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REVIEW ARTICLE

Understanding the assumptions underlying Mendelian
randomization
Christiaan de Leeuw 1✉, Jeanne Savage 1, Ioan Gabriel Bucur 2, Tom Heskes2 and Danielle Posthuma 1,3

© The Author(s), under exclusive licence to European Society of Human Genetics 2022

With the rapidly increasing availability of large genetic data sets in recent years, Mendelian Randomization (MR) has quickly gained
popularity as a novel secondary analysis method. Leveraging genetic variants as instrumental variables, MR can be used to estimate
the causal effects of one phenotype on another even when experimental research is not feasible, and therefore has the potential to
be highly informative. It is dependent on strong assumptions however, often producing biased results if these are not met. It is
therefore imperative that these assumptions are well-understood by researchers aiming to use MR, in order to evaluate their
validity in the context of their analyses and data. The aim of this perspective is therefore to further elucidate these assumptions and
the role they play in MR, as well as how different kinds of data can be used to further support them.

European Journal of Human Genetics (2022) 30:653–660; https://doi.org/10.1038/s41431-022-01038-5

INTRODUCTION
Genetic research in the last two decades has taken an enormous
flight, and a wealth of genetic data is now available for a wide
variety of human phenotypes [1]. Besides providing ever-
increasing insight into the genetic etiology of these phenotypes,
it may provide an opportunity to study causal relations between
these phenotypes as well.
Although causal inference is generally considered the domain

of experimental methods like randomized controlled trials (RCT),
some nonexperimental methods can be applied to estimate
causal relations indirectly [2]. Though less robust, these can be
used when RCTs are not a viable option. Mendelian Randomiza-
tion (MR), a form of instrumental variable analysis that uses
genetic variants as instruments to investigate causal relations
between phenotypes, is one such method [3]. MR has become
very popular in recent years, with thousands of methodological
and applied MR studies published to date [4, 5], and with
the continued growth of available genetic data this trend will
likely persist.
MR relies on strong assumptions however, yielding biased and

misleading results if those assumptions fail [6, 7]. Given the
widespread popularity of MR, it is therefore imperative that these
assumptions are clearly understood by the researchers using it, to
allow them to properly evaluate the validity of these assumptions
in the context of their own data and analyses [8–10].
The aim of this Perspective is to outline the assumptions that are

needed to perform MR, what role those assumptions play in the
analysis and its interpretation, and what information different
elements of input data contribute to the support of these
assumptions. Our aim is not to give an exhaustive overview of
individual methods, but rather to elucidate the underlying logic of
MR in its different forms. As such, we will also abstract away from

issues pertaining to estimation, assuming an idealized scenario in
which all associations between observed variables are fully known,
examining what challenges remain even when estimation uncer-
tainty is entirely eliminated.

CORE PRINCIPLE
The aim of an MR analysis is to estimate and test the causal effect
of a putative causal phenotype X, the exposure, on another
phenotype Y, the outcome. It uses the principles of instrumental
variable analysis to do so, with the genotype Gj of a genetic
variant j serving as the instrument [8, 11].
To serve as a valid instrument for the causal effect of exposure

on outcome, there must be an association between Gj and the
exposure. Moreover, it must be the case that any association of Gj

with the outcome is mediated by the exposure, as depicted in
Fig. 1A. In other words, associations of Gj directly with the
outcome, or with a variable C that acts as a confounder of
exposure and outcome cannot be present (Fig. 1B). There is no
requirement that Gj itself has a causal effect (see also Supplemen-
tary Information—Relevance assumption); if variant j is in LD with
causal variants that are valid instruments, then Gj is a valid
instrumental variable as well (Fig. 1C). For ease of notation
however, the graphs used throughout the paper will assume the
selected variants used are causal.
If we assume the effect sizes of all associations and causal

effects to be constant (i.e., simple linear relations), we can easily
see how this can provide the parameter βXY of the causal effect of
the exposure on the outcome. Denoting the marginal associations
of Gj with exposure and outcome as γXj and γYj respectively, for the
assumed scenario in Fig. 1A we can express these as γXj ¼ αXj and
γYj ¼ αXjβXY . Because the association γYj between Gj and the

Received: 9 June 2021 Revised: 6 December 2021 Accepted: 4 January 2022
Published online: 26 January 2022

1Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands.
2Department of Data Science, Institute for Computing and Information Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands. 3Department of Clinical Genetics,
Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands. ✉email: c.a.de.leeuw@vu.nl

www.nature.com/ejhg

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-022-01038-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-022-01038-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-022-01038-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41431-022-01038-5&domain=pdf
http://orcid.org/0000-0003-1076-9828
http://orcid.org/0000-0003-1076-9828
http://orcid.org/0000-0003-1076-9828
http://orcid.org/0000-0003-1076-9828
http://orcid.org/0000-0003-1076-9828
http://orcid.org/0000-0002-2034-8341
http://orcid.org/0000-0002-2034-8341
http://orcid.org/0000-0002-2034-8341
http://orcid.org/0000-0002-2034-8341
http://orcid.org/0000-0002-2034-8341
http://orcid.org/0000-0002-7852-052X
http://orcid.org/0000-0002-7852-052X
http://orcid.org/0000-0002-7852-052X
http://orcid.org/0000-0002-7852-052X
http://orcid.org/0000-0002-7852-052X
http://orcid.org/0000-0001-7582-2365
http://orcid.org/0000-0001-7582-2365
http://orcid.org/0000-0001-7582-2365
http://orcid.org/0000-0001-7582-2365
http://orcid.org/0000-0001-7582-2365
https://doi.org/10.1038/s41431-022-01038-5
mailto:c.a.de.leeuw@vu.nl
www.nature.com/ejhg


outcome is fully mediated by the exposure, it equals the causal
effect βXY scaled by the causal effect αXj of Gj on the exposure.
Thus, defining the ratio of marginal effects βj ¼ γYj

γXj
, it follows

that if variant j is a valid instrument then βj ¼ αXjβXY
αXj

¼ βXY [11].
In other words, the variant-specific causal effect αXj cancels out
in the ratio of the marginal genetic effects, making βj equal to
the causal effect parameter βXY for every variant that is a valid
instrument. Although not every MR method is explicitly defined
in terms of βj, they all ultimately depend on this property. To
examine the impact of different causal scenarios, we will thus
focus on the functional form βj takes in those scenarios, and
whether it still equals βXY.
We can thus obtain βXY using any genetic variant for which the

instrumental variable assumptions hold [12], since all such variants
provide the same causal parameter. However, the a priori
plausibility of these assumptions varies greatly, depending
particularly on the exposure being studied, and establishing that
the variants used are indeed valid instruments requires further
analysis and data. As such it is crucial that active steps are taken to
ensure that all assumptions are met, since reliable interpretation
of MR results is otherwise impossible.
MR also generally depends on some additional assumptions

[8, 13], which are listed in Table 1. Different methods may relax these
additional assumptions in various ways so these are not always all
required. In the next two sections, we will examine causal scenarios
that violate the instrumental variable assumptions, and various

strategies to deal with such violations, either by direct modeling and
testing or by levering constrained data. Following that we discuss
the role of the additional assumptions and what can happen if they
do not hold. Throughout, we will use the simplest causal scenario
that can illustrate the particular issue being discussed, rather than
providing an exhaustive list of such scenarios. Additional discussion
and mathematical details for these issues is found in the
Supplemental Information. An overview of the main methods
referenced is given in Table 2.

EVALUATING INSTRUMENTAL VARIABLE ASSUMPTIONS
Heterogeneity of causal estimates
One common way in which the exclusion restriction can be
violated is by a direct causal effect of the genetic variant on the
outcome (Fig. 2A). The reason why this is a problem can be readily
discerned when considering how this changes the functional form
of the marginal association γYj of the variant with the outcome,
which becomes γYj ¼ αXjβXY þ αYj This means that the ratio
parameter βj now equals βj ¼ αXjβXY þ αYj

αXj
¼ βXY þ αYj

αXj
. The same

thing happens in a scenario where there is LD between Gj and
another variant Gk that has a causal effect on the outcome (Fig. 2B).
In other words, βj becomes offset from the value of the true

causal effect βXY by a bias term specific to that variant. Although in
this case we can no longer directly obtain the causal effect from βj,
the way this type of violation manifests itself makes it relatively

Fig. 1 Graphical representation of valid instrument causal scenarios, for a variant j. These causal graphs depict the genetic instrumental
variable assumptions on which MR is based, with a genetic variant with genotype Gj causally affecting the exposure X which in turn
(potentially) causally affects Y , while allowing for the presence of confounders C of the exposure and outcome. In this and subsequent figures,
variables are shown as rectangles or ovals, with ovals denoting that the variable is not (necessarily) observed, and causal effects are indicated
using one-sided arrows in the direction of the causal effect, with an accompanying effect size parameter shown next to it. Two-sided arrows
denote correlations between variables caused by other variables external to the model. For simplicity of notation throughout the paper, all
variables are assumed to be standardized, with mean of zero and unit variance. Shown in (A) is the basic valid instrument scenario, with in (B)
the same graph emphasizing the causal paths explicitly ruled out by the independence and exclusion restriction assumptions. The graph in
(C) shows an alternative valid instrument scenario where the variant j used is not causal, but is in LD with another variant k that is.

