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ABSTRACT

Multifractal analysis, which mainly consists in estimating scaling
exponents, has become a popular tool for empirical data analysis.
Although widely used in different applications, the statistical perfor-
mance and the reliability of the estimation procedures are still poorly
known. Notably, little is known about confidence intervals, though
they are of first importance in applications. The present work in-
vestigates the potential uses of bootstrap for multifractal estimation:
Can bootstrap improve current estimation procedures or be used to
obtain reliable confidence intervals ? Comparing the statistical per-
formance of different estimators, our major result is to show that
bootstrap based procedures provide us both with accurate estimates
and reliable confidence intervals. We believe that this brings sub-
stantial improvements to practical empirical multifractal analyses.

1. MOTIVATION

Multifractal (or scaling) analysis [1, 2, 3] is now considered as a use-
ful and major tool for empirical data analysis. It is widely used in
numerous applications of very different nature. The analysis mainly
consists of measuring scaling exponents. Typically, such measure-
ments are used to perform detection, classification or interpretation
of data. Although largely used in practise, the statistical performance
and reliability of the common estimation procedures remain poorly
studied. For instance, little is known on the size of confidence in-
tervals. In many applications and in real life data analysis, however,
one is as much interested in the confidence intervals as in the values
of the scaling exponents themselves. Indeed, without confidence in-
tervals no classification, discrimination or hypothesis testing is pos-
sible. A popular and powerful approach to empirical multifractal
analysis is based on wavelet estimation procedures [2, 3].
The aim of the present contribution is the investigation of potential
benefits of the non parametric bootstrap for wavelet-based multifrac-
tal analysis. In bootstrapping, the distribution of an estimator is ap-
proximated through repeated resampling with replacement from the
available data. The technique was introduced in the eighties [4] and
has recently regained interest due to continuously growing computer
facilities [5, 6, 7, 8]. Bootstrapping has been used in the wavelet
domain after the pioneering work reported in [9]. It has also been
considered for the estimation of the Hurst parameter of self-similar
processes [10, 11].
In the present work, we extend this line of research by addressing
two issues: Can the bootstrap be used to improve current estimation
procedures ? Can the bootstrap provide us with reliable confidence
intervals ? To answer these questions, we compare the statistical
performance of six different estimation procedures as well as the
confidence intervals designed either from asymptotic expansions and
Gaussian expansions or from bootstrap approaches. Results are ob-
tained by applying our procedures to a large number of realizations

of synthetic scaling processes with a priori known and controlled
multifractal properties and show that bootstrapping enables us to ob-
tain highly reliable confidence intervals. We end up with a practical
procedure that provides us with both scaling exponent estimates and
accurate confidence intervals, and that can actually be used for ana-
lyzing a single and finite length observation of empirical data.

2. SCALING AND MULTIFRACTAL

2.1. Definitions

Let X(t), t ∈ [0, n) denote the process under analysis and n its
observation duration. Let ψ0(t) denote a reference pattern with fast
exponential decay, called the mother-wavelet. It is mainly character-
ized by a strictly positive integerN ≥ 1, called its number of vanish-
ing moments, defined as: ∀k = 0, 1, . . . , N − 1,

R
R t

kψ0(t)dt ≡ 0

and
R
R t

Nψ0(t)dt 6= 0. Let {ψj,k(t) = 2−jψ0(2
−jt − k), j ∈

Z, k ∈ Z} denote templates of ψ0 dilated to scales 2j and trans-
lated to time positions 2jk. The discrete wavelet transform (DWT)
of X is defined through its coefficients dX(j, k) = 〈ψj,k|X〉.

The so-called structure functions S(j, q) are defined as time av-
erages of the dX(j, k) at fixed scale a = 2j (nj stands for the num-
ber of dX(j, k) available at scale 2j , roughly nj = n/2j):

S(j, q) =
1

nj

njX
k=1

|dX(j, k)|q.

Processes are said to possess scale invariance or scaling proper-
ties if the S(j, q) display power law behaviors with respect to scales,

S(j, q) = cq|a|ζ(q), (1)

over a wide range of scales, a ∈ [am, aM ], aM/am � 1, and
for some statistical orders q ∈ [q−∗ , q

+
∗ ] (cf. [12]). The ζ(q) are

referred to as the scaling exponents. When ζ(q) = qH , X is said
to be monofractal. For instance, this is the case for finite variance
self similar processes such as fractional Brownian motion. When
ζ(q) 6= qH , X is said to be multifractal. This is obviously a poor
or operational definition of multifractal processes. However, this is
sufficient for the purposes of this article. For a thorough introduction
to multifractal analysis, the reader is referred to, e.g., [1].

