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Abstract. Time-series forecasting plays an important role in many
domains. Boosted by the advances in Deep Learning algorithms, it has
for instance been used to predict wind power for eolic energy produc-
tion, stock market fluctuations, or motor overheating. In some of these
tasks, we are interested in predicting accurately some particular moments
which often are underrepresented in the dataset, resulting in a problem
known as imbalanced regression. In the literature, while recognized as
a challenging problem, limited attention has been devoted on how to
handle the problem in a practical setting. In this paper, we put forward
a general approach to analyze time-series forecasting problems focusing
on those underrepresented moments to reduce imbalances. Our approach
has been developed based on a case study in a large industrial company,
which we use to exemplify the approach.

Keywords: Imbalanced regression - Deep learning - Time-series
forecasting - Multivariate time-series

1 Introduction

Due to the recent advances in artificial intelligence research, the task of time-
series forecasting is being increasingly tackled with machine learning and deep
learning techniques. There has been a large number of approaches suggested,
ranging from relatively simple machine learning models [1] to a variety of deep
learning models [18]. Those approaches have been utilized in a broad spectrum
of forecasting tasks, such as wind power forecasting, stock market prediction and
motor temperature prediction [18]. In the above examples of tasks, as well as
in multiple other applied cases, some samples are more crucial from the point
of view of the user and thus would require a more accurate prediction from a
model compared to its average performance. At the same time, those data points
may be scarce in the training data. Hence, if left unattended performance might
be worse than average for that data, which is highly undesirable. This issue is
characterized as imbalanced regression, and so far has been addressed with data
pre-processing or ensemble model methods [3].
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Despite the existing methods to tackle imbalanced regression problems, it is
still a non-trivial task for data scientists and machine learning practitioners to
identify and solve them in real-life time-series forecasting contexts. In the effort of
developing the best performing machine learning model and minimizing the error
across all data points, some important artifacts in the data might be overlooked.
Moreover, data sampling methods or ensemble model approaches [3,4] up until
now focused on minimizing the prediction error in the underrepresented data
samples and assume that the remaining data is negligible. That assumption is
inaccurate, as in some applications, for example in stock market prediction, the
cost of larger forecasting error in the more frequent cases could offset in the long
run the potential benefit of a smaller error in a rare case. In order to tackle real-
world applications, there is a need for a broader, balanced, flexible and iterative
approach, honed through interaction with domain experts and integrating the
latest research in predictive models.

In this paper, we propose such an approach that has been designed based on a
case study in a large industrial company, targeted to forecast the temperature of
a core component in a large production line. The approach involves three steps:
first selecting a weight function which quantifies the sample importance; then
applying one or more sampling methods to the data, and finally training and
evaluating the model with and without sampling. In the last step, we also analyze
the input importance learned by the model using SHAP [10] to gain insights into
the effect of the imbalance. To exemplify our approach, we show how it is used
for the aforementioned industrial task. We study the impact of choices in each of
the steps, comparing different sampling techniques and deep learning models. In
the end, we also combine the sampling with attention mechanisms [19] to extract
insights into what is learned by a deep learning model. Furthermore, in order to
verify that our conclusions hold across use cases and enable reproducibility, we
apply the three main framework steps on an open industrial dataset dealing with
the task of quality prediction of a mining process and present those experiment
results as well.

2 Related Work

The advancements in data availability from a plethora of sources, the increasing
computational capacity and the progress in artificial intelligence research have
led to the usage of machine and deep learning models across a multitude of
applications of time-series forecasting. Previous work [18] surveys several use-
cases including wind power forecasting, stock price prediction, and estimation
of remaining useful life of motors. Despite this widespread use of models, the
majority of works present specific architectures for specific datasets, while works
focusing on integrated frameworks in the sense of structured approaches to a
more generalized problem are more scarce.

