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ABSTRACT

In the real world, metals are gen-
erally present as mixtures, but
evaluating their mixture toxicity
is still a daunting challenge. The
classic conceptual models of con-
centration addition (CA) and
independent action (IA) have
been widely used by simply add-
ing doses and responses to pre-
dict mixture effects assuming
there is non-interaction. In cases
where interactions do occur in a
mixture, both CA and IA are no longer applicable for quantifying the toxicity, because
interpretation of the observed joint effects is often limited to overall antagonism or
synergism. In metal mixtures, interactive effects may occur at various levels, such as the
exposure level, the uptake level, and the target level. A comprehensive understanding
of the mechanisms of joint toxicity is therefore needed to incorporate the interactive
effects of mixture components in predicting mixture toxicity. With this in mind, numer-
ous bioavailability-based methods may be considered, with diverse mechanistic per-
spectives, such as the biotic ligand model (BLM), the electrostatic toxicity model (ETM),
the WHAM-Ftox approach, a toxicokinetic-toxicodynamic (TK-TD) and an omics-based
approach. This review therefore timely summarizes the representative predictive tools
and their underlying mechanisms and highlights the importance of integrating mixture
interactions and bioavailability in assessing the toxicity and risks of metal mixtures.

KEYWORDS Biotic ligand model; electrostatic; mixture effects; omics; toxicokinetic-toxicodynamic; WHAM

1. Introduction

In the environment, metals are seldom present in isolation, therefore expos-
ure to multiple metals is a rule rather than an exception (Kortenkamp et al.,
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2009). Given the potential of metals to pose detrimental impacts on humans
and the environment, evaluating their effects as mixtures is urgently needed
(Escher et al., 2020). However, the existing chemical regulations mainly focus
on single metals and rarely consider mixture exposure scenarios, which may
have little environmental relevance. It is impractical to evaluate all possible
mixtures, because there are innumerable combinations based on the fluctuat-
ing concentrations of single metals in mixtures (Chen et al., 2013). Thus,
there is an urgent need for developing simple and efficient models to
decipher and predict the mixed effects of metals (Baas et al., 2009; Farley
et al., 2015; Meyer et al., 2015).
The conceptual models of concentration addition (CA) and independent

action (IA) have been most widely applied to predict the effects of metal
mixtures. The CA concept was developed by Loewe and Muischnek (1926)
to describe mixtures of components having the same or a similar mode of
toxic action (i.e., acting on the same biological pathway and strictly on the
same molecular target). CA assumes that the relative toxicity of the metals
that are present in mixtures is the same as their relative toxicity when pre-
sent individually. The concept of IA was first proposed by Bliss (1939) to
describe mixtures of components having different modes of action (i.e., act-
ing on different physiological systems). IA addresses the question whether
the probability of being affected by one metal may be independent from
the probability of being affected by another metal. In this model, the rela-
tive toxicity potency of metals is ignored, and the mixture effect is pre-
dicted from the joint probabilities of statistically independent events
(Peijnenburg & Vijver, 2007). Both approaches are based on the assump-
tion that components in the mixture do not physically, chemically, or bio-
logically interact. With regard to the choice of a conceptual model, the
basic idea is to use CA if the mixture components are expected to act simi-
larly and to use IA if they are expected to act dissimilarly (Junghans et al.,
2006). However, identifying the modes of action for different chemicals is
not always possible. In those cases, CA is suggested to be the more conser-
vative choice in a risk assessment context as it estimates higher toxic effects
than IA and therefore represents the worst-case scenario for assessing mix-
ture exposures (Backhaus & Faust, 2012; Cremazy et al., 2018; Gopalapillai
& Hale, 2017; Jegede et al., 2020; Lock & Janssen, 2002; Nys et al., 2017).
To date, our understanding of mixture toxicity is still based on these

concepts, with concentration addition as the basis for most models (Vijver
et al., 2010). However, actually, the joint toxicity of metals may not corres-
pond to effects predicted based on “additivity” without considering inter-
active effects (Cedergreen et al., 2017; Kamo et al., 2019; Traudt et al.,
2017). The interactive effects of mixture components may lead to more-
than-additive (synergism) or less-than-additive (antagonism) effects and
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possibly occur at various levels (such as the exposure level, the uptake level,
and the target level) (Weltje, 1998). Specifically, the exposure level describes
physicochemical interactive effects in the exposure media, affecting chem-
ical speciation and hence the bioavailability of metals. In natural environ-
ments, environmental (geochemical) processes logically affect this type of
interactions, and this complicates the simplification of the interactions.
Apart from this, multienvironmental factors, such as organic carbon con-
tent, alkalinity, and pH, can also influence metal speciation and bioavail-
ability, thus altering the first type of interactions. The uptake level deals
with physiological interactive effects during the uptake processes, influenc-
ing toxicokinetic processes and thereby the available amount of metal
reaching the sites of action. The target level involves interactive effects of
metals at the target sites within an organism, which affect toxicodynamic
processes and subsequently the combined effect (Conder & Lanno, 2000;
Kinraide, 1998). Insight into these interactive effects levels and their relative
importance is of great value for the toxicity assessment of metal mixtures.
This information will help to generalize study results on metal mixtures, as
well as for different exposure conditions and organisms.
For an effective and accurate risk assessment of metal mixtures, appro-

priate models or tools are required that enable the prediction of mixture
effects, which cover both simple and complex mixtures and incorporate
mixture interactive effects. Many mechanistically underpinned models
based on different perspectives have thus been developed to predict the
mixture toxicity of metals considering the interactive effects of mixture
components, including: a) thermodynamic equilibrium models (e.g., biotic
ligand model (BLM) (Di Toro et al., 2001), electrostatic toxicity model
(ETM) (Wang et al., 2008) and WHAM-Ftox approach (Stockdale et al.,
2010)); b) process-based approaches (e.g., toxicokinetic-toxicodynamic (TK-
TD) model (Jager et al., 2011)); and c) modern analytical technologies (e.g.,
omics-based approaches (Ankley et al., 2006)). From the thermodynamic
equilibrium models, it is suitable to apply the BLM-based approaches to
interpret mixture effects, postulating that competition is responsible for
metal mixture interactive effects (Niyogi & Wood, 2004). The ETM
assumes that metal toxicity and uptake are determined by the ion activity
at the surface of the cell membrane. Cations (e.g., Ca2þ, Mg2þ, and Hþ) in
the bulk solution can reduce the negativity of the electrical potential at the
surface of the cell membrane by charge screening and ionic binding
(Kinraide, 1998; Wang, Kinraide et al., 2011), which, in turn, can reduce
metal ion activities at the membrane surface. Therefore, the ETM modeling
approach allows incorporating the effects of various cations simultaneously
in modeling mixture toxicity and may provide mechanistic insights (in add-
ition to competitive binding) into mixture interactive effects at the

