
VU Research Portal

Amplified steady state bifurcations in feedforward networks

Von Der Gracht, Sören; Nijholt, Eddie; Rink, Bob

published in
Nonlinearity
2022

DOI (link to publisher)
10.1088/1361-6544/ac5463

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
Von Der Gracht, S., Nijholt, E., & Rink, B. (2022). Amplified steady state bifurcations in feedforward networks.
Nonlinearity, 35(4), 2073-2120. https://doi.org/10.1088/1361-6544/ac5463

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 05. Nov. 2022

https://doi.org/10.1088/1361-6544/ac5463
https://research.vu.nl/en/publications/b00f324f-35d4-41f9-9340-15817d4a9300
https://doi.org/10.1088/1361-6544/ac5463


Nonlinearity
            

PAPER

Amplified steady state bifurcations in feedforward
networks
To cite this article: Sören von der Gracht et al 2022 Nonlinearity 35 2073

 

View the article online for updates and enhancements.

You may also like
Fast wavelength switching with tunable
distributed amplification distributed
feedback laser by feedforward control
technique
Hirokazu Onji, Shota Takeuchi, Yudai
Tatsumoto et al.

-

Increasing LIGO sensitivity by feedforward
subtraction of auxiliary length control noise
Grant David Meadors, Keita Kawabe and
Keith Riles

-

A comprehensive inversion approach for
feedforward compensation of
piezoactuator system at high frequency
Lizhi Tian, Zhenhua Xiong, Jianhua Wu et
al.

-

This content was downloaded from IP address 145.108.246.116 on 04/08/2022 at 09:04

https://doi.org/10.1088/1361-6544/ac5463
/article/10.7567/JJAP.53.08MB11
/article/10.7567/JJAP.53.08MB11
/article/10.7567/JJAP.53.08MB11
/article/10.7567/JJAP.53.08MB11
/article/10.1088/0264-9381/31/10/105014
/article/10.1088/0264-9381/31/10/105014
/article/10.1088/0964-1726/25/9/095046
/article/10.1088/0964-1726/25/9/095046
/article/10.1088/0964-1726/25/9/095046


London Mathematical Society Nonlinearity

Nonlinearity 35 (2022) 2073–2120 https://doi.org/10.1088/1361-6544/ac5463

Amplified steady state bifurcations
in feedforward networks

Sören von der Gracht1,∗ , Eddie Nijholt2

and Bob Rink3

1 Department of Mathematics, Universität Hamburg, Germany
2 ICMC, University of São Paulo, São Carlos, Brazil
3 Department of Mathematics, Vrije Universiteit Amsterdam, The Netherlands

E-mail: soeren.von.der.gracht@uni-hamburg.de, eddie.nijholt@gmail.com and
b.w.rink@vu.nl

Received 5 May 2021, revised 19 January 2022
Accepted for publication 11 February 2022
Published 7 March 2022

Abstract
We investigate bifurcations in feedforward coupled cell networks. Feedforward
structure (the absence of feedback) can be defined by a partial order on the cells.
We use this property to study generic one-parameter steady state bifurcations for
such networks. Branching solutions and their asymptotics are described in terms
of Taylor coefficients of the internal dynamics. They can be determined via an
algorithm that only exploits the network structure. Similar to previous results
on feedforward chains, we observe amplifications of the growth rates of steady
state branches induced by the feedforward structure. However, contrary to these
earlier results, as the interaction scenarios can be more complicated in general
feedforward networks, different branching patterns and different amplifications
can occur for different regions in the space of Taylor coefficients.

Keywords: steady state bifurcations, network dynamics, feedforward networks,
amplification
Mathematics Subject Classification numbers: 37G10, 34D06.

(Some figures may appear in colour only in the online journal)

Introduction

Summary of main results. We investigate feedforward network dynamical systems for their
bifurcation behaviour. Most generally, feedforward structure is defined by the absence of feed-
back except for self-loops, i.e., there are no directed cycles consisting of two or more cells.
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Figure 1. A general homogeneous feedforward network with asymmetric inputs.

Under this structural assumption, we classify generic steady state bifurcations of homogeneous
networks with asymmetric inputs (compare to figure 1) by proving.

Theorem (theorems 3.7, 3.21, 3.23 and 3.24). For each branch of steady state solutions
emerging in a generic one-parameter steady state bifurcation in a feedforward network, there
exists a unique root subnetwork, i.e., a subnetwork that is surrounded by critical cells, in
which the cells remain synchronous. The state of a cell that is not in the root subnetwork grows
asymptotically in the bifurcation parameter as ∼|λ| 1

n where n is given by the maximal num-
ber of critical cells along paths from the root subnetwork to this cell. This effect is called
amplification.

The result generalizes earlier classifications of generic steady state branches for feedforward
chains and layered feedforward networks. We elaborate on this relation in the remainder of this
introduction after illustrating the main result in three numerically investigated examples.

Some examples. Consider the feedforward network shown at the top of figure 2. A general
family of admissible vector fields for this network is given by

(0.1)

where λ ∈ R is a bifurcation parameter and the colours of the variables correspond to the
different arrow-types in the figure. In the graph we have left out self-loops corresponding to
the first argument of f, as they are understood as internal dynamics.

The bottom left of figure 2 shows a numerically computed bifurcation branch in a sys-
tem of the form (0.1). More precisely, we have used a specific choice of response function
f : R4 × R→ R, given by

f (x, y, z, v,w,λ) = y + 2z − 4w + 5λx − 0.5x2

(strictly speaking the fact that f does not depend on v cancels the influence of the grey
arrows). For each of 200 fixed values of λ ∈ [−0.1, 0.1], we forward integrated the system
of equation (0.1) up to t = 10 000, using Euler’s method with time steps of 0.1. The values of
λ are evenly spaced and the integration started each time from (0.01, 0.02, 0.03, 0.04,−0.05).
The figure shows all five coordinates of the final point of integration. For negative values of λ,
all components end up indistinguishably close to zero, indicating that the origin is stable. For
positive values of λ, however, stability is passed on to a fully non-synchronous point.
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Figure 2. An amplifying bifurcation in a feedforward network. Top: a graphical depic-
tion of the network. Bottom left: numerical evidence of a bifurcation in which a
synchrony-breaking branch of steady state points emerges. Bottom right: a log–log plot
of the synchrony-breaking branch on the left for positive values of λ. Black line-
segments have fixed slopes 1/4, 1/2, 1/2 and 1, from top to bottom, indicating asymp-
totics of the different nodes.

Writing (x1(λ), . . . , x5(λ)) for this non-synchronous branch of steady state points, the
figure suggests that x5(λ) = 0 and x4(λ) ∼ λ. The components x3(λ) and x2(λ) seem to
grow at a steeper rate, hinting at the amplifying behaviour x2(λ), x3(λ) ∼ λ1/2 often observed
in feedforward structures. Finally, x1(λ) grows at the steepest rate, which might indicate
x1(λ) ∼ λ1/4.

The bottom right of figure 2 corroborates these suggested growth rates for x1(λ) to x4(λ).
Shown here is a plot of ln(λ) against ln(xi) for i ∈ {1, . . . , 4}, computed as before for
200 evenly spaced values of ln(λ) ∈ [ln(0.001), ln(0.1)]. The black line-segments have fixed
slopes 1/4, 1/2, 1/2 and 1, from top to bottom. This suggests that we indeed have the asymp-
totics x4(λ) ∼ λ, x3(λ), x2(λ) ∼ λ1/2 and x1(λ) ∼ λ1/4. Our results in this paper predict this
bifurcation in a system of the form (0.1) for an open set of Taylor coefficients of f. Additional
(unstable) branches are furthermore typically present. We investigate the bifurcations in the
network in figure 2 analytically in section 4.

Next, we consider the two networks shown at the top of figure 3. Their admissible vector
fields are of the form

for the top and bottom network, respectively. The only difference between these two networks
is the placement of a blue self-loop at node 1 or 2, as opposed to a connection to node 4.

2075



Nonlinearity 35 (2022) 2073 S von der Gracht et al

Figure 3. Top: two feedforward chains that differ only slightly. Bottom left: numerical
evidence of a bifurcation in the top network, where one node remains at 0, two nodes
grow linearly and one node appears to grow at a sub-linear rate. Bottom right: numerical
evidence of a bifurcation in the bottom network, with one node staying at 0, one growing
linearly and two growing at a sub-linear rate. The same response function was used for
both networks.

The bottom left and right of figure 3 show the branches of a bifurcation in the top and bottom
network, respectively. They are computed numerically, in the same way as in the previous
example, using the response function

f (x, y, z,λ) = y − 2z + λx − 0.1x2.

In each of the two examples and for each of 200 values of λ, the forward Euler-method started
at (0.001, 0.002, 0.003,−0.004) ∈ R4 and was performed up to t = 10 000 with time steps of
0.1.

The bifurcation plots imply a progression of node-asymptotics, from xi(λ) = 0 to xi(λ) ∼ λ
to xi(λ) ∼ λ1/2, starting at node 4 and going through the network nodes from left to right. When
going through the nodes in this order, the asymptotics of a node changes with respect to the
previous one, only if it has no self-loops attached. For instance, in both networks node 3 has
no self-loops. As a result, we have x4(λ) = 0 but x3(λ) ∼ λ. In the top network node 2 does
have a self-loop, and so we have x2(λ) ∼ λ. That is, we have the same asymptotics as node 3.
In the bottom network node 2 has no self-loops, and as a result the asymptotics of node 2 differs
from that of node 3. We therefore find x2(λ) ∼ λ1/2 instead. In the top network node 1 has no
self-loops, and so the asymptotics differs from that of node 2. In the bottom network we do have
a self-loop on node 1, and so the asymptotics of nodes 1 and 2 are the same. As a result, we see
x1(λ) ∼ λ1/2 in both networks. We will show that such rules of amplification—progressing
through the network and depending on the presence or absence of self-loops—are a typical
occurrence in feedforward networks.

Background. A structural feature that arises frequently in the sciences is that of a net-
work of clearly distinguishable units that are connected in a specific configuration to influence
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each other. Examples arise in engineering (e.g. power grids), biology (e.g. food webs or neu-
ral networks), computer science (e.g. deep learning), and many others. In mathematics the
study of networks takes place in numerous disciplines—as well as through interdisciplinary
approaches—such as graph theory, algebra, stochastics or dynamical systems. See for example
the survey of the field of network science with historical context and applications in [17] and the
references therein. Here, we are interested in dynamical systems with the underlying structure
of a network, so called coupled cell systems. In particular, we investigate systems of ordinary
differential equations where the state variable of one (or multiple) equations is also an argu-
ment of the equation for another. We say that the corresponding cell receives an input from
other cells. The configuration by which the cells influence each other is often encoded by a
(directed) graph.

The field of network dynamical systems has seen enormous activity in recent years and
multiple formalisms have been put forward. Most prominently we mention the groupoid for-
malism in [12, 14] and its equivalent definition in [10]. More recently, so-called open systems
(see e.g. [15, 27]) and asynchronous networks ([3–5]) have been introduced to model more
complex applications. Network dynamical systems exhibit interesting phenomena that are
highly anomalous in general dynamical systems. Notable examples include synchronization
effects and pattern formation, as well as unusual bifurcations and spectral degeneracies. These
phenomena are only possible because of the network structure, but the precise mechanisms
leading to them often remain unclear. They do, however, resemble observations made in sym-
metric or equivariant dynamics. It was the introduction of graph fibrations from category theory
and their implications for dynamical systems (see [6–8]) that allowed for the development of a
theory to interpret networks as algebraic structures that have a direct connection to symmetry,
so-called hidden symmetry ([18, 20, 21, 23–25]). This theory applies to the class of networks
with asymmetric inputs and most results that have been established focus on homogeneous
networks. We briefly recapitulate the basics in section 1.

Additional structure of the network itself can aid the dynamical investigation by providing
additional analytical means. A prominent example is that of feedforward structure. Broadly
speaking a network exhibits feedforward structure if information can only flow in one direc-
tion. Information one cell emits cannot become an input into that same cell, not even indirectly,
i.e. there are no feedback effects. This rather simple structure has the convenient effect that
there is a natural partition of the cells such that the first part receives no inputs from anywhere
else in the network, the second receives inputs only from the first, the third receives inputs
from the first and the second and so on. This greatly simplifies the investigation of such net-
works, both in mathematical analysis due to technical simplifications, but also conceptually
as it allows to study the network inductively. While feedforward structure and similar weaker
notions are abundant in networks—as a matter of fact, in any network that is not (indirectly)
all-to-all coupled, we can find feedforward structure between parts of the network—, they are
a prominent feature in deep learning via artificial neural networks, where one type of infor-
mation is processed by cells within one part and then passed on to the next part until some
output is generated. For more information and historical background on this see [26] and the
extensive list of references therein.

The network of feedforward type that was first considered in the network dynamical systems
literature is the three-cell homogeneous network

(see [9, 13, 14]). The first cell is not influenced by any other cell, the second only by the first,
and the last only by the second. We refer to this setting as a feedforward chain. Note that
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the self-loop of the first cell, although it seems to contradict the ‘no-feedback’ assumption,
is due to a mere convention where we allow cells to influence themselves. It was observed
that dynamical systems with the underlying structure of this three-cell feedforward network
exhibit surprising generic Hopf bifurcations: if a fully synchronous steady state loses stability
through a pair of imaginary eigenvalues, the corresponding system can exhibit a Hopf branch
in which the first cell remains in the steady state, the amplitude of the second cell grows with
rate ∼|λ| 1

2 , and the amplitude of the last cell grows with rate ∼|λ| 1
6 , where λ is the bifurcation

parameter. In particular the growth in the last cell is much faster than expected in ‘standard’
Hopf bifurcations. The effect is also referred to as amplification and is forced by the net-
work structure. In [23], the anomalous Hopf bifurcation result is generalized to feedforward
chains of arbitrary length, where the amplification is observed to increase the ‘further down
in the chain’ the cell is located. Furthermore, a similar result for steady state bifurcations is
proved. Since then, more general classes of feedforward networks, not restricted to chains,
were investigated. In [22], as an example, the authors introduce so-called ring-feedforward
networks which are feedforward chains where the first cell is replaced by an oriented ring.
Most recently, the steady state bifurcation result (as well as other investigations) has been
generalized to certain layered feedforward networks:

(see [29]). Therein the cells can be partitioned into layers such that the feedforward struc-
ture respects these layers. In particular, if we collapse each layer to one cell, we are left with a
feedforward chain. In this paper we investigate the general case that incorporates only the illus-
trative idea that a feedforward network should not contain any feedback (except for self-loops)
(see figure 1). Our definition includes feedforward chains and layered feedforward networks
as special cases. Under the assumption of homogeneity and asymmetry of inputs we prove the
aforementioned bifurcation result (see summary of main results).