Table 1. Instrumental variable and other assumptions relevant for MR.

Assumption Description

Instrumental variable assumptions

Relevance The variant is associated with the outcome (γXj ≠ 0); the variant does not need to be causal

Independence The variant is not associated with any confounders (αCj ¼ 0)

Exclusion restriction The variant is independent of the outcome given the exposure and all confounders (αYj ¼ 0)

Additional assumptions

Constant effect sizes

Same population parameters
(multi-sample)

For multi-sample analyses, the (relevant) parameters are the same across all populations the
different cohorts were drawn from

Same conditioning The associations used are all conditioned on (relevantly) the same variables and in the same way,
in terms of covariates included in analyses as well as selection effects (in multi-sample analysis)

No nonlinearities Effect sizes for any causal effect or association are not dependent on the value of either of the two
variables (as opposed to e.g., quadratic effect of causal variable, or with a binary outcome)

No interaction effects Effect sizes for any causal effect or association are not dependent on the value of any other
variable

Fully observed variables The observed instance of each variable fully reflects the causally relevant instance of that variable;
that is, it is observed without noise or rescaling relative to the causal instance

Which assumptions are required for a given MR analysis depends on the model used (see text).
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straightforward to detect. Because this bias term is variant-specific
it will tend to differ across (independent) variants, resulting in a
heterogeneity of their βj values (see also Supplementary Informa-
tion—heterogeneity of estimated causal effects). By contrast, for a
set of variants that are all valid instruments, their βj will be the
same, because as noted above they will all equal the causal effect
parameter βXY.
Given this, if we have multiple variants available as potential

genetic instruments, an obvious and commonly used way to
leverage this is therefore to test for heterogeneity of the βj. Then,
if such heterogeneity is found to be present, we can prune away
variants from the selection until we retain a subset of variants with
homogeneous βj. In this way we can rule out violations of the
exclusion restriction of the kind depicted in Fig. 2A, B, and under
the assumption that the remaining variants are valid instruments
we can use those variants to obtain βXY as before [14–16].
An alternative to explicit heterogeneity testing and pruning is to

use “robust” models for multivariant MR analysis, which do not
require that all variants used for their input are valid instruments
(see also Supplementary Information—robust methods). These
subdivide into two main types. The first type assumes that only
a subset of the variants used are valid instruments, and take either
a median- or mode-based approach. Median-based methods only
require that more than half of the variants are valid instruments,
which guarantees that the median of the βj equals βXY [17]. Mode-
based methods make an even weaker assumption, only requiring
that the largest subset of variants with homogeneous βj consists
of valid instruments, in which case the mode of the βj will equal
βXY [18–20].
The second type of robust model does not require that any

variant is a valid instrument. Instead, it models the marginal

association of each variant with the outcome as γYj ¼ γXjβXY þ δj
with a heterogeneity term δj, and then makes an assumption
about the distribution of these δj. The most prominent example of
this second type is the MR-Egger model [21], which is based on
the so-called InSIDE (Instrument Strength Independent of Direct
Effect) assumption. This assumption states that these δj terms are
independent of the marginal associations γXJ of the variant with
the exposure, and based on this the MR-Egger model can estimate
βXY using essentially a linear regression of γYj on γXJ. For valid
instruments this assumption is automatically true, since δj is zero,
and for a scenario such as in Fig. 2A it is very plausible as well: in
that case, γXj ¼ αXj and δj ¼ αYj , and since αXj and αYj represent
two distinct causal paths that share no mediating variables there is
no clear mechanism by which they would become correlated.
Robust methods can thus in principle directly estimate the

causal effect from a mixture of valid and invalid instruments, but
this requires specific assumptions about the degree or structure of
the heterogeneity, which are not directly testable. Even when
using such robust methods, it is therefore still imperative that the
heterogeneity, and the validity of the assumptions made about it
(with specific valid subsets of variants present in the data for
median- and mode-based methods, or the independence
specified by InSIDE for MR-Egger), are explicitly considered.
Moreover, homogeneity of the βj does not imply that the

instrumental variable assumptions (or the InSIDE assumption) do
hold, since there are other causal scenarios that violate the
assumptions without resulting in heterogeneity. For the remainder
of the paper, we will therefore generally assume that hetero-
geneity has been dealt with, and focus on scenarios where all
variants used correspond to the same homogeneous causal graph,
and with βj equal to the same value β.

Table 2. Overview of referenced methods.

