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Introduction 

 

1.1 General introduction 

Psychiatric disorders are debilitating disorders which cause a tremendous amount of suffering 
for patients and their families (Costello et al., 2005). Many of these psychiatric disorders arise 
during childhood as 50% of the symptoms of psychiatric disorders emerge by the age of 14 
and 75% by the age of 24 (Kessler et al., 2007). As such, these kinds of disorders are rightfully 
high on the research agenda which has resulted in a better understanding of the origins of 
these disorders (Visscher et al., 2017). Psychiatric disorders and psychological traits such as 
scores on neuroticism scales or risk-taking behavior are influenced by genetic and 
environmental factors, better known as respectively nature and nurture, and a complex 
interplay between the two. Family, twin and adoption studies have shown that to various 
degrees all psychiatric disorders and psychological traits are heritable (Polderman et al., 2015) 
with a complex genetic and environmental signature, classifying them as complex traits 
(Plomin et al., 2016). The heritabilities of the psychiatric disorders and psychological traits 
relevant for this thesis are provided in Chapter 2. In this thesis, when I use the terms 
psychiatric disorders, I refer to traits that have been measured categorically, a psychiatric 
disorder is either present or absent as determined by clinical standards, for example autism 
spectrum disorder or schizophrenia. It is proposed that these disorders should not (only) be 
classified as dichotomous traits but would benefit from a continuous measurement which 
would do justice to the heterogeneity of the disorders. When I use the term psychological 
trait, I refer to a personal trait which is present in the whole population and which is observed 
as a score on a standardized assessment scale for example neuroticism (high to low 
continuum) or educational attainment (high to low continuum).  However, a psychological 
trait can also be categorical, as can be seen in the traits smoking initiation (yes/no), risk taking 
behavior (are you a person who takes many risks yes/no). 

In this thesis I focus on the genetic aspects of psychiatric disorders. Where family, twin 
and adoption studies have shown us to what extent certain psychiatric disorders and 
psychological traits are heritable, genome wide association studies (GWAS) have given us the 
first insights into which parts of the genome are associated with these psychiatric disorders 
and psychological traits. GWAS are often large case-control studies attempting to show which 
single nucleotide polymorphisms (SNPs)/ specific locations in the genome are associated with 
a disorder. The genetic architecture of psychiatric disorders and psychological traits turns out 
to be polygenic, meaning that multiple SNPs that each make a small contribution to a 
psychiatric disorder or psychological trait liability are involved. This was for instance shown in 
a hallmark GWAS on schizophrenia (SCZ)(schizophrenia Working Group of the Psychiatric 
Genomics Consortium, 2014) in which they identified 128 independent genetic associations 
spanning 108 loci. Soon after, GWAS of other psychiatric disorders were published with 
similar results (Demontis et al., 2019; Wray et al., 2018). Now, capitalizing on the successes 
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of GWAS in identifying associated SNPs, the next step is interpreting these findings. A big 
challenge in interpreting GWAS results is the correct annotation of SNPs to genes as most 
found SNPs are located intergenic and hence can be in close vicinity of multiple genes or they 
can be related to the function of a gene located further up or downstream in the genome. A 
second important issue is the fact that genes do not function by themselves but are 
embedded in functional pathways and a gene can be part of multiple pathways (Schadt, 
2009). These challenges have given rise to tools as gene-set analysis (de Leeuw et al., 2016), 
functional annotation tools (Watanabe et al., 2017) and polygenic risk scores (PRS) (Euesden 
et al., 2015; Wray et al., 2020) designed to identify candidate genes and pathways associated 
with the disorders and traits. These methods are often utilized as follow up tools in large 
GWAS (P. R. Jansen et al., 2019; Nagel et al., 2018; Savage et al., 2018). GWAS, gene-set 
analysis and PRS are the main tools I have used in this thesis and are explained in paragraph 
1.2 of this Chapter.  

In addition to the difficulty of interpreting the associated SNPs as identified in GWAS 
there are the issues of genetic heterogeneity (McClellan & King, 2010) (one disorder but 
multiple combinations of risk increasing SNPs are possible), clinical heterogeneity (Hodgson 
et al., 2017) (one disorder but patients can show a different subset of symptoms), comorbidity 
(van Oudheusden et al., 2015) (a patient has multiple psychiatric diagnoses) and symptom 
overlap between psychiatric disorders (several disorders share the same symptoms) (DSM 5, 
2013, p. 5). These issues result in the conclusion that there is not one explanation for the 
manifestation of a psychiatric disorder or psychological trait in all patients as all patients have 
a unique genetic signature (and environmental context), a unique symptom signature and 
unique comorbidities.  

Genetic and clinical heterogeneity, symptom overlap, comorbidity and the fact that 
mental disorders and psychological traits are not only present or absent but can exist on a 
continuum have resulted in approaches aimed at understanding and mapping the dimensions 
and interrelatedness of psychiatric disorders resulting in the concept of a p-factor (p) (Caspi 
et al., 2014; Caspi & Moffitt, 2018; Selzam et al., 2018; Smith et al., 2020). The p-factor is 
based on a familiar concept in psychology, g.  Where g conceptualizes general intelligence on 
a low to high scale, p conceptualizes psychopathology severity in a low to high scale (Caspi & 
Moffitt, 2018), more or less life impairment, worse developmental history (Caspi et al., 2014) 
and general liability to develop a mental disorder (Selzam et al., 2018). This p-factor has been 
observed at several levels, internalizing (Caspi et al., 2014; Neumann et al., 2016), 
externalizing (Caspi et al., 2014; Neumann et al., 2016), thought disorder ( Caspi et al., 2014) 
and a general psychopathology level (Caspi et al., 2014; Neumann et al., 2016; Selzam et al., 
2018). In addition, the p-factor has been reported to have an estimated SNP heritability of 
38% (Neumann et al., 2016) to 43% (Smith et al., 2020). In depth information on the p-factor 
is provided in paragraph 1.2.4. 

Although many advances have been made in the field of psychiatric genetics, they 
have not yet resulted in new cures or treatment methods for psychiatric disorders (Gandal et 
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al., 2016; Sullivan & Geschwind, 2019) and many research questions remain to be 
investigated. 

In this thesis I focus on the role of shared genetic factors for different psychiatric 
disorders, a new research area at the beginning of this project in 2008. At the time, it was 
acknowledged that these types of disorders often co-occur but a scientific explanation as to 
why was not available.  This results in the main aim of the research presented in this thesis, 
which is: investigating the shared genetic factors between different psychiatric disorders in 
children and adolescents.  To answer this question, in Chapter 3, I have focused on the broad 
phenotype “diagnostic status” captured in a case-control study comparing undiagnosed 
controls to children diagnosed with one or more psychiatric disorders. The common genetic 
variation that is tested in this chapter was captured in a PRS for each individual and per 
individual several PRS for different disorders were computed. In chapter 4 I zoom in on 
neurodevelopmental disorders (i.e. a group comprising ASD and ADHD). This subset of 
disorders is present since birth, has a high comorbidity, and is highly heritable (A. G. Jansen 
et al., 2019). This is a large group in our sample (see Chapter 2 for an extensive sample 
description) which provided a unique opportunity to investigate the genetic overlap between 
ASD and ADHD. Finally, in Chapter 5, I focus on ASD by running gene-set analysis on publicly 
available data to investigate the contribution of common genetic variation to biological 
pathways functionally involved in ASD. 

 

1.2 Theoretical background 

In this thesis several well-established statistical genetics methods and concepts regarding 
general psychopathology have been applied. These are described below.  
 

1.2.1 Genome-wide Association Studies (GWAS) 

In the last 10 years GWAS have been the method of choice for many geneticists to find genetic 
variants associated with complex traits under study (Visscher et al., 2012, 2017). Complex 
traits are often polygenic with possibly hundreds of genetic variants involved (Watanabe et 
al., 2019), some already implicated by other studies, others still unknown. The hypothesis free 
statistical method of GWAS enables the researcher to scan the genome on associated genetic 
variants without any prior knowledge. For this, a large group of individuals comprising cases 
and controls is genotyped on a selection of single nucleotide polymorphisms (SNPs). SNPs are 
genetic differences that may contribute to behavioral differences between people. It is then 
tested if certain genetic variants are more prevalent in the cases versus the controls. The 
genotyped SNPs are intended to be representative for the whole genome due to naturally 
occurring correlation patterns called linkage disequilibrium (Pritchard & Przeworski, 2001) 
(LD) between groups of SNPs in the genome. The ungenotyped SNPs can be added due to this 
LD by the process of imputation. Ancestry must be taken into account to avoid issues with 
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population stratification. This is the difference in allele frequency between different ethnical 
groups which can lead to measuring systematic differences in ancestry rather than measuring 
genes  possibly associated with diseases (Freedman et al., 2004). There are SNPs common in 
the population (these are present in >1% of the population) and rare ones (present in <0.1% 
of the population). GWAS focusses on the common SNPs which are not under genetic 
pressure, hence can stay in the population at a moderate to high frequency due to a small 
effect on the individual (Risch & Merikangas, 1996). As a GWAS tests all SNPs together, around 
6,000,000 tests are executed resulting in the need for a stringent multiple-testing correction 
to reduce false positives. A SNP is considered significantly associated if it reaches a P-value < 
5 x 10-8. Due to this stringent significance threshold large sample sizes are needed to gain 
enough statistical power. Sample sizes as large as 40,675 cases and 64,643 controls (Pardiñas 
et al., 2018) are common in GWAS exploring psychiatric disorders and sample sizes of 
1,232,091 (Liu et al., 2019) are not exceptional in GWAS that examine continuous trait 
measures. Even with these already substantial sample sizes, there is still a large missing 
heritability which is the difference between heritability as estimated from the significantly 
associated SNPs found in GWAS and the heritability estimated by twin and family studies (Zuk 
et al., 2012). To close this gap even larger samples must be acquired or different genotyping 
methods like whole genome sequencing must be used to create even better effect size 
estimates and more accurate P-values. 
In addition, it is important to focus on reliable interpretation of the GWAS hits to uncover 
biological mechanisms underlying complex traits such as psychiatric disorders. Several 
methods have been developed for this purpose including polygenic risk scoring (Wray et al., 
2014) (see below), gene-set analysis (de Leeuw et al., 2015, 2016) (see below) and online 
functional mapping and genetic annotation software have been created (Watanabe et al., 
2017). 

 

1.2.2 Gene-set analysis 

To enhance the interpretation of GWAS hits, methods have been developed that test the 
GWAS findings simultaneously in a biological plausible context. The goal is to facilitate the 
generation of hypotheses concerning causal biological mechanisms (Schadt, 2009). Gene-set 
analysis (Mooney & Wilmot, 2015) is an often used tool for analyzing GWAS results and does 
justice to the fact that SNPs do not act in isolation, and the fact that even genes do not act by 
themselves but work together in pathways of functionally related genes that regulate 
biological mechanisms (Zhu et al., 2008). An underlying assumption is the fact that 
significantly associated SNPs accumulate in genes with similar cellular functions, or similar 
expression pattern across tissues or cell types. SNPs are assigned to genes and genes are 
assigned to gene-sets to assess the joint effect. This reduces the number of tests executed 
and multiple-testing correction is as such reduced, compared to GWAS (de Leeuw et al., 2015, 
2016).  
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1.2.3 Polygenic Risk Score (PRS) analysis 

A way to utilize GWAS findings is by means of PRS analysis (Wray et al., 2014). With this 
method, for each individual the number of risk alleles associated with a given trait per SNP is 
multiplied by their effect size as estimated by the GWAS. The sum of these weighted risks 
across all SNPs results in a single measure approximating an individual’s genetic 
predisposition for a complex trait.  

PRS is useful in research at group level into disorder etiology and genetic overlap but 
do not have enough finesse to be useful by themselves in a clinical setting for prediction for 
individual patients. The explained variance of the PRS is relatively low and limited by the SNP 
heritability of the disorder, leaving a lot of room for other risk factors to contribute to the 
development of a trait or disorder ( Wray et al., 2020). This means PRS are not suitable to use 
as a single diagnostic tool but can be used 1) in an existing diagnostic test battery as a guide 
into more extensive and optimized disease screening and interpretation of disease screens, 
as for example, is currently beneficial to diabetes 1 patients of whom 15% are wrongly 
diagnosed as type 2 diabetes patients as not al biomarkers are exclusive for type 1 or type 2 
diabetes and age lines between type 1 and type 2 diabetes are becoming increasingly more 
blurred (Oram et al., 2016; Wray et al., 2020).  The use of a type 1 diabetes PRS as an 
additional tool in the diagnostic process can result in more frequent monitoring of insulin 
levels in individuals with a high diabetes type 1 PRS. This can avoid unseen escalation to the 
critical to the critical insulin deficiency type (Wray et al., 2020). 2) As an informant into 
therapeutic interventions to prevent or treat disease, hence as a guide into treatment 
respondent subtypes, an area of research in which the inflammatory bowel disease 
community of research is a frontrunner (Graham & Xavier, 2020; Wray et al., 2020). 3) For 
informative life planning and preventative health management strategies, for example, 
individuals in the highest PRS quartile of coronary artery disease will benefit from optimal 
lifestyle habits to reduce the overall disease risk by nearly half (Torkamani et al., 2018).  
However, in mental health care the clinical use of PRS has not yet taken flight. A lack of 
population wide screening programs concerning psychiatric disorders makes it currently unfit 
for screening in the healthy population as it cannot latch on to existing structures (Murray et 
al., 2021). When the lifetime risk of a disorder is 1%, as is the case for schizophrenia, even 
when the PRS reaches is maximum potential (where it currently is not due to limited GWAS 
power), and we only look at the top 1% of schizophrenia PRS, we see that the lifetime risk 
goes up 13-fold. This is relatively a large increase but in absolute measures it still means that 
most individuals in that category will not suffer schizophrenia (Murray et al., 2021). For 
disorders with a 15% lifetime risk, such as depression, the liability goes up 3-fold, rendering 
the same conclusion. Most individuals in the top 1% PRS will not suffer from depression  
(Murray et al., 2021). This is another reason PRS are at least currently unfit for general 
population screening. PRS can become a valid tool for the help-seeking population in which a 
PRS can tilt the scale, just like a family history of a disorder can, in the decision making process 
(Murray et al., 2021).  

15

1



Chapter 1 

16 

  

In addition to clinical use, PRS are useful in a research setting trying to uncover biological 
underpinnings of disorders (Sullivan & Geschwind, 2019) and can be used in case-control 
studies for evaluation and prediction purposes of the trait or disorder (Wray et al., 2020).   

 

1.2.4 Structure of psychopathology 

The current diagnostic process regarding psychiatric disorders is partly based on the DSM 5 
(DSM 5, 2013,) which classifies behavior based on criteria applicable to psychiatric disorders. 
When an individual meets x amount of criteria  and the psychiatric exam generates concurring 
results, a diagnosis can be given. Individuals can be given multiple diagnoses as they meet 
criteria for several due to overlap.  

The DSM however is not based on the empirical insights in the dimensions, nature and 
interrelatedness of symptoms or problem behaviors and does not do justice to the continuous 
nature of these disorders (Kotov et al., 2017). In addition, there is a large clinical 
heterogeneity blurring the meaning to be given to the received diagnosis and psychiatric 
codiagnoses are more norm than exception (Smith et al., 2020) which increases the notion 
that psychiatric disorders and their etiologies might not be as specific as assumed. These 
issues can be addressed by looking at the dimensional structure of psychiatric disorders which 
finds an origin in the “internalizing” and “externalizing” factors as for instance already 
described by Achenbach in 1966 (Smith et al., 2020). This work is based on the covarying 
symptoms within the internalizing (internalizing problems are generally considered to belong 
to the subgroup of psychopathology that involves disturbances in emotion or mood such as 
sadness, guilt or worry) and externalizing (externalizing problems tend to refer to 
dysregulations in behavior) categories, which highly correlate in children (r =  0.66), 
adolescents (r = 0.72) and adults (r = 0.51)  (Smith et al., 2020).  

This paves the way for more in-depth research on a broader overarching general 
psychopathology factor (p-factor). Research has shown the p-factor to be stable over time in 
children, adolescents and adults (Liu et al., 2019) hinting it to be a heritable trait. The 
heritability has indeed been shown and has been estimated to be  38% (Neumann et al., 2016) 
to 43%( Smith et al., 2020). The interpretations of the p-factor are manifold and include 
dispositional negative emotionality, impulsive responsivity to emotion, low cognitive 
functioning, thought dysfunction and impairment (Smith et al., 2020). Of all traits, impairment 
is the most plausible, as the other four interpretations suffer in their capacity to explain all or 
at least several impairments as they each focus on a specific component of impairment. Each 
of the variables loads onto the p-factor, but it is unclear how each specific interpretation 
explains the variance of all the variables loading on the p-factor (Smith et al., 2020). The 
impairment hypothesis does not have this problem as it is clearer to see how impairment can 
explain all variables loading onto the p-factor (Smith et al., 2020).  

This leads to the question whether the p-factor has clinical utility. Although with 
caution, a first advantage, when the p-factor is refined in the future, is that it could turn into 
a clear measuring tool, making it less subject to clinician biases. A second advantage could be 
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that it creates a frame work to shape patient treatment (Smith et al., 2020). For example, a 
patient presenting with only bulimia nervosa symptoms who is functioning well at school and 
does not have a history of mental health and a patient with the same symptoms but in 
addition does not function well in school, has depressive episodes and a history of mental 
health issues will benefit from different treatments (Smith et al., 2020).  A reliable measure 
of the p-factor will provide additional insights into which treatment is best suited, the 
duration and hence costs of this treatment and the best possible outcome for each individual 
patient, being complete remission of symptoms or an improved quality of life and better 
handle on the daily struggles without full remission of symptoms (Smith et al., 2020).  
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Sample description and GWAS data used in this thesis 

2.1  Clinical sample “inside-out” 

2.1.1  Sample description 

In this thesis we used, for the first time, data of a large Dutch child and adolescent psychiatric 
sample, called ‘Inside-Out’. Data were collected at the department of Child and Adolescent 
Psychiatry of the Sophia Children’s Hospital, Erasmus Medical Center in Rotterdam from 
January 2001 until January 2012 resulting in a psychiatric outpatient sample. For this study, 
ethical approval of the Erasmus Medical center was obtained. The diagnostic classification 
was performed by a clinician according to the Diagnostic and Statistical Manual of Mental 
Disorders, fourth edition (DSM-IV). Before the first visit, parents and children filled out the 
Child Behavior Check List (CBCL) from the Achenbach System of Empirically Based Assessment 
(ASEBA) (Achenbach & Rescorla, 2001). The on-site procedure consisted of a semi-structured 
interview with the child based on the Semi-structured Clinical Interview for Children and 
Adolescents (McConaughy & Achenbach, 2001), the Diagnostic Interview Schedule for 
Children IV-P (Shaffer et al., 2000), an interview with parents, and the Autism Diagnostic 
Observation Schedule-Generic (Lord et al., 1989) in case of a suspected autism spectrum 
disorder (ASD). This procedure was part of the standard clinical practice.  
DNA was extracted from saliva and genotyping was performed on the Illumina PsychChip 
array(https://www.illumina.com/products/by-type/micproarray-kits/infinium-
psycharray.html) and Global Screening Array (GSA; ; https://www.illumina.com/products/by-
type/microarray-kits/infinium-global-screening.html) at two different points in time. 32% was 
genotyped on the GSA chip and 68% on the Illumina PsychChip array, see Table 2.1 for details. 
The study presented in Chapter 3 used data of the 1402 children diagnosed with one or more 
of the following DSM-IV classification categories, and subcategories of mentioned 
classifications: autism spectrum disorders (ASD), attention-deficit/hyperactivity disorders 
(ADHD),  behavioral disorders, tic disorders, obsessive compulsive disorders (OCD), anxiety 
disorders, mood disorders, eating disorders, other disorders of infancy, childhood or 
adolescence, motor, learning and communication disorders, somatoform disorders, trauma- 
and stress-related disorders and comorbid intellectual disability. Of the 1402 participants, 
61% was male. The age range was 1-21 years, (mean 9.59, SD 3.69). 
The study presented in Chapter 4 focused on a selection of participants from the Inside-Out 
sample who were diagnosed with a neurodevelopmental disorder that was either ASD, ADHD 
or both (N = 688, age range 2.5–18.5, mean: 8.96, SD: 3.07, 76% male) resulting in three 
samples to be tested: (1) a single diagnosis of ASD (N = 295, age range: 2.5–18.3 years, mean: 
9.02, SD: 3.55, 73% male), (2) a single diagnosis of ADHD (N = 280, age range: 3.3–18.5 years, 
mean: 9.06, SD: 2.66, 75% male), and (3) combining the two diagnoses, thus subjects with 
either ASD, ADHD or both (N = 688, age range 2.5–18.5, mean: 8.96, SD: 3.07, 76% male). All 
participants in this study were genotyped on the Illumina PsychChip array. 
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Table 2.1 Diagnostic classifications and the array used for genotyping. 
 
Genotype chip   Phenotypes                      Chapter
 Illumina PsychChip array        ASD, ADHD, eating disorders, OCD, tic disorder               4 
Global Screening Array Anxiety disorders, disruptive behaviors, eating                   3, 4  
(GSA )    disorders, disorder of infancy, childhood or 

adolescence NOS, mood disorders, motor,  
learning and communication disorders,  
somatoform disorders, trauma/stress 
 

If children received more than one diagnosis with any one of those diagnoses being autism 
spectrum disorder (ASD), attention-deficit/hyperactivity disorders (ADHD), eating disorder, 
obsessive compulsive disorders (OCD) or tic disorder, the child was genotyped on the Illumina 
PsychChip array.   
 