Note that recently research has also extended to networks that do not exhibit a strict feedfor-
ward structure. In [1] the authors investigate the effect of feedback on the synchrony patterns
of weighted feedforward networks with additive input structure. Furthermore, in [11] the feed-
forward structure of transitive components is exploited to thoroughly investigate one- and two-
parameter steady state bifurcations in fully inhomogeneous networks. A similar investigation
is made in [2] for a specific one-parameter steady-state bifurcation scenario in homogeneous
networks with asymmetric inputs. In this class of networks (or respectively in this bifurcation
problem), however, amplification is generically not possible.

Structure of the article. This article is structured as follows. In section 1 we briefly sum-
marize the foundations of homogeneous coupled cell systems with asymmetric inputs. Feed-
forward structure for this class of networks and some immediate consequences are presented
in section 2. Finally, in section 3, all the results are used to compute the generic steady state
bifurcations for feedforward networks. As before, we observe the amplification effect for our
class of feedforward networks. However, due to the more complicated interaction structures,
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the picture becomes more complex than in feedforward chains or in layered feedforward net-
works. In particular, some expected amplifying branches may not exist. These results are
illustrated in an example in section 4.

1. Preliminaries: homogeneous networks with asymmetric inputs

We consider systems of ordinary differential equations with the underlying structure of a
homogeneous coupled cell network, as described in [20–25].

Definition (homogeneous coupled cell system with asymmetric inputs, definition 2.1 in
[24]). Let the set of nodes (or cells) of a network be labelled by C = {p1, . . . , pN} and denote
the network interactions in the form of distinct input maps Σ = {σ1, . . . , σn} where each
σi : C → C characterizes one specific input type. To each cell we attach the same internal state
space V which is a finite dimensional real vector space. The total phase space is

⊕
p∈C V ∼= VN

with coordinates chosen according to the cells of the network: x = (xp1 , . . . , xpN )T. The evo-
lution of the state xi ∈ V of cell pi is governed by a function f : Vn → V via its inputs. The
network dynamics is governed by the ordinary differential equations

ẋ = γ f (x) =

⎛
⎜⎜⎜⎝

f (xσ1(p1), . . . , xσn(p1))
f (xσ1(p2), . . . , xσn(p2))

...
f (xσ1(pN ), . . . , xσn(pN ))

⎞
⎟⎟⎟⎠ . (1.1)

These network vector fields are also referred to as admissible maps or admissible vector fields.
Each cell receives precisely one input of each type, hence the term asymmetric inputs. �

We make one additional assumption on the set of input maps Σ. We want it to include the
identity map σ1 = Id : C → C, which is natural, as it only means that the evolution of each
cell’s state depends on its own state. In order to investigate the inputs that a specific cell p ∈ C
receives, we define Σ(p) = {σ(p)|σ ∈ Σ} and Σ�(p) = Σ(p)\{p} to denote the sets of cells
that p receives an input from with and without self-loops respectively. Since Id ∈ Σ, we have
Σ�(p) � Σ(p) for all p ∈ C.

In the remainder of this section, we recall some useful facts and definitions of homogeneous
coupled cell systems. We start with the following characterization of linear admissible maps.
Let us denote the algebra of linear maps on the internal phase space of the coupled cell system
by gl(V).

Proposition 1.1. For each σ ∈ Σ define a linear map Bσ : VN → VN by (Bσ(x))p = xσ(p).
Then any linear admissible map L is of the form

(Lx)p =
∑
σ∈Σ

bσ(Bσ(x))p (1.2)

where bσ ∈ gl(V) are linear maps on V independent of p.

Proof. A linear admissible map L is uniquely defined by linear internal dynamics given by
a map l : Vn → V , i.e. L = γl. As l is linear and its arguments are labelled by the input maps
σ ∈ Σ, we find bσ ∈ gl(V) such that

l(Y) =
∑
σ∈Σ

bσYσ ,
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where Y = (Yσ)σ∈Σ ∈ Vn. Then for x ∈ VN the pth entry of Lx depends on the entries of cells
that p receives an arrow from, i.e. there is σ ∈ Σ such that σ(p) = q. We obtain

(Lx)p = l(xσ1(p), . . . , xσn(p)) =
∑
σ∈Σ

bσxσ(p) =
∑
σ∈Σ

bσ(Bσ(x))p.

�
In particular, we will use the following straightforward special case for one-dimensional

internal dynamics:

Corollary 1.2. If V = R, any linear admissible map L is a real linear combination of the
Bσ , i.e.

L =
∑
σ∈Σ

bσBσ

for some bσ ∈ R.

Finally we state two definitions. The first makes the concept of a path precise in our setting.
The second defines subnetworks of a network as subsets of the set of cells that are not influenced
by any cell outside of the subset.

Definition. For two cells p, q ∈ C let ω = {p1, . . . , pk} be a (loop-free) path from p to q
if p1 = p, pk = q, the pi are pairwise non-equal, and there exist σ1, . . . , σk−1 ∈ Σ such that
σ1(pk) = pk−1, . . . , σk−1(p2) = p1. Define Ωp,q = {ω path from p to q}. �

Remark 1.3. Note that the convention of denoting a path as a set implies that it does not
contain any self-loops, i.e. it is loop-free by definition. �

Definition. A cycle of length k is a path ω = {p1, . . . , pk} with the additional property that
there exists σ ∈ Σ such that σ(p1) = pk. A cycle of length 1 is also called a self-loop.

Definition. A subset B ⊂ C of cells of a homogeneous coupled cell system is called a sub-
network if there are no arrows in the network starting outside of B, that target a cell inside of
B. In other words σ(b) ∈ B for all b ∈ B and σ ∈ Σ. �

2. Feedforward networks

In this section, we provide a general notion of feedforward networks. We then observe, that it
can equivalently be defined in terms of a partial order on the cells. Finally, we explore some
direct consequences of these definitions for later use.

Definition. A homogeneous coupled cell network is called a feedforward network if it has
no cycles of length 2 or more (consisting of arrows not necessarily of the same type). Put
differently, a network is a feedforward network if the only cycles are self-loops. �

Remark 2.1. The name feedforward network is natural in the sense that all the feedback a
cell can receive is via a self-loop. �

Next, we define the preorder

p� q ⇐⇒ there is a path from q to p.
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As every cell is coupled to itself via the internal dynamics the preorder is obviously reflexive.
On the other hand, if there is a path from cell q to cell p and a path from cell r to cell q the joint
path goes from r to p, which makes the preorder transitive as well.

We encode the situation that p� q but p 
= q by p� q. In the definition we do not exclude
the possibility that there exists a path from q to p and one from p to q for two different cells p
and q. In that case we have p� q and q � p even though p 
= q. Thus, in general the preorder
is no partial order.

Proposition 2.2. A homogeneous coupled cell network is a feedforward network if and
only if � is a partial order.

Proof. Assume the network is not a feedforward network. Then there is a cycle {p1, . . . , pk}
with k � 2 in the network, meaning there are input maps σ1, . . . , σk such that σ1(p1) = pk and
σi(pi) = pi−1 for 2 � i � k. In particular, there is a path from p1 to pk, which implies pk � p1,
and a path from pk to p1, which implies p1 � pk. As p1 
= pk, this shows the preorder is no
partial order.

Now assume that the preorder is not a partial order. Then there are cells p 
= q with p� q
and q � p. This implies the existence of a path {p, p1, . . . , pk−2, q} of length k � 2 from q
to p as well as a path {q, p′1, . . . , p′l−2, p} of length l � 2 from p to q. The concatenated path
{p, p1, . . . , pk−2, q, p′1, . . . , p′l−2} is a cycle of length k + l − 2 � 2. Thus, the network is not a
feedforward network. �

In the remainder of this section, we collect some consequences of the definition of feed-
forward networks. Note that, since the network contains only finitely many cells, there are
well-defined maximal elements with respect to the partial order �. By definition, these are
cells that do not receive any inputs from other cells.

Lemma 2.3. A cell p ∈ C is maximal with respect to � if and only if all its inputs are from
itself.

Proof. This follows almost directly from the definition of the partial order �. We prove the
statement by contraposition. Assume, σ(p) 
= p for some σ ∈ Σ. Then there is an arrow from
σ(p) to p. This yields σ(p) � p so that p is not maximal. On the other hand, if q � p then there
is a path {p, p1, . . . , pk, q} from q to p. In particular, there is an input map σ ∈ Σ such that
σ(p) = p1, i.e., p receives an input from p1 
= p. �

The following results refine the notions of paths and subnetworks for feedforward networks.

Corollary 2.4. Stating the definition of a maximal cell in terms of arrows in the network
immediately proves that every cell p is either maximal itself or there is a path from a maximal
cell p to p. Furthermore, it is obvious that q � p implies that q is on some path from a maximal
cell to p, i.e., there is a maximal cell p such that q ∈ ω ∈ Ωp,p (the set of paths from p to p).

Lemma 2.5. A subnetwork of a feedforward network is again a feedforward network.

Proof. Let C be the set of cells of a feedforward network. In particular, there are no cycles
of length two or greater of cells in C. Hence, there are also no cycles of length two or greater
of cells in any subset B ⊂ C. �
Lemma 2.6. A subset of cells B ⊂ C of a feedforward network defines a subnetwork if and
only if p ∈ B implies q ∈ B for all q � p. This, in turn, yields that every subnetwork contains
at least one maximal cell.

Proof. The result follows from the definitions of a subnetwork and that of the partial
order �. �
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Corollary 2.7. Let ∅ 
= B ⊂ C be a subnetwork and p ∈ C\B such that q ∈ B for all q � p.
Then also B ∪ {p} is a subnetwork.

Proof. The result follows immediately from the fact that σ(B) ⊂ B for all σ ∈ Σ, since B is
a subnetwork, and σ(p) � p for all σ ∈ Σ. �

Lemma 2.8. Let ∅ 
= B � C be a non-trivial subnetwork of a feedforward network and
assume B contains all maximal cells. Then there exists at least one p ∈ C\B such that q ∈ B
for all q � p. That is, there are cells that ‘surround’ the subnetwork.

Proof. Since B contains all maximal cells, there is a path from a cell in B to any p ∈ C\B,
i.e., there is a cell p ∈ B such that p� p. Assume there is no p ∈ C\B such that q ∈ B for
all q � p. Then for all p /∈ B there must be p′ ∈ C\B such that p′ � p. As C\B is finite and
contains no maximal cells, this implies that there are p, p′ ∈ C\B with p′ � p and p� p′. This
contradicts the assumption that C is a feedforward network. �

The definition of a feedforward network yields additional structure in linear admissi-
ble maps for corresponding coupled cell systems. We choose a labelling of the nodes C =
{p1, . . . , pN} such that it holds that

pi � pj =⇒ i � j. (2.1)

This ordering is not unique as some elements may not be related by the partial order. Recall
that we denote the algebra of linear maps on the internal phase space V by gl(V).

Lemma 2.9. Choosing the ordering of cells according to (2.1) for a feedforward network
yields that any linear admissible map can be represented by an upper triangular matrix with
entries in gl(V). In particular, if V = R we identify gl(V) ∼= R to see that the linear admissible
maps can be represented by real upper triangular matrices.

Proof. The lemma follows directly from proposition 1.1. Fix an input map σ ∈ Σ. For an
input σ(p) of cell p it holds that σ(p) � p and therefore its index is greater than or equal to that
of p. This shows that the linear map Bσ is upper triangular with non-zero entries 1V ∈ gl(V).
Then (1.2) implies that any linear admissible map L is upper triangular with entries in gl(V) as
well. �

Remark 2.10. We could have used upper triangularity of linear admissible maps as a
definition for feedforward networks as well. Assume the cells {p1, . . . , pN} are labelled such
that all linear admissible maps are upper triangular. Suppose pi � pj and pj � pi. Then there
exists a path {pj, pl1 , . . . , plk , pi} with 0 � k � N and 1 � lr � N from pj to pi. In par-
ticular, there exist input maps σ1, . . . , σk+1 ∈ Σ such that σ1(pi) = plk , . . . , σk+1(pl1 ) = pj.
These maps describe the input structure that is reflected by the linear admissible maps.
Hence, there exists such a map with non-zero values in the (i, lk)th, in the (lk, lk−1)th,
and so on until the (l1, j)th entry. Due to the upper triangular structure, this implies
i � lk, lk � lk−1, . . . , l1 � j and, in particular, i � j. Applying the same argument to pj � pi

implies j � i. As a result, we obtain i = j and therefore pi = pj. Hence � is a partial order.
Summarizing, the upper triangular structure of linear admissible maps is equivalent to � being
a partial order on C. �
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Lemma 2.9 has immediate consequences for generic one-parameter Hopf bifurcations in
feedforward networks. These can only occur, when the internal dynamics is at least two-
dimensional. A thorough investigation of steady state bifurcations in feedforward networks
can be found in section 3.

Theorem 2.11. In a one-parameter bifurcation in a feedforward network with one-
dimensional internal dynamics there cannot be a pair of conjugate imaginary eigenvalues
at the synchronous bifurcation point. On the other hand, if the internal dynamics is at least
two-dimensional, a one-parameter bifurcation in which a pair of complex eigenvalues crosses
the imaginary axis is possible.

Proof. In order for a bifurcation to occur, a one-parameter family of linear admissible maps
has to have an eigenvalue/a pair of complex conjugate eigenvalues that crosses/cross the imag-
inary axis at the bifurcation point. In the case V = R all linear admissible maps are real upper
triangular matrices. Their eigenvalues are the diagonal elements which are real. Hence, only
real eigenvalues can cross the imaginary axis. On the other hand, when the internal dynam-
ics is in V ∼= Rd with d � 2, linear admissible maps are upper triangular with entries in gl(V).
Thus the eigenvalues of a linear admissible map are the union of the eigenvalues of all diagonal
elements which are arbitrary elements in gl(V) (some of which might be related). In particular,
there are possible diagonal elements with complex eigenvalues. �

Remark 2.12. In particular, the emergence (or collapse) of periodic solutions in a bifurca-
tion—as in classical and non-classical Hopf bifurcations—requires a pair of complex conju-
gate eigenvalues to cross the imaginary axis. The previous theorem shows that this can only
occur in feedforward networks, if the internal dynamics is at least two-dimensional. �

In the case V = R the linear admissible maps are real upper triangular matrices (compare
to corollary 1.2). These have their eigenvalues on the diagonal. We introduce the following
definition that turns out to be useful for determining diagonal entries of linear admissible maps.