Method Brief description

Basic multivariant MR methods

Two-stage least squares [3] General instrumental variable analysis model for single-sample MR

IVW mean [3] Estimates inverse-variance weighted (IVW) mean of the βj

Heterogeneity testing

GSMR [14] Combination of IVW mean with HEIDI heterogeneity test

GLIDE [15] Heterogeneity test, using set of simultaneous regression equations

MR-PRESSO [16] Heterogeneity test, using discrepancy between each variant and IVW estimate based on rest of variants

Implicit subset MR methods

Bowden et al. [17] Estimates weighted median of the βj

Hartwig et al. [18] Estimates weighted mode of the βj using empirically smoothed densities

Burgess et al. [19] Estimates weighted mode of the βj using heterogeneity weighted average density of IVW estimates of
all subsets of variants

MR-Mix [20] Models the set variants as an implicit mixture of valid and invalid instruments, and derives the estimate
from the valid component of the mixture

Modeled pleiotropy MR methods

MR-Egger [21] Estimation via weighted linear regression of γYj on γXj

BayesMR [22] Bayesian model selection on forward and reverse causation models

CAUSE [24] Bayesian mixture model allowing a subset of variants to correspond to a mediated confounding
scenario (whole-genome analysis)

LHC-MR [23] Mixture model allowing different subsets of variants to correspond to mediated confounding and
reverse causation scenarios (whole-genome analysis)

Explicit confounder MR methods

Multivariable MR-Egger [26] MR-Egger approach that includes additional γCj in the model

MR-TRYX [25] Large-scale evaluation of potential confounding using GWAS summary statistics database

Negative control population MR
methods

PRMR [32] Estimates the total component of γYj not mediated by X using a negative control population
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Reverse causation
The “reverse causation” scenario is illustrated in Fig. 2C, the mirror
image of Fig. 1A, with the genetic variant now exerting a direct
causal effect on the outcome, which in turn has a causal effect on
the exposure. This is also a violation of the exclusion restriction,
but unlike in Fig. 2A, B this does not result in heterogeneity. This is
because the marginal genetic associations of the variant are γXj ¼
αYjβYX and γYj ¼ αYj , which means that β ¼ αYj

αYjβYX
¼ 1

βYX
, the

inverse of the causal effect of the outcome on the exposure. As
such, the value of β we would get in this scenario is completely
different from the βXY we are attempting to estimate, which in this
case is simply zero. The InSIDE assumption also does not hold
here, since the heterogeneity term δj ¼ αYj , meaning that both δj
and γXj are dependent on the same parameter αYj .
When the genetic effect on the outcome is fully mediated by

the exposure as in Fig. 1A, it follows that the correlations between
the variant and the outcome are weaker than those between the
variant and the outcome; unless the exposure fully determines the
outcome in which case the correlations are equal. In case of
reverse causation, as in Fig. 2C, the opposite is true, with the
correlations between variant and exposure being weaker than
those between variant and outcome. For Fig. 1A, since in our
notation all variables are standardized, the correlations of the
variant with the exposure and outcome equal the genetic
associations γXj and γYj respectively, and the standardization also
means that the absolute value of all causal parameters is at most
one as well, including βXY . Since as previously noted γYj ¼ γXjβXY ,
the absolute value of γYj must therefore be smaller than (or at
most equal to) that of γXj .
It is therefore generally possible to infer direction from the

relative size of these correlations, or more directly from the causal
estimate itself. In case of reverse causation βj ¼ 1

βYX
, which (since

jβYX j is at most 1) will have an absolute value greater than or equal
to 1. As such we can decide between forward and reverse
causation by determining whether βj is smaller or greater than 1.
This can be assessed manually by running MR analyses in both
directions or using a model that incorporates both [22, 23].
Moreover, depending on the choice of exposure and outcome we
will often already have strong a priori information about the
causal direction, and in some cases reverse causation is inherently
impossible because the exposure is known to occur before the
outcome. In this regard, resolving the order of causation is often
relatively straightforward in practice.
However, these methods and a priori information can only help

to decide between forward and reverse causation as long as the

independence assumption holds, and it is thus presumed that one
of these two scenarios is correct. This therefore still requires ruling
out the possibility of genetic effects on exposure and outcome
being mediated by one of their confounders.

