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Abstract

We study the price dynamics generated by a stochastic version of a Day—Huang type
asset market model with heterogenous, interacting market participants. To facilitate
the analysis, we introduce a methodology that allows us to assess the consequences
of changes in uncertainty on the dynamics of an asset price process close to stable
equilibria. In particular, we focus on noise-induced transitions between bull and bear
states of the market under additive as well as parametric noise. Our results are obtained
by combining the stochastic sensitivity function (SSF) approach, a mixture of analyt-
ical and numerical techniques, due to Mil’shtein and Ryashko (1995) with concepts
and techniques from the study of non-smooth 1D maps. We find that the stochas-
tic sensitivity of the respective bull and bear equilibria in the presence of additive
noise is higher than under parametric noise. Thus, recurrent transitions are likely to
be observed already for relatively low intensities of additive noise.

Keywords Stochastic price process - Non-invertible maps - Non-smooth maps -
Stochastic sensitivity function - Transitions between stochastic fixed points - Critical
intensity

1 Introduction

Recent events affecting commodity and asset markets worldwide in the most drastic
way once more obviate the need for analytical techniques that help us to understand
how sensitive market outcomes are to variations in uncertainty. Surges of uncertainty
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in the environment into which markets are embedded might—apart from affecting the
behavior of market participants—have an effect on the interaction between agents. Dis-
tortions to the process of interaction which ultimately determines the market outcome
will have profound effects on the development of prices. In the context of studying
a stochastic asset market, we introduce a methodology that allows us to assess the
consequences of changes in uncertainty on the dynamics of an asset price process.

A considerable literature relying on nonlinear dynamic models of financial markets
has deepened our understanding of the functioning of asset markets. This literature
has successfully emphasized the intrinsic limitations to predicting market outcomes.
Within this class, studies focussing on the functioning of financial markets with het-
erogenous, possibly interacting investors (Lux (1995), Brock and Hommes (1998),
Bohm and Wenzelburger (2005), Chiarella et al. (2005), and Huang et al. (2010)) have
expanded our insights into financial markets significantly.

The studies by Day and Huang (1990) and Huang and Day (1993) represent seminal,
highly influential research efforts. Considering three types of market participants,
sophisticated investors, less sophisticated traders and market makers, the authors derive
an asset price process based on a one-dimensional continuous map. They show that
their deterministic model generates stochastic price dynamics as well as “bear and
bull markets.” This work has motivated the research efforts which eventually evolved
into separate strands of the literature.

For example, the research efforts by Tramontana et al. (2009), Tramontana et al.
(2010), Tramontana et al. (2011), Tramontana et al. (2013) and Tramontana et al.
(2014) share distinct common characteristics. They all consider models of an asset
market with heterogenous (possibly interacting) agents rooted in the Day—Huang
paradigm. The studies focus on asset price dynamics that is driven by a one-
dimensional piecewise linear map (possibly with discontinuity points). With respect to
research methodology, they tend to rely on a mix of neoteric analytical and numerical
techniques. Strong emphasis is put on intricate bifurcation analyses. These studies
not only contribute significantly to the economics of financial markets, they also
augmented our understanding of the dynamics based on piecewise linear maps with dis-
continuities. In particular, Tramontana et al. (2015), Sushko et al. (2015) and Panchuk
et al. (2018) represent recent contributions to this type of literature which should be
singled out, since they motivated our own modeling effort. In each of the models
studied, some traders only enter or exit the market if the current asset price differs
significantly from the fundamental value of the asset.

These research efforts produce a rich body of results, each and every one of them
interesting in their own right. To survey those results in full detail is prohibitive, given
the scope of this paper. Viewed from the perspective of dynamics, the literature demon-
strates how the full analytical treatment of piecewise linear maps with discontinuities
can be achieved. Moreover, it establishes the significance of border collision bifur-
cations and generates insights into conditions under which equilibria and/or cycles
might or might not coexist. Economics and finance benefit from this literature since
it shows how bull and bear markets may emerge endogenously, how chaotic price
regimes occur and that both phenomena are robust. In addition, those efforts have
made clear that both fundamentalists and chartists may contribute to destabilization.
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Three aspects consistently surface as one surveys the existing literature for dimen-
sions on which future research should concentrate. First of all, one should allow for
agents’ asymmetric response around the fundamental value. Secondly, the case of non-
identical no-trade intervals of fundamentalists and chartists should be scrutinized. In
addition, we find the quest to intensify the stochastic modeling effort.

Our current work can be seen as a direct response to the latter two quests. In
particular, we contribute to the existing literature by considering a new variant of
the original Day and Huang model. While our agents’ response to deviations of the
asset price from the fundamental value is still symmetric, we focus on the case in
which their threshold levels for market entry (chartists) and change of trading intensity
(fundamentalists) do not coincide.

The second contribution is a methodological one. Introducing various types of noise,
we study the sensitivity of stable equilibria (bull and bear markets) and describe condi-
tions under which recurrent transitions between such equilibria occur. This is achieved
by relying on the stochastic sensitivity function (SSF) technique due to Mil’shtein and
Ryashko (1995). The approach allows us to study the interaction between various
types of noise and a piecewise linear deterministic map. The SSF technique has only
recently been applied in the context of piecewise linear maps. For examples involv-
ing stochastic 1-D and 2-D maps see Belyaev and Ryazanova (2019a), Belyaev and
Ryazanova (2019c¢), Belyaev and Ryazanova (2019b) and Nasyrova et al. (2019). Our
work demonstrates that the SSF technique, which combines analytical and numerical
strategies, also facilitates qualitative arguments typical for the research tradition in
economics and finance.

Finally, the paper furthers our understanding of asset price dynamics in speculative
markets by analyzing the dynamics generated by a deterministic map (5 linear pieces
map with 2 discontinuities) in the presence of additive and parametric noise. We
identify different types of transitions between bull and bear markets and unravel the
“genesis” of these transitions. In particular, it is shown how under fixed behavioral
features of fundamentalists and chartists, larger uncertainties can lead to the onset
of recurrent transitions. Beyond that, we also explain how such transitions may be
caused by changes in investor behavior under given levels of noise. Our numerical
examples demonstrate how such recurrent transitions give rise to a bi-modal marginal
distribution of the asset price. This phenomenon has only recently been established as
a salient characteristic of the S&P500 by Schmitt and Westerhoff (2017).

