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Abstract

This thesis was conducted to find the environmental potential of a future all-electric passenger
ferry which will operate between three locations in the “Indre Oslo-fjord”. The concept will
contribute to reduce local and global emissions in urban areas where public transportation is a
central part of the transportation system. The concept is owned and designed by the Norwegian
maritime business cluster NCE Maritime CleanTech, located in Bergen.

The projectis conducting the life cycle assessment (LCA) methodology to assess four scenario
cases: Scenario 1 uses a conventional diesel combustion propulsion system. This scenario the
reference scenario in comparison to the other scenarios. Scenario 2 uses batteries which are
charged from the grid as propulsion system. Scenario 3 uses batteries which are charged by
photovoltaics and charged by the grid as propulsion system. Scenario 4 also use batteries that
are charged from the grid as propulsion system. In addition, this scenario is implemented with
additional batteries, located at each charging station, which are supporting the grid during
charging.

The LCA results showed that battery propulsion has potential to reduce the global warming
potential (GWP), when compared to the reference scenario, both with and without additional
charging batteries. The GWP payback time for the scenarios with electric propulsion was
estimated to be 5 months, 6 months and 6,5 months for Scenario 2, Scenario 3 and Scenario 4
respectively.

The thesis concludes that battery electric propulsion can contribute to reduce the GWP and
other air related emissions. Compared to the reference scenario, the scenarios with battery
propulsion system have larger impact to several depletion and toxicity categories. However, as
long as the GWP is the most important factor for transport planning, the final conclusion is that
operating ferries with electrical energy is the best alternative in Norway, compared to the
reference scenario.
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1 Introduction

1.1 Motivation

The combination of increasing transportation and the growing climate change can be one of the
main challenge the world will face the coming decades. The long-term results of climate change
are among others global temperature increase, more extreme weather conditions and increased
sea level. As a result of climate change, the Paris Agreement was defined and signed by 195
countries at the 215" United Nations Climate Change Conference in Paris in December 2015.
This is the most ambitious global climate agreement, and the agreement set targets to reduce
the greenhouse gas (GHG) emission and other air related emissions. Additionally, the
agreement aims to keep the future global surface temperature increase within 2 C [1]. If this
agreement is intended to be met, the Intergovernmental Panel on Climate Change (IPCC) state
that the global air emissions should be reduced by 40 to 70 percent by 2050 (compared to 2010
levels). If this is not achieved, the IPCC suggest to implement negative emissions within the
end of this century, which will be more complicated and difficult [2].

As aresult of the Paris Agreement, the Norwegian government has set target to reduce domestic
emissions by at least 40% by 2030 compared to the 1990 level of emission. By reaching this
goal, the transportation sector, which stand for 31 percent of the national emissions, has to
implement more low emission technologies [2]. According to “Miljestatus.no”, which operates
with data from the Norwegian Ministry of the Environment, the national GHG emissions have
increased by approximately 25 percent in the period from 1990 to 2015. Transportation on roads
are responsible for more than 50 percent of these emissions, while interior ship transportation
are responsible for 17 % of these emissions [3].

In the biggest Norwegian cities, such as the city of Oslo, the public transportation sector is near
its capacity. Despite this, the urban population is expected to expand the coming years, resulting
in larger share of people travelling on roads. The consequence may greater environmental
emissions, and more limited capacity on roads and in public transportation. To avoid over
crowded routes and simultaneously reduce tailpipe emissions, the public transportation sector
needs a sustainable expansion in the near future [4][3]. The major transportation propulsion
system is still fossil related fuels, but in order to meet GHG emissions goals, new propulsion
technologies with low tailpipe emission have to be considered [5].

Battery technology has the potential to mitigate the GHG emissions. The tailpipe emissions
from battery propulsion technologies is zero, only dependent on the emissions from the
electricity mix and the battery production itself [6]. As battery technology has improved in the
last years, the price of the batteries has reduced [7]. This combination makes them attractive in
almost all transportation systems, and the technology is slowly being introduced to both
vehicles and vessels. The first all-electric car ferry was conducted in 2015 in Sognefjorden,
Norway [8]. The experience of the ferry has generated positive results, and more ships with
battery as propulsion will be built in the future [9].

The aim of this thesis is to investigate the environmental potential of an all-electric passenger
ferry which operate between three locations in the Oslo-fjord, called Urban Water Shuttle
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(UWS). The concept is owned by NCE Maritime CleanTech, a Norwegian maritime business
cluster located in Stord and Bergen in Norway. The study will use life cycle assessment (LCA)
to determine the environmental potential of the vessel. LCA is a methodology that can be used
to determine the environmental impact on a system or a function’s lifetime. The results of an
LCA can be used as a document to compare several technologies with respect to the
environmental impact [10].

The public transportation system in Oslo needs to be expanded, and the transportation capacity
on the roads in Oslo are crowded. The aim of UWS is to move parts of the public transportation
from the roads in the Oslo region to the sea. This is a solution which require a relatively small
amount of infrastructure expansion. The aim of UWS is to reduce the air emissions such as
carbon dioxide (CO,), nitrogen oxides (NOy) and particle matters from the combustion of fossil
fuels [11].

1.2 Problem statement

The purpose of this master thesis is to carry out a LCA of the UWS. Based on the results of
four different simulation scenarios, the potential environmental emissions will be calculated.

As the literature review will show, a wealth of previous LCAs on electrical vehicles have been
published, but there is a research gap in the impact of battery electric vessels. Therefore, this
thesis aims to fill this gap, and hence investigate the environmental load of a Norwegian
passenger ferry. The results of the battery propulsion system will be compared to a conventional
diesel combustion propulsion system.

A deeper description of the purpose and the objective of the thesis can be seen under the goal
and scope definition in chapter 6.



2 Literature Review

This chapter presents the transportation situation in Oslo today and describes the expected
future situation. This chapter also summarizes the results of previous LCA studies on electrical
propulsion. As the UWS is a pilot project, the amount of published research in this topic are
limited. The literature review will therefore concern LCA on other electric propulsion
technologies, such as electrical vehicles, electrical buses and electrical propulsion on sea. Parts
of the chapter is obtained from the energy research project performed in autumn 2016.

2.1 Transportation situation in Oslo

The public transportation in Oslo is used as case study in this thesis. The literature review looks
briefly at the present and future situation in the city. This section is carried out to show that the
public transportation sector needs to be expanded in order to face the future situation of growing
population and transportation.

Much of the next paragraphs are based on the Norwegian government’s National Transport
Plan (NTP). NTP isthe government’s political schedule for making an effective and sustainable
transportation system for the future. Much of Oslo’s present- and future transportation situation
are described in NTP. The NTP is released every fourth year, and the next publication for the
period 2018-2029 was released in the spring 2017. The applicable version for when this thesis
was written are the NTPs for 2014-2023 and 2018-2029. One of the main focuses of the NTP
is to define methods to develop a sustainable public transportation system which can overcome
the future population growth and environmental challenges. The goal of the report is according
to NTP to “offer an effective, safe and environmental friendly transportation system which has
the ability to cover the need for transportation and promote development” [5].

2.1.1 Presentsituation in Oslo

The public transportation in the Oslo-Area is discussed in [12], a report from a political
consultation concerning the transportation situation in the city. The number of people
travelling with rail related transportation and buses in Oslo has increased the last years, and is
near its capacity limit. The capacity trouble propagates to other rail-based technologies, such
as the tram and metro in Oslo. This generates bottlenecks in the busiest rail-tracks and affects
the whole transportation system all over the city.

Another big transportation problem in Oslo is the road-related transportation. Much of both
person- and freight transportation in the city takes place on roads. The combination of limited
rail-capacityand the large utilization of roads may develop more crowded roads in the city [12].
This again generates long travelling time both with vehicles and buses, especially in rush hours
in the morning and afternoon when people are travelling for work [4].

Approximately 26% of Oslo’s population travels with public transportation. Most of the
travelling are in conjunction with transportation to- and from work and school. The train system
is the most utilized public transportation option, which stands for 55 % of the public
transportation, followed by bus with 44 % and boat with 1 % [4]. The public transportation
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utilization in the city of Osloisthe largest utilization share of all the Norwegian cities. However,
there is room for improvements in Oslo as well, both by expanding the existing transportation
technologies, and by also developing new innovative transportation technologies. Table 2-1
shows the distribution of people travelling with different transportation options in Oslo and
Akershus in 2015. The table also shows the passenger km and seat km for the different
transportation options. The given numbers for the train-transportation is only for the local train
in Oslo, while the given bus numbers include the travellers between the Oslo region and
Akershus region as well. The data are extracted from Statistics Norway (SSB) and statics
extracted from “Akershus fylkeskommune”[13] [14] .

Table 2-1: Overview of the person transportation in Oslo and Akershus.

Description Boat Bus Tram Subway Train
Persons travelling (in million) 4,4 141 54 95 39,6
Passenger km (in million) 26,7 1127 174 570 1011
Seat km (in million) 113 1814 614 4 633 3768
Capacity utilization 23,6 % 62,1 % 28,3 % 12,3 % 26,8 %

The table shows that the capacity utilization for bus is the largest with 62,1 percent, while
subway transportation has the lowest utilization with only 12,3 percent. The remaining options
operated with a capacity utilization between 20 and 30 percent.

2.1.2 Future situation in Oslo

Factors such as better economy, population growth, technology development, and increase of
export and import of goods have impact on the transportation need in Norway [5]. In a report,
“KVU Oslo-Navet”, the projected public passenger transportation requirements in Oslo and
Akershus from 2015 to 2060 are presented to discover the challenge in future public
transportation [4]. The report is based on the present population in Oslo and Akershus, and
looks at the future population growth from 2015 to 2060. The Oslo-area includes 16
municipalities around the city and has a current population of approximately 1,6 million people.
The population growth in the same area in 2030 is predicted to grow to 1,9 million, and 2,2
million in 2060. This will result in a growing need for public transportation services in the
cities. In order to overcome these challengers, the public transportation has to be expanded, and
new technology has to be utilized [4]. Despite the predicted population growth, one of the
government’s goal isto limit the road-traffic to zero growth [4]. According to the NTP for 2018-
2029, the zero-growth target will be achieved by making people to choose public transportation,
bicycle and walking, rather than using private vehicles [2]. The results of this goal will
according to NTP cut the CO, emission from approximately 2,5 million to 1,5 million ton
annually [5]. The outcome is intended to reduce environmental air emissions and the road-
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related vehicles, and hence both meet the environmental concerns and reduce the road capacity
[2].

Data from 2004 to 2009 shows that the growth in transportation with vehicles in Oslo was zero
in this period. Data from the same period shows that the use of public transportation has
increased from 21% to 25% in Oslo. In Akershus, the private vehicle transportation has
increased in the same periode, but not as much as the population growth indicate. The public
transportation utilization has expanded from 9% to 11% in the period. The reason for more
people chose public transportation is explained as a combination of more toll for driving private
vehicles and the improvement in the public transportation sector (in terms of cheaper travelling
and better mobility). In order to continue this trend and reduce the cost of infrastructure
maintenance, the government propose to focus on utilizing new transportation related
technology when designing the future infrastructure and public transportation. Making people
to select public transportation when travelling will according to NTP be performed by making
it more expensive to driving private vehicles in the future [5].

In order to reach the goals described previous in this section, it is desired that the transportation
sector has to expand in a sustainable direction. This requires that the amount of alternative
energy systems, such as biodiesel and electrification increases [5]. The experience from
previous alternative energy storage system as propulsion in the transportation sector should be
considered for future transportation design.

2.2 Emissions from Norwegian shipping

In a report from DNV GL in [15], the fuel consumption, CO--, SOx- and NOx- emissions from
vessel operating in the Norwegian waters were assessed in the year 2013. In total, 6 700 vessels
were operating in the Norwegian waters in 2013. Approximately 500 of these are passenger-
and car ferries. The calculations are performed by specific data regarding engine capacity and
purposes of the different vessels. The total fuel consumptions from the vessels were determined
to be approximately 2,3 million tons, with 7 million ton of CO, emissions produced.
Approximately 55 % of the fuel consumption and emissions originated from domestic fleet.
The main contribution from the domestic fleet originated from passenger transport ferries
operating in Norway. The remaining emissions in the Norwegian water originates from foreign
vessel (22 %), transit traffic (16 %) and from vessels operating on quay (7 %).

2.3 LCA on electrical vehicles

Many authors have published research papers of the environmental impact of battery electric
vehicles (BEV) and lithium ion batteries (LIB). Zackrisson et. al. have in [6] performed an LCA
on LIB in plug-in hybrid electric vehicles (EV). The paper’s focus is the production phase and
the operation phase of the batteries. The results showed that the battery production has the
largest environmental impact. This was reflected when modelling with both European and
Scandinavian energy mix. When modelling with Chinese energy mix, the results showed that
the operation phase has more emissions than the emissions from the battery production phase.
The findings in Zackrisson et. al.’s report corresponds well to the results from the authors in



[16],[17] and [18], where EVs are compared to internal combustion engine vehicles. The results
from these studies depends on where the electricity has its origin as well.

These results are well illustrated in Figure 2-1, Figure 2-2 and Figure 2-3 obtained from [6].
The figures describes the environmental influence on five impact categories. The battery
operation, battery production and transport to recycling with three energy mixes (European,
Scandinavian and Chinese) are presented. The five categories are emissions on global warming
potential (CO,), photochemical smog (ethane), eutrophication (PO,), acidification (SO2) and
ozone depletion (CFC11). In all cases, the “transport to recycling” phase has a minor impact.

Figure 2-2 shows the environmental potential during operation in Europe. The figure shows
that the battery production has slightly more emissions on all categories, expect in the global
warming, where the battery operation has the biggest impact. Figure 2-1 describes the
environmental impact on the batteries when operating in Scandinavia. The battery production
has the biggest impact on all categories, followed by the battery use. When operating in China,
shown in Figure 2-3, the highest impact originates from the user of batteries. Battery production
has the biggest impact on Eutrophication and Ozone depletion.

M Transport to recycling W Transport to recycling

Battery use Battery use, Scandinavia

M Battery production, 10
kWh

[ Battery production, 10
kWh

g g gP04 gS02 gCFCl11

g g gP04 gS02 gCrCll C02eq ethene

CO2eq ethene

Figure 2-2 Environmental impact froma battery life operatingin ~ F19ure 2-1 Environmental impact from a battery life operating in
Europe [6]. Scandinavia [6].
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Hawkins et. al. reported in [19] a comparative LCA between a BEV and an internal combustion
vehicle (ICV). The production of the vehicles, batteries, and engines was conducted in the
study. The vehicles were designed with the same shell, while the components and energy
demand needed for an ICV and a BEV was based on a Mercedes A-series and a Nissan Leaf
respectively. The BEV was tested with three different electricity mixes: Average European
electricity mix, electricity originated from a coal power plant and electricity generated from
natural gas.

Results showed that the use phase of the EV was contributing the largest emission on GHG
emission. However, the results show that powering the vehicle with European average
electricity mix gave lower GHG emissions compared to electricity generated from coal.
Summed up, BEV show slightly better results in terms of GHG emission when powered with
European electricity mix, followed by natural gas. Powering the BEV with coal increased the
GHG emissions worse than ICV.

The results for the BEV in categories on human toxicity potential (HTP), eutrophication
potential (FEP) and fresh water ecotoxicity potential showed to contribute larger impact inthese
categories than the ICV. The authors explained that the extra production rate for the battery
increases the toxicity potential by 180 % to 290 % compared to the contribution for the ICV in
the same categories. The high impact of FEP and HTP is explained by the high mining activity
in extraction of the needed metals for the batteries.

2.4 LCA of public passenger transport systems

This subsection presents LCAs of different public passenger transportation systems. The
awareness of emissions from transportation in cities should be reflected in order to limit the
GHG emissions and other air pollutant gases. This subsection will start with a comparison of
different technologies in passenger transportation, followed by assessments of more electric
and hybrid technologies in the public transportation.

A hybrid LCA of passenger transportation of cars, buses, rails and aircrafts was conducted by
Chester and Horvath in [20]. They performed an LCA which include energy consumption and
air pollutant from the four transportation technologies with focus on production, infrastructure,
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and fuel. The production phase includes the manufacture of vehicles, train and aircraft with the
needed propulsion systems. The infrastructure contains road-, track-, station-, and airport
construction. The functional unit in the life cycle comparison was per person kilometre travelled
(PKT), but vehicle kilometre travelled (VKT)was used as well. With PKT as a functional unit,
the sensitivity simulation showed that the results are sensitive to the passenger occupancy. The
results indicated that GHG emissions were highest during operation for vehicles and aircraft,
while rail has higher emissions during infrastructure production, compared to its operational
emissons. For SO, and NOx emissions, the contribution mainly originated from the electricity
production. Therefore, most of the contribution from rail is during its operation, while most of
the emissions from road and air options are in conjunction to the electricity use during its
production. Another interesting finding in the study was that during off peak, i.e. travelling
between the rush hours, the transportation had largest impact per person travelled. The emission
per person will therefore vary significantly during the day, where the morning- and afternoon
rush will experience the lowest emissions. The PKT functional unit results are therefore
dependent on the passenger occupancy, and not that sensitive to technology emissions.

The Chester and Horvath study was only an assessment of the four transportation systems, and
which system is the best option depends on the passenger occupancy and the time of the day
they are operating. Therefore, no conclusion regarding the best option is drawn. Nevertheless,
suggestion for low emission technologies such as battery propulsion are proposed. The next
section will therefore assess electric propulsion in buses.

Madrid in Spain is one of the cities that has been studied with different fuels in buses. Antonio
et. al. have in [21] investigated the environmental potential and compared four different fuels
for powering buses. The four fuels are hydrogen, hybrid diesel-electric, battery, and diesel. In
the case of battery propulsion, the authors performed the study with different Spanish electricity
mixes from the year of 2008 to 2030. The amount of renewable energy in the Spanish electricity
grid was assumed by the authors to increase until 2030, where wind energy is expected to have
the biggest expand.

Regarding the GHG emission, the results showed that the battery electric bus was the best fuel
alternative during operation phase. However, the overall conclusion was that the battery bus
was the propulsion technology with the highest life cycle GHG emission, followed by the
hydrogen bus and hybrid bus. The reason for the high GHG emissions in the battery electric
bus was explained by the maintenance process and that they could not meet the requirements
in the automotive transport sector.
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Figure 2-4: GHG emission results from Ercan et al’s studym on different fuel options in buses [22].

Another LCA study on buses was performed by Ercan et. al. in [22] where the goal was to
investigate different fuels in public buses. Battery electric bus was one of the options, and the
bus was tested with different electricity mixes and compared to a conventional combustion
engine bus. The study include production, maintenance, operation, infrastructure, three LIB
replacement, and different electricity mixes. The electricity mixes were the average US
electricity mix, low carbon electricity mix and clean renewable energy from photovoltaics. The
battery electric bus performed the lowest CO, emission of all fuel alternatives within all three
electricity mixes. This is explained in Figure 2-4. As can be seen, the electricity generated from
the photovoltaic resulted in the lowest CO, emission, while the average grid mix showed to
have higher emissions. The highest impact in GHG emissions is generated from diesel, CNG,
biodiesel and LNG.
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Figure 2-5: Comparison of different fuel alternative and its impact on CO, SO,, NO, and PM,,[22].



Despite the low GHG emission for the battery technology, the battery electric bus was sensitive
to SO, and water use during electricity production. Figure 2-5 shows the impact on categories
such as carbon monoxide (CO), Sulfur dioxide (SO2), NOx and PMyo. The figure show that the
battery electric bus proved the least impact in CO emisssion. The PMo and NOx emissions in
the battery are more or less average compared to the other fuel options. LNG, CNG and diesel
shows more or less average results in all categories in the figure except in CO emissions, where
LNG and CNG has more than twiced emissios compared to the other fuel alternatives.

The authors in the papers found it hard to conclude with one specific fuel due to varying results
within the different impact categories. However, the battery powered bus performs on an
average or lower level compared to the other options with respect to environmental burdens.

2.5 LCA on battery and hybrid vessels

MS Ampere operates between Lavik and Oppedal, and was in 2015 the world’s first battery
electric car ferry[8]. Annelise B. Kullmann reported in [8] a comparative LCA between MF
Ampere and MF Oppedal, a conventional diesel combustion ferry. They operate between the
same crossing and are therefore comparable. MS Ampere is a catamaran hull, built in
aluminium for low resistance and lightweight. MF Oppedal is a one hull ship, build in steel.
The author’s objective was to present the impact on several environmental categories, and get
an analysis of the total environmental impact of the ferries.

The results from Kullmann’s study correspond to the results found in many of the previous
LCAs of EVs. MS Ampere has less GHG emissions during its operation phase, compared to
the operational emissions for MF Oppedal. In the case of toxicity impact groups, the author
found that MF Ampere has more emissions compared to MF Oppedal, which was associated
by the author to have its origin from the copper use in the power grid and the chemicals in the
batteries. Additionally, it was found that the operation-phase of both ferries had the largest
amount of emissions. The aluminium for the hull had large impact on categories regarding
Metal depletion. The battery production of MS Ampere was found to have significant influence
in categories regarding ecotoxicity of land areas and human toxicity.

A life cycle assessment of batteries in the maritime sector was performed by Lasselle et. al. in
[23]. The authors aim was to find the environmental cost (payback time) of using batteries in a
hybrid propulsion vessel and in an all-electric ferry. The battery solution was compared to a
conventional combustion engine solution. The authors were mainly focusing on the emissions
to GWP and NOx. The vessels were assumed to be powered by Norwegian electricity mix.

The results from the study showed that the environmental payback time for the hybrid solution
in terms of NOx is 0,3 months and 1,5 months for GWP. For the all-electric ferry, the payback
time was 1,4 month and 0,06 month for GWP and NOjy respectively. The limitation from the
study was the energy consumption during production of the battery, which was an uncertain
factor. However, the results did not change inthe sensitivity analysis where the environmental
CAPEX (the environmental impact from production) was increased tenfold
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The energy efficient design index (EEDI) is a measure of the total CO, emissions per
transported ton mile [24]. For ships, it is required and desirable to achieve an EEDI as low as
possible, both from an economical- and from an environmental perspective. M. A. @verleir has
in [24] researched a hybrid system ina general cargo ship, in order to meet the required EEDI.
The ideais to combine battery energy storage and diesel generation on ships. Normally in such
ships, the emissions from engines is high when the propulsion load is low, while the emission
decreases as the load increases. In order to minimize the total emissions, the energy from the
battery is intended to cover the energy need during low load, and during high power fluctuation
peaks. This technology makes the combustion engine to operate more or less at a constant
efficient operation point.

The author concluded that the hybrid system has a potential to increase the total energy
efficiency for the ship. In addition, the system has beneficial results in reducing the amount of
load variation. It also decreased the local and global air emissions, and noise and vibrations
from the engine was reduced. The author found that the overall efficiency is better for the hybrid
system, compared to a conventional combustion system.

The findings in the study of M.A. @verleir corresponds well to the findings in a similar study
performed by Lindstad et. al. in [25]. Batteries were implemented as a hybrid system in supply
vessels where pollutant, economics and climate impacts were assessed. The results showed that
taking hybrid propulsion into use in supply vessel can contribute to reduce local and global
emissions. However, the results are very dependent of the fuel prices. The investments of
combining batteries and engines in new building vessels shows to have a payback time of 5
years, compared to 10-15 years if rebuilding an existing combustion engine vessel to a hybrid
vessel. The reason may be explained by the huge investment inreplacing existing main engines
(and generators) with batteries.

