
Received April 27, 2021, accepted May 10, 2021, date of publication May 21, 2021, date of current version June 2, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3082852

Fault-Tolerant Application-Specific
Topology-Based NoC and Its
Prototype on an FPGA
P. VEDA BHANU 1, RAHUL GOVINDAN 1, RAJAT KUMAR1, VISHAL SINGH1,
J. SOUMYA1, (Member, IEEE), AND LINGA REDDY CENKERAMADDI 2, (Senior Member, IEEE)
1Department of Electrical and Electronics Engineering, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
2Department of Information and Communication Technology, University of Agder (UiA), 4879 Grimstad, Norway

Corresponding author: Linga Reddy Cenkeramaddi (linga.cenkeramaddi@uia.no)

This work was supported in part by the Science and Engineering Research Board (SERB), Government of India, under Project
ECR/2016/001389, and in part by the Indo-Norwegian Collaboration in Autonomous Cyber-Physical Systems (INCAPS) of the INTPART
Program from the Research Council of Norway under Project 287918.

ABSTRACT Application-Specific Networks-on-Chips (ASNoCs) are suitable communication platforms for
meeting current application requirements. Interconnection links are the primary components involved in
communication between the cores of an ASNoC design. The integration density in ASNoC increases with
continuous scaling down of the transistor size. Excessive integration density in ASNoC can result in the
formation of thermal hotspots, which can cause a system to fail permanently. As a result, fault-tolerant
techniques are required to address the permanent faults in interconnection links of an ASNoC design.
By taking into account link faults in the topology, this paper introduces a fault-tolerant application-specific
topology-based NoC design and its prototype on an FPGA. To place spare links in the ASNoC topology,
a meta-heuristic algorithm based on Particle Swarm Optimization (PSO) is proposed. By taking link
faults into account in ASNoC design, we also propose an application mapping heuristic and a table-based
fault-tolerant routing algorithm. Experiments are carried out for a specific link and any link fault in
fault-tolerant topologies generated by our approach and approaches reported in the literature. For the exper-
imentation, we used the multi-media applications Picture-in-Picture (PiP), Moving Pictures Expert Group
(MPEG) - 4, MP3Encoder, and Video Object Plane Decoder (VOPD). Experiments are run on software
and hardware platforms. The static performance metric communication cost and the dynamic performance
metrics network latency, throughput, and router power consumption are examined using software platform.
In the hardware platform, the Field Programmable Gate Array (FPGA) is used to validate proposed
fault-tolerant topologies and analyze performance metrics such as application runtime, resource utilization,
and power consumption. The results are compared with the existing approaches, specifically Ring topology
and its modified versions on both software and hardware platforms. The experimental results obtained from
software and hardware platforms for a specific link and any link fault show significant improvements in
performance metrics using our approach when compared with the related works in the literature.

INDEX TERMS Network-on-Chip, application-specific design, fault-tolerance, FPGA, communication
latency, spare link, communication cost.

I. INTRODUCTION
The Network-on-Chip (NoC) interconnection paradigm has
emerged as a promising solution for addressing com-
munication issues in Multi-Processor Systems-on-Chips

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

(MPSoCs) [1]. The key components of NoCs’ communica-
tion infrastructure are cores, routers, and links. The NoC
cores communicate via routers and links using, a packet-
based switching technique [2]. Regular or irregular topolo-
gies can be used to design NoCs. In irregular topologies,
the connections between routers via links vary depending
on the application, whereas regular topologies have fixed

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 76759

https://orcid.org/0000-0001-5663-8407
https://orcid.org/0000-0002-9581-0705
https://orcid.org/0000-0002-1023-2118


P. V. Bhanu et al.: Fault-Tolerant Application-Specific Topology-Based NoC and Its Prototype on FPGA

connection patterns. The selection of topology for the design
of an NoC determines the majority of the design param-
eters such as network latency, throughput, and efficiency.
In comparison to regular topologies, irregular topologies
(also known as application-specific topologies), are more
flexible and efficient in terms of communication cost, net-
work latency, and power consumption [3]. As a result,
application-specific topology-based NoCs (ASNoCs) are
regarded as the preferred designs [3].

Thermal hotspots in ASNoCs can occur at any component
level in the nano-scale era due to high integration density.
This might lead to permanent failure of a system. As a
result, system performance and reliability are degraded [4].
Therefore, fault-tolerant techniques are proposed as solutions
to address the faults in ASNoC [5]. As previously stated,
the connection pattern between routers and links is fixed in
regular NoCs and follows a specific pattern when the topol-
ogy is scaled. The connection pattern between routers and
links in an irregular topology is not fixed and gets changed
as the topology is scaled. Regular NoCs can address router
and link failures simultaneously. This is because the designer
is already aware of the connection pattern at this early stage.
As a result, packets in the network can be rerouted using
fault-tolerant routing algorithms. On the contrary, consider-
ing router and link faults in ASNoC topologies is extremely
challenging. Unlike in regular topology, the router connection
pattern is unknown in the early stages of application-specific
topology. Because application-specific topology design dif-
fers from one application to the next, the same logic pro-
posed for one topology may not be suitable for the other.
There is non-uniformity in the application-specific topol-
ogy design phase, which increases the designs complexity.
The router and link failures must be considered as two dis-
tinct dimensions in the problem space when designing a
fault-tolerant ASNoC. If the router in the application-specific
topology fails, the corresponding links associated with the
router are rendered useless. As a result, using redundant
routers to reroute data packets using fault-tolerant method-
ologies is the best solution. If a link in the application-specific
topology fails, the router associated with the failed link
must decide whether to reroute packets through the alter-
nate link. If there is no alternate link, communication is
halted, and the desired response is not obtained. Similarly,
if the design includes an alternate link, the packets are
re-routed.

In comparison to router failure, link failure in
application-specific topologies is more complex and diffi-
cult. Hence, this work addresses link faults and proposes
a fault-tolerant ASNoC design based on spare links. For
each application, fault-tolerant application-specific topolo-
gies are generated. This methodology includes topology
design and a table-based fault-tolerant routing algorithm that
re-routes packets in the topology. However, when designing
a fault-tolerant application-specific topology, router failures
must not be overlooked. Therefore, it has been regarded as an
extension of this work. Because interconnection links play an

important role in transferring application data among cores in
ASNoC design, they must be prioritized when designing and
implementing fault-tolerant ASNoC designs.

To date, the majority of fault-tolerant ASNoC designs have
been evaluated using NoC simulators available in the litera-
ture [6]–[8]. These simulators, however, can only provide an
estimate of parameters, which may not be accurate when the
design is ported to an FPGA. Therefore, FPGA implementa-
tion is critical for analyzing and comprehending the practical
behavior of fault-tolerant ASNoCs in terms of application
runtime, resource utilization, and on-chip power dissipa-
tion. The authors of [5] implemented fault-tolerant ASNoCs
for MP3Encoder applications on an FPGA while taking
link faults into account. For the generation of fault-tolerant
ASNoC, they used a modified version of Ring topology.
Because it is a modified version of Ring topology, the number
of hops between routers for a single-link fault in the topology
will be high. This is due to the fact that the topology only has
one alternate routing path for data packet transmission. The
same group of authors in [5] proposed several changes to the
Ring topology to allow for multiple routing paths. According
to [9], Ring topology is the best application-specific topology
for application cores with a size less than or equal to sixteen.
However, the high average hop count between the routers in
the Ring topology has a negative impact. Similarly, in one
of their recent works [10], the average hop count in the
Ring topology was improved by adding a link between the
topology’s routers. This new link will provide two alternate
routing paths for data from the source core to the destination
core. However, in the event of a single link failure, the fault-
tolerant ASNoC designs generated by the approaches [5],
[9], [10] resulted in an excess hop count. The main reason
is that they used the Ring topology as the foundation for the
fault-tolerant ASNoC design. As is well known, if the connec-
tion pattern between the routers remains constant, there will
be a limited scope of improvement in performance parameters
such as communication cost, network latency, and application
runtime on an FPGA. Hence, there is a need to improve the
performance parameters of the fault-tolerant ASNoC design
by allowing users to customize the topology while it is being
generated.

In light of this background, this paper proposes the
design of fault-tolerant ASNoCs and their implementation on
an FPGA. Picture-in-Picture (PiP), Moving Pictures Expert
Group (MPEG) - 4, MP3Encoder, and Video Object Plane
Decoder (VOPD) were used as multi-media application
benchmarks. The following are the significant contributions
of the paper.

1) A meta-heuristic Particle Swarm Optimization (PSO)
based solution has been proposed to address the link
faults in the ASNoC design.

2) A fault-tolerant routing algorithm has been pro-
posed by considering the link faults in ASNoC
design.

3) An application mapping heuristic algorithm is pro-
posed and generated application-specific topology.

76760 VOLUME 9, 2021



P. V. Bhanu et al.: Fault-Tolerant Application-Specific Topology-Based NoC and Its Prototype on FPGA

4) To analyze the hardware resource utilization and appli-
cation runtime on an FPGA, an FPGA implementation
of a fault-tolerant ASNoC design was performed.

Our approach has addressed the problem of link faults and
generated fault-tolerant ASNoCs by considering (a) specific
link (SL) fault in the topology, and (b) any link fault in the
topology. The remainder of the paper is organized as follows.
Section II details the literature survey. Section III discusses
the faults and their effect on the interconnection links in the
ASNoC topology. Section IV briefs the reliability analysis of
the interconnection links. Section V explains the methodol-
ogy used in our approach. Section VI discusses the experi-
mental results. Section VII concludes the paper followed by
the limitations of the work discussed in Section VIII.

