the following theorem.

Theorem 3 (Restr. completeness, plain specif., reg., lin. programs) Let {P,C} S {Q, D}
be a plain specification, where S is a regular, linear program. If

F{prC} 5 1{Q, D}

then
F{P,C} S {Q, D}
INRIA
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Proof The proof of this theorem follows the lines of [1]. It
uses the weakest preconditions calculus. For any regular, linear program S and any plain pair
(5,{Q, D}), there exists some assertion {P',C"} such that [{P',C'}] = wp(S,{Q, D}). Using
the Consequence Rule, it suffices to demonstrate that = {wp(S,{Q, D})} S {Q, D}.

The proof is done by induction on the structure of the regular, linear program S, using the

definability properties of Section 4.3.

The cases of the assignment and sequencing constructs are straightforward. Let us consider
in more detail the case of the conditioning construct, with S = where B do T end. As S is
regular by hypothesis, we have Change(T) N Var(B) = (). As the specification is plain, we have
Change(S) N Var(D) = (). As Change(T) = Change(S), we also have Change(T) N Var(D) = 0.
The Definability Property yields an assertion {P, C'} such that {P,C} = wp(T,{Q, DA B}). By
the Extension Lemma, we get wp(T,{Q, DA B}) ={P, DA B}.

Program T' is regular and linear as S is so. Specification {P,D AN B} T {Q,D A B} is plain.
Thus, the induction hypothesis yields

F{P,DAB}T {Q.DA B}
As (Var(B)U Var(D)) N Change(T) = (), the where Rule of the proof system applies, and we get
F{P, D} where B do T end {Q, D}.
Furthermore, the Definability Property gives
wp(where B do T" end,{Q, D}) = {P, D}.
Hence the desired result:

F {wp(where B do T end, {Q), D})} where B do T end {Q, D}.

Consider now a plain specification = {P,C'} S {Q, D}, with S being a regular, linear pro-
gram. By the Definability Property, there exists some assertion {P’,C"} such that {P',C'} =
wp(S,{Q, D}). By the above result, we know that - {P',C'} S {Q,D}. By Consequence
Lemma 2, we get that {P,C'} = {P',C'}. We can thus apply the Consequence Rule of the proof
system. It yields - {P,C} S {Q, D} as wanted. Q

This demonstrates the completeness of the proof system for plain specifications and regular, linear
programs.

5.1 Extending the proof of completeness to non-regular, linear programs

In the presence of non-regular programs, we are no longer able to find any assertion that expresses
the weakest preconditions. Thus, we first have to transform a non-regular program into a regular one.
This can be done by introducing an euziliary vartable, which stores the value of the vector boolean
expression: program

where B do S end

is transformed into
Tmp := B;where T'mp do S end

Using such a variable, can be interpreted as keeping track of the nested activity context in a stack.
Each new variable Tmp is a frame of the stack.

But, instead of transforming programs in order to be able to prove them, we claim that it is
possible to encapsulate this transformation into the proof system itself. The notion corresponding to
the syntactic auxiliary variable is that of a semantic hidden variable in assertions.
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Rule 6 (Elimination of hidden variables) Let E be any vector expression.

{P,C} S {Q,D}, Tmp ¢ Var(S)u Var(Q)U Var(D)
{PIE/Tmp],C[E/Tmpl} S {Q, D}

We denote by F* {P,C} S {Q, D} that a specification formula is derivable in the - proof system
augmented with this new rule.
The soundness of the extended proof system F* is expressed by the following proposition.

Theorem 4 (Soundness of ") The F* proof system is sound: if

F{P} 5 {Q}

then

F{r} 5 {Q}

Proof As " is an extension of - with the Elimination Rule, it suffices to check
the following fact. Let us consider Tmp ¢ Var(S)U Var(Q)U Var(D) and E an expression. If

=A{P,C} 51{Q, D}, then = {P[E/Tmp], C|E/ Tmp]} S{Q, D}.

Assume = {P,C} S {Q, D}.