2.6 Summary

UWS shuttle is a pilot project which is in its “planning-stage”. The literature review is therefore
based on similar existing technologies. The experience from electric propulsion in vehicles and
urban transportation in cities are useful when implementing battery technology in the
transportation sector. MS Ampere has been in operation for approximately two years, which
means that much experience from the battery technology at sea can avoid several issues and
difficulties in the UWS.

The results from most of the studies on battery propulsion in cars, buses and vessels are similar
in many cases. For instance, in the extraction and production of the materials, the production of
batteries has higher emissions compare to the operation phase. This results in a higher
environmental contribution from the production of a battery propulsion technology compared
to the production of conventional combustion technologies. In the operation phase, it is clear
that the grid-mix has a significant impact on the overall environmental impact of the vessel.

The previous work done on battery powered technology is useful for road transport but there is
a research gap in electric water vessel transport, particularly passenger ferries. Part of the
studies on electric road transportation can be related to electric water vessel transport, but many
factors also differs between them. Therefore, this study will keep that in mind and focus on the
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electric transport on the water by considering an electric passenger ferry which operates in the
Oslo fjord.

As presented previously, the road- and railway capacity are limited, while the maritime public
transportation constitutes only 1% of the travellers in Oslo. Additionally, the future public
transportation must meet strict local and global emissions requirements, and more people will
use the public transportation sector. This thesis will therefore consider these demands, and
assess if an electric passenger ferry can meet the future transportation needs and environmental
requirements.

Different charging technologies and methods are factors which have high potential to increase
the charging efficiency. The high load on the electricity grid is important to consider when
planning high energy demand technologies such as UWS. Efficient charging and power
conversion is important to consider to save on energy consumption and costs.

On-board energy production will be considered in this study as well. Producing a significant
share of the energy consumption could potentially reduce the grid-load and in an environmental
perspective, it can be a significant factor.
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3 Theoretical Background

3.1 Battery technology

The battery technology has been improved the last years due to better battery-components. In
addition, the prices for the components have been reduced making them attractive in low- and
high capacity electrical devices such as laptops, vehicles and ships. The most used batteries
today are LIBs [7].

3.1.1 Batterytheory

Figure 3-1 shows the basic function of a battery. Batteries stores electrical energy as chemical
energy and vice versa through redox reactions. They consist of one or more electrochemical
cells. Each individual cell is built-up of two electrodes (anode and cathode) immersed in at least
one electrolyte solution wherein they are separated by a separator. The separator is ion
conductive, while electrons are blocked. The material of the electrodes is different so that they
dissolve differently, depending on their standard potential (electrochemical series of metals), in
the electrolyte solution. Electrons remain in the electrode. If an external circuit connects the
electrodes, the electrons start flowing to balance the different electron density between them
and form an electric current. The electrode where the oxidation (gives electrons to the external
circuit) takes place is called anode; where the reduction takes place is called cathode (receives
electrons). The circuit is closed by the migration of ions between the electrodes through the
electrolyte passing the separator (ion current). This process describes the discharging reaction.
For charging, the process is reversed [26] [27].

electron flow

-- Jojetedas --|---

SRS

\_ electrolyte solution )

Figure 3-1: Basic operation of a battery with the anode, cathode and electrolyte [26].

3.1.2 Chemical reactions and energy conversion

As stated, the electrodes in batteries consists of different active materials with different standard
potential, measured in voltage (V). The electrodes are made up of a composite of the active
material and a binder material, which keep the structure of the active material together. The
binder should have high conductivity so that the electrons are easily transported to the active
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material [28]. The potential difference of the two electrodes defines the characteristic terminal
voltage of a cell. The anode reduction potential is negative, while the cathode reduction
potential is positive. The reduction potential is listed in the electrochemical series of metal and
can be used to calculate the standard cell potential in a battery, as shown in equation 3.1 [29].

Standard cell potential = Oxidation potential + Reduction potential  (3.1)

If the emitted electrons of the oxidation partner are transferred to those of the reduction partner,
it is referred as a redox reaction. Through such a redox reaction, the maximum theoretical
energy released in a battery can be calculated by the change in Gibbs free energy described in
equation 3.2.

AG®° = —nFE° (3.2)

Where;

AG° is Gibbs free energy [J]

n isthe amount of electrons in the reaction
F isthe Faraday constant [C/mol]

E* is the standard potential [V]

The free energy makes the electrons to flow inan external circuit. However, during the chemical
redox reaction, energy is released as heat losses to the surroundings. The losses occurs due to
three different polarizations in the battery; activation polarization, ohmic polarization and
concentration polarization [29] [27]. Activation polarization is the energy needed to convert or
transfer the electrons from the electrodes through the external circuit. Ohmic polarization is the
energy drop from the impedance in the components in the cell. The impedance is calculated
from the resistance in the contact-area between the electrodes and the current collector, the
electrolyte, and from the active electrode materials. The ohmic polarization is given by ohm’s
law, and is proportional to the circuit current as described in equation 3.3 [29].

U =RI (3.3)
Where;

- U isthe ohmic polarization in voltage [V]
- R isthe resistance [Q]
- Tisthe current flow in the circuit [A]

Concentration polarization changes with the current flow in a circuit. It is the electrolytic
concentration change between the electrolyte and the electrodes, i.e. in the interface of the
reactants and products in the reaction. As the battery is discharged, the amount of ion from the
electrolyte is reduced at the electrodes, resulting in an increased concentration polarization.
Figure 3-2 describes the three polarization processes during one discharge cycle [29].
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Figure 3-2: Representation of activation polarization, ohmic polarization, and concentration polarisation [27].

3.1.3 Electrolyte

The electrolyte aims to conduct ions between the electrodes. Therefore conductivity in the
electrolyte is important. Reducing the electrolytic resistance and maximizing the contact
between electrode and electrolyte will limit the ohmic polarization. The electrolyte must be
stable in contact with the separator and electrodes to avoid chemical reactions between them.
However, the stability range changes with the cell potential and temperature in the battery,
which may cause unwanted safety issues. Therefore, the choice of electrolyte is an important
factor in battery design. Electrolytes are divided into solid electrolyte, agueous electrolyte, and
non-aqueous electrolyte with different stability-voltages. Aqueous electrolytes have the highest
conductivity and is only stable within a voltage of 1,23 V (called electrochemical stability
window). Non-aqueous electrolytes have a reduced dielectric constant compared to aqueous
solutions, which increase the ion-pair formation. This reduces the conductivity in the
electrolyte. The stability window of non-aqueous electrolytes is approximately 4,6 V [27].

3.1.4 Capacity

Specific energy and specific power are important terms in battery theory. Specific energy is a
measure of the capacity of the battery, measured in Wh/kg. The battery capacity determines the
amount of electric energy that is available inthe battery. It isa measure of the amount of charge
within a cell and is given in ampere hours (Ah). Ampere hours can be converted into Watthours
by the product of cell potential and Ampere-hours shown in equation 3.4 [29] [27];

Capacity [Wh] = Ampere hours [Ah]xCell potential [V] (3.4)

Specific power is a measure of the available power of a battery to charge or discharge. It is
measured as power per weight of the active material, W/kg [27].
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The specific energy and specific power are dependent on the active materials used in the
electrodes.

3.1.5 Lithium-ion batteries

The basic operation of a LIB is shown in Figure 3-3 overleaf. lons are transported in the
liquefied electrolyte while electrons flow through an outer circuit during discharging. For
charging, the reaction is reversed [7].

The two electrodes in a LIB is built up of different active materials. One of the electrode
(cathode during discharge) is a lithium-based material that easily is oxidized during discharge.
When the battery is charging, the reaction is reversed, and the same electrode is reduced and
hence operating as anode. The most used lithium-based composites are lithium cobalt oxide
(LiCoOy), lithium nickel oxides and lithium manganese oxide (LiMn;O4), where the ratio
between the atoms changes in order to optimize the capacity and stability of the materials.
Lithium iron phosphate (LiFeP,) is a material with high capacity even after long life time. This
has made them attractive in many electric devices. In comparison to cobalt and nickel, iron is
less expensive and less environmental toxicity [30].

The active material and the current collector in the electrodes must have high conductivity to
transport electrons to and from the active material. The current collector should contain a
material which do not react with the electrode material. In LIBs, copper is frequently used as
the anode’s current collector, while aluminium is a widely used current collector material for
the cathode [28].

Li conducting A
LiCe organic Li,4CO,
Copper current electrolyte Aluminum

collector current collector

Figure 3-3: Representation of a typical lithium-ion battery where the transport of lithiumion and electrons is described [31].

Using lithium in both electrodes would theoretically increase the capacity of a LIB.
Nevertheless, the use of lithium on both cathode and anode would result in short circuit and
danger of firing between the electrodes due to a potential growth of reactive dendrites in the
separator. This may cause in a volume expansion and hence contact between the electrodes.
Therefore, other material types rather than lithium are used. Carbon or graphite is materials that
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are used on the electrode that undergoes the oxidation. This can avoid metallic lithium growth
and volume expansion in the cell [30].

The electrolyte in LIBs is an organic solution containing lithium salts. The electrolyte is
immersed in the electrodes, and contains a membrane separator in order to avoid contact
between the electrodes. The membrane ision conductive, while electrons are blocked [31] [30].

3.2 Photovoltaics

Photovoltaic (PV) produce electrical current from the photons in light. They are designed with
semiconductor technology which are doped with a material of one more or one less electron
than the semiconductor material [32]. The next section will describe the operation of PVs.

3.2.1 Semiconductors

The most used semiconductor in PVs is silicon. Semiconductor works as insulators in low
temperatures, and conductors at elevated temperatures. This can be explained by the band
model, shown in Figure 3-4. A semi conductive material has fulfilled its valence band in room
temperature, and the electrons are bounded in strong covalent bindings. If the temperature
increases (hence the energy), some electrons will break from the covalent bindings, and reach
the conductive band, where they are free to move. The gap between the valence bond and
conductive bond is called the forbidden gap. In order to reach the conductive band, the electrons
need more energy than the forbidden gap energy, Eg, shown in the figure. If the energy is less
than Eg, the electrons will drop back to the valence band. When one electron reach the
conductive band, it will leave a hole in the valence band. A hole is a positive charge carrier,
and new electrons can occupy the hole. This will make the hole to propagate together with the
electrons [32].

Conductive band .
Ec
Valence band O

Figure 3-4: The figure shows a schematic of how electrons behave in semiconductor. An electron (black circle) emits from
the valence band to the conductive band, and leaves a hole in the valence band (white circle). The figure is extracted from
[32].

3.2.2 P-doping and n-doping

Doping of semiconductor can increase the efficiency of PVs. The silicon atom has four
electrons in the outer shell, and is bounded with four other silicon atoms through covalent
bindings. By doping silicon with an atom containing one more electron in the outer shell, the
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model will get an abundance of one electron. This electron is less bounded to the silicon atom,
which means that the energy needed to reach the conductive band for the electron is lowered.
This type of semiconductor doping is called negative doping (n-doped). Positive doping (p-
doped) is when a silicon atom is combined with another atom containing one less electron in
the outer shell. One more hole is then generated in the valence band, and electrons are free to
occupy the hole [32].
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Figure 3-5: The figure shows the flow of electrons and holes when a p-doped and n-doped material are combined [32].

Combining the n-doped and p-doped materials will result in a p-n-junction. The electrons and
holes will move freely between the merging of the doped materials. This will generate an
electric field, E in the junction, which stops the flow of electrons and holes. The electric field
generates a voltage potential in the junction, Vyi. The phenomena is explained in Figure 3-5. If
connecting an external voltage source to the p-n-junction, the electric field and voltage across
the junction will decrease and current will flow in the circuit [32].

3.2.3 PV in operation

The operation of PVs are similar to the operation in a p-n-junction. The n-doped and p-doped
materials in silicon are combined in a PV. Photons from sunlight reaches the PV and releases
an electron from the valence band if the photon energy is higher than the gap energy, Ec. An
electron-hole pair is generated i.e. current, and travels in an external circuit. However, if the
photon energy is less than Eg, or if the electron gives away its energy to other electrons, a
recombination can occur. Recombination is a phenomenon where electrons and holes
recombines in the valence band. Electrons can lose its energy in the conductive band, combine
with a hole in the valence band and release a photon. Recombination is loss of energy and
decreases the PV’s efficiency [32].
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The theoretical average energy production of a PV is calculated based on the irradiance to the
PV module, shown in equation 3.5.

E=Hx*Axnx*PR (3.5)
Where:

- Eisthe annual energy produced by the PV [kWh]
- His the irradiance to the PV module [KWh/n¥]

- mis the PV efficiency

- PR s the performance ratio (0,8 used in this thesis)

3.2.4 Losses and efficiency

As mentioned in the previous section, recombination reduces the overall efficiency of PVs.
Another important loss in PVs are optical losses. Optical losses occur due to blocking of
sunlight in the top contact of the PVs, high reflection on the surface or reflection in the rear of
the PVs. Different methods, such as increasing the absorption in the cells (both on the surface
and on the rear of the cell) and decreasing the surface cover can avoid some of the absorption.
Resistance in all surface contact is another factor that decreases the overall efficiency of PVs.
[32]. The efficiency of a PV module is defined as the ratio between the incoming solar energy
and the utilized energy by the PV, as described in equation 3.6 [33].
n = 2meE 4 1009 (3.6)

in*

Where;

n is efficiency

Pmax 1S the maximum produced power of the PV [W]
- Pinis the incoming irradiance [W/m?]

A is the area of the PV module [m?]

Typical efficiency for a PV today is 13-19%. However, researches has reached an efficiency of
24-25% in some silicon PVs under standard test conditions (cell temperature of 25 C, irradiance
of 1000 W/m? and air mass 1,5). The theoretical limit in efficiency for PVs today is 30 % [32].

3.25 PV invessels

The environment at sea is more varied compared to the environment onshore, and different
aspect should be considered when using PVs on vessels. Weather conditions such as wind,
humidity and salt can result in damage to components in the PVs. Therefore, installation of PVs
in vessels should follow marine protection standards in order to avoid problems such as
corrosion and short circuiting. These are efforts which may cost additional investments, and
should be considered in a potential design [34].

The energy production of on-vessel PVs will vary through the day, where the vessel is located
and the tilt angle of the module. The PVs can be installed either in a fixed position, dynamic
positioning or horizontal. Fixed tilt installation is a solution which can resist the extreme
weather conditions. However, PVs with fixed tilt angle cannot utilize all the irradiations during
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a day. By utilizing dynamic positioning, the tilt angle can automatically be adjusted according
to the solar irradiation. Such a system includes many rotating and moving parts which needs
regular maintenance and replacements, and hence more unpredictable costs. Another possible
solution is a horizontal PV installation. Horizontal mounting is beneficial concerning the
aerodynamic and weather conditions of the vessel. The biggest problem with such a system is
cooling and self-cleaning [34]. In literature, it isrecommended with a tiltangle of more than 1¢°
in order to have some kind of self-cleaning of dirt [32].

Shading of cells is another problem in vessel-installed PVs [34]. Partly shading, often called
hot spot, of cellsinamodule can have serious results. In case of shaded cells in a module where
the cells are connected in series, the shaded cells can dissipate the generated current by the
“g00d” cells. This may result in short circuiting and overheating, which can destroy the modules
such as melting or cracking of the glass. However, hot spot can be avoided by including bypass
diodes in the installation [32].
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4 Methodology

This chapter explains the LCA methodology which is used in this thesis. The last part of the
chapter describes how the data collection was performed, and all the assumption considered in
the thesis.

4.1 LCA methodology

The methodology to be used inthis thesis is LCA-method. LCA isa useful tool when comparing
the environmental impact on several technologies and products. An LCA can consider the
environmental impact of a product or process from its production to its end of life (EoL), called
cradle-to-grave. Cradle-to-grave include the full life cycle of the product from its extraction of
raw materials to manufacturing, usage and EoL [10]. The ISO 1440 and ISO 14044 standards
are the basis of the methodology of LCA [35] [36]. They are used to describe the procedure for
performing an LCA in this chapter.

LCA is built up of four life phases, which are shown in Figure 4-1. The four main phases in an
LCA are; goal and scope definition, inventory, life cycle impact assessment, and interpretation.
The figure show that the phases are an iterative process, where new information is continuously
collected [35]. A deeper description of these phases follows in the next pages.
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Figure 4-1: Life Cycle Assessment framework [35].

4.1.1 Goal and scope
When performing an LCA, the first step is to define a clear goal and scope definition. The goal

of a LCA describesthe purpose of the study, the reason for doing it, and for whom the work of
the study is carried out. The reason for doing the study should be explained in a detailed
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description of strength and weakness of the product to be study. This section should also
describe where it is room for improvements, where most of the emissions are contributed, and
what would be the consequence of the product [10].

The scope of the study is carried out when the goal is defined. The scope describes how the
LCA is to be carried out. The function of the product should be defined, and all the
simplifications and limitations of the study must be shown. Preparing the system ina flow chart
is an useful method when defining the scope [35]. Flow chart is a systematic overview of the
system and describes the environmental impact from one functional unit [8].

The functional unit is a reference unit used to compare the emissions from different flows, and
reflects the function of the product. The functional unit is the same for the different processes
in the study in order to make the results comparable [10].

System boundaries are used to limit the study, and decide which parts of the system that are
included. The system boundary should describe the different unit processes in the study and
which elements are included. This process should be decided based on the goal and scope
definition, the audience, limitations and assumption, and cut-off criteria. A description of the
data and its quality is further important to understand the quality of the results [35].

Allocation in LCA is useful in the system boundary process. It is used to divide inputs to and
outputs from a product [36]. During a process, it isoften used several inputs, or generated more
than one output [35]. How to share the environmental impact on these inputs and outputs is
decided with allocation.

The allocation process is described by the 1ISO 14044 standard in three steps. The first step is
to try to avoid allocation. This is performed by either dividing the process into several sub
processes, and collecting more data for the input and output for these sub processes. Another
option is system expansion, where all the functions to the co-product of the system are included.
The second step is to perform allocation (if it could not be avoided) by dividing the inputs and
outputs between the products based on how they quantitatively- and physically change in the
process. Step three concern if physically changes cannot be used in the allocation. Other
products, such as economical values can then be used in the allocation [36].

Types of LCA studies

Attributional- and consequential LCA are the two most used LCA methods. The difference
between the two depends which time horizon the LCA is performed for. Attributional LCA uses
data from the past in order to assess the environmental impact on a product. The consequential
LCA looks at the future change and the future environmental consequence of the product [37].

4.1.2 Life cycle inventory
The aim of the inventory analysis is to make a model of the system which will be studied. This

process includes the data collection and the calculations related to these data. The inventory
analysis isa iterative process as more information of the system is collected [35]. The inventory
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is according to Baumann and Tillman performed in the following steps; flow chart design, data
collection and calculations [10]. The next paragraphs briefly describe the three phases.

The flow chart is defined with respect to the system boundaries in the goal and scope definition.
A simple flow chart can be made when the goal and scope are defined, and then expand itwhen
more data are available [10]. The purpose of a flow chart is to show a detailed overview of the
system. A flow chart should include all processes which are performed through the system’s
life cycle. The energy and mass flow between the process should be included as well. If
materials used in the system are recycled, this should be shown inthe flow chart [10].

The second step is to collect all the relevant data required in the study. This part can be time
consuming, and it can be a huge challenge to find the right data. Before starting the data
collection, the author of the LCA-study should get to know what kind of data which are needed.
Both qualitative and numerical data should be searched for. Qualitative data are data which
describes the technology and where the processes takes place. Numerical data are data which
describes the inputs and outputs to the process, such as emissions in the system [10].

The third and last step of the inventory analysis is to use the flow chart and the collected data
to perform the needed calculations. All data should be validated in order to confirm that the
data correspond to the data quality requirements. The data should further be normalized to the
activities and processes, in order to make them fit to the functional unit [36].

Foreground and background data

Foreground and background systems in LCA indicates where the system belongs. Foreground
systems are the processes that has the main focus in the study, and its data collection related to
that. The background systems are all other processes, such as raw material extraction, material
production, energy flow in the foreground processes, etc [10]. Ecoinvent is a background
database, which is much used in LCAs. Ecoinvent is based on average processes around the
world, and is therefore a useful database to use in case of lack of data. According to Ecoinvent’s
webpage, they are the world’s leading LCA database [38].

4.1.3 Life cycle impact assessment

In the life cycle impact assessment (LCIA), the results from the inventory phase is used to
assess the environmental potential of the study, making it simple to compare the outcome to
other studies. This is performed by sharing the inventory data on specific environmental impact
groups [35]. The LCIA phases is divided into three mandatory processes [36];

1. Choice of impact categories, category indicators and characterization models. This
process should reflect the goal and scope definition.

2. Classification - define which impact categories the different LCI results should concern.

3. Characterisation — calculation of the results.
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Figure 4-2: Typical procedure in the LCIA. The figure is inspired of the authors in [10].

The procedure used in the LCIA is described in Figure 4-2. The LCIA starts with the three
mandatory process described previous. An introduction of the different impact categories that
stays in focus in the study is the first step. The inventory results are further classified into the
different impact categories. The characterisation phase includes the calculation of the load on
each category, where equivalency factors are used in the calculations. The results from the
characterization are used to normalize the values to a reference value, and sorted to the results
into location and priority of the emission. The two last steps of the LCIA procedure are
weighting and data quality analysis. Weighting is classificationof the importance of the impact,
compared to the other environmental impacts. Data quality analysis is a further analysis of the
data, which assess the weakness and strengthens of the data. This phase increase the quality of
the impact results [10].

ReCiPe

Different LCIA-methods are used in LCA studies. One of the most used method is called
ReCiPe, and is used in the classification phase of the LCIA. The ReCiPe method is build-up of
18 midpoint impact categories shown on the left side in Table 4-1. The midpoint categories
show the direct impact on different environmental loads. Each category is briefly described in
the table. To better understand the impact of a LCA, these 18 midpoint categories are further
converted into three endpoint indicators. The three endpoint indicators are human health,
ecosystems species and resources surplus cost [39] [40].
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Table 4-1: ReCiPe method used in LCA. The midpoint categories are shown and described in the figure.

LCI
Results

Midpoint categories

Description

Ozone depletion [kg CF-11 eq.]

Ozone prevent ultraviolet radiation, and is
therefore vital for life on earth [40].

Human toxicity [kg 1,4DBC eq.]

Emissions of toxic substances can indirect reach
human through food chain and risk of health [40].

lonising radiation [kBq Uzss eq.]

Radiation from radioactive materials, resulting in
human health concerns [40].

Photo chemical ozone formation
[kg NMVOC eq.]

Pollutants from NOx and hydrocarbons, resulting in
human heath [10].

Particulate matter formation [kg
PMuo eq.]

Pollutants of small particles from acid, metals,
chemicals, soil and dust, resulting in human health

[40].

Climate change [kg CO2 eq.]

Impact on the radioactive force in the atmosphere,
resulting in heating of the earth. Emissions from
CO,, CFC, nitrous oxides [10].

Terrestrial ecotoxicity [kg 1,4DBC
eq.]

Emissions of organic solvents, heavy metals, and
pesticides [10].

Terrestrial acidification [kg SO2 eq.]