II. LITERATURE SURVEY
This section summarizes the literature review on link faults in
ASNoC design. The authors of [5] took a single link failure
into account in the ASNoC design and implemented the
fault-tolerant ASNoC on an FPGA. They dealt with the single
link failure by implementing alternate routing options for the
source and destination core pairs. The results show that there
are few advantages over the ring topology-basedASNoC. The
authors of [9] presented a two-step method for combining
regular and irregular topologies to provide fault-tolerance
to the application. In the first step, they used the Genetic
Algorithm (GA) to generate the topology with the fewest
number of routers and links possible. The authors then used
the reconfiguration technique to switch between the routers
in the topology in the second step. The authors of [10]
described a fault-tolerant ASNoC created by modifying the
ring topology with GA. They modeled the base topology as
a Ring and reduced the distance between the two routers by
incorporating spare links into the topology. In the modified
Ring topology, they used the meta-heuristic GA to map the
cores onto the routers. This resulted in improved performance
when compared to their previously published work [9]. The
authors of [11] addressed the link failures that can occur in
the design of 2D application-specific NoCs. They created
fault-tolerant topologies for the MP3Encoder application and
compared them to ring topology. In the fault-tolerant ASNoC
design, they proposed the Simulated Annealing (SA) tech-
nique for mapping cores onto routers. The main limitation
of the works [5], [9]–[11] is that the authors regarded the
Ring topology as a key platform for fault-tolerant ASNoC
design. If the interconnection pattern between the routers
remains constant, there is very little chance of improving the
generation of fault-tolerant ASNoCs for various applications.
This is due to the fixed routing path between the routers in
the topology. In the event of a link failure, there are only a
few possible routing paths for data packets to travel from the
source router to the destination router.

The authors of [12] investigated permanent flaws in the
Network Interface (NI) of an application-specific 3D NoC
design. They took into account a single fault that could occur
in the NI and used spare NIs as part of the fault-tolerance.

The results show that the overhead in power consumption
is minimal when compared to other approaches. However,
the approach proposed by the authors [12] has taken into
account NI failures and is limited to 3D NoC. The authors
of [13] presented a fault-tolerant ASNoC for link faults
based on Integer Linear Programming (ILP). They took into
account link faults in the application-specific NoC and pro-
vided an alternate routing path. The authors’ technique can be
extended to any number of link faults, but there is an excessive
overhead in terms of links, switches, and other components
added to provide fault-tolerance to the system. Their focus,
however, is not on the fault-tolerant application-specific NoC
design’s FPGA implementation. The authors of [14] pre-
sented a fault-tolerant application-specific NoC design that
takes link faults into account. By proposing a greedy algo-
rithm, they attempted to generate an application-specific
topology with the lowest possible communication cost.

The authors of [15] presented a reliable custom topol-
ogy for various applications. They used the Ant Lion
Optimization (ALO) algorithm to generate a reliable custom
topology with optimized power consumption and area. The
proposed methodology was synthesized on an FPGA using
a custom router design. The simulation results show that the
desired output was obtained, and there is also a discussion
of the experimental results. However, identifying the cus-
tom topology created with the ALO algorithm is extremely
difficult. The reliability metric used in the [15] approach
is also unknown. Though they have presented the custom
and reliable topology for NoC design, there are very few
details on how the custom topologies generated using the
ALO algorithm are implemented. The authors of [16] pre-
sented the Discrete Antlion Trapping Mechanism (DTAM) to
generate a custom topology for NoC design. They created the
custom topology by taking into account three cores connected
to one router in the topology. Experiments are carried out
for various applications, and the results are compared to
standard NoC topologies. The proposed DTAM technique
outperformed previous approaches reported in the literature.
However, determining the reliability of custom topologies
generated with one or two cores using the DTAM tech-
nique is extremely difficult.While generatingASNoC topolo-
gies, most of the approaches proposed in the literature have
focused less on the link faults. Furthermore, there are only a
few approaches [5] that have performed an FPGA implemen-
tation of a fault-tolerant ASNoC. Therefore, this work is criti-
cal in addressing link failures while developing fault-tolerant
ASNoC topologies and prototyping on an FPGA.

III. FAULTS AND THEIR EFFECT ON INTERCONNECTION
LINKS IN NoCs
The number of transistors integrated on a single chip
is increasing, according to the International Technology
Roadmap for Semiconductors (ITRS) 2.0 report [17].
Because of the massive integration density of transistors and
process variations in technology, the components of NoC,
primarily links, are prone to faults [18]. According to [4],

VOLUME 9, 2021 76761



P. V. Bhanu et al.: Fault-Tolerant Application-Specific Topology-Based NoC and Its Prototype on FPGA

TABLE 1. Different types of faults that can occur in NoC and their effect on the on-chip communication.

NoC faults are classified into three types: transient, intermit-
tent, and permanent.
• The faults which occur randomly for one or several
cycles are considered as Transient faults.

• The faults which repeatedly occur at the exact location
or tend to occur in bursts are considered as Intermittent
faults.

• The faults which can occur due to open or short circuit of
the transistor and slow/delayed response of transistor or
wire are considered as Permanent faults. This includes
logic faults and delay faults, resulting in an incorrect
logic value and delay of the response.

Table 1 shows different root causes of failures and their effect
on NoC communication infrastructure. The type of fault is
represented by the first column. The source and cause of
the faults are represented by the second and third columns.
The fourth column depicts the impact of the system’s faults.
Transient faults are primarily caused by α-particle striking
in integrated circuits and high energy radiations emitted by
impurities in the material [19], [20]. The most common effect
of transient faults in the NoC is bit flipping. Intermittent
and permanent faults severely degrade overall system perfor-
mance. Intermittent faults are primarily caused by the aging
of electronic components and crosstalk between wires in
integrated circuits. Process variations are the primary cause
of transient faults [21]–[23], electromigration (EM) [24],
negative bias temperature instability (NBTI) [25], hot carrier
injection (HCI) [26], wear out [27], process voltage tem-
perature variations [28], electromagnetic interference (EMI)
[29], and electrostatic discharge (ESD) [30]. The intermittent
faults’ bursty nature causes the system to fail permanently.
Physical failure and temperature variations of the integrated
circuits (ICs) will result in permanent faults in the NoC-based
system.

The impact of these faults on NoC links will have a sig-
nificant impact on overall system performance degradation.
This is demonstrated with a real-time industrial applica-
tion from the Avionics domain [31]. In any real-time sys-
tem, decisions must be made quickly in order to address
the issue within the task’s deadline. If the required data
is not received on time or is corrupted, the decision can-
not be made in favor of the system’s current state. There
are 46 communicating tasks in the avionics application that

perform these functionalities, with task periods ranging from
20 ms to 500 ms and communication volumes ranging from
a few bytes to 10 MB. Assume that each task in the avion-
ics application is assigned to a core, and that each core
is linked to a router in an application-specific NoC. There
is a communication delay between the cores if a link fails
in the application-specific NoC. The data from the source
core to the destination core will arrive after a time delay.
This delay can have an impact on an application’s overall
behavior. In addition to the delay, the link fault causes data
bits to be flipped from ‘1’ to ‘0’ or vice versa, resulting in an
undesirable response. For example, during the task of weapon
aiming, if the control signal required to trigger the weapon
is ‘1,’ but the control signal data bit is flipped from ‘1’ to ‘0’
due to a link fault in the application-specific NoC. This
means that the aircraft will not fire against the enemy aircraft
because the weapon will not be activated. If the weapon is
not triggered within 20 ms (assuming that the task of weapon
aiming is to be completed in less than 20 ms), there is a risk
of disaster. The aircraft could be shot down by an enemy
plane. This has the potential to endanger human life. As a
result, in the event of a link failure, efficient fault-tolerant
strategies that can mitigate faults in application-specific
NoC-based MPSoCs are required to improve an application’s
performance and achieve the desired response.

IV. RELIABILITY ANALYSIS
The interconnection link plays a critical role in the communi-
cation between the cores in the application through the routers
in the topology. To determine the failure of an interconnection
link during the design phase, the reliability metricMean Time
To Failure (MTTF) must be calculated. In one of our previous
works [32], we calculated the MTTF of interconnection links
for various application-specific topologies. A similar tech-
nique was used to determine the MTTF of interconnection
links for various application-specific topologies generated by
our approach and approach [5]. As mentioned in the previous
section, link faults are primarily caused by the EM effect.
As a result, in our previous work [32], theMTTF is calculated
based on the EM effect using the Black’s equation given
below.

MTTF =
X
J2

(e
EA
kT )

76762 VOLUME 9, 2021



P. V. Bhanu et al.: Fault-Tolerant Application-Specific Topology-Based NoC and Its Prototype on FPGA

FIGURE 1. FTTGs generated for MP3Encoder’s ACG using the approaches [5], [9], [10], and our approach for a specific link and any link fault.

where ‘X’ is an area of the conductor, ‘J’ is the current density,
‘EA’ is the activation energy, ‘k’ is the Boltzmann constant,
and ‘T’ is the temperature (ambient and joule heating). For
the experiment, the link length and width are 1 mm and 1µm,
respectively. According to the approach [32], the MTTF of a
link is determined by the communication traffic that passes
through it. If a link in the topology has a high communication
bandwidth, it has a lower MTTF value, and vice versa. As a
result, the links with the highest communication bandwidth
are prioritized, and fault-tolerance is provided by adding
spare links to the topology.

V. METHODOLOGY
This section describes the methodology used for the
FPGA implementation of a fault-tolerant ASNoC design.
Prior to FPGA implementation, we generate fault-tolerant
ASNoCs for various applications using our approach and the
approaches [5], [9], [10] on a software platform. They have
generated the Fault-Tolerant Topology Graphs (FTTGs) of an
application by considering each link fault in the topology.
Our method solves the problem by taking into account a
specific and any link fault in the application-specific topolo-
gies of several applications. Link failures are detected dur-
ing the design process using the MTTF analysis presented
in Section IV. Based on the MTTF analysis, our approach
generates fault-tolerant ASNoCs for links with a shorter
time to failure. However, the predictions for a design may
not come true. In such cases, our approach can generate

a fault-tolerant ASNoC that mitigates any link fault in the
topology. The software and FPGA implementation of the
proposed fault-tolerant ASNoC design are presented in this
paper.