 
 
 

2.1.2  Diagnoses  

The diagnostic classifications in the sample have been collapsed into the follow overarching 
categories: ASD, ADHD, anxiety disorders, disruptive behavior, eating disorders, OCD, 
disorder of infancy, childhood or adolescence, mood disorders, motor, learning, or 
communication developmental disorder, somatic symptoms and trauma/stress.  Figure 1 
shows the diagnostic composition as the amount of cases in the full sample per classification 
category and the amount of cases per classification category in diagnosed with intellectual 
disability, as well as the percentage of the full sample with an intellectual disability diagnosis, 
intellectual disability status. Comorbidities are allowed in the sample and do occur. To provide 
more insights into the comorbidities a table with comorbidities per classification category has 
been added below (Table 2.2). In addition, for the three largest classification categories, i.e. 
ASD, ADHD, and anxiety disorders, Figure 2 has been added.  
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Figure 1. Diagnostic composition Inside-Out and intellectual disability status details 
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Table 2.2 Overview of the comorbidities per diagnostic category in Inside-out 

ASD: autism spectrum disorders, ASDHD: attention deficit / hyperactivity disorder, AD: anxiety 
disorder, DB: disruptive behavior, ED: eating disorder, OCD: obsessive compulsive disorder, TD: tic 
disorder, DI-NOS: disorder of infancy, childhood or adolescence NOS, MD: mood disorder, MLC -DD: 
motor, learning, communication. developmental disorder, SS: somatic symptoms, TS: trauma / stress
   

  ASD ADHD AD DB ED OCD TD DI-NOS MD 
MLC-
DD SS TS 

ASD 
(N=492)                         
ADHD 
(N=471) 137                       
anxiety 
disorders 
(N=293) 19 46                     
disruptive 
behavior 
(N=101) 21 58 8                   
eating 
disorder 
(N=145) 6 2 10 0                 
OCD (N=43) 5 5 21 2 1               
tic disorder 
(N=50) 13 19 14 3 0 4             
disorder of 
infancy, 
childhood 
or 
adolescence 
NOS (N=65) 8 10 3 2 0 0 0           
mood 
disorders 
(N=64) 12 14 24 7 5 4 3 0         
mot., learn, 
comm. dev. 
disorder 
(N=59) 16 30 11 1 0 0 1 2 6       
somatic 
symptoms 
(N=47) 1 3 3 0 1 0 0 0 3 3     
trauma / 
stress 
(N=39) 2 6 5 1 4 1 0 0 1 1 1   
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Figure 2 Visualization of the comorbidities in the three largest diagnostic categories (ADHD, 
ASD, anxiety disorders) in Inside-Out 
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2.2 Traits of GWAS data studied in this thesis 

We selected outcomes of several existing GWAS to calculate PRS in our sample, aiming to 
quantify the predictive capacity of common genetic variation of a variety of psychiatric 
disorders and psychological traits as captured by their PRS. To limit the burden of multiple 
testing correction, we tested 14 polygenic risk scores (PRS) instead of all psychiatric and 
psychological traits of which GWAS were available. The choice of psychiatric and psychological 
traits was based on A) presence in our sample: we aimed to include all the disorders present 
in Inside-out, or B) reported moderate to high genetic correlations with the disorders present 
in our sample, and C) a GWAS being powerful enough to generate reliable estimated betas 
(i.e., > 7,000 cases, and >14,000 controls in the GWAS). This criterium resulted in the exclusion 
of GWAS data of obsessive compulsive disorder (International Obsessive Compulsive Disorder 
Foundation Genetics Collaborative (IOCDF-GC) and OCD Collaborative Genetics Association 
Studies (OCGAS), 2018), anorexia nervosa (Duncan et al., 2017), and Tourette Syndrome 
(Scharf et al., 2013), at the time those samples were to small. We included ASD, ADHD, 
schizophrenia, major depression disorder, bipolar disorder, alcohol dependence, anxiety 
disorders, neuroticism, insomnia, anti-social behavior, risk taking behavior, smoking 
initiation, intelligence and educational attainment. The genetic correlations between those 
14 traits can be found in Chapter 3. 
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2.2.1  Schematic overview of the heritability of the traits and disorders based on GWAS 

Many human traits, including psychiatric disorders, are heritable (Polderman et al., 2015). All 
psychiatric disorders and psychological traits discussed in this thesis have a moderate to high 
heritability. Figure 3 shows twin-based heritability estimates (green), which range from 0.3 
for risk taking behavior to 0.8 for schizophrenia (see also Table 2.3). The SNP based heritability 
estimates (blue) are all much lower, ranging from 0.003 for educational attainment to 0.3 for 
bipolar disorder, showing the magnitude of the missing heritability. The missing heritability is 
defined as the difference between the estimated heritability based on twin and family 
research and the estimated SNP heritability based on GWAS  (Eichler et al., 2010).  

 

 

Table 2.3 Twin and SNP based heritability estimates, as reported in the literature 

Trait                  Twin heritability   SNP heritability 

ASD    0.74 (Tick et al., 2016)   0.12 (Grove et al., 2019) 

ADHD    0.70 - 0.80 (Brikell et al., 2015) 0.21(Demontis et al., '19) 

Schizophrenia   0.80 (Sullivan et al., 2003)  0.26(Pettersson et al., '19) 

Major depressive disorder 0.40 (Wray et al., 2018)  0.09 (Wray et al., 2018) 

Bipolar disorder  0.70 (Stahl et al., 2019)  0.30 (Stahl et al., 2019) 

Alcohol dependence  0.49 (Walters et al., 2018)  0.09 (Walters et al., 2018) 

Anxiety disorders  0.30 - 0.50 (Otowa et al., 2016) 0.11 (Otowa et al., 2016) 

Neuroticism   0.39 (Vukasović et al., 2015)              0.10 (Nagel et al., 2018) 

Insomnia   0.38 - 0.59 (P.R. Jansen et al., '19)      0.07 (P.R. Jansen et al., '19) 

Anti-social behavior  0.50 (Tielbeek et al., 2017)  0.05 (Tielbeek et al., 2017) 

Risk taking behavior  0.30 (Linnér et al., 2019)  0.05 (Linnér et al., 2019) 

Smoking initiation  0.50 (Hicks et al., 2011)  0.08 (Liu et al., 2019) 

intelligence    0.45 (Polderman et al., 2015)  0.19 (Savage et al., 2018) 

Educational attainment 0.40 (Branigan et al., 2013)  0.003 (Lee et al., 2018) 
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Figure 3 Twin and SNP based heritability estimates based on the estimates above 

 

 

 

 

 

2.2.2 Overview of the GWAS used per chapter 

Genetic correlations and polygenic risk scores (PRS) as applied in this thesis were based on 
summary statistics of the largest most up-to-date GWAS data at the time. The target sample 
Inside-Out was not included in any of the GWAS used.  
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2.2.2.1   Discovery GWAS in Chapter 3 

 

Table 2.4  Schematic overview of GWAS studies used in Chapter 3 

Trait    Authors and sample sizes      

Dichotomous traits: 

ASD:    Grove et al., 2019 (Cases N: 18,381 Controls N: 27,969). 
ADHD:     Demontis et al., 2019 (Cases N: 20,183  Controls N: 35,191) 
Schizophrenia:    Pardiñas et al., 2018 (Cases N: 40,675  Controls N: 64,643) 
Major depressive disorder:  Wray et al., 2018 (*Cases N: 135,458  Controls N: 344,901) 
Bipolar disorder:   Stahl et al., 2019 (Cases N: 20,352 Controls N: 31,358) 
Alcohol dependence:   Walters et al., 2018 (Cases N: 14,904 Controls N: 37,944) 
Anxiety disorders:   Otowa et al., 2016 (Cases N: 7,016 Controls N: 14,745) 

Continuous traits: 

Neuroticism:    Nagel et al., 2018 (N: 390,278) 
Insomnia:    P. R. Jansen et al., 2019 (N: 386,533)  
Anti-social behavior:   Tielbeek et al., 2017 (N: 32,000)  
Risk taking:    Linnér et al., 2019 (939,908) 
Smoking initiation:   Liu et al., 2019 (N: 1,232,091) 
Intelligence:    Savage et al., 2018 (N: 269,867) 
Educational attainment:  Lee et al., 2018 (N: 1,131,881) 

 

2.2.2.2  Discovery GWAS in Chapter 4 

 

Table 2.5  Schematic overview of studies used in Chapter 4, all dichotomous traits.  

Trait  Authors and sample sizes      
ASD:  Grove et al., 2019 (cases N: 18,382 and controls N: 27,969) 
ADHD:  Demontis et al., 2019 (cases N: 20,183 and controls N: 35,191) 
Schizophrenia: Pardiñas et al., 2018 (cases N: 40,675 and controls N: 64,643) 
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2.2.2.3  Discovery GWAS in Chapter 5 

For Chapter 5 only one set of GWAS summary statistics was used. The PGC-ASD workgroup 
generated summary statistics from a meta-analysis of 5,305 ASD diagnosed cases of ASD and 
5,305 pseudocontrols of European descent. These summary statistics have been used in 
several publications (A. Jansen et al., 2017; Robinson et al., 2016) but have not led to a 
published GWAS at the time. The summary statistics were obtained from the PGC website  
(https://www.med.unc.edu/pgc/download-results/) March 2015.  

 

2.2.3  A closer look at the traits presented in the GWAS 

 

2.2.3.1  Autism Spectrum Disorder (ASD) 

ASD is a neurodevelopmental disorder characterized by persistent deficits in social 
communication and social interaction across multiple contexts and restricted, repetitive 
patterns of behavior, interests, or activities (DSM 5, 2013). These symptoms must be present 
in the early developmental period and cause clinically significant impairment in social, 
occupational, or other important areas of current functioning. It can be specified with or 
without intellectual disability and/or language impairment or other neurodevelopmental, 
mental or behavioral disorders (DSM 5, 2013). It has a reported prevalence around 1% 
(Tomlinson et al., 2014). In addition, the gradual rise in ASD prevalence can also be explained 
by increased awareness, different assessment strategies and broader diagnostic criteria 
possibly including milder neurodevelopmental disorder cases which border on typical 
individuals (Graf et al., 2017). ASD is a genetic complex trait with a heritability of 74% (Tick et 
al., 2016) and a SNP heritability of 11% (Grove et al., 2019). This large difference between 
family based heritability and SNP heritability might have its origin in the genetic architecture 
of ASD which might include more rare variants than common variants compared to other 
complex psychiatric disorders. GWAS have implicated several biological pathways relating to 
neural function and brain development (Grove et al., 2019). Large-scale exome sequencing 
studies supported and refined these findings by implicating genes which are expressed and 
enriched in inhibitory and excitatory neuronal cell-lineages and stating that most of the 
implicated genes regulate other genes or affect synapses (Satterstrom et al., 2020).  

 

2.2.3.2  Attention Deficit /Hyperactivity Disorder (ADHD) 

ADHD is a neurodevelopmental disorder which is diagnosed if six or more symptoms of 
inattention and/or more than six symptoms of hyperactivity/impulsivity have persisted for 
over six months with the behavior being inconsistent with the developmental stage of the 
individual. The behavior needs to have a negative impact on social or occupational activities, 
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be present in more than two settings and several symptoms must be present before the age 
of 7 according to DSM-IV (American Psychiatric Association, 1994) and the age of 12 according 
to DSM 5 (DSM 5, 2013). ADHD has a high population prevalence of 2.5% in adults and 5% in 
children (Demontis et al., 2019) hence carrying a high social burden. It is a genetically complex 
trait with a heritability ranging between 70 and 80% (Brikell et al., 2015) for both adults and 
children and a reported SNP heritability of 21.6% (Demontis et al., 2019). The largest GWAS 
to date reports that the significantly associated loci are located in or near genes that implicate 
neurodevelopmental processes (Demontis et al., 2019). 

 

2.2.3.3  Schizophrenia  

Schizophrenia is a mental disorder that presents itself with psychotic symptoms of 
hallucinations, delusions and disorganized speech and negative symptoms as diminished 
expressiveness, lowered motivation and impaired executive functioning, speed of mental 
processing and impaired memory. To receive a schizophrenia diagnosis, for at least a one 
month period, a person must present at least hallucinations, delusions or disorganized speech 
in addition to disorganized behavior or negative symptoms (DSM 5, 2013). It is a psychotic 
disorder with a population prevalence of 1% (Schizophrenia Working Group of the Psychiatric 
Genomics Consortium, 2014). It has a heritability of 80% (Sullivan et al., 2003) and a SNP 
heritability of 26% (Pettersson et al., 2019). GWAS show a role for mutation intolerant genes 
involved in glutamatergic neurotransmission (Schizophrenia Working Group of the Psychiatric 
Genomics Consortium, 2014), genes encoding voltage-gated calcium channels (Pardiñas et al., 
2018; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014), targets 
of FMRP (Pardiñas et al., 2018), abnormal behavior (Pardiñas et al., 2018), 5-HT2c receptor 
complex (Pardiñas et al., 2018), abnormal nervous system electrophysiology (Pardiñas et al., 
2018) and abnormal long-term potentiation (Pardiñas et al., 2018). 

 

2.2.3.4  Major depressive disorder 

Major depressive disorder is a debilitating mood disorder in which a person experiences 
depressive symptoms for at least two weeks. Five or more of the following symptoms must 
be present: recurrent thoughts of death, diminished ability to think or concentrate, feelings 
of guilt or worthlessness, fatigue or loss of energy, engaging in purposeless movements, 
weight loss or decrease or increase of appetite, loss of interest and pleasure in activities and 
depressed mood most of the day almost every day. At least one of the symptoms needs to be 
(1) loss of interest or pleasure or (2) depressed mood (DSM 5, 2013). It has a point prevalence 
of 4.7% (Ferrari et al., 2013), a heritability of 40% (Wray et al., 2018) and a SNP heritability of 
9% (Wray et al., 2018). The GWAS meta-analysis of which we use the summary statistics is a 
thoroughly reviewed sample combining 7 cohorts in which they describe the phenotype as 
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major depression. GWAS findings report that (1) gene expression patterns best match the 
prefrontal cortex and the anterior cingulate cortex, two regions that show differences in 
major depressive disorder case-control studies and (2) developmental gene regulatory 
processes are implicated (Wray et al., 2018). 

 

2.2.3.5  Bipolar disorder 

Bipolar disorder is a psychotic disorder consisting of alternating manic and depressive 
episodes with or without psychotic episodes. To be classified as mania, this state must last for 
one week and be present most days, most of the day (DSM 5, 2013). More than three of the 
following symptoms must be present: grandiosity, increased goal activity, decreased need for 
sleep, easily distracted, racing thoughts, increased talkativeness, engaging in activities that 
hold potential painful consequences. To be classified as a depressive episode, a person must 
experience depressive symptoms for at least two weeks. Five or more of the following 
symptoms must be present: recurrent thoughts of death, diminished ability to think or 
concentrate, feelings of guilt or worthlessness, fatigue or loss of energy, engaging in 
purposeless movements, weight loss or decrease or increase of appetite, loss of interest and 
pleasure in activities and depressed mood most of the day almost every day (DSM 5, 2013). 
It has a lifetime prevalence of 1-2% (Stahl et al., 2019) and a high heritability of 70% (Stahl et 
al., 2019) with a SNP heritability of 30% (Stahl et al., 2019). The most recent GWAS implicates 
a role for neurotransmitter function and brain calcium channels, however further studies with 
larger sample sizes need to be conducted to gain more conclusive insights.  

 

2.2.3.6  Alcohol dependence 

Alcohol use disorder as reported in the DSM 5 is diagnosed based on the presence of several 
of 11 criteria. A mild manifestation of the disorder has a presence of two to three symptoms, 
a moderate manifestation has a presence of four to five symptoms and a severe manifestation 
has six or more symptoms. 
The 11 criteria are: (1) alcohol is often consumed in larger quantities over a longer period than 
intended, (2) there is a desire and there are unsuccessful efforts to limit the alcohol use, (3) a 
large amount of time is spent obtaining alcohol, using alcohol and recovering from the alcohol 
use, (4) cravings, (5) the alcohol use results in failure to fulfill obligations at work or at home, 
(6) continued alcohol use despite of recurrent problems due to this, (7) important activities 
are given up due to the alcohol use, (8) recurrent alcohol use in situations where it is 
dangerous, (9) continued alcohol use despite of know physical or psychological problems due 
to this, (10) tolerance, (11) withdrawal  (DSM 5, 2013). Alcohol dependence has an estimated 
heritability of 49% and a SNP heritability of 9% (Walters et al., 2018) and a prevalence of 5.8% 
(Section 5 PE Tables – Results from the 2018 National Survey on Drug Use and Health: Detailed 
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Tables, Sections 1 - 3, SAMHSA, CBHSQ, n.d.). The top associations reported in the most recent 
GWAS point towards biological pathways affecting alcohol metabolism (Walters et al., 2018).  

 

2.2.3.7  General anxiety disorder 

Individuals suffering from general anxiety disorder show excessive worrying in times when no 
actual threat is present. Criteria assessed are the duration of worrying (> six months), 
possibility of controlling the worrying (does the worrying easily shift from one topic to 
another?) and the presence of at least three of the following symptoms in adults and one in 
children: restlessness, irritability, fatigue, muscle aches,  impaired concentration, difficulty 
sleeping (DSM 5, 2013). Anxiety is one of the most commonly occurring mental disorders with 
a prevalence of 16.4% (Cía et al., 2018) and a heritability of 30 – 50% (Otowa et al., 2016) with 
a reported SNP heritability of 10.6% (Otowa et al., 2016). The summary statistics used for this 
phenotype come from a GWAS aiming to identify genetic variants contributing to genetic 
susceptibility shared across interview-generated DSM-based anxiety disorders (Otowa et al., 
2016). To date, GWAS have not yet presented robust biological pathways due to a lack of 
sample size. However, some interesting loci have been reported among which CAMKMT 
which encodes for a calmodulin-lysine N-methyltransferase. This locus is known for two gene-
deletion syndromes, the 2p21 deletion syndrome and the hypotonia-cystinuria syndrome. In 
addition calcium dependent signaling has also been reported in SCZ and bipolar disorder 
GWAS (Otowa et al., 2016).  

 

2.2.3.8  Neuroticism 

In psychology a well-known model regarding personality traits is the “big five personality 
theory” by Goldberg (Goldberg, 1993). The five traits included in this theory are used to 
describe certain aspects of an individual’s personality. Neuroticism is one of the five traits 
included in this model, next to openness to experience, conscientiousness, extraversion and 
agreeableness. Neuroticism is viewed as a continuous trait and can be measured by 
questionnaires such as the Eysenck Personality Questionnaire Revised short form (EPQ-RS) 
(Eysenck, B.G. et al., 1985). Individuals scoring high on the neuroticism scale are more likely 
than average scoring individual to experience feelings of fear, anxiety, worry, guilt loneliness 
and depression. As it is a continuous personality trait a population prevalence cannot be 
given. It is a heritable trait with an estimated heritability of 15% (Power & Pluess, 2015)and a 
SNP heritability of 10% (Nagel et al., 2018). A recent GWAS (Nagel et al., 2018)  reporting on 
a meta-analysis of three samples, each measuring neuroticism with a questionnaire of 8 or 12 
items, reported the involvement of specific cell types as dopaminergic neuroblasts, medium 
spiny neurons and serotonergic neurons.  
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2.2.3.9  Insomnia  

Insomnia is a psychiatric disorder described in the DSM5 as a sleep-wake disorder which is 
characterized by recurrent poor quality or quantity of sleep which manifests itself as difficulty 
falling asleep, staying asleep, waking up early and being unable to get back to sleep. This 
results in impairment in daily functioning due to symptoms like (extreme) fatigue, difficulty 
focusing and feeling irritable. Diagnostic criteria are unhappiness with the quality of sleep and 
daytime symptoms of impairment of functioning due to the lack of good quality of sleep (DSM 
5, 2013).  With 33% of the population reporting insomnia complaints it is the second most 
prevalent mental disorder (P. R. Jansen et al., 2019). Insomnia has a heritability estimate of 
38% for females and 59% for males (Lind et al., 2015) and a SNP heritability of 7% (P. R. Jansen 
et al., 2019). The most recent GWAS, based on a meta-analysis with participants providing a 
representative insomnia measure via questionnaires, implicated axonal parts of neurons, 
cortical and subcortical tissues and specific cell types including striatal, hypothalamic and 
claustrum neurons (P. R. Jansen et al., 2019).  

 

2.2.3.10 Anti-social behavior  

Anti-social behavior is a broad construct that that encompasses a large range of behaviors 
including violent felonies, aggression, theft, hostility and deceitfulness (Tielbeek et al., 2017). 
Anti-social behavior has an estimated heritability of 50% and a SNP heritability of 5.2% 
(Tielbeek et al., 2017). I use summary statistics of a GWAS reporting on a meta-analysis 
utilizing eight samples with several measures for anti-social behavior such as DSM-IV conduct 
disorder, child behavioral checklists conduct problems items as filled out by the mother, and 
rule breaking behavior as reported by the teacher (Tielbeek et al., 2017). This GWAS does not 
report on biological pathways but a repeatedly hypothesized biological pathway leading to 
ASB is the short variant of the serotonin transporter gene polymorphism (5-HTTLPR). A meta-
analysis of the literature confirmed this possibility but many methodological issues are 
reported, hence the study of biological mechanisms in ASB needs larger sample sizes and 
more solid research designs (Tielbeek et al., 2016).  