Analysing potential confounders
Two variations of what we will refer to as “mediated confounding”
are depicted in Fig. 2D, E, with a causal effect αCj of the variant on
a confounder C, violating the independence assumption. These
scenarios result in a β value of βXY þ βCY

βCX
(with βXY ¼ 0 for Fig. 2D),

demonstrating a bias away from the true causal effect of the
exposure on the outcome. The InSIDE assumption is violated here
as well, with both γXj ¼ αCjβCX and δj ¼ αCjβCY dependent on αCj .
Note that these scenarios are specific to the particular confounder
C, and there may be other sets of variants operating on different
confounder variables, with correspondingly different biases.
Because the βXY þ βCY

βCX
term can take any value that βXY itself can

take, it is impossible to rule out mediated confounding scenarios
using just the genetic associations with exposure and outcome. Some
methods have been developed that use a mixture model approach to
explicitly include a mediated confounding component in their model,
such as CAUSE [24] which assumes that the variants used are a
mixture of ones conforming to Fig. 2A and others conforming to
Fig. 2F. LHC-MR [23] offers an even more general model also allowing
for reverse causation. However, the problem remains that for any
forward causation scenario as in Fig. 2A, it is possible to formulate
parameter values for the mediated confounding scenario like in
Fig. 2F that result in an identical pattern of genetic associations. As
such, the components of these mixture models that are assumed to
capture forward causation may still be capturing mediated con-
founding instead (see also Supplementary Information—whole-gen-
ome methods).
Additional data is therefore required to resolve the issue of

mediated confounding. If genetic associations conditioning on a
putative confounder variable C are available for both exposure
and outcome, evaluating and correcting for that particular C is
relatively straightforward. If this C is indeed mediating (part of) the
effect of the variants on the exposure and outcome, adding C as a
covariate to compute the conditional associations will remove this
confounding effect from a subsequent MR analysis based on
them. Similarly, if separate GWAS results for a possible confounder
C are available, these can be used to obtain corrected MR
estimates. This can be accomplished by either first correcting the
γXj and γYj and then performing a regular MR analyis [25], or by
using an MR-Egger style regression approach, essentially

Fig. 2 Graphical representation of several violations of instrumental variable assumptions, for a variant j. In (A, B) are two similar
violations of the exclusion restriction, with causal effects directly on the outcome either from variant j itself or from another variant k in LD
with it. C Shows a reverse causation scenario, another violation of the exclusion restriction, with a causal effect of variant j directly on the
outcome, which is then mediated onto the exposure by the causal effect of outcome on exposure. D, E show two mediated confounding
scenarios which violate the independence assumption, with the confounder C mediating the genetic effect of variant j onto both the
exposure and outcome, with in (F) a further variation on (E) with additional direct causal effects of the variant on the outcome.
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regressing γYj on both γXj and γCj (the genetic associations with
the possible confounder) simultaneously. The latter approach can
be considered a form of multiple-exposure model, treating C as a
second exposure potentially correlated with X [26]. Note that both
correction using C directly or based on the γCj is susceptible to
collider bias when C is not a confounder [27], which therefore
needs to be considered when using such methods (see also
Supplementary Information—mediated confounding).
Although approaches like these can be effective in detecting and

correcting for effects mediated by confounders, the obvious limiting
factor is that this requires the potential confounders to be explicitly
tested. If no data is available for a particular confounder, or if it was
simply not considered as a potential confounder in the analysis, its
effects will not have been accounted for. This poses a major
challenge, since any confounder of the exposure and outcome is
itself almost certainly heritable, and any variant directly associated
with that confounder will also have associations with the exposure
and outcome mediated by that confounder.
This implies that in practice all (potential) confounders of the

exposure and outcome would need to be considered and
evaluated in an MR context. This is particularly problematic with
confounding endophenotypes such as those involved in specific
biological pathways and processes, as their causal effects on
exposure and outcome may be specific to a particular context
such as a tissue or developmental time period, and measurements
of such confounders would therefore need to be specific to that
context as well.

LEVERAGING CONSTRAINED DATA
Negative control populations
MR has sometimes been compared to RCTs, drawing a parallel
between the random inheritance of alleles from parents to
offspring and the randomized assignment of study participants to
treatment groups, with the exposure taking the role that the
actual treatment has in RCT [28]. However, this analogy is
problematic, because although part of the inferential strength of
RCT comes from random assignment of individuals to groups,
such randomization only deals with pre-existing differences
between individuals in the trial. Potential confounding that occurs
after assignment remains a constant challenged even in RCT and
must accounted for in the experimental design, by using well-
designed control groups and strictly controlling other

experimental and background variables. This level of control does
not exist in the MR context, and since the exposure occurs at an
unknown time possibly many years after the “randomized
assignment” (and measurement of the exposure and outcome
typically happens even later still), there is ample opportunity for
confounding to arise.
An MR approach that more closely mimics the structure of RCT

however, is the use of negative control populations [13, 29]. A
negative control population is one where the exposure is
constrained to a particular value, but that in other respects
matches the population from which the main MR data for was
derived (i.e., the relations between all relevant variables are the
same). An example of this is alcohol consumption as the exposure,
using a population where people do not drink alcohol due to
religious or cultural taboo as control [30]. A negative control
population does need to have an actual constraint on the
exposure; simply selecting a subset of a population for whom the
exposure is zero does not work, as this would lead to collider bias
(see Supplementary Information—negative control populations).
Because in such a control population the exposure does not