A. DEFINITIONS
The Application Core Graph (ACG) is a communication
graph that represents the application requirements. It includes
the number of cores, edges, and communication requirements
(in Mega bits per second (Mbps)) between the cores. The
Topology Graph (TG) represents the connection between the
routers and links required for a particular application. FTTG
denotes the connection between routers and links (including
spare links) which attempt to achieve the fault-tolerance for
a specific application. Please note that the interconnection
links used in our design are bi-directional and there are
very limited chances of the deadlock occurrence. Fig. 1(a)
shows the MP3Encoder’s ACG (modified from [33]),
Fig. 1(b), 1(c), and 1(d) show the FTTGs generated using the
approaches [5], [9], [10]. Fig. 1(e) and 1(f) show the FTTGs
generated using our method by considering the specific link
and any link fault, respectively. Because the approaches
in [5], [9], [10] generated the FTTG by connecting more
than one core to one router, our methodology proposed in
this paper generated FTTGs by considering a maximum of
two cores per router for a fair comparison. Our method,
on the other hand, can generate FTTGs by taking into account
one or more than two cores per router. Figure 2 depicts

VOLUME 9, 2021 76763



P. V. Bhanu et al.: Fault-Tolerant Application-Specific Topology-Based NoC and Its Prototype on FPGA

FIGURE 2. Design flow followed using our approach and the approaches [5], [9], [10] for the FPGA implementation of fault-tolerant ASNoC design.

the design flow used in our method and the methodology
proposed in [5], [9], [10]. The inputs to our method and the
approaches used in [5], [9], [10] are ACGs, and the output is
an application’s FPGA implementable FTTGs. To generate
FTTGs for an application, we used the meta-heuristic PSO
algorithm, the approaches [5], [9] used SA-based algorithm,
and the approach [10] used GA-based technique. The perfor-
mance parameters such as network latency, communication
cost, router power consumption are calculated for the FTTGs
generated using our approach and the approaches [5], [9],
[10]. Consequently, the FTTGs generated by our approach,
as well as the other approaches, are prototyped on an FPGA.
The estimation of resources and communication latency, i.e.
the time required for applications to run on an FPGA, are
computed.

B. PSO FOR THE SPARE LINK PLACEMENT IN THE
APPLICATION-SPECIFIC TOPOLOGY
1) INTRODUCTION TO PSO
The authors Eberhart and Kennedy proposed the PSO [34]
optimization technique, which was inspired by the nature of
bird flocking and fish schooling. The particle, according to
this technique, is a solution flying in the problem space to
find the best global solution. The fitness function determines
the particle’s quality. The fitness function is either minimized
or maximized depending on the type of problem.

2) APPLICATION OF PSO FOR THE SPARE LINK PLACEMENT
IN ASNoC
The PSO algorithm consists of four major steps, the first
of which is to generate a population of particles at random.
The second step is to define the fitness function, the third
step is to generate the PSO, and the fourth step is to terminate
the PSO. The Particle Structure must be defined before we
can create a population of particles.
Step-1: The particle structure is a 2D array which consists

of two distinct arrays. The first array elements represent the
likelihood of selecting a router in the TG to add the spare link.
The second array elements represent the likelihood of adding

a spare link to the router chosen from the first array. This is
demonstrated by the ACG of the MP3Encoder in Fig. 1. (a).
Figure 3 depicts the particle structure for spare link place-
ment. The particle has a length of 14, with the first seven
elements used for router selection and the next seven elements
used for link selection.

FIGURE 3. Particle structure.

We have assumed that the link between routers r2 and r3
is failed (Fig. 1(e)). However, any link, can be considered a
failure in an application’s FTTG. As shown in Fig. 1(e), there
are seven routers available, numbered from r0 to r6, and the
possible spare links that can be added for each router are pre-
calculated, as shown below. Only one of these options will be
added to the TG of the MP3Encoder application.
• r0: {sl03};
• r1: {sl13};
• r2: { ∅ };
• r3: {sl30, sl31, sl34, sl35, sl36};
• r4: {sl43};
• r5: {sl53};
• r6: {sl63};
For the failed link l23 (shown in Fig. 1(e)), from the

first array of a particle (shown in Fig. 3), third array index
has the highest probability, i.e., 0.9. Therefore, the third
router (r3) is selected to add a spare link. To select the spare
link among different possibilities, we refer to the second array
of the particle structure. In the second array, the third index
has a probability of 0.3. The spare link whose selection range
has the probability (obtained from second array) is considered
for adding in TG. The selection range for each router can be
calculated as follows. If a router has ‘n’ possible spare links
to be added, then the selection range lies in between 0 - 1 with
an interval of 1/n. As the router r3 has five possible links
{sl30, sl31, sl34, sl35, sl36}, the selection range varies from
0 to 1 with an interval of 0.2 (1/5 = 0.2). If the probability

76764 VOLUME 9, 2021



P. V. Bhanu et al.: Fault-Tolerant Application-Specific Topology-Based NoC and Its Prototype on FPGA

obtained from the second array of the particle structure is in
between 0 - 0.2, then the spare link sl30 is selected. Similarly,
if the probability is in between 0.2 - 0.4, 0.4 - 0.6, 0.6 - 0.8,
0.8 - 1, then the spare links sl31, sl34, sl35, sl36 are selected,
respectively. Since the third index in the second array of
the particle has a probability of 0.3, the spare link sl31 is
selected for adding in the TG. Please note that the spare links
sl13 and sl31 are same. However, the particle length and the
pre-calculated router, link dataset differ from one topology to
the next. The empty link dataset (for r2) indicates that there
is no possible spare link that can be added to the design to
achieve fault-tolerance for the given failed link.
Step-2: The Fitness Function, which is the communi-

cation cost calculated for an application-specific topology,
is defined as the second step in PSO. The communication
cost (see equation 1) is defined as the product of the band-
width between the cores and the number of hops required to
complete the application data transfer.

Cost =
∑
∀ edges

(BWedge ∗ Hop Count) (1)

The PSO is designed to reduce the communication cost
overhead caused by the addition of a spare link in the
application-specific topology. Because the fitness function
defines the quality of the particle, if the communication cost
is the lowest, the value of that particle has achieved the best
fitness.
Step-3: The third step is to generate new particle gener-

ations. It is possible to accomplish this by performing the
swap operation on the particle population. The details of swap
operators and new generation creation can be found in [35].
Step-4: The terminating condition must be defined in the

fourth step of PSO. There are two methods for terminating
the PSO. If the generation count for one independent run has
expired in the first method, the PSO can be terminated. The
PSO is terminated in the secondmethod if the communication
cost is observed to be constant over a predefined number of
successive generations. The best communication cost results
are reported following the termination of PSO.We considered
the first method of terminating the PSO for our experiment.

C. NoC ROUTER ARCHITECTURE
The NoC router architecture is taken from the work reported
in the literature [36]. It has been developed using Verilog
and implemented on Kintex KC705 evaluation board-based
FPGA.We have used Xilinx Vivado 2016.2 tool for prototyp-
ing the NoC design onto FPGA. The detailed specifications of
the NoC router can be seen from Table 2. However, any NoC
router architecture can be synthesized and implemented on an
FPGA for the fault-tolerant ASNoC design. Please note that
the traffic patterns used for the experiments are application-
specific. Because the application communication require-
ment is known, traffic patterns are generated in accordance
with the application communication requirement. In compar-
ison to application-specific traffic patterns, synthetic traffic
patterns are not well suited for carrying out experiments

TABLE 2. NoC router specifications [36] used in this work.

for various applications. Synthetic traffic patterns are used
to understand network behavior in the absence of applica-
tions running on it. In the current work, we focused on the
application requirements and generated the custom topology
accordingly. As a result, application-specific traffic is directly
available and appropriate for the problem addressed in this
work. Understanding network behavior under different traffic
patterns, on the other hand, can be considered an extension of
the work.

Fig. 4 shows the NoC router architecture implemented
on an FPGA. It is a five-port router. Out of five ports, two
of them are dedicated to the cores, and three of them are
for neighboring routers in the topology. Fig. 4(a) shows the
block level representation of the NoC router. Each port in the
router has four virtual channels. These virtual channels are
used to avoid the occurrence of the deadlock and livelock
while routing the data packets. Fig. 4(b) shows the internal
block-level design of the channels in the input port. The
data from the input links received at each port of the router
are stored in the buffers and forwarded to the next module
to identify the header and payload flit. Among the several
data flits, the header flit is passed to the route computation
unit of the input channel. Based on the destination address
present in the header flit, the request will be sent to the cor-
responding output channel via a crossbar. Fig. 4(c) and 4(d)
are the critical functional modules present in the output link
of the router. The virtual channel allocator module and switch
allocator module are the two basic logic blocks that can pass
the data from the input channel to the output physical link.
The virtual channel allocator module provides access to the
input channel to pass the data flits to the output channel, while
the switch allocator module establishes the path by providing
access to the output links of the router. The fault-tolerant
topologies are generated by considering a maximum of two
cores connected to one router. The router port connections
for the topologies generated using one core connected to
one router and two cores connected to one router are shown
in Fig. 5. With the configuration shown in Fig. 5, the fault-
tolerant application-specific topologies are implemented on
an FPGA. Thus the overall data flow in the router from the
input channel of the link to the output physical link is shown

VOLUME 9, 2021 76765



P. V. Bhanu et al.: Fault-Tolerant Application-Specific Topology-Based NoC and Its Prototype on FPGA

FIGURE 4. NoC router architecture overview.

FIGURE 5. Router port connections used for generating fault-tolerant application-specific NoC.

in Fig. 6. This completes the detailed explanation of the NoC
router architecture implemented on an FPGA.

D. FAULT-TOLERANT ROUTING ALGORITHM
Routing algorithms play a crucial role in deciding the network
latency of a system. The routing algorithm resides in the RC
unit of the NoC router. In the ASNoC design, the connection
of routers is irregular when compared to the regular topolo-
gies like Mesh. Therefore, generalized routing algorithm
might not fit for ASNoCs. Since the topology varies from one
application to another, the best suitable routing algorithm for
the ASNoCs is Table-based.

Algorithm 1 shows the table-based fault-tolerant routing
algorithm. Inputs to the algorithm are HF, failed link (specific
link or any link), router and link connection information, and

FIGURE 6. Overall data-flow in the NoC router (modified from [36]).

output is the fault-tolerant routing path established by using
the spare link. Since our approach provides the FTTG of an
application, the number of routers, links, and connections

76766 VOLUME 9, 2021



P. V. Bhanu et al.: Fault-Tolerant Application-Specific Topology-Based NoC and Its Prototype on FPGA

Algorithm 1: Table-Based Fault-Tolerant Routing
Algorithm
Input : Header Flit (HF), Failed link (specific link or

any link in the FTTG), and router-link
connection information

Output: Request the link that establishes fault-tolerant
routing path

for all HFs do
if current router address 6= destination router
address then

if failed link is present then
if alternate path exists then

request the link present in the
table-memory

else
request the spare link connected to the
current router

else
request the link present in the table-memory

else
request the link connected to the core

between the routers is assumed to be known. Based on the
FTTGs information, our approach used the shortest path
algorithm, namely Dijkstra’s [37], for finding the available
path between the routers in the FTTG. This information is
stored in the memory of the RC unit in the NoC router, which
is analogues to the approaches [5], [9], [10]. The authors
in [5] have also stored the complete routing path in the Path
Table (PT), accordingly the links are requested.