 

2.2.3.11 Risk taking 

The GWAS we used for this study measures risk taking with the self-report question: would 
you describe yourself as someone who takes risks? As the resulting variable is on a continuous 
scale a population prevalence cannot be given. A heritability of 30% (Linnér et al., 2019) and 
a SNP heritability of 5% (Linnér et al., 2019) has been reported and glutamatergic and 
GABAergic neurotransmission have been implicated (Linnér et al., 2019).  
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2.2.3.12 Smoking initiation 

Smoking initiation is used as a dichotomous trait providing information on if a person has ever 
smoked regularly (Liu et al., 2019). It has an estimated heritability of 50% (Hicks et al., 2011) 
and a SNP heritability of 8% (Liu et al., 2019). A recent large GWAS reported evidence for 
pathways involved in nicotinic,  dopaminergic and glutamatergic neurotransmission in cortical 
(inferior temporal pathways, dorsolateral and medial prefrontal cortex) and subcortical 
(hippocampus, caudatus, striatum) regions in the brain (Liu et al., 2019). 

 

2.2.3.13 Intelligence 

Intelligence is a psychological trait which can be measured with cognitive and/or IQ tests for 
example the WAIS (Hartman, 2009), WISC (Na & Burns, 2016) or the SON (Geerlings et al., 
2014). It is a trait with a heritability estimate increasing during development from 46 to 65% 
(Polderman et al., 2015) and a SNP heritability of 19% (Savage et al., 2018). The latest GWAS 
of intelligence comprised 14 independent cohorts, measuring intelligence through various 
neurocognitive tests primarily quantifying fluid domains of cognitive functioning (Savage et 
al., 2018). Genes associated with intelligence are highly brain expressed specifically in 
hippocampal pyramidal neurons and medium spiny neurons (Savage et al., 2018).  

 

2.2.3.14 Educational attainment 

Educational attainment is a trait highly correlated to physical and psychological health and to 
many other psychological traits  (Conti et al., 2010; Lee et al., 2018; Lynch & von Hippel, 2016). 
It is often measured as years of schooling or highest level of education. The estimated 
heritability is 40% (Branigan et al., 2013) and a SNP heritability of 0.3% (Lee et al., 2018) was 
reported. A GWAS investigating the number of years of schooling an individual has completed, 
reported that the significantly associated SNPs are disproportionally found in genomic regions 
regulating gene expression in the fetal brain (Okbay et al., 2016). A following GWAS replicated 
this finding but expanded the list of prioritized genes with postnatally expressed genes (Lee 
et al., 2018).  

 

2.2.4  A closer look at the phenotypes in Inside-out not represented by GWAS data 

Due to a lack of well powered GWAS data for some disorders present in Inside-out have not 
been described above. These disorders are described here by means of DSM-IV or 5 criteria. 
The clinical classifications of the participants in the Inside-Out sample were based on DSM-IV 
criteria, but for the description of clusters of disorders in this thesis  they have been grouped 
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according to DSM 5 criteria, doing just to the most recent scientific insights. These disorders 
are present in the sample used in Chapter 3. 

 

2.2.4.1  Eating disorders  

Eating disorder is a category disorders which is composed of anorexia nervosa, bulimia 
nervosa, binge eating disorder, other specified feeding and eating disorder, pica, rumination 
disorder, avoidant/restrictive food intake disorder, unspecified feeding or eating disorder, 
other: muscle dysmorphia and orthorexia nervosa. In Inside-Out, the main eating disorders 
are anorexia nervosa and bulimia nervosa. The description will be limited to these two 
disorders.  

Anorexia nervosa: the main three criteria are 1) restriction of energy intake in relation to the 
required intake leading to a less than minimally expected bodyweight for the appropriate sex, 
age, health and developmental trajectory, 2) disturbances in the way in which one’s body 
weight is experienced and 3) fear of getting fat and gaining weight even at very low weight. 
There are two subtypes, the restrictive type which accomplishes weight loss through fasting, 
dieting and/or excessive exercise and the binge-eating/purging subtype which remains low 
weight through self induced vomiting, or misuse of diuretics, laxatives or enemas. The severity 
level is determined by BMI with the mild levels (BMI > 17kg/m2), moderate levels (BMI 16 – 
16.99 kg/m2), severe levels (BMI 15 – 15.99 kg/m2)   and extreme levels (BMI <15 kg/m2)(DSM 
5, 2013). 

Bulimia nervosa: the main criteria are 1) recurrent episodes of binge eating characterized by 
a sense of lack of control over eating during the episode as well as eating in a certain period 
of time an amount of food much larger than most individuals would during such a time 2) 
recurrent inappropriate compensatory behaviors to prevent the gain of weight such as self 
induced vomiting, misuse of diuretics, laxatives or other medications, 3) these two behaviors 
both occur at least three times a week, 4) self evaluation is influenced by body shape and 
weight and 5) the disturbance does not only occur during the anorexia nervosa episode. There 
are levels of severity  from mild (average of 1-3 episodes per week), moderate (average of 4-
7 episodes per week), severe (average of 8-13 episodes per week) or extreme (average of>14 
episodes per week) (DSM 5, 2013). 

 

2.2.4.2  Tic disorders  

Tic disorders is a category which includes Tourette’s disorder. For a tic disorder one must have 
a motor tic (such as blinking or shrugging the shoulders) or a vocal tic (such as clearing the 
throat, humming, or yelling out a word or phrase). The tics must have occurred of and on for 
at least a year. For Tourette’s disorder two or more motor and 1 or more vocal tics must have 
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been present at some time during the illness, though not necessarily concurrently (DSM 5, 
2013). The symptoms must have occurred before the age of 18 and not be due to physiological 
effects of substance use or other medical conditions.  

  

2.2.4.3  Disorder of infancy, childhood or adolescence Not otherwise specified (NOS) 

A child receives this diagnosis when it is clear that there ought to be a diagnosis of a childhood 
disorder but when it is not clear due to incomplete information which diagnosis this should 
be. Over time, when more tests can provide additive information the diagnosis can become 
more specific (American Psychiatric Association, 1994). This is a DSM-IV diagnostic category. 
Under the DSM 5, Disorder of Infancy, Childhood, or Adolescence NOS (F32.9) is to be 
diagnosed as Unspecified depressive disorder, Other specified anxiety disorder, Unspecified 
anxiety disorder or  Consider other diagnosis(es) Disorder of Infancy, Childhood, or 
Adolescence NOS (F41.9). For practical means we have kept this category as is in our data. 

 

2.2.4.4  Motor, learning or communication developmental disorders 

Developmental coordination disorder: in the DSM-IV this disorder was categorized as a 
learning disorder, in the DSM5 however, it is categorized as a motor disorder in the category 
neurodevelopmental disorders. The DSM5 describes the child with this disorder as having 
motor coordination below the level expected for the chronologic age. These children may 
have had delays in walking and crawling and other early motor milestones and have been 
described as clumsy. The difficulties the child experiences interfere with daily living activities 
or academic achievements. The difficulties are not attributable to a medical condition and if 
they occur in combination with intellectual disability the delay is in excess of those expected 
for the child’s intellectual abilities (DSM 5, 2013).  

Specific learning disorder, as learning disorders are also known, are neurodevelopmental 
disorders being during school age and affecting the ability in reading (dyslexia), writing and/or 
math. The specific diagnostic criteria are difficulties in the school age years which persisted 
after 6 months of targeted intervention, the individual performs significantly lower on 
achievement tests than age appropriately expected, the difficulties become apparent in the 
first years of schooling and another diagnosis such as sensory impairment or low intellectual 
disability are not better suited explanations (DSM 5, 2013).  

Communication developmental disorders are characterized by persistent difficulties in the 
social use of verbal and nonverbal communication, this results in limited effective 
communication, social participation academic achievement occupational performance or a 
combination of these and the onset of symptoms is in the early developmental phase. In 
addition, another (medical) condition is not a more plausible alternative (DSM 5, 2013).  
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 2.2.4.5 Somatoform disorders  

The DSM-IV somatoform disorder has changed in the DSM5 into somatic symptom and 
related disorder. The diagnostic criteria for the DSM5 disorder are:  

1) One or more somatic symptoms that are distressing or result in significant disruption of 
daily life.   

2) Excessive thoughts, feelings, or behaviors related to the somatic symptoms or associated 
health concerns as manifested by at least one of the following: a. Disproportionate and 
persistent thoughts about the seriousness of one’s symptoms. b. Persistently high level of 
anxiety about health or symptoms and c. Excessive time and energy devoted to these 
symptoms or health concerns 

3) although any one somatic symptom may not be continuously present, the state of being 
symptomatic is persistent (typically more than 6 months). 

The main difference between the DSM-IV and DSM5 is that under the DSM-IV the somatic 
symptoms needed to be medically unexplained, a criterium no longer included in the DSM5 
(American Psychiatric Association, 1994; DSM 5, 2013). 

 

2.2.4.6  Trauma and stressor related disorders 

This group of disorders occurs after a traumatic or stressful event. The three main disorders 
are post traumatic stress disorder, acute stress disorder and adjustment disorder. 

Diagnostic criteria for post-traumatic stress disorder are experience of a traumatic event 
involving death (actual or threatened), serious injury, or sexual violence, intrusion symptoms 
that begin after the traumatic event, avoidance of triggering stimuli following the event, 
negatively affected cognition that begins or worsens after the event, altered reactivity or 
arousal beginning or worsening after the event. The duration of symptoms last > 1 month 
following the traumatic event. The affected individual has been experiencing significant 
distress or impaired social and/or occupational functioning since the traumatic event and the 
symptoms are not explained by substance misuse or another medical condition (DSM 5, 
2013). 

Diagnostic criteria for acute stress disorder are exposure to death (actual or threatened), 
injury, or sexual abuse. The duration of symptoms lasts from 3 days to 1 month following the 
traumatic event. The affected individual has been experiencing significant distress or 
impaired social and/or occupational functioning since the traumatic event and symptoms are 
not explained by substance misuse or another medical condition. 

The diagnostic criteria for adjustment disorder are emotions or behaviors in response to a 
stressor that occur within thee months of onset, a clinically significant responses that include 
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≥ 1 of the following:   A level of distress that is disproportionate to the expected response to 
the stressor, impaired functioning in social, occupational, and/or other important areas, the 
symptoms are not explained by another mental disorder and are not explained by a normal 
response to grief. Additionally, the symptoms last ≤ 6 months following resolution of the 
stressor (DSM 5, 2013). 

2.2.4.7  Obsessive compulsive and related disorders 

This category comprises obsessive compulsive disorder (OCD), trichotillomania (excessive hair 
pulling), hoarding disorder (difficulty discarding or parting with possessions), skin picking 
disorder  (constant and recurring skin picking) and body dysmorphic disorder (preoccupation 
with an imagined or minor flaw in one’s appearance causing distress.). OCD is characterized 
by the presence of obsessions and compulsion or both over distress associated with certain 
unwanted thoughts followed by various behaviors to resist or neutralize the thoughts. These 
behaviors are time consuming and create significant limitations in other domains of an 
individuals life, they are not due to physiological effects  of medicine or another somatic cause 
and the disorder cannot be explained better by another psychiatric disorder (DSM 5, 2013).   
 

2.2.4.8  Mood disorders 

The GWAS used is based on major depressive disorder. In our clinical sample the diagnostic 
category depression includes more mood disorders. This category in the DSM 5 contains 
disruptive mood dysregulation disorder, persistent depressive disorder and 
premenstrual dysphoric disorder. A main symptom these disorders have in common is the 
presence of depressed affect and diminished pleasure and interest in most or all daily 
activities influencing the capacity to function on a daily basis (DSM 5, 2013).  

 

2.2.4.9  Anxiety disorders 

The GWAS used for generating the PRS is based on general anxiety. In our sample the 
diagnostic category anxiety disorders comprises all disorders included in the category anxiety 
disorders making our sample phenotypically more heterogeneous compared to the GWAS 
sample. Included disorders are selective mutism, separation anxiety disorder, specific phobia, 
generalized anxiety disorder, social phobia and panic disorder with and without agoraphobia. 
These disorders have in common that the diagnosed individual suffers from excessive fear 
and anxiety and related behavioral disturbances (DSM 5, 2013, p. 5). 
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Abstract 

Psychiatric traits are heritable, highly comorbid and genetically correlated, suggesting that 
genetic effects that are shared across disorders are at play. The aim of the present study is to 
quantify the predictive capacity of common genetic variation of a variety of traits, as captured 
by their PRS, to predict case-control status in a child and adolescent psychiatric sample 
including controls to reveal which traits contribute to the shared genetic risk across disorders. 
Method: polygenic risk scores (PRS) of 14 traits were used as predictor phenotypes to predict 
case-control status in a clinical sample. Clinical cases (N= 1,402), age 1–21, diagnostic 
categories: autism spectrum disorders (N= 492), attention-deficit/ hyperactivity disorders (N 
= 471), anxiety (N= 293), disruptive behaviors (N= 101), eating disorders (N= 97), OCD (N= 43), 
tic disorder (N= 50), disorder of infancy, childhood or adolescence NOS (N= 65), depression 
(N= 64), motor, learning and communication disorders (N= 59), anorexia nervosa (N= 48), 
somatoform disorders (N= 47), trauma/stress (N= 39) and controls (N= 1,448, age 17–84) of 
European ancestry. First, these 14 PRS were tested in univariate regression analyses. The 
traits that significantly predicted case-control status were included in a multivariable 
regression model to investigate the gain in explained variance when leveraging the genetic 
effects of multiple traits simultaneously.  
Results: in the univariate analyses, we observed significant associations between clinical 
status and the PRS of educational attainment (EA), smoking initiation (SI), intelligence, 
neuroticism, alcohol dependence, ADHD, major depression and anti-social behavior. EA (p-
value: 3.53E-20, explained variance: 3.99%, OR: 0.66), and SI (p-value: 4.77E-10, explained 
variance: 1.91%, OR: 1.33) were the most predictive traits. In the multivariable analysis with 
these eight significant traits, EA and SI, remained significant predictors. The explained 
variance of the PRS in the model with these eight traits combined was 5.9%.  
Conclusion: our study provides more insights into the genetic signal that is shared between 
childhood and adolescent psychiatric disorders. As such, our findings might guide future 
studies on psychiatric comorbidity and offer insights into shared etiology between psychiatric 
disorders. The increase in explained variance when leveraging the genetic signal of different 
predictor traits supports a multivariable approach to optimize precision accuracy for general 
psychopathology.  
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Introduction 
In this study, we aim to quantify the predictive capacity of common genetic variation of a 
variety of traits to reveal which traits contribute to the shared genetic risk across disorders as 
it is well known that psychiatric disorders are highly comorbid. High comorbidity rates have 
for instance been shown between anxiety disorders (anxiety), major depressive disorder 
(MDD), attention-deficit/ hyperactivity disorder (ADHD), autism spectrum disorder (ASD), 
schizophrenia, alcohol dependence and eating disorders (Katzman, Bilkey, Chokka, Fallu, & 
Klassen, 2017; Klimkiewicz, Klimkiewicz, Jakubczyk, Kieres-Salomo_nski, & Wojnar, 2015; 
Ulfvebrand, Birgeg_ard, Norring, H€ogdahl, & von Hausswolff-Juhlin, 2015). Next to the 
comorbidity there is also extensive symptom overlap (American Psychiatric Association, 
2013). This overlap has been described for MDD and anxiety (Tiller, 2013), ADHD, ASD, tic 
disorders and obsessive compulsive disorder (OCD; Huisman-van Dijk, van de Schoot, 
Rijkeboer, Mathews, & Cath, 2016). Interestingly, the occurrence of psychiatric disorders is 
also correlated with psychological traits in the general population such as lower educational 
attainment (EA, Lee et al., 2018), lower intelligence (Savage et al., 2018), higher substance 
use among which earlier smoking initiation (Liu et al., 2019), higher neuroticism scores (Nagel 
et al., 2018), and insomnia (Jansen et al., 2019).  

EA comprises cognitive abilities (intelligence), noncognitive abilities (patience, self-
control, temperament, motivation, self-discipline, time preference), health endowments, and 
family background (Conti, Heckman, & Urzua, 2010). There is a phenotypic link between EA 
and health (Lynch & Hippel, 2016) as shown by previous research involving EA and adult 
success on the labor market and adult health including psychopathology, with a focus on 
depression, which demonstrates an important role for both cognitive abilities in early life and 
noncognitive abilities (Conti et al., 2010). Intelligence by itself also plays a major role in health 
and wellbeing with higher intelligence being associated with lower risk of mental health 
problems (Savage et al., 2018). Focusing on substance use behaviors, the literature shows 
that smoking behavior is related to a host of psychiatric disorders among which schizophrenia, 
ADHD, eating disorders, mood disorders, anxiety and substance use disorders (Boksa, 2017), 
and in a US population patients with a psychiatric diagnosis have a 3.23 times greater odds of 
smoking compared to individuals with no diagnosis (Smith, Mazure, & McKee, 2014). High 
scores on neuroticism questionnaires are associated with psychiatric disorders (Hettema, 
Neale, Myers, Prescott, & Kendler, 2006; Nagel et al., 2018), and insomnia is one of the most 
common comorbidities of psychiatric disorders (Jansen et al., 2019). 

Next to phenotypic overlap, extensive genetic overlap between psychiatric and 
psychological traits has been observed. These traits are at least moderately heritable 
(Polderman et al., 2015) with an underlying genetic architecture of rare and common genetic 
variation (Claussnitzer et al., 2020). A common genetic overlap has been shown extensively 
in the brain disorder (Bulik-Sullivan et al., 2015; CrossDisorder Group of the Psychiatric 
Genomics Consortium, 2019), the psychiatric disorder (Demontis et al., 2019; Grove et al., 
2019; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014; Walters 
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et al., 2018; Wray et al., 2018) and psychological trait literature (Jansen et al., 2019; Linner et 
al., 2019; Nagel et al., 2018; Tielbeek et al., 2017; Walters et al., 2018). Health-related traits 
as EA (Lee et al., 2018; Satterstrom et al., 2020), intelligence (Savage et al., 2018), smoking 
initiation (Liu et al., 2019), insomnia (Jansen et al., 2019), risk-taking behavior (RTB; Linner et 
al., 2019) and anti-social behavior (Tielbeek et al., 2017) show genetic correlations with 
psychiatric disorders and with each other. These studies show that psychiatric disorders, 
psychological traits and closely related phenotypes show genotypic overlap that might be due 
to pleiotropy (Watanabe et al., 2019; a locus affecting more than one trait) and polygenicity 
(Watanabe et al., 2019; multiple loci affecting one trait). 

Building on the existing phenotypic and genetic overlap as summarized above, 
research on a theorized underlying general psychopathology factor, the ‘p factor’, tries to 
identify an underlying higher order dimension for psychopathology in general, and specific 
domains below this overarching p factor, such as internalizing, externalizing or psychotic 
experience domains (Caspi & Moffitt, 2018). This hierarchical clustering is based on the 
hypothesis that each mental disorder has a broadly shared and a unique genetic component. 
The shared genetic component is thought to capture the genetic part of the broad range of 
symptoms that are common across disorders, while the unique genetic component is thought 
to capture disorder specific symptoms (Caspi et al., 2014; Murray, Eisner, & Ribeaud, 2016). 
In addition, it is suggested that the p factor can combine all psychiatric disorders on a low to 
high psychopathology severity scale. The hypothesis is that a person’s score on this scale is 
informative of family history, developmental history, brain functioning and adult life 
impairment with higher p factor scores representing worse outcomes. (Caspi & Moffitt, 2018). 

The findings regarding the p factor, genetic overlap, pleiotropy and polygenicity in 
psychopathology provide support for studies exploring shared genetic variation of 
nonspecific, shared psychiatric problems as present in clinical psychiatric samples. The shared 
heritability between traits and disorders (Brainstorm Consortium et al., 2018; Bulik-Sullivan 
et al., 2015) can be examined by means of polygenic risk scores (PRS; Chatterjee, Shi, & Garcıa-
Closas, 2016; Wray et al., 2014). A PRS is an individual’s weighted sum of risk alleles for a trait 
based on previously determined effects of those alleles for that trait (Euesden, Lewis, & 
O’Reilly, 2015). At group level, the PRS has the potential to distinguish cases from controls. 
For example, the ADHD PRS has been shown to distinguish cases from controls in an ADHD 
and in an Autism Spectrum Disorder (ASD) /ADHD combined sample (Jansen et al., 2019), and 
the schizophrenia PRS differentiated patients who developed schizophrenia from patients 
who did not in a first episode psychosis sample (Vassos et al., 2017). Despite this capacity to 
distinguish cases from controls at a group level, the explained variance of the PRS is limited, 
often below 5% (Jansen et al., 2019). The predictive capacity of the PRS can be improved by 
making predictions based on multiple traits and disorders that share genetic influences 
(Brainstorm Consortium et al., 2018; Bulik-Sullivan et al., 2015), by using multivariate 
approaches (Abdellaoui et al., 2018), or creating a multi-trait predictor (Krapohl et al., 2018; 
Maier et al., 2018). These methods seem promising as, for example, a multi-polygenic score 
(Krapohl et al., 2018) explained 4.8% of the variance in general cognitive ability and 10.9% in 
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educational achievement in an adolescent sample, capturing 1.1% more variance than the 
best single-score predictors. 

The aim of the present study is to quantify the predictive capacity of common genetic 
variation of a variety of traits, as captured by their PRS, to predict case-control status in a child 
and adolescent psychiatric sample with a variety of psychiatric disorders to reveal which traits 
contribute to the shared genetic risk across disorders. Disorders present in the sample, and 
closely related traits were used as predictive traits. Both child or adolescent and adult mental 
traits have been included as we expect genetic overlap, since the majority of the adult 
psychiatric disorders usually have their onset during childhood or adolescence (Kessler et al., 
2007) and the genetic make-up of an individual is fixed during life. To add, to our knowledge 
no genetic studies into addiction in child and adolescent samples have been presented. Firstly, 
we examined which individual PRS of these phenotypes significantly predicted receiving a 
diagnosis. Secondly, we evaluated whether this prediction could be improved by combining 
the joint genetic signals of the significantly associated phenotypes. The findings of this study 
will contribute to the identification of a shared genetic signal across disorders. 