Definition. Given a homogeneous coupled cell network (not necessarily of feedforward
type), we define an equivalence relation on the nodes as follows: if

{σ ∈ Σ|σ(p) = p} = {σ ∈ Σ|σ(q) = q}. (2.2)

We denote the sets involved by Lp = {σ ∈ Σ|σ(p) = p}. If then we say that p and q
have the same loop-type. In a network, two nodes have the same loop-type if and only if they
have the same self-loops (of the same type given by Lp). �

Corollary 2.13. From lemma 2.3 we obtainLp = Σ for all maximal p ∈ C in a feedforward
network. In particular, for p maximal, , if and only if q is maximal.

Remark 2.14. The loop-type of a node p can easily be read off from the admissible vector
fields of a network; it is given by those entries of the response function through which the
variable xp depends on xp. �

The following result shows the importance of the loop-type relation: there is a one-to-one
correspondence between loop-types and eigenvalues of a linear admissible map.

Theorem 2.15. In a feedforward network, the number of different loop-types of the nodes
(that is, the number of equivalence classes under ) equals the maximal number of different
eigenvalues a linear admissible map can have.
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Proof. As a linear admissible map for a feedforward network is upper triangular (lemma 2.9),
the maximal number of eigenvalues is just the maximal number of distinct values the diag-
onal entries can attain. We define the standard basis of the total phase space using the
Kronecker delta δp,q —which equals 1 if p = q and 0 otherwise—as {Yq}q∈C given by
(Yq

p)p∈C = (δp,q)p∈C ∈ RN . Note that this basis respects the labelling of cells chosen as in (2.1)
so that the linear admissible maps with respect to this basis are upper triangular. Recall further-
more from corollary 1.2 that the algebra of linear admissible maps is spanned by the adjacency
matrices Bσ for σ ∈ Σ, defined by (Bσ(x))p = xσ(p) for p ∈ C. That is, any linear admissible
map is of the form∑

σ∈Σ
bσBσ ,

with bσ ∈ R for all σ ∈ Σ. For a node p ∈ C, the (p, p)-entry of this matrix is given by[∑
σ∈Σ

bσBσ(Y p)

]
p

=
∑
σ∈Σ

bσY p
σ(p) =

∑
σ∈Σ

bσδp,σ(p) =
∑

σ(p)=p

bσ.

Hence, for two nodes p, q ∈ C the (p, p)-entry and the (q, q)-entry are always the same, if and
only if . This shows that the number of different eigenvalues is at most the number
of loop-types. If p and q do not have the same loop-type, then for a dense open set of values
(bσ)σ∈Σ, the pth and qth diagonal entries of

∑
σ∈Σ bσBσ are distinct. Intersecting these sets for

all pairs of nodes with a different loop-type, we find a dense open set of values (bσ)σ∈Σ for
which

∑
σ∈Σ bσBσ has as many different eigenvalues as there are loop-types. This proves the

theorem. �
Remark 2.16. As mentioned in the introduction, an often considered generalization of feed-
forward chains is that of so-called layered feedforward networks. In such a network the cells
are partitioned in layers and the feedforward structure is only with respect to these layers, i.e.,
if we collapse each layer to a single node we obtain a feedforward chain. Most notably we
would like to mention [29]. Therein, layered feedforward networks, their quotients and lifts
as well as the lifting bifurcation problem are investigated thoroughly. It is shown that these
networks exhibit similar steady state bifurcations as the ones presented in section 3. As a mat-
ter of fact, completing the set of input maps for the networks considered in [29], we obtain
networks that are included in our framework of feedforward networks. However, no self-loops
(except for the internal dynamics governed by Id ∈ Σ and for the maximal cells) are possible.
As a result, the branching patterns in the more general case considered in section 3 are more
complex than in [29]. Note that in our more general definition of feedforward networks, we
may also group nodes together in layers, where we allow for self-loops and arrows that skip
layers. In fact, it can be shown that we may give a definition in terms of layers that is equivalent
to the definitions in proposition 2.2. However, we decided not to include the precise definition
here, as we deemed the ‘graphical’ and ‘order theoretic’ definitions to be more natural. �

3. Amplified steady state bifurcations in feedforward networks

In this section, we classify generic steady state bifurcations in one-parameter families of cou-
pled cell network vector fields as in (1.1) where the underlying structure is that of a feedforward
network. It turns out, that the most useful definition for the computations in this section is that
the set of cells C = {p1, . . . , pN} is partially ordered with respect to �. Assuming the labelling
of nodes is according to (2.1), the parameter-dependent dynamics on the total phase space
VN ∼=

⊕
p∈C V is governed by
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ẋ = γ f (x,λ) =

⎛
⎜⎜⎜⎝

f (xσ1(p1), . . . , xσn(p1),λ)
f (xσ1(p2), . . . , xσn(p2),λ)

...
f (xσ1(pN ), . . . , xσn(pN ),λ)

⎞
⎟⎟⎟⎠ , (3.1)

where λ ∈ R and γ f (x,λ)p depends only on q ∈ C with q � p.
We aim at investigating generic bifurcations from a fully synchronous steady state. Without

loss of generality, we may assume this to be the origin and the bifurcation to occur for λ = 0.
Hence, we assume

γ f (0, 0) = 0,

which implies f (0, 0) = 0.
Due to the implicit function theorem, a bifurcation of steady states can only occur if the

linearization Dxγ f (0, 0) is non-invertible. As the inputs of f are labelled by the input maps
σ ∈ Σ, we may define

aσ = ∂σ f (0, 0),

which is an arbitrary linear map on V , i.e. aσ ∈ gl(V). Furthermore, recall the definition

Lp = {σ ∈ Σ|σ(p) = p}

as in equation (2.2). Then p and q are of the same loop-type, , if and only if Lp = Lq.
We compute the linearization to be the block-triangular matrix

Dxγ f (0, 0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
σ∈Lp1

aσ • . . . •

0
∑
σ∈Lp2

aσ
. . .

...

...
. . .

. . . •
0 . . . 0

∑
σ∈LpN

aσ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.2)

Then, the linearization Dxγ f (0, 0) is non-invertible, if and only if there is a node p ∈ C such that
0 ∈ spec(

∑
σ∈Lp

aσ).Note that
∑

σ∈Lp
aσ =

∑
σ∈Lq

aσ , if . Thus, 0 ∈ spec(
∑

σ∈Lp
aσ) for

all . We call these nodes critical. Furthermore, as aσ ∈ gl(V) arbitrary, generically∑
σ∈Lp

aσ does not have an eigenvalue 0 if p is not of the same loop-type as p (compare to
theorem 2.15). Hence, we say and assume the loop-type of p is critical and all other loop-types
are non-critical.

The steady state bifurcation problem is to find solutions to

γ f (x,λ) = 0 (3.3)

locally around (0, 0) ∈
⊕

p∈CV × R for a generic f satisfying the basic bifurcation assump-
tions (B), i.e.,

(B.i) f (0, 0) = 0;
(B.ii) there exists p ∈ C such that 0 ∈ spec(

∑
σ∈Lp

aσ).

An immediate observation following the definition of criticality is
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Lemma 3.1. Maximal cells are either all critical or all non-critical.

Proof. This follows from the fact that every maximal cell p receives all inputs from itself,
i.e. Lp = Σ - compare to lemma 2.3 and corollary 2.13. �

Hence, when the maximal cells are critical, all non-maximal cells may be assumed not to
be and vice versa when a non-maximal cell is critical all maximal cells may be assumed not to
be.

We explicitly compute the generic steady state bifurcation behaviour in individual cells in
the case of one-dimensional internal dynamics, that is V = R. The results and their proofs
are rather notation heavy. Furthermore, they consist of overlapping inductive definitions and
statements. However, the branching solutions can be summarized informally as follows:

(a) The steady state solutions in maximal cells grow asymptotically as ∼λ, if these maximal
cells are non-critical, and as ∼±

√
|λ|, if they are critical.

(b) The steady state solutions of non-critical cells are, to leading order, linear in their inputs,
i.e., xp ∼ maxσ∈Σ|xσ(p)|. Hence, to leading order they have the same asymptotics as the
leading order of their inputs.

(c) The steady state solutions of critical cells grow, to leading order, as the square root of
their lowest order inputs, i.e., xp ∼ ±

√
maxσ∈Σ|xσ(p)|. We refer to this phenomenon as

amplification.

These results follow from an inductive investigation of the bifurcations in individual cells
starting from the maximal cells and following the order �. Additionally, we have to care-
fully distinguish the cases when a bifurcation occurs for positive or negative values of λ.
Furthermore, taking square roots of inputs is only possible if the signs of inputs are suitable.
This results in restrictions on system parameters—i.e. Taylor coefficients or partial derivatives
of the governing function f .

The key ingredient in the computations in this section is the fact that for an arbitrary cell
p ∈ C the function γ f (x,λ)p = f (xσ1(p), . . . , xσn(p),λ) depends only on those q ∈ C with q � p.
Together with the bifurcation assumption (B.i) this allows us to Taylor expand the governing
function to obtain the following expanded bifurcation equation

0 = f (xσ1(p), . . . , xσn(p),λ) =
∑

σ,τ∈Lp

fστ x2
p +
∑
σ∈Lp

aσxp +
∑
σ∈Lp

fσλλxp

+
∑

p�q=τ (p):
τ /∈Lp

aτ xq + 
λ+
∑

p�q=τ (p):
τ /∈Lp

fτλλxq

+ 2
∑
σ∈Lp
τ /∈Lp:

p�q=τ (p)

fστ xpxq +
∑

σ,τ /∈Lp
p�q,s=σ(p),τ (p)

× fστ xqxs + fλλλ
2 +O

(
‖((xq|q � p),λ)‖3

)
.

(3.4)

The constants fστ , fτλ, 
, and fλλ are defined to be partial derivatives of f in directions labelled
by the input functions σ ∈ Σ, similar to the aσ before, or by the parameter λ:
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fστ =
1
2
∂στ f (0, 0) (hence fστ = fτσ),

fσλ = ∂τλ f (0, 0) = ∂λτ f (0, 0),


 = ∂λ f (0, 0),

fλλ =
1
2
∂λλ f (0, 0).

Note that in the case V = R all these constants are real numbers and especially (B.ii)
becomes

∑
σ∈Lp

aσ = 0 for a critical cell p. We will use (3.4) to inductively solve the bifur-
cation equation (3.3) with respect to �. It turns out that this results in significantly different
solutions depending on the two possible cases presented in lemma 3.1—either the critical cells
are maximal or not. Even though the computations follow the general idea outlined above in
both cases, it is convenient to separate the investigations.

Remark 3.2. Note that, due to the partial order, the bifurcation problem (B) can be
‘restricted’ to subnetworks with the ‘same’ branching pattern restricted to the subnetwork.
By definition, the dynamics of a subnetwork B ⊂ C is governed by the ordinary differential
equations

ẋ p = f (xσ1(p), . . . , xσn(p),λ),

where f is as in (3.1) and p ∈ B. In particular, if the network undergoes a steady state bifurca-
tion according to the bifurcation assumption (B), then the bifurcation assumption (B) (and the
Taylor expansion (3.4)) holds for the subnetwork as well. In particular, if B contains a critical
cell, the subnetwork undergoes a steady state bifurcation with the branching pattern of the full
network restricted to cells in B. The linearization of the restricted vector field arises from (3.2),
by removing rows corresponding to cells in C\B. Hence, a cell p ∈ B is critical for the reduced
bifurcation problem, if and only if it is critical for the full bifurcation problem. �

3.1. The critical cells are maximal

We start with the simpler case by assuming the maximal cells to be critical. From lemma 3.1
we know that this is equivalent to

∑
σ∈Σ aσ = 0 and to all non-maximal cells not being critical

generically. This greatly simplifies the computations as there are fewer cases to take care of.
Furthermore, the bifurcation condition (B.ii) is equivalent to∑

σ∈Lp

aσ = −
∑
τ /∈Lp

aτ (3.5)

for every cell p ∈ C, which is a useful identity. We start by computing the bifurcation behaviour
of (3.4) for maximal cells, where we detect a saddle node bifurcation. Then we proceed induc-
tively with respect to � to all non-maximal cells, whose state variables mimic the bifurcation
behaviour of their inputs.

Lemma 3.3. Let p ∈ C be maximal. The state variable xp generically bifurcates as in one
of the following two cases:

(a)

xp(λ) = D±
p ·

√
λ+O(|λ|)

for λ > 0 small, if


∑
σ,τ∈Σ fστ

< 0.
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Here

D±
p = ±

√
− 
∑

σ,τ∈Σ fστ

= 0.

(b)

xp(λ) = D±
p ·

√
−λ+O(|λ|)

for λ < 0 small, if


∑
σ,τ∈Σ fστ

> 0.

Here

D±
p = ±

√

∑

σ,τ∈Σ fστ

= 0.

Proof. As a maximal cell p only receives inputs from itself (see lemma 2.3), the equations
to be solved (3.4) only depend on the state variable of that specific cell. Hence, the bifurcation
behaviour is exactly the same for all maximal cells. As

∑
σ∈Σ aσ = 0, (3.4) becomes

0 =
∑
σ,τ∈Σ

fστ x2
p + 
λ+O(|λ|2 + |xp|3 + |xp‖λ|). (3.6)

In both cases we employ the standard method to detect saddle node bifurcations (see for
example [16]). Assume 
/

∑
σ,τ∈Σ fστ < 0. We introduce a new variable xp = μy where

μ =
√
λ for small λ > 0, hence μ > 0. Equation (3.6) transforms into

0 =
∑
σ,τ∈Σ

fστμ
2y2 + 
μ2 +O(|μ|4 + |μ|3|y|).

As μ > 0, we may divide by μ2 and obtain

0 =
∑
σ,τ∈Σ

fστy2 + 
+O(|μ|2 + |μ‖y|) = g(y,μ).

For μ = 0 this is equation is solved by

y± = ±
√
− 
∑

σ,τ∈Σ fστ
.

Furthermore, ∂
∂y g(y±, 0) = 2

∑
σ,τ∈Σ fστy±, which, generically, does not equal 0. Hence, by the

implicit function theorem, we obtain two branches of solutions

Y±(μ) = y± +O(|μ|).