Once the HF is received at every router, the source router
address and the destination router address are taken from HF.
The destination router address is compared with the current
router address, and if they are not equal, then the HF has to
pass from the current router to the next router. If there exists a
failed link in the current router, then there are two possibilities
in providing fault-tolerance. The first possibility is to check
for the alternate paths from the routing table-memory. If there
are any such alternate paths, then the corresponding link is
requested. The second possibility is to request the spare link
if there are no alternative paths to route the HF. The HF
is traversed until the current router address, and destination
router address becomes the same. If both destination and
current router addresses are equal, then the link that is con-
nected to the core is requested. This process continues for
all the HFs received at the router. Once the HF establishes
the fault-tolerant routing path, then the payload and tailer flit
follows the path to deliver the application data. The proposed
fault-tolerant routing algorithm is verified for the deadlock
and live-lock avoidance using the channel dependency graph
of the fault-tolerant application-specific topologies generated
using our approach. In addition to this verification, the router
architecture used in this work includes four virtual channels
per link. The virtual channels help in avoiding the deadlock

and live-lock while separating the application traffic [38].
For the fault-tolerant application-specific topology shown
in Fig. 1(e), the routing path and the number of links involved
in the path are shown in Table 3. The symbol (–) repre-
sents that the cores present in the edge are mapped to the
same router. Therefore, the number of global links, i.e., the
link between the routers involved in the path, is 0. From
Table 3, it is evident that a maximum of two links are utilized
for routing the data between the cores of an application.
Fig. 7 shows the illustration of deadlock and live-lock occur-
rence with the help of a channel dependency graph (CDG)
of the fault-tolerant topology of the MP3Encoder application
shown in Fig. 1(e). According to [38], the nodes and arcs
in the CDG of a topology represent the links present in the
topology and the corresponding routing path of the topology.
In the CDG shown in Fig. 7, there is only one arc between
the nodes L12 and SL13, which means that there exists a
path between the routers via links in the topology. There
are no arcs between the other nodes of the CDG because
those nodes are utilized only once, and there is no imme-
diate use of the links in the topology. Since there are no
cyclic loops formed in the CDG, the proposed fault-tolerant
topology and routing algorithm are deadlock and live-lock
free.

TABLE 3. Routing path and the number of links involved in the path for
the identification of deadlock and live-lock.

FIGURE 7. Channel Dependency Graph (CDG) for the fault-tolerant
topology of MP3Encoder application shown in Fig. 1(c).

VOLUME 9, 2021 76767



P. V. Bhanu et al.: Fault-Tolerant Application-Specific Topology-Based NoC and Its Prototype on FPGA

FIGURE 8. Mapping of MP3Encoder Application before generating the application-specific topology.

E. APPLICATION MAPPING HEURISTIC
This section presents the application mapping heuristic used
for the generation of application-specific topology. Inputs
to the application mapping heuristic are ACG and number
of cores per one router. The output is the mapping of an
application and generation of application-specific topology.

The step by step explanation of mapping heuristic is
detailed below.

• Step 1: Tomap application onto the topology, number of
routers that can accommodate the cores are calculated.
They are calculated based on the number of cores con-
nected per router. Since number of cores connected per
router (x) is taken as input; accordingly, the routers are
calculated.

No. of routers = |
Total no. of cores

x
| + 1 (2)

For example if the number of cores in ACG is 13, two
cores per one router are connected, then the number of
routers required for mapping are 7.

• Step 2: For all edges in ACG, arrange the edges in
the decreasing order of the communication requirement
(i.e., Bandwidth). Once the edges are arranged in the
decreasing order, there might be cores which are com-
mon in two or more edges. Therefore, the common cores
to more than two or more edges are merged into one.
The cores in ACG are arranged in the decreasing order
of their communication requirement. This arrangement
of sequence is known as order of core sequence.

• Step 3: This is one of the key steps in the process of
application mapping. Since the number of cores con-
nected per router is an input, from the order of core
sequence generated in Step 2, ‘x’ number of cores are
taken sequentially and connected to each router.
For example, if two cores are connected per router, then
from the order of core sequence, first two cores are
connected to first router, followed by other cores to
remaining routers, and so on. This can be illustrated with
the ACG shown in Fig. 1(a). The order of core sequence
is {C1, C3, C2, C5, C4, C6, C7, C8, C9, C10, C11,
C12, C13}, and the routers are {r0, r1, r2, r3, r4, r5, r6}.
Therefore, the mapping obtained using our approach is
cores (C1, C3), (C2, C5),.., (C13) are connected to router
r0, r1,.., r6 (see Fig. 1(e)).

• Step 4: Once the cores in ACG are connected to each
router, the router to router connection is established
based on the core communication requirement. This
completes the mapping technique and generates the
application-specific topology.

Once the mapping of an application is done, the commu-
nication cost is calculated. This can be illustrated with the
example of the MP3Encoder application shown in Fig. 1(a).
Fig. 8 shows the different steps involved in generating the
fault-free application-specific topology using the applica-
tion mapping heuristic discussed above. The primary step
involved in the mapping heuristic is to find the number
of routers required for the communication in the topology.
In the second step, the core clusters are identified based on

76768 VOLUME 9, 2021



P. V. Bhanu et al.: Fault-Tolerant Application-Specific Topology-Based NoC and Its Prototype on FPGA

the descending order of the communication bandwidth of the
application. In theMP3Encoder application, there are thirteen
cores; these cores are arranged in the decreasing order of the
core communication requirement with the neighboring cores
in the application. In the third step, from the array of sorted
cores, the first two cores are mapped onto one router, and
the subsequent cores are mapped onto other routers in the
topology. The cores C1 and C3 have the highest bandwidth
shared with the other cores in the application. Therefore,
the cores C1 and C3 are mapped onto router R0. Similarly,
cores C2 and C5 are having the highest bandwidth shared
with the other cores in the application. Therefore, the cores
C2 and C5 are mapped onto the router R1. This process is
repeated until all the cores of an application are mapped onto
the routers selected for generating the topology.

VI. EXPERIMENTAL RESULTS
This section presents the experimental results obtained by
generating the fault-tolerant application-specific topology
for the multi-media applications such as PiP, MPEG-4,
MP3Encoder and VOPD [14], [33], [39]. The experiments
were performed on software platform followed by its imple-
mentation on an FPGA. The results are compared with the
approaches [5], [9], [10] presented in the literature.

A. EXPERIMENTAL SETUP
For software implementation, PSO is coded in high-level
language C++. The PSO is independently run for 30 times,
and the best results are reported in this paper. The
dynamic simulations are performed using the cycle-accurate
System-C based NoC simulator [36]. For FPGA implementa-
tion, the fault-tolerant application-specific topology is imple-
mented on an FPGA using Verilog Hardware Description
Language (HDL). We have used the Kintex KC705 FPGA
evaluation board [40] for the experiments.

B. SOFTWARE IMPLEMENTATION
The experiments are carried out for the applications and the
communication costs are calculated for the FTTGs generated
using our approach and the approaches [5], [9], [10]. The
experimental results obtained by considering specific link
fault and any link fault in the FTTG are reported under
static results. The performance metric obtained from the
static results for each application is communication cost.
The experimental results obtained by running the System-C
based cycle-accurate NoC simulator [36] are reported under
dynamic results. The performance metric obtained from
the dynamic results are network latency (in clock cycles),
throughput (in flits/cycle/core), and router power consump-
tion (in mW).

1) STATIC COMMUNICATION COST RESULTS
The communication cost is calculated using equation (1)
after generating the FTTGs for different applications. For
the MP3Encoder application, FTTGs generated using the
approach [5], [9], [10] and our approach are shown in Fig. 1.

We have considered a specific link fault and any link fault
between the routers in FTTGs shown in Fig. 1. For a fair com-
parison between our approach and the approaches [5], [9],
[10], we have considered the link fault between the routers
(ra and rb) having the cores (ca and cb) communicating
with high bandwidth. However, any link can be assumed
to be failed in the topology graph; accordingly, the FTTGs
can be generated. According to the mapping technique
used by the approaches [5], [9], [10] and our approach
(see Algorithm 2), one of the edges C6-C8 (shown
in Fig. 1(a)) has been mapped onto the routers r4, r2 in
approach [5], r3, r4 in approaches [9], [10], respectively,
and r2, r3 in our approach. Therefore, the highest bandwidth
link for the FTTGs generated using each approach will be
different. Table 4 shows the comparison of communication
cost results for the MP3Encoder FTTG generated by consid-
ering a specific link fault using the approaches [5], [9], [10]
and generating using our approach. The first column repre-
sents the edge in MP3Encoder ACG and the second column
represents the Bandwidth requirement between the cores in
each edge. The columns three to ten represent the hop count
and the communication cost for the FTTGs generated using
the approaches [5], [9], [10] and our approach, respectively.
In the event of a specific link fault, i.e., highest bandwidth link
in the MP3Encoder FTTG, the overall communication cost
obtained using the approaches [5], [9], [10] and our approach
are 11.02, 18.36, 13.22, and 5.84, respectively.

The approaches [5], [9], [10] have generated FTTGs based
on Ring topology and its modified versions. In [9], they have
used Ring topology to generate the FTTGs for the applica-
tions having number of cores less than or equal to sixteen.
The primary reason for considering the Ring topology is
that the connection pattern between the routers is circular
in shape. In the event of link failure in Ring topology, there
exists an alternate path to route the data packets between the
cores of an application. For the highest bandwidth link failure
between the routers r1 and r2 in the Ring topology (shown
in Fig. 1(c)), the number of hops between the cores connected
to these routers is given by n-1, where n is the total number
of routers in the topology. The total number of routers in the
MP3Encoder FTTG is seven, therefore, the number of hops
required to communicate between the cores C4 and C3 is
six. For all the edges in the MP3Encoder ACG, in the event
of link failure, the communication cost obtained using the
approach [9] is 18.36.

