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Self-assembling patchy colloidal particles form a promising platform to create designer soft materials. To
dress such systems with mechanical functionality, one can take inspiration from biological structures such as the
cell’s cytoskeleton, which consists of semiflexible filaments, whose mechanical behavior give the cell its unique
mechanical properties. Here we present mechanical experiments on analogs of biological fibers, semiflexible
“colloidal polymers” made from bonded patchy colloidal particles. We use optical tweezers to probe their
extreme mechanics under increasingly high compressions and we reveal a rich nonlinear mechanical response
involving buckling, viscoelastic creep, and ultimately break-up. We characterize and model this response using
elastic and viscoelastic models involving Euler buckling and stress relaxation. This allows us to identify the
critical Euler buckling force, and relate the critical bending at break-up to the finite patch size of the colloids.
These results demonstrate the crucial role of the patch-patch interactions in the mechanics of self-assembled
colloidal materials, and they provide mechanical relationships that are essential to design functional colloidal
architectures inspired by nature.

DOI: 10.1103/PhysRevMaterials.6.035603

I. INTRODUCTION

Micrometer-sized slender structures are an integral part
of many soft and biological materials. They harbor rich me-
chanical behavior that crucially determines the mechanical
response and functionality of these soft architectures. For
instance, biological filaments such as microtubules, actin fila-
ments, and fibrin fibers, making up the cell cytoskeleton and
the extracellular matrix, exhibit nonlinear buckling instabil-
ities [1–4], viscoelastic behavior [5–8], and fracture [9,10].
Likewise, slender colloidal strands, prevalent in colloidal gels
[11] and in recent colloidal designer structures [12,13], are
subject to a similarly diverse mechanical response [14,15].
Such colloidal structures are easier to observe and have
more controllable interparticle interactions than their biolog-
ical counterparts. This makes them excellent model systems
and a promising platform for designer materials with con-
trolled internal architecture and tunable physical properties
[16]. Self-assembling patchy particles, which have tunable
anisotropic interactions, are a particularly promising route
to achieve such designer architectures and mimic the func-
tionalities of biological matter [17,18]. However, detailed
mechanical studies of such patchy structures are still lacking.
In particular, their nonlinear extreme mechanics has so far
been poorly explored. For biopolymers such as microtubules
and actin filaments, optical tweezers have been used to inter-
rogate their mechanical response. To this end, microparticles
are attached to the extremities of a filament, and the fila-
ment is deformed by extending or compressing it, while the
tension on the filament is monitored [2,19,20]. In this way,
flexural rigidity (which depends on Young’s modulus and

the second moment of inertia), persistence length, and buck-
ling forces can be measured. Typical single-filament response
upon compression shows an elastic resistance followed by a
compliance after buckling [21], which in the case of actin
bundles is accompanied by viscoelastic relaxation [7], and
fracture for extreme bending in the case of microtubules [10].
Such behavior is not limited to single filaments; rheological
measurements of networks show that filaments buckle, bend,
and break as a response to compression and shear, all of
which contribute importantly to the nonlinear mechanics of
fibrin networks [4] and microtubules [9]. Micromanipulation
experiments on patchy particle assemblies, whose interactions
can be controlled, would provide analogous insight into some
of the principles behind the nonlinear mechanical response of
colloidal architectures, with the advantage that they can be
observed at the particle scale.

Here, we perform compression tests on assembled patchy
particles using optical tweezers to probe their mechanics
under extreme deformations. We focus on dipatch col-
loidal particles that self-assemble into colloidal chains via
temperature-controlled critical Casimir interactions [22]. We
showed previously that the resulting assembled colloidal poly-
mers subjected to thermal noise show a two-step viscoelastic
relaxation process similar to biological filaments [23]. Here,
by using steady compression and creep tests on these poly-
mers, we reveal a surprisingly complex nonlinear mechanical
response resembling the richness of biological filaments, in-
volving buckling, viscoelastic effects, and ultimately break-up
upon a critical bending deformation. We characterize and
model the elastic buckling and viscoelastic response and
quantitatively relate the break-up point to the patch size. These
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(a)

(c) (d)

(b) (e)