Transforming back into the original variables we obtain two branches

xp(λ) = ±
√
− 
∑

σ,τ∈Σ fστ
·
√
λ+O(|λ|)
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for small λ > 0, which completes the proof for the first case.
The case 
/

∑
σ,τ∈Σ fστ < 0 is analogous. We introduce xp = μy with μ =

√
−λ for λ < 0

with small absolute value. Then the proof is the same. �

Remark 3.4.

(a) The critical maximal cells simultaneously undergo a saddle node bifurcation, that is two
steady state branches exist for either only positive or only negative values of λ. The
sign of λ for which branching solutions occur is the same for all maximal cells. We refer
to the former as the supercritical and to the latter as the subcritical case. Note that a generic
f satisfying the bifurcation conditions (B) always fulfils one of the two assumptions from
the previous lemma, as generically 
,

∑
σ,τ∈Σ fστ 
= 0. However, we see that the generic

bifurcation behaviour is different in different regions of system parameter space, i.e. partial
derivatives of f .

(b) Note, furthermore, that in both cases the equations for maximal cells are completely
uncoupled. Hence, for a specific branch of solutions not all maximal cells need to evolve
according to the same branch. In particular the choice of sign in D±

p may differ in different
maximal cells. As a result, globally, when restricting only to maximal cells, we obtain 2m

branches of solutions where m is the number of maximal cells. �

For the non-maximal cells, we proceed inductively. We assume to know a specific branching
pattern for all cells above a given cell p and compute the solutions for that cell. Hence, we need
to distinguish between the super- and subcritical cases.

Lemma 3.5 (supercritical case). Let p be non-maximal. Assume for all q � p

xq(λ) = dq ·
√
λ+O(|λ|)

for small λ > 0 and some dq ∈ R\{0}. Then

xp(λ) = Dp ·
√
λ+O(|λ|)

for small λ > 0, where

Dp = −
∑

τ /∈Lp
aτdτ (p)∑

σ∈Lp
aσ

=

∑
τ /∈Lp

aτdτ (p)∑
τ /∈Lp

aτ

= 0.

Proof. As the maximal cells are critical and p is non-maximal, p is non-critical. Using the
assumption on all q � p, (3.4) becomes

0 =
∑
σ∈Lp

aσxp +
∑

p�q=τ (p):
τ /∈Lp

aτdq

√
λ+O

(
|xp|2 + |λ|+ |xp| ·

√
|λ|
)
.

Since p is non-critical,
∑

σ∈Lp
aσ 
= 0. Thus, by the implicit function theorem, we obtain that

this equation is uniquely solved by

xp(λ) = −
∑

τ /∈Lp
aτdτ (p)∑

σ∈Lp
aσ

·
√
λ+O

(
|λ|
)
.

The second representation of the coefficient follows from (3.5) which completes the proof. �
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Lemma 3.6 (subcritical case). Let p be non-maximal. Assume for all q � p

xq(λ) = dq ·
√
−λ+O(|λ|)

for small λ < 0 and some dq ∈ R\{0}. Then

xp(λ) = Dp ·
√
−λ+O(|λ|)

for small λ < 0, where

Dp = −
∑

τ /∈Lp
aτdτ (p)∑

σ∈Lp
aσ

=

∑
τ /∈Lp

aτdτ (p)∑
τ /∈Lp

aτ

= 0.

Proof. The proof is completely analogous to the previous one. �
The maximal cells simultaneously determine whether a bifurcation occurs super- or sub-

critically. The non-maximal cells have no further influence, as we have seen in the previous
two lemmas. We may, therefore, perform an inductive proof with respect to �, summarizing
lemmas 3.3, 3.5 and 3.6, to obtain

Theorem 3.7. Under the bifurcation assumption (B) and assuming the maximal cells in C
to be critical, the state variables xp for all p ∈ C bifurcate according to one of the following
two asymptotics.

(a) (supercritical)

xp(λ) = Dp ·
√
λ+O(|λ|) for small λ > 0, if


∑
σ,τ∈Σ fστ

< 0;

(b) (subcritical)

xp(λ) = Dp ·
√
−λ+O(|λ|) for small λ < 0, if


∑
σ,τ∈Σ fστ

> 0.

Therein the coefficients Dp are defined recursively. For p maximal they are

(a) (supercritical)

Dp ∈
{
+

√
− 
∑

σ,τ∈Σ fστ
,−
√
− 
∑

σ,τ∈Σ fστ

}
;

(b) (subcritical)

Dp ∈
{
+

√

∑

σ,τ∈Σ fστ
,−
√


∑
σ,τ∈Σ fστ

}
.

The remaining (non-maximal) ones are defined via

Dp = −
∑

τ /∈Lp
aτDτ (p)∑

σ∈Lp
aσ

=

∑
τ /∈Lp

aτDτ (p)∑
τ /∈Lp

aτ
.

There are 2m, with m = #{p ∈ C|p maximal}, different branches of steady states in both
cases, that are determined by the choices of Dp for p maximal.

Remark 3.8. The branching solutions in theorem 3.7 are the same as the ones described
in proposition 5.1 in [29] for layered feedforward networks (compare to remark 2.16) and in

2090



Nonlinearity 35 (2022) 2073 S von der Gracht et al

proposition 5.7 of [2] investigating feedforward structure of transitive components. Here we
extend these results by the explicit computation of the leading coefficients. �

Remark 3.9. Note that by restriction to the invariant fully synchronous subspace, we
obtain a fully synchronous saddle node bifurcation similar to the proof of lemma 3.3. This
will be made more precise in the case of non-critical maximal cells (see lemma 3.11 in
section 3.2) where it is of great importance. Hence two of the branching solutions provided by
theorem 3.7 necessarily describe this branch. It can easily be seen from the recursive formulas
using (3.5) that these are exactly the ones where the coefficients of maximal cells all have the
same sign. This is also to be expected, as in all other cases not even the maximal cells are
synchronous. �

Remark 3.10. The results of theorem 3.7 are only fully accurate if none of the Dp vanish.
This can be seen to be the case generically for the maximal cells. The system parameter 
 does
not vanish generically. Hence, Dp 
= 0 for p maximal. In particular, the coefficients of the fully
synchronous branching solutions do not vanish generically. For the remaining cells, this has
to be checked in the inductive computation. The structure of the network could force some Dp

to vanish identically, a case that we do not expect to occur and have never encountered in any
examples. Furthermore, the branching statement holds true generically in the sense that the
maximal cells undergo a saddle note bifurcation and there is a unique solution for (3.4) for p
non-maximal due to the implicit function theorem. In the case that Dp vanishes, the leading
square root order increases.

Finally, additional structure in the network can give us the means to prove that the lead-
ing coefficients do not vanish generically for all cells. For example, this holds true if there is
an input map κ ∈ Σ such that κ(p) is maximal for all p. This is the case if the network is a
‘semigroup network’ in the language of [24]. �

3.2. The critical cells are non-maximal

Next, we assume that the maximal cells are non-critical. In particular,
∑

σ∈Σ aσ 
= 0 under
the condition of genericity. The general strategy for finding branching solutions remains
the same as in the previous part. We solve (3.4) for a given cell p assuming knowl-
edge of its inputs. However, the considerations, especially for non-maximal cells, become
more involved, as we have to distinguish whether a cell is critical in each step. Induc-
tively, this provides all possible solutions for all cells. As a result of the multitude of
different cases, the explicit bifurcation patterns—governed by simultaneous solutions of
(3.4) for all cells—become a lot more complex than when maximal cells are critical.
Once again, we have to distinguish branching solutions that exist for positive and negative
values of the bifurcation parameter λ. We refer to these cases as super- and subcritical, as
before. The result for the subcritical case, however, can be obtained as a corollary from the
supercritical case, as we see in theorem 3.23.

3.2.1. Root subnetworks. As we will see, branches of steady states for the bifurcation problem
(B) are determined by subnetworks that are ‘surrounded’ by critical cells. Similar to the max-
imal cells in section 3.1, these serve as the starting point for the inductive investigation of
the entire network. All cells within the subnetwork remain synchronous. Non-trivial solutions
branch off in cells that are not in those subnetworks. More precisely, the non-trivial solutions
will be higher-order saddle node branches whose amplitude increases the lower a cell is in the
network.
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Definition (root subnetwork). Let C be the set of cells of a feedforward network and
assume the bifurcation scenario (B). We call a non-trivial subnetwork ∅ 
= B � C a root sub-
network, if it contains all maximal cells and, if for every cell p ∈ C\B such that q ∈ B for all
q � p, it holds that p is critical.

Example 3.1. In the classical N cell feedforward chain a subnetwork contains the first k
cells for any 1 � k � N. Furthermore, there are exactly two loop-types given by the maximal
cell on the one hand and all other cells on the other. Hence, for non-maximal critical cells it can
readily be seen that each subnetwork is a root subnetwork. As was shown in [23], all generic
branches of steady states are of the form that there is 1 � k � N such that the first k cells in the
chain remain synchronous, while the states of the remaining cells branch off in higher order
saddle node branches whose amplitude increases with the distance to the synchronous cells.

Solutions in the root subnetworks behave as the following fully synchronous branch.

Lemma 3.11. Recall that the bifurcation assumption (B.i) implies that there exists a fully
synchronous steady state at the bifurcation point: γ f (0, 0) = 0. If maximal cells are non-
critical, this fully synchronous steady state persists under (small) parameter variations. It
grows as

xp(λ) = X(λ) = Dλ+ Rλ2 +O
(
|λ|3
)

(3.7)

for |λ| small and all p ∈ C. Therein

D = − 
∑
σ∈Σaσ

, (3.8)

R = −
∑

σ,τ∈Σ fστ 
2 −
∑

σ∈Σaσ

∑
σ∈Σ fσλ
+

(∑
σ∈Σaσ

)2
fλλ(∑

σ∈Σaσ

)3 , (3.9)

which generically do not vanish.

Proof. Consider the fully synchronous subspace {xp1 = · · · = xpN} ⊂
⊕

p∈C R. This can
readily be seen to be invariant under the flow induced by network vector fields of the form
(3.1). Choosing a coordinate y for this subspace, the bifurcation problem becomes the same
for all cells p ∈ C. The Taylor expanded equation (3.4) is

0 =
∑
σ∈Σ

aσy + 
λ+O(|y|2 + |y‖λ|+ |λ|2).

The implicit function theorem yields a unique branch of solutions

xp(λ) = y(λ) = − 
∑
σ∈Σaσ

λ+O
(
|λ|2
)

for f (y, . . . , y,λ) = 0 with |λ| small. Performing second order implicit differentiation—for
which we omit the details—, we compute
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y′′(λ) = −2 ·
∑

σ,τ∈Σ fστ 
2 −
∑

σ∈Σaσ

∑
σ∈Σ fσλ
+

(∑
σ∈Σaσ

)2
fλλ(∑

σ∈Σaσ

)3 .

As both derivatives generically do not vanish, this completes the proof. �

Corollary 3.12. Let B ⊂ C be a subnetwork and assume bifurcation assumption (B) holds
with non-maximal critical cells. For all cells p ∈ B there exists a synchronous branch of steady
states

xp(λ) = X(λ) = Dλ+ Rλ2 +O
(
|λ|3
)

(3.10)

for |λ| small solving the bifurcation equation (3.4). Therein

D = − 
∑
σ∈Σaσ

, (3.11)

R = −
∑

σ,τ∈Σ fστ 
2 −
∑

σ∈Σaσ

∑
σ∈Σ fσλ
+

(∑
σ∈Σaσ

)2
fλλ(∑

σ∈Σaσ

)3 , (3.12)

which generically do not vanish.

Proof. Restrict the system of bifurcation equation (3.3) to the cells of the subnetwork B, i.e.
discard all the equations for variables xp with p /∈ B, and apply lemma 3.11. �

Remark 3.13. Note that the previous corollary does not make any claims concerning unique-
ness of the solution branch—except inside the synchrony space. It also does not cover the
impact of cells p ∈ C\B, which might prevent the existence of this branch for the entire
network, as we will see later. �

Lemma 3.14. Let p ∈ C be non-maximal and critical. Assume that all cells q � p are in the
fully synchronous state xq(λ) = X(λ). Define

A =
∑

σ,τ∈Lp

fστ ,

B =
∑
σ∈Lp

fσλ + 2
∑

σ∈Lp,τ /∈Lp

fστD,

C =
∑
τ /∈Lp

aτR +
∑
τ /∈Lp

fτλD +
∑

σ,τ /∈Lp

fστD2 + fλλ,

with D, R as in (3.8) and (3.9). The solutions to (3.4) generically undergo a transcritical
bifurcation

xp(λ) = D±
p λ+O

(
|λ|2
)

,

for |λ| small, where
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D+
p = − 
∑

σ∈Σaσ

D−
p =


∑
σ∈Σaσ

·
(

1 + 2

∑
σ∈Lp,τ /∈Lp

fστ∑
σ,τ∈Lp

fστ

)
−
∑

σ∈Lp
fσλ∑

σ,τ∈Lp
fστ

.

We will see in the proof of lemma 3.15 below that the branch with the coefficient D+
p is the fully

synchronous branch X(λ).

Proof. The bifurcation assumption (B) implies

∑
τ /∈Lp

aτD =
∑
τ∈Σ

aτD = −
∑
τ∈Σ

aτ

∑

σ∈Σaσ
= −
,

as
∑

σ∈Lp
aσ = 0. In particular, the linear terms in λ in (3.4) vanish and the equation becomes

0 =
∑

σ,τ∈Lp

fστ x2
p +
∑
σ∈Lp

fσλλxp +
∑
τ /∈Lp

aτRλ2 +
∑
τ /∈Lp

fτλDλ2

+2
∑

σ∈Lp,τ /∈Lp

fστDλxp +
∑

σ,τ /∈Lp

fστD2λ2 + fλλλ
2 +O

(
|xp|3 + |xp|2|λ|+ |xp‖λ|2 + |λ|3

)
= Ax2

p + Bλxp + Cλ2 +O
(
|xp|3 + |xp|2|λ|+ |xp‖λ|2 + |λ|3

)
.

Similar to the previous proofs, we employ the standard method to detect transcritical bifur-
cations (see for example [16]) by introducing a new variable xp = λy. The equation becomes

0 = Aλ2y2 + Bλ2y + Cλ2 +O
(
|y‖λ|3 + |λ|3

)
= λ2

(
Ay2 + By + C +O

(
|y‖λ|+ |λ|

))
= λ2g(y,λ).

Note that the coefficients A, B and C are composed of the second order partial deriva-
tives of f . Hence, generically A, B2 − 4AC 
= 0. By lemma A.1 in the appendix, generically
B2 − 4AC > 0 and we obtain two solutions:

y± =
−B ±

√
B2 − 4AC

2A
.