Emissions of SO,, NO,, HCL and NHs. These
pollutions forms H* ions [10].

Agricultural land occupation [m?2
year]

Amount of agricultural land occupation. May result
in damage to ecosystem [40]

Urban land occupation [m?]

Damage to ecosystem due to land occupation in a
process [40].

Natural land transformation [m2]

Damage to the ecosystem due to transformation of
land in a process [40]

Marine ecotoxicity [kg 1,4DBC eq.]

Emissions of organic solvents, heavy metals, and
pesticides [10].

Marine eutrophication [kg N eq.]

Emissions of high content of nutrients, such as
nitrogen and phosphorus [10].

Freshwater eutrophication [kg P eq.]

Emissions of high content of nutrients, such as
nitrogen and phosphorus [10].

Fresh water ecotoxicity [kg 1,4DBC
eq.]

Emissions of organic solvents, heavy metals, and
pesticides to water [10].

Fossil resource depletion [kg oil eq.]

Resources containing hydrocarbons. Includes volatiles
like methane, or liquid petrol, and non-volatile materials
[40].
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activity [40].

Minerals depletion [kg Fe eq.] Depletion of metals and other minerals through mining

Water depletion [m?3] Measures the amount of water used in the process [40].

4.1.4 Interpretation

The life cycle interpretation involves using the results from the LCI and LCIA to make
decisions and conclusions. The interpretation should start with an identification of the results,
followed by an evaluation phase, and finally draw conclusions, discuss limitations and
recommendations from the study [36]. The interpretation have to recognise that the results from
the LCA is just an identification of the potential emissions, and not the actual future emissions
[35].

In the identification phase, the results from the LCI and LCIA are used to describe the
significant issues. Significant issues can be energy and emissions data, and impact categories,
and they are in accordance to the goal and scope. [36].

The goal of the evaluation is to make the results from the study reliable. This is often performed
by conduction sensitivity analysis. Such an analysis is used to identify and assess how a product
respond to a small change in one or several inputs. Finally, the conclusions can be drawn, the
limitations can be identified and recommendations can be identified [36].

4.2 Data collection method

The data used in the thesis is collected via different methods. In order to get a result that can be
related to the real life operation of the ferry, it was desirable to get as much data as possible
from manufactures, companies, and previous research papers. Nevertheless, data which was not
available from these sources were collected from the background database, Ecoinvent version
3.3. Ecoinvent 3.3 is integrated in the simulation software, Simapro. The data in Ecoinvent are
based on average values, and is a great representation if data are missing [38]. However, to get
the LCA results closer to the real life processes, most of the data should be collected directly
from manufactures.

The data for the batteries has its origin from the companies DNV GL and Grenland Energy.
The data are based on production information from Grenland Energy.

Data for the boat structure, hull, energy consumption, and route information were collected in
conversation with the business cluster, NCE Maritime CleanTech (MCT). The data for the
different parts of the vessel originates from several companies. The aluminium intended to be
produced by “Norsk Hydro” in Norway. The remaining design and construction of the vessel
is performed by the Norwegian shipyard, Fjellstrand AS.

Implementation of PVs is a supplement to the thesis, and is tested as a scenario assessment. The
data for the extraction- and production processes of the PVs were obtained from Linjord’s
report, which is master thesis from UiA on an LCA of PV integrated in roof tiles [33].
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4.2.1 Assumptions

Photovoltaics

In this thesis, several assumptions have been made, mainly in the design and calculation of PV
modules. The area-occupation of PV modules can be huge, and should be considered during
planning of a solar power plant. Nevertheless, area occupation is not considered in this thesis
i.e. the actual location of the panels is not treated.

Other assumptions regarding PV module design is listed below:

- The online calculator PVGIS (theoretical calculator for PV systems) is used to
determine the irradiance in Indre Oslo-fjord. These data are used for theoretical
calculation of electricity production, and no practical measurements is performed [41].

- Economic- and area limitations are not considered.

Diesel engine

In the case of diesel engine scenario (described in chapter 6), it was assumed that the energy
consumption for the diesel engine is based on the calculation for the electrical propulsion
system. A typical diesel-motor-efficiency was therefore considered.

Charging

It is uncertain if the grid capacity in Saetre, Fagerstrand and Aker brygge can handle a charging
power of 1 MW. An attempt was made to contact Skagerak Energi to get information regarding
this challenge, but the needed information was not received. It is therefore assumed that the
capacity in the three areas satisfies a charging power of 1 MW without supporting batteries
located at each port for maintaining a constant charging. DNV GL has performed a study on
possible ferry crossings suitable for battery propulsion [42]. The needed upgrade in the
electricity at each crossing were identified as well. 12 % of the areas do not need grid-upgrade
to implement battery propulsion. Setre, Fagerstrand and Aker brygge were not mentioned in
the study, but based on the results from DNV GL, the assumption of not designing additional
batteries is reasonable. However, a scenario analysis was made with additional on-shore
batteries for charging. The calculation of these batteries is based on the charging batteries on
MS Ampere.
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5 Manufacturing

This chapter describes the manufacturing processes of batteries, aluminium and PVs. The
chapter aims to present the different processes in order to get a better understanding of the
results of this LCA.

5.1 Battery production

With experience from previous studies, the production of batteries is one of the component
which contributes most to the LCA impacts. An introduction to the production process of LIB
is shown in the next sections.

5.1.1 Extraction of lithium

Lithium is an element used in among other lithium-ion batteries. The biggest lithium reserves
are found in Argentina, Boliviaand Chile, where approximately 70 % of the global reservesare
stored. Another big lithium producer is China. The primary sources of lithium are found in
minerals, clays and brines. The most lithium containing minerals are spodumene, petalite and
pegmatite [43].

Extraction from minerals

Two methods are usually used in the extraction of lithium from minerals; alkaline digestion and
acid digestion. Acid digestion is a process which includes sulfation-roasting with lepidolite and
water leaching. This can give a high concentration of, for example, lithium carbonate,
depending on the mass ratio between the reactance and the roasting temperature. Acid Digestion
is performed by adding an acid to the mineral, for instance sodium carbonate, roast it and
perform water leaching [43].

Alkaline digestion is a method where the ores are calcined together with limestone normally at
high temperatures from 820C to 1050°C. The outcome of this process is a calcine which is
crushed and milled, before water is added. The resulting lithium hydroxide is then mixed with
hydrochloric acid, and lithium chloride are formed. The chemical process is described as
follows [43]:

Li, 0 Al,05 4Si0, + CaC05 — Li,0 + Ca0 Al,05 4Si0, + CO,

By changing the reactant and roasting temperatures in the two processes, it is possible to extract
different purities of lithium. However, the different processes with other reactants will not be
presented here.

Extraction from brines

Approximately 66% of the lithium reserves on the earth are stored in brines. However, due to
a time-consuming extraction process, only 8% of the extracted lithium originates from brines.
The full process of lithium extraction from brines is described by the block diagram in Figure
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5-1. The method starts with solar evaporation of the brines over a year. This process, forms
crystallized potassium, magnesium chloride and sodium. After the evaporation process follows
a refining process purifies the lithium metal. Roasted calcium carbonate is then added to the
evaporated lithium in order to separate the magnesium hydroxide (Mg(OH)2) from the lithium
chloride. The resultant in the process is lithium carbonate, ready to be implemented in lithium
ion batteries. There are several concerns regarding lithium extraction from brines. The process
is time consuming, and the process contributes to a high share of water consumption. In
addition, a lot of waste is generated during the process [43]. There are several methods in
lithium extraction from brines, but these will not be presented in this thesis. However, further
reading can be found in Meshram et al’s reportin [43].
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Figure 5-1: The process of lithiumextraction fromdry lakes and brines [43].
5.1.2 Electrode manufacturing

The electrodes in LIBs are made by mixing the active material and a binder into a slurry, before
coating the slurry with a current collector.

The cathode is mixed with the active material (lithium oxide), a binder such as polyvinylidene
difluoride (PVDF) and a conductive carbon based material, such as graphite. The lithium oxide
and the carbon material are mixed together in a dryer. The lithium oxide and the carbon are
then combined with the binder in a ball mill and stirred. This is an important process that can
influence the battery performance [44].

30



The anode mixing process is the same as for the cathode, only with different materials. The
active material in the anode is graphite or carbon, and a binder such as PVDF can be used in
the mixing process. PVDF is a great binder when combining the carbon and current collector
together. Unlike the ball mill used in the mixing process for the cathode, a planetary mixer is
used for the anode mixing process. The planetary mixer has two or three blades located on
different axes, in order to get a best mixing result as possible [44].

The electrodes are then coated with a thin layer (normally 15 to 300 pum) of current collector.
Aluminium isused as current collector for the cathode and copper is used for anode. Automatic
controlled coating machines are used to get an optimal size of the electrodes and to ensure that
all the components fit together in the batter assembly. The coating is then compressed and dried,
before slitting is performed to make them suit for the different electrodes [44].

5.1.3 Battery cell assembly

Cylindrical cells and prismatic cells are the most common types of fabrication in lithium ion
batteries. In high capacity, such as electrical vehicles, prismatic cellsare most commonly used.
Therefore only the production of prismatic cells will be briefly introduced here.

The cell assembly process starts with mounting the anode, cathode and separator in a winding
machine. The machine isformed as a flat paddle and operates automatically with high precision.
Constant pressure by the winding machine is crucial in order to avoid leakage and gap in the
assemble [44].

The cell is further dried in a drying room to remove eventually moisture in the cell. The cell is
then filled with the electrolyte by a pump and vacuum device which ensures that the electrolyte
is filled in the porous structure in the electrodes. High contact area between the electrolyte and
electrodes secure that the battery will operate in an optimal manner [44]. The electrolyte filling
has to be performed in a dry room in order to avoid chemical reactions between the electrolyte
and water [45]. The cell is further added a mechanism that cut the current if the temperature or
pressure in the battery exceeds a certain pre-set value. The cell assembly and the electrolyte
filling mechanism are then sealed [44].

5.1.4 Formation

The last step in the manufacturing process of lithium ion batteries is the formation process. The
formation process activates the active materials in batteries. The cell assembly is mounted when
the battery is discharged. In the formation process, the charge of the battery start with a low
current and increases gradually. This is performed to suite the solid electrolyte interface, which
is a protective layer on the anode during normal operation. Cell voltage and capacity are logged
during the formation. These data can be used to separate cells with different cell voltage and
capacity for different application [44] [45].
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5.2 Aluminium production

Aluminium is extracted both from primary resources and secondary resources. Primary
extraction is a process which converts bauxite to aluminium. Secondary process is recycling or
re-melting of used aluminium. Further reading regarding primary- and secondary aluminium
production follows in the next sections

5.2.1 Primary production

According to Norsk Hydro, the primary aluminium process starts with the extraction of bauxite
from mines [46]. Bauxite is an ore that contain 50% aluminium, while the remaining part is
water and other pollutions [47]. The bauxite is transported from the brines to the refinery and
washed with water to purify the bauxite from clay and mud. The bauxite is further milled and
transported to the refinery. In the refinery, aluminium oxide is extracted from the bauxite. This
is performed by adding the bauxite to a pre-heated solution with lye and caustic soda. The
aluminium oxide is then dried to a white powder which is further sent to the metal plant [46].

The oxygen in the aluminium oxide is removed by processing the aluminium oxide in an
electrolyser, which contains an anode and a cathode. The anode is made of a carbon-based
material which react with the oxygen in the aluminium oxide. Current is added to the electrodes
and the anode reacts with the oxygen, and forms CO,. The resultant is molten aluminium in
liquid form [46] [47].

The liquefied aluminium is alloyed and then processed in the casting plant. The casting plant is
a process that forms the purified aluminium into small bolts or billets [47]. What is performed
further depends on the area of use [46].

5.2.2 Secondary production

Secondary aluminium production or recycling, is a process which can have huge energy
savings. Approximately 4 kg of bauxite, 7,5 kwWh of electricity and 2 kg of chemicals are saved
when 1 kg of aluminium is recycled. The total amount of recycled scrap aluminium inthe world
is 4,5 million ton per year [48].

The aluminium is re-melted in a rotating furnace together with a huge amount of salt. The most
used salt in the process is sodium chloride (NaCl) and potassium chloride (KCI). The salts are
combined in a mixtures with cryolite. The mixture has a melting point lower than the
aluminium. When the temperature increases, the salt mixture melts and forms a coating on the
aluminium which protects against oxidation [48]. The process is showed in Figure 5-2.
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Figure 5-2: Recycling process of Aluminium [48].

As explained by the figure, the products from the heating process in the furnace is aluminium,
dross and dust. The dross still contains 12-20% of aluminium which can be extracted in a new
process. However, aluminium extraction from dross is rarely performed [48].

The dross process starts with a separation of dust and metals. Metals are stronger than other
components in the dross, which makes them easy to separate when crushed ina mill. The metal
is extracted and melted in a rotating furnace, where the aluminium is purified. The additional
resultants are dust and huge amount of salt cakes. The dross and salt cakes are classified as high
toxic waste, and should therefore be treated rather than transported to the landfills [48].

5.3 Photovoltaic production

Different technologies and methods are available in manufacturing of PVs. In this thesis, the
“Elkem solar process” is considered in the extraction of silicon. According to Elkem Solar, the
Elkem solar process only uses 25% of the energy consumption compared to conventional
processes, such as the Siemens process. In addition, Elkem solar are located in Kristiansand
which use Norwegian electricity. This makes the silicon purification process more clean due to
the high share of renewables in the Norwegian energy mix [49]. The Elkem solar process starts
with a metallurgical process where the siliconis purified from quartz rocks. The rocks are fed
into a high temperature furnace together with carbon rich materials. The oxygen in the SiO;
reacts with the carbon and forms CO-, gas, while purified siliconcan be extracted on the bottom
of the furnace. The siliconis further purified inthe following steps to extract solar grade silicon:
Slag treatment, leaching, solidificationand post treatment [50].

The solar grade silicon is crystallized and doped in a process called Czochralski process. The
siliconis first molten, before the temperature are stabilized at approximately 1400 C to get the
silicon crystalized. The silicon crystals are then cut into pieces to make them fit into the solar
cell assembly [33]. The last process is the manufacturing of the cells. The cells are optimized
for electricity production. The p-n-junction is created, and texturing are performed on the cells
in order to maximize the absorption of light and minimizing the reflection of light [32].
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5.4 Energy mix

Energy mix is an important factor in many manufacturing processes. It refers to the source of
primary energy generation in different countries. The primary energy sources can vary from
fossil fuels, nuclear energy and renewable energy. The energy mix is a term that is used in
electricity production, heating process and transportation. Most of the present average urban
energy generation has its origin from fossil fuels. The Norwegian energy mix is mostly from
renewable energy sources, such as hydro power [51]. Table 5-1 show the electricity and heat
production in Norway for 2015. In addition, the amount of imported and exported energy are
shown in the table. The data are extracted form SSB [13].

Table 5-1: Electricity generation in Norway in 2015 [13].

Production Amount [GWh] Share [%]
Total 144 511 100
Hydro power 138 450 95,8
Heat 3 546 2,5
Wind power 2515 1,7
Import 7411 -
Export 22 038 -
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6 Project Information

This chapter describe the concept of the project. Initially, the urban water shuttle will be
described, followed by energy calculations. The last part of the chapter shows the life cycle
inventory of study.

6.1 Introduction to the technology

UWS is a project owned and designed by NCE Maritime CleanTech (MCT). The concept is to
build a battery electric passenger ferry, shown in Figure 6-1, that can operate in coast-line cities
where public transportation is needed. The ferry can contribute to reduce local and global air
emissions in these cities. In addition, minimal amounts of infrastructure expansion are needed
for sea transportation, which makes it relatively cheap to implement. The UWS aims to expand
the public transportation in urban areas, as well as contributing to reducing the future air
emissions.

Figure 6-1: Urban Water Shuttle. The figure is obtained from Maritime CleanTech [52].

The size of the vessel is an important factor. MCT has designed two vessels with different
passenger capacity depending on the route of operation: One vessel with 125 PAX and one with
194 PAX. The option which is studied in this thesis is the 125 PAX vessel. This vessel is 26
meters long and nine meters wide, with a capacity of 125 passengers. The vessel is designed
with a operation velocity of 20 knots. A vessel with higher operation velocity requires a heavier
weight and larger size [11].

The case study of the 125 PAX vessel is operating in the “indre Oslo-fjord” between three
departures, shown in Figure 6-2. The route Saetre — Fagerstrand - Aker brygge is approximately
29 710 meters long (or 15,51 nautical miles) one way. The total travelling time with the UWS
is approximately 1 hour and 10 minutes one way. It is assumed that the vessel can manage at
least two roundtrips of this route per day. The number of trips can be optimized when the vessel
is set in operation in the future. The lifetime of the UWS is 30 years, resulting in a total
travelling distance of 325 324,5 km per lifetime if operating every day for 30 years. The vessel
will not be delayed by charging, which is prevented by optimizing the charging process during
boarding on all ports.
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Figure 6-2: The planned route of the UWS in the Indre Oslo-fjord. The ferry will have three departures: Setre, Fagerstrand
and Aker Brygge, shownwith a red line.

A simple block diagram of the electrical grid of the UWS is described in Figure 6-3. The
diagram is a typical sketch of an electrical system in a vessel. The electrical components are
connected to a DC-bus which distributes the energy on the vessel. The vessel-battery is charged
from the grid with a transformer, which lowers the voltage from the grid-level to an acceptable
charging voltage for the battery. A converter converts the alternating current (AC) current to
direct current (DC) before the battery is charged. The engine on board the vessel is assumed to
operate with an AC motor (as in MS Ampere). This requires another converter, which convert
DC voltage to AC voltage between the DC-bus and the propellers. The batteries can be powered
both from the electrical grid and from the PV produced power, described later in this chapter.
The arrangement is a complex system consisting of converters and inverters to maintain a stable
and continuous energy flow. The figure is based on information of the electrical grid used in
MS Ampere. This information was extracted during a visit to NCE Maritime CleanTech and
MS Ampere in October 2016.
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Figure 6-3: Systemdescription of the intended electrical systemin the UWS.

6.2 Goal and scope

The current study aims to analyse the environmental impacts if implementing a high-speed
passenger ferry powered by electricity from LIB. The goal of the study is to investigate if
electric propulsion in high-speed passenger ferries is a better solution compared to conventional
diesel combustion engines, with respectto the environmental impacts. The study is a cradle-to-
grave study, i.e.the environmental impact from the material extraction, material production and
operation to its EoL is considered. The EoL treatment is not considered in this thesis. The study
will further assess and compare the environmental potential between different technologies to
power the UWS, such as PVs and diesel.

The projectis a case study of a possible introduction of the UWS inthe Indre Oslo-fjord, where
the environmental goal is to reduce local and global air emissions. Therefore, the main focus in
this study is to assess the air emissions such as CO2, NOx, SOx and particle matter (PM).

The outcome of this thesis can be used as a document of the environmental potential of electrical
passenger ferries. It can be used to compare different types of public transportation system in
the future. As the goal of the government is to expand public transportation connections in an
environmentally friendly manner, the results in this study can be valuable in selecting
transportation option.

6.2.1 Functional unit
The functional unit in this thesis is emission per person kilometre travelled (PKT). This is a
functional unit which is used in similar LCA studies, and comparison between studies is

therefore easy. By using PKT as functional unit, the results can simply be recalculated to other
functional units, such as emission per lifetime.

The PKT functional unit was calculated based on the average Norwegian capacity utilization in
buses as shown in the equation.

PKT = total travelled km per lifetime X Person capacity X capacity utilization (6.1)
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The person capacity is the maximum number of persons that can travel with the public
transportation technology. For the UWS, the person capacity is 125 persons. The capacity
utilization is based on the average Norwegian relationship between the seat-km (the amount of
km all seats travels) and the passenger-km (amount of seat-km utilized by persons) with bus,
boat and train. According to SSB, the seat-km in Norway for 2015 was 26 927 015 km and the
passenger-km was 8 751 258 [13]. Hence, the capacity utilization was estimated to be;

Passenger km

Capacity utilization = =325%

seat km
6.2.2 Flow chart and system boundaries

Figure 6-4 shows a simplified system flow chart of the vessel’s lifetime. The material
extraction-, production- and use- phases are described in the figure. This is the most important
phases of the vessel’s life time. Specific data regarding transportation is considered where
data were available for extraction. Average transportation values were used in case of lack of
specific data.

Material Extraction

!

Material Production

v v v v v

Drivetrain/el.
komponents

Baiteries Hull PV Interior

Energy |—— | Operation/Use

Figure 6-4: Simplified flow chart of the UWS'’s lifetime.

The study considers that the vessel operates inthe city of Oslo in Norway. Norwegian
electricity mix is therefore used in the operation phase of the vessel. However, all materials
used in the manufacturing phase are not extracted and produced in Norway. The materials’
production location is described later.

The lifetime of the vessel is assumed to be 30 years. The lifetime can be longer, but the same
lifetime is assumed in MS Ampere and used in this study. The lifetime of the batteries is
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according to DNV GL 10 years per battery package. This requires at least two replacements
of the battery.

In the boat production, most of the components used to produce the vessel are included i.e.
components regarding batteries, hull-material, PVs, electrical components and drivetrain. Data
regarding energy consumption, transportation and material type from its raw material extraction
to its production is collected if it was possible to get. Missing data is based on average values
extracted from the Ecoinvent database. The choice of the different materials in the UWS can
cause large impact on the results of the LCA, and is therefore an important factor to consider.
MCT has defined much of the materials which will be used in the UWS, while information
which is not available from MCT are collected from previous research work. Data for the LIBs
were obtained from the companies Grenland Energy and DNV GL.

6.2.3 Limitations

One important simplification is the estimation of the total amount of aluminium used in the
vessel. The amount of the aluminium for the hull and superstructure is a rough estimation. It
was difficult to determine the exact amount of aluminium as the vessel is not built yet. However,
the same amount of hull-material is used in all four scenarios, meaning that the aluminium
amount isinsignificant in the comparison by the scenarios. Nevertheless, the individual results
may be affected of this rough estimation.

6.2.4 Scenario description

The thesis will assess four different scenarios. The first scenario considers a ferry operating
with conventional diesel propulsion. This is a simplified scenario that use the same vessel
structure as the other scenarios, except components related to the electrical propulsion. The
energy consumption for a diesel engine is estimated based on the energy consumption for the
electrical engine in the UWS. The data is further implemented in a diesel engine-model in the
Ecoinvent database and simulated with the same hull material as the UWS. This scenario is
used as a reference in comparison to the other scenarios.

The second scenario is where the UWS is powered with Norwegian electricity mix and
electrical propulsion. The UWS is designed per this scenario, which means that this scenario is
the most important case.

The third scenario is assumed as a system with batteries powered by energy from the grid and
PV-produced energy. The PVs are located two places, namely on the roof of the UWS and near
the charging stations. The purpose of this scenario is to investigate if it is environmentally
beneficial with onsite energy production on the UWS.
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The fourth scenario examines the situation if the grid capacity is not large enough for the
charging situation with 1 MW. An attempt was made to get information on the grid capacity in
Setre, Fagerstrand and Aker brygge, but itproved to be hard to get. Therefore, it is assumed in
Scenario 4 that additional batteries are needed to assistthe charging operation at each port.