FIG. 1. Micromechanical tests of dipatch particle chains with optical tweezers. (a) Sketch of a dipatch particle chain in two harmonic
optical traps. (b) Sketch illustrating the bending angle definition. (c) Cyclic buckling test protocol and example snapshots at times (A) before
buckling, (B) at maximum compression, and (C) after reversible straightening. (d) Relaxation test protocol and snapshots at times (A) before
buckling, (B) when trap movement is stopped reaching �m, and (C) after waiting 100 s at �m. (e) Fracture test protocol, snapshots in (A) initial
and (B) buckled state, (C) at 1 s before, (D) at 1 s after, and (E) at 7 s after break-up. Red (white) transparent lines in the snapshots correspond
to the x position of the fixed (mobile) trap. Scale bar is 3 μm.

results provide insight into the mechanics of assembled col-
loidal structures that is essential to design functional colloidal
architectures.

II. METHODS

A. Chain formation and micromechanical
compression test protocols

Monodispersed dipatch particles of diameter d =
3.1(1) μm are synthesized from polystyrene (bulk
material) and fluorescently labeled 3-(trimethoxysilyl)propyl
methacrylate (TPM, surface patches) using a recently
published colloidal fusion method [22,24]; they have small
hemispherical patches of diameter dp = 380 nm, with patch
arc-angle θp = 2 sin−1(dp/d ) = 14◦(±2), as measured by
atomic force microscopy. Patch characterization details
can be found in Ref. [23]. In addition, a minor fraction
of monopatch particles of diameter d = 2.7(1) μm are
also present in the sample. The particles are suspended
in a binary mixture of water and lutidine with lutidine
volume fraction cL = 0.25, in which they sediment to form
a quasi-two-dimensional layer. We also added 0.375 mM
magnesium sulfate to screen the particle charges and increase
the lutidine absorption contrast of the patches. This binary
mixture is chosen to obtain optimal critical Casimir conditions
with a largest temperature window for patch-to-patch
attraction. The dipatch particles self-assemble into chains
in a capillary coupled to a double optical tweezer setup, when
heating the suspension to �T = 0.1 ◦C below the solvent
critical temperature Tc = 33.75 ◦C. The sample capillary
is sandwiched between the water immersion objective and
condenser lenses. Custom-made objective and condenser-lens

heaters are used to maintain the sample temperature with a
stability of 0.05 ◦C. We wait for more than 3 h for the system
to equilibrate such that sufficiently long chains assemble.
We then select chains consisting of N = 6–13 particles that
consist of a sufficient number of monomers and are still
observed at sufficient frequency, and we pin their ends using
optical tweezers. Preferably, we use dipatch chains that have
monopatch particles capping their ends. These capped chains
have the advantage that no other chain can attach during the
experiment.

We use a (static) trap, which always remains in a fixed
position, and a piezoelectrically controlled mobile trap, which
is moved at a speed of around vtrap ≈ 0.01 μm/s, exerting
an increasing compressive force on the chain. A schematic of
the setup is shown in Fig. 1(a). Here, the trap displacement
� is defined as the distance of the mobile trap from its initial
position, and the trap velocity vtrap = d�

dt . The optical tweezer
setup has been described elsewhere [25]. The two laser beams
with wavelength 1064 nm and a low intensity of ∼5 mW
each were focused in narrow spots using a water immersion
high-NA imaging objective. The low intensity ensured that no
solvent phase separation occurred due to local heating at the
traps; we estimate the local heating to be maximally 0.05 K
from measurements at higher intensity where phase separation
occurred in the laser focus. Furthermore, the trapped particles
retained in-plane rotational freedom; although optical trap-
ping confines the patches to the horizontal plane, the patches
still rotate freely around the vertical laser beam axis, as shown
in the Supplemental Material [26–30].

To a good approximation, the static and mobile traps form
harmonic traps, with spring constants ks and km, respectively.
The calibration of the spring constants is described in the
Supplemental Material [26]. We can thus infer the force on
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the chain from the calibrated spring constant ks and the bead
displacement out of the static trap center with bright-field
microscopy, using F = ks(xs − x1), where xs and x1 are the
x-coordinates of the trap center and the trapped particle, re-
spectively. Here, the coordinate system has been chosen to be
aligned with the chain. The linear compression u is defined
by u = L0 − L with the equilibrium total (contour) length
L0 = ∑

di, with di the distance between two bonded particles
when no stress is applied, and the actual end-to-end distance
L, defined by L = xN − x1.