Furthermore, ∂
∂y g(y±, 0) = 2Ay± + B which, generically, does not vanish. Hence, by the

implicit function theorem, we obtain two branches of solutions

Y±(λ) = y± +O(|λ|)

for small λ > 0. Transforming back into the original coordinates, we obtain

xp(λ) =
−B ±

√
B2 − 4AC

2A
· λ+O

(
|λ|2
)
.

The computation of the leading coefficients can be found in lemma A.1 in the appendix. �
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Lemma 3.15. For every generically existing branch of bifurcating steady states of (3.3)
with non-maximal critical cells, there is a unique root subnetwork B ⊂ C such that all xp with
p ∈ B remain synchronous, i.e.,

xp(λ) = X(λ) for all p ∈ B

for |λ| small and X(λ) as in lemma 3.11. Furthermore, for each p ∈ C\B such that q ∈ B for
all q � p the steady state solution of (3.3) grows as

xp(λ) = D−
p λ+O(|λ|2)

for |λ| small with

D−
p =


∑
σ∈Σaσ

·
(

1 + 2

∑
σ∈Lp,τ /∈Lp

fστ∑
σ,τ∈Lp

fστ

)
−
∑

σ∈Lp
fσλ∑

σ,τ∈Lp
fστ

.

Proof. We prove the statement by investigating the bifurcation equation (3.4) and construct-
ing the subnetwork B inductively. We begin with the maximal cells. As σ(p) = p for each
maximal p and for each σ ∈ Σ, we see that

B0 = {p|p is maximal}

is a subnetwork. The bifurcation equation (3.4) for maximal cells is the same as the one
restricted to the fully synchronous subspace in the proof of lemma 3.11 and the implicit func-
tion theorem guarantees the existence of a unique branch of solutions. As B0 is a subnetwork,
corollary 3.12 implies that this is necessarily the synchronous branch of solutions xp(λ) = X(λ)
(note that this also follows from the fact that (3.4) for maximal cells is the same as the one
restricted to the fully synchronous subspace in the proof of lemma 3.11). As the maximal
cells do not depend on any other cells, their state variables always branch according to this
solution, independent of the branching behaviour of the entire network. In particular, we may
assume the existence of a subnetwork B of synchronous cells for any branch from now on, since
B0 ⊂ B.

It remains to show the properties of B and of cells p ∈ C\B with q ∈ B for all q � p.
To that end let us assume the existence of a subnetwork B̃ ⊂ C such that xp(λ) = X(λ) for
all p ∈ B̃. Then we consider a cell p ∈ C\B̃ such that q ∈ B̃ for all q � p. We consider two
cases.

First, assume p is non-critical. Similar to before, the derivative of (3.4) with respect to xp

equals
∑

σ∈Lp
aσ which does not vanish generically according to bifurcation assumption (B).

By the implicit function theorem the equation has a unique solution xp(λ) for |λ| small. On the
other hand, also B̃ ∪ {p} is a subnetwork which contains B̃ as a subnetwork itself. Furthermore,
equation (3.4) for p is the same in the full network as well as in B̃ ∪ {p}. Hence, according
to corollary 3.12 the solution for cell p is necessarily the same as the synchronous branch,
xp(λ) = X(λ), and we may set B̃ ∪ {p} ⊂ B. In particular, if p is non-critical and q ∈ B for all
q � p, then also p ∈ B.

Second, we assume that p is critical. The investigation is similar. We are in the situation of
lemma 3.14, which tells us that generically the bifurcation equation (3.4) for cell p has precisely
two solution branches

x±p (λ) = D±
p λ+O

(
|λ|2
)
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with coefficients

D+
p = − 
∑

σ∈Σaσ

D−
p =


∑
σ∈Σaσ

·
(

1 + 2

∑
σ∈Lp,τ /∈Lp

fστ∑
σ,τ∈Lp

fστ

)
−
∑

σ∈Lp
fσλ∑

σ,τ∈Lp
fστ

.

On the other hand, also B̃ ∪ {p} is a subnetwork which contains B̃ as a subnetwork itself. Fur-
thermore, equation (3.4) for p is the same in the full network as well as in B̃ ∪ {p}. Hence,
according to corollary 3.12 the synchronous solution for cell p is also generic in the full net-
work. Hence, necessarily one of the branching solutions x±p (λ) is the same as the synchronous
branch. As was shown in lemma 3.14, the leading coefficient generically only matches the
leading coefficient of the synchronous branch for one choice of sign: x+p (λ) = X(λ). In that
case we once again set B̃ ∪ {p} ⊂ B. For the other choice we generically have x−p (λ) 
≡ X(λ)
so that p /∈ B. This completes the proof. �

Remark 3.16. Note that the previous lemma does not make any claims concerning existence
of a solution branch for each root subnetwork B ⊂ C. In particular, it does not cover the impact
of cells p ∈ C\B, which might prevent the existence of this branch for the entire network, as
we will see later. Furthermore, the result does not exclude the possibility that a cell p ∈ C\B
branches according to the synchronous branch of solutions. However, we will see below that
this is not to be expected generically. �

Remark 3.17. The argument identifying the synchronous branch in the previous proof is
a special case of quiver symmetry. In particular, the subnetworks B and B ∪ {p} induce two
non-classical symmetries each. On one hand, there is the inclusion of the total phase space
of the subnetworks into the total phase space of the original network. On the other hand,
each subnetwork gives rise to a quotient network by identifying all cells within the sub-
network. The dynamics on the original network respects these maps, which in turn guaran-
tees genericity of the synchronous branch in the equations corresponding to the subnetwork.
Note that these symmetries are parts of larger structures, namely the subnetwork quiver and
the quotient quiver. For more details, see [19]. �

3.2.2. Solving equation (3.4). In this subsection we set up the technical tools for the inductive
proof of the bifurcation result for the entire network. In particular, we solve (3.4) in individual
cells under specific assumptions on the branching solutions for cells above with respect to �.
As we have seen in lemma 3.15, any generically existing branch for the entire network is deter-
mined by a root subnetwork B ⊂ C in which the cells evolve according to the fully synchronous
branch. Hence, we fix such a root subnetwork. Furthermore, we focus on λ � 0 and assume the
following input scenarios for a fixed non-maximal cell p ∈ C\B as an inductive hypothesis:

(H) For all q � p and small λ > 0 the solution to (3.4) has the asymptotics

xq(λ) = dq · λ2−ξq
+O
(
|λ|2−(ξq−1)

)
,

where dq ∈ R\{0} and the ξq are integers with 0 � ξq that define the square root order
of the branching solution of cell q.

2096



Nonlinearity 35 (2022) 2073 S von der Gracht et al

Under the assumption (H) we define the quantity

Ξp = max
q∈Σ�(p)

ξq, (3.13)

to be the highest (and thus ‘leading’) square root order of inputs into cell p. Then, Ξp = 0, if
and only if all inputs into cell p evolve linearly in λ up to leading order. To further simplify,
we denote the subset of cells q ∈ Σ�(p) which are of highest square root order in λ by Qp.
That is

Qp =
{

q ∈ Σ�(p)
∣∣∣xq(λ) = dq · λ2−Ξp

+O
(
|λ|2−(Ξp−1)

)
and dq 
= 0

}
. (3.14)

In the case Ξp = 0 all state variables xq for q ∈ Σ�(p) evolve linearly in λ up to leading order.
Hence, Qp = Σ�(p). Note that Ξp and Qp are only defined for p non-maximal.

Depending on Ξp, we formulate the following non-degenericity conditions:

(L)

Ξp = 0 and
∑
τ /∈Lp

aτdτ (p) + 
 
= 0,

(SN)

Ξp > 0 and
∑

τ :τ (p)∈Qp

aτdτ (p) 
= 0.

The conditions (L) and (SN) guarantee that the leading order terms in λ in (3.4) do not
vanish. In what follows, we observe that the two cases lead to a continuation of the trivial
solution at the bifurcation point, which is linear up to leading order (L) and a higher order
saddle node bifurcation (SN) respectively.

Under the given inductive assumptions, we prove statements providing branching solutions
to (3.4) for non-maximal cells. The technical proofs are postponed until the appendix. We start
with the case that p is non-critical.

Lemma 3.18. Let p ∈ C\B be non-critical. Under assumptions (H) and (L) or (SN),
depending on the value of Ξp, (3.4) has the unique solution

xp(λ) = dp · λ2−Ξp
+O
(
|λ|2−(Ξp−1)

)
for λ > 0 small, where dp 
= 0 is given by

dp =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−
∑

τ /∈Lp
aτdτ (p) + 
∑
σ∈Lp

aσ
, if Ξp = 0;

−
∑

τ :τ (p)∈Qp
aτdτ (p)∑

σ∈Lp
aσ

, if Ξp > 0.

The corresponding result for critical non-maximal cells is proved in multiple lemmas. We
distinguish between the cases (L) and (SN).

Lemma 3.19. Let p ∈ C\B be critical. Assume (H) and (L) to hold true. The solutions to
(3.4) generically bifurcate as in one of the following two cases:
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(a) If ∑
τ /∈Lp

aτdτ (p) + 
∑
σ,τ∈Lp

fστ
> 0,

there are no branching solutions.
(b) If

∑
τ /∈Lp

aτdτ (p) + 
∑
σ,τ∈Lp

fστ
< 0,

the solutions undergo a saddle node bifurcation

xp(λ) = d±
p ·

√
λ+O

(
|λ|
)

for λ > 0 small, where

d±
p = ±

√
−
∑

τ /∈Lp
aτdτ (p) + 
∑

σ,τ∈Lp
fστ


= 0.

Now, we turn to the branching solutions for critical cells p with the additional non-
degenericity condition (SN).

Lemma 3.20. Let p ∈ C\B be critical. Assume the induction hypothesis (H) and the addi-
tional non-degenericity condition (SN) to hold true. The solutions to (3.4) generically bifurcate
as in one of the following two cases:

(a) If ∑
τ :τ (p)∈Qp

aτdτ (p)∑
σ,τ∈Lp

fστ
> 0,

there are no branching solutions.
(b) If

∑
τ :τ (p)∈Qp

aτdτ (p)∑
σ,τ∈Lp

fστ
< 0,

the solutions undergo a higher order saddle node bifurcation as

xp(λ) = d±
p · λ2−(Ξp+1)

+O
(
|λ|2−Ξp

)
,

for λ > 0 small, where

d±
p = ±

√
−
∑

τ :τ (p)∈Qp
aτdτ (p)∑

σ,τ∈Lp
fστ


= 0.
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3.2.3. Branches of steady states for the entire network. The results in the previous section
form the technical background for the inductive investigation of branching solutions to the
bifurcation problem (B) with non-maximal critical cells. Subtleties arise while investigating
which cases from lemmas 3.18–3.20 can generically occur, when (3.4) is solved for all p ∈ C
simultaneously.

For a given root subnetwork B ⊂ C, the branching behaviour of cells p /∈ B is determined
by the number of critical cells ‘in between’ B and p. In particular, we will need the quantity

μp = max
p∈B

max
ω∈Ωp,p

# {q ∈ ω|q critical, q /∈ B} − 1, (3.15)

which is the maximal number of critical cells q /∈ B along paths from any cell in B to p (recall
that Ωp,p denotes the set of all paths from p to p without any loops). For convenience we
set μp = 0 for p ∈ B. It can readily be seen via induction on the partial order � that μp can
alternatively be characterized iteratively:

μp =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for p ∈ B,

0 for p /∈ B with q ∈ B for all q � p,

max
q�p

μq for pnon-critical,

max
q�p

μq + 1 for pcritical.

(3.16)

The second line is necessary because for any cell p ∈ C\B with q ∈ B for all q � p we have
that p is critical and all inputs come from inside B so that μp = 0.

The main results in theorems 3.21, 3.23 and 3.24 below describe branches for the entire
network. They combine lemma 3.15 with an inductive investigation of cells outside of root
subnetworks employing lemmas 3.18–3.20. The number of critical cells along paths from the
root subnetwork μp will be the induction parameter.

Theorem 3.21 (supercritical branches). Consider a feedforward network with cells C
and input maps Σ. Assume bifurcation assumption (B) with non-maximal critical cells. For
every root subnetwork B ⊂ C for which we may define real non-vanishing coefficients as in
table 1 such that the inequalities

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
τ /∈Lp

aτDτ (p) + 


∑
σ,τ∈Lp

fστ
< 0, for pcritical withμp = 1;4

∑
τ :τ (p)∈Qp

aτDτ (p)∑
σ,τ∈Lp

fστ
< 0, for pcritical withμp > 1;

(3.17)

4 Note that this assumption implies that the coefficients in the first and fourth row do not coincide due to lemma A.1.
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Table 1. Leading coefficients for the root subnetwork B in supercritically branching
steady states.

Dp Case

− 
∑
σ∈Σaσ

p ∈ B

−
∑

τ /∈Lpaτ Dτ (p)+

∑

σ∈Lpaσ
p non-critical, μp = 0

−
∑

τ :τ (p)∈Qpaτ Dτ (p)
∑

σ∈Lpaσ
p non-critical, μp > 0


∑
σ∈Σaσ

·
(

1 + 2
∑

σ∈Lp,τ /∈Lp fστ
∑

σ,τ∈Lp fστ

)
−

∑
σ∈Lp fσλ∑
σ,τ∈Lp fστ

p critical, μp = 0

±
√

−
∑

τ /∈Lpaτ Dτ (p)+

∑

σ,τ∈Lp fστ
p critical, μp = 1

±
√

−
∑

τ :τ (p)∈Qp
aτ Dτ (p)

∑
σ,τ∈Lp fστ

p critical, μp > 1

hold, there is a branch of steady states such that

xp(λ) =

⎧⎨
⎩

X(λ) = Dpλ+O
(
|λ|
)

for p ∈ B;

Dp · λ2−μp
+O
(
|λ|2−(μp−1)

)
for p /∈ B,

(3.18)

for λ > 0 small, where μp is the maximal number of critical cells q /∈ B along paths from any
cell in B to p (see (3.15)) and

Qp =

{
q ∈ Σ�(p)|μq = max

s�p
μs

}

(compare to (3.14)). In particular, cells in B are synchronous with X(λ) as in (3.7) while all
cells not in B are not synchronous to those in B.

Remark 3.22. The assumptions on the coefficients Dp in the theorem are made to guarantee
the genericity conditions (L) and (SN), which are nonvanishing conditions on the nominator
of Dp. By specifying the sign, we restrict to supercritical branches in this theorem. In theorem
3.23 below, we consider the corresponding situation for subcritically branching solutions.