1732 B. GONG ET AL.



boundary layer surrounding the cell surface. The WHAM-Ftox serves as an
innovative bioavailability-based model (Stockdale et al., 2010). It is assumed
that the interactive effects between metals and biological surfaces can be
reflected by the interactive effects with particulate humic acid (HA)
(Stockdale et al., 2014). HA contains various functional groups and can
represent the heterogeneous distribution of biotic ligand sites. It should be
noted that the mixture toxicity of metals to certain endpoints is predicted
by these thermodynamic equilibrium models without considering the influ-
ence of time, which is of great significance for quantitative risk assessments
(Di Toro et al., 2001; Slaveykova & Wilkinson, 2005).
In fact, metal bioavailability influenced by interactive effects is not a

static but rather a dynamic phenomenon. For better understanding and
predicting the mixture toxicity of metals, the underlying interactive effects
during TK and TD processes deserve further investigation. Consequently,
the process-based TK-TD model is proposed to estimate the real-time tox-
icity of metals by simulating the time-course processes (Ashauer & Escher,
2010). This approach enables the extrapolation of metal toxicity in the
course of time and toward higher organisms. Considering process-based
interactive effects, the development of predictive approaches is more
powerful to unravel the underlying mechanisms of metal mixture toxicity
coming at a price in time-consuming and costs in ecotoxicological testing.
Moreover, interactive effects of metals with biological target sites (e.g.,

protein, DNA, and ion channel) are the basic steps for inducing toxic
effects. At this phase, interactive effects between metals and the target spe-
cies affect the toxicity of metal mixtures. Interactive effects of metals at this
level together with interactive effects of metal-metal may result in different
patterns of mixture toxicity, e.g., additive, less-than-additive, and more-
than-additive. Metals in a mixture may have many or uncertain modes of
action when they interact at the receptor sites. To investigate these poten-
tial interactive effects, novel toxicogenomic approaches have been devel-
oped in recent years (Garcia-Sevillano et al., 2014). These approaches can
help to provide a basis for deciphering the mechanisms involved in mixture
toxicity. Genomics technologies (e.g., global gene expression) are applied to
investigate adverse impacts of metals (Suter et al., 2004). This approach
integrates conventional toxicology and promising technologies of genomics
and bioinformatics. The association of metal mixture toxicity with mecha-
nisms of interactive effects at the molecular level can be identified through
detecting gene expression changes after exposure to the individual metals
and their mixtures. Genomes, including overall hereditary information of
organisms, are generally found in the DNA or RNA and include genes and
non-coding order of the DNA or RNA, which contain information for
building and maintaining organisms (Wu et al., 2016). Therefore,
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environmental circumstances of the organisms together with their genes,
proteins, and biochemical pathways are considered in the toxicogenomic
approach. This method can effectively link environmental conditions to
phenotypes by linking the structure of the genome to phenotypes based on
genes, proteins, and biochemical pathways.
Given the global desire of minimizing animal testing and reducing costs

of regulatory testing (Hofer et al., 2004), modeling approaches are favorable
for conducting ecological risk assessments of metals. Because of the exten-
sive relevant literature over the past few decades, it is impossible to be
comprehensive in this review. Instead, this review will specifically focus on
summarizing the representative predictive tools for assessing the toxicity of
metal mixtures by considering mixture interactive effects and bioavailabil-
ity. In addition, the underlying mechanisms as well as the recent and new
applications of these models are also included, which will help to provide
guiding principles for future research on the toxicity of a ‘cocktail’ of met-
als, representatives of real environmental exposure scenarios.

2. Thermodynamic equilibrium models

2.1. Biotic ligand model (BLM)

2.1.1. Basic concepts and principles
The BLM is initially a theoretical framework in which toxicity is related to
the binding of metal ions to the sites of toxic action on an aquatic organ-
ism. It is often used as the state-of-the-art approach to quantify the link
between metal toxicity and chemical availability in aquatic systems (Di
Toro et al., 2001; Paquin et al. 2002). It is a synthesis of decades of work
on metal speciation, bioaccumulation, toxicity and physiology (Paquin et al.
2002). The principal feature in the BLM is the competition of the free
metal ion with other cations for binding at the biotic ligand (Figure 1).
This feature distinguishes the BLM from earlier concepts that considered
only the free metal ion as the toxic species. According to the assumption of
the BLM, metal ions (Mzþ) and other cations (Hþ, Kþ, Ca2þ, Naþ, and
Mg2þ) can bind to the theoretical biotic ligand (BL) sites (Di Toro et al.,
2001). The interactive effect between cations and BL is treated as a surface
complexation reaction. At equilibrium, for example, the stability constant
for the binding of Mzþ to biotic ligands, KMBL (L/mol), can be expressed as
a function of the concentrations of cation-biotic ligand complexes [MBL]
(mol/L) and unoccupied biotic ligand sites [BL] (mol/L):

KMBL ¼ ½MBL�
Mzþf g�½BL� (1)

where fMzþg is the free metal ion activity (mol/L).
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Metal toxicity is assumed to be proportional to the fraction (f) of the
total number of biotic ligand sites [BL]T occupied by the metal. The f value
depends on the binding affinity of Mzþ to the BL and the presence and
binding affinity of the competing cations (De Schamphelaere & Janssen,
2002):

f ¼ ½MBL�
½BL�T

¼ KMBL� fMzþg
1þ KMBL� fMzþg þ P

KXBL�fXzþg (2)

where fXzþg is the activity of major cations (Ca2þ, Mg2þ, Kþ, and Naþ) in
the solution, KXBL are the binding constant of cations Xzþ binding to
the BL.
The value of f at the 50% effect level ðf50%MBLÞ is assumed to be constant

according to the BLM theory. Eq. (2) then can be reorganized to:

EC50 Mzþf g ¼ f50%MBL

1� f50%MBL

� �
�KMBL

ð1þ
X

KMBL�fXzþgÞ (3)

where EC50fMzþg is the free metal ion activity inducing 50% effect.

2.1.2. Application in assessment of metal toxicity
The principles underlying aquatic BLMs seem to be also valid for terrestrial
species by regarding the active sites (i.e., biotic ligands) on or in organisms
as more general binding sites. Several publications have been dedicated to a
shift toward developing terrestrial BLMs for soil invertebrates (e.g., earth-
worm, enchytraeid, and collembola) (Li et al., 2008; Lock et al., 2006;

Figure 1. Brief description of the Biotic Ligand Model (BLM). DOM¼Dissolved Organic
Matter, L¼ ligand.
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Steenbergen et al., 2005; Van Gestel & Koolhaas, 2004) and plants (Li
et al., 2009; Lock et al., 2007; Thakali et al., 2006). It has been demon-
strated to be theoretically and empirically feasible to extend them to terres-
trial organisms. Given not enough soil toxicity datasets and much more
complex research system than that for solution systems, it is not surprising
that only few attempts have been done to apply the BLM concept to tox-
icity data in soil (An et al., 2012; Antunes et al., 2006; Plette et al., 1999).
Unlike the aquatic system, not only the soil solution but also the soil par-
ticles can provide metals for terrestrial organisms (Steenbergen et al., 2005).
The terrestrial BLM assumes equilibrium partitioning, akin to the aquatic
BLM. This assumption may not be applicable if the complexation reactions
between ions and biotic ligands at the surface of binding sites are slow rela-
tive to the internalization and the succeeding expression of the biological
response. Moreover, the kinetics of metal dissolution from the solid phase
to the solution phase can influence metal bioavailability in the soil system.
Equilibrium may also not be hypothesized once the process of metal enter-
ing into the organism is limited by diffusional control across the (static)
boundary layer surrounding the interfacial cells.
The basic assumption underlying the BLM (ion competition) potentially

allows incorporating metal interactive effects into the assessment of mixture
toxicity. In Table 1, some representative publications about the extended
BLM for metal mixture assessment are summarized. At first, there is great
interest in BLMs for metal mixtures in aquatic system. A multimetal mod-
eling framework based on the BLM concept has been developed for aquatic
organisms (Balistrieri et al., 2015; Farley & Meyer, 2015; Hatano & Shoji,
2008; Iwasaki et al., 2015; Playle, 2004; Santore & Ryan, 2015) and for
microorganism (Jho et al., 2011; Liu et al., 2017). For terrestrial higher
plants, attempts have been made to apply BLM concepts to analyze the
combined effects of multiple metals in solution cultures (Le, Vijver, Jan
Hendriks et al., 2013; Li et al., 2020; Liu et al., 2014; Qiu et al., 2015;
Versieren et al., 2014; Wang et al., 2017). As shown in Table 1, the predict-
ive capacity of each extended BLM method varied with different metal
combinations, test species, or exposure mediums (soil or water), which may
be due to the different underlying toxicity mechanisms of the different
metals, differences in sensitivity, or other factors in the exposure regime.
Qiu et al. (2016) successfully developed a multimetal soil BLM to explain
the mixture effects and indicated that bioavailability factors dominated the
interactive effects across soils. From that point on, the BLM framework was
extended to soils for quantifying metal mixture toxicity. Recently, a BLM-
Toxic Unit model has been successfully developed to quantify the toxicity
of As-Se mixtures under the influence of varying anion exposures, explain-
ing more than 77% of the observed variation in toxicity (Ji et al., 2020).
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This is the first systematic study on the single and mixture toxicity of
anionic metal(loid)s under the influences of varying anion concentrations.