The stochastic asset price model is presented in Sect. 2. As an integral part of the
presentation, three noise regimes are specified. Since the sensitivity analysis of the
attractors of the stochastic price process is based on constructs which are associated
with its deterministic skeleton, we identify the map and discuss coexisting equilibria
and their basins of attraction in Sect. 3. Moreover, the subset of the parameter space
is identified on which our investigation is focussed. The subsequent Sect. 4 provides
an outline of the conceptual background for stochastic sensitivity analysis. The key
concepts presented here are motivated, applied and discussed in the context of the
stochastic price process (2) with additive noise in Sect. 5. In Sect. 6, we present
the results of our sensitivity analysis for the cases of parametric noise and compare
the stochastic sensitivity of price equilibria under the alternative types of noise. A
discussion of our results and some concluding remarks in Sect. 7 finalize the paper.
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2 The stochastic model

We consider a stochastic version of a Day and Huang type asset market in which
three types of market participants operate: fundamentalists, chartists and a market
maker who mediates and facilitates intended transactions out of equilibrium. In our
model, the asset price evolves due to the interaction between the market participants
who operate in an uncertain environment. We model the price process under general
environmental noise as well as in the presence of noise affecting the trading behavior
of fundamentalists or chartists specifically. After some conceptual qualifications, we
will establish the deterministic skeleton of the price process before we proceed to the
respective stochastic specification.

Prior to motivating some detail underlying the asset price dynamics which is essen-
tially driven by a piecewise linear map, we would like to stress that the process
corresponds to a piecewise nonlinear/multiplicative asset price process. To be spe-
cific, applying the homeomorphism /7 () to this piecewise nonlinear dynamic system,
we generate a piecewise linear system that is topologically equivalent to the origi-
nal nonlinear one. The segments of the piecewise nonlinear map are specified such
(exponential functions) that they are intrinsically linear, i.e. they become linear under
the appropriate transformation (natural logarithm). Throughout the remainder of the
paper, we stick to the following convention: we simply refer to the asset price and
the fundamental value given the understanding that p; = In(s;r;) where ; denotes the
price of the asset under scrutiny, v = In(f) represents the transform of the asset’s
fundamental value. Moreover, the constants y and € represent logged threshold levels
from the corresponding piecewise nonlinear/multiplicative model.

Next, we will establish the excess demand functions of the key market participants.
The investors referred to as fundamentalists base their investment strategy on sophisti-
cated and technically advanced analyses. Believing in mean reversion, they will plan to
buy (sell) when the current asset price (natural logarithm of the asset price) falls short
of (exceeds) the asset’s future economic value, reflected by v, the natural logarithm
of the fundamental value.

Definition 1 (Excess demand of fundamentalists)

agy —a(p—v+y), p=v—y;
A (p) = { @ —p), v—y <p<v+y;
—apy —a(p—v—y), p=v+y.

ve0,1),0<y <min(v,1 —v),a0 > 0and o > «p.

The less sophisticated B-investors, or chartists, base their investment strategy on a
simple adaptive estimate of the asset’s future economic value grounded on the spread
between the current asset price p and the current fundamental value v. Those investors
enter (leave) the market when the price exceeds (falls short of) the fundamental value
v expecting further price increases (decreases).
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Definition 2 (Excess demand of chartists) The excess demand of the chartists is given
by

B(p—v),p<v—€;
HB(p)=1B(p—v),p=v+e;
0, V—€ < p<vH4e€;

withv € (0,1),0 < e~ <min(v,1 —v), 8 > 0.

The parameters «g, « and B capture the respective traders’ response to a marginal
variation in the asset price (trade intensity). | We assume that an agent’s trade inten-
sity changes as the asset price leaves a neighborhood around the fundamental value.
In particular, the fundamentalists trade more aggressively at price levels outside the
interval (v — y,v + y) (¢ > «p), while the chartists do not trade at all in an €~
neighborhood around v and switch to an intensity of 8 otherwise. Thus, we capture
differences in perception of the asset’s fundamental value across the types of investors
in a rudimentary way. For further detail, see Jungeilges et al. (2021). In fact, the current
model constitutes a simplification of the model presented in Huang and Day (1993)
in which fundamentalists estimate the fundamental value as a long run estimate of the
stock value, while chartists rely on a recursive estimate of the fundamental value.

In the stochastic version of the model, we allow for the possibility that the agents’
trading behavior could be subject to random shocks when the asset price moves suffi-
ciently far away from the fundamental value. In the remainder of the paper, we focus
on the case of y > €¢~. The behavioral features captured constitute the kinks at v &y
in the graph of o7 (p) and jumps at v + €~ in the graph of B(p).

A market maker, assumed to be endowed with an inventory of stocks, mediates
and facilitates transactions out of equilibrium. She sets the price in response to excess
demand and supply signaled by fundamentalists and chartists, following a simple
linear price adjustment function

Pi1 = pr + 8 (p1) + B(pr) ] (D

where § > 0 signifies a price adjustment parameter and o7 (p;) and ZA(p;) can be
thought of as the orders placed, respectively, by fundamentalists and chartists. Thus,
at a given price the market maker satisfies excess demand out of his inventory or accu-
mulates inventory when there is excess supply, charging commissions on transactions
between fundamentalists and chartists. Allowing for additive and parametric shocks
the evolution of the asset price takes the form of a stochastic difference equation.

Definition 3 (Stochastic price process) Relying on the linear price adjustment function
(1) with 6 = 1 and Definitions 1 and 2, the asset price process can be given as

Piv1 = pr + A (prs v o, & + 605, 0) + B(pr.e 5 B+egk,v) ek (2)

with po € (0,1), €. 64,65 >0, & ~ N(0, 1) iid.

1 Since we consider the In-transform of the asset price 7z, the values —o, —a and B give the elasticities
of the piecewise excess demand functions (1) and (2) with respect to the asset price.
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Table 1 Noise scenarios

Case Condition Interpretation
foq =6 = €o = 0 Deterministic skeleton
ea =6 =0, g6 >0 Additive shock(s)
2 gq >0, &g = 0, e =0 Parametric shock («)
3 gq =0, &g > 0, ce =0 Parametric shock (8)

Throughout this paper, we are assuming that the populations of fundamentalists
and chartists differ in terms of their trading strategies as well as with respect to the
threshold levels y and €.