 

Methods 

Participants 

Clinical sample: ‘Inside-out’. Data for this clinical sample (‘Inside-out’) were collected from 
January 2001 until January 2012 at the department of Child and Adolescent Psychiatry of the 
Sophia Children’s Hospital, Erasmus Medical Center in Rotterdam. The diagnostic 
classification was performed by a clinician according to the Diagnostic and Statistical Manual 
of Mental Disorders, fourth edition. This procedure consisted of an interview with parents, a 
semi structured interview with the child based on the Semi-structured Clinical Interview for 
Children and Adolescents (McConaughy & Achenbach, 2001), the Diagnostic Interview 
Schedule for Children IV-P (Shaffer, Fisher, Lucas, Dulcan, & Schwab-Stone, 2000), and the 
Autism Diagnostic Observation Schedule-Generic (Lord et al., 1989) in case of a suspected 
Autism Spectrum Disorder. The above-mentioned procedure was part of standard clinical 
practice. Additionally, DNA was extracted from saliva and genotyping was performed on the 
Illumina Psych Chip array and Global Screening Array (see Data section). For this study, ethical 
approval of the Erasmus Medical center was obtained. The full sample (N = 1909) consisted 
of children that received a clinical diagnosis (N = 1594), and a group of children that did not 
receive a diagnosis (N = 315). The current study used data of the 1,402 children (192 cases 
were removed after genetic quality control) diagnosed with one or more DSM-IV disorders 
(ASD, ADHD, tic disorder, OCD, MDD, anxiety, anorexia nervosa (AN), eating disorder NOS, 
and subcategories of mentioned disorders). Intellectual disability was present in 16% of the 
sample. 
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Control sample  

A Dutch population sample was used (NESCOG, N = 943, age range: 17.0–79.0), previously 
described by Polderman et al. (2013). Data were collected on various behavioral symptoms, 
cognitive functioning, personality, environmental factors, and life events, in addition to 
genetic information. To correct for undiagnosed ASD, ADHD or anxiety status we excluded 
participants scoring 3 SD above the mean on the Autism Quotient (AQ; Baron-Cohen, 
Wheelwright, Skinner, Martin, & Clubley, 2001), the attention problems scale of the Young 
Adult Self Report (YASR; Achenbach, 1997), the Conners’ Adult ADHD Rating Scale (CAARS; 
Conners, Erhardt, & Sparrow, 1999) or the Beck Anxiety Inventory (BAI). Genotyping was 
performed on the Illumina Psych Chip. This resulted in a sample of 939 participants (age range 
17–79, 38% male). In addition, we used a German sample, the Berlin Psychosis Study (BePS; 
Skarabis & Ripke, 2017) of healthy adult individuals (N = 509, age range 18–84, 31% male). 
Participants whom reported having received a bipolar disorder (BiP) or other psychotic 
disorder, ADHD, OCD, MDD, anxiety, AN, or alcohol dependence diagnosis were excluded (N 
= 31). The total control sample consisted of 1,448 individuals (age range 17–84, 35% males). 

To provide a sense of the nature of comorbidities and diagnoses we have the following 
Tables/Figures: Table 1 shows sample specifics such as sample size, age range and genotyping 
array for the cases and controls. Figure 1 shows the diagnostic composition as the amount of 
cases in the full sample per disorder and the amount of cases per disorder in that part of the 
sample diagnosed with intellectual disability, as well as the percentage of the full sample with 
an intellectual disability diagnosis, intellectual disability status and the sex distribution. Tables 
S1 and S2 provide an overview of comorbidities. 

Genotyping 

Genotyping of part of the clinical sample (ADHD, ASD, tic disorder and AN diagnosis) and of 
the NESCOG control sample was performed on the Illumina PsychChip array. The PsychChip 
SNP array contains HumanCore, Human Exome and custom content to capture genetic 
variants previously linked with psychiatric disorders (https://www.illumina.com/products/by-
type/micproarray-kits/infinium-psycharray.html). 

The remaining part of the clinical sample and the BePS controls were genotyped on the 
Illumina Infinium Global Screening Array (GSA; https://www.illumina.com/products/ by-
type/microarray-kits/infinium-global-screening.html). 

For SNP harmonization purpose between arrays, all samples were imputed in the Michigan 
imputation server. After imputation, the samples were combined. We used the Michigan 
imputation server pipeline which uses the Haplotype Reference Consortium (McCarthy et al., 
2016; HRC) as a reference panel and poorly imputed variants were excluded based on their 
imputation score (R2 < 0.9). In all samples, SNPs were filtered on MAF (<1%), SNP call rate 
(<95%) and Hardy–Weinberg disequilibrium (p < .00001). In the control samples, individual 
quality control filtering was based on missingness (>5%), relatedness (pairwise IBD > 0.185), 
ancestry (within the range of 1,000 Genomes CEU population on the first two principal 
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components (PCs)), outlying heterozygosity (excluded if > 3 x SD from the mean of the 
heterozygosity rate), gender mismatch and missing phenotypes. In the clinical sample, 
individuals were filtered based on genotype and sex mismatch, outlying heterozygosity and 
non-European ancestry (4 SD outside the range of the first two genetic principal components 
of the HapMap3 European founder population (CEU)), missingness (>5%) and relatedness 
(pairwise Identity-By-Descent (IBD) >0.185). 

Table 1 Sample description 

 

 

 

 

 

Figure 1, see next page: For readability shown on the following page, Diagnostic composition 
Inside-out. Abbreviations: ASD = autism spectrum disorder; ADHD = attention-
deficit/hyperactivity disorder; OCD = obsessive compulsive disorder, disorder of infancy, 
childhood full diagnostic term: disorder of infancy, childhood or adolescence NOS, mot., 
learn., comm. dev. disorder comprises motor, learning and communication developmental 
disorders, ID: intellectual disability. A: Numbers per disorder are based on a total 1,402 cases. 
Comorbid disorders are included therefore totaling more than 1,402 diagnoses. B: Intellectual 
Disability (ID) status for all 1,402 cases. C: ID severity for all ID cases. ID severity known for 
89% of all ID cases. D: sex distribution in Inside-out. E: the chart is based on all ID cases (N 
222). Comorbid disorders are included, therefore totaling more than 222 diagnoses. 

 Cases 
Clinical sample 

Controls   

NESCOG BePS Total controls 

Sample size 1,402 939 509 1,448 
Age range (mean, 
SD), years 

1–20 (9.54, 
3.71) 

17–79 
(40.7, 
17.3) 

18–84 
(30.2, 
12.1) 

17–84 
(37.0) 

Gender % male 61 38 31 35 
Genotyping array GSA (32%), 

Psych chip 
(68%) 

Psych chip GSA GSA (35%), 
Psych chip 
(65%) 
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Polygenic scoring 

The PRS is the sum of an individual’s ‘risk’ alleles for a certain phenotype weighted by the 
allele effect sizes, which are typically derived from linear association coefficients from a 
genome wide association study (GWAS). For the PRS creation a SNP p-value inclusion 
threshold of < 1 is used (Choi, Mak, & O’Reilly, 2018; Maier et al., 2018). Using large publicly 
available summary statistics from GWA studies, PRS were constructed for EA (Lee et al., 2018), 
intelligence (Savage et al., 2018), smoking initiation (Liu et al., 2019), neuroticism (Nagel et 
al., 2018), insomnia (Jansen et al., 2019), RTB (Linner et al., 2019), anti-social behavior 
(Tielbeek et al., 2017), ADHD (Demontis et al., 2019), ASD (Grove et al., 2019), schizophrenia 
(Pardinas et al., 2018), MDD (Wray et al., 2018), anxiety (Otowa et al., 2016), alcohol 
dependence (Walters et al., 2018) and BiP (Stahl et al., 2018) see Appendix S1. Table S3 
provides an overview and details of the selected GWA studies. The selected GWAS studies are 
large enough to use for this type of analyses as shown by their LD intercept which show no 
worrisome potential inflation (see Table S4). Inside-out, NESCOG and the BePS samples are 
independent samples not included in any of the GWAS. 

The polygenic scoring was performed using PRSice2 (Euesden et al., 2015). Prior to polygenic 
scoring SNPs in high LD were clumped using PRSice2 (LD R2 < 0.1, 250 kb pair window). For 
interpretational purposes the results were standardized to mean 0 and SD 1. 

Statistical analysis 

Genetic correlation with LDSC regression. 

 Using linkage disequilibrium score (LDSC) regression (Bulik-Sullivan et al., 2015), we 
calculated genetic correlations across all included traits based on the GWAS summary 
statistics we used for the PRS calculations of our predictor phenotypes. In addition, we 
computed the genetic correlations of the PRS in SPSS in our clinical sample to compare to the 
LDSC results. 

Regression analyses. 
 
First, we performed 14 univariate analyses to investigate which PRS were able to distinguish 
between cases and controls (outcome variable). Although all participants of the discovery and 
target sample were of European descent, the baseline model included eight PCs to account 
for potential population stratification The baseline model included, in addition to the eight 
PCs to account for population stratification, chip (GSA or Psych Chip, to correct for array 
effects), and sex as covariates. Age was not added as a covariate as all cases are children and 
all controls are adults. The PCs were calculated on all samples together and were based on 
the pruned data with Eigensoft (Price et al., 2006; version 3.0) software. After Bonferroni 
multiple testing correction for 14 tests we assessed the significance (p-value) of each 
predictor phenotype as well as its explained variance. The explained variance of the PRS is 
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based on Nagelkerke pseudo R2 (i.e., the difference between the full model R2 and the 
covariate only (baseline) model R2). As 16% of Inside-out cases are co-diagnosed with 
intellectual disability (ID) we investigated if the results were driven by the ID subgroup by 
comparing the diagnostic distribution of the whole sample to the ID part of the sample. 
Additionally, we ran the univariate analysis for the intelligence and EA PRS on the part of 
Inside out without ID (N: 1,180, see Figure 1) to adjust the analysis if needed. The same 
covariates were included and the results were assessed the same way as the full sample 
results. Second, the significantly associated PRS from the univariate analyses were tested for 
their significance in a multivariable analysis. 
 

Results 

Genetic correlations between the predictor phenotypes 

The genetic correlations as calculated from the summary statistics (Figure 2, Table S5) were 
overall in line with the available literature. As shown in the correlational matrix in Table S5, 
all included traits showed intermediate to high correlations with at least two other traits. 
Therefore all 14 PRS of predictive phenotypes were included in the subsequent analyses. The 
Pearson correlations between the prs in our clinical sample (Table S6) show some differences 
with the genetic correlations between the GWAS summary statistic of the phenotypes. These 
differences can be partially explained by a difference in sample size. The clinical sample is 
much smaller than the GWAS sample sizes resulting in a less precise estimate. In general, the 
significances are quite similar giving no reason for concern. 

Regression analyses 

The univariate logistic regression analyses showed eight significantly associated PRS (P 
Bonferroni corrected (bf) < 0.05); EA, intelligence, smoking initiation, neuroticism, anti-social 
behavior, ADHD, MDD and alcohol dependence (Table 2a and Figure 3a). Presented p-values 
are Bonferroni corrected. Fit statistics are provided in Table S7. 

When comparing the whole clinical sample to the ID cases in our sample, the ID cases sub-
sample showed a larger proportion of ASD cases (42% vs 26%) and fewer anxiety cases (8% 
vs. 16%), and eating disorders (2% vs. 8%). Proportions of the other diagnostic groups were 
very similar between the full sample and the ID cases. The additional regression analyses in 
the sample without ID cases gave similar results for the EA and intelligence PRS (see Table 
S8). 
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In a second instance, we retained only PRS with P_bf < 0.05 (EA, intelligence, smoking 
initiation, neuroticism, anti-social behavior, ADHD, MDD and alcohol dependence) for 
inclusion in a multivariable model. Of the eight PRS included in the full multivariable model 
(EA, intelligence, smoking initiation, neuroticism, anti-social behavior, ADHD, MDD and 
alcohol dependence) two remained statistically significant (EA, SI; see Table 2b and Figure 
3b). The full model has an explained variance of 17.8%. Of this, the PRS account for 5.9% of 
the variance, which is an increase of 1.91% compared to the explained variance of the highest 
scoring univariate PRS (EA) of 3.99%. The remaining part of the explained variance can be 
attributed to the covariates. Details are shown in Table S9. 

Another large diagnostic group in our sample is the anxiety group. Surprisingly, this PRS did 
not distinguish between cases and controls. As the anxiety PRS is based on a GWAS with a 
small sample (7,016 cases, 14,745 controls) it is likely to be underpowered. 

 

Figure 2 Overview of the genetic correlations based on the GWAS summary statistics 
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Figure 3  

 

 

 

 

 

 

 

 

 

 

 

 

 
The explained variance for all tested traits in the univariate analyses. The explained  
Variance is based on Nagelkerke R2. The effect sizes are shown as Odds Ratios (ORs).  

 

 
The ORs based on the multivariable analyses 
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Table 2 (a) Univariate logistic regression analysis. (b) Multivariable logistic regression analysis 

 

(a) PRS % explained  
variance PRS 

p p_bfa  OR 95% CI for ORc 

EA 3.99 2.52E-21 3.53E-20  0.66 0.61–0.72 
SI 1.91 3.41E-11 4.77E-10  1.33 1.22–1.44 
IQ 1.53 3.22E-09 4.51E-08  0.78 0.72–0.85 
MDD 1.02 1.00E-06 1.40E-05  1.27 1.15–1.40 
ADHD 0.99 2.00E-06 2.80E-05  1.22 1.13–1.32 
NEU 0.58 2.47E-04 3.46E-03  1.16 1.07–1.26 
AD 0.50 6.27E-04 8.78E-03  1.15 1.06–1.24 
ASB 0.47 9.84E-04 1.38E-02  1.14 1.06–1.24 
INS 0.19 3.76E-02 5.27E-01  1.09 1.01–1.18 
RTB 0.13 7.92E-02 1  1.07 0.99–1.16 
ANX 0.11 1.16E-01 1  1.06 0.99–1.15 
SCZ 0.07 1.98E-01 1  1.10 0.95–1.27 
BiP 0.06 2.36E-01 1  1.07 0.96–1.19 
ASD 0.03 4.30E-01 1  0.97 0.89–1.05 
(b) PRS p p_bfb  OR  95% CI for ORc 
EA 2.43E-09 1.94E-08  0.74  0.76–0.81 
SI 2.43E-04 1.94E-03  1.18  1.08–1.29 
MDD 1.96E-02 1.57E-01  1.13  1.02–1.25 
ASB 3.92E-02 3.14E-01  1.09  1.00–1.18 
ADHD 6.48E-02 5.19E-01  1.08  1.00–1.18 
IQ 1.48E-01 1  0.93  0.86–1.02 
AD 2.12E-01 1  1.05  0.97–1.15 
NEU 3.18E-01 1  1.04  0.96–1.14 

 
Clinical sample (N cases: 1,402, N controls: 1,448). Baseline model covariates: 8 PCs, sex  
and chip.  
All included PRS  have SNP p value threshold < 1. 
AD = alcohol dependence; ADHD = attention-deficit/hyperactivity disorder; ANX = anxiety;  
ASB = anti-social behavior; ASD = autism spectrum disorder; BiP = bipolar disorder; EA =  
educational attainment; INS = insomnia; IQ = intelligence; MDD = major depressive disorder;  
NEU = neuroticism; RTB = risk-taking behavior; SCZ = schizophrenia; SI = smoking initiation 
a After Bonferonni multiple testing (p-bf) correction for 14 tests. 
b After Bonferonni multiple testing correction for 8 tests. 
c Upper and lower limits are shown. 
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Discussion 

Polygenic risk scores of EA and smoking initiation are the main predictors of case-control 
status in our clinical psychiatric child and adolescent sample. PRS of Intelligence, neuroticism, 
anti-social behavior, ADHD, MDD and alcohol dependence are the other predictor 
phenotypes that in univariate analyses significantly distinguished between cases and controls. 
The multivariable analysis, testing the joint genetic signal of multiple predictor PRS had a 
higher predictive capacity compared to single PRS analysis. The increase in explained variance 
highlights the usability of multiple PRS in joint models to optimize precision accuracy for 
general psychopathology. 

Based on the first series of univariate analyses, we included eight significantly 
predicting traits in the multivariable analysis (EA, intelligence, smoking initiation, neuroticism, 
anti-social behavior, ADHD, MDD and alcohol dependence). Significant prediction came either 
from phenotypes that were based on a larger GWAS and hence had likely more statistical 
power (EA, intelligence, smoking initiation, neuroticism, MDD; Lee et al., 2018; Liu et al., 2019; 
Nagel et al., 2018; Savage et al., 2018; Wray et al., 2018) or were the more prevalent disorders 
in the sample (ADHD; Demontis & Walters, 2017), with a couple of exceptions (i.e., smaller 
GWAS and low prevalence in sample; anti-social behavior and alcohol dependence; Tielbeek 
et al., 2017; Walters et al., 2018). Four of these traits (EA, smoking initiation, antisocial 
behavior, MDD) remained significant predictors for case-control status in the multivariable 
analysis of which EA and smoking initiation survived multiple testing correction. Due to the 
high genetic correlations between respectively EA and intelligence (r .7), smoking initiation 
and alcohol dependence (r .8), neuroticism and MDD (r .7), and anti-social behavior and ADHD 
(r .9) the significance of one of both traits may be random, or based on only subtle differences 
between them. The significant positive association for the anti-social behavior PRS is a 
somewhat surprising finding as this GWAS is smaller and hence less powerful. We hope this 
result will be replicated in a future study. When comparing the results of the univariate and 
multivariable analysis we see that the explained variance increased from 3.99% (the highest 
explained variance result of the EA PRS as a single predictor) to 5.90%. The rise in explained 
variance shows that the addition of phenotypes is not only useful in studies with small, hence 
low powered GWAS summary statistics as shown before (Maier et al., 2018), but that it is also 
useful for more general defined phenotypes as diagnostic status. Yet, it is important to note 
that the general psychopathology construct might be less representative of some disorders, 
in particular ASD, given the reported PRS associations. We did not find a statistically significant 
association between six traits (insomnia, RTB, ASD, schizophrenia, anxiety, BIP) and case-
control status in our sample. For insomnia, this is possibly due to the genetic correlation of 
insomnia being larger in mood disorders than in eating disorders and ASD (Jansen et al., 2019). 
Our sample composition might be too varied with not enough mood disorder cases included 
to generate a detectable enrichment of common genetic variation for INS. RTB was included 
in our model as it has a genetic correlation with ADHD and antisocial behavior and a 
phenotypic overlap between these three traits is present. However, the genetic correlation 
might be too weak to predict clinical status. In addition, our sample comprises not only groups 

64



Predicting psychiatric case-control status with PRS 

65 

 

whom we expect to take more risk (ADHD) but also groups who are less likely to take risk 
(MDD/ anxiety) or with no relation to the risk phenotype (ASD, OCD/TIC disorders). As BiP and 
schizophrenia in general have a later age of onset compared to other psychiatric disorders 
(Abidi et al., 2017; Lijster et al., 2017; Patten, 2017) they are not present in our sample as this 
is a child and adolescent sample hence the common genetic variation of schizophrenia and 
BiP might not be enriched in Inside-out despite the link between ASD and schizophrenia 
(Zheng, Zheng, & Zou, 2018). The ASD PRS was expected to be associated as this is one of the 
larger diagnostic groups within the sample. However, this PRS has not been associated with 
the ASD subgroup in Inside-out in previous research, nor was the schizophrenia PRS (Jansen 
et al., 2019). Several explanations may explain this finding. First, ASD might have a unique 
genetic signature including an important contribution of rare variants (Satterstrom et al., 
2020) that is not captured by the PRS, and second, the PRS might be inaccurate due to a 
smaller GWAS sample size. Lastly, given the high heterogeneity of ASD, the diagnostic 
composition within the ASD Inside-out sample may differ from the ASD cases included in the 
GWAS sample.  

Another large diagnostic group in our sample is the anxiety group. Surprisingly, this PRS did 
not distinguish between cases and controls. As the anxiety PRS is based on a GWAS with a 
small sample (7,016 cases, 14,745 controls) it is likely to be underpowered.  

 

Limitations 

A weak point of the study is the referral bias present in samples generated in one institute. 
However, when comparing the diagnostic composition of Inside-out to a general psychiatric 
European sample of older children, we see a similar diagnostic composition (Gerritsen et. al. 
Milestone, oral communication). The main difference is the higher percentage of depression 
diagnoses in Milestone. As younger children are less likely to be diagnosed with depression 
and more likely to be diagnosed with anxiety, which later develops into depression, it seems 
likely these children will be included in different groups at younger ages, quite possibly in the 
ADHD, ASD and anxiety groups. With this in mind, in general, in both samples ADHD, ASD and 
anxiety show the highest prevalence, which suggests Inside-out is a good representation of 
the broader general child and adolescent psychiatric population. It would have been 
interesting to take educational level, cognitive performance and substance use into account. 
However, this information was not available for all samples used. In addition, this would 
remove part of the shared variance (Loe & Feldman, 2007), we did perform a sensitivity 
analysis excluding ID cases. A general concern regarding PRS studies in clinical samples is the 
limited clinical usability (Torkamani, Wineinger, & Topol, 2018). Our effect sizes are in line 
with the current literature (Jansen et al., 2019) meaning 5.9% still leaves room for many other 
contributing factors. Another point to keep in mind is the relatively small sample size of 1,402 
cases and 1,448 controls adding up to 2,850 participants. However, with acceptable standard 
errors and 95% CI intervals for the OR in the regression analysis we feel this study adds value 
and can function as a pilot study leading into larger studies in this direction. Finally, It would 
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be informative to run additional sensitivity analyses to rule out that the results are being 
driven by the ASD/ADHD part of the sample. Due to power issues this is currently not an 
option. However, the neurodevelopmental part of the paper has been analyzed extensively 
(Jansen et al., 2019) and besides a significant association with the ADHD PRS, no significant 
associations with the schizophrenia and ASD PRS have been observed. Still, we cannot rule 
out that other predictors might be associated specifically in this sample due to the over 
representation of ADHD and ASD. 