The different scenarios are listed below:

e Scenario 1: Conventional diesel combustion ferry.

e Scenario 2: UWS powered directly from the Norwegian grid.

e Scenario 3: UWS with roof mounted PVs and PVs mounted on each port.

e Scenario 4: UWS powered from the grid and additional batteries located at each port for
supporting the grid during charging.

6.2.5 Simapro

Simapro v8.3.0.0 Faculty is used as modelling- and simulation software in this project. Simapro
is the most used software in LCA simulations. The software has Ecoinvent version 3.3 as build-
in background database and use the standardisations in LCA [53].

6.3 Energy and battery calculations

The main energy demand for the UWS is for the propulsion. The calculations are based on the
route Seetre-Fagerstrand-Aker Brygge, and are assuming that the batteries are charged at all
stops. The needed propulsion power is calculated by MCT and are based on a tested water
resistance and propulsion coefficient for the vessel when the velocity is 20 knops. The energy
consumption includes a 20% safety margin in case of days with extreme weather conditions
such as wind and waves. The 20% margin also includes electricity used for light, ventilation,
etc. on the vessel. The outcome of the calculation is drawn in the operational profile of the
distance Satre-Aker brygge, shown in Figure 6-5. The operational profile describes the amount
of time in the different operating power-levels of the UWS for the trip Seetre-Fagerstrand-Aker

Brygge.

Some energy lossesin the transmission when charging the batteries is considered in the energy
calculations. The efficiency in the power electronics is assumed to be 95 % for converters and
transformers, and 95 % for the battery [54] [23] . The calculated energy values are listen in the
end of this chapter.
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Figure 6-5: Operational profile for the UWS for the distance Satr-Aker Brygge.

The calculation of the energy consumption also assume that the vessel is fully weight-loaded
i.e. 69 ton. The weight calculation includes:

- 3ton electrical engine plus 12 ton battery package.
- 125 passengers a 75 kg. plus 5 kg. luggage.
- Remaining weight is the vessel-structure.

In order to achiev the UWS’s energy need, it was estimated a minimum on-board battery
capacity of 720 kwWh. Figure 6-6 shows the battery’s state of charge (SOC) for two round-trips
with UWS. Two round-trips is defined as two times the distance Satre-Fagerstrand-Aker
Brygge-Fagerstrand-Seetre. As shown inthe figure, the available energy in the battery decreases
continuously from 100 % at maximum SOC to approximately 7% at its minimum SOC. Optimal
operating range of batteries in electrical vehicles is according to “Battery university” between
30-80 % when they are new. This is the most efficient operating range of the battery, and the
least stress range. By maintaining this range as long as possible, the lifetime of the battery is
expected to be longer. As the battery get older, the operating rang will expand beyond the upper-
and lower limit due to degradation [7]. According to Ellingsen et.al. the expected life time of a
battery that is 100 % discharge is approximately 1 000 charging cycles, while 50 % depth of
discharge can reach 5 000 cycles during its lifetime [54]. Based on this information, it should
be considered to over-dimension the battery capacity to at least 15-20% of its minimum SOC,
and not charge the battery to 100 % SOC. This is not considered in this study as the battery
capacity is estimated by NCE MCT.
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Figure 6-6: Battery state of charge in two round-trips with the UWS.

6.3.1 Calculation of additional batteries (Scenario 4)

In addition to the battery at the UWS, it is assumed in Scenario 4 that additional batteries are
implemented for supporting the grid during charging operation. This assumption is based on
the experience from MS Ampere, where the grid istoo weak to only charge the on-board battery
directly from the grid. The general Norwegian grid is weak and under-dimensioned, which
mean that the scenario is important to include in the study [8]. Another opportunity, rather than
using additional batteries, is to expand the grid capacity. According to Kullmann’s research,
the distribution between charging from grid and charging from batteries is 20% and 80%
respectively with a 1MW charger [8]. This distribution will change according to the available
grid capacity in the area, but due to lack of information, the same distribution as in MS Ampere
isassumed in Scenario 4.

Table 6-1: Minimum required power at each port.

Port Minimum total Energy Energy Estimated
energy need powered from | powered from battery
(kwWh) grid (kwh) batteries capacity
(kwh) (kwh)
Setre 356,7 71,34 285,4 570
Fagerstrand 166,7 33,34 133,4 266
Aker brygge 333,3 66,67 267 533
Total 1369

The batteries that are located at each port should be designed according to Table 6-1. The data
are estimated based on the previous described assumption. The estimation of the battery
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capacity is determined with respect to the maximum SOC limit of 80 % and minimum SOC
limit of 30%, described previously. There will be an insignificant energy loss in the
transmission from the on-shore battery to the off-shore battery, but this is not included when
designing the on-shore batteries.

6.3.2 PV measurements

Ahead of the PV calculations, a goal was set of producing at least 10% of the energy
consumption by the PVs. The energy production corresponds to the daily energy consumption
for the UWS. As much as possible energy should be generated on the roof of the UWS, while
the remaining energy is assumed to be produced by modules located near the ports of the UWS.
The needed area for PV-installation on each location is calculated based on the amount of
produced energy needed to meet the goal of 10%.

Roof mounted PVs

The energy production on the roof of the UWS is based on the irradiation in Indre Oslo-fjord,
extracted from PV GIS. PV GIS isa free online solar calculation, which can be used to estimate
the irradiation on a specific location [41]. The energy production is therefore a calculated
estimation, which may differ from a real case scenario. The PVs are integrated on the roof of
the vessel and is assumed to be mounted horizontal to the roof;, i.e. the tilt angle is 0°. This will
limit the energy production, especially in the winter months, where the sun angle is decreased
with an angle, € with respect to the equinox, as shown in Figure 6-7. The opposite occurs in
summer solstice, resulting in an increase of € with respect to equinox [32].

winter

solstice N(S)

~.

observer's
horizon
equinox =™ S(N)
W(E)
summer observer \
solstice facing north (south)

Figure 6-7: Description of the sun's path in winter- and summer time [25].

The available roof area for PV installation on the UWS is assumed to be 240 m?. Utilization of
other surface areas such as walls for more PV-installations is possible in the future. The PVs
are assumed to produce power dynamically through the day. This is achieved by using the
produced energy directly (without storage) when the vessel is in operation. In periods when the
vessel is docked, the PV modules produces energy to the battery located on board. This means
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that the PVs can produce energy the whole day, and hence maximize the utilization of the
modules.

The following data were implemented in PV GIS for the PV installed at the UWS:

o  Ppeak=37,5 kWp

) T]: 14%

e Tiltangle=0°

e Crystalline silicon, building integrated.

A typical produced peak power for a 1,6 m? crystalline PV cell is according to literature
approximately 250 W under standard test conditions [55]. Normalizing for 240 m?, atotal power
peak production of 37,5 kW is assumed in the calculations. The average daily irradiance to the
modules where measured and used in the calculations of average daily energy production.
Equation 3.5 was used to perform the energy calculation. The daily average energy distribution
through a year is described in Figure 6-8 for the PV modules on the vessel (black) and for the
land mounted modules (blue). The average energy production is shown with dotted lines for the
two cases. Due to the low production in the winter months, the average energy production is

far from the peak production in June. An overview of the calculations can be found in Appendix
B.
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Figure 6-8: Daily energy production-distribution for one year in Oslo fjorden. Black line is energy production fromvessel
module, blue line is energy production from land mounted modules. The dotted lines are the average energy production of
vessel- (black) and land (blue) modules.
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Land mounted PVs

In order to meet the 10 % energy goal, a total energy production of the land mounted PVs is
calculated to 122 kWh per day. This value gives a required area of 330 m? for PV installation.
This gives 110 m? installation on each location. The energy is used to charge batteries which
are located at each port. The data which was plotted in PV GIS is:

Ppeak=37,5 KWp

n= 14%

Tiltangle= 44°

Crystalline silicone, free standing.

As a summary, Table 6-2 shows a distribution of the energy produced from the grid and from
the PVs in Scenario 3.

Table 6-2: Sum-up of energy production from PVs

Energy Generation Energy production (kWh)
On site PVs 71,5

Land based PVs 123

Grid 1746

For the on-shore PVs, it is needed a battery for energy storage. These batteries were designed
with respect to the production of the PVs and the SOC limits described previous. Three batteries
with a capacity of 82 kWh each were estimated.

6.3.3 Diesel engine calculations (Scenario 1)

As mentioned in the assumption-section, the energy consumption for the diesel engine is
calculated based on the UWS’s energy consumption with electrical engine. A typical diesel
engine efficiency of 55 % was considered when calculating the energy consumption. This is a
little higher than was reported by Lasselle et. al, which assumed 40 % efficiency for a diesel
engine [23].

6.4 Inventory

The qualitative inventory describes the processes in the cradle-to-grave LCA. It explains the
type of materials used in the different components in the UWS, and where it is extracted and
manufactured. A summary of the data quantity can be found in the end of this sub section. The
Inventory of all parameters in this thesis can be found in Appendix C, Appendix D and
Appendix E.

6.4.1 Hull and superstructure
The weight of the vessel is an important factor in the design process. By minimizing the weight,

the energy consumption can be decreased significantly, which is the reason for building the
UWS inaluminium. Aluminium isa strong metal with insignificant maintenance and long life
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time. Compared to steel, which is used in most conventional ferries today, aluminium is
approximately 33 percent lighter [11].

The aluminium isassumed to be manufactured by the Norwegian company, Norsk Hydro. They
will produce and deliver the needed aluminium for the hull and superstructure, and accept the
aluminium for recycling when the vessel has reached its EoL.

Norsk Hydro extract bauxite from mines in Alunarte in Brazil, and transport it to the refineries
through pipelines. The bauxite is converted to aluminium oxide in the refinery and further
transported to the aluminium smelters located in different locations in Norway [46]. The energy
consumption and emissions related to the bauxite extraction and refinery process is the same
independent where the process is performed. However, the emissions associated to the energy
consumption in the aluminium smelters depends on where the smelters are located. The data
regarding extraction of bauxite is therefore based on average values. The energy used in the
smelters are based on Norwegian conditions.

The transportation of bauxite, aluminium oxide and processed aluminium to the customers was
hard to find. Therefore, average global transportation from Ecoinvent is used for this purpose.

6.4.2 Batteries

The manufacturing process of the batteries is described in Chapter 4. The specific data of the
battery package in this study is given by Grenland Energy and DNV GL. The battery pack is
built-up of battery cells, modules, sub-packs and strings.

A battery cell is an assembly of anode, cathode and separator. Lithium nickel manganese cobalt
oxide (NMC) is the active material of the cathode, with aluminium as current collector. The
anode is a composite of copper as current collector, and graphite as active material. The cells
are connected in series and parallel in modules and capped with aluminium as cover. The
modules are then combined in sub packs and strings in series. To form one battery pack, the
strings are connected in parallel to get the desired output. 104 battery cells is needed to form
one module, 9 modules are needed for one sub-pack , and 6 sub-packs are needed to make one
string [23]. An image of a complete battery pack is shown in Figure 6-9, which is obtained
from the battery in MS Ampere.

The battery inventory also includes the energy consumption during manufacturing. In addition,
the total travelling distance from its production-location in China (Assumed) to its operation
site in Norway with ship and lorry are included. Chinese electricity mix in the production phase
istherefore utilized. The lifetime of the batteries is 10 years, which means that two replacements
of the batteries are included in the analysis.
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Figure 6-9: Battery pack in MS Ampere. Cells are connected in modules, sub packs and strings. The image is taken on
visit to MS Ampere in October 2016.

6.4.3 Photovoltaics

The PVs are not the main focus in this study. It is however interesting to observe the impact of
onsite energy production from PVs in scenarios. The data of the PV modules is extracted from
a master thesis from UiA 2016 by Torjus Linjord. The thesis isan LCA on an integrated PV in
the roof tile [33].

The manufacturing process in Linjord’s report is assumed to be the same as in this thesis. The
energy demand, transportation and materials in the manufacturing process are extracted from
the thesis. The manufacturing process contains the following process: Silicon solar grade
(Elkem process), siliconingot, siliconwafer and PV cell manufacturing. The purification in the
solar grade silicon is assumed to be performed at Elkem solar in Kristiansand. The remaining
part of the manufacturing of the PV cells is assumed to take place in Germany. Shipping with
boat from Kristiansand to Hirtshals in Denmark, and transportation with lorry from Hirtshals
to Prenzlau in Germany is therefore assumed.

The lifetime of the PV modules is between 20 to 30 years. Therefore, replacement of the PV
modules is not included in the study. However, the efficiency of the cells may decrease when
operating with a long lifetime [33].

6.4.4 Electricity mix

The electricity mix which is utilized in the production phase is assumed to originate from each
production location.
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The energy consumption for the operation phase in the UWS is assumed to originate from the
Norwegian electricity mix.

6.4.5 Engine

The UWS is intended to run on electricity from LIB, where the propulsion is achieved by an
electric engine. Electrical engines can reach an efficiency of 90 to 95%, and requires less
maintenance compared to a conventional diesel engine. Data regarding material extraction and
production processes for the electrical motor is extracted from a 250 kW motor data sheet
obtained from ABB [56]. The motor has a lifetime of 25 years, which means that 1,2
replacements are needed to fulfil the vessel’s lifetime.

In comparison between electric- and combustion propulsion, a diesel engine is selected based
on the energy consumption of the UWS. The energy consumption of a diesel engine can simply
be calculated by considering the electric engine’s energy consumption, and normalize it for the
diesel engine with respect to efficiency. A diesel electric generating set is selected from the
Ecolnvent database and used in the simulation.

6.4.6 Drivetrain and electrical components

In this thesis, the drivetrain in the vessel includes the power electronics which maintain a
constant power flow to the propulsion in the vessel. One of the most important power electronic
devicesare converters and transformers. The converter converts AC current to DC current when
charging the batteries, or vice versa when discharged from the battery. The data of the
converters were extracted from DNV GL, and can be seen in Appendix C.

Transformers in the vessel are used to rais or lowering the voltage-level from the electricity
grid to an acceptable battery charging voltage-level. At least one transformer is therefore needed
at each charging location. Expected lifetime of a transformer can be 30 to 50 years if low
average load and temperature is maintained [57]. The transformer’s data collection has its origin
from DNV GL. The current study assumes that the production is performed by Mare Trafo AS
which isa company producing transformers in Norway [58].

The amount of cables in the UWS is assumed to be the same amount as in MS Ampere. This
assumption is taken mainly due to lack of information of the UWS’s electronic system. The
inventory of the cables is extracted from DNV GL.

6.4.7 Charging and grid capacity

The charging is intended to be performed at every stop. This means that a charging station is
required on all three terminals where the UWS plans to stop. The charging stations have a
maximum power delivery of 1 MW. Whether the grid has enough capacity to distribute this
amount of power is uncertain. As described previously, the current study assessesthe charging
process in two scenarios (Scenario 2 and Scenario 4).

Another method which is suggested for UWS is a battery-exchange system. This is a method
where batteries are located on each port. Rather than charging the on-board batteries of the
vessel, spent batteries are exchanged with fully charged batteries located at the ports. Taking
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this technology into operation could have a potential to decrease the battery capacity and hence
the weight and energy consumption on-board of the vessel. This charging method is not
assessed in this study, but should be considered in future work.

6.4.8 Mooring

As energy saving in the vessel is important, it is desirable to avoid excess energy consumption
during docking. Normally, ferries use propel-propulsion as mooring during operation of
boarding. However, to reduce the energy consumption, the quay isimplemented with a vacuum-
system for mooring, as shown in Figure 6-10. The figure is an image of the mooring system
used in MS Ampere, which was taken on a visit to the ferry in October 2016.The system keeps
the vessel in position when connected to quay, and is powered by the electricity grid. A similar
system is expected to be used in the UWS.

Figure 6-10: The mooring systemwhich is used in MS Ampere, and is expected to be used in the UWS. Photo is taken by
Tobias Einberger.

The materials needed to produce the mooring system, MoorMaster 400 is based on a datasheet
given by the manufacture, Covatec. It provides safe, secure and automatic vacuum mooring
between the quay and the vessel witha maximum holding force of 40 kN [59]. The MoorMaster
has a peak power of 17 kW. The energy consumption is estimated based on the peak power,
and the amount of time of charging the vessel, shown in Appendix A. The EPD of MoorMaster
can be found in [60].

6.4.9 Interior

The interior which are included in this study is the number of seats. The inventory for the seats
is extracted from “EPD-Norge”, the Norwegian EPD foundation, and includes all the materials
to produce the seats. The transportation to Norway and production location is not given in the
EPD. Therefore, global average market data from the background database is used in the
simulation. In total 125 seats are needed for the UWS, and the lifetime is 15 years, which means
that one replacement of the seats is needed. The inventory of the seats is shown in Appendix C,
and is based on the EPD in [61]
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6.5 Quantitative inventory

This subsection summarizes the quantitative inventory used in this study. The specific data are
listed for each scenario in tables in the next pages. A full and more detailed inventory list from
Simapro is listed in Appendix C, Appendix D and Appendix E.

Table 6-3 lists the materials used to manufacture 1 m? of a PV panel in Scenario 3. A detailed
overview of the PV inventory is shown in Appendix D. The Appendix show the manufacturing
procedure of the silica sand, solar grade silicon, silicon ingot, silicon wafer and solar cell. In
total, it is needed 570 m? for the PV installation.

Table 6-3: Inventory for material for production of 1 m2 PV cell.

Product 1 m? of PV cell Unit
Silica sand 4,02 kg
Solar grade silicon 1,07 kg
Silicon ingot 0,885 kg
Wafer 1,06 nm?

Table 6-4 and Table 6-5 show the battery specifications. The distribution of battery capacity
used in the four scenario cases is listed in Table 6-4. As shown in the table, the capacity has
large variations depending on the scenario. The composition of the cells, modules, sub-packs
and stings in the different scenarios are shown in Table 6-5. The distribution is normalized
according to the battery capacity from Table 6-4. A full inventory of the battery is listed in
Appendix E.

Table 6-4: Total battery capacity in each scenario.

Scenario Battery capacity Unit
1 0 KWh
2 720 kWh
3 720+3 batteries of 82 kWh
4 1369 kWh
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Table 6-5: Inventory for production of one battery pack in the UWS for each scenario.

Product Amount (case 4) Amount (Case 3) Amount (Case 2)
Cell 289 536 Cells 134 784 Cells 99 840 Cells
Module 2784 Modules 1 296 Modules 960 Modules
Sub-Pack 348 Sub-packs 162 Sub-Packs 120 Sub-Packs
String 58 Strings 27 Strings 20 Strings

Table 6-6 shows the inventory for the structure of the vessel for Scenario 2, 3 and 4. The hull,

superstructure, engine, drivetrain and electrical components,

interior, and mooring are

described in the table. As described in the limitation section, the amount of aluminium in the
hull is a rough estimation. The amount of aluminium in the hull and superstructure is assumed
to be the same in all scenarios. Table 6-7 shows the inventory for the UWS in Scenario 1. Most
of the parameters are the same in the scenarios except that electrical components and electrical
engines are not considered in Scenario 1. A detailed inventory list of the mooring device,
transformer, converter, engine seats and cables are shown in Appendix C.

Table 6-6: Inventory of the vessel's structure for Scenario 2, 3 and 4.

Description

Amount (per lifetime)

Hull + superstructure (aluminium)

20 066 kg

Seats 125 x 2 (lifetime of 15 years)

Transformer 3

Converter 2x5= 10 (lifetime of 15 years, 5 converters)

Engine 2 x 300 KW (lifetime of 25 year gives 1,2
engines)

Cables 262,3 kg

Table 6-7: Inventory of the vessel's structure for Scenario 1.

Description Amount (per lifetime)
Hull + Superstructure (aluminium) 20 066 kg
Seats 125
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Table 6-8 shows the energy consumption of the UWS for the different simulation scenarios.
The data are listed as per day and for one lifetime of 30 years. The diesel consumption is larger
than the electrical consumption due to the poor efficiency in conventional diesel engines. In
Scenario 3, the energy from the PVs is subtracted from the total energy consumption of the
UWS. The energy losses in the battery and converter in Scenario 3 is added to the grid
production to get an equal energy balance between the scenarios.

Table 6-8: Inventory of the UWS's input energy consumption per day for each scenario.

Product Per day Lifetime Unit Scenario
Diesel 3527,6 38 627 618,2 | kWh 1

Grid 2 149,8 23 540 376 kWh 2

PV on roof 71,5 782 925 kWh

Land mounted PV 123 1 346 850 kWh 3

Grid 2014+31,5 (losses from PVs) | 22 98541,1 kWh

Grid 2240,32 24 531 550,5 | kWh 4
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7 Results

This chapter presents the results from the LCA. The chapter will initially present the individual
results from each scenario. Further, the four scenarios will be compared to each other, followed
by a sensitivity analysis of several parameters.

7.1 Life cycle inventory analysis

7.1.1 Scenario 1l

The environmental impact from Scenario 1 on the midpoint categories in the ReCiPe method is
expressed in Figure 7-1. The boat production, operation and other impact factors are shown in
the figure. The results are based on Evolnvent’s diesel generation unit as power propulsion
system, as described previously. The numbers on the right side of the figures describe the total
amount of emissions in each category measured in per PKT.
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Figure 7-1: Impact results from Scenario 1 with per PKT as functional unit.
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Figure 7-1 shows that the impact from the operation phase of the UWS is the largest on all
impact categories. The impact from the other groups is insignificant in most of the categories.
Emissions to freshwater eutrophication, human toxicity and terrestrial ecotoxicity have some
contribution from the boat production. However, the emission from the operation phase is more
than 90 % larger than the boat production in these groups. The reason for the high contribution
from the operation phase can be explained by the high emissions from the refining and
combustion of diesel.

The impact on freshwater ecotoxicity, marine ecotoxicity, water depletion, human toxicity and
metal depletion is affected by all the three life-phase groups. Nevertheless, the operation-phase
stands for the largest impact, followed by boat production and other impact related factors. The
influence from the boat production is mainly due to the amount of aluminium used in the hull
and superstructure. The remaining categories are very sensitive to the operation phase.

7.1.2 Scenario 2

Scenario 2 is the most important scenario in this thesis because most of the inventory are suited
for this case. The main focus will therefore be on this scenario. Figure 7-2 shows the impact
results on the ReCiPe midpoint categories from Scenario 2. The battery production, boat
production, operation and other impacts are displayed in the figure. The group named “others”
contains impacts from factors which do not fit in one of the other groups, such as material and
operation of the mooring device. This group has the lowest emissions on all categories. The
overall impact from this group seems therefore to have limited influence on the presented
results.
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Figure 7-2: Emissions from Scenario 2 on the 18 midpoint categories with per PKT as functional unit.

Figure 7-2 shows that the battery production, boat production and operation phase have the
largest impact to all categories. The battery production and the operation have equal impact on
climate change, followed by the boat production phase which has 19% less emissions in this
category. The boat production phase has the largest impact on ozone depletion, particulate
matter formation, terrestrial acidification, freshwater eutrophication, marine eutrophication,
human toxicity, terrestrial ecotoxicity, and metal depletion. In these categories, the battery
production follows as the second largest contribution, except in the emissions on ozone
depletion. In this category, the operation phase has the second largest contribution. In
photochemical oxidant formation, the highest emissions originate from the battery production,
which stand for 38% of the emissions. The battery production also has large emissions to urban
land occupation, metal depletion, particulate matter formation, photochemical oxidant
formation and fossil depletion with 35% to 36% contribution.