The authors in [5] have modified the Ring topology such
that there exist two alternate paths for a single link fault in
the topology. They have added an extra router to provide
two alternate routing paths for a single link failure. As it
can be seen from Fig. 1(b), for the failed link between the
routers r1 and r3, there exist two alternate paths for the cores
C2 and C5 to communicate. The first path is from routers
r3 to r1 through r6, r5, and r2 constituting to four hops.
The second path is from routers r3 to r1 through r7, r8, r4,
and r2 constituting to five hops. Out of the two alternate
paths, the path with minimum hop count is considered as

VOLUME 9, 2021 76769



P. V. Bhanu et al.: Fault-Tolerant Application-Specific Topology-Based NoC and Its Prototype on FPGA

TABLE 4. Communication cost results comparison for a specific link fault between the approaches [5], [9], [10] and our approach (FTAS-SL) for the
MP3Encoder FTTGs shown in Fig. 1.

the solution. The hop count obtained is multiplied with band-
width between the cores is computed as communication cost.
For an edge C2-C5, the communication cost obtained is 2.
Similarly, for other edges in MP3Encoder ACG, the overall
communication cost is calculated according to equation (1).
Therefore, in the event of link failure between the routers
r1 and r3 in MP3Encoder FTTG, the overall communication
cost obtained is 11.02. To minimize the communication cost
in the fault-tolerant topology, the authors in [10] added an
extra link between the routers in the Ring topology. The
spare link provides two alternate routing paths to deliver
the data from source to destination cores. In the event of
link failure between the routers r1 and r2, compared to the
Ring topology, the addition of spare link has reduced the
hop count. In the MP3Encoder ACG, the cores in an edge
C4-C3 communicate with four hops resulting in a communi-
cation cost of 2. This has improved the hop count compared to
the basic Ring topology. With the addition of spare link to the
Ring topology, the approach [10] has shown improvements
over their previous work [9]. Similarly, in the event of link
failure, the overall communication cost obtained using the
approach [10] is 13.22.

Unlike the approaches [5], [9], [10], our approach has not
considered the Ring topology to build FTTGs. Instead, they
are generated by connecting the routers as per the commu-
nication requirement of an application. Our approach has
considered the problem as topology generation rather than
the mapping problem. The approaches [5], [9], [10] have
used the meta-heuristics SA and GA to map the cores onto
the routers of Ring topology. In contrast, our approach has
used meta-heuristic PSO to find the best position to add the
spare link in the topology. The approaches [5], [9], [10] have
considered that out of x number of router ports, two ports
can be used for mapping the cores onto routers and two
ports for connecting the neighbouring routers in the topology.
On contrary, out of x number of router ports, our approach
utilizes x-2 number of ports to connect the routers via links
and two ports for connecting the cores. In the event of link

failure between the routers r0 and r2, there exists an alternate
path to route the data from the source to destination core.
If there is no alternate path available in the topology, our
approach adds the spare link between the routers. The cores
C4 and C3 communicate through the routers r0 to r2 via r1
leading to two hops. For all the edges in MP3Encoder ACG
our approach has resulted in a communication cost of 5.84.

Compared to the approaches [5], [9], [10], there is an aver-
age percentage improvement of 47%, 68.19%, and 55.82%
in communication cost, respectively. This is due to the fact
that these approaches have used the base topology as Ring.
In the event of the link failure, our approach has resulted in
less hop count. On the other hand, in the Ring topology and
its modified variants the hop count in the event of link failure
is high. This is because there is very limited flexibility to
route the data in alternate paths having less hop count. In our
approach, spare links are added to the topology to create
alternate routing paths such that hop count can be minimized.
This resulted in significant percentage of improvements using
our approach over the counterparts. The similar trend can be
seen in other applications namely PiP, MPEG-4, and VOPD.
Table 5 to Table 7 represent the communication cost obtained
for a specific link failure in the FTTGs of PiP, MPEG-4,
and VOPD applications, respectively. In Table 5 to Table 7,
the first column represents the edges in an application.
The second column represents the bandwidth between the
edges of an application. The columns three to ten represent
the communication cost obtained for the highest bandwidth
link failure in the topology using the approaches [5], [9],
[10] and our approach. As mentioned earlier, due to the
addition of the spare link to the FTTGs generated using our
approach there are significant improvements in communi-
cation cost. Fig. 9 represents the percentage of improve-
ments in communication cost obtained using our approach
over the approaches [5], [9], [10] reported in the literature.
In Fig. 9, the X-axis represents the multi-media application
and Y-axis represents the percentage of improvements in
communication cost. As it can be seen from Fig. 9, there is an

76770 VOLUME 9, 2021



P. V. Bhanu et al.: Fault-Tolerant Application-Specific Topology-Based NoC and Its Prototype on FPGA

TABLE 5. Communication cost results comparison for a specific link fault (highest bandwidth link) between the approaches [5], [9], [10] and our
approach (FTAS-SL) for the PiP application.

TABLE 6. Communication cost results comparison for a specific link fault (highest bandwidth link) between the approaches [5], [9], [10] and our
approach (FTAS-SL) for the MPEG-4 application.

TABLE 7. Communication cost results comparison for a specific link fault (highest bandwidth link) between the approaches [5], [9], [10] and our
approach (FTAS-SL) for the VOPD application.

average percentage improvement of 54.58%, 44.16%,
29.54% in communication cost using our approach over the
approaches [5], [9], and [10], respectively. As more number

of alternate routing paths are provided in the topology,
the percentage of improvements in communication cost using
our approach is decreased. From this it is evident that the

VOLUME 9, 2021 76771



P. V. Bhanu et al.: Fault-Tolerant Application-Specific Topology-Based NoC and Its Prototype on FPGA

TABLE 8. Communication cost results comparison for any link fault in the FTTG generated for PiP application using the approaches [5], [9], [10] and our
approach (FTAS-AL).

TABLE 9. Communication cost results comparison for any link fault in the FTTG generated for MPEG-4 application using the approaches [5], [9], [10] and
our approach (FTAS-AL).

FIGURE 9. Percentage of improvements in communication cost using our
approach over the approaches [5], [9], [10] for a specific link fault in the
topology.

communication cost can be improved by adding the spare
links to the topology.

If the link fault information is not known in design time,
then we have proposed a solution that mitigates any link fail-
ure in the FTTGs of an application. Table 8 to Table 11 show
the comparison of communication cost results between the
approaches [5], [9], [10] and our approach by considering
each link fault in the FTTGs of the applications PiP,MPEG-4,
MP3Encoder, and VOPD. As it can be observed from
Table 8 to Table 11, for the approaches [5], [9], [10] and
our approach, the fault-free and fault-tolerant communication
cost is calculated. In these Tables, under each approach
there are two columns, one column represents the link fault
between the routers in the topology and the other one rep-
resents the communication cost for the corresponding link
failure. Table 10 shows the comparison of communication
cost between our approach and the approaches [5], [9], [10]

for the FTTG shown in Fig. 1. Fig. 1(f) shows the FTTG
for any link fault in the topology generated for MP3Encoder
application. The communication cost without any link fault in
the FTTG ofMP3Encoder application is 5.32. By considering
each link fault in the fault-free topology of MP3Encoder
application, the spare links are added or alternate routing path
is selected. For the highest bandwidth link failure, the com-
munication cost is high and for the lowest bandwidth link
failure the communication cost is less. For example, if the link
between the routers r0 and r1 is failed (see Fig. 1(f)), then the
alternate routing path is selected. The link l01 is transferring
highest bandwidth (2.083 Mbps) of application data between
the cores C1 and C2 (see Fig. 1(a)) through routers r0, r2,
and r1 leading to two hops. In fault-free case, the hop count
between the cores C1 and C2 to communicate is 1. Due to the
link failure, the hop count has been increased to 2. Therefore,
the overall communication cost for the link failure between
the routers in MP3Encoder FTTG shown in Fig. 1(f) is 7.40.
Similarly, for the highest bandwidth carrying link failure in
other approaches [5], [9], [10] the overall communication
cost is 15.39, 15.87, and 11.71, respectively. As discussed
previously, the approaches [5], [9], [10] have routed the
data in alternate path having high hop count. This led to
high communication cost using the approaches [5], [9], [10].
On an average, for each link failure in the FTTGs generated
using our approach (FTAS-AL) and the approaches [5],
[9], [10], the overall communication cost for MP3Encoder
application (shown in Table 10) are 5.98, 8.77, 9.06, and
6.96, respectively. The average percentage improvements in
communication cost using our approach over the approaches
[5], [9], [10] are 31.81%, 33.99%, and 14.08%, respectively.
This improvements are achieved with efficient placement

76772 VOLUME 9, 2021



P. V. Bhanu et al.: Fault-Tolerant Application-Specific Topology-Based NoC and Its Prototype on FPGA

TABLE 10. Communication cost results comparison for any link fault in the FTTG generated for MP3Encoder application using the approaches [5], [9], [10]
and our approach (FTAS-AL).

TABLE 11. Communication cost results comparison for any link fault in the FTTG generated for VOPD application using the approaches [5], [9], [10] and
our approach (FTAS-AL).

of spare link between the routers and selection of alternate
routing path in the topology. The similar trend can be seen
in other applications namely PiP in Table 8, MPEG-4 in
Table 9, and VOPD in Table 11. As it can be observed from
the Tables 8, 9, and 11, the communication cost for each link
failure in the FTTG is calculated for the approaches [5], [9],
[10] and our approach. In all the applications, our approach
has shown significant improvements in communication cost
over the approaches [5], [9], [10]. Fig. 10 shows the per-
centage of improvements in communication cost using our
approach over the counterparts by considering each link fault
in the topology. As it can be noted from the Fig. 10, the
X-axis represents the applications (PiP, MPEG-4,
MP3Encoder, VOPD), Y-axis represents the percentage of
improvements in communication cost using our approach
over the approaches [5], [9], [10]. The average percentage
improvements in communication cost using our approach
over the approaches [5], [9], [10] for any link fault in
the FTTG is 34.36%, 33.52%, and 12.54%, respectively.
This shows the efficiency of our approach in providing
fault-tolerance to the design with less communication cost
for a specific link failure and any link failure as well. This
completes detailed analysis of fault-tolerant application-
specific topology generation for the multi-media appli-
cations PiP, MPEG-4, MP3Encoder, and VOPD. Next,
the dynamic simulation results are analysed for the topolo-
gies generated using our approach and other approaches
by considering a specific link and any link fault in
the FTTGs.