To interrogate the mechanical response of the colloidal
chain, we have performed three different micromechanical
tests: (i) A cyclic buckling test, (ii) a stress-relaxation test, and
(iii) a fracture test. Each test starts by catching the capping
beads of an assembly in a relaxed configuration and is de-
signed to probe different mechanical properties of the chains,
respectively: elastic buckling, viscoelastic/plastic deforma-
tion, and ultimately break-up. During (i), the mobile trap is
moved with constant speed vtrap toward the fixed trap until a
maximum trap displacement � = �m ∼ 1 μm, significantly
above the buckling threshold, and then returned to its initial
position. During (ii), the mobile trap is moved similarly to a
maximum � = �m, but then kept fixed for a certain amount
of time, during which the system can relax the stress through
plastic deformation, as measured by a reduction of the force
exerted on the static particle. During (iii), the trap is moved
continuously until a point of failure is reached and the chain
breaks.

During these experiments, the chains are imaged using
bright-field microscopy at a frame rate of 20 fps with a pixel
size of 87.7 nm. The centers of each particle within the chain
are localized in the imaging plane with a subpixel accuracy of
ε = 10 nm using particle tracking software [31]. The resulting
particle positions ri = (xi, yi ) are used to compute the nearest-
neighbor distances di = ||ri+1 − ri|| and bond tangent angles
φi = arctan (yi+1 − yi )/(xi+1 − xi ). We define the local bend-
ing angle θi = φi+1 − φi at particle i from the two neighboring
bond angles, φi and φi+1, as illustrated in Fig. 1(b). To study
the (vibrational) modes under the increasing compression and
compare with continuum theories of elastic filaments, we per-
form a Fourier transform according to

Mi = 2

N − 1

N−2∑
j=1

y j sin

(
π

N − 1
ji

)
, i = 1, . . . , N − 2.

(1)

Here, yi is the deflection perpendicular to the line connecting
the two trapped particles, and i runs from 1 to N − 2 as the first
and last particles are fixed in the y-direction by construction.

III. RESULTS AND DISCUSSION

An overview of the micromechanical tests together with
representative snapshots of the colloidal chain are shown in
Fig. 1. Upon compression, we observe that above a critical
compression �c the initially straight chain buckles. This buck-
ling is reversible as shown in the cyclic compression test in
Fig. 1(c): upon unloading, the chain reversibly straightens
out, suggesting an elastic response at the moderate strain
probed here u/L0 � 0.01. However, when the trap is kept

fixed at a larger compression after buckling, reaching strains
u/L0 � 0.01, viscoelastic effects come into play [Fig. 1(d)].
The deflection keeps increasing at fixed end-to-end distance,
indicating creep of the chain. This creep response is accom-
panied by stress relaxation, as can be seen by the trapped
particles relaxing back to the trap center. Finally, if we keep
increasing the compression beyond the break-up displacement
� f , the chain breaks at a single connection point and two
bonded patches separate, as shown in Fig. 1(e). After break-
up, the two remaining ends quickly release their elastic energy
by straightening out, further showing the reversibility of the
remaining two chain segments.

A. Elastic Euler buckling

To obtain insight into the buckling transition, we determine
the force quantitatively from the displacement of the particle
out of the static trap. A typical force-trap displacement curve
during cyclic loading is shown in Fig. 2(b). Initially, the force
increases linearly with trap displacement; the initial slope fits
to k� = 0.25 pN/μm, which agrees with the effective spring
constant of the two traps placed in series, keff = 1/(1/ks +
1/km) = 0.24 ± 0.03 pN/μm, where we have used the cali-
brated spring constants ks = 0.58 ± 0.02 pN/μm and km =
0.42 ± 0.05 pN/μm. Thus, in the prebuckling regime, only
the trap springs are compliant, and the chain is incompressible
within measurement accuracy. At a critical trap displacement
�c, the chain buckles, and the force saturates at a plateau Fc.
Upon unloading, a mirrored response occurs, and the buck-
ling vanishes at a critical displacement of �′

c. Pinpointing
the critical displacements �c and �′

c by interpolation, we
find that they are very similar; their difference �c − �′

c =
(0.1 ± 0.1) μm is of the order of the experimental uncer-
tainty. This reversible behavior indicates an elastic response
on these timescales. This is confirmed when we compute the
dissipated energy by integration of the fitted force curves,
which yields