Let us consider (o,c) = {P[E/Tmp], C[E/Tmp|}. In particular, o = P[E/Tmp]. Let o4 =
o[Tmp < o(F)]. By the Substitution Lemma, o1 = P. Moreover, 01(C) = o(C[E/Tmp]) = c.
ThllS, (0'1,0) I: {P7 C}

By hypothesis, we have [S](o1,¢) = (0}, ¢), with (of,¢) = {Q, D}.

Finally, let (o, c) = [S](0,¢). As Tmp ¢ Var(S), we have o] = o'[Tmp + o(E)]. What is more,
o1 = Q and Tmp ¢ Var(Q), so o' = Q, and o((D) = ¢ with Tmp ¢ Var(D), so ¢'(D) = c.
Thus, we have (o', ¢) |E{Q, D}. Thus, E {P[E/Tmp],C[E/Tmp]} S {Q,D}. S

We now want to establish the following completeness theorem.

Theorem 5 (Restricted completeness, plain specif., linear program) Let {P,C} S {Q, D}
be a plain specification, with S a linear program. If

F{prC} 5 1{Q, D}

then
F{pP,C} S {Q, D}

Note that Proposition 6 already used new “hidden” variables to guarantee the definability of the
weakest preconditions of any plain specification, as expressed in Theorem 1. We can now prove
Completeness Theorem 5 for non-regular programs.

Proof The proof is similar to the
one of the Completeness Theorem 3 for regular programs. It uses a structural induction on S.
The only new case to consider is S = where B do T end, with Var(B) N Change(S) # (. Pick
up a “new” variable Tmp such that Tmp ¢ Var(S) U Var(Q)U Var(D). Such a variable exists
because the expressions from the program and from the assertion language are finite terms. By

Theorem 1, we know there exists some assertion

{P7 C} = wp(T, {Q7 DA Tmp})

INRIA
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We have Var(D A Tmp) N Change(S) = 0 by the choice of Tmp. Thus, wp(T,{Q, DA Tmp}) =
{P,D A Tmp} by the Extension Lemma. By the induction hypothesis, we have

F*{P,DA Tmp} T {Q,D A Tmp}

We also have {P A\ B = Tmp, DA B} = {P,D A Tmp}. We can thus apply the Consequence
Rule. This yields
F*{PAB=Tmp,DANB} T {Q,DA Tmp}

Then, we apply the where Rule, and we get
F*{PAB= Tmp,D} where Bdo T {Q, D}
Thanks to the Consequence Rule, this rewrites into
F*{P[B/Tmp] A B = Tmp, D} where B do T {Q), D}

Finally, applying the Elimination Rule with E' = B yields

F* {P[B/Tmp], D} where B do T {Q, D}
According to Proposition 6, wp(S,{Q, D}) = {P[B/Tmp], D}. Thus

 wp(S,{Q, D}) S {Q, D},

As before, we conclude the proof with Lemma 2, the Consequence Rule and the Definability
Property. O

5.2 Extending the proof of completeness to non-plain specifications

We now focus on general specifications, where Var(D) N Change(S) may be not empty. Surprisingly
enough, the Elimination Rule is sufficient to prove the completeness in this case, and there is no need
of any other additional rule.

Theorem 6 (Completeness, linear programs) Let S be a linear program. If

F{PC} 5{Q, D}

then
F{pP,C} S {Q, D}

Proof Assume = {P,C} S {Q, D}. As expressions of the assertion language are finite
terms, there exists a “new” hidden variable T'mp such that Tmp ¢ Var(S)U Var(Q) U Var (D).
Let us show that

E{PATmp=C,C}S{QAN Tmp =D, Tmp}

Let (o,¢) be in [{P A Tmp = C,C}]. We have in particular (o, c) = {P,C}. By hypothesis, we
thus get [S](0, ) = (¢, ) = {Q, D}.
Furthermore, we have o(Tmp) = o(C') = c. As Tmp ¢ Var(S), we have o'(Tmp) = o(Tmp) = c,
and (o', ¢) =E{Q, D} gives o'(D) = c. We conclude that (¢',¢) = {Q AN Tmp = D, Tmp}.