Assumption 1 (Heterogeneity) With respect to fundamentalists and chartist, we
assume (1) « > B+ 1land (2) y > €.

The market is affected by an exogenous shock &; (meteorological, political, pan-
demic, etc.) which might influence the price process in a non-specific additive manner
and/or by affecting the trading intensities of specific market participants far away from
the fundamental value, i.e., when the asset traded is severely mispriced. The addi-
tive shock in this log price model corresponds to a multiplicative—exponential shock
d)f' = (%)%, where ¢ follows a log-normal distribution with E[¢);] = /e ~ 1.6487
and V[¢;] = e —e! ~ 4.6710 to the piecewise nonlinear multiplicative price process.

The cases singled out for analysis are listed in Table 1. These types of specifications
are not without precedence in the related literature. Examples for asset price dynamics
depending on additive shocks to account for factors lying outside the realm of the
model (case 1) can be found in Lux (1995), Brock and Hommes (1998), Gaunersdorfer
and Hommes (2007). In those efforts, the shocks are typically modeled as i.i.d. normal
random variables. Also trading rules have been subjected to noise. For example, Franke
and Westerhoff (2012) rely on additive stochastic components in the trading rules for
chartists as well as fundamentalists to capture the diversity of actual fundamental
and technical trading rules. Closer to our cases 2 and 3, is the specification found in
Cafferata and Tramontana (2019) who model the reactivity of chartists to the price
signal as a random walk involving Gaussian noise.

We study the stochastic price process with the intention to understand the nature
of noise-induced transitions occurring between the most simple coexisting attractors
(price equilibria). The analysis builds on the stochastic sensitivity function approach,
an indirect method of studying stochastic dynamic processes which requires, at the
outset, the analysis of the deterministic skeleton underlying the stochastic price pro-
cess (2).

3 The deterministic price process
One of the key premises underlying the sensitivity analysis that follows is the (expo-
nential) stability of the attractors (price equilibria) to be studied. Thus, at the outset,

we need to identify the deterministic map associated with the stochastic law of motion
(2), identify its equilibria and discuss their stability.
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If Assumptions 1-2 hold and ¢, = g = €, = 0, then (2) takes the form

Sip=U0—-a+Bp+@—PFv+(w—a)y, 0<p<v—y;

H(p) =1 —ao+ B)p + (a0 — Bv, v—y<p<v—€;
f(p) =1 f3(p) = (1 —a0)p + oo, v—e <p<vt+e; (3)
fa(p) = A —ap+ B)p + (o — v, vt+e < p=<v+y;

)y =0-a+pp+@—pflv+(@—a)y, v+y <p=l1

Key aspects of this piecewise linear map possessing two kinks at p = v £ y and
jump discontinuities at v &£ €~ have been analyzed in Jungeilges et al. (2021). Here,
we provide a coarse summary of those aspects that are essential for the argument that
follows. In particular, the authors focus on a version of the In-price process that is
confined to the unit interval (Jungeilges et al. (2021), Result 4). 2 After identifying
conditions under which f maps the in unit interval 7 into itself, the authors identify the
subset of the parameter space over which three locally stable price equilibria coexist:

(@ — o) (@ — )
_rems ,p3=v,p5=v+—y . @)

Pt e o« p

The equilibria p; and ps are locally asymptotically stable (l.a.s.)ife —2 < 8 < o —1,
and p3, coinciding with the fundamental value, is locally asymptotically stable if
0 < ap < 2. In the sequel, we refer to the subset of the 5-dimensional parameter
space for which f : I — I and p; and ps are l.a.s. as £2*. For further details and
an interpretation of the equilibria from an economic perspective, see Result 5 and the
subsequent discussion in Jungeilges et al. (2021).

In the following, we will scrutinize the (i) stochastic sensitivity of these three
simple attractors and (ii) study noise-induced transitions that can occur between these
attractors. As will become apparent in Sect. 5, our analysis of the transitions between
equilibria combines stochastic concepts related to the stochastic sensitivity function
to constructs that are central to the study of deterministic maps. For our argument the
knowledge of the immediate basins of attraction associated with the equilibria given
in (2) is essential. In our case, the immediate basins are given by

_ _ (. € —(la—ay  _
IB3(1)1)—(1?1171710—(11 S ) e) 3)

_ _ - € —(@—agy
B(pS)_(bSZ’bsu)_(ere’v+—1—a+ﬁ ) (6)

For a highly constructive account of the concepts critical point and immediate basins,
see Sushko et al. (2016) and Avrutin et al. (2019). The cardinality (Ilength) of these
basins equals (« — ag)y + (@ — B)v. Thus, the width depends on within-agent behav-
ioral variation @ — oo and between-agents variation in trade intensities when prices

2 Confining the natural logarithm of the price to [0, 1] corresponds to the requirement 7r; € [1, e]. We
can always find a linear transformation that maps observed prices into this interval without affecting, for
instance, the underlying autocorrelation structure. Correlation is invariant to linear transformations.
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Fig.1 f(p), equilibria and basins B(p1).B(p5)

deviate severely from the fundamental value v, i.e., « — B. Increasing (decreasing)
heterogeneity in trading behavior will lead to wider (narrower) immediate basins of
attraction. The cardinality of the set of prices mapped into the respective equilibria
increases (decreases). A variation in heterogeneity changes the width of the basins—
intervals of prices for which the price process converges to equilibria associated with
persistent undervaluation (p1) or overvaluation (ps)—in the same direction.