The operation phase has on average low emissions on many categories regarding direct air
emissions. However, it is shown that the operation is one of the largest contributor to climate
change and ozone depletion. The figure also shows that the operation phase has the highest
impact on freshwater ecotoxicity, marine ecotoxicity, ionising radiation, agricultural land
occupation, natural land occupation, water depletion and fossil depletion.
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The boat production stands for a significant share on freshwater ecotoxicity, marine ecotoxicity
and urban land occupation. In metal depletion, this group represents 51% of the impact. The
reason can be related to the processes of extraction of bauxite and production of aluminium
used for the hull and superstructure.

As stated, the global warming potential (GWP) in Figure 7-2 shows that battery production,
operation, and boat production have the highest emissions on this impact category. The
operation phase is an interesting parameter to further assess, in order to see how much this
parameter contributes to the overall results on GWP. Therefore, the operation phase is one of
the parameters which will be assessed in the sensitivity analysis. The battery production and
boat production is deeper analysed in the next paragraphs. The results of these analysis will
determine which additional parameters should be studied in the sensitivity analysis.

GWP, battery

B Cell ®MModule M String M SubPack M Energy, battery manufacturing

Figure 7-3:GWP analysis of the battery on the UWS.

The analyse of the GWP on the battery is shown in Figure 7-3. The energy for the battery
manufacturing has the largest impact on GWP with a contribution of 63,75% of the GWP. The
reason of the large emission from the energy consumption can be explained by the large amount
of energy used during the coating process of the battery cell. This energy has its origin from
China, which has large emissions of CO, emission due to its fossil fuel dominating energy mix.

The battery cell has a significant impact on the GWP as well. The parameters in the cell which
are contributing most to the GWP are shown in Figure 7-4. The lithium for the cathode and
lithium hexafluorphosphate in the electrolyte have the largest emissions to the GWP. This may
originate from the mining activity in extraction and purifying the lithium from mines or salt
lakes. The lithium content in the battery cell is therefore interesting to assess in the sensitivity
analysis.
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Figure 7-4: Analysis of the GWP of one battery cell.
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Figure 7-5: GWP formthe drivetrain in the UWS

From the analysis of the boat production, it was shown that the drivetrain stands for the biggest
impact. Within the drivetrain, it is shown in Figure 7-5 that the transformers represents the
biggest impact for the drivetrain, followed by the converters and cables. It should be noted that
the share between the number of transformers and converters used in the study is not the same.
However, further analysis on the transformer was performed to see which parameter has the

highest contribution to GWP.

The results from the analysis of one transformer isshown in Figure 7-6. Copper is very sensitive
in the results, which are more than 50% of the emissions to GWP. The second largest emissions
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are from metal working on copper with more than 20% contribution. This means that the overall
impact from copper stands for more than 70 % of the GWP emissions from the transformer.
This parameter will therefore be analysed in the sensitivity analysis as well.

GWP, Transformer

|

= Powder coat, steel m Copper

m Metal working, copper m Castiron

= Epoxy resin insulator, Al203 ® Electricity, medium voltage {NO}
= Heat

Figure 7-6: GWP of one transformers in the UWS

7.1.3 Scenario 3

Figure 7-7 shows the impact results from Scenario 3. Scenario 3 incudes the PV modules and
the energy production from the modules.

Figure 7-7 displays that the battery production has the largest impact on climate change,
terrestrial acidification, photochemical oxidant formation, particulate matter formation, urban
land occupation and fossil depletion. The large contribution from the batteries on climate
change is due to the Chinese energy mix used in the production phase of the batteries. The boat
production has the largest emissions on ozone depletion, freshwater eutrophication, marine
eutrophication, human toxicity and metal depletion. In addition this group has a significant
impact to marine ecotoxicity.

Climate change is mainly dominated by the operation and battery production. The impact from
the PVs are low in almost all categories, except in terrestrial ecotoxicity, where the contribution
is the largest of all groups with 38%.
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Figure 7-7:Impact results from Scenario 3 with per PKT as functional unit.

The operation phase use Norwegian electricity mix, which shows to be very sensitive to
midpoint categories like ionising radiation, agricultural land occupation, natural land
occupation, and water depletion. The emissions from the operation phase in these categories
varies between 70% to over 96%. The impact on water depletion is the largest with 96% of the
emissions from this group. In addition, the operation phase represents approximately 30% of
the emissions to ozone depletion and climate change as well.

In urban land occupation, metal depletion and fossil depletion, the figure shows that the boat
production and the battery production have the largest contribution. The operation phase also
has a significant impact on this category, with only 5% less emission than the boat production.

7.1.4 Scenario 4

Figure 7-8 shows the result on the midpoint categories for Scenario 4. Scenario 4 has a larger
amount of battery capacity due to the additional batteries located at each port for the charging
assistance. This is reflected in the results, as shown in the figure. The battery production stands
for a significant contribution to all the impact categories. In climate change, the battery
production stands for 58% of the emissions, followed by operation and boat production with
27% and 13% contribution respectively. The battery production also has the highest impact on
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urban land occupation, metal depletion, fossil depletion, terrestrial ecotoxicity, particulate
matter formation, photochemical oxidant formation, human toxicity, marine eutrophication,
freshwater eutrophication, terrestrial acidification, and ozone depletion. In these three
categories, the boat production and operation follows as the two next groups with the second
and third largest emissions.
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Figure 7-8:Impact results from Scenario 4 with per PKT as functional unit.

It is shown that the operation phase stands for a large share on ionising radiation, agricultural
land occupation, natural land occupation, and water depletion. The contribution from this group
is more than 65% in all these categories, and as large as 96% of the impact on water depletion.
The emissions on freshwater ecotoxicity and marine ecotoxicity are approximately shared
equally between boat production, battery production and operation.

The boat production has its largest impact to human toxicity freshwater eutrophication and
terrestrial ecotoxicity, where the contribution varies between 37% to 44% of the emissions. In
the remaining categories, the boat production has an impact that varies from 10% to 35 %,
except in water depletion, where the impact ismore or less insignificant. The group, others, has
very small impact on all categories.
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7.1.5 Comparison betweenthe scenarios

Figure 7-9, Figure 7-10 and Figure 7-11 shows the midpoint category comparison between the
four scenarios. The results are presented in relation to each other where the scenario with the
largest impact in an impact category is represented by 100 %. The other scenarios are
represented in relationto the largest contribution category, making it easy to determine the best
alternative in the different impact categories. All scenarios are plotted with PKT as functional
unit. The figures show that the diesel combustion ferry has the highest contribution in most of
the midpoint categories.
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Figure 7-9: Comparison of results fromthe impact assessmentin the following midpoint categories: climate change,
ozone depletion, terrestrial acidification, freshwater eutrophication, marine eutrophication and human toxicity.

Figure 7-9 show that Scenario 1 has the largest impact on climate change, followed by Scenario

4, Scenario 3 and Scenario 2 with 23%, 17% and 15% contribution respectively. Scenario 1 has
the largest impact on ozone depletion, terrestrial acidification and marine eutrophication as
well. The emissions from this scenario are more than 77% larger than the other scenarios. The
average contribution from the other scenarios in these categories are more or less equal. The
impact on terrestrial acidification is 16% for Scenario 4, 12% for Scenario 3 and 10% for
Scenario 2, compared to Scenario 1. The distribution between the scenarios is more even on the
impact on freshwater eutrophication. Scenario 4 has the largest impact on this midpoint
category, followed by Scenario 3 with 77%, Scenario 1 with 70% and Scenario 2 with 69%. In
marine eutrophication, the emissions from Scenario 2, Scenario 3 and Scenario 4 are less than
87% compared to Scenario 1. Human toxicity is peaked by Scenario 4, while Scenario 1 has
the lowest impact on this scenario.
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Figure 7-10: Comparison of results from the impactassessment in the following midpoint categories: Photochemical
oxidation formation, particulate matter formation, terrestrial ecotoxicity, freshwater ecotoxicity, marine ecotoxicity and
ionising radiation.

Figure 7-10 shows that Scenario 1 clearly has the biggest impact on photochemical oxidant
formation, particulate matter formation and ionising radiation. The remaining scenarios have
an approximately average distribution on the same categories. Terrestrial ecotoxicity is mostly
affected by Scenario 3, due to the toxicity chemicals during the PV manufacturing. In
freshwater ecotoxicity, the largest impact is from Scenario 4, followed by Scenario 3, 2 and 1
with 80%, 76% and 22% contribution respectively. Impacts from Scenario 4 peaks the marine
ecotoxicity category. Scenario 2 and 3 have almost the same impact, followed by Scenario 1
with only 22% in comparison. Scenario 1 with the diesel combustion shows the best results in
terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity.
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Figure 7-11: Comparison of results fromthe impactassessment in the following midpoint categories: Agricultural land
occupation, urban land occupation, natural land occupation, water depletion, metal depletion and fossil depletion.

Figure 7-11 describes that Scenario 1 has the largest impact on agricultural land occupation,
natural land occupation and fossil depletion. In these midpoint categories, Scenario 1 has more
than 78% more emissions compared to the remaining scenarios. The other scenarios share on
average the same impact on these three midpoint categories. In urban land occupation, water
depletion and metal depletion, Scenario 4 has the largest impact. Scenario 1 has the lowest
impact on these categories, except on urban land occupation, where Scenario 2 is lowest
represented with 65% contribution compared to Scenario 4.

7.2 Impact from battery

As expressed in the previous results, the battery manufacturing is responsible for a significant
impact share; especially in climate change, particulate matter formation and photochemical
oxidant formation, the distribution is largest. The emissions to these three categories is shown
in table Table 7-1 with PKT as functional unit. The table shows that the scenarios that include
most batteries (Scenario 3 and Scenario 4) have the largest emissions to all these groups.
Therefore, a deeper consideration of the battery manufacturing process.
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Table 7-1: Emissions to GWP, particulate matter formation (PMF) and photochemical oxidant formation (POF) in the three
scenarios which are include batteries. The values are given as PKT as functional unit.

Description Scenario 2 Scenario 3 Scenario 4
GWP [g COz-eq] 36,9 42,5 55,5

PMF [g PM1o-eq] 0,119 0,135 0,183
POF [mg NMVOC-eq] 0,128 0,147 0,194

Figure 7-12 shows the emissions on photochemical oxidant formation and particulate matter
formation when one battery pack of 720 kWh is produced. The energy consumption during
production has the biggest impact with approximately 115 kg PM10-equvialent on particulate
formation, and 151 kg emission of photochemical oxidant formation. This can be explained by
the large emissions from the coal generating electricity inthe Chinese energy mix which is used
as energy source. Emissions from the battery cell follows as the second largest contributor with
69,7 kg and 74,3 kg emissions to photochemical oxidant formation and particulate matter
formation respectively. Production of the modules, sub-packs and strings follows then with the
lowest emissions, which is mostly a construction of different metals to form the modules, sub-
packs and strings.
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Figure 7-12: Results of photochemical oxidant formation and particulate matter formation during production of one
battery pack in the UWS.

Figure 7-13 shows the impact on the global warming potential, i.e. the emission of CO,-
equivilent measured in kg. The figure shows that the same trend is observed for the GWP as for
particulate matter formation. The energy used in the production has the largest impact followed
by the cell production. The reason is expected to be the same as described in the previous
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paragraph. The emissions from the energy consumption is more than 3 times the emissions from
battery cell production. The impact form the modules, strings and sub-packs is insignificant in
comparison to the cell production and energy consumption. It is displayed in both figures that
the battery string has the least impact on both midpoint categories.
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Figure 7-13: Results of GWP measured in CO,-eq during production of one battery pack on the UWS.

7.3 Sensitivity analysis

Sensitivity analysis is performed in order to look at how much a small parameter change can
affect the overall GWP. Different parameters were changed by one percent from its original
value, and the change were logged in Table 7-2. Most of these parameters are selected based
on the results from section 7.2, Scenario 2. This is parameters that have showed to be
significance for the results in the study. In order to see the overall influence of these parameters
is, and estimate how important they are for the overall results, it was performed a sensitivity
analysis. The remaining parameters were selected based om uncertainty in the data collection,
such as the amount of aluminium. The different parameters that are used in the sensitivity
analysis is the amount of aluminium in both the hull and superstructure, lithium in the cell,
lithiumhexafl uorphosphate inthe electrolyte, energy consumption in the battery manufacturing
and the amount of copper in the transformer. In addition, the capacity utilization in the public
transportation was selected as an interesting parameter to investigate.

Based on the assumption of the estimated energy consumption in Scenario 1, it was decided to
perform a sensitivity analysis on the diesel combustion as well. This scenario has large
emissions in most of the impact category, and it is therefore important to see how much this
parameter can affect the GWP results.
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Table 7-2: Result fromthe sensitivity analysis on the most important parameters on the GWP.

Parameters Parameter GWP change
change
Aluminium 1% 0,027%
Capacity utilization 1% 0,990%
Whole Battery 1% 0,375%
Lithium (cathode) 1% 0,019%
Lithiumhexafluorphosphate (electrolyte) 1% 0,021%
Battery energy consumption 1% 0,240%
Copper use in transformer 1% 0,035%
Energy for operation 1% 0,395%
Diesel combustion in Scenario 1 1% 0,979%

Table 7-2 shows the results from the sensitivity analysis on GWP. The most sensitive factor is
shown by the table to be the capacity utilization and the diesel combustion in Scenario 1, with
a GWP change of almost 1%. The capacity utilization changes through the day according to
the number of people travelling, an is not directly technology dependent. Most of the other
parameters are in conjunction to the manufacturing process of batteries. Changing the whole
battery capacity with one percent resulted in the biggest GWP change. The largest change
within the battery manufacturing was experienced to originate from the energy usage with a
GWP change of 0,240%. The amount of lithium has a minor overall impact on the overall
results.

Another important parameter is the energy utilization for the operation phase. The sensitivity
analysis shows that the impact on GWP is affected by 0,395% in the sensitivity analysis. This
is the second largest impact of all parameters. The aluminium in comparison shows not to be
very sensitive to the GWP, with only 0,027% impact change.

As stated, the sensitivity analysis shows that the energy had significant impact on the GWP.
In order to investigate the importance of the energy mix for the battery manufacturing
process, the Chinese and Norwegian energy mix were compared. The GWP results with the
two energy mixes are shown in Figure 7-14.
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Figure 7-14: Results fromthe GWP for the battery production with Norwegian and Chinese energy mix.

The figure shows that CO.-emission for producing the on-board battery pack for the UWS
depends on the different scenarios, and hence the battery capacity. It was calculated that
producing the battery with Chinese energy mix gives at least 23% more emissions than
producing the batteries with a Norwegian energy mix. The difference is largest for Scenario 4,
with 30% saved CO, emissions by producing the batteries in Norway.
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8 Discussion

This chapter will discuss the results from the LCA in chapter 7. It will start with a comparison
of the four scenarios and look at the reason for the emissions on the different impact categories.
Further, the limitations in the study will be headlined, and assess how relevant the study isin a
real life. At the end of the chapter, it will be given some suggestions on where it is needed for
future work.

8.1 Comparison betweenthe scenarios

The impact from the different life phases in each scenario has a significant variation in the four
scenarios. The operation phase in Scenario 1 has the biggest impact on all midpoint categories.
This is due to the combustion of diesel and its large emission related to this. The distribution
between the life phases in the other scenarios is more equally shared. These scenarios are
modelled with electrical energy as propulsion, which has less direct air emissions.

In comparison between all scenarios, the first scenario shows to have the largest normalized
emissions in most of the midpoint categories. In total, it is the highest in ten of the 18 midpoint
categories. These categories are mostly related to direct air emissions, such as climate change
and particulate matters. In midpoint categories regarding toxicity and depletion, this scenario
shows the lowest impact on six of the 18 midpoint categories. The reason could originate from
the contribution from the battery manufacturing in all the other scenarios, as well as the
additional contribution from the production of drivetrain. The battery manufacturing process
has a potential of toxicity emissions in several categories. The batteries are also built-up of
different metals, such as aluminium, lithium and copper, which may affect the metal depletion
category. Scenario 3 is another scenario that has large emissions on toxicity and depletion
groups. The reason for this may originate from the manufacturing process of both batteries and
PV modules. The production of PVs involves some chemical actions, such as cadmium.
Cadmium has a potential to be released to the environment during the manufacturing phase,
which again can cause human toxicity and terrestrial ecotoxicity.

Another observation is that the impact in all midpoint categories from Scenario 4 is always
larger than the impact from Scenario 2. It is important to keep in mind that these two scenarios
only differ in battery capacity, due to the additional charging batteries in Scenario 4. Therefore,
the impact from Scenario 4 is always larger than Scenario 2. However, looking at the different
life-phases/groups in these two scenarios, it can be seen in which midpoint categories the
battery production is most sensitive. The main difference between the two scenarios is that the
battery production phase increases its contribution to most of the categories, while in the
remaining groups, the contribution from the battery production decreases. For instance, the
impact from the vessel’s operation phase is reduced by 12 % emissions on climate change from
Scenario 2 to Scenario 4. This is due to the extra emission from the additional battery capacity
manufacturing in Scenario 4.

It is also worth mentioning that the impact difference between Scenario 4 and Scenario 2 on
toxicity categories, land occupation, and metal depletion are significant. This shows that the
manufacturing of batteries is sensitive to these impact categories and that the battery capacity
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is important to consider in the battery design process. One possible solution to avoid excess of
battery capacity could be to expand the grid capacity, rather than using batteries as intermediate
storage during the charging operation. This solution is not assessed in this study, but should be
considered in similar studies in the future.

Compared to Scenario 1, the results show that the operation phase in scenarios 2, Scenario 3
and Scenario 4 has much less emissions in categories regarding direct air emissions, such as
CO3, NOy, SO,, ozone depletion and particulate matters. This is explained in Table 8-1, which
shows the difference in CO; equivalent emissions between the scenarios, measured in grams
per PKT. Scenario 2, Scenario 3 and Scenario 4 displays that the CO, savings are large when
using electrical propulsion system, rather than conventional combustion propulsion. The
biggest difference is between Scenario 1 and scenario2, where the CO; savings are 207,1 grams
per PKT.

The table shows that the emissions from the boat production isthe same in all scenarios, except
in Scenario 1. This scenario only considers the production of the hull and superstructure, while
the other scenarios considers the drivetrain and electrical components as well. The table also
shows that the amount of batteries installed has a significant climate change impact. This is
associated with the manufacturing process of the batteries. In the operation phase, the table
shows that Scenario 3, which is implemented with PV modules, has the lowest CO, emissions
with at least 0,6 g more saving per PKT compared to the other scenarios. The difference
between the operation emissions between Scenario 2 and Scenario 4 has its origin from the
extra losses in the conversion between the grid and the charging batteries. This is another
advantage for charging the on board batteries directly from the grid.

Table 8-1: GWP potential for the four scenarios with PKT as functional unit.

Scenario 1l | Scenario 2 | Scenario3 | Scenario 4
Total [g] 244 36,9 42,4 55,4
Battery [0] - 14,3 18,8 32,2
Boat [g] 2,59 7.4 7,4 7,4
Operation [g] 241 14,2 13,6 14,8

A further analyse of the CO, emissions between the scenarios is shown in Figure 8-1.The figure
represents the brake point for Scenario 2, Scenario 3 and Scenario 4 in comparison to Scenario
1. Scenario 2 has the earlies brake point after 5 months, followed by Scenario 3 with
approximately 6 months and Scenario 4 after approximately 6,5 months. The meaning of the
figure is that the line with the lowest value at any time has the lowest emissions. As shown,
Scenario 1 has the lowest CO, emissions until the first brake point. i.e. the impact from the
production of a diesel combustion vessel is lower than the impact from the production of battery
propulsion vessels. After the brake point, the other scenarios have a total emission which is
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smaller than for Scenario 1 through its lifetime. Due to the low GWP in the Norwegian
electricity, the graph for Scenario 2, Scenario 3 and Scenario 4 looks like a straight line,
compared to Scenario 1. The results are sensitive to the amount of batteries in the scenario. The
three break points for the scenarios are within a year, which is a very short time of period.
Despite these results and that the ferry is intended to operate for 30 years, the GWP can be
saved significantly by selecting battery as propulsion system.

e Scenari0 1 e Scenario 2 e Scenario 3 e Scenario 4

2,50E+06
2,00E+06

1,50E+06

1,00E+06

kg CO,-equivialent

5,00E+05
0,00E+00

Month

Figure 8-1: Break point of the four scenarios. Month is displayed on the x-axis while kg CO,-equivialent is shown on the
y-axis.

In the comparison between the scenarios in Figure 7-9, Figure 7-10 and Figure 7-11 it is
observed that Scenario 3 has on the average more or less the same impact on the midpoint
categories as Scenario 2 and Scenario 4. One exception is in the terrestrial ecotoxicity, where
Scenario 3 has the highest impact. The overall results of this scenario make the PVs more
interesting to consider in the future. The manufacturing process shows to have relatively low
impact on CO; emissions. Additionally, when considering that PV generated energy has zero
emissions (after production), the integration of PV modules on vessels can be a great option in
areas where the energy generation is dominated by fossil fuels. This is shown in Figure 8-2, a
CO, comparison between Scenario 2 and Scenario 3. Scenario 2 has the lowest emissions after
the production of the two scenarios. When operating the vessels with Norwegian energy mix, a
break point after 20 to 21 years will be experienced. After that, the future GWP from PVs will
be lower than without PVs. The difference between the two scenarios is more or less
insignificant with Norwegian energy mix. However, with a more fossil fuel dominated energy
mix, the break point would be experienced much earlier. This could favour the option with PVs
and hence reduce the GWP even more for Scenario 3. Another benefit for integrating PVs on
the vessel is that they could reduce the charging load from the grid by producing a significant
share of the energy consumption locally. This could again prevent that the grid needs to be
expanded, or that additional charging batteries are needed in case of a weak grid. Which option
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is the best alternative being therefore dependent on where the vessel will operate, and the
environment in this location.
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Figure 8-2: CO, emissions for Scenario 2 and Scenario 3 for a period of 30 years. The CO,-equivialent is shown on the
y-axis, while the years are shown on the x-axis.

8.2 Impact from batteries

The sensitivity analysis show that the battery is one of the most sensitive parameters on the
GWP. This can be associated to the emissions from the energy consumption for production and
the emissions from the cell manufacturing. These are the two factors within the battery that had
the largest contribution to GWP as shown in Figure 7-3. Within the cell, both the lithium for
the electrode and lithium for the electrolyte have the biggest emissions to GWP. However, the
sensitivity analysis shows that the lithium did not constitute any significant on the GWP. The
amount of lithium in the battery can therefore be considered as less significant with respect to
the CO, emissions. However, this parameter may have bigger impacts on other midpoint
categories which are more related to toxicity and metal depletion. This is shown in the previous
results, where the battery shows to have a significant contribution in these categories.

The parameter which was most sensitive to GWP (within the battery) was the energy
consumption during battery manufacturing. This parameter was very sensitive to the air related
emissions, such as photochemical oxidant formation, particulate matter formation and global
warming potential. In GWP, the energy consumption had 45% more emissions than the
emission from battery cell (2. largest). The sensitivity analysis also showed that the GWP was
influenced by 0,24 % with an energy change of 1 %.