∮
Fd� ∼ 2kBT , of the order of the thermal

energy.
We determine the actual physical compression of the chain

using the images to locate the chain end points. The corre-
sponding force versus real strain u/L0 shows a steep, almost
vertical increase of the force [Fig. 2(c)], confirming the near-
incompressible character of the chain. The sharp transition to
a constant force at the critical force Fc is strongly reminiscent
of the elastic response of classical Euler buckling [32–34].
The latter states that a freely hinged elastic rod of bending
rigidity B buckles out of its straight configuration into the
lowest-order mode at a load F e

c = π2B/L2
0. The mode strain

amplitude itself is described by Me/L0 = 2/π
√

u/L0. Indeed,
after buckling, the colloidal chain assumes a characteristic
first-mode deflection as shown in Fig. 1(c), and confirmed by
plotting the extracted first-mode amplitude M1 as a function
of strain in Fig. 2(d). The amplitude closely follows the Euler
prediction for Me, as shown by the dashed curve through
the data points. This agreement with the Euler model further
indicates that for moderate strains, the response of the chain is
predominantly elastic, and viscous contributions are minimal.
Compared to simple linear aggregates of isotropic particles
that also exhibit buckling behavior [35], the behavior observed
here is in even much better agreement with continuum theory.
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(a) (c) (d)

(b)

FIG. 2. Reversible elastic Euler buckling. (a) Schematic of the applied displacement as a function of time. (b) Force vs trap displacement
of the loading (black) and unloading cycle (red); data are smoothed by a running average over 100 frames. Dashed lines are fits to an initial
linear force increase followed by a plateau. The force starts out negative as chains are kept in a stretched state before starting the experiment.
(c) Force vs strain; dots are individual data points, the black line is a running mean performed by rotating the axes by 45◦. The dashed line is the
best fit to the data for u/L0 > 0.005, defining Fc. (d) Normalized first-mode amplitude vs strain. The dashed line represents an ideal first-mode
deflection described by M1/L0 = 2/π

√
u/L0. All data correspond to a single typical experiment of an N = 11 chain with �m = 1 μm at

vtrap = 0.01 μm/s; corresponding images are shown in Fig. 1(c).

This is likely due to the more perfect straightness of the chain
afforded by the dipatch particle geometry.

To confirm this behavior and obtain more insight into
the impact of chain length on bending and buckling charac-
teristics, we repeated the experiment for chains of different
lengths, and we determined accurate values of Fc for each ex-
periment by averaging F in the plateau regime for data points
with u/L0 > 0.005 and u/L0 < 0.01. The extracted values of
Fc as a function of chain lengths show a characteristic decrease
in Fig. 3(a). By fitting with the Euler dependence L−2

0 (black
line), we obtain the bending rigidity B = 10 pN μm2, corre-
sponding to a persistence length Lp = B/kBT = 2400 μm.
This is remarkably close to the short-time bending rigidity
Lfast

p = 2420 μm obtained from quiescent, free chains by anal-
ysis of their thermal vibrations [23]. Using the Euler equation,
we can also determine B and Lp separately for each experi-
ment from the measured Fc and plot it as a function of L0; see
Fig. 3(b). Despite the scattering of the data, likely caused by
the polydispersity in the patch size, temperature fluctuations,

(a) (b)

FIG. 3. Critical buckling force and persistence length. (a) Buck-
ling force vs chain rest length of 11 experiments. The solid line
is a fit to the Euler criterium Fc = π 2B/L2

0 . (b) Resulting persis-
tence length, calculated by inversion of Euler’s criterium for each
measurement. The blue (red) line corresponds to Lfast

p = 2420 μm
(Lslow

p = 1500 μm), previously obtained from analysis of thermally
activated relaxation [23].

and experimental error, there is a notable trend towards lower
rigidities for smaller chains. We associate this trend with the
larger bond angles for shorter chains and enhanced plastic
effects that reduce the effective rigidity. Another reason could
be the dynamic excitation of the first mode, which for longer
chains needs more time (growing with L4

0 [23]). As the speed
of the trap movement is always similar, this could lead to exci-
tation of higher-order modes increasing the stress, as observed
for macroscopic elastic filaments [36,37].