FIGURE 10. Percentage of improvements in communication cost using
our approach over the approaches [5], [9], [10] for the FTTGs generated
for any link fault.

2) DYNAMIC SIMULATION RESULTS
We have used System-C based cycle-accurate NoC sim-
ulator [36] to evaluate the performance metrics such as
average network latency (in clock cycles), throughput
(in flits/cycles/core), and router power consumption (in mW).
We have considered the link fault in the FTTGs generated
by the approaches [5], [9], [10], and our approach for the
multi-media applications PiP, MPEG-4, MP3Encoder, and
VOPD. Table 12 shows the NoC simulator configurations
used while performing the dynamic simulations. With the
parameter values mentioned in Table 12, the experiments
have performed for FTTGs generated using our approach and
the approaches [5], [9], [10].

VOLUME 9, 2021 76773



P. V. Bhanu et al.: Fault-Tolerant Application-Specific Topology-Based NoC and Its Prototype on FPGA

TABLE 12. NoC simulator [36] configuration parameters and its values.

Table 13 and Table 14 show the dynamic simulation results
for the FTTGs generated using the approaches [5], [9], [10],
and our approach by considering a specific link and any
link fault. For a specific link fault in the FTTGs generated,
the link with high communication bandwidth is considered
for the dynamic simulations. For any link fault in the FTTGs
generated, we have considered three different types of links
having high, low, and medium communication bandwidth
as failure. The results shown in Table 14 are calculated by
taking the average of three different types of failed links.
In Table 13 and Table 14, the first column represents the appli-
cation, columns two to five represent the network latency,
columns six to nine represent the throughput, columns ten
to thirteen represent the router power consumption for the
FTTGs generated using our approach and the approaches [5],
[9], [10], respectively. A topology is said to be efficient if
it has low network latency, high throughput, and low power
consumption. As it can be seen from Table 13, the average
network latency for our approach is less than the approaches
[5], [9], [10]. This is because the approaches [5], [9], [10]
have considered the base topology as Ring. If the topology
has fixed connection patterns, then there exists minimal alter-
nate routing paths. Therefore, in the event of link failure,
from the static results it has been observed that the hop count
for the approaches [5], [9], [10] is relatively higher than our
approach. Since network latency is directly proportional to
the hop count in the network [35], the approaches [5], [9],
[10] have resulted in high network latency. On contrary, our
approach has not fixed any topology to generate the FTTGs
for different applications. Instead, based on the communi-
cation requirement between the cores in an application the
FTTGs are generated for different applications. This added
an advantage of selecting the routers to add a spare link
in the event of link failure in the FTTGs of an application.
From the static results, it has been observed that the FTTGs
generated using our approach has less hop count compared
to its counterparts. On an average, for specific link fault,
our approach has shown significant improvements of 5.61%,
6.37%, and 3.72% in network latency over the approaches [5],
[9], [10], respectively.

Compared to the approaches [9], [10], the throughput
obtained for a specific link fault in the FTTG using our
approach is high, but it is low when compared with [5].

According to [41], the throughput is defined as the ratio of
total number of data packets received with in the timewindow
to the maximum receive time. Therefore, the throughput of
a network depends on the number of intermediate routers
participated in the routing path for each edge in the applica-
tion. If more number of intermediate routers are required to
transmit the application traffic between the cores through the
routers, the time required to pass the data packets between the
cores will be high. Hence, the throughput of the network will
be reduced if there are more number of routers involved in the
network. As it can be observed from Table 12, the number
of routers required to generate FTTGs using the approach
[5] is one more than our approach and the approaches [9],
[10]. This is because the approach [5] has added an extra
router to provide two routing paths in the event of link failure.
Since the throughput depends on the number of routers, evi-
dently the FTTGs generated using the approach [5] has high
throughput. On the contrary, the throughput for the FTTGs
generated using the approaches [9], [10] is less than our
approach. This is because these approaches use Ring topol-
ogy as a base and generates FTTG. Throughput for any net-
work is inversely proportional to the distance the data packets
have travelled in the network [35]. Since, the approaches [9],
[10] use longer data path to route the packets, the throughput
is comparatively lesser than our approach. On an average,
compared to the approach [5] there is an overhead of 4.19%
in the overall throughput of the network obtained using our
approach. However, there are improvements of 24.67% and
5.76% in throughput using our approach over the approaches
[9], [10], respectively.

The router power consumption is calculated based on the
switching activity of the router. It is directly proportional to
the number of hops that the data packets have to pass in the
network. As it can be seen from Table 13, the router power
consumption for our approach and the approaches [9], [10]
is less than the approach [5]. It is because the approaches
[9], [10] and our approach have used less number of routers
compared to its counterpart. According to [5], in the event
of specific link failure, the data packets from the source
to destination router require more routers to pass. Hence,
the switching activity required for transmitting the packets
is high. If the switching activity is high, then the router
power consumption will be high [35]. Therefore, compared to
other approaches [9], [10], there is an average improvement
of 14.57% in power consumption using our approach over the
approach [5].

Fig. 11 shows the overall percentage of improvements in
dynamic simulation results for a specific link failure in the
FTTGs generated using our approach over the approaches [5],
[9], [10]. On X-axis, the approaches [5], [9], [10] are taken
and on Y-axis the improvements in performance metrics such
as network latency, throughput, and power consumption are
shown. It can be noted that for a specific link fault in the
FTTGs of different applications, our approach has shown
improvements in performance metrics. These improvements
are due to efficient generation of fault-tolerant application-

76774 VOLUME 9, 2021



P. V. Bhanu et al.: Fault-Tolerant Application-Specific Topology-Based NoC and Its Prototype on FPGA

TABLE 13. Comparison of Dynamic simulation results for a specific link fault in the FTTGs generated using our approach and the approaches for different
applications.

TABLE 14. Comparison of Dynamic simulation results for any link fault in the FTTGs generated using our approach and the approaches for different
applications.

FIGURE 11. Percentage of improvements in dynamic performance metrics
using our approach over the approaches [5], [9], [10] for the FTTGs
generated for specific link fault.

specific topologies using our approach. The results show that
instead of generating the FTTGs by considering the Ring
topology as base, custom topology generation has signifi-
cant improvements in both static and dynamic performance
metrics.

The similar trend can be seen in the case of any link
fault in the FTTGs of different applications. As mentioned
earlier, the results shown in Table 14 are obtained by tak-
ing the average of three link faults having high, medium,
and low communication bandwidths. From Table 14, it can
be seen that the network latency for different applications
obtained using our approach is less than the approaches [5],
[9], [10]. This is because for all the three types of link
faults, the hop count in the FTTGs generated using our
approach is less than its counterparts. The average percentage
improvements in network latency for any link fault in dif-
ferent application FTTGs generated using our approach over
the approaches [5], [9], [10] are 2.03%, 2.99%, and 0.51%,
respectively. For throughput and router power consumption,
there are significant improvements using our approach over
the approaches [5], [9], [10]. Fig. 12 shows the percent-
age improvements in dynamic simulation results using our

FIGURE 12. Percentage of improvements in dynamic performance metrics
using our approach over the approaches [5], [9], [10] for the FTTGs
generated for any link fault.

approach over its counterparts. As it can be seen that there
is an improvement of 6.98%, 8.06%, and 7.70% in through-
put using our approach over the approaches [5], [9], [10],
respectively. As discussed earlier, compared to our approach
and the approaches [9], [10], the approach [5] has used one
additional router to route the data packets which resulted
in high router power consumption. Therefore, there is an
improvement of 13.91% in router power consumption using
our approach over the approach [5]. On contrary, there are
very little improvements in power consumption using our
approach over the approaches [9], [10]. It is due to the fact
that the number of routers used by our approach and the
approaches [9], [10] are same.

C. FPGA IMPLEMENTATION
One of the novel contributions of this work is FPGA imple-
mentation of the fault-tolerant ASNoC design. We have
implemented the FTTGs generated using our approach and
the approach [5] on an FPGA. Among the approaches [5],
[9], [10], the approach [5] has implemented the FTTG of an
application on an FPGA, while the approaches [9], [10] have

VOLUME 9, 2021 76775



P. V. Bhanu et al.: Fault-Tolerant Application-Specific Topology-Based NoC and Its Prototype on FPGA

FIGURE 13. FPGA simulation waveform for the FTTGs shown in Fig. 1.

limited to software implementation only. Therefore, we have
considered the approach [5] for the comparison with our
approach. However, the similar process can be applied to
the other approaches [9], [10]. The NoC router architecture
that has been implemented on a Kintex KC705 based FPGA
is described in Section V.C. The major motivation for the
FPGA implementation is to analyze the system performance
and behavior in run-time. The NoC router architecture imple-
mented on an FPGA works at 100 MHz clock frequency
while providing link fault-tolerance to the design. Please
note that the NoC router architecture has embedded with
the fault-tolerant routing algorithm (Algorithm 1) discussed
in Section V.D. Fault-detection and fault-localization in this
work are done based on the MTTF analysis, whereas fault
simulation can be considered as one of the possible extensions
to this work. According to the MTTF analysis, based on
the link failure the FTTGs are implemented on an FPGA.
From the software implementation results, it has been seen
that our approach has shown significant improvement over
the approaches [5], [9], [10]. However, to understand the
practical behavior of an application it is necessary to know
the communication latency (in seconds), and number of data
packets sent/received between the cores. The communication
latency on an FPGA is defined as the time taken for one flit to
either send or receive from source to destination routers. With
this information, we have implemented the FTTGs generated
using the approaches [5], [9], [10] and our approach by con-
sidering the link faults shown in Fig. 1. From the experimental
results it has been observed that the time taken to run the
applications (PiP, MPEG-4, MP3Encoder, and VOPD) on
an FPGA using our approach is less when compared to the
approaches [5], [9], [10]. This can be illustrated by consider-
ing MP3Encoder application as a case study.