The battery manufacturing location is another factor that plays an important role in these types
of emissions. In this study, the batteries are assumed to be produced in China. By reconsidering
the production location, and producing the batteries on a location with a cleaner energy mix,
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the results may change significantly. This was tested in a scenario analysis, displayed in Figure
7-14. The figure shows that the battery production location is a factor that has a significant
impact on the results. In a battery pack, such as the UWS (Scenario 2), the GWP is saved by
approximately 23% by producing the batteries in Norway, contra China. In the two other
scenarios with battery propulsion, the GWP is saved with 26% and 30% for Scenario 3 and 4
respectively. The saving potential differs between the scenarios due to different battery
capacity, and hence different energy consumption in the manufacturing phase. A potential
battery manufacture in Norway can decrease the GWP significant, and hence making the
advantage of battery propulsion significant compared to conventional propulsion systems
today.

It should be mentioned that the amount of energy in the manufacturing process is an estimation
which is based on Laselle et. al. reportin [23]. The energy was normalized such that it could
be used in the current study. This estimation is based on average energy consumption from
different previous studies. The electricity usage will also change depending on the environment
of the manufacturing location. This is because that the electricity consumption is mainly used
in drying rooms for the coating operation of the cells. The authors indicate that less energy is
needed in dry environment, while more energy is needed in wetter conditions [23]. The
sensitivity analysis on the energy consumption is therefore an important parameter to examine.

Particulate matter formation _
Photochemical oxidant formation __

0% 20% 40% 60% 80% 100%

HCell W Module MString M SubPack M Eneergy, battery manufacturing

Figure 8-3: Analysis of the battery's most sensitive impact categories.

In addition to the large emission to GWP, the battery production also has significant impact on
metal depletion, fossil depletion, urban land occupation, particulate matter formation, and
photochemical oxidant formation. Figure 8-3 was carried out to show the battery analysis to
these categories, and which part of the battery that has the largest influence. As shown, the
impact to metal depletion is mainly affected by the battery cell. This is due to the large
extraction activity of metals to produce lithium and copper inthe cell. The remaining categories
has its main emissions from the energy consumption during production. Additionally, they have
a significant impact from the battery cell as well. Again, this shows the importance of the energy
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during the manufacturing process. The analysis also show the importance to minimize the use
of metals in batteries in the future. One option is to introduce more recycling of the battery, and
hence limit the extraction of metals in the future.

8.3 Limitations and data quality

There are some limitations in this study that may affect the results with respect to a real life
scenario. The results may change significantly if implementing economic limitations which
could be experience with Scenario 3 with the installation of PV modules. The cost of PV panels
has decreased the last years, but the price is still an important factor. According to a paper by
WWF Norway and Accenture, the reason for the large PV prices in Norway is mainly due to
the low energy prices, high technology prices, and low subsidies from the government. This
will result in large payback time for an installation on board the UWS. However, due to the
predicted expanding of the Norwegian grid in the future, the energy prices are expected to be
significantly increase, which may make it more profitable to install PVs in the future [62].
Despite the minimum difference in the results with and without PVs, as discussed previous, the
cheapest option would probably be without PVs when operating with a Norwegian energy mix.

Another uncertainty factor in the study is the exact amount of aluminium used for the hull. The
numbers used in this study is an estimation performed by MCT. However, the results from the
sensitivity analysis shows that the aluminium had minor impact on the GWP compared to other
parameters. Therefore, the estimation on the amount of aluminium plays a relatively
insignificant role inthe overall results inthis thesis. Hence, other parameters are more important
to consider if the goal is to reduce the GWP.

As discussed earlier, the battery is a fundamental parameter in this thesis, and especially the
energy consumption. It can be a limitation for the results in the study when considering the
large impact this parameter can cause. The more energy used, the higher impact on GWP and
other directair emission categories. The energy consumption considered inthis thesis may both
increase or decrease from a real case scenario. Despite this, it is shown in the comparison
between the four scenarios in Figure 7-9 that Scenario 1 (diesel combustion) has an 85% higher
contribution to climate change, compared to the UWS with battery electrical propulsion
(Scenario 2). Despite the low payback time for this scenario (5 month in terms of GWP), the
energy consumption for the battery production in Scenario 2 has to increase significant if the
emissions shall be the same between the two scenarios. The results from the battery production
and the battery operation could therefore be relevant to a real-life scenario.

One important simplification in this study is the estimated diesel consumption in Scenario 1,
which may affect the results of this study. Therefore, the estimated fuels consumption in this
thesis was compared to the calculated diesel combustion in a conventional diesel combustion
ferry. The calculation is performed by Kullmann’s comparative LCA of MS Ampere and a
conventional diesel ferry. It should be noted that this ferry is built in steel, and only the hull is
1 000 tonnes heavy (compared to 69 tonnes for the UWS). This ferry has an average diesel
consumption of 11,9 litres per km. The diesel consumption for the UWS is assumed to be 2,7
litres per km. Considering the weight difference of the ferries, the diesel estimation may seem
as a manageable assumption. The inventory for this thesis is sharpened to suit the electrical
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option. This means that most of the component are the same for the scenarios with electrical
propulsion and the scenario with diesel propulsion, except for the drivetrain and electrical
motor. These parts are not considered for the diesel combustion scenario. The emissions for the
diesel combustion ferry may therefore have a higher GWP during its production than presented
here, if the inventory was more specified on this case scenario. Due to the uncertainty on this
scenario, it was also performed a sensitivity analysis in the diesel combustion. The results
showed that the diesel combustion was very sensitive to the GWP, which again imply the
importance of this parameter.

The data from the LCI was collected with different quality. Much of the data are based on the
Ecoinvent database, which is a database that represents the average impact on many different
processes. This is a great tool to use if more accurate data are lacking. Nevertheless, the more
data which are used from the Ecoinvent database, the more average or general results will be
the outcome of the study. Therefore, itwastried to specify most of the inventory on the specific
manufacturing processes of as many components as possible. This method gives amore specific
and approximated result on the study.

The data on the batteries are collected from Grenland Energy and DNV GL. These data describe
the process of all the sub components in great detail. This is one of the best data set in this
study, and hence strengthens the results. However, the energy consumption is the part that is
most uncertain in the battery manufacturing process. This is discussed earlier, and shows to be
sensitive to the GWP, but not enough to change the conclusion.

The data regarding the electrical engine and mooring device is extracted from data sheets from
manufactures, which means that they are expected to be a good source of data. The results from
these components is show to have justa small impact on the impacts.

The converters and transformers is extracted from DNV GL together with the batteries. The
copper in the transformer was the most sensitive parameter in emissions to GWP of all the
electrical components. However, inthe sensitivity analysis it was shown that this parameter had
very small impact on the overall GWP. This means that these components have limited
influence on the overall results.

8.4 Comparison to previous literature

The results from the previous studies presented in Chapter 2 varies, depending on the location
of operation. The results of this study are based on the Norwegian energy mix, which showed
that air emissions can be reduced by using the battery technology in the transportation. This
result is both agreed and disagreed with much of the previous literature. Many authors, such as
Ercan et. al. concluded that the battery technologies in buses showed good results in CO; and
CO emissions, but due to worse results on the other impact categories, they concluded that the
overall performance of the battery propulsion was on the average or lower. Hawkins et al. also
found that powering EV with an average European energy mix gave good results in comparison
to using coal produced energy. The battery had large emissions on human toxicity,
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eutrophication potential and freshwater ecotoxicity, which is in accordance with the current
study.

More related studies on battery vessels are Kullmann, who did a comparison between MS
Ampere and a conventional diesel ferry [8]. Laselle et. al. also reported a study on the energy
payback time for batteries in a hybrid system in a supply ship, and batteries in an all-electric
ferry [23]. They both assumed that the ferries were operating in Norway, and hence used
Norwegian electricity mix. They both concluded that the battery technology can reduce the
GWP.

One of the most interesting factors in this thesis is the passenger occupancy or capacity
utilization. The results show that this factor is very sensitive to the GWP results. The PKT in
this study is based on a Norwegian average passenger occupancy of 37%. This is a low
utilization value, which may increase in a city such as Oslo. The occupancy in the Oslo area
will vary through the day, as described in Chapter 2. The public transportation in rush-hours
may experience occupancy near 100 % or more, while in-between these periods the occupancy
may decrease to very small occupancy. Using per PKT as functional unit will therefore make
the results to be very dependent on the occupancy, and hence vary through the day. This is
shown in the sensitivity analysis, where it was found that the capacity utilization was the most
sensitive of the tested parameters. These results are in accordance with the results that were
found by Chester and Horvath [20]. This study did not include electrical propulsion systems,
but the results regarding utilization capacity was the same as in the current study. With the help
of these types of analysis it is possible to assess different transportation possibilities against
each other. For instance, Chester and Horvath showed that driving a SUV with two persons had
the same emissions per person km as a bus with eight passengers. These types of analysis can
assess the importance of public transportation in the different areas, based on expected numbers
of travellers. The more travellers, the better results in terms of per PKT. The results also change
independently of the technology, only the occupancy.

The study by Chester and Horvath can be used as a rough reference comparison to the stody on
UWS, in order to see if the results make sense. Chester and Horvath reported that a full loaded
urban diesel bus has an emission of approximately 50 g CO-- equivalent per PKT. The same
bus has an emission of a more than 400 g CO,- equivalent during off peak. UWS has 36,9 g
CO.- equivalent emissions with a passenger occupancy of 32,5%. This result show a significant
difference in contrast to the diesel combustion bus. The different operation location is an
important factor, which also makes them not direct comparable. The energy mix in Norway,
plays a significant role of the emissions during operation. However, the comparison set the
results of battery propulsion system in the UWS in perspective, and shows the large GWP
saving battery propulsion can cause.

The operation of UWS is designed to operate between Seetre and Aker Brygge in the future.
Therefore, a comparison between different transportation technologies in the same area were
performed. The comparison includes travelling time, distance and CO, emissions. The CO-
emissions from the UWS were compared to the emissions from a conventional diesel
combustion bus and a passenger car. The bus was based on a report by the western Norway
research institute, which concerns the energy consumption and emissions from different
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transportation options in Norway [63]. The bus was assumed to have 78 seats, and a passenger
utilization of 32,5% (same as UWS) were used in the calculations. The emissions for a small
person car were calculated based on Ecolnvent’s database, and 1,73 persons per car were used
in the calculation [63]. The comparison is shown in Figure 8-4. According to Google maps, the
travelling time with bus is 1 hour and 9 minutes, and approximately 44,6 km. The travelling
time with car is 41 minutes and 48,6 km long, and for the UWS, the travelling time is 1 hour
and 10 minutes. The travelling time with bus and UWS is direct comparable, while travelling
with car is 30 minutes shorter in time. As shown in the figure, the UWS has the lowest GWP
with 36,92 g CO-equivialent, while bus has an emission of 54,3 g COz-equivialent per PKT.
The car is the option with the largest emissions, 126 g CO,- equivalent per PKT, but it also has
the shortest travelling time. Due to the same travelling time for bus and the UWS, it can be
assumed that the travelling time is not a factor that will influence the selection between bus
transportation and transportation with the UWS in the future. Therefore, it can be expected that
the number of travellers with UWS in the future will remain the same (or increase) compared
to the present travellers. Based on this information, the best alternative is to use the UWS for
public transportation between Sztre and Aker Brygge, due to its low GWP.

140
120

100

g CO,-eq per PKT

Bus Car UWS

Figure 8-4: GWP comparison between bus, car and UWS given in per PKT.

Another factor that may favour transportation with the UWS, and hence increase the number of
travellers is the situation in rush-hours. Travelling with the UWS avoid rush-hour travelling,
which results in reduced travelling time, compared to travelling with bus and car. This is a
factor that can contribute to increase the passenger occupancy for the UWS, and reducing the
per PKT emissions even more.

For Scenario 3, it is difficult to compare with the previous literature. There are few studies that
have implemented PV modules as energy source for propulsion. Nevertheless, Linjord reported
in [33], an LCA on PV integrated roof tile that the energy payback time (in terms of GWP) for
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an installation in Norway is between 5 and 7 years, while in Spain the payback time was
estimated to be 1,4 to 1,9 years with the same PVs. This shows how the difference in irradiance
can influence the overall results on the GWP of PVs. The energy payback time for the PV
modules were not estimated in this thesis. Nevertheless, it was shown in chapter 5 that the
power production from a location like Oslo vary through the year. The average power
production was found to be very small in comparison to the peak production in the summer
months.

Operating the UWS with PV modules in for instance Spain, would therefore result in a
significant increase in amount of irradiation and energy production, compared to the situation
in Norway. The extra energy production from the PVs may reduce the energy need from the
grid, and hence reducing the potential grid load, and produce more energy with low GWP. This
IS a case scenario that has not been tested in the LCA of the UWS. However, the combination
of the results from Linjord’s report and the results from the current LCA on the UWS indicate
that this is a case that may reduce the GWP in the transportation sector in areas where the solar
irradiation is high and the energy mix is dominated by fossil fuels.

8.5 Future work

In order to limit emissions related to the GWP, there are need for more low emission
technologies in the transportation sector. The battery technology has in this study proved that
battery propulsion is an option which can contribute to less emissions from the transportation
sector. However, other concerns within the battery technology, such as the metal resources for
the battery composition may not be large enough to replace all the present transportation with
battery propulsion. For instance, lithium is a metal that many researches has indicated can be at
risk of getting empty in the future. Therefore, more research is needed on other low emission
technologies which can contribute to reducing the GWP. One opportunity is fuel cells running
on hydrogen. MCT has announced that the world’s first hydrogen ferry will be set in operation
between Nesvik and Hjelmeland in Rogaland in 2021 [52].

The battery system in this study was conducted with the most detailed information, and is
therefore one of the strengthens of this study. However, the battery technology is continuously
changing, meaning that this is an industry that always needs research in the future. Another
factor that is missing in the current study is the environmental burdens of expanding the grid
capacity. Scenario 4 is a case which investigated the emission when additional charging
batteries were implemented for maintaining a stable charging process. Whether this is a better
solution than expanding the grid capacity is uncertain, and it should therefore be performed
more research on this part.

Another option that can contribute to reduce the grid load is the battery exchange system,
described previously in this report. This is an option that in addition can contribute to reduce
the battery capacity on board the UWS, and hence reduce the weight and the energy
consumption of the vessel. This system can contribute to reduce the overall travelling time, due
to no charging time. Another important factor in the batteries is the use of batteries as a second
lifetime. The batteries can for instance be used as energy storage in the grid when they are
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finished in the UWS. Recycling of the batteries is also a topic that is important to further
research.

The cost of the transportation option is often deciding which transportation method that will be
taken into operation. The cheapest alternative is often selected, without looking at the
environmental impact of it. In order to change this way of thinking, it should be set different
environmental requirements by the government when announcing new transportation contracts.
This may result in a more environmental focus in the first place, where the alternatives with the
lowest emissions are evaluated. The cheapest of these alternatives can then be selected as the
best transportation option. The current study of the UWS can therefore be used in these types
of decisions. Therefore, a further work for this study could be a detailed cost assessment of the
UWS. This will give a complete assessment of the whole ferry, with both the environmental
potential and its life cycle costs.

79



80



9 Conclusion

The transportation sector stands for a significant contribution to the impact of the global
warming potential (GWP). In addition, the public transportation situation in the city of Oslo is
in periods is near its capacity. This is especially experienced in rush hours when people are
travelling to and from work. With that in mind, this study aims to use life cycle assessment
(LCA) methodology to investigate the environmental potential of a battery electric passenger
ferry operating in the Oslo-fjord, called urban water shuttle (UWS). The UWS can contribute
to reduce the public transportation in urban areas, as well as decreasing the local and global air
emissions in cities.

Four scenarios were analysed in the thesis; Scenario 1 uses a conventional diesel combustion
propulsion system. This scenario is defined as the reference scenario in comparison to the other
scenarios. Scenario 2 uses batteries which are charged from the grid as propulsion system.
Scenario 3 uses batteries which are charged by photovoltaics and charged by the grid as
propulsion system. Scenario 4 also use batteries that are charged from the grid as propulsion
system. In addition, this scenario is implemented with additional batteries, located at each
charging station, which are supporting the grid during charging.

The results from the study showed that Scenario 1 had the largest emissions to GWP and other
air emission categories. However, the production of UWS with battery propulsion has larger
GWP, compared to production of diesel combustion propulsion. Further, it was stated that
powering the UWS with electricity showed to have a payback time of 5 months in terms of
COq-equivialent. Scenario 3 and Scenario 4 have a payback time of 6 and 6,5 months
respectively. It is therefore concluded that operating the UWS with battery propulsion system
can reduce the GWP and other air related emissions, compared to the reference scenario.

The results showed that the energy consumption during battery manufacturing was sensitive to
the GWP. This is an uncertain factor which may affect the results of this study. It is difficult to
estimate the exact energy consumption for the manufacturing process because this factor may
change with the different environment of the production location. However, this parameter is
not large enough to change the conclusion that the battery option is the best alternative in this
thesis.

It should be mentioned that the scenarios with battery system as propulsion showed to have
higher emissions than the diesel combustion option in several impact categories regarding
toxicity and depletion. In addition, the battery production had a significant influence to metal
depletion, fossil depletion, photochemical oxidant formation, urban land occupation, particulate
matter formation, and climate change. However, the impacts were not large enough to not
favour battery propulsion rather than diesel combustion as propulsion system.
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Appendix A- Energy calcualtion for the mooring operation.

Power (peak): 17 | kW 60 | min/hour
Mooring time (min during Energy
charging): consumption
5 1,42 | kWh
18 5,10 | kWh
10 2,83 | kWh
10 2,83 | kWh
6 1,70 | kWh
20 5,67 | kWh
10 2,83 | kWh
214 6,06 | kWh
Total per day 28,45 | kWh
Per lifetime 311491,00 | kWh




Appendix B- PV calculations

Energy consumption for two roundtrips with UWS.

Time (min) Velocity Time (min) | Power Energy (kWh)
(kw)
Satre-Fagerstrand
0
2 | maneuvering 2 150 5
12,16 20 10,16 600 101,6
17,56 6 5,4 130 11,7
18,56 | maneuvering 1 150 2,5
Total 120,8
Fagerstrand-Aker
brygge
0
2 | maneuvering 2 150 5
35,92 20 33,92 600 339,2
44,02 6 8,1 130 17,55
45,02 | maneuvering 1 150 2,5
Total 364,25
Energy consumption Saetre- 485,05 kWh
Aker Brygge
Energy consumption two 1940,2 kWh
roundtrips UWS:
Basis in the PV calculations:
Equn = A *n*H*PR
PR= 0,8
n= 0,14
A _vessel= 240 | m”2
Desired production from PVs (10 %) 194,02 | kWh




Energy produced from the UWS:

Elektrisitet fra Month H_d (kWh/m~2) | E_vessel

UwWSs (kwh)
jan 0,36 9,68
feb 0,9 24,19
mars 2,45 65,86
apr 3,77 101,34
mai 5,16 138,70
jun 5,63 151,33
jul 5 134,40
aug 3,99 107,25
sep 2,6 69,89
okt 1,22 32,79
nov 0,46 12,36
des 0,22 5,91
AVG 2,66 71,50

Energy produced from land-based PVs:
Tilt angle= 44
Month H_d E_land (kWh)
(kWh/mn2)

jan 0,99 36,32

feb 1,71 62,73

mars 3,95 144,90

apr 4,71 172,77

mai 5,52 202,49

jun 5,61 205,79

jul 5,11 187,45

aug 4,65 170,57

sep 3,73 136,83

okt 2,19 80,33

nov 1,15 42,18

des 0,71 26,04

AVG 3,34 122,52

Needed PV-area to meet the energyproduction, A= 327,5213858 | m~2

E
A=—
nXHXPR




Additional grid produced electricity: 1746,18 kWh

E_tot=E_vessel+E_land



Appendix C- Vessel inventory

1 Transformer

Materials/fuels Amount Unit
Powder coat, steel {GLO}| market for | Alloc Def, U 34 m2
Copper {GLO}| market for | Alloc Def, U 3060 kg
Metal working, average for copper product manufacturing {GLO}| market

for | Alloc Def, U 3060 kg
Cast iron {GLO}| market for | Alloc Def, U 2040 kg
Epoxy resin insulator, Al203 {GLO}| market for | Alloc Def, U 2040 kg
Electricity/heat

Electricity, medium voltage {NO}| market for | Alloc Def, U 4987 kWh
Heat, district or industrial, other than natural gas {NO}| heat and power co-

generation, hard coal | Alloc Def, U 2727 kWh
1 Converter

Materials/fuels

Metal working, average for steel product manufacturing {GLO}| market for

| Alloc Def, U 745,8 kg
Cast iron {GLO}| market for | Alloc Def, U 233,2 kg
Copper {GLO}| market for | Alloc Def, U 266,2 kg
Aluminium, cast alloy {GLO}| market for | Alloc Def, U 133,3 kg
Aluminium, wrought alloy {GLO}| market for | Alloc Def, U 133,3 kg
Metal working, average for copper product manufacturing {GLO}| market

for | Alloc Def, U 266,2 kg
Polyethylene, low density, granulate {GLO}| market for | Alloc Def, U 27,5 kg
Steel, low-alloyed {GLO}| market for | Alloc Def, U 745,8 kg
Electricity/heat

Electricity, high voltage {FI}| heat and power co-generation, hard coal |

Alloc Def, U 1243 kWh
Electricity, medium voltage {FI}| electricity voltage transformation from

high to medium voltage | Alloc Def, U 683 kWh
Cables

Materials/fuels

Aluminium, wrought alloy {GLO}| market for | Alloc Def, U 262,5 kg
Metal working, average for aluminium product manufacturing {GLO}|

market for | Alloc Def, U 262,5 kg




Aluminium (Norwegian production)

Resources

Water, river, NO 0,0403416 m3
Transformation, from unknown 7,5368E-06 m2
Occupation, inland waterbody, unspecified 0,00075368 m2a
Transformation, to inland waterbody, unspecified 7,5368E-06 m2
Materials/fuels

Ethylene glycol {GLO}| market for | Alloc Def, U 0,00049943 kg
Lubricating oil {GLO}| market for | Alloc Def, U 0,00357021 kg
Tap water {Europe without Switzerland}| market for | Alloc Def, U 4,50374093 kg
Aluminium casting facility {GLO}| market for | Alloc Def, U 3,5124E-13 p
Silver {GLO}| market for | Alloc Def, U 2,1807E-06 kg
Sodium hydroxide, without water, in 50% solution state {GLO}| market for

| Alloc Def, U 0,00053188 kg
Magnesium {GLO}| market for | Alloc Def, U 1,5908E-05 kg
Copper {GLO}| market for | Alloc Def, U 0,00524876 kg
Aluminium, primary, ingot {RoW}| market for | Alloc Def, U 0,02677959 kg
Water, deionised, from tap water, at user {RoW}| market for water,

deionised, from tap water, at user | Alloc Def, U 0,00077595 kg
Soap {GLO}| market for | Alloc Def, U 0,00188888 kg
Steel, unalloyed {GLO}| market for | Alloc Def, U 0,20075598 kg
Potassium hydroxide {GLO}| market for | Alloc Def, U 1,1363E-05 kg
Sawnwood, softwood, raw, dried (u=20%) {RoW?}| market for | Alloc Def, U 2,8371E-05 m3
Steel, low-alloyed {GLO}| market for | Alloc Def, U 3,7726E-06 kg
Rolling mill {GLO}| market for | Alloc Def, U 4,9715E-09 p
Sodium sulfate, anhydrite {RoW}| market for | Alloc Def, U 0,00010235 kg
Chemical, inorganic {GLO}| market for chemicals, inorganic | Alloc Def, U 2,7789E-05 kg
Polyethylene terephthalate, granulate, amorphous {GLO}| market for |