Figure 1 gives a schematic representation of the graph of the 5-piece map f(p),
the equilibria pj, ps with their respective basins B(p1) and B(ps) superimposed
on the p-axis. To motivate and/or illustrate our analysis we, will rely on numerical
experiments. For fixed values of « = 5, v = 0.5, y = 0.2, ¢~ = 0.1, we choose
points in («, B)-space to simulate price paths. Figure 2 shows a partitioning of the
set P = {(x0, B) | 0 <@g <5 A0 < B <4}. The set of those parameter values for
which f does not map the unit interval into itself is indicated by the color gray. The
complement of this set is partitioned into three disjoint subsets: (i) the set of («g, B)
values colored blue for which the equilibria p and ps5 exist and are stable, (ii) a set for
which the equilibria (pg, ps) exist but are unstable colored in green and (iii) a white
set for which attractors other than equilibria exist. Superimposed on this bifurcation
diagram are vertical and horizontal broken lines representing parameter constellations
for which the price process is simulated in the subsequent sections of the paper. The
equilibria associated with the line segments H = {(ag, 8) | o =3 A 3 < <4}
and V = {(ap, B) | 1.7 < ap < 3.2 A B = 3.2} located in the blue area (p; and ps
exist and are stable) are plotted against 8 and «, respectively.

In the left subfigure of Fig. 3, p3 which always exists becomes unstable as o
exceed 2. Under a c.p. variation in ¢ the distance between p; and ps to p3 varies in
the opposite direction. A c.p. increase in g implies that the fundamentalist’s trading
intensity inside and outside the interval (v — y, v + y) becomes more similar. That is,
as the within-heterogeneity goes down the degree of mispricing in long-run states pi
and ps decreases. This relationship holds, irrespective of the stability or instability of
p3 =v.
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Fig.2 Bifurcation diagram

The evidence given in the right-hand subfigure of Fig. 3 suggests that a c.p. variation
in heterogeneity w.r.t. the trading behavior shown by fundamentalists and chartists
when the current asset price does not lie in the vicinity of the fundamental value
p > (v — y,v + y) triggers a change in the distance of p; and ps5 from p3 in the
opposite direction. The intersection of the line segments H and V (H N V) gives the
parameter constellation considered in the numerical experiments discussed below. At
that point in parameter space stable equilibria, p; and ps are coexisting with a unstable

p3.

4 Sensitivity analysis via SSF

The approach to studying the stochastic sensitivity of attractors presented below is
due to Mil’shtein and Ryashko (1995). It has been fully developed and popularized
by L. Ryashko and his collaborators. In the past, the technique has been successfully
applied in the natural sciences to dynamic problems in continuous and discrete time.
Only recently has it been utilized to analyze economic processes. The parsimonious
presentation that follows gives a rough idea of the concepts. For a more detailed pre-
sentation see, for instance Bashkirtseva (2015), Bashkirtseva (2018), and Bashkirtseva
and Ryashko (2015).
We can represent the stochastic price process (2) as

Prv1 = f(pr) +eg(pr)é: @)
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where g(e) denotes a (not necessarily smooth) function and & signifies an i.i.d Gaus-
sian shock. The following assumption concerning the deterministic skeleton of the
stochastic price process (7) is central to the stochastic sensitivity approach.

Assumption 2 For ¢ = 0 (7) has an exponentially stable equilibrium p.

Let p; (&) be the solution of (7) with po(e) = p + evg, then

2 = lim P =P 8)

e—0 &

characterizes the sensitivity of the price equilibrium p toi.i.d. shocks. For the dynamics
of z, it holds that

z+1 = [Pz + 8(P)&r- ©))

Focussing on the dynamics of second moment V; = E[ztz], one can show that

Vier = L/ (D)1PVi + g(p) (10)

holds. It follows from Assumption 2 that | f'(p) |< 1. Thus, V; is stabilized for any
initial condition. The limit

g% (p)

(P (1)

w= lim V, =
—00

defines the stochastic sensitivity function (SSF) of the exponentially stable price equi-
librium p. Apparently, an SSF makes sense only if the equilibrium is exponentially
stable. In the sequel, we will encounter such a situation in the context of the equilibrium
p3. If the equilibrium is not stable, then the SSF is irrelevant.

For small noise intensities €, a stationary distribution of prices exists which is
centered at p. The distribution can be approximated by a normal. In fact, 2w is
related to the variance of the stationary density. Based on the stationary density, it is
possible to construct a confidence region around the price equilibrium. The respective
99% interval takes the form

P+ ke2w (12)

where k = erf -1 (0.99). Thus, the stochastic sensitivity function w and the noise
intensity & determine the boundaries of the confidence interval.
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5 Sensitivity analysis for the stochastic price process with additive
noise

5.1 Stochastic sensitivity function for equilibria

In this case ¢, = g = 0, g, > 0. With g(p) = 1, the stochastic price process is
given by

prv1 = f(pr) + eed; (13)

where f(p;) is given by (3). To obtain the SSFs we need to find the gradient of f:

l—a+p8, 0<p<v-—y;
l—ay+B, v—y<p=<v—e;
f'(p)=1{1—ao, V—€e <p<uvH4e;
l—ay+B, v+e <p=<v+y;
l—a+p8, v+y<p<lI.

Result 1 Given Assumption 1 holds and 0 < agy < 2, then the sensitivity functions for
the La.s. equilibria p1, p3, ps exist and are given by

1
wi(@, ) = ws(a, f) = T— and w3 () = (14)

(1—a+p)? 1= (1 —ap?

The condition « > S + 1 ensures that the denominator of w; = ws is positive.
Assuming thate —2 < B < o — 1 and 0 < a9 < 2 hold, the signs of the partial
derivatives of the SSF’s with respect to the parameters «, 8 and ¢ are unique:

<0, 09 <1;
=0, ag =0; (15)
>0, apg > 1.

dwi(a, B) -0 dw)(a, B) -0 dws(ap) _
oo ’ ap ' dayg

The stochastic sensitivity of p3 = v is determined by the trading response of
fundamentalists when they encounter prices in the vicinity of the fundamental value
alone. The lowest spread of prices around the fundamental value will be observed for
the value of op which minimizes ws, i.e., at g = 1. At that value the equilibrium
p3 is super-stable (super-attractive). In that case, prices in the neighborhood of the
fundamental values converge to v extremely fast. The spread of the asset price in the
neighborhood of v will increase (eventually exponentially) if cp moves toward the end
points of the interval (0, 2). (The function has poles at 0 and 2.)