Fig. 13 shows the screen-shot of FPGA simulation (Post-
implementation) waveform results for the edge C6-C7 of
MP3Encoder application. Please note that the results shown
in Fig. 13 are for the FTTGs generated using the approach [5]
and our approach by considering the link fault shown
in Fig. 1(b) and 1(e), respectively. Here the link fault is

considered between the routers r2, r4 and r2, r3 in the FTTGs
generated using the approach [5] and our approach, respec-
tively. As mentioned earlier in the software implementation
section, the link fault is considered between the routers whose
cores are communicating with high bandwidth. Since the
cores mapped onto the routers are different for our approach
and the approach [5], the link fault considered for the exper-
iment would be different. However, the idea is to consider a
link fault in the topology and analyse the network behavior
on an FPGA. Fig. 13(a) represents the data sent from core
C7 to C6 that has been received at C6 successfully. The
yellow marker in the Fig. 13(a) indicates the time at which
the data has sent from core C7, i.e., 150 ns, and the blue
marker shows the time at which the data has received in the
core C6, i.e., 400 ns. In the event of link fault, the cores C6 and
C7 require four hops and two hops for the communication
using the approach [5] and our approach, respectively. For
four hops the time taken for the transfer of one flit using the
approach [5] is 250 ns. Similarly for our approach, the data
from core C7 - C6 has started at 150 ns of time (see Fig. 13(b))
and received at core C6 by 300 ns of time. The time taken for
one flit to transfer from core C7 to C6 or C6 to C7 is 150 ns
using our approach. The time taken for one flit to send/receive
using our approach is less compared to approach [5].

Table 15 shows the total time taken (seconds) for the
transfer of MP3Encoder application data using the FTTGs
generated by the approach [5] and our approach, respectively.
In Table 15, the first column represents the edge present in the
MP3Encoder application. The second column represents the
Bandwidth (in bits per second) of an edge, and the third col-
umn represents the number of flits required for each edge in
the application, while each flit is of 32-bit size. The columns
four to six and seven to nine represent the time taken for
transferring the flits of each edge in the application using the
approach [5] and our approach, respectively. On an FPGA,
it has been noticed that the routers which are connected at
one hop distance, has taken 100 ns for sending or receiving
the data flits. However, for subsequent increment in the hop
count, an additional delay of 50 ns is added to the design.

76776 VOLUME 9, 2021



P. V. Bhanu et al.: Fault-Tolerant Application-Specific Topology-Based NoC and Its Prototype on FPGA

TABLE 15. Calculation of the total time taken for sending the application data from one core to the other on an FPGA.

FIGURE 14. Screen-shot of the VIO IP core which shows the successful
delivery of HF from source core C6 to destination core C7.

Fig. 14 shows the screen-shot of the VIO IP core [42]
window of the FTTG implemented on an FPGA using our
approach and approach [5]. Since the flit is of 32-bit size,
the inputs on the Kintex board may not suffice. Hence,
we have used the VIO IP core for sending and receiving the
data to the FPGA. This ensures that the data has successfully
delivered from core C6 to the core C7 in an application. Aswe
can observe from Fig. 14, there are current addresses to each
core, data input, and output. Based on the router addresses and
the fault-tolerant routing algorithmmentioned in SectionV.D,
the data flits will be routed to the destination. From Fig. 14
it can be seen that the data has been successfully delivered
from core C6 to the destination core C7. Once the HF is
delivered, then the payload and tailer flit will be sent. The
tailer flit ensures that the complete application data has been
transferred from the source core to the destination core. Aswe
can observe from Table 15, the overall time taken to run the
application using our approach is 0.001951 seconds, and the
approach [5] is 0.002076 seconds. The time taken to run an
application using our approach is less when compared to the
approach [5]. This is because our approach has generated
the fault-tolerant topologies with less hop count between the
routers to communicate, while the approach [5] has used
more number of hops to communicate between the routers.
Therefore, compared to the approach [5], our approach has

TABLE 16. Resource and on-chip power estimation for an MP3Encoder
application implemented on an Kintex KC705 FPGA development board
using our approach and the approach in [5].

taken 6.02% less time to run MP3Encoder application. This
shows the efficiency of our approach over the approach [5] in
generating the fault-tolerant ASNoC design for any link fault.
The estimation of resource utilization for the MP3Encoder
application implemented on an FPGA using our approach and
the approach [5] is shown in Table 16. The number of LUTs
and FFs used by our approach in generating fault-tolerant
application-specific NoC topology is less compared to the
approach [5]. This is because the number of routers used
for generating the topology using the approach [5] is high
compared to our approach. Similarly, the on-chip power
dissipation calculated using Xilinx Power Estimator (XPE)
tool embedded in Vivado 2016.2 for our approach is less
compared to the approach [5]. There are significant improve-
ments using our approach over the approach [5] in terms
of resources utilized on an FPGA and the on-chip power
estimated using XPE tool. These improvements are due to the
addition of spare link to the topology such that the design is
optimized compared to the approach [5]. With the addition
of spare link, it has been noticed that our approach has
resulted in less hop count between the routers. The similar
trend can be seen in other applications namely PiP, MPEG-4,
and VOPD FTTGs generated by our approach and the
approaches [5], [9], [10]. This completes the analysis of
fault-tolerant application-specific topology implementation
on an FPGA.

VOLUME 9, 2021 76777



P. V. Bhanu et al.: Fault-Tolerant Application-Specific Topology-Based NoC and Its Prototype on FPGA

VII. CONCLUSION
We presented a fault-tolerant ASNoC design based on a
PSO-based meta-heuristic algorithm and its FPGA imple-
mentation in this paper. Experiments were carried out for the
multi-media applications PiP, MPEG-4, MP3Encoder, and
VOPD while taking into account link failures in the gener-
ated topology. The results were compared to the approaches
reported in the literature [5], [9], [10]. The results show that
both software and FPGA implementations have improved
the performance significantly over the existing approaches.
Consideration of reconfiguration and scheduling policies for
multiple applications that can be implemented on an FPGA
are planned for the future.

VIII. LIMITATIONS OF THE STUDY
This work proposes a PSO algorithm for the spare link place-
ment in the ASNoC topology. The fine-tuning of the PSO
algorithm for the high number of cores in the application is
a little challenging. Therefore, there is a scope of work in
addressing the limitation of the PSO algorithm with other
meta-heuristic algorithms.

REFERENCES
[1] W. J. Dally and B. Towles, ‘‘Route packets, net wires: On-chip inte-

connectoin networks,’’ in Proc. 38th Conf. Design Autom. (DAC), 2001,
pp. 684–689.

[2] M. Majer, C. Bobda, A. Ahmadinia, and J. Teich, ‘‘Packet routing in
dynamically changing networks on chip,’’ in Proc. 19th IEEE Int. Parallel
Distrib. Process. Symp., Apr. 2005, pp. 1–8.

[3] L. Benini, ‘‘Application specific NoC design,’’ in Proc. Design Autom. Test
Eur. Conf., vol. 1, Mar. 2006, pp. 1–5.

[4] M. Radetzki, C. Feng, X. Zhao, and A. Jantsch, ‘‘Methods for fault toler-
ance in networks-on-chip,’’ACMComput. Surveys, vol. 46, no. 1, pp. 1–38,
Oct. 2013.

[5] S. Yesil, S. Tosun, and O. Ozturk, ‘‘FPGA implementation of a fault-
tolerant application-specific NoC design,’’ in Proc. Int. Conf. Design Tech-
nol. Integr. Syst. Nanosc. Era (DTIS), Apr. 2016, pp. 1–6.

[6] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti, ‘‘Noxim:
An open, extensible and cycle-accurate network on chip simulator,’’ in
Proc. IEEE 26th Int. Conf. Appl.-Specific Syst., Archit. Processors (ASAP),
Jul. 2015, pp. 162–163.

[7] N. Jiang, G. Michelogiannakis, D. Becker, B. Towles, and W. J. Dally,
‘‘BookSim 2.0 user’s guide,’’ Standford Univ., Standford, CA, USA,
Tech. Rep. 1, 2010.

[8] R. Al-Badi, M. Al-Riyami, and N. Alzeidi, ‘‘A parameterized NoC sim-
ulator using OMNet++,’’ in Proc. Int. Conf. Ultra Modern Telecommun.
Workshops, Oct. 2009, pp. 1–7.

[9] S. Tosun, V. B. Ajabshir, O. Mercanoglu, and O. Ozturk, ‘‘Fault-tolerant
topology generation method for application-specific network-on-chips,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 34, no. 9,
pp. 1495–1508, Sep. 2015.

[10] P. Kullu and S. Tosun, ‘‘Energy-aware and fault-tolerant custom topol-
ogy design method for network-on-chips,’’ Nano Commun. Netw.,
vol. 19, pp. 54–66, Mar. 2019. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1878778918300863

[11] S. Tosun, V. B. Ajabshir, O. Mercanoglu, and O. Ozturk, ‘‘Fault-tolerant
irregular topology design method for network-on-chips,’’ in Proc. 17th
Euromicro Conf. Digit. Syst. Design, Aug. 2014, pp. 631–634.

[12] Y.-X. Zheng, P.-P. Kan, L.-B. Chen, K.-Y. Hsieh, B.-C. Cheng, and
K. S.-M. Li, ‘‘Fault tolerant application-specific NoC topology synthesis
for three-dimensional integrated circuits,’’ in Proc. IEEE Int. SOC Conf.,
Sep. 2011, pp. 296–301.

[13] Z. Li, J. Huang, Q. Xu, and S. Chen, ‘‘Integer linear programming based
fault-tolerant topology synthesis for application-specific NoC,’’ in Proc.
IEEE 12th Int. Conf. ASIC (ASICON), Oct. 2017, pp. 96–99.

[14] P. Shah, A. Kanniganti, and J. Soumya, ‘‘Fault-tolerant application specific
network-on-chip design,’’ in Proc. 7th Int. Symp. Embedded Comput. Syst.
Design (ISED), Dec. 2017, pp. 1–5.

[15] N. Venkataraman and R. Kumar, ‘‘Design and analysis of applica-
tion specific network on chip for reliable custom topology,’’ Comput.
Netw., vol. 158, pp. 69–76, Jul. 2019. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1389128618307254

[16] P. Narayanasamy, S. Gopalakrishnan, and S. Muthurathinam, ‘‘Cus-
tom NoC topology generation using discrete antlion trapping mecha-
nism,’’ Integration, vol. 76, pp. 76–86, Jan. 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167926020302728

[17] J.-A. Carballo, W.-T.-J. Chan, P. A. Gargini, A. B. Kahng, and S. Nath,
‘‘ITRS 2.0: Toward a re-framing of the semiconductor technology
roadmap,’’ in Proc. IEEE 32nd Int. Conf. Comput. Design (ICCD),
Oct. 2014, pp. 139–146.