Although there has been an extensive amount of work in handling imbal-
anced datasets in classification tasks [3], regression with imbalanced data in the
area of machine and deep learning has not been largely covered. In [4], Branco
et al. study the effect of three proposed sampling methods on the predictive
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performance of machine learning models. In an applied example, in [17], the
objective is that high water flows are predicted in a timely and accurate man-
ner, and the problem is addressed with various sampling and ensemble methods,
with an artificial neural network as a base. In the domain of extreme event pre-
diction, a framework [5] was proposed based on a new loss function for recurrent
neural networks and focusing on univariate time-series. Other works propose new
neural network topologies to predict extreme events in weather data [9] and the
client demand at Uber [8]. Salinas et al. [15] propose a new probabilistic auto-
regressive model for time-series forecasting which is trained by over-sampling the
data according to its rarity. These works focus primarily on the model perfor-
mance related to the extreme events while our framework focuses on finding the
best performance trade-off across extreme and common events. In addition, our
framework is model agnostic, which makes it possible for practitioners to adopt
it without having to change the underlying machine learning method they have
selected for a use case for other reasons, such as interpretability.

3 Methodology

It is common in time-series forecasting that certain data samples have more
importance than others, but are also underrepresented in the dataset, resulting
in an imbalanced regression problem. In this section, we present a new approach
for identifying and tackling this discrepancy with respect to imbalances in the
context of regression tasks. This approach uses a weight function that quantifies
the importance of each sample which is combined with under-sampling methods
to create a more balanced dataset. The new sampled dataset is then evaluated
first visually, by making density plots of the data and then numerically, by using
it for training and testing a predictive model.

3.1 Steps for Identifying and Treating Imbalanced Regression

We propose a set of general steps for approaching the imbalance on time-series
forecasting problems, which has been defined based on experiences we have col-
lected in applying machine learning in a large-scale industrial company. It con-
sists of three steps illustrated in Fig. 1. The first step is to select or define a
weight function w; to quantify the sample importance, which allows us to iden-
tify and compare the different regions of interest in the data. The second step
consists of selecting one or more sampling methods based on the weight func-
tion, applying them to the data, and comparing the resulting distribution of w;
against the original data using density plots. Finally, in the third step, a pre-
dictive model is trained and evaluated using both the sampled and the original
versions of the dataset. A feedback loop can take the user from Step 3 back to
Step 2 if the current combination of the selected sampling methods and models
does not provide a satisfying performance after evaluation. If while applying the
framework the user finds out that the weight function is not suitable, then a
second feedback loop can take him back to Step 1 where it can be re-modeled.
We provide more details about each step in the following sections.
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Fig. 1. Flowchart of the framework showing the three steps and how they interact with
each other.

Step 1: Weight Function Definition. In the example of forecasting the
temperature of a motor, there can be several days where the temperature is
stable, with only small fluctuations, and only a few days where the temperature
increases or decreases largely. Let us assume a use-case where the user is inter-
ested in building a model to predict accurately these rarer moments when the
temperature changes more than usual. In such an example, the daily tempera-
ture variation can be computed as a function of the data, which we refer to in
our framework as the weight function. In addition, we say that the data points
mapped to a high variation by the weight function belong to a region of interest.

In general, the weight function can depend either only on the target variable
(or a transformation of it), only on a subset of the input variables (e.g. to signify
working points of interest), or on a combination of input and output variables,
to express complex regions of interest. It can be written as w; = f(x;,y;), where
x; and y; refer to the input (a vector for multivariate input) and the prediction
target, respectively.

Equation1 gives an example of such a function for the target variation in
the context of time-series forecasting. The weight w; models the variation of the
forecast target y over the forecast horizon A at time step t.

we = ly(t+A4) —y(t)] (1)

Step 2: Application of Sampling Method. At this step, a sampling method
is applied to the dataset and its effects are analyzed. The sampling is based on
the weight function previously selected and the relative proportions that the user
wants to keep for the different regions of interest. We identify three scenarios for
this step and we propose an under-sampling method for each one of them.

— Threshold under-sampling: when the user identifies which region of the
weight function is not important for the forecast task and can be removed;

— Stochastic under-sampling: when some regions are more important than
others, but none can be entirely discarded;
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— Inverse histogram under-sampling: when all regions are equally impor-
tant and the user wants to have a balanced distribution of data over all of
them.