We conclude that for moderate strains of up to around
u/L0 ∼ 1%, the chains show elastic Euler buckling, reversible
upon unloading and in line with the rigidity found from short-
time fluctuations. However, a trend of decreasing bending
rigidity for shorter chains points to possible plastic effects or
excitation of dynamic higher-order modes.

B. Creeping and stress relaxation

To obtain further insight into these viscoelastic effects, we
investigate the creep response of the chain held at constant
compression after buckling. The corresponding trap displace-
ment, force, first-mode amplitude, and compression are shown
over the full cycle of initial loading and subsequent creep in
Fig. 4(a). Shortly after buckling (red dot), the trap movement
is stopped (red star). Interestingly, despite the constant trap
positions [plateau in Fig. 4(a), top], the first-mode amplitude
continues to rise [Fig. 4(a), third panel], while the compres-
sive force decreases and relaxes towards zero. This force
relaxation cannot be attributed to equilibration of the trap, as
there was no asymmetry in the force measurement obtained
from static versus mobile traps (data not shown). To complete
the compression-relaxation cycle, when the chain has fully
relaxed, we quickly unload. Again, a delayed response is
observed with u and M1 decaying after trap movement has
stopped.
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(a)

(c)(b)

FIG. 4. Creep tests revealing viscoelastic dissipation. (a) Time traces of trap displacement, force, first-mode amplitude, and strain of a
chain undergoing a stress relaxation protocol followed by a quick unloading. The red dot indicates buckling, and the red star indicates yielding.
(b), (c) Force (b) and first-mode amplitude (c) vs strain. Arrows indicate the time direction. The color coding of data points corresponds to the
background color of (a), which indicates the phase of the experiment; see the legend. The red star and dot consistently indicate the buckling
and yielding points. The dashed line in (c) corresponds to an ideal first-mode deflection. Data correspond to a representative experiment of an
N = 13 particle chain with �m = 1.3 μm at vtrap = 0.0075 μm/s. Corresponding images are shown in Fig. 1(d).

Looking at the force as a function of compression in
Fig. 4(b), we notice a pronounced hysteresis: after the initial
Euler-like response (sharp rise of F followed by a plateau until
the red star), the compression keeps growing at a declining
force, indicating significant slow relaxation until the force
vanishes. Upon subsequent unloading and restoring the initial
trap positions, the compression decreases and finally vanishes
and the cycle is complete. The extended area inside the cycle
indicates significant energy dissipation. By rough interpola-
tion of the data, we can integrate and find �E◦

u = ∮
Fdu =

21 kBT , significantly higher than thermal energy. Concomi-
tantly, the first-mode amplitude as a function of compression
[Fig. 4(c)] shows some interesting deviation from the Euler
prediction after buckling (red star): the amplitude deviates
from a pure first mode deformation (indicated by the dotted
line). This deviation to a lower amplitude M1 indicates that
higher bending modes are excited, different from the pure
Euler buckling observed before. A visual signature of this can
be seen in the image of the chain in Fig. 1(d)-B, which shows
asymmetric bending.

To understand this dissipative process in more detail, we
focus on the relaxation period when the trap movement has
stopped [t > t2 = 200 s in Fig. 5(a)]. The evolution of the
force, first-mode amplitude, and compression are shown in
Figs. 5(b)–5(d). The evolution of both force and compression
are well described by monoexponential relaxations,

F = Fie
−�t/τF , u = u f − ucreepe−�t/τu , (2)

where �t = t − t2, Fi = 0.13 pN is the initial force, u f is the
final displacement, and ucreep = 0.46 μm is the total creep
displacement. From the fits, we obtain relaxation times of

τF = 13 ± 1 s and τu = 14 ± 1 s, which agree with each other
within error bars. We also fit a monoexponential relaxation
to M1 and find τM1 = 22 ± 1 s. For a pure first-mode defor-
mation, one expects M1 ∝ √

u, and hence τM1 = 2τu = 28 s
[33]. The slightly faster first-mode relaxation observed here
is likely caused by additional relaxation of higher modes into
the first-mode, speeding up first-mode growth.