The equilibria p; and ps lie in the price intervals I} = [0,v — y) and [5 =
(v + y, 1], respectively. If the current p, falls into /; or I5 then the trading behavior
of fundamentalists and chartists is reflected by parameters « and 8. The stochastic
sensitivity of the equilibria p; and ps depends only on the respective trade intensities.
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Fig.3 Comparative statics for p1, p3, ps

A marginal c.p. increase in § signifies that chartists’ trading behavior tends to
align with fundamentalists’ trading response—as « is fixed and « > g + 1. The
partial derivative given above, suggests that the stochastic sensitivity of p; (and ps)
will decrease as a consequence. A decrease in 8 leads to greater heterogeneity and
increases the respective SSFs. An interpretation of the marginal c.p. variation in «,
which according to (15) varies stochastic sensitivity in same direction, renders the same
insight. Thus, we can state that if the two agent populations become more homogenous
(heterogenous), p1 and ps move away from (closer to) the fundamental value (Fig. 3b),
but the spread of prices around the respective equilibria tends to decrease (increase).

5.2 Confidence regions

As a spin-off from the stochastic sensitivity function technique, we can derive
confidence sets for the l.a.s equilibria pi, p3, ps. Thus, we let € (pi; cs) =
(ci1(ge), ciu(gs)), i in {1, 3,5}, denote the confidence set (interval) associated with
equilibrium p; and the noise intensity £, > 0. Our confidence sets are based on (12)
and the 3o -rule. If the price process involving additive noise is started in a small
neighborhood of the equilibrium p;, then in approximately 99.72% of all times the
trajectory will stay inside the set € (p;; €o). As the cardinality of the confidence sets
will play an essential role in our analysis of the transition phenomenon, we will define
it next: §[€(pi; €¢)] = Li(ge) = Cin(ge) — cii(€s). Thus, L;(g,) gives the length of
the confidence interval centered at p;, i € {1, 3, 5}, given the noise intensity &,.

Result2 For e, = ¢g = 0 and e, > 0 and given Assumption 1 holds, the confidence
sets C(pi; €q), i € {1,3,5}, for the l.a.s. equilibria p; are given by

D=

y (o — ap)

L [1—(1—a+ﬁ)2]_ (16)

Clu(Ee) =V —
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D=

Gawle) = vE3e [1-1-a?] (17)
_ _1
05(1,u)(8.)=v+%i38.[1—(1—a+ﬂ)2] : (18)

The cardinalities of the resulting confidence sets are given in the following result.

Result 3

1
2

Li@, B.6s) = Ls(a, B, £4) = 6 64 [1—(1—a+/3)2]7 (19)
1

Lyeo. &) =660 [1= (1 —a0)’| (20)

The cardinality of confidence set is an increasing function of the noise intensity
€e. The problem of determining how the length L;(¢,) of the confidence interval for
equilibrium p; is responding to marginal c.p. changes in the trade intensities «, g and
B isreadily solved. Since L; (¢,) constitutes a monotonically increasing transformation
of the respective sensitivity function w;, the signs of the partial derivatives of L;(&,)
are identical to those listed in (15):

>0, g > 1;
=0,a0=1; ;. (21
<0, ap < 1;

dL1(a, B, €) dL(a, B, €o) dL3(ag; &)
>0 <0 =
fled ap dayg

The signs are formally correct, but it may be constructive to see whether we can
retrace the deep reasons for those signs. If « increases, then the slope of segment
J1 (B + 1 — ) will be smaller (the slope is negative), so f; becomes steeper. For
the deterministic motion around p; that means that the range of iterates increases
compared to the baseline fj. If noise is added, then this tendency does not vanish.
On the other hand, a marginal increase (decrease) in § flattens out the slope of fj.
The range of the iterates (started at pg) will become narrower. Adding noise does not
change this tendency. The length of the confidence interval around p; should decrease.

The same applies in the case of p3. For instance, when «( increases beyond 1, the
negative slope of f3 becomes steeper which implies a larger range of iterates as the
process converges to the fundamental value, than the range implied by the baseline
situation. Again, introducing additive noise, does not change the situation.

5.3 Transition between coexisting equilibria

The two key constructs in our explanation of transitions occurring between the l.a.s.
equilibria p; and ps are the immediate basins B(p;) and the confidence intervals
€ (pi; ) associated with each equilibrium. While the former emerges from the anal-
ysis of the deterministic map f'(p) in Sect. 3, the latter is a by-product of the stochastic
sensitivity function approach applied to the stochastic price law (2). Both sets being
anchored at the equilibrium p;, they, differ in several aspects. We will argue below
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that a lack of congruence between the sets causes the transitions occurring between
coexisting stable equilibria.

A sufficient condition for the existence of transitions between two equilibria can
be formulated relying on the binary relation prevailing between these sets. To see this,
consider the following cases:

Case 1: €(pi; €.) C B(pi)

Here, € (pi; €s) N B(p1) = € (pi; €.) that is, the prices prevailing in the neigh-
borhood of p; most of the time, are prices which are expected to be mapped into the
direction of the equilibrium p;. (The “deterministic skeleton” is result of applying
expected value operator to 2.) In this case, a price trajectory started in the equilibrium
pi will stay in a neighborhood of the equilibrium ad infinitum with given fiducial
probability. Such a case is demonstrated in the left subfigure of Fig. 4.

Case 2: € (pi; €s) D B(pi)

Here the set difference € (p;; €.)/B(p;) is not empty. There are price states which
are likely to occur and which are not going to be mapped in the direction of the
equilibrium p;. Thus, the price trajectory “escapes” the respective immediate basin
and a transition to another equilibrium becomes a likely event. The dynamics evolving
in such a case is illustrated in the right-hand subfigure of Fig. 4.

As indicated in Result 3, L; is an increasing function of &,. Thus, fixing all other
parameters, the length of € (p;; €.) can be varied independently by choosing alterna-
tive noise intensities 0 < &, < &J'** where the upper bound is motivated by (i) the
endeavor to avoid economically meaningless trajectories and by (ii) the fact that the
theory underlying the SSF assumes small noise throughout. A given “case 1,” might
be transformed into the second case described above by increasing the noise intensity.
To provide an illustration of the dynamics resulting from the two cases outlined above,
the following parameter constellation was chosen:

(o, a0, v, B, €7) = (5,3,0.2;3.2,0.1). (22)

It implies that the coexisting equilibria p; and ps are la.s, while p3 = v = 0.5
is unstable. Figure 4 depicts the stochastic dynamics as it unfolds in the state space
(upper panels) as well as in the time domain (lower panels) for two different levels of
noise g, = 0.01 (left column) and &, = 0.04 (right column).