2.1.3. Main advantages and disadvantages in predicting toxicity of
metal mixtures

The BLM-based model considers specific ion-ion interactions by including
the assumption of competitive or noncompetitive binding. Thus, ion-ion
interactions of metal mixtures are only interpreted by competition for BLs
in this approach. Besides, influences of cations are not always integrated as
the effect of cations is technically considered in the BLM only when a lin-
ear significant relationship is observed between the response of organisms
and the cation exposure concentration. Until now, most of the BLM-based
models for metal mixtures are based on the parameters derived from indi-
vidual metal toxicity data. Ideally, it is fairly straightforward to construct
such a model to predict metal mixture toxicity if the binding constants of
metal ions as well as other coexisting cations for the BLs are available. It
should be noted that to derive the binding constants of interest often
requires large univariate toxicity data sets. Experimental and modeling
uncertainties may induce variations of the obtained parameters, and thus
calibration is required for each metal and species.

2.1.4. Future perspectives
It is undeniable that the BLM framework has a great potential for the
quantitative modeling of the mixture toxicity of metal(loid)s in hydroponic
or soil systems because its theoretical basis is widely accepted for most
organisms. However, extended BLM models should be further improved
for interpreting synergistic interactions between metal mixtures. For risk
assessments of contamination with metal mixtures in the field, further
research is required to evaluate metal mixture toxicity in a wide range of
field soils. Based on the fact that both cationic and anionic metal(loid)s are
ubiquitous in the environment, further research efforts are required to
refine the BLM framework so that the interactive effects between cations
and anions can be considered simultaneously within a model framework.

2.2. Electrostatic toxicity model (ETM)

2.2.1. Basic concepts and principles
Based on the fact that the root plasma membrane (PM) surface expresses
negative charges which result in obvious differences between ion concentra-
tions in the bulk medium and at the PM surface, the ETM has been devel-
oped to explain how a corresponding electrical potential (u0) at the PM

1738 B. GONG ET AL.



surface affects plant-ion interactive effects (Figure 2) (Kinraide, 1998;
Wagatsuma & Akiba, 1989). The u0, which is generally negative, could
influence the free ion activities at the PM surface by attracting cations or
repelling anions from the bulk medium, and meanwhile provide the elec-
trical driving force for ion transport across the cell membrane (Kinraide,
2001; Kopittke, Blamey et al., 2011). Therefore, the addition of cations in
the bulk medium (such as Ca2þ, Mg2þ, Al3þ, Hþ) could reduce the nega-
tivity of u0 in a nonspecific manner thereby enhancing the toxicity of other
anions (such as SeO4

2-) (Kinraide, 2010a) or alleviating toxicity of cations
(such as Ni2þ, Cu2þ, Zn2þ) (Kinraide, 1999; Kopittke, Kinraide et al., 2011;
Le & Peijnenburg, 2017; Wang, Kinraide et al., 2011; Wang, Kopittke et al.,
2011). Taking into account the u0 at the PM surface, the ETM could be
well adapted to many cases where metal bioavailability could not be
entirely explained by site-specific competitions (Kinraide, 2010b). The value
of u0 could be determined from the specific ionic composition of the bulk
solution using a Gouy-Chapman-Stern (GCS) model (Kinraide, 1998),
somehow involving ion-ion interactive effects. Kinraide (2010b) also pro-
posed simplified methods to easily obtain this value according to available
literature. For example, equilibrium constants could be estimated by a for-
mula according to the “Hard Ligand Scale” and thus be used to calculate
u0 (Kinraide & Yermiyahu, 2007). A computer program is available for the
determination of u0 and PM ion activities (Kopittke et al., 2014).

Figure 2. Brief description of the Electrostatic Toxicity Model (ETM). Metal ion (Mnþ) transport
across the plasma membrane (PM), including dissociation (kd)/association (ka) with the active
binding sites on the surface of the PM (M-BL) and internalization (kint) into the cell interior.
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Some investigations have shown that bulk solution chemistry was inad-
equate to predict the bioavailability of metals to organisms due to different
conditions near the cell membrane (Liu et al., 2018; S�anchez-Mar�ın et al.,
2018). Many studies have proven that fMzþgsurf, the free ion activity at the
PM surface calculated from u0, is a better predictor of metal phytotoxicity
than that in the bulk medium (donated as fMzþgbulk) (Gong et al., 2019).
The estimation of fMzþgsurf via fMzþgbulk and u0 can be realized by the
Nernst Equation:

Mzþf gsurf ¼ Mzþf gbulk� exp �Z�F�u0

RT

� �
(4)

where fMzþgsurf and fMzþgbulk are free Mzþ ion activities at the PM sur-
face and in the bulk solution, respectively; Z is the charge of the metal ion;
F the Faraday constant; R the universal gas constant; and T the experimen-
tal temperature.

2.2.2. Application in assessment of metal toxicity
The applicability of the electrostatic theory has been evaluated in many
studies for the prediction of individual metal toxicity (Gong et al., 2019;
Kopittke, Blamey et al., 2011; Wang, Kinraide et al., 2014; Zhou & Wang,
2011). As shown in Table 2, the toxicity of metals such as Ni2þ, Pb2þ,
Cu2þ, Zn2þ, Y3þ, and Ce3þ to several plant species, including Triticum aes-
tivum (wheat), Hordeum vulgare (barley) and Vigna unguiculata (cowpea),
as well as impacts of cations such as Ca2þ, Mg2þ, and Hþ could be well
predicted by the ETM (R2 > 0.77). Gong et al. (2019) reported that the
predictive capacity of the ETM was nearly equal to that of BLM in quanti-
fying the toxicity of Y and Ce to wheat in hydroponic culture. Indeed, the
electrostatic theory has been proposed as a surrogate to the BLM in model-
ing metal bioavailability, uptake, and toxicity (Kopittke, Blamey et al., 2011;
Wang et al., 2008). Wang, Kopittke et al. (2011) demonstrated that u0

played dual roles in the toxicity of Ni2þ to barley in both hydroponic and
soil cultures. Firstly, the reduced negativity of u0 due to the addition of
cations such as Ca2þ, Mg2þ and Hþ decreased the Ni2þ activity at the PM
surface (Kinraide, 2001). Secondly, with the addition of cations, u0 was
likely to increase the surface-to-surface transmembrane potential difference,
which is the electrical driving force for Ni uptake across membranes.
Therefore, the toxicity of Ni was a sum of the two relatively opposite effects
induced by membrane surface potential u0 (Wang, Kopittke et al., 2011).
Only recently has the ETM been extended to estimate metal mixture tox-

icity (Le et al., 2014; Li et al., 2020; Qiu & He, 2017; Wang, Wang et al.,
2014; Wang, Zhou et al., 2018; Wang et al., 2013). Most of these available
publications focused on the applications of ETM in simplified hydroponic
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cultures. Qiu and He (2017) first investigated the applicability of the ETM
for predicting the uptake and toxicity of Cu-Zn mixtures to Hordeum vul-
gare in different soils. The authors reported that this approach was theoret-
ically and empirically feasible in evaluating metal mixture toxicity in soils.
In these publications, free ion activities of single metals at the PM surface
calculated from u0 were regarded as excellent predictors of mixture toxicity
by the conventional CA or IA model, and ultimately can be used to iden-
tify the different interactive effects types, such as additivity, synergism and
antagonism (Wang et al., 2013). As shown in Table 2, a few publications
have evaluated the performance of the ETM in predicting the toxicity of
mixtures of metals, such as Zn-Co, Cu-Cd, and Cu-Zn, to several plant
species. Interactive effects between metals at different levels can be incorpo-
rated into the ETM, which contribute to a better understanding of metal
mixture toxicity (Le et al., 2014; Wang, Kinraide et al., 2014). Specifically,
interactive effects between metal ions occurring at the near outside of the
surface can be represented by the changes in the free metal ion activity at
the PM surface with varying activities of another one in the bulk medium.
In addition, internal interactive effects can be incorporated into mixture
toxicity models to predict and interpret the toxicity of metal mixtures based
on free ion activities at the PM surface (Le & Peijnenburg, 2017).