Strong points of the study are our carefully curated sample and the comparison 
between children as cases and adults as controls. As the controls are adults, the chance of 
them receiving an additional diagnosis of ADHD or ASD is small making them pure controls 
for these traits. In addition, the NESCOG control sample was corrected for undiagnosed 
ADHD, ASD and anxiety status. In the BePS sample, no psychiatric diagnoses were allowed. 
 

Future Directions 

Future directions in this area of research are replication in a larger independent child and 
adolescent sample, and preferably in an adult sample as well. Next to replication, research 
into causality is of great importance. We show association between diagnostic status and low 
EA and smoking initiation but are not able to address the issue of causality. Still, if low EA and 
smoking initiation are good predictors of psychiatric disorders, studies exploring early 
interventions targeting EA and smoking initiation to clarify their role in the development of 
psychiatric disorders can be useful. In addition, future studies will benefit from a longitudinal 
design to investigate how PRS correlate to later life outcomes. Based on this a risk profile of 
a group of individuals can be generated identifying individuals at risk whom might benefit 
from early interventions. Our PRS selection is a first step in identifying PRS suitable for this 
type of study. 

To conclude, our findings suggest that a lot of the genetic variance influencing 
psychiatric disorders influence a myriad of mental health-related traits. Hence, a genetic 
vulnerability for low EA and SI are potential predictors for general psychopathology in 
children and adolescents which can be taken into account as some of the potential factors in 
the development of psychiatric symptoms. In addition, a genetic vulnerability for low EA and 
SI might contribute to specific comorbidity patterns as observed between psychiatric 
symptoms and to the broad range of psychiatric symptoms and as such might represent 
important contributors to the p factor. Our findings can guide future studies on psychiatric 
comorbidity, and the p factor, and studies addressing the causal directions between EA, SI 
and general psychopathology. 
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Appendix S1. Selection of predictive polygenic risk scores (PRS) 

 

The choice of predictive polygenic risk scores (PRS) was based on well-established genetic 
correlations between all disorders in our sample ASD, ADHD, MDD and anxiety (Demontis & 
Walters, 2017; Grove et al., 2019; Nagel et al., 2018; Wray et al., 2018) and genetic 
correlations between obsessive-compulsive disorder (OCD) and ASD have been shown by 
significant PRS analysis (Guo et al., 2017), in a Tic disorder sample genetic correlations 
between Tic disorder and mood, anxiety or disruptive behaviors may be accounted for by 
ADHD or OCD (Hirschtritt et al., 2015) and eating disorders are genetically correlated to each 
other (Anorexia Nervosa (AN), Bulimia nervosa (BN) and Binge eating disorder) (Bulik et al., 
2019), to OCD (Cederlöf et al., 2015), alcohol dependence (Munn-Chernoff et al., 2015) and 
MDD (Wade et al., 2000).  

The carefully selected predictive phenotypes are chosen due to their presence in Inside-out 
or their known genetic correlation with the traits present in Inside-out. If well-powered GWAS 
summary statistics were unavailable for a disorder included in Inside-out, a genetically closely 
related trait or disorder was chosen. A GWAS with a sample size under 10,000 cases was 
classified as underpowered (Cichon & Ripke, 2016) and excluded from this study (AN (Duncan 
et al., 2017), Tic disorder (Scharf et al., 2013), OCD (International Obsessive Compulsive 
Disorder Foundation Genetics Collaborative (IOCDF-GC) and OCD Collaborative Genetics 
Association Studies (OCGAS), 2018)), with the exception of anxiety. As anxiety is one of the 
three large diagnostic groups (anxiety, ASD and ADHD) in Inside-out, we chose to include the 
GWAS (Otowa et al., 2016) with 7,016 cases and a total sample size of 17,310. To add more 
nuance to the genetic component of the anxiety phenotype, neuroticism (Nagel et al., 2018) 
and MDD (Wray et al., 2018), being genetically correlated to anxiety and being measures for 
internalizing behavior, were included to represent the genetic signal possibly missed by the 
anxiety PRS. Late onset psychiatric disorders such as schizophrenia, bipolar disorder (BiP) and 
alcohol dependence were considered for inclusion since the observed problems and 
diagnoses in the cases might currently be classified as anxiety but eventually lead to a 
schizophrenia or BiP diagnosis. For these cases the relevant late onset disorder PRS are 
valuable to include. schizophrenia, intelligence and EA are genotypically correlated to ASD 
(Grove et al., 2019) hence, they are included. Alcohol dependence (Walters et al., 2018). Risk 
taking behavior (RTB) (Linnér et al., 2019) and smoking initiation(Liu et al., 2019) are included 
as they can be seen as a measure for externalizing behavior which is closely related to ADHD 
(Ahmad & Hinshaw, 2017). Anti-social behavior (Tielbeek et al., 2017) is included due to its 
genetic correlation to ADHD and neuroticism and insomnia is genetically correlated to several 
psychiatric traits (Jansen et al., 2019). 
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For readability of all Tables the following abbreviations  have been used: educational 
attainment (EA), smoking initiation (SI), intelligence (IQ), major depressive disorder (MDD), 
attention deficit/hyperactivity disorder (ADHD), neuroticism (NEU), alcohol dependence 
(AD), anti-social behavior (ASB), insomnia (INS), risk taking behavior (RTB), anxiety, (ANX), 
schizophrenia (SCZ), bipolar disorder (BiP), autism spectrum disorder (ASD), obsessive-
compulsive disorder (OCD) and motor, learning or communication developmental disorder 
(Mot., learn, comm. dev. disorder). 

  

 

Table S1  
Overview diagnostic composition including codiagnoses   
  
diagnosis (not main 
diagnosis) comorbid co-diagnoses N 
ADHD (N=471) ASD 137 

 Disruptive behavior 58 

 Anxiety 46 

 Mot., learn, comm. dev. disorder 30 

 OCD 5 

 Tic disorder 19 

 Depression 14 

 
Disorder of infancy, childhood or adolescence 

NOS 10 

 Trauma / stress 6 

 Somatic symptoms 3 

 Eating disorder 2 

 Anorexia Nervosa 0 

Total  330 
  

78



Predicting psychiatric case-control status with PRS 

79 

 

diagnosis (not main 
diagnosis) co-diagnoses N 
ASD O(N=492) ADHD 137 

 Disruptive behavior 21 

 Anxiety 19 

 OCD 5 

 Tic disorder 13 

 Mot., learn, comm. dev. disorder 16 

 Depression 12 

 
Disorder of infancy, childhood or adolescence 

NOS 8 

 Eating disorder 6 

 Trauma / stress 2 

 Somatic symptoms 1 

 Anorexia Nervosa 0 

Total  240 
   
diagnosis (not main 
diagnosis) co-diagnoses N 
ANX (N=293) ASD 19 

 ADHD 46 

 Disruptive behavior 8 

 Eating disorder 9 

 OCD 21 

 Tic disorder 14 

 
Disorder of infancy, childhood or adolescence 

NOS 3 

 Depression 24 

 Mot., learn, comm. dev. disorder 11 

 Anorexia Nervosa 1 

 Somatic symptoms 3 

 Trauma / stress 5 

Total  164 
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diagnosis (not main 
diagnosis) co-diagnoses N 
Disruptive behavior 
(N=101) ADHD 58 

 ASD 21 

 ANX 8 

 Depression 7 

 OCD 2 

 Tic disorder 3 

 
Disorder of infancy, childhood or adolescence 

NOS 2 

 Mot., learn, comm. dev. disorder 1 

 Trauma / stress 1 

 Eating disorder 0 

 Anorexia Nervosa 0 

 Somatic symptoms 0 

Total  103 
   
diagnosis (not main 
diagnosis) co-diagnoses N 
Eating disorder (N=97) Anorexia Nervosa 48 

 ANX 9 

 ASD 6 

 Depression 3 

 Trauma / stress 3 

 ADHD 2 

 OCD 1 

 Tic disorder 0 

 Somatic symptoms 1 

 Disruptive behavior 0 

 
Disorder of infancy, childhood or adolescence 

NOS 0 

 Mot., learn, comm. dev. disorder 0 

Total  73 
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diagnosis (not main 
diagnosis) co-diagnoses N 
OCD (N=43) ANX 21 

 ADHD 5 

 ASD 5 

 Depression 4 

 Disruptive behavior 2 

 Eating disorder 1 

 Mot., learn, comm. dev. disorder 0 

 Trauma / stress 1 

 
Disorder of infancy, childhood or adolescence 

NOS 0 

 Anorexia Nervosa 0 

 Tic disorder 4 

 Somatic symptoms 0 

Total  43 
   
diagnosis (not main 
diagnosis) co-diagnoses N 
Tic disorder (N=50) ANX 34 

 ADHD 19 

 ASD 13 

 Depression 3 

 Disruptive behavior 3 

 Eating disorder 0 

 Mot., learn, comm. dev. disorder 1 

 Trauma / stress 0 

 
Disorder of infancy, childhood or adolescence 

NOS 0 

 Anorexia Nervosa 0 

 OCD 4 

 Somatic symptoms 0 

Total  77 
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diagnosis (not main 
diagnosis) co-diagnoses N 
Disorder of infancy, 
childhood or 
adolescence NOS ADHD 10 

(N=65) ASD 8 

 ANX 3 

 Disruptive behavior 2 

 Mot., learn, comm. dev. disorder 2 

 Eating disorder 0 

 OCD 0 

 Tic disorder 0 

 Depression 0 

 Anorexia Nervosa 0 

 Somatic symptoms 0 

 Trauma / stress 0 

Total  25 
   
diagnosis (not main 
diagnosis) co-diagnoses N 
Depression (N=64) ANX 24 

 ADHD 14 

 ASD 12 

 Disruptive behavior 7 

 OCD 4 

 Tic disorder 3 

 Mot., learn, comm. dev. disorder 6 

 Eating disorder 3 

 Somatic symptoms 3 

 Anorexia Nervosa 2 

 Trauma / stress 1 

 
Disorder of infancy, childhood or adolescence 

NOS 0 

Total  79 
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diagnosis (not main 
diagnosis) co-diagnoses N 
Mot., learn, comm. 
dev. Disorder (N=59) ADHD 30 

 ASD 16 

 ANX 11 

 Depression 6 

 Somatic symptoms 3 

 
Disorder of infancy, childhood or adolescence 

NOS 2 

 Disruptive behavior 1 

 OCD 0 

 Tic disorder 1 

 Trauma / stress 1 

 Eating disorder 0 

 Anorexia Nervosa 0 

Total  71 
   
diagnosis (not main 
diagnosis) co-diagnoses N 
Anorexia Nervosa 
(N=48) Depression 2 

 ANX 1 

 Trauma / stress 1 

 ASD 0 

 ADHD 0 

 Disruptive behavior 0 

 Eating disorder 0 

 OCD 0 

 Tic disorder 0 

 
Disorder of infancy, childhood or adolescence 

NOS 0 

 Mot., learn, comm. dev. disorder 0 

 Somatic symptoms 0 

Total  4 
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diagnosis (not main 
diagnosis) co-diagnoses N 
Somatic symptoms 
(N=47) ADHD 3 

 ANX 3 

 Depression 3 

 Mot., learn, comm. dev. disorder 3 

 ASD 1 

 Eating disorder 1 

 Trauma / stress 1 

 Disruptive behavior 0 

 OCD 0 

 Tic disorder 0 

 
Disorder of infancy, childhood or adolescence 

NOS 0 

 Anorexia Nervosa 0 

Total  15 
   
diagnosis (not main 
diagnosis) co-diagnoses N 
Trauma / stress (N=39) ADHD 6 

 ANX 5 

 Eating disorder 3 

 ASD 2 

 Disruptive behavior 1 

 OCD 1 

 Tic disorder 0 

 Depression 1 

 Mot., learn, comm. dev. disorder 1 

 Anorexia Nervosa 1 

 Somatic symptoms 1 

 
Disorder of infancy, childhood or adolescence 

NOS 0 

Total  22 
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Table S2:  
Most common comorbidities in the sample 
 
Diagnosis N Co-diagnose N co-diagnoses 
ASD 492 ADHD 137 

  Disruptive behavior 21 
  Anxiety 19 

ADHD 471 ASD 137 
  Disruptive behavior 58 
  Anxiety 46 

Anxiety 293 ASD 19 
  ADHD 46 
  Disruptive behavior 8 

Disruptive behavior 101 ADHD 58 
  ASD 21 
  ANX 8 

Eating disorder 97 Anorexia Nervosa 48 
  ANX 9 
  ASD 6 

OCD 43 ANX 14 
  ASD 5 
  ADHD 5 

Tic disorder 50 ANX 34 
  ADHD 24 
  ASD 18 

Disorder of infancy,  65 ADHD 10 
childhood or    ASD 8 
adolescence NOS  ANX 3 
Depression 64 ANX 24 

  ADHD 14 
  ASD 12 

Mot., learn, comm.  59 ADHD 30 
dev. disorder  ASD 16 

  ANX 11 
Anorexia Nervosa 48 Depression 2 

  ANX 1 
  Trauma / stress 1 

Somatoform  47 ADHD 3 
disorders  ANX 3 

  Depression 3 
Trauma / stress 39 ADHD 6 

  ANX 5 
  Eating disorder 3 
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diagnosis (not main 
diagnosis) co-diagnoses N 
Somatic symptoms 
(N=47) ADHD 3 

 ANX 3 

 Depression 3 

 Mot., learn, comm. dev. disorder 3 

 ASD 1 

 Eating disorder 1 

 Trauma / stress 1 

 Disruptive behavior 0 

 OCD 0 

 Tic disorder 0 

 
Disorder of infancy, childhood or adolescence 

NOS 0 

 Anorexia Nervosa 0 

Total  15 
   
diagnosis (not main 
diagnosis) co-diagnoses N 
Trauma / stress (N=39) ADHD 6 

 ANX 5 

 Eating disorder 3 

 ASD 2 

 Disruptive behavior 1 

 OCD 1 

 Tic disorder 0 

 Depression 1 

 Mot., learn, comm. dev. disorder 1 

 Anorexia Nervosa 1 

 Somatic symptoms 1 

 
Disorder of infancy, childhood or adolescence 

NOS 0 

Total  22 
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Table S2:  
Most common comorbidities in the sample 
 
Diagnosis N Co-diagnose N co-diagnoses 
ASD 492 ADHD 137 

  Disruptive behavior 21 
  Anxiety 19 

ADHD 471 ASD 137 
  Disruptive behavior 58 
  Anxiety 46 

Anxiety 293 ASD 19 
  ADHD 46 
  Disruptive behavior 8 

Disruptive behavior 101 ADHD 58 
  ASD 21 
  ANX 8 

Eating disorder 97 Anorexia Nervosa 48 
  ANX 9 
  ASD 6 

OCD 43 ANX 14 
  ASD 5 
  ADHD 5 

Tic disorder 50 ANX 34 
  ADHD 24 
  ASD 18 

Disorder of infancy,  65 ADHD 10 
childhood or    ASD 8 
adolescence NOS  ANX 3 
Depression 64 ANX 24 

  ADHD 14 
  ASD 12 

Mot., learn, comm.  59 ADHD 30 
dev. disorder  ASD 16 

  ANX 11 
Anorexia Nervosa 48 Depression 2 

  ANX 1 
  Trauma / stress 1 

Somatoform  47 ADHD 3 
disorders  ANX 3 

  Depression 3 
Trauma / stress 39 ADHD 6 

  ANX 5 
  Eating disorder 3 
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Table S4    
Inflation statistics GWAS studies 
   
Phenotype LD intercept  
ADHD 1.0287 (0.01)  
ASD 0.9992 (0.0079)  
SCZ 1.0699 (0.0113)  
MDD 0.9946 (0.0079)  
NEU 1.0239 (0.0107)  
IQ 1.0754 (0.0118)  
ASB 0.9983 (0.0076)  
INS 1.0133 (0.0086)  
AD 1.0119 (0.0061)  
ANX 1.0009 (0.0066)  
EA 1.0279 (0.0134)  
RTB 1.0101 (0.0086)  
SI 0.9007 (0.0086)  
BiP 1.0185 (0.0077)  
   
   
LD intercept calculated in LDSR 
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Table S4    
Inflation statistics GWAS studies 
   
Phenotype LD intercept  
ADHD 1.0287 (0.01)  
ASD 0.9992 (0.0079)  
SCZ 1.0699 (0.0113)  
MDD 0.9946 (0.0079)  
NEU 1.0239 (0.0107)  
IQ 1.0754 (0.0118)  
ASB 0.9983 (0.0076)  
INS 1.0133 (0.0086)  
AD 1.0119 (0.0061)  
ANX 1.0009 (0.0066)  
EA 1.0279 (0.0134)  
RTB 1.0101 (0.0086)  
SI 0.9007 (0.0086)  
BiP 1.0185 (0.0077)  
   
   
LD intercept calculated in LDSR 
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Table S9 

      

Multivariable logistic regression analysis 
    

       

Model 
 Nagelkerke 
R2  

Explained 
variance in %         

baseline 
model 0.119 11.9     
Full model 0.178 17.8     
only the 
PRSs 0.059 5.9      
INCLUDED 
PRS BETA SE Wald P OR 95% CI for OR * 
EA -0.299 0.050 35.598 2.43E-09 0.741 0.67 - 0.81 
SI -0.166 0.045 13.469 0.000243 0.847 0.78 - 0.93 
MDD 0.123 0.053 5.449 0.019585 1.131 1.02 - 1.25 
ASB 0.086 0.042 4.252 0.039212 1.089 1.00 - 1.18 
ADHD 0.081 0.044 3.409 0.06484 1.085 1.00 - 1.18 
IQ -0.068 0.047 2.090 0.148281 0.934 0.86 - 1.02 
AD 0.053 0.042 1.559 0.21182 1.054 0.97 - 1.15 
NEU 0.043 0.043 0.998 0.317823 1.044 0.96 - 1.14 
       
baseline model covariates: 8 PCs, sex and chip    
full model: baseline plus univariate significant PRS    
All included PRS have SNP P-val threshold <1 

 
  

*upper and lower limits are shown  
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Table S4    
Inflation statistics GWAS studies 
   
Phenotype LD intercept  
ADHD 1.0287 (0.01)  
ASD 0.9992 (0.0079)  
SCZ 1.0699 (0.0113)  
MDD 0.9946 (0.0079)  
NEU 1.0239 (0.0107)  
IQ 1.0754 (0.0118)  
ASB 0.9983 (0.0076)  
INS 1.0133 (0.0086)  
AD 1.0119 (0.0061)  
ANX 1.0009 (0.0066)  
EA 1.0279 (0.0134)  
RTB 1.0101 (0.0086)  
SI 0.9007 (0.0086)  
BiP 1.0185 (0.0077)  
   
   
LD intercept calculated in LDSR 
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Table S9 

      

Multivariable logistic regression analysis 
    

       

Model 
 Nagelkerke 
R2  

Explained 
variance in %         

baseline 
model 0.119 11.9     
Full model 0.178 17.8     
only the 
PRSs 0.059 5.9      
INCLUDED 
PRS BETA SE Wald P OR 95% CI for OR * 
EA -0.299 0.050 35.598 2.43E-09 0.741 0.67 - 0.81 
SI -0.166 0.045 13.469 0.000243 0.847 0.78 - 0.93 
MDD 0.123 0.053 5.449 0.019585 1.131 1.02 - 1.25 
ASB 0.086 0.042 4.252 0.039212 1.089 1.00 - 1.18 
ADHD 0.081 0.044 3.409 0.06484 1.085 1.00 - 1.18 
IQ -0.068 0.047 2.090 0.148281 0.934 0.86 - 1.02 
AD 0.053 0.042 1.559 0.21182 1.054 0.97 - 1.15 
NEU 0.043 0.043 0.998 0.317823 1.044 0.96 - 1.14 
       
baseline model covariates: 8 PCs, sex and chip    
full model: baseline plus univariate significant PRS    
All included PRS have SNP P-val threshold <1 

 
  

*upper and lower limits are shown  
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Abstract 
 

Neurodevelopmental disorders such as attention deficit/hyperactivity disorder (ADHD) and 
autism spectrum disorder (ASD) are highly heritable and influenced by many single nucleotide 
polymorphisms (SNPs). SNPs can be used to calculate individual polygenic risk scores (PRS) 
for a disorder. We aim to explore the association between the PRS for ADHD, ASD and for 
Schizophrenia (SCZ), and ADHD and ASD diagnoses in a clinical child and adolescent 
population. Based on the most recent genome wide association studies of ADHD, ASD and 
SCZ, PRS of each disorder were calculated for individuals of a clinical child and adolescent 
target sample (N = 688) and for adult controls (N = 943). We tested with logistic regression 
analyses for an association with (1) a single diagnosis of ADHD (N = 280), (2) a single diagnosis 
of ASD (N = 295), and (3) combining the two diagnoses, thus subjects with either ASD, ADHD 
or both (N = 688). Our results showed a significant association of the ADHD PRS with ADHD 
status (OR 1.6, P = 1.39 × 10−07) and with the combined ADHD/ASD status (OR 1.36, P = 1.211 
× 10−05), but not with ASD status (OR 1.14, P = 1). No associations for the ASD and SCZ PRS 
were observed. In sum, the PRS of ADHD is significantly associated with the combined 
ADHD/ASD status. Yet, this association is primarily driven by ADHD status, suggesting disorder 
specific genetic effects of the ADHD PRS. 
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Introduction 

Psychiatric disorders are heritable complex traits with varying heritability estimates. At the 
top end of the heritability range, reported heritabilities vary from 74% for ASD (Tick et al. 
2016) to 80% for ADHD (Brikell et al. 2015), and 81% for SCZ (Sullivan et al. 2003). These traits 
likely have a similar genetic architecture with a role for common and rare variants, including 
de novo mutations and copy number variants (CNV) playing an important role (Gratten et al. 
2014). Common genetic variation can be captured in a polygenic signal that contains a 
multitude of single nucleotide polymorphisms (SNPs) from many genes (Gratten et al. 2014; 
Sullivan et al. 2012). Genome-wide association studies (GWAS) are a highly successful 
method to identify the common variants that influence these disorders (Visscher et al. 2017). 
GWAS reveal increasingly more significantly associated loci. These represent the most 
associated part of the genetic signal. The most recent GWAS for ADHD, ASD, and SCZ 
identified 12, 5, and 145 independent associated loci, respectively (Demontis and Walters 
2017; Grove et al. 2017; Pardiñas et al. 2018).  
However, given the polygenicity of disorders like ADHD and ASD, also non-significantly 
associated SNPs are likely to contribute to the disorder (Wray et al. 2014). Hence, it is also of 
interest to investigate the non-genomewide significant component of the genetic signal. 