These results can be interpreted within a minimal mechan-
ical model, outlined in Fig. 5(e). Before buckling, the system
response is described by two springs in series, namely the
effective trap spring with constant ktrap = (1/ks + 1/km)−1,
and the straight chain with kchain [Fig. 5(e), top panel]. Since
kchain � ktrap, mostly the traps compress, while the chain is
hardly compressible. After buckling (t > t1, and � > �c), the
chain becomes compliant, resisting with a constant force Fc.
At even higher strain (time t2, and � = �η), the chain yields,
being described by a dashpot with effective viscosity η′. The
mechanical response of the system can be summarized using
the following constitutive equations [38]:

F = ktrap(� − �0), u = 0 for � < �c,

F = Fc, u = � − �c for �c < � < �η,

�̇ = Ḟ

ktrap
+ F

γ ′ , u̇ = F

γ ′ for �η < �, (3)

where �0 is the equilibrium trap distance, and γ ′ is a drag
coefficient associated with an effective viscosity γ ′ = η′A/L0

via an area A. We assume that there is no creep before the trap
is fixed, hence �̇ = 0 in the creep regime and �η coincides
with the maximum trap displacement �m. Then line 3 of

035603-5



SIMON G. STUIJ et al. PHYSICAL REVIEW MATERIALS 6, 035603 (2022)

(a)

(c) (d)

(e)(b)

FIG. 5. Stress relaxation test and model. (a) Displacement protocol used for the stress-relaxation experiment. (b)–(d) Relaxation of
the force, first-mode amplitude, and compression of the chain as a function of time starting at t2. Red lines are monoexponential fits.
(e) Macroscopic mechanical model for the combined system of harmonic trap and viscoelastic chain. As a function of trap displacement,
the system shows a different mechanical response. Before buckling, the chain behaves elastically, and there are two springs in series (top
panel). When � > �c, the chain buckles and the system transitions to a spring and a compliant chain resisting with constant force Fc (second
panel, parallel chains refer to the transition). When � > �η, the chain becomes viscoelastic, and the system transitions to a spring and a
dashpot with effective viscosity η′. The fourth panel shows the situation after a time τ in which relaxation has occurred.

Eq. (3) is simply solved by

F = Fce−ktrapt/γ ′
, u = − Fc

ktrap
e−ktrapt/γ ′ + u(t = t2). (4)

The model thus correctly predicts monoexponential decays
with equal decay times for force and strain, as seen in the fits
of Eq. (2). Using the fitted values, we obtain Fc = Fi, ktrap =
Fi/ucreep = 0.3 pN/μm, and γ ′ = 4 Pa s μm. The spring con-
stant and Fc agree well with the values obtained for the loading
and buckling regime. Moreover, any potential overestimation
of ktrap with respect to the expected value (1/ks + 1/km)−1 =
0.26 pN/μm is likely due to the assumption that there is
no creep before reaching the maximum trap displacement
�η = �m. Yielding probably occurred slightly earlier at the
point where higher modes got excited. We also note that the
extracted drag coefficient γ ′ can be used to estimate the dissi-
pated energy from the loading and unloading rates in Fig. 4(a)
(bottom). Integrating F = γ ′u̇ over the loading and unloading
cycle using slopes between u̇ = 0.013 and 0.008 μm/s for
the loading rate and u̇ = 0.026 μm/s for the unloading rate,
we obtain dissipated energies between 19 and 23kBT , in good
agreement with the value of 21kBT determined from integra-
tion over the cycle. For such a minimal model, the agreement
is striking.

The question now is, what is the origin of the drag coeffi-
cient γ ′? From elastic relaxation of free chains, we extracted
a fluid drag coefficient γM1 = 50 m Pa s μm (data not shown),
two orders of magnitude lower than γ ′. We thus conclude that
the source of the drag cannot be the outside fluid, but most
likely comes from internal patch-patch friction of the chain.
This is in agreement with our conclusion from quiescent
chains subjected to thermal excitation [23]. These measure-
ments showed that on timescales t > 10 s, dissipative effects
take place, associated with internal friction with an effective
viscosity of ∼1 Pa s.