Both constructs, confidence regions (yellow) and immediate basins (B(p1) pink and
B(ps5)—blue) are superimposed on the horizontal axis in the state space representation.
The simulated price series are shown in the form of an iterative Lamerey diagram. If
the series starts in pj (ps) its elements are colored pink (blue). In each subfigure, the
lower panel shows a time-domain representation of the processes. The sample series
are superimposed on the respective basins (pink and blue) and confidence regions
(yellow).

In the small noise scenario (¢, = 0.01), the confidence set is contained in the
respective immediate basin. At such a low noise level, an escape from the basin is a
highly unlikely event. Our time domain representation shows the motion of both price
series within the confidence bands C(p1; 0.01) and C(ps; 0.01), which are embedded
in the respective basins B(p1) and B(ps), throughout the entire observation period.
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Fig.4 Stochastic states

The situation changes drastically, once the noise intensity is increased to ¢, = 0.04.
As shown in the right subfigure, the cardinality of the confidence sets increase such that
the respective basins are now subsets of the confidence sets. There are highly probable
states (prices) which would not be mapped into p; or ps under the deterministic
system. An escape from a basin is highly likely in this scenario. The lower panel
shows how the price process starts close to ps—initially the asset is over-valued,
undergoes a transition after a few iterations, stays close to the low level equilibrium
for an extended period, and returns to the neighborhood of ps after some iterations.
Similar, recurrent transitions between equilibria are observed when the price process
(sample series colored pink) starts in the low level equilibrium p;. As in the previous
case, the transitions occurring here are merely induced by an increase in the variance
of the noise signal reflecting a higher degree of uncertainty in the market environment.

Evidently, the numerical example reveals two types of transitions between the l.a.s
equilibria p; and ps: p; — ps and ps — p;. In principle, each type of transition can
occur in two ways: the price trajectory ends up in the interval [c;; (&), bj;] (escape via
the lower bound of B(p;)) or in [b;,, ciy(€e)] (escape via the upper bound of B(p;).
Under the parameter constellation at hand, we find that the escape from B(p;) can
be expected to occur via the upper bound by, while the escape from B(p;) tends to
emerge via the lower bound b»;.

5.4 Critical intensities
Central to our discussion below is the concept of critical intensity, that is, the largest

noise level for which transitions are still unlikely events. To frame it alternatively: If
this critical noise level is exceeded, then transitions become observable events.
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Definition 4 The noise level for which b;, = c¢;.(¢.), ¢ € {l, u}, holds is referred to
as the critical noise intensity for escaping B(p;) via the boundary b;,.. It is denoted as
Efi,e'

Since ¢j;(g,) and c;j, (€,), apart from being (i) monotonically decreasing/increasing
in &,, the bounds are invertible w.r.t. £,. In our case, we can obtain a closed form of an
analytical solution for the critical noise intensities. For other examples of analytically
determined critical intensities, see for instance Jungeilges et al. (2018), Bashkirtseva
and Ryashko (2017), and Bashkirtseva et al. (2016).

Result4 Given Assumption 1 holds and py, ps are locally asymptotically stable, then
critical intensities exist and are equal to

* % _16 (0 — B) — y (o — o) /7
8.1,1 - 805,u - 3 (l — +,3)\/(XT (23)

ly(e—ap) —€e (@—p)
folu = €a50 = 3 N V2—a+p. 24)
From a formal point of view, critical intensities are functions ¢},  : 2% — R,

which map points in the restricted parameter space £2* onto the pos1t1ve real line (noise
intensities). In our context, Assumption 1 implies that in (23) and (24) the denominator
is a positive real number, while the stability of p; (8 + 1 < « < B + 2) ensures that
A/ 2 —« =+ ﬁ S R+.

The critical intensities depend in a complex way on all parameters. Note how the
threshold prices €~ and y are concentrated in the numerators of (23) and (24) critical
intensities. Even though the aspect of threshold prices is not the focus of this paper,
we should point out that the changes in the difference between y and €~ will have an
effect on the critical intensities.

To illustrate the concept of critical intensities and to introduce an alternative
interpretation of it, we rely on evidence from simulations based on the parameter
constellation given in (22). In Fig. 5, the vertical axis of the graph is associated with
the state space I of the stochastic price process (2) while the horizontal axis holds a
fine grid (A = 0.0005) noise intensities from the interval (0, 0.05). For given level of
£e, We fix an initial price in a small neighborhood of the equilibrium p; and generate
a single stochastic price trajectory of length 7 = 200. The realizations are plotted
against the respective level of &,. In addition, the basin B(p;) which is independent
of &, and the confidence region C(py; &,) (end points indicated by broken lines) are
superimposed on the graph.

As the noise intensities increase, the spread of the asset prices around p; increases,
but the bulk of the realizations are elements of B(p;) as the confidence regions
C(p1; o) are true subsets of the basin. At 8'1 u =~ 0.02445 the situation changes.
The basin becomes a subset of the confidence regions. Prices tend to “escape” B(p;)
via the boundary bj, and tend to be mapped into the vicinity of ps. A transition
between two l.a.s. equilibria (p; — p5) occurs. Eventually, the process leaves the
basin of the equilibrium in which the asset is over-priced (ps) to return to states in
which the asset is under-valued (p1) (p1 < ps). Under increasing levels of noise,
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Fig.5 Stochastic trajectories
versus levels of ¢4

Fig.6 Marginal densities for
alternative values of ¢ 0.2

0.15¢

0.1f

0.05

recurrent transitions—in both directions—prevail. Although the graph in Fig. 5 allows
for a first look at the properties of the price distribution for each &, and effectively
reveals the evolution from a uni-modal to a bi-modal density of prices as the noise
intensity increases, we provide a more detailed account of the distribution of prices in
Fig. 6.

For each level of €, there exists a density function ¢, (p) describing the distribution
of prices on the unit interval. In Fig. 6, we exhibit the smoothed-histogram estimates
q;g. (p) for selected noise intensities g, € {0.01, 0.04, 0.06} based on single simulation
runs. Apparently, the uni-modal density centered at p; evolves into a bi-modal one
under increasing uncertainty. Apparently, the bi-modal marginal densities associated
with ¢, = 0.04 and ¢, = 0.06 posses a local minimum at the fundamental value
p3 = v. This minimum is invariant to changes in the noise level. Recently, Schmitt and
Westerhoff (2017) have provided empirical evidence for bi-modality in the S&P500.
Moreover, the authors establish that this property of asset prices can be generated in
the context of several agent-based asset market models.