As Tmp ¢ Var(S), we are in the case of a plain specification, so the Completeness Theorem 5

applies and yields
F*{PATmp=C,C}S {QA Tmp = D, Tmp}
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As{Q AN Tmp = D, Tmp} = {Q, D}, we can apply the Consequence Rule. It yields
F*{PATmp=C,C} S {Q,D}
Applying then the Elimination Rule with ¥ = C' yields
FA{PAC=C,C}S{Q,D}

Finally, as {P,C} = {PAC = C,C}, we deduce by another application of the Consequence
Rule that
F{pP,C} S {Q, D}

6 A two-phase proof methodology for £ programs

A crucial step remains to be made for a practical application of our results. Quoting Apt and Olderog’s
seminal book [1, Section 3.4]:

Formal proofs are tedious to follow. We are not accustomed to following a line of
reasoning presented in small, formal steps |[...].

A possible strategy lies in the facts that [programs] are structured. The proof rules
follow the syntax of the program, so the structure of the program can be used to structure
the correctness proof. We can simply present the proof by giving a program with assertions
interleaved at appropriate places |[...].

This type of proof is more simple to study and analyze than the one we used so far.
Introduced by Gries and Owicki, it is called a Proof Qutline.

The presentation of Apt and Olderog focuses on control-parallel programs, that is, sequential processes
composed with the || operator. We show here that the approach of Gries and Owicki can be adapted
as well to data-parallel £ programs, giving birth to a notion of data-parallel annotations. We present
a simple proof method that allows, after a first step that slightly transforms the program, to handle
it as an usual scalar program.

The first step consists in a labeling of the program that expresses the depth of conditioning
constructs. In other words, a subprogram labeled by 7 is executed within the scope of ¢ where
constructs. This labeling follows the syntax of the program: labels are increased on entering the
body of a new conditioning construct. Context expressions are saved here in a series of auxiliary
variables. This allows us to alleviate any restriction on context expressions of conditioning constructs.

The second step consists in a proof method similar to that used in the scalar case, interleaving
assertions and program constructs.

6.1 First step: syntactic labeling

In this step, we associate to each subprogram of the considered program an integer label that counts
the number of nesting where constructs. Counting starts at 0 for the whole program. Consider for
instance the program

where X > 0 do

X =X +1;
where X > 2 do
X =X+1;
end
end
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We want to get the following labeling:

(0) where X > 0 do

(HX:=X+1;
(1) where X > 2do
2)X =X+1
end
end

In order to store context expressions, we distinguish particular auxiliary variables that do not appear
in programs.

Definition 8 Variables {Tmp; | i € N} are such that for any program S, and for any index i,
Tmp; ¢ Var(S). They are called auxiliary variables.

The conditioning construct can be seen as a stack mechanism: entering a where construct is the
same as pushing a value on a context stack, while exiting this construct corresponds to a “pop”. The
label is namely the height of the stack. At a given point, the current context is corresponding to the
conjunction of all the stack’s values. Each auxiliary variable is used to store one frame of the context
stack. Thanks to this storage, the variables appearing in context expressions may be modified. We
thus can alleviate restrictions on context expressions of conditioning constructs.

For a subprogram at depth ¢, the current context is the current value of T'mpy, ..., Tmp;. To get a
clearer presentation of this fact, we add annotations of the form [T'mp, = B] to each where construct.
The previous example is recast into

(0) where X > 0do [Tmp, = X > 0]
(X =X +1;
(1) where X > 2do [Tmp, = X > 2]
2)X =X+1
end
end

Labeling is thus made by induction on the program’s syntactic structure, running over the pro-
gram’s syntactic tree in a depth-first manner. For the entire program, counting starts at 0 for the
labels and at 1 for the auxiliary variables, T'mp, denoting the initial context the program is executed
in. If T'is a labeled subprogram of a program S, we denote by Lab(T') the outer label associated to T'.