Alloc Def, U 0,00055519 kg
Ammonia, liquid {RoW}| market for | Alloc Def, U 0,00018986 kg
Steel, low-alloyed, hot rolled {GLO}| market for | Alloc Def, U 0,02073589 kg
Titanium dioxide {RoW}| market for | Alloc Def, U 0,00036475 kg
Silica sand {GLO}| market for | Alloc Def, U 0,01383773 kg
Aluminium oxide {GLO}| market for | Alloc Def, U 0,01377466 kg
Silicon carbide {GLO}| market for | Alloc Def, U 0,0002884 kg
Nitric acid, without water, in 50% solution state {GLO}| market for | Alloc

Def, U 0,00045231 kg
Isopropanol {GLO}| market for | Alloc Def, U 0,00280273 kg
Zircon, 50% zirconium {GLO}| market for | Alloc Def, U 0,00245889 kg
Methyl ethyl ketone {GLO}| market for | Alloc Def, U 7,5816E-06 kg
Carbon black {GLO}| market for | Alloc Def, U 7,1681E-05 kg
Nitrogen, liquid {RoW}| market for | Alloc Def, U 0,02913424 kg
Tetraethyl orthosilicate {GLO}| market for | Alloc Def, U 0,0072859 kg
Wayx, lost-wax casting {GLO}| market for | Alloc Def, U 0,00395848 kg
Sodium nitrite {GLO}| market for | Alloc Def, U 3,289E-06 kg
Clay {RoW}| market for clay | Alloc Def, U 0,00037508 kg
Propylene glycol, liquid {GLO}| market for | Alloc Def, U 8,2224E-05 kg
Kaolin {GLO}| market for | Alloc Def, U 0,00880199 kg
Sulfuric acid {GLO}| market for | Alloc Def, U 0,00011009 kg
Ethoxylated alcohol (AE7) {GLO}| market for | Alloc Def, U 0,0001109 kg

6




Steel, chromium steel 18/8, hot rolled {GLO}| market for | Alloc Def, U 0,02164826 kg
Polystyrene, high impact {GLO}| market for | Alloc Def, U 6,4712E-05 kg
Printed wiring board, for through-hole mounting, Pb containing surface

{GLO}| market for | Alloc Def, U 3,8453E-05 m2
Resistor, auxilliaries and energy use {GLO}| market for | Alloc Def, U 6,1102E-05 kg
Selective coat, aluminium sheet, nickel pigmented aluminium oxide

{GLO}| market for | Alloc Def, U 5,2602E-07 m2
Silicone product {GLO}| market for | Alloc Def, U 0,00116786 kg
Printed wiring board, surface mounted, unspecified, Pb free {GLO}|

market for | Alloc Def, U 0,00031765 kg
Capacitor, film type, for through-hole mounting {GLO}| market for | Alloc

Def, U 0,0002654 kg
Wire drawing, copper {GLO}| market for | Alloc Def, U 0,00251125 kg
Printed wiring board, for through-hole mounting, Pb free surface {GLO}|

market for | Alloc Def, U 4,5936E-05 m2
Ferrite {GLO}| market for | Alloc Def, U 0,00030487 kg
Zinc coat, coils {GLO}| market for | Alloc Def, U 2,9764E-06 m2
Sheet rolling, aluminium {GLO}| market for | Alloc Def, U 0,00383377 kg
Sheet rolling, steel {GLO}| market for | Alloc Def, U 0,02234745 kg
Polyester resin, unsaturated {GLO}| market for | Alloc Def, U 8,9635E-05 kg
Aluminium, wrought alloy {GLO}| market for | Alloc Def, U 0,00682586 kg
Brass {CH}| market for brass | Alloc Def, U 8,199E-07 kg
Brass {RoW}| market for brass | Alloc Def, U 0,00016316 kg
Plug, inlet and outlet, for network cable {GLO}| market for | Alloc Def, U 0,0022026 p
Transformer, high voltage use {GLO}| market for | Alloc Def, U 0,00024473 kg
Transformer, low voltage use {GLO}| market for | Alloc Def, U 2,634E-05 kg
Transistor, surface-mounted {GLO}| market for | Alloc Def, U 7,2792E-06 kg
Transistor, auxilliaries and energy use {GLO}| market for | Alloc Def, U 7,8041E-05 kg
Aluminium, cast alloy {GLO}| market for | Alloc Def, U 0,01849631 kg
Fan, for power supply unit, desktop computer {GLO}| market for | Alloc

Def, U 3,9157E-05 kg
Plug, inlet and outlet, for computer cable {GLO}| market for | Alloc Def, U 0,0014684 p
Transistor, wired, small size, through-hole mounting {GLO}| market for |

Alloc Def, U 1,3538E-06 kg
Metal working, average for aluminium product manufacturing {GLO}|

market for | Alloc Def, U 0,00083918 kg
Inductor, auxilliaries and energy use {GLO}| market for | Alloc Def, U 0,00016239 kg
Mounting, through-hole technology, Pb-free solder {GLO}| market for |

Alloc Def, U 2,5686E-05 m2
Cable, printer cable, without plugs {GLO}| market for | Alloc Def, U 9,7893E-05 m
Diode, glass-, for through-hole mounting {GLO}| market for | Alloc Def, U 2,4217E-06 kg
Inductor, miniature radio frequency chip {GLO}| market for | Alloc Def, U 8,223E-09 kg
Switch, toggle type {GLO}| market for | Alloc Def, U 7,7336E-06 kg
Potentiometer, unspecified {GLO}| market for | Alloc Def, U 5,9715E-06 kg
Capacitor, electrolyte type, < 2cm height {GLO}| market for | Alloc Def, U 5,0513E-06 kg
Liquid crystal display, unmounted {GLO}| market for | Alloc Def, U 4,8947E-06 kg
Printed wiring board, through-hole mounted, unspecified, Pb free {GLO}|

market for | Alloc Def, U 1,8203E-05 kg
Diode, auxilliaries and energy use {GLO} market for | Alloc Def, U 2,6439E-06 kg
Resistor, surface-mounted {GLO}| market for | Alloc Def, U 3,4194E-05 kg
Inductor, ring core choke type {GLO}| market for | Alloc Def, U 0,00016239 kg
Capacitor, auxiliaries and energy use {GLO}| market for | Alloc Def, U 0,00046263 kg
Light emitting diode {GLO}| market for | Alloc Def, U 3,0079E-06 kg




Cable, connector for computer, without plugs {GLO}| market for | Alloc

Def, U 0,00203129 m
Capacitor, electrolyte type, > 2cm height {GLO}| market for | Alloc Def, U 0,00039329 kg
Polyethylene, high density, granulate {GLO}| market for | Alloc Def, U 0,01030165 kg
Capacitor, for surface-mounting {GLO}| market for | Alloc Def, U 2,2153E-06 kg
Transistor, wired, big size, through-hole mounting {GLO}| market for |

Alloc Def, U 6,2064E-06 kg
Resistor, metal film type, through-hole mounting {GLO}| market for | Alloc

Def, U 8,9279E-06 kg
Integrated circuit, logic type {GLO}| market for | Alloc Def, U 3,6854E-06 kg
Cable, ribbon cable, 20-pin, with plugs {GLO}| market for | Alloc Def, U 6,9935E-05 kg
Synthetic rubber {GLO}| market for | Alloc Def, U 0,00225042 kg
Insulated gate bipolar transistor, electric vehicle application {GLO}| market

for | Alloc Def, U 0,00086021 kg
Resistor, wirewound, through-hole mounting {GLO}| market for | Alloc Def,

U 3,4968E-06 kg
Polyphenylene sulfide {GLO}| market for | Alloc Def, U 0,00201071 kg
Permanent magnet, for electric motor {GLO}| market for permanent

magnet, electric passenger car motor | Alloc Def, U 0,00012358 kg
Nylon 6 {GLO}| market for | Alloc Def, U 7,5012E-05 kg
Injection moulding {GLO}| market for | Alloc Def, U 0,00558613 kg
Road vehicle factory {GLO}| market for | Alloc Def, U 1,6457E-11 p
Zinc {GLO}| market for | Alloc Def, U 0,00015146 kg
Section bar rolling, steel {GLO}| market for | Alloc Def, U 0,02034785 kg
Tap water {GLO}| market group for | Alloc Def, U 0,1820938 kg
Chromium {GLO}| market for | Alloc Def, U 4,8747E-05 kg
Polypropylene, granulate {GLO}| market for | Alloc Def, U 0,00342615 kg
Nickel, 99.5% {GLO}| market for | Alloc Def, U 2,8437E-05 kg
Ethylene, average {GLO}| market for | Alloc Def, U 0,00037577 kg
Polyvinylchloride, suspension polymerised {GLO}| market for | Alloc Def,

U 0,0003132 kg
Reinforcing steel {GLO}| market for | Alloc Def, U 0,03158425 kg
Alkyd paint, white, without solvent, in 60% solution state {GLO}| market for

| Alloc Def, U 0,00012628 kg
Coating powder {GLO}| market for | Alloc Def, U 0,00027426 kg
Flat glass, uncoated {GLO}| market for | Alloc Def, U 0,00074819 kg
Acrylonitrile-butadiene-styrene copolymer {GLO}| market for | Alloc Def, U 0,00010443 kg
Viscose fibre {GLO}| market for | Alloc Def, U 0,00041149 kg
Polyurethane, flexible foam {GLO}| market for | Alloc Def, U 0,00065338 kg
Tempering, flat glass {GLO}| market for | Alloc Def, U 0,00074819 kg
Lead {GLO}| market for | Alloc Def, U 0,00149746 kg
Glass fibre reinforced plastic, polyester resin, hand lay-up {GLO}| market

for | Alloc Def, U 9,9689E-06 kg
Polyethylene, low density, granulate {GLO}| market for | Alloc Def, U 0,00035098 kg
Epoxy resin, liquid {GLO}| market for | Alloc Def, U 0,00027426 kg
Printed wiring board, mounted mainboard, desktop computer, Pb free

{GLO}| market for | Alloc Def, U 4,7393E-05 kg
Silicon, electronics grade {GLO}| market for | Alloc Def, U 0,0011973 kg
Epoxy resin insulator, Al203 {GLO}| market for | Alloc Def, U 0,00449219 kg
Tin {GLO}| market for | Alloc Def, U 0,00013419 kg
Palladium {GLO}| market for | Alloc Def, U 2,1404E-08 kg
Platinum {GLO}| market for | Alloc Def, U 1,1416E-07 kg
Hot rolling, steel {GLO}| market for | Alloc Def, U 0,00121943 kg




Oxygen, liquid {RoW}| market for | Alloc Def, U 0,0022488 kg
Section bar extrusion, aluminium {GLO}| market for | Alloc Def, U 2,296E-05 kg
Zinc concentrate {GLO}| market for | Alloc Def, U 0,37712684 kg
Precious metal refinery {GLO}| market for | Alloc Def, U 1,4356E-11 p
Perlite {GLO}| market for | Alloc Def, U 1,7027E-05 kg
Retention aid, for paper production {GLO}| market for | Alloc Def, U 0,00012935 kg
Urea, as N {GLO}| market for | Alloc Def, U 3,6875E-06 kg
Transport, passenger car, large size, petrol, EURO 3 {GLO}| market for |

Alloc Def, U 0,00017986 km
Ammonium chloride {GLO}| market for | Alloc Def, U 0,00011893 kg
Soda ash, dense {GLO}| market for | Alloc Def, U 0,00741204 kg
Quicklime, milled, loose {RoW}| market for quicklime, milled, loose | Alloc

Def, U 0,0088986 kg
Sodium silicate, without water, in 37% solution state {GLO}| market for |

Alloc Def, U 4,7664E-06 kg
Cement, Portland {RoW}| market for | Alloc Def, U 0,01386329 kg
Strontium carbonate {GLO}| market for | Alloc Def, U 0,00021731 kg
Copper sulfate {GLO}| market for | Alloc Def, U 3,8337E-05 kg
Foaming agent {GLO}| market for | Alloc Def, U 5,5292E-06 kg
Manganese dioxide {GLO}| market for | Alloc Def, U 0,00048947 kg
Sodium sulfide {GLO}| market for | Alloc Def, U 6,7822E-05 kg
Potassium permanganate {GLO}| market for | Alloc Def, U 8,5411E-06 kg
Hydrogen, liquid {RoW}| market for | Alloc Def, U 0,00086792 kg
Sodium dithionite, anhydrous {GLO}| market for | Alloc Def, U 0,00019443 kg
Hydrogen peroxide, without water, in 50% solution state {GLO}| market for

| Alloc Def, U 1,0383E-06 kg
Sodium hydroxide, without water, in 50% solution state {GLO}| market for

| Alloc Def, U 0,00010733 kg
Pyridine {GLO}| market for | Alloc Def, U 4,9174E-05 kg
Sheet rolling, chromium steel {GLO}| market for | Alloc Def, U 0,0209547 kg
Glass fibre reinforced plastic, polyamide, injection moulded {GLO}| market

for | Alloc Def, U 0,01557864 kg
Polyvinylchloride, bulk polymerised {GLO}| market for | Alloc Def, U 0,00025129 kg
Cast iron {GLO}| market for | Alloc Def, U 0,01018073 kg
Electricity/heat

Diesel-electric generating set production 10MW {GLO}| market for diesel-

electric generating set production 10MW | Alloc Def, U 0,00197242 MJ
Heat, district or industrial, natural gas {Europe without Switzerland}|

market for heat, district or industrial, natural gas | Alloc Def, U 0,29046401 MJ
Electricity, medium voltage {NO}| market for | Alloc Def, U 0,7557499 kWh
Propane, burned in building machine {GLO}| market for | Alloc Def, U 0,00392859 MJ
Heat, district or industrial, natural gas {RoW}| heat production, natural

gas, at boiler modulating >100kW | Alloc Def, U 1,00564603 MJ
Heat, central or small-scale, other than natural gas {GLO}| market group

for | Alloc Def, U 0,12044162 MJ
Electricity, low voltage {GLO}| market group for | Alloc Def, U 4,4615E-05 kWh
Electricity, medium voltage {GLO}| market group for | Alloc Def, U 0,11455728 kWh
Heat, district or industrial, natural gas {GLO}| market group for | Alloc Def,

U 0,1218037 MJ
Heat, district or industrial, other than natural gas {GLO}| market group for |

Alloc Def, U 0,00344236 MJ




Heat, district or industrial, other than natural gas {NO}| heat, from
municipal waste incineration to generic market for heat district or

industrial, other than natural gas | Alloc Def, S 0,00150854 MJ
Heat, central or small-scale, other than natural gas {RoW}| heat

production, light fuel oil, at boiler 200kW condensing, non-modulating |

Alloc Def, U 0,00099015 MJ
Electricity, high voltage {NO}| market for | Alloc Def, U 0,88343003 kWh
Diesel, burned in building machine {GLO}| market for | Alloc Def, U 0,00856754 MJ
Heat, district or industrial, other than natural gas {NO}| heat and power co-

generation, wood chips, 6667 kW, state-of-the-art 2014 | Conseq, U 0,04317755 MJ
Emissions to air

Nitrogen, atmospheric 0,02913424 kg
1-Propanol 0,00176905 kg
Water/m3 0,00046131 m3
Water/m3 0,0005921 m3
NMVOC, non-methane volatile organic compounds, unspecified origin 0,00027146 kg
Arsenic 1,7156E-08 kg
Lead 1,3211E-07 kg
Carbon dioxide, fossil 0,00287101 kg
Sulfuric acid 3,9188E-05 kg
Particulates, > 10 um 5,882E-06 kg
Zinc 1,5764E-05 kg
Carbon monoxide, fossil 1,1117E-05 kg
Sulfur dioxide 0,00383179 kg
Mercury 1,6668E-08 kg
Nitrogen oxides 3,0166E-05 kg
Particulates, > 2.5 um, and < 10um 6,1524E-06 kg
Copper 1,4571E-07 kg
Cadmium 1,4571E-07 kg
Particulates, < 2.5um 4,0228E-05 kg
Dioxin, 2,3,7,8 Tetrachlorodibenzo-p- 1,2203E-15 kg
Emissions to water

TOC, Total Organic Carbon 3,5944E-05 kg
Water, NO 0,00015478 m3
COD, Chemical Oxygen Demand 9,2131E-05 kg
DOC, Dissolved Organic Carbon 3,5944E-05 kg
BODS5, Biological Oxygen Demand 5,9335E-05 kg
Phosphate 2,0312E-08 kg
TOC, Total Organic Carbon 2,5908E-06 kg
COD, Chemical Oxygen Demand 6,9951E-06 kg
Phosphate 3,6241E-08 kg
BOD5, Biological Oxygen Demand 9,4225E-07 kg
DOC, Dissolved Organic Carbon 2,5908E-06 kg
Selenium 2,7575E-07 kg
Fluoride 5,6361E-06 kg
Zinc 1,8455E-06 kg
Cadmium 2,6157E-08 kg
Arsenic 5,9368E-09 kg
Mercury 1,2155E-09 kg
Water, NO 0,03977682 m3
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Copper 1,3186E-07 kg
Lead 1,078E-07 kg
Waste to treatment

Waste mineral oil {RoW}| market for waste mineral oil | Alloc Def, U 0,00756425 kg
Inert waste {RoW}| market for inert waste | Alloc Def, U 0,00346849 kg
Hazardous waste, for underground deposit {GLO}| market for | Alloc Def,

U 0,00153545 kg
Wastewater, average {RoW}| market for wastewater, average | Alloc Def,

U 0,00403838 m3
Aluminium scrap, new {RoW}| market for | Alloc Def, U 0,00909798 kg
Fly ash and scrubber sludge {RoW}| market for fly ash and scrubber

sludge | Alloc Def, U 0,0009274 kg
Hazardous waste, for incineration {RoW}| market for hazardous waste, for

incineration | Alloc Def, U 0,0040633 kg
Scrap aluminium {RoW?}| market for scrap aluminium | Alloc Def, U 6,4513E-05 kg
Waste emulsion paint, separated {GLO}| market for | Alloc Def, U 4,5949E-06 kg
Spent solvent mixture {RoW}| market for spent solvent mixture | Alloc Def,

U 0,00661501 kg
Mooring

Materials/fuels

Cast iron {GLO}| market for | Alloc Def, U 4250 kg
Aluminium, wrought alloy {GLO}| market for | Alloc Def, U 131,25 kg
Metal working, average for aluminium product manufacturing {GLO}|

market for | Alloc Def, U 131,25 kg
Metal working, average for steel product manufacturing {GLO}| market for

| Alloc Def, U 4250 kg
125 Seats

Materials/fuels

Aluminium, primary, liquid {GLO}| market for | Alloc Def, U 1590,116 kg
Steel, low-alloyed {GLO}| market for | Alloc Def, U 919 kg
Synthetic rubber {GLO}| market for | Alloc Def, U 1,2496 kg
Polyurethane, rigid foam {GLO}| market for | Alloc Def, U 112,464 kg
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Appendix D- PV inventory

Silica sand [1 kg]

Materials/fuels

Sand {GLO}| market for | Alloc Def, U 1,04 kg
Electricity/heat
Heat, district or industrial, other than natural gas {Europe without
Switzerland}| market for heat, district or industrial, other than natural gas |
Alloc Def, U 0,2 MJ
Solar grade silicon [1kg]
Materials/fuels
Transport, freight, sea, transoceanic ship {GLO}| market for | Alloc Def, U 0,136 tkm
Silica Sand 4,02 kg
Transport, freight, lorry, unspecified {GLO}| market for | Alloc Def, U 0,836 tkm
Wood chips, wet, measured as dry mass {SE}| softwood forestry, pine,
sustainable forest management | Alloc Def, U 1,50532276 kg
Petroleum coke {GLO}| market for | Alloc Def, U 0,35039638 kg
Hard coal {RoW}| market for | Alloc Def, U 2,57463194 kg
Propane {GLO}| market for | Alloc Def, U 0,01098528 kg
Silicone factory {GLO}| market for | Alloc Def, U 1E-11 p
Electricity/heat
Electricity, medium voltage {NO}| market for | Alloc Def, U 47,595017 kWh
Emissions to air
Arsenic 0,00000048 kg
Lead 2,94E-07 kg
VOC, volatile organic compounds 0,0002718 kg
Cadmium 4,53E-09 kg
Carbon dioxide, biogenic 2,7180068 kg
Carbon dioxide, fossil 9,06002265 kg
Carbon monoxide 0,00951302 kg
Copper 0,0003171 kg
Chromium 0,00000906 kg
Mercury 0,0000861 kg
Dinitrogen monoxide 0,0000974 kg
Methane 0,0003624 kg
Molybdenum 1,02E-07 kg
Nickel 2,88E-07 kg
Nitrogen oxides 0,03488109 kg
PAH, polycyclic aromatic hydrocarbons 0,00385051 kg
Zinc 0,00000109 kg
Sulfur dioxide 0,02423556 kg
Particulates, unspecified 0,0012684 kg
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Emissions to water

Aluminium 0,0000179 kg
Arsenic 7,25E-07 kg
Iron 0,000079 kg
Copper 0,00000442 kg
Chromium 3,62E-07 kg
Nickel 0,00000652 kg
Zinc 9,06E-07 kg
Waste water/m3 0,20794564 m3
Final waste flows

Hazardous waste, unspecified treatment 0,00051642 kg
Glass waste 0,00017441 kg
Waste, organic 0,02906682 kg
Waste, inorganic 0,93674745 kg
Metal waste 0,01937939 kg
Packaging waste, paper and board 0,00438279 kg
Electronic waste 0,00270442 kg
Silicon ingot [1 kg]

Resources

Water, river, RER 2,0508 m3
Water, cooling, unspecified natural origin, RER 2,333 m3
Materials/fuels

Solar Grade Silicon (Elkem Solar) 1,07 kg
Hydrogen fluoride {GLO}| market for | Alloc Def, U 0,050664 kg
Acetone, liquid {GLO}| market for | Alloc Def, U 0,049003 kg
Argon, liquid {GLO}| market for | Alloc Def, U 5,7944 kg
Lime, hydrated, packed {GLO}| market for | Alloc Def, U 0,19103 kg
Ceramic tile {GLO}| market for | Alloc Def, U 0,33645 kg
Sodium hydroxide, without water, in 50% solution state {GLO}| market for |

Alloc Def, U 0,041528 kg
Nitric acid, without water, in 50% solution state {GLO}| market for | Alloc

Def, U 0,094684 kg
Acetic acid, without water, in 98% solution state {GLO}| market for | Alloc

Def, U 0,10797 kg
Silicone factory {GLO}| market for | Alloc Def, U 1E-11 p
Tap water {Europe without Switzerland}| market for | Alloc Def, U 94,073 kg
Electricity/heat

Electricity, medium voltage {DE}| market for | Alloc Def, U 85,6 kKWh
Heat, district or industrial, natural gas {Europe without Switzerland}|

market for heat, district or industrial, natural gas | Alloc Def, U 68,2 MJ
Emissions to air

Water/m3 1,22576845 m3

Emissions to water
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DOC, Dissolved Organic Carbon 0,040475 kg
Nitrogen 0,0091039 kg
COD, Chemical Oxygen Demand 0,13034 kg
Water, DE 3,25210455 m3
TOC, Total Organic Carbon 0,040475 kg
Acetic acid 0,053987 kg
BODS5, Biological Oxygen Demand 0,13034 kg
Fluoride 0,0023713 kg
Hydroxide 0,0074169 kg
Hydrocarbons, unspecified 0,022841 kg
Waste to treatment

Waste, from silicon wafer production, inorganic {GLO}| market for | Alloc

Def, U 3,6364 kg
Silicon wafer [1m?]