In fact, in the family (space) of densities ¢, (p), a bifurcation occurs for some level
of ¢4 € (0, 0.05). The critical intensities given in Result 4 can be used to approximate
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noise intensity at which such a bifurcation occurs. In the case at hand, the bifurcation
materializes approximately at the noise intensity of 0.024.

So far, we have focussed on additive noise alone. In the following section, we will
consider the variants of our stochastic model in which the trading intensities of either
fundamentalists (case 2) or chartists (case 3) are subject to random shocks. After
summarizing our results from the respective analyses, we compare the sensitivity of
the coexisting equilibria p; and ps5 under different types of noise.

6 Parametric noise
6.1 Parametric noise affecting a

In the case ¢, > 0, eg = 0, &, = 0, only the segments f; and f5 of the map f(p)
are affected by parametric shocks. Thus, (2) can be represented as

Pr1 = f(pe) +eg(pe)é: (25)
where

v—y—p,0<p<v-—y;

0, V—y S psSv—e€;
ga(p) =10, V—€ < p<v+te; (26)
0, v+e < p=uv+y;

v+y—p,v+y<p=<l.

By implementing the approach described in Sect. 4, we obtain the stochastic sen-
sitivity functions for the l.a.s. equilibria, determine the associated confidence regions
and finally calculate the respective critical intensities. Our findings are summarized
in the sequence of results given below. Under the parameter constraints implied by
Assumption 1 and the stability conditions already outlined in the case of additive noise,
all constructs exist and are well-defined.

Result5 Ifey > 0, eg =0, g4 = 0, then the sensitivity functions for the equilibria
P1, P3, ps based on (11) equal

y2(B — a)?
(@—BPQ2—a+p)

We(p1) = we(ps) = and we(p3) = 0. 27

Since the center segment f3 of f(p) is not affected by noise, it is deterministic.
We define the sensitivity for such cases to be 0. Since the comparative perspective
adopted in the sequel of this section will focus the stable equilibria p; and ps, we will
consider confidence sets and critical intensities for these equilibria only.
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Result6 Givene, > 0, eg =0, g4 = 0, the confidence sets € (p;; €a), i € {1, 3,5},
are given by

_ yla—ap) y2(B — a)?

Cl(l’u)(ga)_v_ﬁisga\/((x—ﬁP(Z—a—{—ﬁ) (28)
., y(a—ap) y2(B — a)?

csu)(€e) = v+ T + 38“\/((1 I — (29)

Finally, we present our findings concerning the critical intensities for the case in
which the trade intensities of the fundamentalists are prone to shocks.

Result7 In the case of e, > 0, eg =0, €4 = 0, the critical intensities are given by

® % _167(0‘_:3)_7/(0‘_0‘0) — —
O = s = 3 Ca v BB g YV ATAE@—B) (G0
* % _ly(a—ao)—e_(a—ﬁ) — —
folu = €5t = 3 g V@ et pla—p). GD

A detailed discussion about how specific parameter changes affect the construct is,
of course, possible but will not be included here to honor the scope of this paper. Instead,
we will summarize our findings for the case in which noise affects the parameter .

6.2 Parametric noise affecting 8

Inthe case ey =0, g5 > 0, &, = 0, the segments f1, f2, f4, and f5 of the map f(p)
are affected by the specific parametric shock. Thus, (2) can be represented as

Pr+1 = f(pr) +eg(pr)é: (32)
where

v—p,0<p<v—y;
V—p,v—yY <p=Vv—€;

gs(p) =10, V—€ < p<v+e; (33)
v—p,vt+e < p=v+vy,;
v—p,v+y<p=<l.

As in the context of «-noise, we state that all functions given in this summary of
results exist and are well-defined when we consider the restricted parameter space §2*
and invoke Assumption 1.

Result8 Ife, =0, eg > 0, €4 = 0, then the sensitivity functions for the equilibria
D1, D3, ps based on (11) equal

Y2 (@ — ap)?

@—=pP2—a+p)

we(p1) = we(ps) = and we(p3) = 0. (34)
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Again, we only consider the confidence regions for the equilibria p; and ps since our
comparative perspective will focus on those coexisting equilibria.

Result9 Givene, =0, eg > 0, g4 = 0, the confidence sets € (p;; eg), i € {1, 3,5},
are given by

_ . v(@—ag) (o — a)?

Cl(l,u)(gﬂ)—v_—a_ﬂ i385\/(a_/3)3(2_a+/3) (35)
_ y (o — ap) Y2 (a — ap)?

CS(Z‘“)(%)_U+Wi3gﬁ\/(a—ﬁ)3(2—a+ﬁ)' (36)

As in the previously scrutinized cases, also in the case of B-noise, closed-form
analytical solutions can be given for the critical intensities given in Definition 4.

Result 10 /n the case of e, = 0, gg > 0, g4 = 0, the critical intensities are given by

% % _16_((1_,3)_3/(05_0‘0) — —
= 50 = 3 I et Pyl —ay VA TAE—B  GD
1y(a —ao)

—e (@—p)
Eh1, = Ehs ) = 2—a+ B)(a—p). 38
Blu = €51 = 3 V(o — o) V( B) (o — B) (38)
The results outlined above, will be used to compare the sensitivity of the coexisting
attractors pj and ps under different noise scenarios.

6.3 Comparative perspective

For the parameter constellations chosen for the numerical experiments of the preced-
ing sections, we will contrast the sensitivity functions and critical intensities for the
equilibria p; and ps across the three types of noise. Recall that for the o used in the
experiments the equilibrium p3 = v = 0.5 is unstable.

Figure 7 clearly provides evidence for the fact that the sensitivity function w; = ws
for additive noise clearly dominates the sensitivity functions for the parametric noise
scenarios. In a sense, an additive shock affects the entire graph of f(p) while in the
case of B-noise the slopes of fi, f2, f3, fa are random while the center segment
stays deterministic. Under a-noise, only the slopes of f1 and f5 are random, while
everything else stays deterministic. The experiment suggests that stochastic sensitivity
of the stable equilibria increases in the number of segments affected by shocks.