Threshold under-sampling (TUS) consists of removing all samples that lie
below a given threshold of the weight function, and all the remaining samples
have the same chance of being selected. This method is suitable for the cases
where the user knows exactly what is the region of interest to be able to select the
best threshold, and it assumes that the samples below the threshold aren’t inter-
esting to the prediction task. Equation 2 expresses the unnormalized probability
of sampling data point ¢ given its weight w;.

17 if Wy > T
TUS(w:) = {O, otherwise @)
SUS(w;) = w (3)
THS (w;) = b~ (wy) (4)

Stochastic under-sampling (SUS) uses the weight w; computed for each data
point as the probability of sampling it. Different from the TUS, SUS allows
every sample, even the ones with lower weight values, to be sampled to avoid
the creation of a new imbalance against those samples. Equation 3 models the
relative probability of sampling a window from the dataset at time ¢ by using
SUS. The factor f is used to increase (or decrease) the effect of the weights, thus
emphasizing the more interesting moments which might be underrepresented in
the data.

Inverse histogram under-sampling (IHS) is an automatic method to obtain
a sample where data is approximately uniformly distributed across the selected
weight function w;. It consists of building a histogram of the values of w; in the
dataset and taking the inverse of the frequency of each value as the chance of
sampling it. It ensures that each w; will be under-sampled proportionally to its
original frequency, so the most common values will have lower chance, while the
rarer values will have higher chance. In Eq.4 we can see a formalization of the
method, where h(w;) represents the frequency of w; in the data histogram.

A good approach to gain insight into the data and the result of the sam-
pling method is to compare the density plot of the weight function with and
without using the sampling. Such a plot can show the regions which are over or
underrepresented in the data, and can also give insights about how to tune the
parameters of the selected method or which method should be selected.

In some real-life cases, it might not be easy to infer directly which of the
three scenarios fits the problem better. In those cases, a subset of these methods
can be selected for the next step, where we provide a heuristic to select the final
method.
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Step 3: Predictive Model Training and Evaluation. Finally, at this step,
we can assess how much a predictive model improves by using the selected sam-
pling methods. For that, we train and evaluate the model with and without using
the sampling method on a separate evaluation set, so we end up with different
combinations of training and evaluation sets which we will use to contrast the
obtained evaluation errors and determine if the model benefits from the sam-
pling. For the cases where the goal is to have a model that performs well on
the samples of higher weight without sacrificing the performance on the rest of
the data, we propose a heuristic for selecting the final sampling method to train
the predictive model based on the results of the different evaluation sets. It is
defined as:

1. For each sampling method, sample a training set and train a model with it;

2. For each sampling method, sample a separate evaluation set and evaluate the
trained model on it;

3. Make a list of highest error over all the evaluation sets of each trained model
to get an upper bound on its RMSE error;

4. Select the model with the lowest error in the list.

Next to studying the impact of the sampling on the performance of the mod-
els, we also propose to study how the models themselves change by using SHAP
[10], which is a model agnostic technique. SHAP gives the relative importance
of each input feature to the output of the model which can be compared when
the model is trained with and without the sampling.

In addition, we take advantage of deep learning models with attention mech-
anisms [19] to gain extra insights into what is learned. As an example of an
attention-based model, TACN [12] is a deep neural network model that provides
the importance of the input time-series across time steps through an attention
mechanism. The change of the patterns shown by the mechanism also provides
insights into the sampling effects on the model.

4 Experimental Setup

To give a real-life example of our approach, in this section we present a case to
evaluate it based on a motor temperature prediction dataset. We also explain
the techniques used at each step of the experiments and why they were chosen.

4.1 Motor Temperature Dataset

The dataset used in this experiment is made of sensor measurements extracted
from a steel processing conveyor belt. The prediction target is the temperature
of a bridle motor, which should be forecasted 5min in advance to allow the
operators to take preventive actions before a possible overheat. The rest of the
data consist of properties of the steel strip (i.e. width, thickness, and yield), the
speed of the line, the tension applied by the bridles, the current temperature
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measurements of the motor, among others. The sensors are sampled every 10s,
and there are in total about 2 million samples.