We can estimate that the effective viscosity η′ that is asso-
ciated with the drag coefficient γ ′ is η′ = γ ′L0/A = 14 Pa s,

where the area A = d2. The origin of this dissipation is the
occurrence of slow conformational changes, likely due to
contact slippage [23]. The real-space snapshots suggest that
indeed the higher-order modes localize bending on a single
bond, indicating bond slip. Initially, this slip is localized on
a particular bond, but with increasing strain the localization
diminishes, and more bonds get involved in the bending, until
finally a pure first-mode buckling is recovered. This behavior
is reminiscent of the relaxation that occurs in actin bundles,
which also show a slow viscoelastic buckling relaxation when
compressed with optical tweezers [7]. In the case described
there, though, the yielding is due to internal restructuring of
the polymers. In addition, quiescent experiments of fluctuat-
ing microtubules also show significant viscoelastic behavior
attributed to internal friction [6]. It is surprising that a simple
chain assembled from divalent particles shows similar rheo-
logical behavior, suggesting that these relaxation phenomena
are general.

C. From bending to break-up

At even larger strains, the dipatch particle chains show a
transition from bending to break-up, as depicted in the micro-
scope images in Figs. 6(a) and 6(b). The large applied strain,
reaching about u/L0 ∼ 10%, causes a strong chain bending.
At the break-up strain ub/L0, the chain breaks at a single bond,
after which the average force reduces to zero. The average
bending angle (black) and the bending angle associated with
the bond that breaks (red) are shown in Fig. 6(c). The average
bending angle increases until the break-up point, reaching
a maximum 〈θ〉b. The bond that breaks has a higher than
average bend angle at the moment of break-up. Right after
break-up, the average bend angle of the two broken chain
parts straightens out quickly and relaxes to zero [Fig. 6(d)].
The timescale of straightening is of the order of only a few
seconds, indicating fast elastic relaxation, limited by solvent
friction.
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(c) (d)

(a) (b)

FIG. 6. Break-up at high applied strain. (a), (b) Bright-field microscope images of the dipatch particle chains under compression, before
and after break-up. The chain does not always break in the middle where the highest curvature is located. This can be explained by thermal
noise or polydispersity in the patch size, leading to local variations in stiffness along the chain. (a) Chain with N = 12, compressed at vtrap =
0.015 μm/s. (b) Chain with N = 11 particles compressed at vtrap = 0.02 μm/s. (c) Bending angles of bonded particles vs time showing
continuous increase until break-up, and rapid straightening thereafter (data correspond to the N = 12 chain). The black line is the average of
all bending angles 〈θ〉, the red line is the mean of the two bending angle next to the broken bond. The vertical dashed line marks the time tb at
which the chains break. (d) Relaxation of the average bending angle as a function of elapsed time after break-up. The timescale is of the order
of a few seconds, characteristic for elasticlike relaxation damped by the solvent.

To elucidate the breaking process in more detail, we per-
formed six breaking experiments and plot their break-up
strains as a function of chain length in Fig. 7(a). A clear
systematic increase is observed. This is to be expected as
chains with more particles show less local bending per bond
for the same strain. In fact, the average bending angle 〈θ〉b at
break-up appears almost insensitive to the chain length, with
an average ¯〈θ〉b = 0.11(1) rad; see Fig. 7(b). This suggests
that 〈θ〉b is a critical bending angle that we can use as a
predictive criterium for break-up. We also plot an alternative
bending angle, 〈θM1〉b, corresponding to the average bending
angle in the case of a pure first mode deformation, defined
by 〈θM1〉b = 2πdM1,b/L2

0 (blue data points). These two quan-
tities overlap well, further showing that deformation is close
to that of a pure first mode; hence, 〈θM1〉b forms an equiv-
alent critical bending criterium. We can use this criterium
together with the relation M1/L0 = 2

√
u/L0/π to obtain a

prediction for the break-up strain ub/L0 = (L0/d )2〈θM1〉2
b/16,

which is indicated by the blue line in Fig. 7(a). Given
that there are no fitting parameters in this prediction for
the break-up strain, the agreement with experiment is
remarkable.