2.2. Estimation Procedures

Definition. The scaling exponents ζ(q) are practically estimated by
performing weighted linear regressions in log2 S(j, q) versus log2 a
= j diagrams:

ζ̂(q) =

j2X
j=j1

wj,q (log2 S(j, q)− g(j, q)) , (2)



where the g(j, q) are deterministic constants defined below. The
finite range of scales within which regressions are performed is de-
fined as am = 2j1 and aM = 2j2 .

Statistical performance. A straightforward computation of the bias
of ζ̂(q) implies that:

g(j, q) = E log2 S(j, q)− log2 ES(j, q). (3)

Furthermore, as wavelet coefficients at different scales are weak-
ly correlated, one can approximate the variance of ζ̂(q) as: Var ζ̂(q)
'
Pj2

j=j1
w2

j,qVar log2 S(j, q). Hence, let us define

V (q) ≡
j2X

j=j1

w2
j,qσ

2(j, q) and σ2(j, q) = Var log2 S(j, q). (4)

Weights. The weights have to satisfy the usual constraints
Pj2

j1
jwj,q

≡ 1 and
Pj2

j1
wj,q ≡ 0. They are written as wj,q = 1

bj,q

S0j−S1
S0S2−S2

1
,

where Sp =
Pj2

j1
jp/bj,q, p = 0, 1, 2. The bj,qs are arbitrary posi-

tive numbers reflecting the confidence granted to log2 S(j, q). As
thoroughly detailed in, e.g., [2], the discrete wavelet coefficients
dX(j, k) of scaling processes are weakly correlated. Therefore, the
variance of S(j, q) and hence of log2 S(j, q) decreases approxi-
mately as 1/nj . This naturally leads to the choice bj,q = 1/nj =
2j/n. Note that with this choice, valid for the remainder of the
present work, the bjs and wjs no longer depend on q.

3. ASYMPTOTIC EXPANSIONS VERSUS BOOTSTRAP

Our goal is to use the procedure described above to obtain, from a
single finite length observation of X , reliable estimates of ζ(q), as
well as reliable confidence intervals for these estimates. This in-
volves calculating or estimating the bias (3) and the distribution of
the estimator (2).
The bias g(j, q) can be estimated by using either asymptotic or Gaus-
sian expansions or the bootstrap. Confidence intervals can be ob-
tained either by assuming ζ̂(q) to be Gaussian and using the approx-
imation (4), with estimates for σ2(j, q), or by bootstrapping ζ̂(q).

3.1. Asymptotic Expansions

Standard approximation formulae for a change of variable Y =

f(X) give Ef(X) ' f(EX)+f ′′(EX)
σ2

X
2

and σ2
Y ' |f ′(EX)|2σ2

X

where σ2
X and σ2

Y denote the variances of X and Y respectively. As
VarS(j, q) decreases as 1/nj in the limit of large nj , we can apply
those formulae to log2 S(j, q). Tedious calculations [2] lead to:

g(j, q) ' − log2 e

2
Var S(j,q)

(ES(j,q))2
' − (log2 e)

2nj

Var |dX (j,·)|q

(E|dX (j,·)|q)2

σ2(j, q) ' (log2 e)
2 Var S(j,q)

(ES(j,q))2
' (log2 e)2

nj

Var |dX (j,·)|q

(E|dX (j,·)|q)2
.

The second approximation involves the assumption that wavelet co-
efficients are quasi-uncorrelated, hence VarS(j, q) ' Var|dX (j,·)|q

nj
.

This asymptotic expansion leads to defining the estimates:

ĝA(j, q) = − log2 e

2nj

dVar |dX (j,·)|q

(bE|dX (j,·)|q)2
,

σ̂2
A(j, q) = (log2 e)2

nj

dVar |dX (j,·)|q

(bE|dX (j,·)|q)2
,

(5)

where bE· and dVar · stand for the standard sample mean and sample
variance estimators, respectively.