[18] P. Gargini, ‘‘Roadmap evolution: From NTRS to ITRS, from ITRS 2.0 to
IRDS,’’ in Proc. 5th Berkeley Symp. Energy Efficient Electron. Syst. Steep
Transistors Workshop (E S), 2017, pp. 1–62.

[19] F. M. Sajjade, N. K. Goyal, and B. K. S. V. L. Varaprasad, ‘‘Single event
transient (SET) mitigation circuits with immune leaf nodes,’’ IEEE Trans.
Device Mater. Rel., vol. 21, no. 1, pp. 70–78, Mar. 2021.

[20] H. Cha, E. M. Rudnick, J. H. Patel, R. K. Iyer, and G. S. Choi, ‘‘A gate-
level simulation environment for alpha-particle-induced transient faults,’’
IEEE Trans. Comput., vol. 45, no. 11, pp. 1248–1256, Nov. 1996.

[21] N. Miskov-Zivanov, K.-C. Wu, and D. Marculescu, ‘‘Process variability-
aware transient fault modeling and analysis,’’ in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design, Nov. 2008, pp. 685–690.

[22] S. Bhunia, S.Mukhopadhyay, andK. Roy, ‘‘Process variations and process-
tolerant design,’’ in Proc. 20th Int. Conf. VLSI Design Held Jointly 6th Int.
Conf. Embedded Syst. (VLSID), 2007, pp. 699–704.

[23] J. Gracia, L. J. Saiz, J. C. Baraza, D. Gil, and P. J. Gil, ‘‘Analysis of the
influence of intermittent faults in a microcontroller,’’ in Proc. 11th IEEE
Workshop Design Diag. Electron. Circuits Syst., Apr. 2008, pp. 1–6.

[24] P. S. Ho and T. Kwok, ‘‘Electromigration in metals,’’ Rep. Prog. Phys.,
vol. 52, no. 3, p. 301, Mar. 1989.

[25] C. E. Blat, E. H. Nicollian, and E. H. Poindexter, ‘‘Mechanism of negative-
bias-temperature instability,’’ J. Appl. Phys., vol. 69, no. 3, pp. 1712–1720
1991.

[26] D. Boudreaux, F. Williams, and A. Nozik, ‘‘Hot carrier injection at
semiconductor-electrolyte junctions,’’ J. Appl. Phys., vol. 51, no. 4,
pp. 2158–2163, 1980.

[27] G. R. Wilkinson, ‘‘Digital circuit wear-out due to electromigration in
semiconductor metal lines,’’ M.S. thesis, Dept. Elect. Eng., California
Polytech. State Univ., San Luis Obispo, CA, USA, 2009, p. 196.

[28] N. Baptistat, K. Abouda, G. Duchamp, and T. Dubois, ‘‘Effects of process-
voltage-temperature (PVT) variations on low-side MOSFET circuit con-
ducted emission,’’ in Proc. 12th Int. Workshop Electromagn. Compat.
Integr. Circuits (EMC Compo), Oct. 2019, pp. 213–215.

[29] T. Sudo, H. Sasaki, N. Masuda, and J. L. Drewniak, ‘‘Electromag-
netic interference (EMI) of system-on-package (SOP),’’ IEEE Trans. Adv.
Packag., vol. 27, no. 2, pp. 304–314, May 2004.

[30] P.Maheshwari, T. Li, J.-S. Lee, B.-S. Seol, S. Sedigh, and D. Pommerenke,
‘‘Software-based analysis of the effects of electrostatic discharge on
embedded systems,’’ inProc. IEEE 35th Annu. Comput. Softw. Appl. Conf.,
Jul. 2011, pp. 436–441.

[31] A. Khare, C. Patil, and S. Chattopadhyay, ‘‘Task mapping and flow priority
assignment of real-time industrial applications for network-on-chip based
design,’’Microprocessors Microsyst., vol. 77, Sep. 2020, Art. no. 103175.

[32] P. V. Bhanu, C. Vudadha, and J. Soumya, ‘‘FILA: Fault-model for inter-
connection links in application-specific network-on-chip design,’’ in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), Oct. 2020, pp. 1–5.

[33] P. K. Sahu and S. Chattopadhyay, ‘‘A survey on application mapping
strategies for network-on-chip design,’’ J. Syst. Archit., vol. 59, no. 1,
pp. 60–76, Jan. 2013.

[34] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in
Proc. IEEE Int. Conf. Neural Netw. (ICNN), vol. 4. Nov. 1995,
pp. 1942–1948.

[35] P. V. Bhanu, P. V. Kulkarni, and J. Soumya, ‘‘Fault-tolerant network-on-
chip design with flexible spare core placement,’’ ACM J. Emerg. Technol.
Comput. Syst., vol. 15, no. 1, p. 23, 2019.

[36] S. Kundu, J. Soumya, and S. Chattopadhyay, ‘‘Design and evaluation of
mesh-of-tree based network-on-chip using virtual channel router,’’Micro-
processors Microsyst., vol. 36, no. 6, pp. 471–488, Aug. 2012.

76778 VOLUME 9, 2021



P. V. Bhanu et al.: Fault-Tolerant Application-Specific Topology-Based NoC and Its Prototype on FPGA

[37] D. B. Johnson, ‘‘A note on Dijkstra’s shortest path algorithm,’’ J. ACM,
vol. 20, no. 3, pp. 385–388, Jul. 1973.

[38] Dally and Seitz, ‘‘Deadlock-free message routing in multiprocessor inter-
connection networks,’’ IEEE Trans. Comput., vols. COM-36, no. 5,
pp. 547–553, May 1987, doi: 10.1109/TC.1987.1676939.

[39] N. Kadri and M. Koudil, ‘‘A survey on fault-tolerant application map-
ping techniques for network-on-chip,’’ J. Syst. Archit., vol. 92, pp. 39–52,
Jan. 2019.

[40] X. Kintex. FPGA KC705 Evaluation Kit. Accessed: May 21, 2021.
[Online]. Available: https://www.xilinx.com/products/boards-and-kits/ek-
k7-kc705-g.html

[41] P. V. Bhanu and S. J., ‘‘Fault-tolerant application mapping on mesh-
of-tree based network-on-chip,’’ J. Syst. Archit., vol. 116, Jun. 2021,
Art. no. 102026.

[42] Virtual Input/Output V3.0 Logicore IP Product Guide, Xilinx, San Jose,
CA, USA, 2018, p. 24.

P. VEDA BHANU received the bachelor’s degree
in electronics and communication engineering
from Jawaharlal Nehru Technological University,
Hyderabad, India, in 2015, and the master’s degree
in embedded systems from theNational Institute of
Electronics and Information Technology, Calicut,
India, in 2017. He is currently pursuing the Ph.D.
degree with the Department of Electrical and Elec-
tronics Engineering, Birla Institute of Technol-
ogy& Science (BITS)-Pilani, Hyderabad Campus,

India.
From 2016 to 2017, he was an Electronic Design Intern at Panacea

Medical Technologies, Bengaluru, India. From 2017 to 2020, he was a Junior
Research Fellow with the Department of EEE, BITS-Pilani, Hyderabad
Campus, India, working for the Department of Science and Technology,
Government of India, sponsored project. His research interests include
network-on-chip (NoC) design, FPGA-based system design, optimization
of performance parameters in NoC-based multi-processor system-on-chips
(MPSoCs) design, and high-performance computing.

RAHUL GOVINDAN received the bache-
lor’s degree in engineering from the Depart-
ment of Electrical and Electronics, BITS-Pilani,
Hyderabad Campus, India, in 2020. His research
interests include digital design, computer architec-
ture, VLSI design, and FPGA implementation.

RAJAT KUMAR received the bachelor’s degree
in engineering from the Department of Electrical
and Electronics, BITS-Pilani, Hyderabad Campus,
India, in 2020. His research interests include com-
puter architecture and VLSI design.

VISHAL SINGH received the bachelor’s degree
in engineering from the Department of Electrical
and Electronics, BITS-Pilani, Hyderabad Campus,
India, in 2020. His research interests include com-
puter architecture, VLSI design, and different ver-
ification methodologies.

J. SOUMYA (Member, IEEE) received the bach-
elor’s degree in electronics and communication
engineering from Jawaharlal Nehru Technological
University Hyderabad, India, in 2007, and themas-
ter’s and Ph.D. degrees in electronics and electrical
communication engineering from the Indian Insti-
tute of Technology Kharagpur, India, in 2010 and
2015, respectively.

From 2011 to 2012, she was a Scientist ‘‘SC’’
at Indian Space Research Organization (ISRO),

Bengaluru, India. From 2014 to 2015, she was a Faculty Member at the
National Institute of Technology (NIT) Goa. India. Since 2015, she has been
an Assistant Professor with the Department of EEE, BITS-Pilani, Hyder-
abad Campus, India. Her research interests include network-on-chip design,
reconfigurable computing, fault-tolerant system design, and real-time sys-
tems. As a Principal Investigator, she has been implementing several funded
projects from DST, Government of India, and has been collaborating with
various research groups in India and abroad. Her research interests led to a
credit of more than 25 publications in peer-reviewed journals and reputed
international conferences held in India and abroad.

LINGA REDDY CENKERAMADDI (Senior
Member, IEEE) received the master’s degree in
electrical engineering from the Indian Institute of
Technology Delhi, New Delhi, India, in 2004, and
the Ph.D. degree in electrical engineering from the
Norwegian University of Science and Technology,
Trondheim, Norway, in 2011. He worked in mixed
signal circuit design at Texas Instruments, before
joining the Ph.D. program at NTNU. After finish-
ing his Ph.D., he worked in radiation imaging for

an atmosphere space interaction monitor (ASIM mission to International
Space Station) with the University of Bergen, Norway, from 2010 to 2012.
He is currently working as an Associate Professor with the University of
Agder, Grimstad, Norway. Hismain research interests include cyber-physical
systems, autonomous systems, and wireless embedded systems.

VOLUME 9, 2021 76779

http://dx.doi.org/10.1109/TC.1987.1676939