6.2 Second step: proof outline

As we use labeled programs, and auxiliary variables to store contexts, we know the expression denoting
the current context at each place in the program. We can then drop context expressions out of
assertions and proceed exactly the same way as in the scalar case, with backward substitutions. The
only differences are that expressions in substitutions are conditioned by a conjunction of T'mp, and
that the data-parallel where construct adds a new substitution. The rules for inserting assertions in
proof outlines are given on Figure 6.2. Contiguity between two assertions refers to the use of the
Consequence Rule. If S is a labeled subprogram, we denote by S* a proof outline obtained from S by
insertion of assertions.

Let us explain intuitively the need of restrictions of the form “Vj > ¢, Tmp; ¢ Var(Q)”. In the rule
for the conditioning construct, we substitute Tmp,,, with B. We thus need that Tmp,,, ¢ Var(Q)
to respect the conditions of the Substitution Rule. But, as the postcondition () is the same for S
and for where B do S end, we need this condition to be satisfied for every nesting depth greater than
Lab(S).
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Vj >4, Tmp; ¢ Var(Q)

{QI/\ Tmp7E:X/X]} (i) X :=E{Q}

k=0

{Py S {Rr} {RrR}T"{Q}
Vj > Lab(S), Tmp; ¢ Var(R) U Var(Q)

{Py S {Rry T7 {Q}

P=P {P}S{Q} Q=Q
Vj > Lab(S), Tmp; ¢ Var(Q) U Var(Q')
{PHP'} 5" {Q'HQ}

{P} S*{Q}
Lab(S)=1+1
Vi >4, Tmp; € Var(Q)

{P[B/Tmp;,]} (i) where Bdo [Tmp;y, = B] {P} 5* {Q} end {Q}
{ry S*{Q}
{Py 57 H{Q}

where S*™ is obtained from S* by deleting any assertion.

Figure 4: Rules for annotation
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{(Tmpgy, X > 0,(Tmpy, X > 07X + 1:X) > 27
(Tmpg, X > 07X +1:X) 4+ 1:
(Tmpg, X > 07X + 1:X))|, = 4}

(0) where X>0 do [Tmp, = X > 0]

{(Tmpy, Tmpy, (Tmpy, Tmp,;?X + 1:X) > 27
(Tmpg, Tmp7X +1:X) 4+ 1:
(Tmpg, Tmp,?7X + 1:X))|, = 4}

(1) X:=X+1;

{(Tmpy, Tmp;, X > 27X + 1:X)], = 4}
(1) where X>2 do [T'mp, = X > 2]

{(Tmpo, Tmpy, Tmp,?X + 1:X)|, = 4}

(2) X:=X+1
{X1, =4}
end
{X1, =4}
end
{X1, =4}

Figure 5: The program annotated with its proof outline

6.3 A simple example

We go back to our previous example. We want to prove the two following specifications.

{X]|, = 2, True} {X], =1, True}
where X>0 do where X>0 do
X:i=X+1: X:i=X+1:
where X>2 do where X>2 do
X:=X+1 X:=X+1
end end
end end
{X|, =4, True} {X], =2, True}

These specifications mean that, if the initial value of X at index wu is 2, then its final value after
execution of the program will be 4 at the same index, and if it is 1, then the final value will be 2. The
proofs are simply done by establishing the following proof outline — the result of the first step has
already been given as example in the previous section.

First proof If we denote by P the first assertion of this proof outline, we only have to prove that
X|, =2, Tmpy = True = P.

In other words, we prove that
X|, =2 = P[True/Tmp]
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The predicate P[True/Tmp,] is equivalent to

(X >0,(X>07X 4+ 1:X) > 27
(X >07X +1:X) 4+ 1:
(X > 07X + 1:X))|, =4

Let us consider an index u such that X |, = 2. Then, the boolean expression (X > 0)|, is true. As
X+1,>2, (X >07X+1:X) > 2)|, is also true.
Conditional expression
(X >0,(X>07X 4+ 1:X) > 27
(X >07X +1:X) 4+ 1:
(X > 07X + 1:X))|,

thus simplifies into (X > 07X + 1: X) + 1|, which in turn simplifies into X + 1+ 1],.
Assertion P[True/Tmpg] thus simplifies into X 4+ 1+ 1|, = 4, which is true.