vary, causal effects involving that exposure are essentially blocked.
The constraint on the exposure stops other variables from
affecting the exposure, and stops the exposure from affecting
other variables. Genetic association between a variant and the
outcome in this control population therefore only consists of
effects not mediated by the exposure, and thus should be zero for
valid genetic instruments like in Fig. 1A. Testing the genetic
association between variants and the outcome can thus serve to
validate them as instruments, provided the control sample is
sufficiently well-powered.
This approach can be further extended to determine how much

of the genetic association with the outcome γYj is not mediated by
the exposure (with some restrictions, see Supplementary Informa-
tion—negative control populations) [31]. Modeling this genetic
association as γYj ¼ γXjβXY þ δj , similar to MR-Egger, this can
essentially provide a direct estimate of the heterogeneity term δj
for each individual variant j. With that, it becomes possible to
obtain a corrected genetic association γYj � δj , by subtracting out
the heterogeneity from the overall association, and then using this
corrected γYj to perform MR analysis. However, although poten-
tially quite powerful, using negative control populations in this way
is also vulnerable to bias, since this will create a hidden bias if the
assumptions of the negative control population fail. This is in

Fig. 3 Graphical representation of scenarios involving longitudinal data and imperfect measurement of variables, for a variant j.
Different longitudinal data scenarios are shown in (A) through (D), with X1 and X2 corresponding to an earlier and later measurement of the
exposure. Causal effects on the outcome occur either (A) at the earlier time point, (B) the later time point, or (C) at both time points, with in (D)
an additional scenario where variant j directly affects only the later measurement of the exposure and not the earlier one. In (E) is shown a
scenario where the observed exposure Xobs does not fully represent the causally relevant instance X of the exposure, and the same in (F) for an
observed outcome Yobs that does not fully represent the causally relevant outcome Y .
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contrast to using negative control populations to determine
validity of variants as an instrument, which will instead only tend
to generate false negatives (rejecting valid instruments as invalid) if
the negative control population assumptions do not hold.

Other forms of constrained data
Using negative control populations leverages natural constraints
on data to provide a means of validating the instrumental variable
assumptions that does not require explicit testing of individual
confounders. Other approaches that utilize such constraints can
be employed as well, and a prime example of this is the use of
longitudinal data, for either exposure, outcome, or both. Use of
such data allows the timing of the causally relevant exposure and
of the causal effects to be narrowed down.
If for example we have two measurements of the exposure, as

in Richardson et al. [32], there are three main scenarios to
consider: a direct causal effect on the outcome only by the early
exposure X1 (Fig. 3A), only by the late exposure X2 (Fig. 3B), or by
both (Fig. 3C). This can be resolved by a set of three MR analyses,
including one that has X2 as the exposure with a set of variants
such as in Fig. 3D that only affect the later exposure. Here, the
early exposure essentially functions as a baseline value, allowing
us to identify variants that only affect the change in exposure that
occurred since the first time point (see also Supplementary
Information—longitudinal data).
This process can be generalized to more than two time points,

allowing for better determination of the likely timing of the
causal effects. If longitudinal measurements of the outcome are
available, these can be used in the same way to narrow down
the timing. Moreover, for later time points these models can be
interpreted as conditioning on the value of the exposure or
outcome at an earlier time point, which would block any
confounder-mediated genetic effects that occurred prior to that
time point from affecting the estimate of βXY2 [33]. Although
confounders may still be present for the later time points (acting
e.g., on X2 and Y in Fig. 3A), this is restricted to a more limited
time window, making it easier to identify likely confounders and
correct for them.
Another way of leveraging known constraints on data is the

use of positive and negative control outcomes: outcomes which
already have strong evidence that they respectively are or are
not causally influenced by the exposure, which can be used to
evaluate the validity of candidate genetic instruments [8, 34].
Positive control outcomes are subject to a causal effect of the
exposure, and as such any variants causally acting on the
exposure must be affecting such control outcomes as well.
As such, if the variants used in our MR analysis show no
association with this positive control outcome, beyond what
could be explained by possible lack of statistical power, this
suggests that the variants used do not in fact have such a causal
effect on the exposure. Similarly, if we perform an MR analysis
with a negative control outcome that should not be causally
affected by the exposure, and the analysis suggests that there
actually is a causal effect on that negative control outcome, this
casts doubt on the validity of the variants used as genetic
instruments.