2.2.3. Main advantages and disadvantages in predicting toxicity of
metal mixtures

The ETM has the capacity of taking into account electrostatic interactions.
It can explain effects of all components in the exposure medium. This
approach has the advantage of simply obtaining the required modeling
parameters and thus greatly simplify the process for quantifying metal mix-
ture toxicity. However, only the statistically significant fitting parameters
will be included in this model, which may miss its biological meaning.
Notably, the electrostatic theory ignores specific binding at discrete sites
and cannot account for ion-ion interactions. In addition, changes of u0 at
the PM surface do not necessarily reflect the interactions between metals
with the similar physicochemical characteristics.

2.2.4. Future perspectives
On the basis of these successful applications, the use of the ETM to predict
metal mixture toxicity is simple and robust in both water and soil. At pre-
sent, this conclusion is only effective for short-term metal toxicity of mix-
tures, and the suitability for dealing with long-term metal mixture toxicity
remains unclear. Furthermore, this tool can be readily implemented in
assessing site-specific risks using chemical analysis data of the site of

1742 B. GONG ET AL.



interest. Further investigations on different types of soils based on different
metal mixture combinations as well as different test species would be
meaningful to construct a solid basis for incorporating this approach into
risk assessment of contamination by metal mixtures in soil.

2.3. WHAM-Ftox approach

2.3.1. Basic concepts and principles
This promising mechanistic-underpinned bioavailability model relating
biological responses to chemical speciation has gained increasing atten-
tion. The assumption of the WHAM-Ftox model is that the amount of
exposure to metals is proportional to metals binding with weak-acid
coordination sites on/in the living organisms, in equilibrium with the
ambient medium (Tipping et al., 2019). The bioavailability of metals can
be reflected by the fractional occupancy of binding sites, which is similar
to the measure of contamination using metal body burdens (Borgmann
et al., 2008; Wang, 2013). In this model, it is postulated that cation bind-
ing sites of organisms can be represented by the particulate humic acid
(HA) (Figure 3) (Stockdale et al., 2014). Particularly, HA contains many
functional groups, which represent the heterogeneous distribution of BLs.

Figure 3. Brief description of the WHAM-Ftox approach. Minus circles with different colors repre-
sent the different functional groups on the surface of the humic acid. Metal cations denoted as
plus circles might bind with these different functional groups.
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This model quantifies the mixture toxicity of metal ions and protons
toward organisms with a linear toxicity function Ftox (mol/g), which is
the sum of the products of organism-bound cations and toxicity coeffi-
cients (Tipping & Lofts, 2013):

Ftox ¼
X

aivi (5)

where �i (mol/g) is the concentration of metal ions or proton bound to
particulate HA, which is calculated by the Windermere humic aqueous
model (WHAM VII), and ai (dimensionless) represents the toxicity coeffi-
cient of the metal or proton.
The concentrations of metals binding to particulate HA can easily be cal-

culated by WHAM VII. A database of particulate HA is available in
WHAM VII, thus facilitating the acquisition of the parameters needed for
the WHAM-Ftox approach. The particulate HA was incorporated into all
the speciation computations and its concentration was assigned at a suffi-
ciently low level (5.0� 10�6 g/L) to avoid affecting metal speciation in
WHAM VII to calculate �i (Stockdale et al., 2010). It should be noted that
only the relative values of �i rather than its absolute values are of interest
in this approach. The toxic response R depends on a threshold model
according to the following definitions:

R ¼

100 Ftox � Ftox�min

Ftox�max�Ftox
Ftox�max � Ftox�min

�100 Ftox�max > Ftox > Ftox�min

0 Ftox > Ftox�max

8>>>>><
>>>>>:

(6)

where Ftox-min is a lower threshold of Ftox, less than which there is no toxic
effect; Ftox-max is an upper threshold of Ftox, more than which a maximum
toxic effect occurs. For values of Ftox in between, the toxic response is
hypothesized to alter linearly with its value.

2.3.2. Application in assessment of metal mixture toxicity
As shown in Table 3, many efforts have recently been put into applying
the WHAM-Ftox approach for assessing metal bioavailability and toxicity
in mixture scenarios. One aspect of Ftox that should be noteworthy is
that its origin was in predicting aquatic insect communities in field data
(Stockdale et al., 2010), and subsequently was successfully applied to lab
data. Most models are developed the other way around. This approach is
not only allowed for aquatic organisms but can be further extended to
higher organisms (e.g., plants and prokaryotic) (Tipping & Lofts, 2015).
Lately, the WHAM-Ftox has been demonstrated to be a promising tool to
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account for the interactive effects of rare earth elements in binary and
ternary mixtures with more than 88% and 85% of the variation in toxicity
explained, respectively (He et al., 2020). For most metal mixture toxicity
data in Table 3, the predictive capacities of the WHAM-Ftox approach in
describing the toxicity of different metal mixtures were comparable to
classic conceptual models and the extended BLM model. For example,
Qiu et al. (2016) demonstrated that the capacity of the WHAM-Ftox was
comparable to the extended BLM model in normalizing interactions and
toxicity of Cu-Zn mixtures to barley in different soils. This was the first
attempt to apply this model to predict mixture toxicity of metals in dif-
ferent soils. In addition, Balistrieri et al. (2015) applied Ftox to lake zoo-
plankton community data and stream invertebrate datasets with good
results. The authors tested the Ftox model against two BLM models and
found that all three approaches were successful at modeling accumulation
of metals in insects and effects to the overall communities. Depending on
insect species and metal, correlation coefficients (r2) between measured
metal accumulation and model predictions ranged from 0.01 to 0.80 for
Ftox “out of the box”, versus 0.00 to 0.86 for the two BLMs that had their
parameters specifically fit to that dataset. The fact that the simple Ftox
model performed very well with data it has never “seen” before speaks
well to its utility and versatility.
One important feature/limitation of Ftox is that organisms are not just

little bags of HA swimming around in the water. At least Ag, Cu, Cd,
and Zn are believed to be taken up by active transport via Na or Ca
channels, which means their effective affinity to BLs is much higher
than that of HA. Therefore, it is not surprising that the capacity of the
WHAM-Ftox approach in predicting Cu-Ag toxicity to L. sativa was
poor (Qiu et al., 2015). Interestingly, Le, Vijver, Jan Hendriks et al.
(2013) reported that a multimetal BLM failed in delineating Cu-Ag tox-
icity to lettuce with only 64% of the variance in toxicity explained.
Taking together, neither the WHAM-Ftox approach nor the BLM can be
used to predict Cu-Ag toxicity. The assumption of the WHAM-Ftox
approach is that competitive interactive effects between metals and pro-
tons take place at the reversible binding sites (Tipping & Lofts, 2015).
The possible explanation for this special case is that the competition
hypothesis may not apply to Cu-Ag mixtures, which suggests that Cu2þ

and Agþ are conveyed into organisms through different transporters (Le,
Vijver, Jan Hendriks et al., 2013). Experimental uncertainties, simplifica-
tion of models together with interactive effects of metals at the internal
level may be reasons why still part of the variation in toxicity could not
be explained.
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2.3.3. Main advantages and disadvantages in predicting toxicity of metal mixtures
The WHAM-Ftox approach is effective to delineate synergistic or antagonistic
interactions of metal mixtures. Like ETM, this model is advantageous for
handling lower data availability based on an available WHAM database of
cations reversibly binding to nonspecific BLs. Consequently, it has the poten-
tial to be extended for different species and metal mixture combinations.
Meanwhile, adjustments are thus required for toxicological parameters in dif-
ferent scenarios. As discussed above, the assumption that competitive chem-
ical reactions can be represented by competitive binding to particulate HA
needs further validation. The simplification of the model relying on stepwise
multiple linear regression analysis will likely miss its biological meaning.