In this dataset, we identify the temperature variation as a special property
regarding the prediction target. We analyze the dataset based on this property
and follow the steps of our framework: selecting a weight function, then selecting
the sampling methods, and visualizing the sampling result.

4.2 Instantiation of the Framework

Here we describe the choices made at each step of the framework for analyzing
the imbalance of the temperature variation.

Step 1 - Temperature Variation Weight Function. The temperature vari-
ation is an important property to this forecasting task since the predictive model
must predict accurately when the temperature will rise. Even if, on average, the
model has a satisfying performance, it may still be inaccurate when predicting
higher variation if the dataset is imbalanced. So for Step 1 of the framework,
we select the temperature variation as the weight function, which is modeled by
Eq. 1, using A as 30 time steps (5 min), which is the forecast horizon.

Step 2 - Sampling Method Choice. For Step 2, we experiment with three
sampling methods: SUS with factor 1, SUS with factor 3, and THS. Each one
under-samples a different amount of low temperature variation data, creating a
different balance, as shown by Fig.2. SUS with factors 1 and 3 are chosen to
compare the effect of the factor in the proportion of data samples with low and
high variation. For the IHS method, we use the Freedman-Diaconis estimator
[6] to compute the bin width of the histogram. 10.000 training data samples are
extracted using each method.

Distribution of the Temperature Variation

—— No sampling

0.6 —— SUS f=1
—— SUS f=3
— IHS

0.4

0.2

0.0 T

T
0.0 2.5 5.0 7.5 10.0 125
Temperature Variation (°C)

Fig. 2. Comparison of different sampling methods using the temperature variation as
weight function.
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Step 3 - Predictive Model Choices. In our experiments, we choose a multi-
layer perceptron [14] as a deep neural network baseline which has been used in
time-series forecasting [1] and three deep neural networks specialized in temporal
data. These specialized architectures are the long short-term memory (LSTM)
[7], a popular recurrent neural network, the temporal convolutional network
(TCN) [2], a sequence-to-sequence model which has shown promise when trained
on a large amount of data [16] and the temporal attention convolutional network
(TACN) [12].

The TACN is an architecture that combines a TCN with an attention mech-
anism [19] to achieve interpretable and accurate forecasting. The per-instance
interpretability comes in the form of a vector, equal to the input window size,
which shows the importance of each input step to the forecasting output. The
higher the value of the vector at a specific step, the higher the contribution of
the input value at that step to the final output. By scaling the vector to the 0-1
range, we can estimate the relative importance among the input steps. Although
this vector is produced per instance, we can draw conclusions about the generic
learned behavior of the model by collecting and analyzing the vectors from a
large number of instances.

For data pre-processing, we extract a window of 5 min (or 30 time steps) for
each sample, which is the input for the TCN, LSTM, and TACN models. For the
MLP model, we extract basic features of each sensor such as the mean, standard
deviation, minimal and maximal values for each window. We also keep the last
time step as an additional feature and for later analysis of the temperature
variation case. All the models are evaluated using the root-mean-square error
metric (RMSE).

5 Results

In this section, we describe the results obtained after applying our framework
starting from Step 2. Step 1 is already defined in Sect. 4. In the last subsection,
we also present the results obtained from an additional experiment conducted
using an open time-series forecasting dataset.

5.1 Step 2 - Comparison of the Sampling Methods

Figure 2 shows the variation distribution after applying the sampling methods.
Without any sampling, the dataset has a strong bias towards samples with vari-
ation close to zero, meaning that the temperature is stable, or varies very slowly
most of the time. SUS with factor 3 give more emphasis to samples with higher
variation, while significantly reducing the number of samples with lower varia-
tion. The sampling using SUS with factor 1, on the other hand, is more con-
servative and preserves a considerable amount of samples with low variation.
Finally, IHS gives the best balance across all values and is the one that gives
the highest proportion of samples in the extreme of the temperature variation
spectrum (above 6 degrees in Fig. 2).
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5.2 Step 3 - Analysis of the Results

The results of the four models trained and tested with the selected sampling
methods based on temperature variation can be seen in Table 1, with the lower
error per evaluation set highlighted. The effect of the imbalance of the original
data distribution is clearly shown in the “None” rows, where the models were
trained without sampling. For those lines, the RMSE is much higher in the SUS 3
column, where there is a smaller number of samples of low variation, suggesting
that the models are biased towards low variation samples if trained without
sampling methods.