Gaussian expansions. For the cases where the wavelet coefficients
are Gaussian, the ratio Var |dX(j, ·)|q/ (E|dX(j, ·)|q)2 can be com-
puted analytically, yielding (note that no quantity needs to be esti-
mated in this case):

ĝG(j, q) = − log2 e

2nj

�√
πΓ
�
q + 1

2

�
/Γ
�

q+1
2

�2 − 1
�

σ̂2
G(j, q) = (log2 e)2

nj

�√
πΓ
�
q + 1

2

�
/Γ
�

q+1
2

�2 − 1
�
.

(6)

3.2. The Non Parametric Bootstrap Approach

Rather than using asymptotic or Gaussian expansions, the desired
characteristics of S(j, q) and ζ̂(q) can be obtained through bootstrap
generated approximate empirical distributions [4, 5, 6, 7, 8]. Since
wavelet coefficients at each given scale are weakly correlated, we use
a block bootstrap with overlapping blocks of length L. At each scale
j, P bootstrap resamples D∗(1)

j , · · · ,D∗(P )
j are generated, where

each resample

D∗
j =

n
d
∗(1)
X (j, ·), · · · , d∗(nj)

X (j, ·)
o

is an unsorted collection of of nj sample points that are drawn block-
wise with replacement from the original sample Dj = {dX(j, 1),

· · · , dX(j, nj)}. From these collectionsD∗(p)
j , theP bootstrap quan-

tities

p = 1, . . . , P, S∗(p)(j, q) =
1

nj

njX
k=1

|d∗(p)
X (j, k)|q

are calculated, yielding the estimates

ĝB(j, q) = bE log2 S
∗(j, q)− log2

bES∗(j, q)
σ̂2

B(j, q) = dVar log2 S
∗(j, q).

(7)

3.3. Estimators

At this stage, we gathered material to define 2∗3 different estimators,
(2 different S(j, q), standard or bootstrapped, times 3 different bias
corrections, asymptotic (5), Gaussian (6) or bootstrap (7)):

ζ̂X(q) =
Pj2

j1
wj (log2 S(j, q)− ĝX(j, q))

ζ̂B
X(q) = bEζ̂∗X(q)

(8)

with X = {G,B,A}. Here, ζ̂B
X(q) is seen as a modification of (2),

and is defined as the sample mean of the bootstrap quantities

ζ̂
∗(p)
X (q) =

j2X
j1

wj

�
log2 S

∗(p)(j, q)− ĝX(j, q)
�
.

3.4. Confidence Intervals

Plugging the estimates (5), (6) or (7) for σ̂2
X(j, q) in the approximate

variance expression (4), the 100(1−α)% asymptotic confidence in-
tervals for each estimator ζ̂(q) in (8) are defined as

CIVX (q)=
�
ζ̂(q) + p

�α
2

�p
VX(q), ζ̂(q) + p

�
1− α

2

�p
VX(q)

�
(9)



with X = {G,B,A}. Here, p(α) is the α-th quantile of the
standard normal distribution.
The 100(1− α)% bootstrap confidence interval for ζ̂(q) is

CIB(q) =
�
p
�α

2

�
, p
�
1− α

2

��
=
�
ζ̂∗(p1)(q), ζ̂∗(p2)(q)

�
,

(10)
where p(α) is the α-th empirical quantile of the empirical distribu-
tion of the P estimators ζ̂∗(q), i.e., p1 = bPα

2
c and p2 = P−p1+1.

Alternative bootstrap confidence intervals, using pivotal statistics
and variance stabilizing transformations, can be considered [6].

4. SIMULATION STUDY AND RESULTS

4.1. Monte Carlo Simulation

The performance of the proposed estimation procedures are assessed
by appling them to a large number NMC of realizations of synthetic
stochastic multifractal processes with known and controlled scaling
properties. We compare the biases β̂(q) =

bEζ̂(q)−ζ(q)
q

, standard

deviations ŝ(q) =

qdVar ζ̂(q)/q, and mean-square errors MSE(q) =q
ŝ(q)2 + β̂(q)2 of the estimators (8).

The reliability of the confidence intervals (9) and(10) is studied via
their empirical coverages:

Cemp(q) =

PNMC
i=1 ε (ζ(q),CIi(q))

NMC
,

where ε (ζ(q),CI(q)) = 1 if ζ(q) ∈ CI(q) and 0 otherwise: i.e., the
empirical coverage corresponds to the percentage of MC realizations
for which the true ζ(q) falls within the computed confidence interval.