Second proof. As no simplification using the value of X occurs in the first proof outline, the second
is almost the same: we just replace the value 4 by the value 2. Then, if we denote by P’ the assertion
obtained by substituting 4 by 2 in P, we just have to check that

X|, = 1= P'[True/ Tmp,]

Let us consider an index u such that X| = 1. Then, the boolean expression (X > 0}, is true.
But this time, as X + 1], =2, ((X > 07X +1: X) > 2)|, is false.
Conditional expression
(X >0,(X>07X+1:X) > 27
(X >07X +1:X) 4+ 1:
(X > 07X + 1:X))|,

thus simplifies into (X > 07X + 1: X)|,, which in turn simplifies into X + 1],,.
Assertion P'[True/Tmpg] thus simplifies into X 4 1|, = 2, which is true.

7 Conclusion and related works

We have defined a proof system for a small data-parallel language called £, which is designed to be a
common kernel of real data-parallel languages. Our proof system is characterized by a two-component
assertion language where the current extent of parallelism is explicitly described. We have studied
its expressivity and we have established completeness of our proof system. We have shown our proof
system is well suited for a two-phase proof methodology: the first step is a syntactic labeling related to
the extent of parallelism, and the second step is a proof similar to the scalar case. Our proof method
for data-parallel programs inherits both from proof methods for parallel programs and proof methods
for scalar programs: a two-phase proof methodology from the former, and a backward methodology
derived from a preconditions calculus from the latter.

As they can provide an a priori description of the extent of parallelism, two-component assertions
yield a useful intuitive support to design proofs. However, several drawbacks arise with this structured
approach. The assertion language suffers from a restricted expressive power, as it is not closed under
classical propositional operations. The Definability Property does not hold for weakest preconditions
if the program modifies the variables in the assertions. This syntactic problem can be circumvented
by adding and removing auxiliary variables in the proof system. This leads to slightly more complex
rules, but we have shown that this extended proof system is complete.

To tackle the Definability Property problem, it is possible to use a different approach. In this
alternative approach, the assertion language manipulates both program variables and a distinguished
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context variable describing the extent of parallelism within vector predicates. Assertions are usual
predicates and constraints on context are directly handled by assertions.

> By translating the conditional constructs into unconditioned assignment (introduced in [5]) to
a distinguished context variable (called # to follow Narayana and Clint’s notation [7]), it is
possible to avoid the complex manipulations of the extent of parallelism induced by the where
construct. This technique leads to a very simple sequential-like proof system [10]. The resulting
proof system is well-suited for (semi)-automatic verification of programs following the method
of verification conditions proposed by Gordon [9].

> In Section 4, we have presented an extended notion of assertion where an additional variable
Auz is used to denote context. We have shown that wip(S, {Q, D}) can always be defined by
such an assertion. Moreover, it is shown in [6] that the whole approach can be reworked out
with this new notion of assertion, yielding a simpler proof of completeness.

In fact, this result illustrates a well-known drawback of axiomatic semantics: this kind of semantics
is not well suited to denote control flow properties of programs. For instance, Owicki and Gries
introduce auxiliary variables to catch control flow information in the proof of parallel programs [15].
This cannot be avoided to prove properties like mutual exclusion.

In our work, the proof systems for data-parallel languages are quite similar to those used in the
case of scalar languages: they have the same structure and respect some crucial properties such as
compositionality. Yet, the parallel world induces additional complexity: introducing auxiliary variables
is necessary to catch information about the control flow. In the data-parallel case, the control flow is
expressed by the evolution of the extent of parallelism.

It is possible to extend this work to other data-parallel languages. An extension of the £ language is
described in [4]. It defines a data-parallel escape construct. This new construct extends data-parallel
break and continue constructs found in real languages like HyperC [16] or MPL [13]. The natural
semantics handles the activity by a multi-context mechanism. In [2], the two-component assertion
language is extended to handle multi-context, which leads to a similar proof system for L-programs
with escape constructs. It would also be possible to extend this work to data-parallel languages that
take into account notions of alignment and of mapping of the data. We are currently working in this
direction.
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