On the other hand, these results show that there is a trade-off between favor-
ing samples with and without temperature variation. Models trained with a more
aggressive kind of sampling, such as SUS with factor 3, have a much higher error
when evaluated on the unsampled data than the models trained with SUS factor
1, for example. This can be explained by the density difference between sam-
ples with low variation (below 2.5 degrees in Fig. 2), the same samples that are
more common in the “no sampling” dataset. With our approach, this trade-off
which exhibits non-linear behavior can be estimated, taking into account the
end-user preferences, and it can lead to a re-evaluation of the sampling method
in Step 2. Also, together with these metrics, using insights about the model as
described later in this subsection can indicate the sampling method that leads

Table 1. RMSE results for different sampling methods based on temperature variation.
“None” means that the model was trained or evaluated without using a sampling
method.

Model | Trained on | Evaluated on
None SUS-1 SUS - 3 IHS

MLP | None 1.401 £ 0.181 | 2.270 &£ 0.177 |3.611 4+ 0.322 | 2.984 + 0.241
SUS -1 1.704 4+ 0.289 | 2.085 4+ 0.239 |2.886 4 0.269 | 2.495 £ 0.234
SUS -3 4.150 £+ 0.635 | 3.089 £ 0.390 |2.430 £ 0.305 | 2.836 £ 0.32
IHS 3.066 £ 0.401 |2.728 £ 0.228 |2.539 + 0.248 | 2.663 + 0.217

LSTM | None 1.032 £ 0.091 | 1.857 4+ 0.112 | 3.275 + 0.129 | 3.275 4+ 0.13
SUS -1 1.283 4+ 0.153 | 1.469 4+ 0.123 |2.769 4+ 0.130 | 2.731 £ 0.094
SUS -3 3.595 £+ 0.268 | 2.549 £+ 0.128 | 1.464 + 0.24|2.415 £ 0.095
IHS 2.728 £ 0.174 | 2.131 £ 0.093 |1.863 £ 0.106 |2.27 £+ 0.093

TCN | None 0.871 + 0.021 | 1.684 + 0.037 |3.060 £+ 0.068 | 3.142 + 0.05
SUS -1 1.007 £ 0.079 | 1.462 + 0.041 | 2.686 4+ 0.066 | 2.703 £ 0.063
SUS - 3 3.41 + 0.213 2.4 + 0.091 1.592 4+ 0.124 | 2.283 £ 0.008
IHS 2.579 £ 0.231 |2.016 £ 0.091 |1.845 £ 0.062 | 2.145 £+ 0.039

TACN | None 1.171 4+ 0.016 | 2.637 &£ 0.051 | 5.167 £+ 0.1 5.064 + 0.101
SUS -1 1.334 £ 0.242 | 2.077 &£ 0.355 | 3.878 4+ 0.675 | 3.183 £ 0.694
SUS - 3 3.802 £ 0.538 | 2.786 £+ 0.428 |2.36 + 0.758 |2.883 &+ 0.547
IHS 3.093 £ 0.918 |2.424 £ 0.608 |2.430 £ 0.748 | 2.752 + 0.623
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Table 2. The maximum error obtained by the TCN model over all the evaluation sets.
Each line corresponds to a training set obtained from a different sampling method.

Trained on | Max. error Measured on
No sampling | 3.142 + 0.05 |IHS
SUS -1 2.703 £+ 0.063 | THS
SUS -3 3.41 £ 0.213 | No sampling
THS 2.579 + 0.231 | No sampling

to the most encompassing, generalizable patterns learned by the models, thus
creating a balance for the performance across data samples.