2.3.4. Future perspectives
The mechanistic-based WHAM-Ftox approach is superior in predicting
metal mixture toxicity in different exposure media. Its applicability to dif-
ferent test species, to chronic toxicity data, or to real contaminated soils
with varying properties needs to be further investigated.

3. Biodynamic and toxicokinetic-toxicodynamic model (TK-TD)

Previous toxicological studies on metal mixtures focused on the toxicity at
fixed exposure duration and constant external exposure levels. However,
the accumulation of metals in organisms is time dependent, resulting in
effects that vary with exposure time (Baas et al., 2007). Consequently,
related kinetic modeling approaches are needed to accurately predict metal
accumulation and toxicity under various environmental conditions. Adams
et al. (2011) summarized and reviewed some biodynamic approaches for
assessing metal accumulation and effects. Buchwalter et al. (2007) demon-
strated that biodynamic modeling was a promising tool to better under-
stand interspecific differences in metal bioaccumulation. The authors
proposed an important concept relating to the subcellular partitioning of
accumulated metals in sensitive taxa. In addition, Rainbow (2002) reported
that toxicity was related to the internal threshold concentration of a meta-
bolically available pool rather than to the total accumulated metal concen-
tration. They proposed a concept of metabolically reactive metal that could
be separated from stored and detoxified metal by subcellular fractionation
techniques. These biodynamic approaches associated with mechanistic con-
cepts would increase a realistic understanding of metal toxicity.

3.1. Basic concepts and principles

A Toxicokinetic-toxicodynamic (TK-TD) model has been further developed
to help in the description of the dynamic accumulation and toxicity of
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metals (He & Van Gestel, 2013). This model is suitable for assessing toxico-
kinetics (external to internal concentration of toxic substances) and toxico-
dynamics (internal concentration over time to effects of toxic substances)
based on mechanisms of toxicity (Figure 4). Toxic substances first need to
be taken up and transported to the target or active site before they can
exert effects at the organism level. TK models can translate the external
concentration into an internal concentration as a function of time. TK
models can be divided into compartmental TK models and physiologically
based pharmacokinetic (PBPK) models. The compartmental TK models can
be divided into one-compartment and two-compartment models. When
metals are regarded in the organism as a whole, a first order one-compart-
ment kinetic model as its simplest form can be used (Stadnicka-Michalak
et al., 2014):

dCiðtÞ
dt

¼ kuCw tð Þ � keCi tð Þ (7)

where Ci(t) is the internal metal concentration over time, Cw(t) is the time-
course of metal exposure concentration. The parameters ku and ke are the
uptake and efflux rate constants, respectively. If the saturation of the metal
uptake rate is considered, ku can be rewritten as follows using a Michaelis-
Menten equation:

ku ¼ JM, max

Km þ CwðtÞ (8)

where JM,max is the maximum metal (M) uptake rate, Km the
Michaelis–Menten constant or the concentration at which transport sites
are half saturated.

Figure 4. Brief description of the Toxicokinetic-Toxicodynamic (TK-TD) Model. TK is concerned
with what the living organism does to the toxicant; TD is concerned with what the toxicant
does to the living organism. ku ¼ the uptake rate constant (L g�1 d�1), ke ¼ the efflux rate
constant (d�1).
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The two-compartment model mainly distinguishes metabolically available
and detoxified metal fractions inside organisms (Rainbow & Luoma, 2011):

Ci tð Þ ¼ C1 tð Þ þ C2 tð Þ (9)
dC1ðtÞ
dt

¼ kuCw tð Þ – ðke1 þ k12Þ�C1 tð Þ þ k21�C2 tð Þ (10)

dC2ðtÞ
dt

¼ k12�C1 tð Þ � k21�C2 tð Þ (11)

where C1(t) and C2(t) are the metabolically available and detoxified metal
concentrations over time, respectively. The parameter ke1 is the efflux rate
constant of the metabolically available metal, and k12 and k21 are the metal
transfer rate constants from the metabolically available to detoxified metal
and from detoxified to the metabolically available metal, respectively. If we
consider saturation of the metal uptake rate, ku can be rewritten as Eq. 8.
Historically, the PBPK concept is proposed mainly in pharmacological

research in order to predict drug transport and metabolism within different
organs (Gerlowski & Jain, 1983). This in fact is a multicompartment model,
which can be used to describe the absorption, distribution, metabolism and
excretion of toxic substances among multiple tissues in an organism. It
divides organisms into compartments of real tissues or organs connected
by fluid (usually blood). The structure of the PBPK model depends largely
on the purpose of developing the model and whether enough toxicity data
can be obtained. Choosing a model to keep its structure as simple as pos-
sible is the first guiding principle.
Concentrations of toxic substances at target or active sites may not be

sufficient to explain the dynamic process of toxicity over time. Therefore,
the concept of "damage" is introduced in the TD model (Jager et al., 2011).
The internal concentration of toxic substances in an organism causes dam-
age to the organism, which is repaired at a certain rate. Furthermore, the
quantitative relationship between the degree of damage and the endpoint of
effect at the individual level can be established. The two basic assumptions
in the TD model are individual tolerance (IT) and stochastic death (SD)
(Jager et al., 2011). Assuming that individuals have a different sensitivity to
toxic substances and individuals dying are more sensitive than surviving
ones at a certain point in time, IT is suitably selected (Nyman et al., 2012):

F ðtÞ ¼ 1

1þ（maxC�
i ðsÞ=LC50）�a ð0 < s < tÞ (12)

where F(t) is the log-logistic cumulative distribution function for the
threshold, maxC�

i is the maximum internal concentration ever reached
from time 0 to t, LC50 is the median of the distribution, a determines the
width of the distribution.
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The survivorship function is written as Eq. 13:

SðtÞ ¼ ð1� FðtÞÞ � e�h0�t (13)

where S(t) is the survival probability of the organism, h0 is the control haz-
ard rate.
SD assumes that the biological death caused by toxic stress is a random

process, that is, every individual has the same chance of dying, and this
chance increases with the increase of exposure to stressors. S(t) is written
as follows (Jager et al., 2011):

dHðtÞ
dt

¼kk C1 tð Þ�C1Tð Þþh0, if C1 tð Þ>C1T else
dHðtÞ
dt

¼h0;

S tð Þ¼e�HðtÞ;

S0 tð Þ¼e�h0�t

(14-16)

where H(t) is the hazard, kk is the killing rate constant, CIT defines the
boundary between safe and toxicity, S0(t) is the control survival probability
of organisms.
In case of investigating the relationship between exposure time and toxic

effects, the Critical Body Residue (CBR) model is most prominent
(Borgmann et al., 2008; Wen et al., 2015). This model postulates that a liv-
ing organism will die if its internal threshold concentration is exceeded. In
this concept, the relationship between biokinetics and toxicity is taken into
account, which is applicable for compounds that react reversibly with the
specific receptors, such as narcotic chemicals (Mackay et al., 1992). The
basic assumption of the CBR model is that toxicity is determined by the
time course of the internal concentrations. Adams et al. (2011) critically
reviewed the CBR concept including the various iterations of the bio-
dynamics approach. However, Vijver et al. (2004) gave a broader review,
which was relevant to the problem of CBR not working very well as a pre-
dictor of toxicity. There is nothing to prevent it from extending to the
Critical Target Occupation (CTO) model (Legierse et al., 1999), where mor-
tality is postulated to take place if compounds irreversibly occupy a critical
number of targets. Subsequently, the concept of CBR has been further
developed into the PULSETOX model (Reinert et al., 2002) and the acute
toxicity model of DEBtox (P�ery et al., 2002; 2003), where the toxicity is
assumed to be proportional to the concentration of the compound beyond
the internal no-effect concentration (NEC) within the organism. The break-
through in the development of TK-TD models is introducing a state vari-
able for damage, which describes the changes of system properties over
time (Ankley et al., 1995). The TD model based on damage variables has
been further developed into a Damage Assessment Model (DAM) (Lee
et al., 2002), which assumes that there is a probability distribution of
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individual tolerance (Zhao & Newman, 2007). Most current TK-TD models
are developed based on general unified threshold model of survival (GUTS)
(Jager et al., 2011). This provides a conceptual framework to facilitate the
use of different dose descriptors (external concentration, internal concen-
tration, or damage) in the model (Ashauer et al., 2016).