One method to include the non-genome-wide significant component of the common 
genetic variation is the polygenic risk scores (PRS) approach. PRS are the sum of risk alleles 
weighted by their estimated effect size as determined in an independent GWAS sample, and 
can serve as such as an estimation of an individual’s polygenic risk (Torkamani et al. 2018; 
Weiner et al. 2017; Wray et al. 2014). PRS estimated from an independent sample can be 
used for prediction between groups (e.g., cases and controls), or for stratifying groups of 
people according to high or low genetic risk as defined by their PRS. For example, in a sample 
of children from the general population, the SCZ PRS has shown positive associations with 
behavioral and emotional problems in children as young as 3 years old (Jansen et al. 2017). 
Similarly, the ADHD PRS has been associated with attention problems in children from the 
general population (Groen-Blokhuis et al. 2014), and with attentional and hyperactive-
impulsive traits in another general population sample (age ~ 7 year, 7 months) (Martin et al. 
2014). 
As previous research indicates, the common genetic burden of different psychiatric disorders 
partially overlaps (Mitchell 2011). To add, both ADHD and ASD, as well as SCZ, are regarded 
neurodevelopmental disorders (NDD) (Mullin et al. 2013; Rapoport et al. 2012) and genetic 
studies have shown positive genetic correlations of 0.36 for ASD/ADHD (Grove et al. 2017), 
0.211 for ASD/SCZ (Grove et al. 2017), and 0.122 for ADHD/SCZ (Demontis and Walters 2017). 

In addition, it was shown that the prevalence of SCZ is significantly higher in an ASD 
sample compared to controls (OR 3.55, 95% CI 2.08–6.05, P < 0.001), and the prevalence of 
ASD in an SCZ samples ranges between 3.4 and 52% compared to 1% in the general 
population (Zheng et al. 2018). To add, ASD and SCZ share clinical features among which 
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social cognition (Cheung et al. 2010; DSM 5 2013), while ASD and ADHD share inattention 
(Craig et al. 2015; DSM 5 2013). 

The current study adds to this literature by investigating associations of the ADHD, 
ASD, and SCZ PRS in a sample of children and adolescents referred to an outpatient university 
clinic. The children in this sample were assessed with standardized procedures generating 
clinical (DSM-IV) diagnoses as well as continuous rating scale scores on behavioral/emotional 
problems. We aim to investigate whether PRS for ADHD (Demontis and Walters 2017), ASD 
(Grove et al. 2017) and SCZ (Pardiñas et al. 2018) can distinguish ADHD and ASD cases from 
controls in this sample. Findings from genetic studies suggest a partly shared genetic diathesis 
underlying neurodevelopmental disorders (including SCZ, ASD and ADHD) (Bulik-Sullivan et 
al. 2015). We therefore hypothesized that the ADHD, ASD and SCZ PRS would be associated 
with the ADHD/ASD (either ASD, ADHD or both) diagnostic status. In addition, we expected 
both the ADHD and ASD PRS to be associated with ADHD and ASD respectively. In addition, 
we expected the SCZ PRS to be associated with ASD status given the genetic overlap 
previously reported (Autism Spectrum Disorders Working Group of The Psychiatric Genomics 
Consortium 2017), although conflicting results with low (Cross-Disorder Group of the 
Psychiatric Genomics Consortium et al. 2013) or no (Vorstman et al. 2013) genetic association 
between ASD and SCZ have been reported as well. As a sensitivity analysis, we aim to perform 
a follow up correlation analysis and subsequently a linear regression analysis with the Child 
Behavioral Checklist (CBCL) subscales to validate the robustness of our findings and gain 
additional information on the link between associated genetic signals and specific behavioral 
or emotional problems, given a particular clinical diagnosis. 
 

Methods 

Sample 

Psychiatric outpatient sample: “Inside‑‑Out” 

A new psychiatric outpatient sample called “Inside-Out” is analyzed. Data were collected 
from January 2001 until January 2012 at the department of Child and Adolescent Psychiatry 
at the Sophia Children’s Hospital at Erasmus Medical Center in Rotterdam, resulting in a 
psychiatric outpatient sample. Before the first visit, parents and children received the CBCL 
from the Achenbach System of Empirically Based Assessment (ASEBA) (Achenbach and 
Rescorla 2001). In addition, DNA was extracted from saliva and genotyping was performed 
on the Illumina PsychChip array (see data). The procedure was approved by the ethical 
committee of the Erasmus Medical Center. The total Inside-Out sample comprises 1941 
children diagnosed with one or more DSMIV disorders (ASD, ADHD, tic disorder, obsessive 
compulsive disorder (OCD), depression, anxiety, anorexia nervosa (AN), eating disorder NOS, 
RETT syndrome and subcategories of mentioned disorders) and children with a delayed 
diagnostic status or children who did not receive a DSM diagnosis (27.9%).  
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The diagnostic procedure consisted of an interview with parents, a semi-structured interview 
with the child based on the Semi-structured Clinical Interview for Children and Adolescents 
(McConaughy and Achenbach 2001), the Diagnostic Interview Schedule for Children IV-P 
(Shaffer et al. 2000) and the Autism Diagnostic Observation Schedule-Generic (Lord et al. 
1989) in case of a suspected autism spectrum disorder. Diagnostic classification was done by 
a clinician according to the Diagnostic and Statistical Manual of Mental Disorders, fourth 
edition (DSM-IV). The above-mentioned procedure was part of standard clinical practice for 
the current study, genetic and clinical information was used of the children who received an 
ADHD diagnosis, no ASD co-diagnosis allowed (N = 280, age range: 3.3–18.5 years, mean: 
9.06, SD: 2.66) or an ASD diagnosis, no ADHD co-diagnosis allowed (RETT excluded) (N = 295, 
age range: 2.5–18.3 years, mean: 9.02, SD: 3.55). In addition we used a sample of combined 
ADHD and ASD diagnoses where comorbidity of ADHD and ASD was allowed, adding another 
113 children to this combined sample (N = 688, age range 2.5–18.5, mean: 8.96, SD: 3.07). 
The target sample was diagnosed with the DSM-IV and includes many cases with Asperger 
and pervasive developmental disorder-not otherwise specified (PDD-NOS) diagnoses (82% of 
total ASD sample). ADHD and ASD co-diagnosed children (N = 113) were not included in the 
ADHD and ASD sample. For sample specifics see Tables 1 and 2.  
 

Population‑‑based control sample 

As a control sample, we used a Dutch population sample (NESCOG, N = 943, age range: 17.0–
79.0) previously described by Polderman et al. (2013). NESCOG comprises a general 
population and a family-based sample of which closely related individuals were excluded. 
Data were collected on cognitive tasks, behavioral conditions (such as ADHD and ASD 
symptoms), life events, personality and environmental factors, as well as genetic 
information. Moreover, to correct for undiagnosed ADHD status, participants scoring 3 SD 
above the mean on the Conners’ Adult ADHD Rating Scale (CAARS) (Conners et al.), or the 
Attention Problems scale of the Young Adult Self Report (YASR) (Achenbach 1997) were 
excluded. Participants scoring three SD above mean on the Autism Quotient (AQ) (Baron-
Cohen et al. 2001) were also excluded, resulting in a final control sample of 943 participants 
(age range 17–79, 38% male), see Tables 1 and 2. 

 

Data 

Genotyping of the cases and controls was performed on the same Illumina PsychChip array. 
The PsychChip SNP array contains HumanCore, Human Exome and custom content to 
accurately capture genetic variants previously linked with psychiatric disorders (https 
://www.illum ina.com/produ cts/ by-type/microa rray- kits/infini um-psycharray. htm l).  
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Genetic variants in the clinical sample were filtered based on minor allele frequency (MAF < 
1%), Hardy–Weinberg disequilibrium (P < 1 × 10−6) and SNP call rate (< 95%). Individuals were 
subsequently filtered based on relatedness (pairwise Identity-By-Descent (IBD) > 0.185), 
genotype and phenotypic sex mismatch, outlying heterozygosity and non European ancestry 
(4 SD outside the range of the first two genetic principal components of the HapMap3 
European founder population (CEU)) resulting in a clinical sample of 812 patients of which 
688 are diagnosed with ADHD, ASD or both. The remaining part of the children in this sample 
(N = 124) are diagnosed with either Rett syndrome, anorexia nervosa or other eating 
disorders, tourette disorder, or other disorders. Another subset of the sample is currently 
being genotyped and includes children diagnosed with anxiety disorder, affective disorder or 
other disorders. In the control sample, SNP filtering was based on MAF (< 1%) Hardy–
Weinberg disequilibrium (P < 0.00001) and SNP call rate (< 95%). Individual QC was based on 
missingness (> 5%), ancestry (within the range of 1000G CEU population on first PCs), 
relatedness (pairwise IBD > 0.185), gender mismatch, outlying heterozygosity and missing 
phenotypes. 

 

Sex differences in the samples 

The case and control samples differed in sex distribution (cases are 75% and the controls 25% 
males). Therefore, we compared allele frequencies between males and females in an 
independent sample, GoNL (see www.nlgenome.nl for more information), by means of 
correlation. The Pearson correlation coefficient between the male and female allele 
frequencies is 0.99, removing concerns of different allele frequencies in the two samples due 
to sex differences. 
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Table 1  Sample overview 

Sample N Reference 

Discovery samples used for 
computation of PRS   

Discovery sample ADHD 

 

 

Cases: 20,183 

Controls: 35,191 
Demontis et 
al. (2019) 

Discovery sample ASD Cases: 18,381 

Controls: 27,969 

Grove et al. 
(2019) 

Discovery sample SCZ Cases: 40,675 

Controls: 64,643 

Pardiñas et al. 
(2018) 

Sample N Additional information  

Target samples used for case control studies: Inside-
out (logistic regression) 

 

 ADHD/ASD sample 688 ADHD/ASD comorbidity allowed, 
therefore including 113 extra children 

 ADHD sample 280 Subset of ADHD/ASD sample based on 
diagnostic status. ADHD/ASD 
comorbidity NOT allowed 

 ASD sample 295 Subset of ADHD/ASD sample based on 
diagnostic status. ADHD/ASD 
comorbidity NOT allowed 

 Control sample 943 NESCOG general population sample 
corrected for high scores on AQ and 
CAARS 

Target sample used for sensitivity analysis: inside-out (correlations PRS-syndrome and CBCL 
scales) 

ADHD/ASD sample 530 Subset of ADHD/ASD sample based on 
the presence of the CBCL for age 6-18 
and hence, diagnostic age. ADHD/ASD 
comorbidity allowed 

 
ASD autism spectrum disorder, ADHD attention deficit/hyperactivity disorder, SCZ 
schizophrenia, CBCL child behavioral checklist, AQ autism quotient, CAARS Conners’ Adult 
ADHD Rating Scale 
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Table 2 Sample description 

   

Sample logistic regression 

Sample  

Correlation 

analysis  

  ADHD 

/ASD 

ADHD ASD Control ADHD 

/ASD * 

N 688 280 295 943 530 

Age range 

(mean, SD) 

in years 

2.5- 18.5 

(8.96, 3.07) 

3.3 -18,5 

(9.06, 2.66) 

2.5- 18.3 

(9.02, 3.55) 

17.0- 79.0 

(44.47, 13.94) 

6.05 – 18.52  

(9.7, 2.60) 

Gender % 

male 

76 75 73 38 75 

ADHD/ASD = ADHD (280) + ASD (295) plus children codiagnosed with ADHD and ASD (113) 

*Sample size differs from the sample size for the logistic regression due to CBCL 6-18 (age 
range) availability 

 

Polygenic risk scoring 

The PRS is constructed as the sum of risk alleles weighted by their effect size. Per disorder 
several PRS were calculated with different P value inclusion thresholds (P-values: < 0.01,            
< 0.05, < 0.1, < 0.2, < 0.3, < 0.4, < 0.5, < 1). Starting from a low P-value threshold moving up 
to P-value 1, an optimal P-value threshold with the highest explained variance was identified, 
including the most truly associated positives. After this threshold more false positives will be 
included dampening the true signal (Wray et al. 2014). Prior to our calculation of the PRS, the 
SNPs were pruned (LD  R2 < 0.1, 250 kb pair window) to remove variants in LD. Polygenic 
scoring was performed with the software package PRSice (Euesden et al. 2015). The PRS for 
ASD, ADHD and SCZ were constructed using the most recent summary statistics from GWAS 
with the largest publicly available sample size, ADHD (Demontis and Walters 2017) (20,183 
cases and 35,191 controls), ASD (Grove et al. 2017) (18,382 cases and 27,969 controls), and 
SCZ (Pardiñas et al. 2018) (40,675 cases and 64,643 controls). Of note, the Inside-Out and the 
control sample are independent samples, not included in these GWAS. After polygenic 
scoring the results were standardized to mean 0 and SD 1 for interpretational purposes. For 
the number of SNPs included in the scores see Supplementary Table S1. 
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Behavioral measurements 

Child emotional and behavioral problems were assessed using the Dutch version of the Child 
Behavior Checklist/6–18 (CBCL) (Achenbach and Rescorla 2001) filled out by the parent 
before the first visit to the hospital. The CBCL contains 113 problem items that can be scored 
on eight syndrome scales (Anxious/Depressed  Nitem = 13, Withdrawn/ Depressed  Nitem = 8, 
Somatic Complaints  Nitem = 11, Social Problems  Nitem = 11, Thought Problems N item = 15, 
Attention Problems N item = 10, Rule Breaking Behavior  Nitem = 17 and Aggressive Behavior  
Nitem = 18). Parents score each problem on a three-point scale (0: not true, 1: somewhat or 
sometimes true, 2: very or often true). This follow up analysis included children with a CBCL 
6–18 report, completed by the parent less then a year before receiving the diagnosis. If a 
CBCL from within a year before diagnosis was not present the person was excluded from this 
part of the analysis. In all analyses, sum scores on the CBCL syndrome scales were used. 

 

Statistical analysis 

Case control analysis on the association between PRS and disease status 

We performed logistic regression analyses to investigate if the ADHD, ASD or SCZ PRS can 
distinguish between cases and controls in a sample (1) with a diagnosis of ADHD, ASD not 
permitted as co-diagnosis (ADHD, N = 280), (2) with a diagnosis of ASD, ADHD not permitted 
as co-diagnosis (ASD, N = 295), and (3) combining the first two samples, thus subjects with 
either ASD, ADHD or both (ADHD/ ASD, N = 688). For each PRS, eight different SNP inclusion 
thresholds were tested. All P-values were corrected for multiple testing by means of 
Bonferroni correction (72 tests: three samples (ADHD, ASD, ADHD/ASD), three PRS (ADHD, 
ASD, SCZ), eight PRS thresholds (0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1) per disorder). To account 
for population stratification we included eight principal components (PCs). The PCs were 
calculated based on the pruned data with Eigensoft (Price et al. 2006) (version 3.0) software. 
Additionally, sex was added as a covariate. Age was not added as a covariate as all cases are 
children and all controls are adults. 

 

Sensitivity analysis: correlation and association between CBCL syndrome scales and PRS 

We aim to provide additional evidence for the significant association of the PRS and the 
disorders as measured by the CBCL score severity. Given statistical power, we tested the 
association with symptom severity only in the combined ADHD/ASD sample by calculating 
the correlation between the significantly associated PRS (i.e., ADHD) and the syndrome scales 
of the CBCL. Age was added as a covariate in addition to the previously used eight PCs and 
sex. All analyses were performed in IBM SPSS statistics 21.  
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Results 

Case control analysis on the association between PRS and disorder status 

The ADHD PRS showed significant associations before multiple testing correction with 
disorder status in all three samples (Table 3). As shown in Fig. 1, all ADHD PRS P-value 
thresholds remained significant after Bonferroni multiple testing correction in both the 
combined ADHD/ASD and ADHD sample, but not the ASD sample. The most stringent P-value 
threshold of 0.01 generated a positive association in the ADHD/ASD sample OR 1.28 (P = 1.3 
× 10−3), and ADHD sample OR 1.4 (P = 3.6 × 10−4). The most optimal P-value threshold as 
defined by explained variance, OR and P-value was 0.3 for the ADHD/ASD sample  (R2 = 0.02, 
OR 1.36, P = 1.21 × 10−05), and 0.4 for the ADHD sample  (R2 = 0.045, OR 1.62, P = 5.75 × 10−08). 

The most lenient P-value threshold of P < 1 had a significant association in the ADHD/ASD 
sample, OR 1.35 (P = 1.9 × 10−5), and also in the ADHD sample OR 1.62 (P = 4.73 × 10−8). In 
the ASD sample none of the results remained significant after Bonferroni correction. 

The ASD and SCZ PRS were not significantly associated with the ADHD, ASD, or combined 
ADHD/ASD status. The SCZ PRS including all SNPs (P-value threshold P < 1) showed a trend 
towards association in the ADHD/ASD sample (OR 1.13, P = 5.72 × 10−2) (Supplementary 
Tables S2 and S3 and Figs. S1 and S2). 

 

  

Fig. 1  
Variance explained  
(Nagelkerke  R2) by 
the ADHD PRS.  
All SNP inclusion  
P-value thresholds  
are shown from low  
to high. P-values are 
shown on top of each 
bar and are  
Bonferroni corrected 
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Table 3  Results of the logistic regression analyses for the ADHD PRS 

 

 

All models have eight PCs and sex as covariate (baseline model). Bonferroni P-value 
corrected for 72 tests. Sig. P-values are shown in bold. Results of the logistic regression 
analyses for the ASD and SCZ PRS are presented in the Supplementary Tables 3 and 4 

ADHD PRS  B Wald p 
uncorrected threshold 

Bonferroni corr. 
Wald p 

OR Nagelkerke  
R2  
PRS 

ADHD/ASD sample (N = 688) 
 0.01 0.243 1.80 × 10−05 1.30 × 10−03 1.275 0.013 
 0.05 0.274 2.00 × 10−06 1.44 × 10−04 1.316 0.016 
 0.1 0.278 2.00 × 10−06 1.44 × 10−04 1.321 0.017 
 0.2 0.287 7.91 × 10−07 5.70 × 10−05 1.333 0.018 
 0.3 0.304 1.68 × 10−07 1.21 × 10−05 1.355 0.020 
 0.4 0.297 2.96 × 10−07 2.13 × 10−05 1.346 0.019 
 0.5 0.297 2.88 × 10−07 2.07 × 10−05 1.346 0.019 
 1 0.297 2.71 × 10−07 1.95 × 10−05 1.346 0.019 

ADHD sample (N = 
280) 
 0.01 0.337 5.00 × 10−06 3.60 × 10−04 1.401 0.024 
 0.05 0.356 2.00 × 10−06 1.44 × 10−04 1.428 0.026 
 0.1 0.401 2.52 × 10−07 1.82 × 10−05 1.493 0.031 
 0.2 0.454 9.68 × 10−09 6.97 × 10−07 1.574 0.039 
 0.3 0.472 1.93 × 10−09 1.39 × 10−07 1.603 0.043 
 0.4 0.482 7.98 × 10−10 5.75 × 10−08 1.620 0.045 
 0.5 0.479 9.87 × 10−10 7.11 × 10−08 1.614 0.044 
 1 0.485 6.57 × 10−10 4.73 × 10−08 1.625 0.045 

ASD sample (N = 
295) 
 0.01 0.176 1.45 × 10−02 1 1.192 0.007 
 0.05 0.201 7.33 × 10−03 5.28 × 10−01 1.222 0.008 
 0.1 0.169 2.35 × 10−02 1 1.184 0.006 
 0.2 0.132 7.82 × 10−02 1 1.141 0.003 
 0.3 0.135 6.83 × 10−02 1 1.144 0.004 
 0.4 0.119 1.05 × 10−01 1 1.127 0.003 
 0.5 0.129 7.83 × 10−02 1 1.138 0.003 
 1 0.130 7.68 × 10−02 1 1.139 0.004 
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Sensitivity analysis: association between CBCL syndrome scales and the ADHD PRS 

Based on the correlational structure in the ADHD/ASD sample (Supplemental Material Table 
4) between the CBCL syndrome scale scores and the ADHD PRS P-value thresholds, we 
concluded the correlation was too low (all correlations ≤ 0.1) to warrant the linear regression 
analysis. Mean scores and standard deviations for the CBCL syndrome scale scores for the 
ADHD/ASD sample are provided in Supplementary Table 5. 