Proof of theorem 3.21. We have seen in corollary 3.12 that the bifurcation equation (3.4)
for cells p in an arbitrary subnetwork B ⊂ C can be solved by the fully synchronous branch
xp(λ) = X(λ) independent of the system parameters. Thus, for a root subnetwork B it suffices
to investigate cells p /∈ B which we will do with nested iterative arguments. The main induction
is with respect to μp as indicated by the subheadings. The base case μp = 0 requires another
inductive investigation with respect to the partial order �.

Base case μp = 0. Cells p ∈ B, for which μp = 0 satisfy the statement of the theorem. Con-
sider a cell p /∈ B with μp = 0. We have to distinguish two cases. If p is critical, the definition
of μp shows that necessarily q ∈ B for all q � p. In particular, this is the situation of lemma
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3.14 and we generically obtain two branches of solutions for the bifurcation equation (3.4)
for p:

xp(λ) = D±
p λ+O

(
|λ|2
)

for |λ| small with coefficients

D+
p = − 
∑

σ∈Σ
aσ

D−
p =


∑
σ∈Σ

aσ
·

⎛
⎜⎝1 + 2

∑
σ∈Lp,τ /∈Lp

fστ∑
σ,τ∈Lp

fστ

⎞
⎟⎠−

∑
σ∈Lp

fσλ∑
σ,τ∈Lp

fστ

as in lemma 3.14. The assumption that these coefficients do not vanish implicitly implies that
we are indeed in the generic situation. We consider only the second case

xp(λ) = D−
p λ+O

(
|λ|2
)

,

i.e., Dp = D−
p (compare to the proof of lemma 3.15).

We investigate the case that p is non-critical inductively with respect to �. The argument
above indicates that there must be a critical cell q /∈ B with q � p such that s ∈ B for all s � q
and no other critical cells along any path from q to p. There may, however, be additional non-
critical cells along paths from q to p. First, assume that for all q ∈ Σ�(p) either q ∈ B or q is
critical with s ∈ B for all s � q and xq(λ) = Dqλ+O

(
|λ|2
)

as above. We define

Dp = −

∑
τ /∈Lp

aτDτ (p) + 


∑
σ∈Lp

aσ
.

By assumption Dp 
= 0, which implies

∑
τ /∈Lp

aτDτ (p) + 
 
= 0.

In combination with the fact that xq(λ) grows linearly in λ for all q � p this is condition (L)
so that we are in the situation of lemma 3.18. Hence, there is precisely one solution to the
bifurcation equation (3.4) for cell p

xp(λ) = Dpλ+O
(
|λ|2
)

for |λ| small.
Now consider an arbitrary non-critical cell p with μp = 0. As an inductive hypothesis, we

assume that for all non-critical cells q ∈ Σ�(p) with μq = 0 the bifurcation equation (3.4) is
uniquely solved by

xq(λ) = Dqλ+O
(
|λ|2
)

for |λ| small with Dq as in table 1. Note that with this assumption we have characterized the
branch for all cells q ∈ Σ�(p), as these are either in B, critical with s ∈ B for all s � q, or
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non-critical with μq = 0. As before, we define

Dp = −

∑
τ /∈Lp

aτDτ (p) + 


∑
σ∈Lp

aσ
.

By assumption Dp 
= 0, which implies (L). By lemma 3.18 there is precisely one solution to
the bifurcation equation (3.4) for cell p

xp(λ) = Dpλ+O
(
|λ|2
)

for |λ| small. By induction with respect to � this characterization of generically branching
solutions to the bifurcation equation (3.4) holds for all non-critical cells p with μp = 0.

Induction step μp > 0. We investigate cells p /∈ B with μp > 0 inductively with respect
to μp focussing on branching solutions for λ > 0. Fix a cell p /∈ B with μp > 0 and, as an
inductive hypothesis, assume

xq(λ) = Dqλ
2−μq

+O
(
|λ|2−(μq−1)

)
(3.19)

for λ > 0 small with non-vanishing real coefficients Dq as in table 1 for all q ∈ Σ�(p) with
q /∈ B. For q ∈ Σ�(p) define

μ̂q = max
s�q

μs

such that

Qq = {s ∈ Σ�(q)|μs = μ̂q} .

Note that μq = μ̂q, if q is non-critical, and μq = μ̂q + 1, if q is critical. We have to distinguish
multiple cases.

Case p non-critical, μ̂p = 0. This situation has already been investigated in the base case,
as μ̂p = μp for p non-critical.

Case p non-critical, μ̂p > 0. We define

Dp = −

∑
τ :τ (p)∈Qp

aτDτ (p)∑
σ∈Lp

aσ
.

By assumption Dp 
= 0, which implies (SN). By lemma 3.18 there is precisely one solution to
the bifurcation equation (3.4) for cell p

xp(λ) = Dpλ+O
(
|λ|2
)

for λ > 0 small. Since p is non-critical, we additionally have μ̂p = μp, and the coefficient
matches the third row in table 1.

Case p critical, μ̂p = 0. The situation is as in lemma 3.19 (assumptions (H) and (L)). Since∑
τ /∈Lp

aτDτ (p) + 


∑
σ,τ∈Lp

fστ
< 0
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by assumption, we obtain two branching solutions to the bifurcation equation (3.4) in cell p

xp(λ) = D±
p λ

2−1
+O(|λ|)

with

D±
p = ±

√√√√√√−

∑
τ /∈Lp

aτDτ (p) + 


∑
σ,τ∈Lp

fστ
,

which we assumed to be real and nonzero. Since p is critical, μ̂p = 0 implies μp = 1. Hence,
the coefficient matches the fifth row in table 1.

Case p critical, μ̂p > 0. The situation is as in lemma 3.20 (assumptions (H) and (SN)).
Since ∑

τ :τ (p)∈Qp

aτDτ (p)∑
σ,τ∈Lp

fστ
< 0

by assumption, we obtain two branching solutions to the bifurcation equation (3.4) in cell p

xp(λ) = D±
p · λ2−(μ̂p+1)

+O
(
|λ|2−μ̂p

)
,

for λ > 0 small, where

D±
p = ±

√√√√√√−

∑
τ :τ (p)∈Qp

aτdτ (p)∑
σ,τ∈Lp

fστ

which we assumed to be real and nonzero. Since p is critical, μp = μ̂p + 1 and the coefficient
matches the sixth row in table 1. �

As a corollary we obtain an analogous result for subcritical branches.

Theorem 3.23 (subcritical branches). Consider a feedforward network with cells C and
input maps Σ. Assume bifurcation assumption (B) with non-maximal critical cells. For every
root subnetwork B ⊂ C for which we may define real non-vanishing coefficients as in table 2
such that the inequalities

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
τ /∈Lp

aτDτ (p) − 


∑
σ,τ∈Lp

fστ
< 0, for pcritical withμp = 1;4

∑
τ :τ (p)∈Qp

aτDτ (p)∑
σ,τ∈Lp

fστ
< 0, for pcritical withμp > 1;

(3.20)
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Table 2. Leading coefficients for the root subnetwork B in subcritically branching steady
states.

Dp Case


∑
σ∈Σaσ

p ∈ B

−
∑

τ /∈Lpaτ Dτ (p)−

∑

σ∈Lpaσ
p non-critical, μp = 0

−
∑

τ :τ (p)∈Qpaτ Dτ (p)
∑

σ∈Lpaσ
p non-critical, μp > 0

− 
∑
σ∈Σaσ

·
(

1 + 2
∑

σ∈Lp,τ /∈Lp fστ
∑

σ,τ∈Lp fστ

)
+

∑
σ∈Lp fσλ∑
σ,τ∈Lp fστ

p critical, μp = 0

±
√

−
∑

τ /∈Lpaτ Dτ (p)−

∑

σ,τ∈Lp fστ
p critical, μp = 1

±
√

−
∑

τ :τ (p)∈Qp
aτ Dτ (p)

∑
σ,τ∈Lp fστ

p critical, μp > 1

hold, there is a branch of steady states such that

xp(λ) =

⎧⎨
⎩

X(λ) = Dpλ+O
(
|λ|
)

for p ∈ B;

Dp · (−λ)2−μp
+O
(
|λ|2−(μp−1)

)
, for p /∈ B,

(3.21)

for λ < 0 small, where μp is the maximal number of critical cells q /∈ B along paths from any
cell in B to p (see (3.15)) and

Qp =

{
q ∈ Σ�(p)|μq = max

s�p
μs

}

(compare to (3.14)). In particular, cells in B are synchronous with X(λ) as in (3.7) while all
cells not in B are not synchronous to those in B.

Proof. Substituting the parameter μ = −λ and the system parameters ι = −
, θσλ = − fσλ,
the governing function Taylor expands as

f (xσ1(p), . . . , xσn(p),λ) =
∑
σ∈Σ

aσxσ(p) + ιμ+
∑
σ,τ∈Σ

fστ xσ(p)xτ (p)

+
∑
σ∈Σ

θσλμxσ(p) + fλλμ
2 + h.o.t.,

as in (3.4). The result follows immediately from theorem 3.21 for μ > 0. �

Finally, we complete our considerations by observing that all occurring branches of steady
states are as described in theorems 3.21 and 3.23, as long as the non-degenericity conditions
(L) and (SN) can be satisfied by the leading coefficients.

Theorem 3.24. Consider a feedforward network with cells C and input maps Σ. Assume
bifurcation assumption (B) with non-maximal critical cells and generic system parameters.
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Every occurring branch of steady states that is not the fully synchronous continuation (see
lemma 3.11) is either as in theorem 3.21 or as in theorem 3.23, if leading coefficients can be
chosen as in tables 1 and 2 such that non-degenericity conditions (L) and (SN) are satisfied.
In particular, there is a root subnetwork B ⊂ C such that the cells outside of B branch super-
or subcritically with asymptotics determined by the number of critical cells along paths into
these cells.

Proof. The fully synchronous continuation of the bifurcation point exists for all values of
system parameters. Lemma 3.15 shows that for all other generically existing branches there is
a root subnetwork B ⊂ C such that xp(λ) = X(λ) for all p ∈ B. Fix a root subnetwork B ⊂ C
and investigate the remaining cells. By assumption, (L) and (SN) hold, which implies that the
conditions of lemmas 3.14, 3.19 and 3.20 are satisfied and branching solutions to the bifurcation
equation (3.4) are as in these lemmas (for subcritically branching solutions this requires a
substitution as in the proof of theorem 3.23).

Note that for a critical cell p /∈ B with μp = 1 inequality (3.17) is satisfied if and only if
(3.20) is not and vice versa. In particular, these cells indicate either a super- or a subcriti-
cal branch of steady states as in theorems 3.21 and 3.23. If two critical cells p, p′ /∈ B with
μp = μp′ = 1 indicate a branch of steady states for opposing signs of λ there is no branch
generated by B.

If the direction of branching is determined uniquely, for a critical cell p /∈ B with μp > 1,
there is a choice in signs for the coefficients Dq with q ∈ Qp. Due to (SN), exactly half of
these signs satisfy the inequality (3.17) or (3.20) respectively. If two critical cells p, p′ /∈ B
with μp = μp′ > 1 require opposing signs for a cell q ∈ Qp ∩ Qp′ the branch fails to exist and
B does not generate a branching solution. Otherwise, the solutions branch as in theorems 3.21
and 3.23. �

Remark 3.25. Throughout this section we have used the term ‘generic’ on multiple occa-
sions. It is used to indicate that the corresponding statement holds true for an open and dense
subset of the system parameters, i.e., the low-order partial derivatives of the governing function
f . In particular, where used it guarantees that we do not divide by 0 or that leading order terms
in the equations we investigate do not vanish.

However, proving genericity of (L) and (SN) is not possible due to their inductive nature.
We cannot thoroughly exclude the possibility that the network structure forces one of the cor-
responding weighted sums of leading coefficients to vanish identically, an issue that we have
never encountered. It would lead to vanishing leading order coefficients in tables 1 and 2 and
therefore to lower square root orders. When applying our results to a specific network, one com-
putes the leading coefficients algorithmically anyway (see remark 3.27 below). In this process
the conditions (L) and (SN) are checked.

Finally, the following reasoning underlines, why we do not expect (L) or (SN) not to hold
generically. For any cell p /∈ B that is either non-critical or critical with μp = 1 there exists a
cell q � p with q critical, q /∈ B, and s ∈ B for all s � q. Hence, there are cells q � p for which
Dq is as in the fourth row of table 1 (table 2) as well as cells q′ � p for which Dq′ is as in the
first row of table 1 (table 2). In particular, some of the terms in the weighted sum

∑
τ /∈Lp

aτDτ (p)
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depend only on the aσ and 
, while others also depend on the fστ . We do not expect this
weighted sum to equal −
 identically, which would be necessary for (L) to be violated.

A similar argument for (SN) can be made. For p /∈ B non-critical with μp > 0 or for p /∈ B
critical with μp > 1 there exists a cell q � p with μq � 1. For such a cell the coefficient Dq

consists of square roots of terms depending on the aσ . By definition this holds true for all
q ∈ Qp. In particular,∑

τ :τ (p)∈Qp

aτDτ (p)

is a weighted sum of these square root terms with weights given by the aτ . Again, we do not
expect this weighted sum to vanish identically.