3.2. Application in assessment of metal toxicity

In recent years, the TK-TD model has been successfully applied to simulate
and predict toxicity over time (Cedergreen et al., 2017; Jager et al., 2011).
Compared with the traditional dose-response analysis, the TK-TD model
provides an alternative angle for toxicity assessment with more mechanistic
and biological relevance by considering bioaccumulation processes of met-
als and corresponding toxicity during the time of exposure. However, the
application of the TK-TD model to evaluate metal mixture toxicity is just
beginning (Table 4). Wang, Liu et al. (2018) successfully developed a multi-
metal interactive effect model (TK process) to predict the toxicity of multi-
metals to Daphnia magna based on kinetic processes and internal
interactive effects. A TK model was also developed to predict the accumu-
lation of metal mixtures with additive or antagonistic effects in zebrafish
larvae based on parameters derived from single metal exposures (Gao et al.,
2018). The TK model was successfully used to simulate and predict the

Table 4. Overview of the Toxicokinetic-Toxicodynamic model (TK-TD) fits to different metal
mixture toxicity data.
Metal mixtures Test species Model used Notes References

Cd-Pb,
Cu-Cd,
Cu-Pb

zebrafish,
Danio rerio

TK-TD aided with
BLM and toxic
equivalent
factor (TEF)

The accumulation and
toxicity of metal
mixtures were
accurately predicted by
applying a refined TK-
TD model.

(Gao, Feng, Han
et al., 2016)

U-Cd nematode,
Caenorhabditis
elegans

DEBtox -integrated
CA and IA

The joint toxicity of U and
Cd was overestimated
using the
DEBtox framework.

(Margerit
et al., 2016)

Cu-Zn
Cu-Cd
Cu-Pb
Cd-Pb

zebrafish,
Danio rerio

TK integrated CA
and IA

CA and IA models showed
consistent interactions
patterns of metal
mixtures in the
TD process.

(Gao et al., 2018)

Ni-Cu-Zn oyster,
Crassostrea
hongkongensis

one-
compartment TK

TK model was effective for
simulating the metal
bioaccumulation
in a complex and
dynamic environment.

(Tan et al., 2018)

Pb-Cd-Cu-Zn daphnid,
Daphnia magna

multimetal
interaction

Metal mixtures were
analyzed through a
combination of kinetic
process and internal
interactions.

(Wang, Liu
et al., 2018)
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time-course of multiple metal bioaccumulation in the oyster Crassostrea
hongkongensis in a dynamic estuary polluted by metals (Tan et al., 2018).
Based on the dynamic energy budget theory, the TK-TD model was devel-
oped to predict the toxicity of metal mixtures to Caenorhabditis elegans
(Jager et al., 2014; Margerit et al., 2016). The TK-TD model could well
simulate and predict the accumulation but not the toxicity of metal mix-
tures (Gao, Feng, Han et al., 2016). Croteau and Luoma (2009) and
Balistrieri et al. (2020) applied biodynamic models to predict both accumu-
lation and toxicity of metal mixtures in snails and stream insect commun-
ities, respectively. In the latter study, the authors linked equilibrium,
biodynamic, and toxicity functions that evaluate metal mixture toxicity to
aquatic insect families. Their modeling indicated that Cd, Cu, and Ni but
not Co and Zn were major contributors to the observed mixture toxicity.
At present, the TK-TD model has some limitations in predicting the tox-

icity of metal mixtures with synergistic or antagonistic effects, which is
mainly due to the limited understanding of the mechanisms of possible
interactive effects during the processes of distribution, transformation,
metabolism and toxicity after metals have entered organisms. This was a
key conclusion of the Farley et al. (2015) and Farley and Meyer (2015)
analyses of the performance of different metal mixture models with a com-
mon dataset (4 BLM models and Ftox). Only one of the 5 models could
predict a Cu-Cd antagonistic dataset, and another one did so by adjusting
its BLM parameters specifically to fit that antagonistic dataset.

3.3. Main advantages and disadvantages in predicting toxicity of
metal mixtures

These models take into account the dynamic exposure characteristics of the
actual environment, and thereby improve toxicity prediction and risk
assessment of metal mixtures. Specifically, they are superior in revealing
the intoxication process of metal mixtures, describing the accumulation
process of metals in organisms over time, and effectively evaluating the
ecological effects under complex exposure conditions. It is also a method
to effectively extrapolate from experimental conditions to other exposure
conditions. In addition, using this model can explain the toxicity mechan-
ism based on experimental data, further expanding the possibility of extrap-
olating toxicity between metals and between test species. Nevertheless,
these implementations are based on model parameter calibration, which
requires more intensive sampling for deriving more variable input. What is
more, some model limitations lie in predicting metal mixture toxicity with
synergistic or antagonistic effects as discussed above.
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3.4. Future perspectives

The process-based model is an efficient tool for real-time prediction of
metal toxicity, which can mechanistically link the accumulation of metals
in organisms over time with toxicity. To improve the predictive capacity of
the TK-TD model for metal mixtures, further efforts should focus on inves-
tigating the dose-dependent toxicity indicator at the molecular level (i.e.,
molecular initiating event), and then integrating it into toxicity modeling.
Moreover, metal bioavailability is strongly affected by environmental chem-
ical conditions. How to integrate these influences into the current TK-TD
model framework so as to more accurately predict and assess the toxicity
of metal mixtures in the actual environment will be an important challenge
in the future.

4. Omics-based approach

4.1. From genomics to metabolomics: concepts and principles

Conventional ecotoxicological studies mainly focused on the responses of
the overall phenotypic level of the organism. In recent years, the use of
“omics-based approaches”, which can provide information either at the
gene, protein or metabolite level, greatly promotes a comprehensive under-
standing of the molecular mechanisms underlying toxicity. It is not surpris-
ing that omics techniques spread to ecotoxicology, which open up new
perspectives for investigating the toxicity of toxic substances at the molecu-
lar level (Prat & Degli-Esposti, 2019). The “omics” represents “as a whole”
genomics, transcriptomics, proteomics, and metabolomics (Figure 5).