How does this critical bending angle relate to the patch
size? The patch has a diameter of approximately dp =
0.38(5) μm, which translates to an arc angle 2 sin−1(dp/d ) =
0.14(2)◦ = 0.24(3) rad. Here, the uncertainty is an estima-
tion of the particle patch area polydispersity. As the critical
Casimir interaction is short-ranged, and the bonds weaken
increasingly as the patches become inclined [39], we expect
that the chain breaks when one bond angle reaches the patch
arc angle, as illustrated in Fig. 7(d). The critical bending crite-
rion thus translates to a maximum bending angle max(θM1 )b =
π〈θM1〉b/2 = 0.17(1) rad. This is indeed close to the patch
arc angle, yet it is slightly smaller, meaning chains break

FIG. 7. Critical bending angle of break-up. (a) Maximum strain reached right before break-up as a function of chain length. The blue line
is a prediction based on a maximum bending criterium; see the text. (b) Mean bending angle right before break-up vs chain length; the black
line is the average. (c) Maximum bending angle of the bond that snaps; the black line is the average. (d) Schematic illustrating that the expected
maximum bond bending angle θ∗

p equals the patch arc angle θp.
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FIG. 8. Large-strain Euler buckling accompanied by stick-slip relaxation. Force (top) and first-mode deflection (bottom) vs strain of the
two representative breaking tests in Fig. 6. Red dots are post break-up data points. Numbers correspond to those in Fig. 6. The data suggest
some stick-slip-like relaxation at larger strain before break-up.

slightly earlier than this limit. The difference can be explained
by patch size polydispersity and thermal fluctuations that can
spontaneously increase the local bending, as visible in the red
curve of Fig. 6(c). In fact, the actual measured bending angle
θ∗

b of the bond that snaps is typically higher than 0.17 rad,
as shown in Fig. 7(c). Averaging over all the measurements
yields θ̄∗

b = 0.20(5) rad, consistent within accuracy with the
patch arc angle. From this correspondence we conclude that
the breaking transition arises from the limited patch size,
which explains the striking difference with the response of
isotropic particle chains [35].

Like before, we observe force and deflection curves that
are very reminiscent of the elastic Euler buckling behav-
ior, now up to the break-up point (Fig. 8). This apparent
elastic response is supported by the characteristic elastic re-
laxation back to the linear chain configuration after break-up
[Fig. 6(d)]. Given that these large strains exceed the vis-
coelastic yield strain, this is surprising. Indeed, upon close
inspection of Fig. 8 (top left), the data suggest that some
stick-slip behavior occurs: in the plateau regime instead of
a constant force, a sequence of stress buildups and decays
seems to occur, suggesting that even before break-up, some
nonelastic relaxation occurs.

This nonelastic relaxation is very limited, however, as the
probing is fast: the chain does not have time to fully relax at
the applied loading rate (vtrap ∼ 0.02 μm/s, more than twice
as fast as in the relaxation experiment). This applied loading
rate is close to the plastic relaxation rate, which we estimate
from the postyielding creep rate as u̇ = F

γ ′ ∼ 0.025 μm/s.
Here, we have used the previously obtained value for the inter-
nal drag coefficient γ ′ = 4 Pa s μm and the force F ∼ 0.1 pN.
Hence, while the chains do not have time to fully relax,
they exhibit some minor viscous relaxation in the otherwise
elastic process. Unfortunately, the experimental noise caused

by thermal fluctuations does not allow us to be more quantita-
tive on this point.

IV. CONCLUSIONS

We have shown that chains of dipatch colloidal parti-
cles buckle elastically, closely following the macroscopic
Euler buckling behavior when the strain is kept below the
yield strain. The elastic Euler buckling recovers the Fc ∝
L−2 scaling of buckling load with filament length, and it
yields a persistence length that agrees well with fluctuation
measurements on quiescent chains [23]. For larger strains
and on longer timescales, viscoelastic effects lead to stress-
relaxation. This viscoelastic relaxation is attributed to internal
friction due to bond slippage. We used a simple linear vis-
coelastic model that provided a good fit to the experimental
stress-relaxation data. Finally, we showed that upon further
increase of the strain, at a critical maximum bending angle, the
chains break. This maximum bending angle can be rational-
ized based on the size of the patch and thermal noise. Hence,
the finite patch size is essential not only for determining the
structures formed through self-assembly, but also for their
resulting mechanical stability.

These results highlight the rich nonlinear, viscoelastic,
and break-up mechanics present in assembled patchy particle
structures, the essential features of which we can model and
predict accurately. The elastic loading, viscoelastic relaxation
with apparent stick-slip dynamics, and final failure of the
chains are reminiscent of the complex nonlinear mechan-
ics of biological materials. These results suggest that patchy
particle assembly is a promising route to achieve “colloidal ar-
chitectures,” micron-scale structured materials with designer
mechanical properties, further extending the use of patchy
particle systems.
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