Remark 3.26. The branching solutions in theorems 3.21, 3.23 and 3.24 contain those
that are described in section 6 in [29] for layered feedforward networks as a special case.
Therein, generically all non-maximal cells are critical if the maximal cells are non-critical.
This generalization is due to the fact that the class of feedforward networks satisfying the
equivalent definitions in proposition 2.2 contains layered feedforward networks (compare to
remark 2.16). �

Remark 3.27. Theorems 3.21, 3.23 and 3.24 provide a constructive method to determine all
possible branching solutions for the bifurcation problem (B). The first step is to determine all
root subnetworks B ⊂ C. A solution branch is computed as xp staying in the fully synchronous
state for all p ∈ B and the states of the remaining cells being determined by the number of
critical cells in between p and B where the leading coefficients Dp are chosen according to
tables 1 and 2. In each cell, we have to check whether (3.17) or (3.20) can be satisfied, i.e.
whether the root subnetwork generates a branch. Critical cells outside of B determine existence
and direction of branches of steady states as in the proof of theorem 3.24. The asymptotic order
can be determined inductively via (3.16). �

Remark 3.28. Note that the conditions determining the existence of branching solutions in
theorems 3.21 and 3.23 depend only on the system parameters—the partial derivatives of f .
This implies the existence of different branches in different regions of system parameter space
which may also vary according to the direction of branching—super- or subcritical. �

4. An example

We illustrate the analytic results from theorems 3.7, 3.21, 3.23 and 3.24 in the network in
figure 2 that was numerically investigated in the introduction. In the case of non-maximal crit-
ical cells we employ the algorithm presented in remark 3.27 and highlight the peculiarities men-
tioned in remark 3.28. Consider the feedforward network given by the graph in figure 2. Each
arrow colour corresponds to one input map σ : C → C. Note that we have not drawn an arrow
for σ1 = Id corresponding to the internal dynamics which we implicitly assume to be there.
This network is clearly a feedforward network as it does not contain any cycles besides self-
loops (note that it is not a layered feedforward network as in [29]). Its only maximal cell is
cell 5. Furthermore, it possesses two different loop-types L5 = Σ and L1 = L2 = L3 = L4 =
{Id}, see (2.2). As a matter of fact, this network is a fundamental network in the language of
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[24] but this is not important for the upcoming investigations. Assuming a one-dimensional
internal phase space xi ∈ V = R and additional dependence on a real parameter λ ∈ R, the
corresponding dynamics is governed by

as in (0.1). We want to investigate bifurcations of steady states as in the bifurcation scenario
(B) described in the beginning of section 3. That is, we assume

γ f (0, 0) = 0.

The linearization at this steady state is

Herein we define aσ = ∂σ f (0, 0) (see (3.2)). Furthermore, we follow our convention σ1 = Id.
The other partial derivatives are abbreviated accordingly again:

fστ =
1
2
∂στ f (0, 0), fσλ = ∂σλ f (0, 0),


 = ∂λ f (0, 0), fλλ =
1
2
∂λλ f (0, 0).

The eigenvalues of the linearization are in one-to-one correspondence with the loop-types
of the network. This can also easily be read off of the matrix. As a matter of fact the lin-
earization has two eigenvalues

∑
σ∈L5

aσ=aId + aσ2+ aσ3+ aσ4+ aσ5 , which is simple, and∑
σ∈L1

aσ = aId which has algebraic multiplicity 4. For a steady state bifurcation to occur,
the linearization has to have an eigenvalue 0. Generically—i.e. for a generic choice of sys-
tem parameters—, in such a point only one of the two eigenvalues vanishes. Under these
assumptions we investigate generic solutions to

γ f (x,λ) = 0

close to the bifurcation point.
Case I. Let us investigate the case

∑
σ∈L5

aσ=aId + aσ2+ aσ3+ aσ4+ aσ5 = 0 and∑
σ∈L1

aσ = aId 
= 0 first. In particular, this means the maximal cell is critical while all other
cells are not. As a result, all branches of steady state solutions are given in theorem 3.7. As
there is only one maximal cell, necessarily all branches are fully synchronous. We obtain two
different saddle node branches depending on the system parameters. If


∑
σ,τ∈Σ fστ

< 0
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we compute

xi(λ) = ±
√
− 
∑

σ,τ∈Σ fστ
·
√
λ+O(|λ|)

for i = 1, . . . , 5. Note that therein the choice of sign is the same for all cells simultaneously
yielding exactly two fully synchronous branches. On the other hand, if


∑
σ,τ∈Σ fστ

> 0

we obtain

xi(λ) = ±
√


∑
σ,τ∈Σ fστ

·
√
−λ+O(|λ|)

for i = 1, . . . , 5 accordingly. These branches exists for |λ| small. Generically, no other cases
are possible so that no other branching solutions exist.

Case II. Next, we turn to the case K=
∑

σ∈L5
aσ=aId + aσ2+ aσ3+ aσ4+ aσ5 
= 0 and∑

σ∈L1
aσ = aId = 0. Equivalently, the maximal cell is not critical but all the other cells are.

Theorems 3.21 and 3.23 provide all generic branching solutions and we employ the algorithm
in remark 3.27 to characterize them. As a first step, we have to determine all possible root sub-
networks, i.e. subnetworks B ⊂ C such that p /∈ B but q ∈ B for all q � p implies p critical. The
possible choices are {5}, {4, 5}, {3, 4, 5}, {2, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}.For each solution
branch the cells in exactly one of these subnetworks are in the fully synchronous state X(λ) as
in lemma 3.11 while all others are not. The solutions for the variables of the remaining cells
are computed iteratively with respect to the partial order � according to the rules in theorems
3.21 and 3.23. If for a cell p the necessary inequalities (3.17) or (3.20) are not satisfied for all
choices of coefficients for cells q � p, this implies that the solution branch does not exist. We
describe the branches as briefly as possible starting with the most simple case.

Case II.(i). Assume B = {1, 2, 3, 4, 5}. All cells remain in the fully synchronous state, i.e.

xi(λ) = X(λ) = − 


K
λ+O

(
|λ|2
)

for i = 1, . . . , 5. This branch exists for |λ| small independent of the sign and without any further
restrictions on the system parameters.

Case II.(ii). Next, assume B = {2, 3, 4, 5}. We obtain

x5(λ) = x4(λ) = x3(λ) = x2(λ) = X(λ).

As cell 1 is critical but not in the fully synchronous state, this leaves

x1(λ) =

(



K

(
1 + 2

f Idσ2 + f Idσ3 + f Idσ4 + f Idσ5

f IdId

)
− f Idλ

f IdId

)
λ+O

(
|λ|2
)
.

This branch exists without any further restrictions on the system parameters as well.
Case II.(iii). For B = {3, 4, 5} we obtain

x5(λ) = x4(λ) = x3(λ) = X(λ) = − 


K
λ+O

(
|λ|2
)
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and abbreviate D5 = D4 = D3 = −
/K. As cell 2 is critical but 2 /∈ B, we obtain

x2(λ) =

(



K

(
1 + 2

f Idσ2 + f Idσ3 + f Idσ4 + f Idσ5

f IdId

)
− f Idλ

f IdId

)
λ+O

(
|λ|2
)

= D2λ+O
(
|λ|2
)
.

Then cell 1 receives an input from a cell not in B. Thus, we have to distinguish two cases
according to (3.17). If

(∗) =
aσ2D2 + aσ3D3 + aσ4D4 + aσ5D5 + 


f IdId
< 0,

we obtain

x1(λ) = ±
√
−aσ2D2 + aσ3D3 + aσ4D4 + aσ5D5 + 


f IdId
·
√
λ+O(|λ|)

for small λ > 0. If, on the other hand, (∗) > 0, there is no supercritical solution branch with
B = {3, 4, 5}. On the other hand, the solutions for cells 2, 3, 4, 5 can be written as xi(λ) =
Ei(−λ) +O(|λ|2), where Ei = −Di. The condition (3.20) for the existence of a subcritically
branching solution for cell 1 is

aσ2E2 + aσ3E3 + aσ4E4 + aσ5E5 − 


f IdId
< 0.

Note that the left-hand side of this inequality is −(∗). Hence, if (∗) > 0, we obtain

x1(λ) = ±
√

aσ2D2 + aσ3D3 + aσ4D4 + aσ5D5 + 


f IdId
·
√
−λ+O(|λ|).

If (∗) < 0 there is no solution for cell 1 for λ < 0. Summarizing we see that depending on the
sign of (∗), the branch exists for precisely one sign of λ—this includes the solutions for cells
2, 3, 4, 5.

Case II.(iv). The considerations for B = {2, 4, 5} are almost identical to those made for
B = {3, 4, 5}. Exchanging cells 2 and 3 as well as the input maps σ2 and σ3 provides the
solution branches.

Case II.(v). The case B = {4, 5} is very similar as well. Cells 4 and 5 remain in the fully
synchronous state X(λ). More precisely for cells i = 2, . . . , 5 we obtain

xi(λ) = Diλ+O
(
|λ|2
)

, xi(λ) = Ei · (−λ) +O
(
|λ|2
)

with

D5 = −E5 = D4 = −E4 = − 


K
,

D3 = −E3 = D2 = −E2 =



K

(
1 + 2

f Idσ2 + f Idσ3 + f Idσ4 + f Idσ5

f IdId

)
− f Idλ

f IdId

for |λ| small respectively. Similar to before we obtain

x1(λ) = ±
√
−aσ2D2 + aσ3D3 + aσ4D4 + aσ5D5 + 


f IdId
·
√
λ+O(|λ|) or
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x1(λ) = ±
√

aσ2D2 + aσ3D3 + aσ4D4 + aσ5D5 + 


f IdId
·
√
−λ+O(|λ|)

for λ > 0 or λ < 0 respectively, if

aσ2D2 + aσ3D3 + aσ4D4 + aσ5D5 + 


f IdId
< 0 or > 0.

Once again, the solution branches in this case exist for precisely one sign of λ.
Case II.(vi). Finally, we investigate the case B = {5}. The mechanism that relates the two

cases—i.e. super- or subcritically branching solutions—is the same as in the previous cases.
Therefore we omit the computational details. Cell 5 remains in the fully synchronous state

x5(λ) = X(λ) = D5λ+O
(
|λ|2
)
.

For cell 4 we obtain

x4(λ) = D4λ+O
(
|λ|2
)

=

(



K

(
1 + 2

f Idσ2 + f Idσ3 + f Idσ4 + f Idσ5

f IdId

)
− f Idλ

f IdId

)
λ+O

(
|λ|2
)
.

Considering cell 3, we obtain

x3(λ) = ±
√
−aσ2D4 + (aσ3 + aσ4 + aσ5)D5 + 


f IdId
·
√
λ+O(|λ|) or

x3(λ) = ±
√

aσ2D4 + (aσ3 + aσ4 + aσ5)D5 + 


f IdId
·
√
−λ+O(|λ|),

if

(∗) =
aσ2D4 + (aσ3 + aσ4 + aσ5)D5 + 


f IdId
< 0 or > 0

respectively. In particular, B = {5} does not provide a solution branch for λ > 0, if (∗) > 0, or
for λ < 0, if (∗) < 0. Similarly, we obtain

x2(λ) = ±
√
−aσ3D4 + (aσ2 + aσ4 + aσ5)D5 + 


f IdId
·
√
λ+O(|λ|) or

x2(λ) = ±
√

aσ3D4 + (aσ2 + aσ4 + aσ5)D5 + 


f IdId
·
√
−λ+O(|λ|),

if

(∗∗) =
aσ3D4 + (aσ2 + aσ4 + aσ5)D5 + 


f IdId
< 0 or > 0

respectively. In particular, B = {5} does not provide a solution branch for λ > 0, if (∗∗) > 0,
or for λ < 0, if (∗∗)< 0. Hence, if (∗) and (∗∗) have opposite signs, neither of the two branches
exists. If both have the same sign, we abbreviate the coefficients as ±D3,±D2,±E3,±E2. We
only need to investigate cell 1 in that case. Consider (∗), (∗∗) < 0. If
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Table 3. Summary of the generic bifurcation branches in case II. As branches are computed per root subnetwork, these are indicated in the first
column. The entries in the second column show conditions that have to be satisfied in order for the branches with asymptotics as in the third
column to exist. These conditions depend on the leading coefficients in certain cells for a specific branch and on the sign of the bifurcation
parameter λ. Note that the coefficients are specific to the root subnetwork, i.e., the Di vary along the rows of the table. Regions in parameter space
for which multiple conditions are satisfied allow for all of the corresponding branches. Note that the only cells within the root subnetworks follow
the continuation of the fully synchronous solution. This is not displayed in the asymptotics in the third column, as cells outside of the root
subnetwork may have the same leading order, but branch transcritically.

Root subnetwork Existence condition Asymptotics Type

{1, 2, 3, 4, 5} — (λ,λ,λ,λ,λ) Continuation
{2, 3, 4, 5} — (λ,λ,λ,λ,λ) Transcritical

{3, 4, 5} λ · aσ2 D2+aσ3 D3+aσ4 D4+aσ5 D5+


fIdId
< 0

(√
|λ|,λ,λ,λ,λ

)
4× saddle node

{2, 4, 5} λ · aσ2 D2+aσ3 D3+aσ4 D4+aσ5 D5+


fIdId
< 0

(√
|λ|,λ,λ,λ,λ

)
4× saddle node

{4, 5} λ · aσ2 D2+aσ3 D3+aσ4 D4+aσ5 D5+


fIdId
< 0

(√
|λ|,λ,λ,λ,λ

)
4× saddle node

{5}
λ ·

aσ2 D4 + (aσ3 + aσ4 + aσ5 )D5 + 


fIdId
< 0

λ ·
aσ3 D4 + (aσ2 + aσ4 + aσ5 )D5 + 


fIdId
< 0

(
4
√

|λ|,
√

|λ|,
√

|λ|,λ,λ
)

4× amplified saddle node
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Figure 4. Depiction of the qualitative steady state bifurcations of the network in figure 2
with different parameter values. The diagrams describe each cells behaviour separately.
However, the branching is not independent of the other cells as described in section 4.

(∗ ∗ ∗) =
±aσ2D2 ± aσ3D3

f IdId
< 0,

we obtain

x1(λ) = ±
√
−±aσ2D2 ± aσ3D3

f IdId

√√
λ+O

(√
|λ|
)
.
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If (∗∗∗) > 0, the solution branch does not exist. Note that (∗∗∗) depends on the choice of signs
for the coefficients in cells 2 and 3. Therefore, half of the possible choices yields a negative
sign of (∗∗∗) while the other half yields a positive sign. This is due to the fact that (∗∗∗)
and −(∗∗∗) are both possible choices, while (∗∗∗) 
= 0 generically. Similarly, for (∗), (∗∗) > 0
we obtain

x1(λ) = ±
√
−±aσ2D2 ± aσ3D3

f IdId

√√
−λ+O

(√
|λ|
)

,

if

±aσ2D2 ± aσ3D3

f IdId
< 0

for admissible choices of signs.
We have therefore computed all generic branches of steady states. We summarize the results

in table 3. We see that there are numerous ways in which a solution branch for the root subnet-
work B = {5} fails to exist. These ultimately depend on the system parameters. Hence, there
are different solutions in different regions of system parameter space. We briefly introduce
two cases to illustrate that already this simple network produces unexpected—compared to
the summary of the amplification effect—bifurcation scenarios.