Since the results show that the TCN achieves a relatively lower error in all the
evaluation sets, we select it as the best model and follow the heuristic described in
Sect. 3.1. Table 2 shows the maximum error obtained by it over all the evaluation
samples. The two lowest RMSE values reported in that table are from the TCN
model trained with SUS factor 1 and IHS, and the evaluation sets where they
have the highest error are No sampling and THS. By comparing the performance
of the TCN trained with both methods on the evaluation set without sampling,
we can clearly see that the model trained with SUS with factor 1 has a lower
spreading of the error (Fig.3a). On the other hand, the same comparison on
the evaluation set with higher variation (Fig.3b) shows that both models have
similar error spreading, and the small advantage of using IHS, in this case, does
not compensate for the increase in error in the low variation samples. Therefore,
we can conclude that SUS with factor 1 is the sampling method with the best
performance across samples with low and high temperature variation.

A MDD

10 Method 125 Method
e IHS e IHS
8 SUS - Factor 1 10.0 SUS - Factor 1
S o S
5 6 % 5 75
c S c
.0 '33 o
S 4 'l 5 50
el el
Q ®, & f
o 2 ’ o O a 25
0 BSnan S — 0.0
-2
-10 -5 0 5 10 -10 0 10
Real variation Real variation
(a) (b)

Fig. 3. (a) Prediction error for TCN model trained using IHS and SUS with factor 1
on “no sampling” evaluation set and (b) on SUS with factor 3 evaluation set.
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Imbalance Effects in DL Models. In the third step of the framework, we
also verify how the imbalances affect the performance and learned patterns of the
predictive models, when they are trained on data with sampling versus unsam-
pled data. To do that, we focus on the temperature variation property of the
dataset, and we measure the SHAP values of the MLP model, as well as the
attention importance values of the TACN.

To assess how the sampling methods influence the MLP model, we extract
its SHAP values using the SUS 3 evaluation set. We compare both the MLP
trained with SUS 3 and without sampling. Figure 4 shows that both models rely
mostly on the last temperature measurement to make the forecast. This could be
explained by the fact that the last temperature is relatively close to the predicted
temperature, even when there is high variation. One hypothesis for such fact is
that the MLP does not handle the time dependency of the inputs and, thus has
a disadvantage in comparison to other temporal models such as the TCN or the
LSTM.

15
training sample
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o “\0, ((\‘7'
\a s‘te‘“p g *te““) 9@‘“‘) S‘KO‘O‘ 0 xe‘“‘) " sxte‘“ qxo‘“ e *xo‘Q ve
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input feature

Fig. 4. Comparison of the absolute SHAP values estimated for the MLP model trained
with SUS factor 3 and without sampling. The values are computed based on inputs
from the evaluation set sampled using SUS factor 3. The input features are computed
over a window of 5 min. mt! and mt2 correspond to the first and second motors of the
bridle set.

To gain insights about the differences in the behavior of the trained TACN
models using the interpretability mechanism, we run inference on the SUS with
factor 3 evaluation set for the models trained on (a) unsampled data and (b) on
the SUS factor 3 train set, and we study the resulting attention pattern variation.

To quantify this variation, we enumerate for both models the unique learned
attention values for each input time step across all test samples, rounded to
the second decimal, and present the results on Fig. 5. For the model trained on
unsampled data, the unique values for each position are at most 3, while for the
SUS model they are between 30 and 50. The above observations lead us to the
following conclusions: The model trained on the unsampled data has learned a
high reliance on the last value and a limited number of patterns, which serves
well in minimizing the error for the majority of the samples but results in low
performance on the large variation samples. In contrast, the model trained on
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Fig. 5. Unique attention values per input step from sample TACN models trained on
data with (a) no sampling and (b) SUS with factor 3

the SUS data is forced to learn a larger variety of patterns to accommodate for
this target variation.

5.3 Additional Results from Mining Process Dataset

To confirm our conclusions and enable reproducibility of our methods, we apply
our suggested framework on an open dataset from another real-world industrial
application [11], which is the quality prediction of the output of a mining process.
Specifically, the goal is to predict the impurity of the final ore product, which is
measured as the percentage of silica contained in it. It is reasonable to assume
that the process engineers are less interested in the majority of the cases where
this percentage is low enough for the quality to be acceptable and more interested
in the more rare cases, where the percentage is higher and may cross a threshold
that requires the final product to be discarded. Following our framework, the
steps are as follows:

Step 1 - Weight Function. Given the formulation of this task, it is clear that
the prediction output is the most important property and is thus selected as the
weight function.