RELAXING THE ADDITIONAL ASSUMPTIONS
The causal graph in Fig. 1A is a common way of depicting the
instrumental variable assumptions central to MR, clearly showing
the causal paths that need to be either present or absent for the
standard analysis to work. Less explicit in this graph are some of
the additional assumptions implied by it, listed in Table 1, that the
analysis depends on as well. These assumptions can be condensed
to two general constraints: first, that the causal graph applies in
the same way to every individual used in the analysis, both in its
structure and in the value of the causal effect sizes; and second,

that the variables as we have measured them in our data,
correspond to the true causal variables depicted in the graph
without bias or error. In this section we will discuss scenarios in
which these assumptions may not hold, and the implications of
this for the MR analysis.

Variable effect sizes across samples
In the commonly used two-sample approach to MR analysis,
variable effect sizes can potentially occur and pose a problem
when the genetic associations γXj and γYj are obtained from
samples each derived from different populations with different
values for the causal parameters in Fig. 1A. As described, MR works
on the core premise that γXj ¼ αXj and γYj ¼ αXjβXY , and that
therefore the variant-specific part αXj will cancel out when we take
their ratio βj ¼ γYj

γXj
, leaving only βXY . But this will fail if the value of

αXj in the population from which the exposure GWAS was drawn,
differs from the value of αXj in the population that the outcome
GWAS was based on, resulting in βj being biased away from βXY .
The extent to which this is a problem will depend on the way

the MR analysis is conducted. The biases produced by this
scenario will usually cause heterogeneity of the βj , and as such it
should be possible to detect and remove the affected variants (see
also Supplementary Information—variable effect sizes). The MR-
Egger style models are more susceptible to this issue, as the
average bias will tend to end up in their estimate of βXY , which
may go unnoticed unless these are used in conjunction with other
types of models. Differences in αCj across the populations from
which GWAS data was drawn will pose similar problems when
using additional GWAS data with a putative confounder C as
outcome to correct for confounding.
A similar issue can arise even when all data is taken from the

same population, if the GWAS samples are subject to explicit or
implicit selection criteria. If these criteria differ between the
exposure and outcome GWAS, this can lead to the same kind of
issue as between different populations described above, if the αXj
differ between the selected subpopulations. Moreover, selection
effects occurring in the GWAS sample for the outcome also have
the potential to result in collider bias, because selection implicitly
conditions on the variables being selected on [27, 35]. For
example, the outcome may be measured specifically in older
individuals, thus selecting for individuals who have survived to
that age [36] and resulting in collider bias if the exposure causally
affects life expectancy and there are any confounders of the
relation between the exposure and outcome [37] (see also
Supplementary Information—variable effect sizes). This sort of bias
will not generally result in any heterogeneity in the βj , as it will
affect every variant in proportionally the same way. Addressing it
will therefore often require identifying relevant selection pro-
cesses and evaluating whether the specific variables involved may
be causing collider bias.

Variable effect sizes within samples
Effect sizes may also vary across individuals within a population,
due to for example interactions of causal variants with other
variables. In this case, different individuals in the population have
a different value of αXj , depending on their score on the interactor
variable. In practice, the genetic associations γXj would reflect an
average of these different αXj values across the levels of the
interactor variable. The γYj are based on this average αXj , and thus
as long as the distribution of the interactor variable is the same in
both samples this will still cancel out in the ratio βj ¼ γYj

γXj
. On the

other hand, if for example the mean of the interactor is greater in
one of the samples, this no longer holds. In that case however, as
with the differences in αXj across samples described above, it
should result in heterogeneous βj , and can therefore be addressed
by careful application of heterogeneity testing and modeling.
It is possible for the βXY parameter itself to vary across

individuals as well, with different causal effect sizes for different
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individuals in the population. This can arise as an interaction effect
with another variable but also as a non-linear effect of the
exposure, which can be seen as essentially an interaction of the
exposure with itself. In effect, the value of βXY that MR would
estimate in this case is an average of the different βXY values
across the levels of the interactor variable. In this sense, this
therefore does not substantially affect the MR analysis, since such
an average causal effect is still generally interpretable and
informative of the relation between exposure and outcome. It
can make it somewhat more difficult to generalize however, since
this average βXY would be potentially quite different in other
populations if the distribution of the interaction variable in that
population substantially differs from that in the population from
which the outcome GWAS sample was drawn.