4.2. Scaling Processes

We use two scaling processes that are chosen as simple yet rep-
resentative examples of Gaussian monofractal processes and non
Gaussian multifractal processes respectively.
Fractional Brownian motion (FBM) is defined as the only Gaussian
self-similar process with stationary increments [13]. Its finite di-
mensional distributions satisfy X(t)

fdd
= aHX(t/a) for all a > 0.

Its properties are entirely determined by the parameter H , and it
possesses scaling properties as in Eq. (1) for q ∈ [0,∞), with
ζ(q) = qH .
Multifractal random walk (MRW) has been introduced in [14] as
a non Gaussian processes with stationary increments whose multi-
fractal properties mimic those of the celebrated Mandelbrot’s multi-
plicative log-normal cascades. The process is defined as: X(k) =Pn

k=1GH(k)eω(k), whereGH(k) consists of the increments of FBM
with parameter H . The process ω is independent of GH , Gaussian,
with non trivial covariance: cov(ω(k1), ω(k2)) = c2 ln

�
L

|k1−k2|+1

�
when |k1 − k2| < L and 0 otherwise. MRW has scaling properties

as in Eq. (1) for q ∈
h
0,
p

2/c2
i
, with ζ(q) = (H+c2)q−c2q2/2.

One sees that the departure from a linear behavior in q is fully con-
trolled by c2.

4.3. Results

Simulation setup. The results presented here were obtained using
Daubechies wavelets with N = 3. Parameters were set to NMC =
3000, n = 215, P = 200, L = 6, H = 0.8 for FBM and
(H, c2) = (0.75, 0.08) for MRW.

1 2 3 4 5

−1

−0.75

−0.5

−0.25

0

FBM: ζ̂(q)−ζ(q)ζ(q) (in %)

1 2 3 4 5
0.01

0.012

0.014

0.016
FBM: MSE(q)

1 2 3 4 5
−4

−3

−2

−1

0

1

q

MRW: ζ̂(q)−ζ(q)
ζ(q)

(in %)

1 2 3 4 5
0.02

0.04

0.06

0.08

0.1

MRW: MSE(q)

q

Fig. 1. Relative bias (left column) and MSE (right column) of
estimators ζ̂(q) for FBM (top row) and MRW (bottom row) for
q ∈ {1, 2, 3, 4, 5}. Solid lines correspond to ζ̂X(q), dashed lines
to ζ̂B

X(q), the symbols (×,�,4) to X = (G,B,A).

Statistical performance. Fig. 1 (left column) shows relative biases.
We first note that, for all X ∈ {G,B,A}, ζ̂X(q) ≥ ζ̂B

X(q), and also
that the biases are of comparable orders of magnitude for all estima-
tors. Still, we observe that, for FBM, the bias of ζ̂G(q) is the closest
to 0, while for MRW, ζ̂B

G (q) exhibits the smallest bias. Therefore,
for both Gaussian and non Gaussian processes, the Gaussian based
bias correction (cf. Eq. (6)) works best.
Fig. 1 (right column) shows MSEs. Because biases are small com-
pared to standard deviations (roughly 25%), MSEs mostly reflect
standard deviations (which are hence not shown here). Let us first
note that, for most cases, the MSEs of the ζ̂X(q) are smaller than
those of the ζ̂B

G (q) for FBM, while this is the converse for MRW.
More precisely, we observe that the MSEs of ζ̂G(q) and ζ̂B

G (q) are
systematically the two lowest ones, with a minimum for ζ̂G(q) in the
case of FBM and for ζ̂B

G (q) in the case of MRW.
These analyses lead us to recommend the use of estimators with
Gaussian based bias correction, ζ̂G(q) and ζ̂B

G (q), for both Gaussian
and non Gaussian processes. The reasons why ζ̂B

G (q) performs slight-
ly better for non Gaussian processes are being further inquired.

Confidence intervals. Table 1 summarizes the empirical coverages
obtained from the confidence intervals (9) and (10) for all estimators
in (8) (the targeted coverage is 95%). Here, we report only results for
q = 2, (as it can be classically related to standard spectral estimation
(see e.g. [2])) and q = 5 (as it constitutes a difficult estimation task).
In the case of FBM, for q = 2, CIVB has best coverage while for
q = 5, CIVG performs slightly better (CIVB remains comparable
however). For both cases, the bootstrap confidence intervals CIB
produce slightly lower coverages, but stay nonetheless highly rele-
vant.
In the case of MRW, the CIBs produce the best (and excellent) cov-
erages, even for q = 5 (cf. Table 1). The CIVB s display similar
accuracy, while, in contrast, the empirical coverages of the Gaussian
based CIVG s diminish dramatically (below 45%).