Seen from an economic perspective this results seems to be in line with intuition.
The noise affecting the price formation process as a whole (affecting the process in
which the demand signals are transformed into price movements) should be expected
to render larger price movements around l.a.s. equilibria than shocks that affect the
trading intensities of fundamentalists or chartists alone.

The left panel of Fig. 8 exhibits critical intensities for scenarios in which g is
fixed at 3.2 while &g varies between 1.7 and 3.2. Under additive noise, we will observe
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Fig.8 Comparison of critical intensities (log-scale)

transitions of the types p; — ps and ps — p; for comparatively low noise intensities.
The price process tends to escape the basin B(p;) via the upper endpoint already at
lower levels of noise irrespective of the noise considered. The motion around the l.a.s.
equilibria will be much more robust to changes in the noise intensity if only the trade
intensities of specific groups of agents are prone to shocks. Also note how an increase
in g lowers the critical sensitivity in the case of additive- and B-noise, but increases
it for w-noise. Thus, transitions from one stable attractor to another become unlikely
as «q approaches 3.2.

The right panel of Fig. 8 shows critical intensities for the three types of noise
presented on a log-scale for the situation in which @p = 3 is fixed and B varies
between 3 and 4.

Under additive noise, the critical intensities for leaving B(p;) increase as the
chartists, on average, trade more aggressively. The critical intensity for leaving via

the upper bound &, u grows less than &7, ; as B increases. Escapes from B(p) via the
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upper boundary of the corresponding basin will be observed at lower noise intensities
than escapes via the lower end of the basin. The motion of asset prices around the p;
becomes a more robust phenomenon as the chartists, on average, choose to trade more
aggressively.

Qualitatively, the case of B-noise resembles the case of additive noise. The main
difference being that the critical intensities under B-noise are higher for all 8 value
considered. Escapes happen only at higher levels of the noise intensity. Motion around
a price level at which the asset is miss-priced is a more robust phenomenon than in
the case of additive noise.

In the least sensitive case of «-noise, 8;1 u decreases as trade intensities of chartists
increases. The motion around the equilibrium price becomes a less robust phenomenon
as the chartists trade more aggressively.

7 Discussion and conclusion

The extant literature on deterministic asset price dynamics referenced in Sect. 1 demon-
strates how bull and bear markets can emerge endogenously. They indeed exist across
different model specifications and are typically instigated through changes in investor
trading behavior. In the preceding sections, we have shown how such bull and bear
markets can evolve if the economic environment becomes sufficiently noisy or uncer-
tain. Eventually, the confidence regions around the equilibria are not proper subsets of
the respective basins anymore, and a process of recurrent transitions between locally
asymptotically stable equilibria starts. The noise levels at which transitions become
likely depends on agents’ trading intensities in an intricate way. Moreover, we establish
that the propensity for observing transitions is the highest under additive noise.

Our model differs from existing models in the tradition of Day and Huang in an
important aspect. We allow for differences in the price thresholds y and € ~. As demon-
strated in Jungeilges et al. (2021) such a disparity leads to phenomena in the context
of price equilibria that are not present if y = €~ holds. According to Results 4, 7 and
10, the critical intensities also depend on those thresholds. To clarify in how far they
play a role for the onset of transitions will be the subject of another investigation.

In the preceding sections, we concentrated on the variation in (i) noise intensities
as well as on different (ii) types of noise. But it is also possible that at a given level
of noise, the variation of a parameter, i.e. a change in the behavior of agents might
induce transitions between stable equilibria. To substantiate that claim we consider a
variation in the fundamentalists’ trade intensity in the neighborhood of the unstable
fundamental value. Figure 9 illustrates the effects of such a c.p. variation in 9. Varying
this parameter will change the levels of p; and ps. As o increases, the equilibria move
closer to p3 = v, thus mispricing in the equilibria becomes less pronounced.

Figure 9 shows how important the conditions around the unstable equilibrium are.
Note that the noise intensity is fixed. Only « varies and exceeds the levels for which
the fundamental value is locally asymptotically stable. The nature of the transition
itself (duration, location) depends on the parameter reflecting trading intensity of the
fundamentalists in the neighborhood of the unstable fundamental value. The variation
of o has two effects: (i) the levels of p; and ps change such that the respective
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distances to p3 = v vary in the opposite direction and (ii) it changes the cardinalities
of B(p1) and B(ps) in the opposite direction. But the length of the confidence intervals
(19)is independent of «vp. Thus, in the case at hand, increasing «¢ will eventually lead to
transitions between the locally stable p; and ps, apparently via by, and bs;. Figure 10
illustrates the effect of variations in ¢ on the stationary density of the asset prices.
Eventually, a bifurcation from a uni-modal to a bi-modal density occurs.

In particular, at g = 2 the asset price trajectory spends more time in the bear
market than in the bull market. As the fundamentalists trade more aggressively in the
neighborhood of the fundamental value—o increases to 3—the resulting bi-modal
marginal density suggests that the observed price trajectory spends more time in the
bull market than in the bear market. Exactly this quality has been observed for the
S&P500 studied in Schmitt and Westerhoff (2017). While this fact is worthwhile
mentioning, we should emphasize that the evidence given in Fig. 10 is based on single
simulation runs (one run per parameter value).

The techniques applied, in a sense, allow for a theoretical “stress” test of techni-
cally stable states of an asset market. As demonstrated, noise effects and effects of
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behavioral changes on the sensitivity of equilibria can be neatly separated or studied
in combination. The relevance of this type of analysis derives from the fact that it
might help us to further our understanding of the asset price dynamics in the presence
of high environmental volatility.

Future projects will concentrate, first of all, on a systematic analysis and interpre-
tation of the critical intensities found for the cases of parametric noise. Moreover,
the price dynamics under a combination of types of noise—possibly correlated—will
be studied. One should try to understand how the statistical properties of the price
process, for instance its autocorrelation function or selected moments, are related to
the parameters of the models, i.e. to investor behavior. Finally, it would be interesting
to contrast the statistical properties of the simulated price series with known salient
features of real financial times series.
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