Figure 5. Brief description of the Omics-based approach. The “omics” represents “as a whole”
genomics, transcriptomics, proteomics, and metabolomics model.
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Genomics study all the nucleotide sequences, including structural genes,
regulatory sequences, and noncoding DNA segments, in the chromosomes
of an organism and thus identify underlying factors dominating the vari-
ability of toxicological responses at the genetic level. This requires an inter-
disciplinary approach because of the diverse responses involving molecular
biology, physiology, toxicology, and so on. Genomics can provide useful
information for assessing biological responses following exposure to con-
taminants, e.g. by the identification of novel biomolecules that may act as
biomarkers in environmental monitoring (Adam et al., 2007; Gonz�alez-
Fern�andez et al., 2008; Lindon et al., 2005; Menzel et al., 2009; Montes
Nieto et al., 2010; Montes-Nieto et al., 2007; Poynton & Vulpe, 2009; Ruiz-
Laguna et al., 2006; Waring et al., 2001).
Genetic responses upon chemical exposure are commonly regulated at

the transcriptional level. Transcriptomics can quantify the levels of nearly
all the transcriptional profiles to stress conditions. Microarrays are used to
measure expression profiles of mRNA, which can help to generate a wide
impression of how environmental stressors affect organisms. High-through-
put RNA-sequencing (RNA-Seq) technology opens research opportunities
for collecting transcriptomic data from any species of interest (Trapp et al.,
2016). In addition, quantitative PCR (qPCR) is becoming more important
for in-depth gene expression analysis as it allows to quantify a particular
fragment in a sample (Altenburger et al., 2012). Recently, transcriptome
analysis has become a useful tool to unravel the role of differential expres-
sion induced by different gene-related aspects during biological processes
(Shi & He, 2014).
The proteome is approximately 10-30 times larger than the transcrip-

tome. Covalent modifications and various interactive effects (e.g., cell-cell,
protein-protein and protein-ligand) are responsible for this variability. The
proteome is dynamic due to changeable protein functions resulting from
such modifications (Efferth & Greten, 2012). Protein expression levels are
the product of the process of protein transcription, translation and degrad-
ation within cells, including the different stages of maturation and modifi-
cation within transcripts and proteins. Proteomics can provide additional
and supplementary information to transcriptomics through globally analyz-
ing these proteins. This approach also contributes to a broad comprehen-
sive understanding of underlying mechanisms of intoxication by identifying
significantly altered proteins within an organism after being exposed to a
toxicant. The identified proteins can thus be novel biomarkers in environ-
ment biomonitoring (Garcia-Sevillano et al., 2014).
Together, genomics, transcriptomics, and proteomics can provide infor-

mation on processes at the cellular level, however, in order to further con-
nect genotype to phenotype another layer of information is needed (Fell,
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2001). Metabolomics can bridge this gap and provide quantitative informa-
tion at the intracellular metabolic level which stands for the supreme level
of functional components of cellular processes (Fiehn, 2002; Halama, 2014).
The metabolites, defined as the metabolome, act as the cell’s supplements
composed of small and low molecular weight compounds, which are neces-
sary for growth, function and maintenance (Quanbeck et al. 2012). The
goal of metabolomics is to systematically identify and quantify these com-
pounds and to report the most relevant information to the phenotype
under genetic and/or environmental changes in the biological system
(Barupal et al., 2012; Fiehn, 2002; Mashego et al., 2007). Previously, the
omics-based approach was often used alone in practical applications.
Nowadays, the multiomics methodology has become a popular and revolu-
tionary approach in comparison to single omics, which gathers information
from multiple layers and allows to understand better the complex mecha-
nisms of intoxication and defense that act in organisms.

4.2. Application in assessment of metal mixture toxicity

The endpoints in traditional toxicity studies (e.g., survival, reproduction
and growth) may have low sensitivity in detecting possible biological effects
of exposure to low levels of stressors in the environment. In comparison,
omics-based studies on effects of contaminants at low/sub-lethal concentra-
tions have shown high sensitivity (Zhang et al., 2017). This indicates that
the risk assessment of toxicants, especially following environmentally rele-
vant exposure scenarios, cannot exclusively depend on traditional target-
oriented effects (Martins et al., 2019). In order to apply the omics-based
approach to ecotoxicology, it is necessary to relate molecular data obtained
from omics-based studies to conventional toxicological endpoints
(Vandenbrouck et al., 2010). These associations across different levels of
biological organization can provide the basis for models that describe the
toxicity of metal mixtures.
Compared with the extensive studies on metal mixture toxicity based on

conventional ecotoxicological methods, only few investigations related to
the omics-based approach have been reported (Altenburger et al., 2012).
These available attempts opened new possibilities to decipher the compli-
cated molecular mechanisms caused by metal mixtures (Table 5). Bae et al.
(2002) identified genetic changes in human keratinocytes subject to a qua-
ternary mixture of As, Cr, Cd and Pb using DNA microarray analysis.
They suggested that metal mixtures triggered unique gene expression pat-
terns compared to single metal exposures. Mumtaz et al. (2002) found that
there is no evidence for synergistic activation of gene expression by a tern-
ary mixture of Cd, Cr and Pb in a commercially developed assay system
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Table 5. Overview of the omics-based approach fits to different metal mixture toxicity data.
Metal mixtures Test species Omics used Notes References

As-Cr-Cd-Pb human keratinocyte
cell line (RHEK-1)

DNA microarray Metal mixtures triggered
unique gene expression
patterns compared to
single metal exposures.

(Bae et al., 2002)

Cd-Cr-Pb HeLa cells genomics No evidence was found
for synergistic
activation of gene
expression by
metal mixture.

(Mumtaz
et al., 2002)

Ni-Cd, Ni-Pb daphnid,
Daphnia magna

DNA microarray Metal mixtures affected
pathways, suggesting
interactive molecular
responses rather than
simply additive effects
of the
individual metals.

(Vandenbrouck
et al., 2009)

Cu-Cd, Pb-Cd alga,
Chlamydomonas
reinhardtii

transcriptomics Synergism and
antagonism depended
on gene
expression levels.

(Hutchins
et al., 2010)

Cd-Cu mussel, Perna viridis metabolomics Cu dominantly induced
the metabolic
disturbances.

(Wu & Wang, 2010)

Cd-Pb mussel,
Mytilus edulis

transcriptomics The unfolded protein
response (UPR) was
determined as early
indicator of stress.

(Poynton
et al., 2014)

Cu-Cd, Cu-Pb,
Cd-Pb

algae, Chlorella sp. metabolomics Metal mixtures triggered
synergistic effects on
photosynthesis
inhibition, oxidative
stress and membrane
degradation.

(Zhang et al., 2015)

Cu-Ni daphnid,
Pulex-pulicaria

metabolomics The reduced fecundity
could be explained
based on metabolic
responses determined
in juvenile daphnids
exposed to acutely
(48 h) toxic media.

(Taylor et al., 2016)

Al-In daphnid,
Daphnia magna

transcriptomics Al and In may alter the
expression of genes
involved in energy
metabolism processes
to explain reduced
growth and
reproduction.

(Brun et al., 2019)

Cd-Pb plant, Brassica
oleracea and
Trifolium repens

genomics The interactive effects
between Cd and Pb
were concentration-
and time-dependent.

(Lanier et al., 2019)

Se-As rice, Oryza sativa transcriptomics
and proteomics

The responsive pathways,
genes and proteins of
Se in alleviating As
toxicity in rice plants
were determined.

(Chauhan
et al., 2020)

Pb-As, Pb-MeHg,
As-MeHg

HT-22 cells proteomics The protein expressions
were significantly
different between
single metals and
metal
mixtures exposure.

(Karri et al., 2020)
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CAT-Tox (L). Duarte et al. (2008) found that the effects of Cu-Zn mixtures
on microbial decomposition of leaf litter were mainly additive, because
observed responses were similar to those anticipated as the sum of individ-
ual metal effects. Given that microbes play an irreplaceable role in main-
taining human health and the material cycle of the earth’s ecosystem, it is
of great significance to apply omics approaches to investigate the effects of
metal mixtures to microbes. Vandenbrouck et al. (2009) investigated the
toxicity of binary metal mixtures (Ni-Cd, Ni-Pb) to Daphnia magna. Their
results showed additionally affected pathways following exposure to the
mixtures, suggesting interactive molecular responses rather than simply
additive effects of the individual metals. Hutchins et al. (2010) showed that
the addition of Cu and Pb reduced Cd biouptake in Chlamydomonas rein-
hardtii, while the upregulation of the mRNA levels of 6 genes indicated no
Cd specificity. The authors revealed synergism and antagonism depending
on gene expression levels. Wu and Wang (2010) studied the toxicological
effects on green mussels Perna viridis exposed to a binary mixture of Cd
and Cu, and revealed that Cu dominated metabolic profile changes.
Poynton et al. (2014) conducted molecular toxicology of metal bioaccumu-
lation in the blue mussel, Mytilus edulis exposed to CdþPb mixtures
through transcriptomic analysis. They revealed that the unfolded protein
response (UPR) served as early indicator of stress. Zhang et al. (2015)
investigated the effects of multimetal systems (Cu, Cd, Pb) on freshwater
microalgae (Chlorella sp.) using a combination of metallomics and nuclear
magnetic resonance spectroscopy (NMR)-based metabolomics. They con-
firmed synergistic effects of Cu and Cd measured as photosynthesis inhib-
ition, oxidative stress and membrane degradation. Taylor et al. (2016)
developed a statistical model to predict chronic Cu and Ni reproductive
toxicity to Daphnia pulex-pulicaria integrating data from a standard
chronic, partial life-cycle toxicity test and metabolomics. They also found
that reduced fecundity could be explained based on metabolic responses
determined in juvenile daphnids exposed acutely (48 h) to the
metal mixtures.
More recently, Brun et al. (2019) investigated the combined toxicity of

