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1 Introduction

Stochastic dynamic programming is a method to find numerically optimal policies
in Markov decision chains and processes. It can also be used to prove the structure
of optimal policies. Sometimes the optimal policy can be completely characterized,
which is, for example, the case when routing to parallel queues with equal service
rates. In other cases, the characterization is only partial, as for admission control to a
queue: under certain conditions, the optimal policy is of threshold type, but we do not
know the value of the threshold.

To prove these results, certain properties of the dynamic programming value func-
tion, such as convexity, are shown to hold inductively. The choice of properties to
propagate is a crucial step in the method: the set should contain the right properties to
obtain the desired results, and the set should be closed under the dynamic program-
ming operator. For example, in the case of admission control to a single queue, the
value function typically is non-decreasing and convex in the queue length. Convexity
is required to show that the policy is of threshold type, but convexity alone cannot be
propagated, the value function needs to be non-decreasing as well. These inequalities
can be 1-dimensional, such as convexity, and multi-dimensional, such as submodular-
ity. For quite a number of models, the optimal policies can be characterized this way,
see [5] for a systematic overview.

Of course it also occurs that different models have the same inequalities. This means
that these models can be combined into new models. In fact, the crucial question is not
whether a set of inequalities is propagated by a model, but by all “building blocks” of
the model, such as an arrival event, the decision to move a customer, a departure, etc.

One particular set of 2-dimensional inequalities, consisting of multimodularity and
increasingness in both dimensions, allows us to solve the model introduced in Lin and
Kumar [6]. Customers arrive to a queue with 2 heterogeneous servers. It is obvious
that we always use the faster one, but when it is optimal to use the slower one depends
on the number of customers in the queue. Using a complicated argument, it is shown in
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[6] that the optimal policy is of threshold type: above a certain level of customers, we
should use the slower server. This can also be shown by propagating the inequalities
mentioned above [4]. Note that, although the optimal policies look similar, this problem
is of a different type than the 1-dimensional admission control problem: because we
have to know whether the second server is occupied, the state space is 2-dimensional.

An obvious question is what happens if there is more than 1 slow server. It is to
be expected that some form of threshold policy would still be optimal, and numerical
experiments confirm that. However, it proves to be impossible to do so using the
method just described: some of the inequalities do not propagate for multi-server
queues and for more than 2 dimensions. Despite many efforts, this problem remains
open for nearly 40 years.

In the next section, we introduce the problem more formally and we finish with a
discussion of implications.

2 Problem statement

Consider arrivals to a queue according to some general process modeled as a Markovian
arrival stream [1]. There are multiple servers with exponentially distributed handling
times, not all having the same rate. For simplicity, we assume that there is a fast server
with rate @1 and 2 slow servers with rate uy, u < pi. We are interested in finding
the policy that minimizes the long-run average or discounted costs. As direct costs we
take the number of customers in the system (if we exclude the customers in service
from the costs the problem becomes trivial). We will denote the states with (x, y),
where x refers to the number of customers in the queue including the one at the fast
server, and y the number of customers in service at the slow servers.

Conjecture If sending a customer to a slow server is optimal in (x, y), then it is also
optimal in (x + 1, y).

We could make other conjectures, for example, about monotonicity in y, but this is
the most fundamental one. As stated in the introduction, it is still open.

3 Discussion

Mathematics has a strong publication bias: hardly ever it is published that someone
failed to prove something. Perhaps we see this as a personal failure, a sign that we have
not tried hard enough, instead of an important insight about the problem at hand which
is valuable to share. In the case of the current problem however, there is evidence of
other people having tried to prove this result. In fact, Rykov, in [9], claims to have
proven it. However, it was shown in de Véricourt and Zhou [2] that this claim is
incorrect and that the proof is incomplete. Indeed, a claim of this type is easily made,
but constructing a proof consists of tediously verifying all inequalities for all operators
for all states. A crucial case close to the boundary of the state space is easily forgotten,
and that was indeed the case. It is interesting to note that moving from single-server
to multi-server queues the number of useful inequalities is often reduced (see [5]).

@ Springer



Queueing Systems (2022) 100:469-471 471

Also [7] claim to have proven the optimality of a threshold policy, but their proof is
lengthy and not very structured. The authors of [2] had an elaborate email exchange
with the authors of [7] about some parts of the proof, but this did not take away their
doubts concerning its completeness.

Unfortunately, the monotonicity literature is known for its highly complicated
proofs, some of which later proved to be invalid. An example is [11], on routing
to queues with general service times. Its main result was shown to be incorrect by a
counterexample in [10]. Another example deals with server assignments in tandems
of parallel queues where a claim in [8] was shown to be incorrect by a counterexample
in [3].

In conclusion, “it still remains to find an intuitive argument as to why a threshold
policy is optimal" [2], probably using a method different from propagating value func-
tions, or to construct a counterexample to the claim. This problem is too fundamental
to be left open.
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