 

Discussion 

This study investigated the associations of PRS for ADHD, ASD and SCZ, with ADHD and ASD 
status in a clinical child and adolescent population. As hypothesized, we found a significant 
association between the ADHD PRS and the combined ADHD/ASD status, and the separate 
ADHD status. The PRS SNP-inclusion thresholding resulted in a rise of explained variance with 
increasing P-value thresholds, showing that in addition to the GWAS significant hits, the non-
significant SNPs in the ADHD GWAS also contribute to the associations with diagnostic status. 
Given the comorbidity between ADHD and ASD, and previously reported genetic correlations, 
we expected that the ADHD PRS would also be associated with ASD status, however, this 
association was not observed in our data. In contrast, the current results suggest a disorder 
specific effect of ADHD associated SNPs instead of a shared common genetic mechanism with 
ASD. The ADHD PRS is based on the most recent GWAS results, and explained variance up to 
4.5% in our sample, which is in line with the results from the initial GWAS (Demontis and 
Walters, 2017) who reported an explained variance of 5.5%, making it a promising PRS for 
further use in research on ADHD. 

Contrary to our expectation, the ASD and SCZ PRS were not associated with any of the 
diagnostic groups. The null results for the ASD PRS are unexpected as the initial GWAS (Grove 
et al. 2017) reported an explained variance of 2.45% in an independent sample, and their 
summary statistics were used for the analysis. Given that the discovery sample size of ASD 
was only slightly smaller than the ADHD sample, and the SCZ sample was even larger, we do 
not expect that sample size alone explains these findings. Moreover, apart from sample size, 
power analyses usually take several parameters into account, including the heritability and 
population prevalence of traits, the amount of SNPs included in the GWAS, the effective 
number of chromosome segments, and the proportion of cases in discovery and target 
sample (Lee et al. 2017). In our study, the discovery and target samples were for most of the 
parameters similar across disorders, except for prevalence rates (ASD and SCZ have a 
population prevalence of 1%, and ADHD has a population prevalence of 5%). 

Regarding the null result for the ASD PRS one explanation might be a difference in the 
diagnostic sample composition of the ASD GWAS discovery sample compared to the target 
ASD sample. The target sample was diagnosed with the DSM-IV and includes many cases with 
asperger, and PDD-NOS diagnoses (82% of total ASD sample), which might differ from the 
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discovery sample. Moreover, about one-third of the discovery sample were trio data (i.e. case 
pseudo control design), of which it has been suggested that the un-transmitted chromosomes 
contain increased polygenic burden, and as such the genetic signal based on these data might 
be decreased (Peyrot et al., 2016). Additionally, the genetic architecture of ADHD might differ 
from ASD, e.g., rare genetic variants might comprise a more important part of the genetic 
contribution to ASD (Geschwind and State, 2015) compared to ADHD. With growing sample 
sizes, genetic discoveries will increase and become more reliable, potentially allowing the 
identification of rare variants. 

The choice of including the SCZ PRS was based partly on the higher prevalence rate of 
SCZ in ASD individuals compared to the general population, a recent systematic review 
reports a significantly higher SCZ prevalence in ASD individuals compared to the general 
population (OR 3.55, 95% confidence interval (CI) 2.08–6.05, P < 0.001) (Zheng et al., 2018). 
If the actual SCZ prevalence rate in an ASD population resides at the lower end of the of the 
95% CI the enrichment of common SCZ SNPs might not be detectable in our relatively small 
sample. Additionally, the genetic correlation of 0.211 between ASD and SCZ (Grove et al., 
2017) and 0.122 between SCZ and ADHD (Demontis and Walters, 2017) might be too small to 
detect the genetic overlap between the two disorders in our data. Finally, it is possible that 
ASD has a different genetic underpinning with more rare variants than SCZ although some 
overlap has been reported in rare genetic variation between ASD and SCZ (Sanders et al., 
2015). Recent whole-genome sequence research on height fully recovered the heritability of 
this trait, meaning that next to the previously established common variants, all rare variants 
have been discovered (Wainschtein et al., 2019). Whole-genome sequence research into 
ASD, SCZ and ADHD might shed light on this issue revealing the genetic architecture of these 
traits. 

The sensitivity analyses exploring the associations between scores on the syndrome 
scales of the CBCL and the ADHD PRS showed low correlations between these two measures, 
as such we decided not to pursue the follow-up analysis further. A reason for the low 
correlations can be the amount variance explained by the ADHD PRS. The explained variance 
of 4.5% might not be enough to give meaningful results in follow-up analysis using the CBCL 
in a smaller sample like “Inside out”. In addition, a diagnosis is not based solely on the CBCL 
results but includes careful evaluation by an experienced psychologist/psychiatrist based on 
a patient interview, a parent interview and if possible an evaluation by a third party like a 
school teacher of the child.  

 

Strengths and limitations 

A strength of our study is the adult control sample as, in contrast to a child sample, the chance 
that adult individuals will receive a future ADHD or ASD diagnosis is limited compared to 
young individuals i.e., these disorders are usually diagnosed during childhood (Nylander et 
al., 2013), while DNA sequences are fixed during life.  
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One concern might be the difference in sex distribution between the samples, with 
the clinical sample consisting of 75% males and the control sample having an opposite skew 
in sex distribution, as this could potentially affect the observed associations between the PRS 
and diagnoses. However, we compared the allele frequencies between males and females in 
an independent sample (GoNL (Genome of the Netherlands Consortium 2014)) and found no 
differences. Yet, due to the skewed sex distribution we could not examine sex-PRS 
interactions, or sex specific associations, which would both be interesting to investigate given 
the higher prevalence of males in both ADHD and ASD. 

We also need to take into account that the ADHD/ASD group comprises the ADHD 
and ASD groups and that this is no official diagnostic disorder classification. The results should 
be replicated in a comparable independent sample first before firm conclusions can be 
drawn. 

Overall, despite the fact that symptoms overlap between the neurodevelopmental 
disorders, our study does not directly imply that the umbrella of NDD is present at the 
common genetic level as captured in the PRS. As the ASD and SCZ PRS do not distinguish cases 
from controls in any of our diagnostic samples it is possible that ADHD, ASD and SCZ have a 
different common genetic signature. Moreover, the results should be replicated in one or 
more independent samples. 

A final remark can be made on the cross sectional nature of the sample. Unlike 
longitudinal studies, measures are available for one point in time for most of the subjects. 
This presents the possibility that children might receive additional diagnoses later on in life 
resulting in a change in diagnostic status from ADHD or ASD to the ADHD/ASD codiagnosed 
group, or to other comorbidities. 

 

Conclusions 

In conclusion, the PRS of ADHD is significantly associated with the combined ADHD/ASD and 
ADHD status. Yet, this association is primarily driven by ADHD status, suggesting disorder 
specific genetic effects of the ADHD PRS. Nevertheless, it is of interest to explore the genetic 
predictive value of other psychiatric disorders besides neurodevelopmental disorders. 
Improving genetic prediction in neurodevelopmental disorders by using a multi-trait 
predictor instead of single-trait predictors is also an interesting option (Maier et al., 2018). 
Lastly, it is of interest to delve deeper into the association between the ADHD PRS and the 
specific emotional and behavioral problems in larger samples as those data may provide 
additional information on specific problems or the severity of problems within a diagnostic 
status. 
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Figure S1 

Variance explained (Nagelkerke R2) by the ASD PRS under the best model, baseline with 
eight PCs, sex and the relevant PRS. All SNP inclusion P-value thresholds are shown. Given P-
values are Bonferroni corrected, only sig. P-values are provided. 
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Figure S2  

 

Variance explained (Nagelkerke R2) by the SCZ PRS under the best model, baseline with 
eight PCs, sex and the relevant PRS. All SNP inclusion P-value thresholds are shown. Given P-
values are Bonferroni corrected, only sig. P-values are provided. 
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Table S1   

Amount of SNPs included per P value threshold and per disorder 

 

 

 

 

  

  ADHD 
 

PRS P value 
threshold 

amount SNPS 

0.01 1409 
0.05 5112 
0.1 8930 
0.2 15820 
0.3 21923 
0.4 27644 
0.5 32980 
1 55487 
ASD 

 

PRS P value 
threshold 

amount SNPS 

0.01 1233 
0.05 4935 
0.1 8754 
0.2 15785 
0.3 22277 
0.4 28227 
0.5 33684 
1 57277 
SCZ 

 

PRS P value 
threshold 

amount SNPS 

0.01 4464 
0.05 10214 
0.1 14755 
0.2 21545 
0.3 27056 
0.4 31997 
0.5 36460 
1 54524 
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Table S2 Results logistic regression ASD PRS and case control status 

Note: Covariates included were eight PCs and sex. Multiple testing correction was applied for 
72 tests 

ADHD/ASD 
sample 

     

ASD PRS P value 
threshold 

B Wald p 
uncorrected 

Bonferroni corr. 
Wald p 

OR Nagelkerke R2 

PRS 
0.01 0.004 9.38E-01 1 1.004 0.000 
0.05 0.016 7.74E-01 1 1.016 0.000 
0.1 0.045 4.17E-01 1 1.046 0.000 
0.2 0.065 2.42E-01 1 1.067 0.001 
0.3 0.048 3.98E-01 1 1.049 0.001 
0.4 0.034 5.43E-01 1 1.035 0.000 
0.5 0.033 5.65E-01 1 1.033 0.000 
1 0.028 6.26E-01 1 1.028 0.000 
            
ADHD sample    

     

ASD PRS P value 
threshold 

B Wald p 
uncorrected 

Bonferroni corr. 
Wald p 

OR Nagelkerke R2 

PRS 
0.01 -0.092 2.09E-01 1 0.912 0.002 
0.05 0.036 6.21E-01 1 1.037 0.000 
0.1 0.078 2.86E-01 1 1.081 0.001 
0.2 0.110 1.32E-01 1 1.116 0.003 
0.3 0.065 3.78E-01 1 1.067 0.001 
0.4 0.052 4.82E-01 1 1.053 0.001 
0.5 0.062 4.04E-01 1 1.064 0.001 
1 0.047 5.29E-01 1 1.048 0.000      

  
ASD sample           

 

ASD PRS P value 
threshold    

B Wald p 
uncorrected 

Bonferroni corr. 
Wald p 

OR Nagelkerke R2 

PRS 
0.01 0.087 2.16E-01 1 1.09 0.000 
0.05 0.000 9.99E-01 1 1.00 0.000 
0.1 0.024 7.36E-01 1 1.02 0.000 
0.2 0.034 6.36E-01 1 1.03 0.000 
0.3 0.037 6.01E-01 1 1.04 0.000 
0.4 0.012 8.69E-01 1 1.01 0.000 
0.5 0.001 9.85E-01 1 1.00 0.000 
1 0.010 8.88E-01 1 1.01 0.000 
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Table S3  Results logistic regression SCZ PRS and case control status 

Note: Covariates included were eight PCs and sex. Multiple testing correction was applied for 
72 tests 
 

ADHD/ASD sample 
     

SCZ PRS P value 
threshold 

B Wald p 
uncorrected 

Bonferroni corr. 
Wald p 

OR Nagelkerke R2 

PRS 

0.01 0.077 1.87E-01 1 1.080 0.001 
0.05 0.090 1.35E-01 1 1.095 0.002 
0.1 0.100 1.05E-01 1 1.105 0.002 
0.2 0.115 6.95E-02 1 1.121 0.002 
0.3 0.109 8.77E-02 1 1.115 0.002 
0.4 0.112 8.06E-02 1 1.118 0.002 
0.5 0.115 7.26E-02 1 1.122 0.002 
1 0.122 5.72E-02 1 1.130 0.003 
            
ADHD sample   

     

SCZ PRS P value 
threshold 

B Wald p 
uncorrected 

Bonferroni corr. 
Wald p 

OR Nagelkerke R2 

PRS 
0.01 0.106 1.71E-01 1 1.112 0.002 
0.05 0.129 1.10E-01 1 1.138 0.003 
0.1 0.125 1.29E-01 1 1.133 0.003 
0.2 0.120 1.53E-01 1 1.128 0.002 
0.3 0.138 1.05E-01 1 1.148 0.003 
0.4 0.152 7.43E-02 1 1.164 0.004 
0.5 0.153 7.21E-02 1 1.166 0.004 
1 0.154 7.06E-02 1 1.167 0.004      

  
ASD sample   

 
      

 

SCZ PRS P value 
threshold 

B Wald p 
uncorrected 

Bonferroni corr. 
Wald p 

OR Nagelkerke R2 

PRS 
0.01 0.026 7.25E-01 1 1.027 0.000 
0.05 0.044 5.70E-01 1 1.045 0.000 
0.1 0.085 2.84E-01 1 1.089 0.001 
0.2 0.111 1.75E-01 1 1.117 0.002 
0.3 0.097 2.41E-01 1 1.102 0.002 
0.4 0.097 2.42E-01 1 1.102 0.002 
0.5 0.101 2.24E-01 1 1.106 0.002 
1 0.115 1.64E-01 1 1.122 0.002 
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Table S4    
Correlation between ADHD PRS in the ADHD/ASD 
sample.    
Several thresholds and CBCL syndrome scales.    
     
     

ADHD PRS 
treshold 

Anxious 
Depressed 

Withdrawn 
Depressed 

Somatic 
complaints Social problems 

0.01 -0.07 (0.881) -0.069 (0.11) -0.016 (0.708) -0.068 (0.119) 
0.05 0.032 (0.461) -0.029 (0.508) 0.031 (0.478) -0.042 (0.335) 

0.1 0.028 (0.519) -0.075 (0.082) 0.014 (0.749) -0.034 (0.439) 
0.2 0.053 (0.222) -0.5 (0.248) 0.025 (0.573) 0.011 (0.798) 
0.3 0.053 (0.229) -0.037 (0.389) 0.036 (0.409) 0.015 (0.722) 
0.4 0.061 (0.165) -0.035 (0.416) 0.03 (0.487) 0.01 (0.825) 
0.5 0.063 (0.149) -0.032 (0.466) 0.036 (0.409) 0.019 (0.661) 

1 0.075 (0.084) -0.023 (0.589) 0.047 (0.285) 0.03 (0.488) 
     

ADHD PRS 
treshold 

Thought 
problems 

Attention 
problems 

Rule breaking 
behavior 

aggressive 
behavior 

0.01 -0.019 (0.682) 0.04 (0.362) -0.017 (0.7) -0.041 (0.345) 
0.05 0.037 (0.412) 0.052 (0.236) 0.001 (0.988) 0.023 (0.602) 

0.1 0.058 (0.202) 0.064 (0.144) 0.042 (0.336) 0.069 (0.116) 
0.2 0.054 (0.233) 0.085 (0.052) 0.056 (0.193) 0.093 (0.033*) 
0.3 0.051 (0.258) 0.094 (0.03*) 0.062 (0.15) 0.091 (0.037*) 
0.4 0.056 (0.219) 0.091 (0.037*) 0.074 (0.086) 0.107 (0.014*) 
0.5 0.056 (0.221) 0.087 (0.045*) 0.068 (0.119) 0.109 (0.012*) 

1 0.059 (0.192) 0.088 (0.044*) 0.079 (0.07*) 0.115 (0.008*) 
     

in brackets: P values: no multiple testing correction    
* correlated significantly at the .05 level   
Highlighted: sig. correlated syndrome scales and optimal PRS threshold  
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Table S5 

Mean scores and standard deviations of the CBCL syndrome scales for the ADHD/ASD 
sample. Sample sizes differ slightly per scale depending on information provided by the 
parents 

 

 

 

 

 

 

 

CBCL syndrome scale Mean SD N 

Anxious Depressed 6.65 4.74 519 

Withdrawn Depressed 4.71 3.38 527 

Somatic Complaints 2.78 2.92 522 

Social Problems 7.29 3.89 523 

Thought Problems 6.34 4.30 480 

Attention Problems 10.56 3.58 522 

Rule Breaking Behavior 3.92 3.14 526 

Aggressive Behavior 12.21 7.19 519 
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Abstract 
 
Autism spectrum disorder (ASD) is a heterogeneous group of disorders characterized by 
problems with social interaction, communication, and repetitive and restricted behavior. 
Despite its high heritability and the substantial progress made in elucidating genetic 
associations, the corresponding biological mechanisms are largely unknown. Our objective is 
to investigate the contribution of common genetic variation to biological pathways 
functionally involved in ASD. We conducted gene-set analyses to identify ASD-associated 
functional biological pathways using the statistical tools MAGMA and INRICH. Gene-set 
selection was based on previously reported associations with psychiatric disorders and 
resulted in testing of specific synaptic and glial sets, a glutamate pathway gene-set, 
mitochondrial gene-sets and gene-sets consisting of fragile X mental retardation protein 
(FMRP) targets. In total 32 gene-sets were tested. We used Psychiatric Genomics Consortium 
genome-wide association studies summary statistics of ASD. The study is based on the largest 
ASD sample to date (N=5305). We found one significantly associated gene-set consisting of 
FMRP-targeting transcripts (MAGMA: p corr.=0.014, INRICH: p corr.=0.031; all competitive P-
values). The results indicate the involvement of FMRP-targeted transcripts in ASD in common 
genetic variation. This novel finding is in line with the literature as FMRP has been linked to 
fragile X syndrome, ASD and cognitive development in whole-exome sequencing and copy 
number variant studies. This gene-set has also been linked to Schizophrenia suggesting that 
FMRP-targeted transcripts might be involved in a general mechanism with shared genetic 
etiology between psychiatric disorders. 
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Introduction 
 
The heterogeneous manifestation of autism spectrum disorders (ASD) consists of several 
characteristic features including markedly abnormal social interaction, impaired 
communication abilities, and repetitive and restricted patterns of behavior and interests. 
Symptoms vary in severity per case and can occur with or without intellectual or language 
impairment (American Psychiatric Association, 2013). Heritability is high, with an estimate of 
60% (Polderman et.al., 2015)  which has led to extensive research into the genetic variants 
underlying ASD. 

There have been several genome-wide studies including genome wide association (GWA) 
and linkage studies, which reported promising associations (Hussman et. al., 2011; Ma et. al., 
2009; Wang et. al., 2009). However, these associations explained only a small fraction of the 
genetic risk to ASD, showed little replicable results with P-values between 10−4 and 10−8, and 
illustrated that most of the GWA studies up to date lack power to reliably determine a role 
for common variants in ASD (Ma et. al., 2009; Wang et. al., 2009; Anney et. al., 2010; Anney 
et. al., 2012; Connolly et. al., 2013; Ronald et. al., 2010; Sullivan et. al., 2012). 

The examination of copy number variants (CNVs) in ASD patients has been more successful 
by revealing enrichment of genes important for several, mostly synaptic, functions (Chow et. 
al., 2012; Gai et. al., 2012; Pinto et. al., 2010; Sanders et. al., 2015). However, causal CNVs 
occur in 5–10% of ASD cases and although they have a large effect on the liability to ASD, they 
are very rare, generally not specific to ASD, and cover large genomic areas including multiple 
genes (Sanders et. al., 2012). 

The most exciting genetic discoveries for ASD have been reported based on whole-exome 
sequencing (WES) data, in which several rare de novo variants in a diversity of genes have 
been linked to ASD (Sanders et. al., 2012; De Rubeis et. al., 2014; Iossifov et. al., 2012; Neale 
et. al., 2012; O’Roak et. al., 2012). These WES findings implicated a role for genes involved in 
chromatin remodeling (De Rubeis et. al., 2014; Iossifov et. al., 2012; O’Roak et. al., 2012; 
Iossifov et. al., 2014),  synaptic formation (De Rubeis et. al., 2014), transcriptional regulation 
(De Rubeis et. al., 2014), and FMRP-associated genes (De Rubeis et. al., 2014; Iossifov et. al., 
2012; Iossifov 2014) (see for reviews Sullivan et. al., 2012; Ronemus et. al., 2014). 

The emerging picture is that ASD, like other psychiatric traits, is highly polygenic, and likely 
influenced by a mix of rare and common variants, of which functional implications still have 
to be determined (Sullivan et. al., 2012; De Rubeis et. al., 2015). The identification of pathways 
with genes dysfunctional in ASD may increase by investigating the combined effect of multiple 
variants, using gene-set analysis. This, because it evaluates the joint effect of multiple genetic 
variants grouped according to biological or cellular function, thereby decreasing the multiple 
testing problem and increasing effect size (Mooney et. al., 2015; Ruano et. al., 2010; Sullivan 
et. al. 2015; Torkamani et. al., 2008). 

In the current study, our objective is to investigate the contribution of common genetic 
variation to biological pathways functionally involved in ASD. To this end, we investigated 
whether the joint effect of common genetic variants grouped into a priori selected gene-sets 
is associated with ASD. Because of our hypothesis driven top down approach, we performed 
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direct testing on all single nucleotide polymorphisms (SNPs) in a particular gene-set. This, 
instead of a functional enrichment analysis of top SNPs that does not require a priori 
hypotheses and uses top SNPs to define possible associated pathways based on functional 
enrichment. 