Al and In to Daphnia magna at both the phenotypic and the toxicoge-
nomic level. They found a consistent synergistic effect at both levels in Al
and In mixtures. They also revealed that these elements may alter the
expression of genes involved in energy metabolism processes to explain
reduced growth and reproduction. Lanier et al. (2019) conducted acute and
long-term (3-, 10- and 56-day exposure) toxicity tests to examine the single
and mixed toxicity of Cd and Pb in two plant species (Brassica oleracea
and Trifolium repens). The results showed concentration- and time-depend-
ent interactive effects between Cd and Pb according to the DNA damage
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analysis. Chauhan et al. (2020) explored molecular mechanisms of Se ame-
liorated As induced toxicity in rice plants (Oryza sativa) using the inte-
grated omics (transcriptomic and proteomic) approach. The authors
identified the responsive pathways, genes and proteins of Se in alleviating
As toxicity in rice plants. Karri et al. (2020) investigated the role of binary
metal mixtures (Pb, As, MeHg) in neurodegenerative diseases using proteo-
mics analysis. They found that the protein expressions were significantly
different between single metals and metal mixture exposures. Hence,
omics-based approaches are of great importance for interpreting possible
toxicological mechanisms and might identify the pathways by which metal
mixtures exert toxicity.

4.3. Main advantages and disadvantages in predicting toxicity of
metal mixtures

Omics-based approaches are potential tools for identifying novel molecular
mechanisms of metal mixture toxicity in a variety of organisms that would
be hard to elucidate through other traditional techniques. Using a single
omics technology will only obtain one aspect of toxicity mechanisms.
Multi-omics approaches promise to fill the gap and provide a multilevel
insight in the mechanisms underlying toxicity. However, these technics are
demanding and can be expensive, which make them difficult to promote
on a large scale. Other issues that are significant challenges to be addressed
include reasonable experimental design, effective data analysis, and integra-
tion with other approaches.

4.4. Future perspectives

As the omics-based approaches continue to move forward, a major chal-
lenge in making use of these approaches lies, actually, in finding ways to
convert the data of multivariate omics to a legible endpoint, to allow esti-
mating the dose-effect relationships, and to quantify metal mixture effects.
In addition, the work of discovering mysterious relationship between the
phenotypic and molecular interactive effects for complex mixtures by devel-
oping adverse outcome pathways will continue to be required.
Consequently, efforts need to be continuously implemented to predict the
toxicity of metal mixtures and to understand their underlying toxicity
mechanisms on the basis of genotypes and phenotypes. It is expected that
after further development these techniques can provide a wealth of infor-
mation not gainable in any other way for investigating metal mix-
ture toxicity.
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5. Guidance for selection and assessment approaches

As shown in Tables 1–5, several predictive models have been developed
and applied to investigate the mixture toxicity of various metal combina-
tions to certain organisms. It is not surprising that the outcomes of
different approaches vary a lot across different test species, different combi-
nations of metals, and different exposure mediums. Hence, it is hard to
conclude on an optimal approach to evaluate the joint toxicity for any
metal combinations since the predictive capacity of a certain model varies
for specific cases. Nevertheless, the relative strengths and limitations of dif-
ferent bioavailability-based methods can provide an initial basis for the
selection of models for predicting the toxicity of metal mixtures.

6. Concluding remarks and future prospects

In the environment, metal mixture toxicity is hard to predict due to over-
looking potential interactive effects. Much of the focus has virtually been
on single metals generating a drought of information on mixture toxicity.
For metal mixtures, the use of relatively simple conceptual methods (CA
and IA) without considering interactive effects is sometimes unavoidable
and appropriate. In most cases, metal toxicity can be affected by the pres-
ence of another metal, leading to deviations of the observed effects from
additivity in a less-than-additive or more-than-additive manner, which
indicate the occurrence of interactive effects at various levels. When the
non-interactive assumption of metal components in mixtures is invalid, dif-
ferent approaches are therefore required to account for the interactive
effects of mixture components in predicting the toxicity of metal mixtures.
Bioavailability-based methods with diverse mechanistic perspectives, such
as BLM, ETM, WHAM-Ftox, and the TK-TD and omics-based approaches,
can offer comprehensive information for better understanding of the
underlying mechanisms of joint toxicity.
Until now, the extended BLM is still viewed as rather suitable for mech-

anistic modeling of metal mixtures based on its theoretical basis of site-spe-
cific competition. The electrostatic theory acknowledges the importance of
ion-organism interactive effects induced by the electrical potential at the
plasma membrane surface of organisms. This approach provides an alterna-
tive to the BLM in the assessment of metal bioavailability and toxicity in
mixture scenarios from the perspective of electrostatic effects, but so far it
has only been applied to plants. Assuming that interactive effects of metal
components and protons in mixtures occur at reversible binding sites, the
WHAM-Ftox approach related to bioavailability can also serve as a simple
and alternative method in describing metal mixture toxicity because it eas-
ily enables predicting multimetal toxicity with over two components. TK-
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TD models provide an elaborate framework for predicting bioaccumulation
and toxicity of metals in mixtures. These models are process-based, modu-
lar, quantitative, and dynamic. These advantages enable TK-TD models to
investigate the potential mechanisms of metal mixture toxicity at different
levels, to interpret toxicity data more mechanistically, to provide more
environmentally relevant toxicity metrics, such as no effect concentrations,
and to extrapolate among different exposure scenarios and even different
biological species. According to conventional toxicity endpoints, these
methodologies can provide useful information contributing to elucidate the
underlying mechanisms of metal mixture toxicity. Mechanistic pathways of
metals inside organisms, however, are poorly known. Omics-based
approaches would be potentially supplementary to traditional toxicity tests,
and provide molecular level information connecting genotype to phenotype
for achieving an elaborate panorama of the relevant mechanisms of metal
mixture toxicity. In the context of environmental risk assessment of metal
mixtures, this review timely summarizes the existing predictive tools and
their underlying mechanisms and highlights the importance of integrating
mixture interactive effects and bioavailability in assessing the toxicity of
metal mixtures.
Most of the existing ecotoxicity tests and relevant studies only focused

on the response of partial developmental stages in the full life cycle of tar-
get organisms based on limited ecotoxicological endpoints. In fact, organ-
isms may be exposed to metals at different developmental stages
throughout their life cycle. Thus, toxicity data only based on exposure of a
specific growth stage of organisms may lack environmental relevance. It is
recommended to investigate interactive effects during the full life cycle,
which might be beneficial to provide more information to interpret metal
mixture toxicity. In the long run, future studies should continue investigat-
ing the mechanisms of mixture interactive effects and identify the princi-
ples of combined toxicity for developing predictive models. Potential topics
include, for example, considering the internal distribution and detoxifica-
tion mechanisms (i.e., toxicological bioavailability) of one metal in the pres-
ence of other metals, and across different species of organisms at diverse
doses during dynamic exposures and full life cycles. Global information at
the molecular level generated by omics-based approaches is expected to be
integrated based on mathematical and statistical methodologies to improve
existing knowledge and create new discoveries for addressing potential risks
induced by metal mixtures.
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