Materials/fuels

Silicon Ingot 0,885 kg
Steel, low-alloyed, hot rolled {GLO}| market for | Alloc Def, U 1,4826 kg
Sodium hydroxide, without water, in 50% solution state {GLO}| market for |

Alloc Def, U 0,015 kg
Paper, woodfree, coated {RER}| market for | Alloc Def, U 0,19 kg
Silicon carbide {GLO}| market for | Alloc Def, U 2,63 kg
Water, completely softened, from decarbonised water, at user {GLO}|

market for | Alloc Def, U 65 kg
Wire drawing, steel {GLO}| market for | Alloc Def, U 1,49 kg
W afer factory {GLO}| market for | Alloc Def, U 0,000004 p
Glass wool mat {GLO}| market for | Alloc Def, U 0,01 kg
Acetic acid, without water, in 98% solution state {GLO}| market for | Alloc

Def, U 0,039 kg
Triethylene glycol {GLO}| market for | Alloc Def, U 2,71 kg
Hydrochloric acid, without water, in 30% solution state {GLO}|

tetrafluoroethane production | Alloc Def, U 0,0027 kg
Polystyrene, high impact {GLO}| market for | Alloc Def, U 0,2 kg
Packaging film, low density polyethylene {GLO}| market for | Alloc Def, U 0,1 kg
Alkylbenzene sulfonate, linear, petrochemical {GLO}| market for | Alloc

Def, U 0,24 kg
Brass {RoW}| market for brass | Alloc Def, U 0,00745 kg
Acrylic binder, without water, in 34% solution state {GLO}| market for |

Alloc Def, U 0,002 kg
Dipropylene glycol monomethy! ether {GLO}| market for | Alloc Def, U 0,3 kg
Tap water {Europe without Switzerland}| market for | Alloc Def, U 0,00598748 kg
Tap water {CH}| market for | Alloc Def, U 0,0000125 kg
Electricity/heat

Heat, district or industrial, natural gas {Europe without Switzerland}|

market for heat, district or industrial, natural gas | Alloc Def, U 4 MJ
Electricity, medium voltage {DE}| market for | Alloc Def, U 8 kWh

Emissions to air
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Water/m3 0,0097509 m3
Emissions to water

Lead 0,0000303 kg
DOC, Dissolved Organic Carbon 0,011083 kg
Cadmium 0,00000605 kg
AOX, Adsorbable Organic Halogen as CI 0,00050129 kg
BOD5, Biological Oxygen Demand 0,029555 kg
Mercury 0,00000605 kg
TOC, Total Organic Carbon 0,011083 kg
COD, Chemical Oxygen Demand 0,02955 kg
Chromium 0,0000303 kg
Nickel 0,0000605 kg
Phosphate 0,00050129 kg
Nitrogen 0,0099449 kg
Water, RER 0,0552551 m3
Copper 0,0000605 kg
Waste to treatment

Waste, from silicon wafer production {GLO}| market for | Alloc Def, U 0,11 kg
PV cell 1 [m?]

Resources

Water, cooling, unspecified natural origin, GLO 0,99847386 m3
Materials/fuels

Silicon Wafer 1,06 m2
Phosphoric acid, fertiliser grade, without water, in 70% solution state

{GLO}| market for | Alloc Def, U 0,00767405 kg
Solvent, organic {GLO}| market for | Alloc Def, U 0,00143403 kg
Hydrochloric acid, without water, in 30% solution state {RER}| market for |

Alloc Def, U 0,04560889 kg
Metallization paste, back side, aluminium {GLO}| market for | Alloc Def, U 0,07190668 kg
Isopropanol {GLO}| market for | Alloc Def, U 0,07889135 kg
Sodium silicate, spray powder, 80% {GLO}| market for | Alloc Def, U 0,07478254 kg
Hydrogen fluoride {GLO}| market for | Alloc Def, U 0,03772026 kg
Silicone product {GLO}| market for | Alloc Def, U 0,00121214 kg
Argon, liquid {GLO}| market for | Alloc Def, U 0,02568081 kg
Acetic acid, without water, in 98% solution state {GLO}| market for | Alloc

Def, U 0,00282697 kg
Nitrogen, liquid {RER}| market for | Alloc Def, U 1,85311437 kg
Nitric acid, without water, in 50% solution state {GLO}| market for | Alloc

Def, U 0,02666677 kg
Ethanol, without water, in 99.7% solution state, from ethylene {GLO}|

market for | Alloc Def, U 0,000641 kg
Metallization paste, front side {GLO}| market for | Alloc Def, U 0,00739606 kg
Oxygen, liquid {RER}| market for | Alloc Def, U 0,10190529 kg
Phosphoryl chloride {GLO}| market for | Alloc Def, U 0,00159493 kg
Ammonia, liquid {RER}| market for | Alloc Def, U 0,00673869 kg
Metallization paste, front side {GLO}| market for | Alloc Def, U 0,00493077 kg
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Calcium chloride {GLO}| market for | Alloc Def, U 0,021572 kg

Titanium dioxide {RER}| market for | Alloc Def, U 0,00000142 kg

Polystyrene, expandable {GLO}| market for | Alloc Def, U 0,0004072 kg

Tetrafluoroethylene {GLO}| market for | Alloc Def, U 0,00315565 kg

Photovoltaic cell factory {GLO}| market for | Alloc Def, U 0,0000004 p

Sodium hydroxide, without water, in 50% solution state {GLO}| market for |

Alloc Def, U 0,15696275 kg

Water, completely softened, from decarbonised water, at user {GLO}|

market for | Alloc Def, U 137,243658 kg

Electricity/heat

Heat, district or industrial, natural gas {Europe without Switzerland}|

market for heat, district or industrial, natural gas | Alloc Def, U 4,77 MJ

Electricity, medium voltage {DE}| market for | Alloc Def, U 30,2 kWh
Heat, district or industrial, other than natural gas {Europe without

Switzerland}| market for heat, district or industrial, other than natural gas |

Alloc Def, U 1,16 MJ

Emissions to air

Hydrogen chloride 0,00026626 kg

Silver 0,00077248 kg

Ethane, hexafluoro-, HFC-116 0,0001186 kg

Aluminium 0,00077248 kg

Silicon 0,0000727 kg

Particulates, < 2.5um 0,00266258 kg

Tin 0,00077248 kg

Hydrogen fluoride 0,00000485 kg

Methane, tetrafluoro-, CFC-14 0,00024762 kg

Nitrogen oxides 0,00005 kg

Sodium 0,0000485 kg

Lead 0,00077248 kg

Water/m3 0,40749517 m3
NMVOC, non-methane volatile organic compounds, unspecified origin 0,19353106 kg

Emissions to water

Water, RER 0,51089239 m3
Waste to treatment

Wastewater from PV cell production {GLO}| market for | Alloc Def, U 0,21732996 m3
Waste, from silicon wafer production {GLO}| market for | Alloc Def, U 0,27570726 kg
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Appendix E- Battery inventory

One cell

Materials/fuels

Battery separator {CN}| production | Alloc Def, U 0,0014 kg

Aluminium, wrought alloy {GLO}| aluminium ingot, primary, to market |

Alloc Def, U 0,0031 kg

Sheet rolling, aluminium {RoW}| processing | Alloc Def, U 0,0031 kg

Cathode, LiMn204, for lithium-ion battery {CN}| production | Alloc Def, U 0,0113 kg

Copper {GLO}| market for | Alloc Def, U 0,0075 kg

Graphite, battery grade {CN}| production | Alloc Def, U 0,0062 kg

Lithium hexafluorophosphate {CN}| production | Alloc Def, U 0,0044 kg

Steel, chromium steel 18/8, hot rolled {RoW}| production | Alloc Def, U 0,0092 kg

Metal working, average for chromium steel product manufacturing {RER}|

processing | Alloc Def, U 0,0092 kg

Transport, freight, sea, transoceanic tanker {GLO}| market for | Alloc Def,

U 0,74844 tkm

Transport, freight, lorry >32 metric ton, EURO5 {GLO}| market for |

Conseq, U 0,04158 tkm
One Module

Materials/fuels

Aluminium, cast alloy {GLO}| aluminium ingot, primary, to market | Alloc

Def, U 0,0232 kg

Aluminium, wrought alloy {GLO}| aluminium ingot, primary, to market |

Alloc Def, U 0,0232 kg

Copper {GLO}| market for | Alloc Def, U 0,5283 kg

Metal working, average for copper product manufacturing {RoW}|

processing | Alloc Def, S 0,5283 kg

Acrylonitrile-butadiene-styrene copolymer {RER}| production | Alloc Def, U 0,439 kg

Metal working, average for chromium steel product manufacturing {RER}|

processing | Conseq, U 0,0279 kg

Steel, low-alloyed {RoW}| steel production, electric, low-alloyed | Alloc

Def, U 0,0279 kg

Synthetic rubber {RoW}| production | Alloc Def, U 0,0075 kg

Integrated circuit, memory type {GLO}| production | Alloc Def, U 0,0089 kg

Transport, freight, sea, transoceanic ship {GLO}| market for | Alloc Def, U 16,76376 tkm

Transport, freight, lorry >32 metric ton, EURO5 {RER}| transport, freight,

lorry >32 metric ton, EUROS5 | Alloc Def, U 0,93132 tkm
Sub pack

Materials/fuels

Aluminium, wrought alloy {GLO}| aluminium ingot, primary, to market |

Alloc Def, U 5 kg

Metal working, average for aluminium product manufacturing {RoW}|

processing | Alloc Def, U 5 kg

Copper, blister-copper {RoW}| production | Alloc Def, U 0,9 kg

Metal working, average for copper product manufacturing {RoW}|

processing | Alloc Def, U 0,9 kg

Metal working, average for steel product manufacturing {RoW}|

processing | Alloc Def, U 6 kg
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Metal working, average for chromium steel product manufacturing {RoW}|

processing | Alloc Def, S 6 kg

Powder coat, steel {RoW}| powder coating, steel | Alloc Def, U 1,11315 m2

Acrylonitrile-butadiene-styrene copolymer {RoW}| production | Alloc Def, U 1,2 kg

Transport, freight, sea, transoceanic ship {GLO}| processing | Alloc Def, U 212,22 tkm

Transport, freight, lorry >32 metric ton, EURO5 {GLO}| market for | Alloc

Def, U 11,79 tkm
String

Materials/fuels

Steel, low-alloyed, hot rolled {RoW?}| production | Alloc Def, U 65 kg

Metal working, average for chromium steel product manufacturing {RoW}|

processing | Alloc Def, S 65 kg

Transport, freight, sea, transoceanic ship {GLO}| processing | Alloc Def, U 1053 tkm

Transport, freight, lorry >32 metric ton, EURO5 {GLO}| market for | Alloc

Def, U 1053 tkm
Energy consumption for battery manufacturing

Electricity/heat

Electricity, medium voltage {CN}| market group for | Conseq,

U 200 kWh

Electricity, medium voltage {CN}| market group for | Conseq,

U 0,00388889 kWh

Electricity, medium voltage {NO}| market for | Alloc Def, U 0 kWh

Electricity, medium voltage {NO}| market for | Alloc Def, U 0 kWh
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Appendix F- Results

Scenario 1

Productio | Operatio
Impact category Total Others n, boat n
Climate change [kg CO2 eq] 1,29E+07 | 3,06E+04 | 1,37E+05| 1,28E+07
Ozone depletion [kg CFC-11 eq] 2,30E+00 | 3,04E-03 7,22E-03 | 2,29E+00
Terrestrial acidification [kg SO2 eq] 1,A0E+05 | 1,44E+02 | 8,04E+02 | 1,39E+05
Freshwater eutrophication [kg P eq] 2,32E+03 | 1,66E+01| 8,04E+01 | 2,22E+03
Marine eutrophication [kg N eq] 8,41E+03 | 7,50E+00| 3,46E+01 | 8,36E+03
Human toxicity [kg 1,4-DB eq] 1,84E+06 | 2,89E+04 | 1,16E+05| 1,70E+06
Photochemical oxidant formation
[kg NMVOC] 2,25E+05 | 9,77E+01 | 5,17E+02 | 2,24E+05
Particulate matter formation[kg
PM10 eq] 8,07E+04 | 9,16E+01 | 3,83E+02 | 8,02E+04
Terrestrial ecotoxicity [kg 1,4-DB
eq] 3,62E+02 | 4,96E+00 | 3,60E+01 | 3,21E+02
Freshwater ecotoxicity [kg 1,4-DB
eq] 3,81E+04 | 1,40E+03 | 2,83E+03 | 3,39E+04
Marine ecotoxicity [kg 1,4-DB eq] 3,87E+04 | 1,29E+03 | 2,75E+03 | 3,46E+04
lonising radiation [kBq U235 eq] 559E+05 | 5,26E+03 | 4,50E+03 | 5,49E+05
Agricultural land occupation [m2] 1,72E+06 | 4,51E+03 | 5,91E+03 | 1,71E+06
Urban land occupation [m2] 3,32E+04 | 4,13E+02 | 1,32E+03 | 3,15E+04
Natural land transformation [m2] 4,72E+03 | 8,93E+00 | 1,53E+01 | 4,70E+03
Water depletion [m3] 7,14E+04 | 9,90E+03 | 2,26E+03 | 5,92E+04
Metal depletion [kg Fe eq] 1,90E+05 | 9,80E+03 | 4,20E+04 | 1,39E+05
Fossil depletion [kg oil eq] 4,53E+06 | 7,30E+03 | 3,05E+04 | 4,49E+06
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Scenario 2

Production | Operatio | Production,

Impact category Total Others , battery n boat
Climate change [kg 5,15E+0
CO2 eq] 1,95E+06 |4 7,57E+05 7,54E+05 | 3,89E+05
Ozone depletion [kg
CFC-11 eq] 3,06E-01 | 1,15E-02 | 5,36E-02 1,09E-01 | 1,32E-01
Terrestrial
acidification [kg SO2 5,18E+0
eq] 1,45E+04 | 2 5,09E+03 2,45E+03 | 6,46E+03
Freshwater
eutrophication [kg P 1,02E+0
eq] 2,27TE+03 | 2 5,79E+02 2,53E+02 | 1,33E+03
Marine eutrophication 2,99E+0
[kg N eq] 7,48E+02 |1 2,19E+02 1,24E+02 | 3,75E+02
Human toxicity [kg 2,15E+0
1,4-DB eq] 447E+06 |5 1,05E+06 3,49E+05 | 2,85E+06
Photochemical
oxidant formation [kg 2,32E+0
NMVOC] 6,74E+03 | 2 2,54E+03 1,74E+03 | 2,24E+03
Particulate matter
formation[kg PM10 2,44E+0
eq] 6,31E+03 |2 2,28E+03 1,42E+03 | 2,37E+03
Terrestrial ecotoxicity 2,01E+0
[kg 1,4-DB eq] 4,73E+02 |1 1,14E+02 8,50E+01 | 2,54E+02
Freshwater
ecotoxicity [kg 1,4- 4,53E+0
DB eq] 1,35E+05 |3 2,18E+04 6,22E+04 | 4,69E+04
Marine ecotoxicity 4,57E+0
[kg 1,4-DB eq] 1,31E+05 |3 2,23E+04 5,44E+04 | 4,94E+04
lonising radiation 9,81E+0
[kBg U235 eq] 3,59E+05 |3 3,27TE+04 2,72E+05 | 4,47TE+04
Agricultural land 8,34E+0
occupation [m2] 3,17E+05 | 3 2,68E+04 2,44E+05 | 3,74E+04
Urban land occupation 9,45E+0
[m2] 2,55E+04 |2 9,29E+03 7,10E+03 | 8,21E+03
Natural land 1,30E+0
transformation [m2] 545E+02 |1 6,84E+01 3,94E+02 | 6,93E+01

1,02E+0
Water depletion[m3] | 7,08E+05 | 4 3,92E+03 6,87E+05 | 6,55E+03
Metal depletion [kg 5,46E+0
Fe eq] 1,10E+06 |4 3,82E+05 1,02E+05 | 5,66E+05
Fossil depletion [kg 1,26E+0
oil eq] 4,64E+05 |4 1,67E+05 1,86E+05 | 9,89E+04
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Scenario 3

Impact
category

Total

Others

Production,
boat

Production,
battery

Operation

PVs

Climate change
[kg CO2 eq]

2,25E+06

5,15E+04

3,89E+05

9,98E+05

7,17E+05

9,03E+04

Ozone depletion
[kg CFC-11eq]

3,43E-01

1,15E-02

1,32E-01

7,23E-02

1,03E-01

2,35E-02

Terrestrial
acidification [kg
SO2 eq]

1,63E+04

5,18E+02

6,46E+03

6,76E+03

2,33E+03

2,84E+02

Freshwater
eutrophication

[kg P eq]

2,54E+03

1,02E+02

1,33E+03

7,78E+02

2,40E+02

8,73E+01

Marine
eutrophication

[kg N eq]

8,68E+02

2,99E+01

3,75E+02

2,93E+02

1,18E+02

5,19E+01

Human toxicity
[kg 1,4-DBeq]

4,93E+06

2,15E+05

2,85E+06

1,42E+06

3,32E+05

1,18E+05

Photochemical
oxidant
formation [kg
NMVOC]

7,78E+03

2,32E+02

2,24E+03

3,36E+03

1,65E+03

3,07E+02

Particulate
matter
formation[kg
PM10eq]

7,12E+03

2,44E+02

2,37E+03

3,02E+03

1,35E+03

1,41E+02

Terrestrial
ecotoxicity [kg
1,4-DBeq]

8,15E+02

2,01E+01

2,54E+02

1,54E+02

8,08E+01

3,06E+02

Freshwater
ecotoxicity [kg
1,4-DBeq]

1,42E+05

4,53E+03

4,69E+04

2,93E+04

5,92E+04

1,98E+03

Marine
ecotoxicity [kg
1,4-DBe(q]

1,39E+05

4 57E+03

4,94E+04

3,00E+04

5,18E+04

2,74E+03

lonising
radiation [kBq
U235 eq]

3,71E+05

9,81E+03

4,4TE+04

4,37E+04

2,59E+05

1,41E+04

Agricultural
land occupation
[m2]

3,24E+05

8,34E+03

3,74E+04

3,57E+04

2,32E+05

1,07E+04

Urban land
occupation [m2]

2,90E+04

9,45E+02

8,21E+03

1,23E+04

6,76E+03

7,41E+02

Natural land
transformation
[m2]

5,59E+02

1,30E+01

6,93E+01

9,13E+01

3,75E+02

9,89E+00

Water depletion
[m3]

6,78E+05

1,02E+04

6,55E+03

5,25E+03

6,54E+05

2,44E+03

Metal depletion
[kg Fe eq]

1,24E+06

5,46E+04

5,66E+05

5,16E+05

9,68E+04

1,20E+04

Fossil depletion
[kg oil eq]

5,32E+05

1,26E+04

9,89E+04

2,20E+05

1,77E+05

2,34E+04
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Scenario 4

Production, | Production,
Impact category Total Others boat battery Operation
Climate change [kg
CO2 eq] 2,93E+06 5,15E+04 3,89E+05 1,71E+06 7,86E+05
Ozone depletion [kg
CFC-11 eq] 4,10E-01 1,15E-02 1,32E-01 1,53E-01 1,13E-01
Terrestrial
acidification [kg SO2
eq] 2,20E+04 5,18E+02 6,46E+03 1,25E+04 2,55E+03
Freshwater
eutrophication [kg P
eq] 3,31E+03 1,02E+02 1,33E+03 1,61E+03 2,63E+02
Marine eutrophication
[kg N eq] 1,11E+03 2,99E+01 3,75E+02 5,73E+02 1,29E+02
Human toxicity [kg
1,4-DB eq] 6,42E+06 2,15E+05 2,85E+06 3,00E+06 3,64E+05
Photochemical oxidant
formation [kg
NMVOC] 1,03E+04 2,32E+02 2,24E+03 6,00E+03 1,81E+03
Particulate matter
formation[kg PM10
eq] 9,66E+03 2,44E+02 2,37E+03 5,57E+03 1,48E+03
Terrestrial ecotoxicity
[kg 1,4-DB eq] 6,88E+02 2,01E+01 2,54E+02 3,26E+02 8,85E+01
Freshwater ecotoxicity
[kg 1,4-DB eq] 1,77E+05 4,53E+03 4,69E+04 6,08E+04 6,49E+04
Marine ecotoxicity [kg
1,4-DB eq] 1,73E+05 4,57E+03 4,94E+04 6,24E+04 5,67E+04
lonising radiation
[kBq U235 eq] 4,25E+05 9,81E+03 4, 47E+04 8,72E+04 2,83E+05
Agricultural land
occupation [m2] 3,68E+05 8,34E+03 3,74E+04 6,80E+04 2,54E+05
Urban land occupation
[m2] 3,94E+04 9,45E+02 8,21E+03 2,28E+04 7,40E+03
Natural land
transformation [m2] 6,71E+02 1,30E+01 6,93E+01 1,78E+02 4,11E+02
Water depletion [m3] | 7,43E+05 1,02E+04 6,55E+03 1,05E+04 7,16E+05
Metal depletion [kg Fe
eq] 1,83E+06 5,46E+04 5,66E+05 1,10E+06 1,06E+05
Fossil depletion [kg oil
eq] 6,92E+05 1,26E+04 9,89E+04 3,87E+05 1,93E+05
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GWP analysis of battery

Groups Amount [kg CO2]
Total 230006,962

Cell 44158,71904
Module 12718,83329
String 7712,374828

Sub pack 18788,18796

Energy, battery manufacture

146628,8468

GWP analysis of one battery cell

Groups Amount [kg CO2]
Total 0,44229486
Separator 0,006399789
Aluminium 0,054690395
Sheet rolling, aluminium 0,002125138
Cathode, LiMn;O4 0,115643653
Copper 0,052897336
Graphite 0,012126946
Lithium hexafluorphosphate 0,125392514
Steel 0,041701756
Metal working 0,023076953
Transport, sea 0,004394634
Transport, lorry 0,003845745

GWP analysis of the drivetrain

Groups Amount [kg CO2]
Total 234336,651
Converter 102070,062
Transformer 126408,43

Cables 5858,15844

GWP analysis of one transformer

Groups Amount [kg CO2]
Total 42136,1433
Powder coat, steel 112,1748348
Copper 21582,1129
Metal working, copper 9426,161789
Cast iron 3401,67965
Epoxy resin insulator, Al203 6777,55797
Electricity, medium voltage {NO} 153,6517665
Heat 682,804395
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Battery production with Norwegian and Chinese

energy mix
Numbers
Scenario 2
Norwegian 1,40E+06 | kg
Chinese 1,83E+06 | kg
Scenario 3
Norwegian 1,54E+06 | kg
Chinese 2,10E+06 | kg
Scenario 4
Norwegian 1,92E+06 | kg
Chinese 2,73E+06 | kg
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