Step 2 - Sampling Method Choice. Following the example of the motor
temperature use case, we experiment with three sampling methods: SUS with
factor 1, SUS with factor 3, and THS.

Step 3 - Predictive Model Choices. Given the time series nature of this
problem and its input variables, we elect to experiment with the LSTM and
TCN models.

The results from our experiments with this task can be seen in Table3 and
the maximum RMSE across all evaluation sets for each model and sampling
method combination in Table4. We observe that using an appropriate sampling
method in combination with the weight function reduces the error for the rarer
and most important cases (high silica percentage). Moreover, the heuristic of
the third framework step helps select the most appropriate sampling method for
each forecasting model (SUS with factor 1 for the LSTM and IHS for the TCN).
The code used to obtain these results is accessible at [13].
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Table 3. RMSE results for different sampling methods based on silica percentage.
“None” means that the model was trained or evaluated without using a sampling
method.

Trained on | Evaluated on
None SUS -1 SUS - 3 THS
LSTM | None 0.620 + 0.016 | 0.528 £ 0.048 | 0.675 £ 0.052 | 0.547 + 0.048
SUS -1 0.594 + 0.031|0.634 4+ 0.016 | 0.600 £ 0.039 | 0.563 + 0.036
SUS - 3 0.731 + 0.028 | 0.621 £ 0.022 | 0.633 £ 0.012 | 0.609 + 0.031
IHS 0.638 + 0.032|0.587 £ 0.031 | 0.571 £ 0.045 | 0.643 + 0.018
TCN | None 0.570 + 0.009 | 0.533 £+ 0.023 | 0.705 £ 0.031 | 0.578 + 0.027
SUS -1 0.603 + 0.015|0.586 4+ 0.010 | 0.644 £ 0.026 | 0.606 + 0.023
SUS - 3 0.690 + 0.022 | 0.580 £ 0.015|0.592 £ 0.009 | 0.561 + 0.020
THS 0.617 + 0.018 | 0.538 £+ 0.019 | 0.566 £ 0.021 | 0.599 + 0.013

Table 4. Maximum RMSE error across all evaluation sets for each model and sampling
method.

Trained on | Max RMSE
LSTM | None 0.675 + 0.052
SUS-1 0.634 + 0.016
SUS -3 0.731 + 0.028
THS 0.643 £ 0.018
TCN | None 0.705 + 0.031
SUS -1 0.644 + 0.026
SUS -3 0.690 + 0.022
THS 0.617 + 0.018

6 Conclusion

We presented a framework to analyze imbalanced time-series forecasting prob-
lems and to train and evaluate ML models taking into account important prop-
erties. To our knowledge, this is the first framework that provides clear steps to
help practitioners to select and compare different sampling methods and predic-
tive models for such problems. It is put into practice to forecast the temperature
of a motor in a steel processing conveyor belt, based on data extracted from a
real-world industrial process and validated in cooperation with domain experts.
The problem analysis is made through the lens of the temperature variation prop-
erty. We study the dataset using three different sampling methods and train four
different DL models to evaluate and compare the effectiveness of each combi-
nation of sampling and model. We also show the imbalance of the temperature
variation and how it changes the models’ predictions when they are trained with
different proportions of samples with high temperature variation. Finally, we use
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SHAP values and the TACN model’s attention mechanism to show the effect of
low temperature variation in the dataset on the forecast models, inducing them
to rely mostly on the last observed temperature. For reproducibility purposes
and verification of our conclusions, we also apply the framework to an open
industrial dataset regarding the quality prediction of the output of a mining
process, experimenting with three sampling methods and two DL models, and
we present the results from this use case as well.

As future work, our framework could be put into practice to analyze new
time-series prediction tasks, combining with more sampling techniques. The use
of the input z in the weight function can be further explored to make the frame-
work suitable for an even wider range of tasks. In addition, our results point out
a possible relationship between the prediction error and the distribution of the
training data which might be worth investigating.
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