Imperfectly observed variables
In the graphs in Figs. 1 and 2 it is implicitly assumed that the
observed variables we use in the GWAS, the exposure and outcome,
as well as putative confounder variables we may be trying to
evaluate, are sufficiently good proxies for the causally relevant
variables. Yet this can fail to be the case for a variety of reasons
[38, 39]. There could be simple measurement or diagnostic error,
where the observed variables in the data are a noisy representation
of the variables of interest. The causal graph in Fig. 3E depicts a
scenario like this, with the true exposure of interest X now
unobserved, and with a noisy observed exposure variable Xobs from
which the genetic associations γXj are estimated. Such situations
often also arise when using binary variables, such as a medical
diagnosis or a dichotomized continuous variable (e.g., hypertension
as dichotomized blood pressure) [40], where the relevant causal
effects are likely related to the underlying biological state rather
than with the diagnosis or dichotomized value.
This is can arise from more systematic causes as well. It is

possible that the context in which the variable was observed does
not sufficiently match that of its causally relevant instance: if for
instance we use gene expression as our exposure, it may well be
that the tissue in which that gene’s expression causally affects the
outcome is different from the tissue in which the exposure
variable we are using in our analysis is measured. Similarly, there
may be differences in timing and developmental period, or
environmental triggers, or the observed variable may have a
complex internal structure, with the causal effect only pertaining
to a subtype or subscale of that variable. In case of large
differences between the developmental timing of the causal effect
of the exposure and when the exposure was measured, processes
such as canalization and behavioral adaptive responses may also
have amplified or dampened the changes induced by earlier
causal effects [10, 41].
Regardless of the underlying mechanism, in a scenario such as

in Fig. 3E where the “true” exposure X is imperfectly represented
by the observed exposure Xobs, the causal effect we would
estimate becomes biased away from βXY . For the exposure the
genetic effect changes to γXj ¼ αXjβXO, and as such the ratio βj ¼γYj
γXj

becomes βXY
βXO

. Depending on the nature of the relation between
the “true” and observed variables, the value we get may therefore
differ considerably from the true value of βXY (see also
Supplementary Information—imperfectly observed variables). Note
that this issue of imperfectly observed variables is not unique to
MR, and would pose a problem even in the context of RCT.
All these same mechanisms can operate on the outcome as

well, as depicted in Fig. 3F, in which case βj will be βXYβYO.
Although this does affect interpretation, the value we are
estimating does still represent a legitimate causal effect, in
contrast to Fig. 3E where the causal structure would be
misspecified. If for example our intended outcome is true
schizophrenia status, and the Yobs we use is diagnosis of
schizophrenia, the causal effect we would obtain is that of our
exposure on schizophrenia diagnosis, and as such does have a

meaningful interpretation, even if it does not give us an estimate
of the causal effect on true schizophrenia status. In this regard, full
observation of the exposure is considerably more crucial than full
observation of the outcome.
It should also be noted that a further consequence of such

issues is that it may no longer be possible to distinguish forward
and reverse causation in the way described above [39], since the
parameter constraints upon which this would be based would no
longer apply in the same way. Similarly, imperfect observation of a
putative confounder C will also tend to render corrections of
confounding effects only partially effective, not fully removing the
confounding effect. Other approaches for evaluating these
alternative causal scenarios would therefore need to be employed.
A somewhat related issue is that even if the observed exposure

is in fact a good proxy for the causally relevant exposure, it may
also be a good proxy for any number of other instances of the
exposure. For example, if the expression of a particular gene is
relatively stable across various tissues, the expression in a specific
tissue will likely be a good proxy for expression in other tissues. As
such, even if we use expression in that tissue as the exposure, we
cannot know if the causal effect βXY is indeed specific to that
tissue. Similarly, we also generally do not know other aspects of
the exposure such as the dosage, duration and frequency, also
limiting the specificity of our conclusions [10, 41, 42].

CONCLUSION
In this Perspective we have outlined how the different assump-
tions and elements of the data figure into an MR analysis. This
outline is not exhaustive, but should provide further insight in
how the different components of MR fit together, on both a
mathematical and conceptual level. Throughout this paper we
have entertained the hypothetical that we know all true
associations, focusing specifically on the challenges that remain
even in such an idealized scenario. These challenges become
substantially harder when having to deal with all the uncertainty
in the estimates as well.
As we have shown, causal inference with MR strongly depends

on its assumptions. When performing an MR study, it is thus
crucial that the validity of these assumptions is examined for each
specific analysis, with all alternative scenarios can be carefully
considered and ruled out as much as possible. Consequently,
performing a reliable MR study requires a considerable investment
of time and effort, and access to high quality data for both
exposures and outcomes. Despite all its complications however, a
well-executed MR study can be a valuable tool in providing
greater insight in the relations between our phenotypes. More-
over, the data we have available continues to improve, with more
detailed measurements of phenotypes in ever larger biobanks,
and rapid innovation in new data and technologies in molecular
genetics. With this growth of our data, and our understanding of
phenotypes, opportunities for well-designed MR studies will
continue to improve.
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