ζ̂X(q) ζ̂B
X(q)

q X CIB CIVG CIVB CIVA CIVG CIVB CIVA

2 G 88.1 86.8 90.6 85.9 86.3 89.0 85.4
B 87.9 86.8 90.3 86.0 86.2 88.9 85.5
A 87.9 86.9 90.4 86.0 85.9 88.8 85.3

5 G 84.6 90.4 89.4 85.8 87.5 86.6 82.5
B 79.9 88.3 87.1 83.6 84.7 82.3 78.3
A 79.1 88.0 86.8 82.8 83.4 81.5 76.6

2 G 82.2 35.2 89.8 74.1 28.7 84.4 66.5
B 84.9 38.7 90.9 76.3 32.1 87.2 69.8
A 83.6 37.3 90.4 75.5 30.9 85.8 68.5

5 G 92.1 26.2 86.3 73.9 28.3 91.0 79.9
B 88.9 24.2 81.2 67.1 26.0 87.6 74.6
A 90.9 24.3 84.1 70.9 26.8 89.7 76.6

Table 1. Empirical coverage (in %) of nominal 95% confidence in-
tervals for FBM (top part) and MRW (bottom part).

We conclude that the bootstrap based confidence intervals, CIB and
CIVB , are highly relevant for both Gaussian and non Gaussian proces-
ses. Therefore, we strongly recommend their use as they involve no
a priory on Gaussianity and hence on mono- versus multi-fractality.

Additional results. Complementary Tables and Figures, not re-
ported here for space reasons but available at
perso.ens-lyon.fr/patrice.abry/MYWEB/ICASSP06_results.pdf,
show that the analyses and conclusions reported above for statistical
performance and confidence intervals of the estimators hold for var-
ious values of q and various sample lengths n = {29, 212, 215}.
We also investigated the impact of varying the number of bootstrap
resamples P = {100, 200, 1000}. We found empirically that P =
200 is sufficient with respect to the 95% confidence interval target,
and that increasing P does not bring significant improvements while
having much higher computational costs. Furthermore, we explored
various block lengths L = {1, 4, 6, 12} and found empirically that
the optimal choice is L = 6. A possible explanation for this fact can
be found in the weak correlation of the wavelet coefficients at each
given scale, which remains significant only over the time support of
the wavelet, in our case 2N = 6. This is being further investigated.
Reports for numerical simulations related to varying P and L are
available at the URL mentioned above.

5. CONCLUSIONS AND PERSPECTIVES

We compared various scaling exponent estimation procedures in-
volving asymptotic and Gaussian expansions and the bootstrap. We
showed that Gaussian based bias corrected ζ̂G(q) and ζ̂B

G (q) display
the best statistical performance. The difference in performance being
weak, we conclude that the bootstrap based modification ζ̂B

G (q) of
the standard ζ̂G(q) does not bring significant improvements. How-
ever, we showed that bootstrap approaches are providing us with
highly relevant confidence intervals, CIB and CIVB . This is the main
benefit of bootstraping in scaling exponent estimation as, to the best
of our knowledge, this is the first time that a non parametric confi-
dence interval estimation procedure, with excellent performance, is
obtained. This constitutes a major progress in applied multifractal
and scaling analysis as it provides the user not only with (scaling ex-
ponent) estimates but also with accuracy measures. Further improve-
ments such as variance stabilization or the use of pivotal statistics
[6] are under current analysis. Preliminary attempts are promising.

Furthermore, a wavelet based scaling exponent estimation procedure
ζ̂G(q) with bootstrap based confidence intervals, that can be applied
to a single finite duration observation of empirical data, has been
implemented in MATLAB and is available upon request.

A key point in the results obtained in this work lies in the fact
that they hold for both Gaussian monofractal and non Gaussian mul-
tifractal processes. This is very promising, as analytically derived
results can not be obtained for multifractal processes. This leads to
the idea of extending this bootstrap based approach to other multi-
fractal quantities such as wavelet log-cumulants or wavelet leaders.
In addition, this opens the track for the design of a hypothesis test
aiming at discriminating between mono- and multi-fractal processes,
a major practical issue. These ideas are under current work.
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