Consider the bifurcation scenario as before with aσ3 = −2aσ2 as well as aσ4 = aσ5 = 0 and
investigate B = {5}. We compute (∗∗) = −2 · (∗) proving that generically (∗) and (∗∗) have
opposite signs. Therefore, there are no branching solutions with B = {5}, as cell 2 forces the
branch to exist for λ > 0 and cell 3 forces it to exist for λ < 0 or the other way around. This
implies the existence of an open region in parameter space for which this issue occurs. The
reason lies in the structure of the network. The two cells 2 and 3 receive the same inputs.
However, the input from cell 4 comes via different arrow types. As these types reflect various
types of interactions, this can lead to one cell only amplifying its inputs ‘before’ the bifurcation
point and the other one ‘after’ the bifurcation point λ = 0.

On the other hand, whenever (∗) and (∗∗) have the same sign, there is also a suitable choice
of coefficients in cells 2 and 3 such that (∗∗∗) < 0, as was mentioned before. Hence, there is
also generically a branching solution for cell 1 resulting in the generic existence of the solution
branch with B = {5} for the entire network. In this context, genericity means that the solution
branch exists for an open but not dense set of system parameters.

In figure 4 we illustrate the steady state bifurcations for two different choices of parameter
values. The qualitative bifurcation scenario is depicted for each cell separately. Note that for a
non-maximal cell certain branches are only possible if cells above it are in a suitable state. This
fact is not displayed in the figures. Both choices of parameters are generic but display different
behaviour. The amplification effect can be seen in both. However, in figure 4(a) the strongest
amplification is ∼

√
λ in cell 1, whereas we also find a branch ∼ 4

√
λ in cell 1 in figure 4(b).
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Appendix

In this appendix we fill the gaps left in section 3 by proving lemmas 3.18–3.20 as well
as the leading coefficients of branching solutions in lemma 3.14. Recall that Lp = {σ ∈
Σ|σ(p) = p}.

Proof of lemma 3.18. The proofs for both cases are very similar and analogous to the proofs
for lemmas 3.5 and 3.6. Hence, we only sketch them here. We assume (H) and (L) first.
Equation (3.4) becomes

0 =
∑
σ∈Lp

aσxp +
∑

p�q=τ (p):
τ /∈Lp

aτdqλ+ 
λ+O
(
|xp|2 + |λ‖xp|+ |λ|2

)
.

As
∑

σ∈Lp
aσ 
= 0 this is uniquely solved by

xp(λ) = −
∑

τ /∈Lp
aτdτ (p) + 
∑
σ∈Lp

aσ
· λ+O

(
|λ|2
)

for small λ > 0, due to the implicit function theorem. Note that, because of assumption (L),
the linear coefficient does not vanish.

Next, assume (H) and (SN). Equation (3.4) becomes

0 =
∑
σ∈Lp

aσxp +
∑

τ /∈Lp:
τ (p)=q∈Qp

aτdqλ
2−Ξp

+O
(
|xp|2 + |λ|2−Ξp |xp|+ |λ|2−(Ξp−1)

)
.

By the same argument as before, this is uniquely solved by

xp(λ) = −
∑

τ :τ (p)∈Qp
aτdτ (p)∑

σ∈Lp
aσ

· λ2−Ξp
+O
(
|λ|2−(Ξp−1)

)

for small λ > 0 with non-vanishing leading coefficient. �

Proof of lemma 3.19. The proof is analogous to the one for lemma 3.3, except for slightly
different coefficients. Once again it uses the standard technique for detecting saddle node
bifurcations as in [16]. As Ξp = 0, (3.4) becomes

0 =
∑

σ,τ∈Lp

fστ x2
p +

∑
τ /∈Lp
p�q=τ (p)

aτdqλ+ 
λ+O
(
|xp|3 + |λ‖xp|+ |λ|2

)
.
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We introduce a new variable xp = μy where μ =
√
λ for small λ > 0. The equation to be

solved transforms into

0 =
∑

σ,τ∈Lp

fστμ
2y2 +

∑
τ /∈Lp

aτdτ (p)μ
2 + 
μ2 +O

(
|μ|3|y|+ |μ|4

)
.

As μ > 0, we may divide by μ2 and obtain

0 =
∑

σ,τ∈Lp

fστy2 +
∑
τ /∈Lp

aτdτ (p) + 
+O
(
|μ‖y|+ |μ|2

)
= g(y,μ).

If
(∑

τ /∈Lp
aτdτ (p) + 


)
/
∑

σ,τ∈Lp
fστ > 0, the equation g(y, 0) = 0 has no real solutions. If, on

the other hand,
(∑

τ /∈Lp
aτdτ (p) + 


)
/
∑

σ,τ∈Lp
fστ < 0, there are two solutions to g(y, 0) = 0

y± = ±
√
−
∑

τ /∈Lp
aτdτ (p) + 
∑

σ,τ∈Lp
fστ

.

Furthermore, ∂
∂y g(y±, 0) = 2

∑
σ,τ∈Lp

fστy±, which does not vanish, due to assumption (L).
Hence, by the implicit function theorem, we obtain two branches of solutions

Y±(μ) = y± +O(|μ|).

Transforming back into the original variables, we obtain the two branches

xp(λ) = ±
√
−
∑

τ /∈Lp
aτdτ (p) + 
∑

σ,τ∈Lp
fστ

√
λ+O(|λ|)

for small λ > 0. �

Proof of lemma 3.20. Under the given assumptions (3.4) becomes

0 =
∑

σ,τ∈Lp

fστ x2
p +

∑
τ /∈Lp
τ (p)=q∈Qp

aτdqλ
2−Ξp

+O
(
|xp|3 + |xp‖λ|2

−Ξp
+ |λ|2−(Ξp−1)

)
.

Similar to previous proofs, we introduce new coordinates xp = μy, where μ =
√
λ2−Ξp =

λ2−(Ξp+1)
for small λ > 0. The equation becomes

0 =
∑

σ,τ∈Lp

fστμ
2y2 +

∑
τ /∈Lp
τ (p)=q∈Qp

aτdqμ
2 +O

(
|y‖μ|3 + |μ|4

)
.

As μ > 0, we may divide by μ2 to obtain

0 =
∑

σ,τ∈Lp

fστy2 +
∑

τ /∈Lp
τ (p)=q∈Qp

aτdq +O
(
|y‖μ|+ |μ|2

)
= g(y,μ).
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If
(∑

τ :τ (p)∈Qp
aτdτ (p)

)
/
∑

σ,τ∈Lp
fστ > 0 there are no solutions to g(y, 0) = 0—this proves the

first case. If, on the other hand,
(∑

τ :τ (p)∈Qp
aτdτ (p)

)
/
∑

σ,τ∈Lp
fστ < 0, there are two solutions

to g(y, 0) = 0, as
∑

σ,τ∈Lp
fστ 
= 0 generically:

y± = ±
√
−
∑

τ :τ (p)∈Qp
aτdτ (p)∑

σ,τ∈Lp
fστ

.

Furthermore, ∂
∂y g(y±, 0) = 2

∑
σ,τ∈Lp

fστy±, which, by the same argument, generically does not
vanish. Hence, by the implicit function theorem, we obtain two branches of solutions

Y±(μ) = y± +O(|μ|).

Transforming back into the original coordinates, we obtain

xp(λ) = ±
√
−
∑

τ :τ (p)∈Qp
aτdτ (p)∑

σ,τ∈Lp
fστ

· λ2−(Ξp+1)
+O
(
|λ|2−Ξp

)
,

for small λ > 0, which completes the proof. �

Lemma A.1. Let p ∈ C be non-maximal and critical. Assume (H) with

dq = − 
∑
σ∈Σaσ

,

Rq = −
∑

σ,τ∈Σ fστ 
2 −
∑

σ∈Σaσ

∑
σ∈Σ fσλ
+

(∑
σ∈Σaσ

)2
fλλ(∑

σ∈Σaσ

)3
for all q � p and define

A =
∑

σ,τ∈Lp

fστ ,

B =
∑
σ∈Lp

fσλ + 2
∑

σ∈Lp,τ /∈Lp

fστdτ (p),

C =
∑
τ /∈Lp

aτRτ (p) +
∑
τ /∈Lp

fτλdτ (p) +
∑

σ,τ /∈Lp

fστdσ(p)dτ (p) + fλλ,

E =
∑
σ∈Lp

fσλ − 2 · 
∑
σ∈Σaσ

∑
σ∈Σ
τ∈Lp

fστ .

Then generically

B2 − 4AC = E2 > 0

and

−B + E
2A

= − 
∑
σ∈Σaσ

,
−B − E

2A
= M
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with

M =

∑

σ∈Σaσ
·
(

1 + 2

∑
σ∈Lp,τ /∈Lp

fστ∑
σ,τ∈Lp

fστ

)
−
∑

σ∈Lp
fσλ∑

σ,τ∈Lp
fστ

.

In particular, these equalities hold for the coefficients d±
p in lemma 3.14 if all q � p are in the

fully synchronous steady state.

Proof. Let p ∈ C be non-maximal. Assume

dq = − 
∑
σ∈Σaσ

and Rq = −
∑

σ,τ∈Σ fστ 
2 −
∑

σ∈Σaσ

∑
σ∈Σ fσλ
+

(∑
σ∈Σaσ

)2
fλλ(∑

σ∈Σaσ

)3
for all q � p. A key observation is∑

τ /∈Lp

aτ =
∑
σ∈Σ

aσ,

as
∑

σ∈Lp
aσ = 0. We denote this sum by K. Hence,

∑
τ /∈Lp

aτRτ (p) = −
∑

σ,τ∈Σ fστ 
2 − K
∑

σ∈Σ fσλ
+ K2 fλλ
K2

= − 
2

K2

∑
σ,τ∈Σ

fστ +



K

∑
σ∈Σ

fσλ − fλλ.

Note that ∑
σ,τ∈Σ

fστ =
∑

σ,τ∈Lp

fστ + 2
∑
σ∈Lp
τ /∈Lp

fστ +
∑

σ,τ /∈Lp

fστ ,

where we have used fστ = fτσ . Similar considerations occur frequently in the remainder of
this proof. We use them without explicitly mentioning them. Furthermore, we compute

∑
τ /∈Lp

fτλdτ (p) = − 


K

∑
τ /∈Lp

fτλ,

∑
σ,τ /∈Lp

fστdσ(p)dτ (p) =

2

K2

∑
σ,τ /∈Lp

fστ .

Thus, we obtain
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C =
∑
τ /∈Lp

aτRτ (p) +
∑
τ /∈Lp

fτλdτ (p) +
∑

σ,τ /∈Lp

fστdσ(p)dτ (p) + fλλ

= − 
2

K2

∑
σ,τ∈Σ

fστ +



K

∑
σ∈Σ

fσλ − fλλ −



K

∑
τ /∈Lp

fτλ +

2

K2

∑
σ,τ /∈Lp

fστ + fλλ

= − 
2

K2

⎛
⎜⎜⎝ ∑

σ,τ∈Lp

fστ + 2
∑
σ∈Lp
τ /∈Lp

fστ

⎞
⎟⎟⎠+




K

∑
σ∈Lp

fσλ.

Next, we compute

B2 =

⎛
⎜⎜⎝∑

σ∈Lp

fσλ + 2
∑
σ∈Lp
τ /∈Lp

fστdτ (p)

⎞
⎟⎟⎠

2

=

⎛
⎜⎜⎝∑

σ∈Lp

fσλ − 2 · 


K

∑
σ∈Σ
τ∈Lp

fστ + 2 · 


K

∑
σ,τ∈Lp

fστ

⎞
⎟⎟⎠

2

=

⎛
⎜⎜⎝∑

σ∈Lp

fσλ − 2 · 


K

∑
σ∈Σ
τ∈Lp

fστ

⎞
⎟⎟⎠

2

+ 4 · L

with

L =



K

⎛
⎜⎜⎝∑

σ∈Lp

fσλ − 2 · 


K

∑
σ∈Σ
τ∈Lp

fστ

⎞
⎟⎟⎠ ∑

σ,τ∈Lp

fστ +

2

K2

⎛
⎝ ∑

σ,τ∈Lp

fστ

⎞
⎠

2

=
∑

σ,τ∈Lp

fστ ·

⎛
⎜⎜⎝ 


K

∑
σ∈Lp

fσλ −

2

K2

⎛
⎜⎜⎝2 ·

∑
σ∈Σ
τ∈Lp

fστ −
∑

σ,τ∈Lp

fστ

⎞
⎟⎟⎠
⎞
⎟⎟⎠

=
∑

σ,τ∈Lp

fστ ·

⎛
⎜⎜⎝ 


K

∑
σ∈Lp

fσλ −

2

K2

⎛
⎜⎜⎝ ∑

σ,τ∈Lp

fστ + 2 ·
∑
σ∈Lp
τ /∈Lp

fστ

⎞
⎟⎟⎠
⎞
⎟⎟⎠ = A · C.

Hence,
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B2 − 4AC =

⎛
⎜⎜⎝∑

σ∈Lp

fσλ − 2 · 


K

∑
σ∈Σ
τ∈Lp

fστ

⎞
⎟⎟⎠

2

+ 4L − 4AC

=

⎛
⎜⎜⎝∑

σ∈Lp

fσλ − 2 · 


K

∑
σ∈Σ
τ∈Lp

fστ

⎞
⎟⎟⎠

2

= E2.

Generically, this expression is positive, which allows us to compute

−B + E = 2 · 


K

⎛
⎜⎜⎝∑

σ∈Lp
τ /∈Lp

fστ −
∑
σ∈Σ
τ∈Lp

fστ

⎞
⎟⎟⎠

= −2 · 


K

∑
σ,τ∈Lp

fστ = −2 A · 


K
,

proving

−B + E
2A

= − 
∑
σ∈Σaσ

.

On the other hand

−B − E = −
∑
σ∈Lp

fσλ + 2 · 


K

∑
σ∈Lp
τ /∈Lp

fστ −

⎛
⎜⎜⎝∑

σ∈Lp

fσλ − 2 · 


K

∑
σ∈Σ
τ∈Lp

fστ

⎞
⎟⎟⎠

= 2 ·

⎛
⎜⎜⎝ 


K

⎛
⎜⎜⎝ ∑

σ,τ∈Lp

fστ + 2
∑
σ∈Lp
τ /∈Lp

fστ

⎞
⎟⎟⎠−

∑
σ∈Lp

fσλ

⎞
⎟⎟⎠ ,

proving

−B − E
2A

=

∑

σ∈Σ
aσ

·

⎛
⎜⎝1 + 2

∑
σ∈Lp,τ /∈Lp

fστ∑
σ,τ∈Lp

fστ

⎞
⎟⎠−

∑
σ∈Lp

fσλ∑
σ,τ∈Lp

fστ
= M.
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