We selected five categories of gene-sets, and limited ourselves to expert-curated gene-sets, 
resulting in testing 32 gene-sets. We included 19 curated synaptic (Ruano et. al., 2010) 
(category one) and three glial gene-sets (oligodendrocytes, astrocytes, and oligodendrocytes 
and astrocytes combined) (Duncan et. al., 2014) (category two), which have cell type-specific 
functions. Synaptic genes have been implicated to be among the top genes harboring variants 
associated with ASD (Sanders et. al., 2015; De Rubeis et. al., 2014) and other psychiatric 
disorders (Lips et. al., 2012). The glial sets are an exploratory approach to provide general 
insights and starting points for more specific hypothesis formation although previous 
research has pointed in the direction of a role for astrocytes (Zeidán-Chuliá et. al., 2014) and 
oligodendrocytes (Zeidán-Chuliá et. al., 2015) in ASD, and for oligodendrocytes in 
schizophrenia (SCZ) (Chavarria-Siles et. al., 2016). The third category we selected consists of 
genes which gene-transcripts are targeted by fragile X mental retardation protein (FMRP). 
FMRP is an RNA binding protein expressed in the brain coded by the FMRI gene located at 
Xq27.3 that has been linked to fragile X syndrome (FXS) (Pinto et. al., 2014) and evidence for 
an association with ASD is accumulating due to WES (De Rubeis et. al., 2014; Iossifov et. al. 
2012; Iossifov et. al., 2014) and CNV studies (Darnell et. al., 2011), yet it has not been 
confirmed using common variants from genome-wide association studies (GWAS). Darnell et 
al. (2011) and Ascano et al. (2012) have provided insights into the biological underpinnings of 
FXS and ASD using human tissue and mouse models on FMRP and the RNA this binds to. Their 
research resulted in three gene-sets with FMRP target transcripts (Darnell gene-set, Ascano 
gene-set, Darnell and Ascano overlap gene-set). We aimed to test whether these sets of 
FMRP-targeted genes are associated with ASD in a large human sample not enriched with the 
FMR1 variant. Our fourth gene-set category is a glutamate pathway. With glutamate being 
the most important excitatory agent in the brain, glutamate and its receptors have been 
suggested to have a role in psychiatric diseases including ASD (Duncan et. al., 2014; Rojas et. 
al., 2014). The fifth category (six gene-sets) is based on mitochondrial genes (Duncan et. al., 
2014). Mitochondria provide energy for the cell and with the brain being the organ using most 
of the energy, even a small reduction in energy production can result in impaired brain 
processes in the synapse (Duncan et. al., 2014). Mitochondrial dysfunction has cautiously 
been associated with psychiatric diseases, including ASD, based on abnormal mitochondrial 
biomarker values and high prevalence of mitochondrial diseases in ASD patients compared to 
a healthy subpopulation (Manji et. al., 2012; Rossignol et. al., 2012). 

In sum, our main goal is to directly test predefined sets of genes for their association with 
ASD. These gene-sets were selected because of previous associations with psychiatric 
diseases and test involvement of (1) synaptic processes, (2) glia cells, (3) FMRP, (4) glutamate 
and (5) mitochondrial involvement. The underlying hypothesis is that the polygenic nature of 
ASD shows convergence of genetic effects in biologically meaningful sets of genes. 
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Materials and methods 
 
Sample 

We used the publicly available GWAS summary statistics (PGC.ASD.euro. 
all.25Mar2015.txt.gz) downloaded from http://www.med.unc.edu/pgc/ results-and-
downloads on 21 May 2015. More information on the sample can be found on the 
mentioned Psychiatric Genomics Consortium (PGC) website. Briefly, in their original study 
PGC used five cohorts: the Geschwind Autism Center of Excellence (ACE), the Autism 
Genome Project (AGP), the Autism Genetic Resource Exchange (AGRE), the NIMH 
Repository, the Montreal/Boston Collection (MONBOS), and the Simons Simplex Collection 
(SSC); see Table 1). The total number of ASD probands in this sample is 5305, and of 
pseudocontrols this is 5303. In a pseudocontrol setting, instead of a regular control group 
the nontransmitted parental allele is used as the control. All participants were of European 
descend. For the current gene-set analyses summary statistics (ie, P-values per SNP) of this 
PGC study were used. 

 

Generation of gene-sets 

We used 32 publicly available expert-curated gene-sets that we assigned to five distinct 
categories. The 19 synaptic gene-sets were published in previous studies (Sanders et. al., 2015; 
Ruano et. al., 2010; Lips et. al. 2012) in which they were defined based on assignment of 
subcellular function as determined by synaptic protein purification experiments and data 
mining for synaptic genes and gene ontology. Synaptic genes were subdivided into 19 
functional groups (N genes 1047). The glial (146 genes), oligodendrocyte (52 genes), astrocyte 
(42 genes) and mitochondrial (six gene-sets, N genes 132) gene-sets were created and 
described by Duncan et al., (2014) who conducted a database search in the gene ontology 
database and REACTOME. They supplemented the identified genes with genes found via an 
in-depth literature study. In addition, we included three gene-sets consisting of FMRP 
targeting genes (N genes 1809) as defined by Darnell et al. (2011) and Ascano et al. (2012) with 
sequencing methods. All gene-sets as used in the present study are shown in Supplementary 
Tables S1 and S2. 

 

MAGMA and INRICH gene-set analyses 

Gene-set analyses can consist of self-contained testing and competitive testing. In a self-
contained test the alternative hypothesis states that a gene-set is associated with the trait 
against the null hypothesis of no association, whereas in competitive testing the alternative 
hypothesis is that the gene-set is significantly stronger associated with the trait than genes 
not included in the gene-set. 
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We performed our analysis using two methods, MAGMA and INRICH, both providing 
competitive test results (de Leeuw et. al., 2015). 

MAGMA (v1.01, http://ctglab.nl/software/magma) is a tool to perform gene and gene-set 
analysis which is distinguishable from other methods like INRICH, ALIGATOR, MAGENTA by 
having more statistical power, being less affected by linkage disequilibrium (LD; a SNP is in LD 
with another SNP when their specific alleles occur more often together than expected by 
chance, implicating that the independent association assumption is violated and you can 
predict one of the specific alleles with high certainty dependent on the other known allele.) 
and multi-marker associations due to its multiple regression approach and being 
computationally less demanding as it does not use a permutation based approach de Leeuw 
et. al., 2015; de Leeuw et. al., 2016). A significant hit in MAGMA indicates that multiple genes 
in the gene-set are associated. Although the SNPs included in these genes can have relatively 
high P values, only together they are responsible for a positive signal in a gene-set. The 1000 
genomes European panel (reference file) and NCBI 37.3 (gene location) (downloaded from 
http://ctglab.nl/software/magma) were used for SNP annotation to genes. 

 INRICH (Lee et. al., 2012) is a permutation based GWA analysis tool that tests whether 
functionally related genes compiled in gene-sets show a stronger association with a 
phenotype than expected by chance. A significant hit in INRICH can occur with only a few 
highly associated SNPs in a gene-set. INRICH can be downloaded from 
http://atgu.mgh.harvard.edu/inrich/ downloads.html. Utilizing Plink (Purcell et. al., 2007) we 
computed several intervals for our analyses using different parameters for the LD clumping 
procedure. We applied the default INRICH values of 5000 first pass permutations, and 1000 s 
pass permutations. 

Clumping is a method to reduce the amount of double signal in a data set due to LD. We 
assigned SNPs that are significant between a certain threshold to the same clump if they have 
an r2 of 0.5 and are not yet assigned to another clump. For this clumping parameter we used 
several SNP P-value significance thresholds: 0.0001 and 0.01 (both fixed P-value thresholds) 
and 0.00896288 (1% cut-off P-value, computed in R studio v3.0.2, Boston, MA, USA) and 
0.0008106764 (0.1% cut-off P-value, computed in R studio v3.0.2). These different thresholds 
influence which and how many SNPs are assigned to a clump. A stricter P-value cut-off results 
in a clump with less SNPs. Again, we used NCBI 37.1 for gene location. 
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Table 1 Overview of the cohorts that were included in the initial analysis by the PGC 

 

CCoohhoorrtt  TTyyppee  ooff  
ccoohhoorrtt  

NN  
ccaasseess//ccoonnttrroollss  

CCoouunnttrryy  AAnncceessttrryy  DDiiaaggnnoossttiicc  
iinnssttrruummeenntt  

UCLA Autism 
Center of 

Excellence (ACE) 

Parent-
Parent-
Proband 
Trios 

391/391 USA Caucasian ADI-R and/or 
ADOS 

Autism Genome 
Project (AGP) 

Parent-
Parent-
Proband 
Trios 

2272/2272 USA, Europe Caucasian ADI-R and 
ADOS 

Autism Genetic 
Resource 

Exchange (AGRE) 

Multiplex 
families 

974/974 USA Caucasian ADI-R and 
ADOS 

NIMH Repository, 
the 

Montreal/Boston 

Collection 
(MONBOS) 

Simplex 
and 
multiplex 
families 

1396/1396 USA/Canada Caucasian ADI-R (NIMH).  

Autism 
Screening 

Questionnaire, 
ADI-R ADOS 

(MONBOS) 

Simons Simplex 
Collection (SSC) 

Parent-
Parent-
Proband 
Trios 

2231/2231 USA Caucasian ADI-R and 
ADOS 

 

Abbreviations: ADI-R, Autism Diagnostic Interview-Revised; ADOS, Autism Diagnostic Observation 
Schedule; PGC, Psychiatric Genomics Consortium. 

The summary statistics, containing the P-values per SNP of this PGC analysis, were used for the 
gene-set analysis. 
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Statistical testing 

We applied multiple testing following our hypothesis driven approach: per hypothesis we 
multiplied the P-value by the number of gene-sets that was tested for that particular 
hypothesis. Although this correction is not as strict as the Bonferroni correction, it provides 
sufficient correction as we constructed independent hypotheses generating independent 
results per hypothesis. This allows for multiple testing correction per hypothesis instead of a 
more stringent multiple testing correction over all hypotheses. A consensus has not yet been 
reached so different studies parameterize and evaluate results differently (Sullivan et. al., 
2015). 

 

 

1a. All genes that have SNPs assigned  1b. All genes in the FMRP gene-set 

 

 

 

 

 
 

 

 

 
 
Figure 1  
Visualization of the polygenic pattern at gene level. (a) QQ plot of P-values of all genes that have 
SNPs from the PGC data set assigned to them regardless of inclusion in a gene-set. This plot 
compares the observed P-values to the expected P-values at gene level. The non-linear pattern 
(the deviation from the diagonal) visualizes the polygenic signal in the genes. (b) QQ plot of the 
genes in the FMRP (Darnell) gene-set. The earlier lift off and larger deviation from the diagonal 
compared to (a) illustrates the signal in a is driven in part by genes in the FMRP gene-set by 
Darnell. 
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2a. All SNPs in the PGC dataset         2b. All SNPs in the FMRP gene-set 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 Visualization of the polygenic pattern at SNP level. (a) QQ plot from all SNPs in the 
PGC data set. This plot compares the observed P-values to the expected P-values at SNP level. 
The non-linear pattern (the deviation from the diagonal) visualizes the polygenic signal in the 
SNPs. (b) QQ plot from the SNPs in the FMRP (Darnell) gene-set. The earlier lift off and larger 
deviation from the diagonal compared to (a) illustrates the signal in a is driven partly by SNPs 
in the FMRP gene-set by Darnell 
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Results 
 
MAGMA 

Competitive gene-set analyses resulted in a statistically significant, multiple testing corrected 
association with the FMRP target gene-set by Darnell et al. (2011) (P=0.014). None of the 
other gene-sets showed a statistically significant association, after multiple testing correction 
(for all results see Supplementary Table S3. Also, see Figure 1 (gene level) and Figure 2 (SNP 
level). These figures show the polygenic signal (Figures 1a and 2a) and the role of the FMRP 
gene-set in this signal (Figures 1b and 2b). 

Gene-based tests in MAGMA for the genes included in the significant gene-set resulted in 
multiple significantly associated genes, indicating the results were not driven by a few highly 
associated genes and illustrating the value of testing groups of genes together 
(Supplementary Table S4). 

INRICH 

We performed this method with several parameter settings, as described in the method 
section. Overall, different parameter settings regarding clumping thresholds did not 
meaningfully change the results. However, the FMRP targets showed again a significant 
association with ASD after multiple testing correction, P=0.031, for the clumping SNP P-value 
significance threshold: 0.0001. For all results see Supplementary Table S5. 

 

Discussion 
Previous research efforts have clearly shown that ASD is a highly polygenic disorder with 
reported heritability around 60% (Polderman et. al., 2015). Some genetic variants have 
consistently been identified but functional implications of current genetic findings are as yet 
modest (Sanders et. al., 2015; De Rubeis et. al., 2015; Sullivan et. al. 2015). In the present 
study, we tested whether the genetic variants of small effect on ASD tend to cluster in 
selected functional sets of genes. We tested expert-curated functional gene-sets that have 
been constructed previously in the context of their putative role in psychiatric disorders. Our 
multiple testing corrections were not as strict as a Bonferroni correction. If we had applied 
this correction no gene-set would be significantly associated. Still, we believe a sufficient 
correction was applied as we constructed, based on previous findings, independent 
hypotheses that as such generated independent results per hypothesis. Also, we applied 
competitive tests instead of the – far less stringent – self-contained tests, as usually used in 
this type of analyses. Moreover, the gene-sets are not independent, and thus a Bonferroni 
based on all gene-sets for all tested hypotheses is likely overly conservative. 

The FRMP gene-set by Darnell was found to be significantly associated with the risk for ASD 
confirming previously reported associations in WES and CNV studies (Iossifov et. al., 2012; 
Pinto et. al., 2014; Darnell et. al., 2011; Ascano et. al., 2012). This gene-set of FMRP-targeting 
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proteins was constructed by Darnell et al. (2011) who identified FMRP interactions with mRNA 
in the mouse brain by means of high-throughput sequencing of RNAs isolated by crosslinking 
immunoprecipitation. Their study showed a connection between loss of function FMRP and 
ASD-associated symptoms in FXS and ASD patients. FMRP is important for translation of 
hundreds of neuronal mRNA’s and its loss results in morphological and physiological neuronal 
defects resulting in FXS-like symptoms like cognitive impairment, seizures, anxiety and 
hyperactivity (De Rubeis et. al., 2011; Doll et. al., 2014; Fernández et. al., 2013). The link 
between ASD and FXS seems intuitive as FXS is the leading form of monogenetic inherited 
intellectual disability with many cognitive and behavioral symptoms which are also manifest 
in ASD (De Rubeis et. al., 2011). In addition, FXS shows comorbidity with ASD, about 30% of 
FXS patients are diagnosed with ASD, whereas 1 to 2% of ASD patients show FXS comorbidity 
(De Rubeis et. al., 2011). As an FXS diagnosis was an exclusion criterion our results are not 
likely due to inclusion of patients with this monogenetic disorder. However, in the FXS there 
are pre-mutations, less CGG repeats than FXS patients but more than healthy individuals, 
causing diseases like fragile X-associated tremor ataxia syndrome, and increasing the 
incidence of ASD and ADHD (Lozano et. al., 2014). Additional genetic phenotyping, including 
FMRP count, would be needed to ensure that samples are not enriched for FMRP pre-
mutations. 

A study on ASD rare variants (Purcell et. al., 2014) also reported associations with the Darnell 
FMRP gene-set, yet they found no evidence for overlap at the individual gene level. An 
association between this gene-set and SCZ has also been reported (Purcell et. al., 2014; 
Fromer et. al., 2014; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 
2014; Szatkiewicz et. al. 2014). Two SCZ CNV studies (Fromer et. al., 2014; Schizophrenia 
Working Group of the Psychiatric Genomics Consortium, 2014; Szatkiewicz et. al. 2014) 

showed genetic overlap between ASD at gene-set and individual gene level. As a whole, these 
results might point in the direction of a common biological basis between ASD and SCZ making 
it of interest to look further into this possible overlap. 

A general concern in psychiatric disorders is phenotypic heterogeneity and in ASD 
heterogeneity in intellectual disability (ID) (Cervantes et. al., 2015) , is one of these concerns. 
As ID was not an exclusion criterion in our study, we cannot ensure with 100% certainty that 
our results are not partly driven by ID. Attempts have been made (Chaste et. al., 2015) to 
stratify samples into low (IQ<60) and high IQ (IQ>60) but a downside is that subsequent 
decreasing sample sizes reduce statistical power. Unfortunately, we only had access to GWAS 
summary statistics and not to IQ scores and raw genotypes of participants we could not 
perform such analyses in our current study. 

A final point to address regarding our FMRP hypothesis is that, out of three FMRP gene-sets, 
only the Darnell gene-set remained significant after multiple testing correction. The Ascano 
and Ascano autism overlap gene-sets did not generate significant results. Possible 
explanations for these findings are the different ways the gene-sets were constructed. Darnell 
et. al. (2011) identified FMRP interactions within the mouse brain by means of high-
throughput RNA sequencing and follow-up analysis, whereas Ascano et al.(2012) examined 
FMR1 family protein binding sites to identify and rank FMRP targets in human embryonic 
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kidney cells. These methods may have resulted in two different subsets of FMRP targets 
showing little overlap and expressing different biological properties. As a final remark, both 
gene-sets are large compared to all other tested sets. As the Ascano gene-set is larger than 
the Darnell gene-set, and given that effects of larger gene-sets are generally more easily to 
detect (de Leeuw et. al., 2016), it is unlikely that gene-set size explains the association of the 
Darnell set. In addition, both MAGMA and INRICH have a correct type I error rate which is 
independent of gene-set size (de Leeuw et. al., 2016). 

Our results do not support a role of the glutamate pathway, mitochondrial, synaptic or glial 
pathway in ASD, suggesting it is unlikely that there are large effects of these pathways on the 
risk of ASD. However, gene-set definitions are dynamic, and with increased precision in 
pathway annotation, these results may change (Sullivan et. al., 2015). 

Taken together, the current results provide evidence for a role of FMRP-targeted transcripts 
in ASD. As FMRP is associated with several psychiatric conditions a more thorough exploration 
of genes in this gene-set and their association with different psychiatric disorders might 
provide useful information on an underlying shared genetic etiology between several 
disorders. 

To conclude, we performed a gene-set analysis aiming to find common variation clustered 
in functional pathways associated with ASD. Our significant hit in common genetic variants is 
an FMRP targeting gene-set that has been associated with ASD in rare variation and other 
psychiatric illnesses. These findings can point in the direction of a more general mechanism 
underlying psychiatric disorders making cross disorder research an important future 
component of the scientific repertoire. 
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Supplemental Table 1: Expert curated functional gene-sets   

GENE_SET N genes 
Synaptic: Cell adhesion and trans-synaptic signaling 81 
Synaptic: Cell metabolism 57 
Synaptic: Endocytosis 26 
Synaptic: Excitability 59 
Synaptic: Exocytosis 87 
Synaptic: GPCR signaling 41 
Synaptic: G-protein relay 27 
Synaptic: intracellular signal transduction 150 
Synaptic: Intracellular trafficking 80 
Synaptic: Ion balance/transport 43 
Synaptic: Ligand-gated ion channel signaling 36 
Synaptic: Neurotransmitter metabolism 29 
Synaptic: Peptide/neurotrophin signals 28 
Synaptic: Protein cluster 47 
Synaptic: RPSFB 71 
Synaptic: Structural plasticity 98 
Synaptic: Tyrosine kinase signaling 7 
Synaptic: Unknown 61 
Synaptic: Sanders FDR 0.01 large synaptic 19 

FMRP targets (Ascano) 936 
FMRP targets (Ascano Autism overlap) 93 
FMRP targets (Darnell) 780 

Glia astrocytes Duncan 42 
Glia oligodendrocytes Duncan 52 
Glia Duncan 146 

Glutamate Duncan 156 

Mitochondria: Duncan  74 
Mitochondria: Crista Duncan  6 
Mitochondria: Distribution Duncan  7 
Mitochondria: Fission Duncan  12 
Mitochondria: Fission_plus Duncan  24 
Mitochondria: Fusion Duncan  9 
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Supplemental table 3:  MAGMA results of the gene-sets analyses     
 

GENE_SET N genes Pcomp Pcorr Pself 
 

Synaptic: Cell adhesion and trans-synaptic 
signaling 81 0.18192 0.9796 0.10887 

 

Synaptic: Cellmetabolism 57 0.2548 0.9967 0.76364 
 

Synaptic: Endocytosis 26 0.98686 1 0.99593 
 

Synaptic: Excitability 58 0.41285 1 0.53495 
 

Synaptic: Exocytosis 87 0.64415 1 0.7095 
 

Synaptic: GPCRsignaling 41 0.4402 1 0.6031 
 

Synaptic: G-proteinRelay 27 0.88081 1 0.85643 
 

Synaptic: intracellularSignalTra... 150 0.020727 0.3307 0.028119 
 

Synaptic: IntracellularTrafficking 79 0.65268 1 0.71324 
 

Synaptic: IonBalance/transport 43 0.1892 0.9819 0.1258 
 

Synaptic: Ligand-gated ion channel signaling 36 0.12412 0.9252 0.16304 
 

Synaptic: Neurotransmitter metabolism 29 0.037016 0.5148 0.005359 
 

Synaptic: Peptide/neurotrophin signals 28 0.22818 0.9921 0.057422 
 

Synaptic: ProteinCluster 47 0.4644 1 0.32378 
 

Synaptic: RPSFB 70 0.11831 0.9157 0.1212 
 

Synaptic: StructuralPlasticity 96 0.016129 0.2649 0.1263 
 

Synaptic: TyrosineKinaseSignaling 7 0.38377 0.9999 0.64281 
 

Synaptic: Unknown 61 0.58128 1 0.74641 
 

Synaptic: Sanders FDR 0.01 large synaptic 18 0.13436 0.9398 0.4698 
 

GENE_SET N genes Pcomp Pcorr Pself 
 

FMRP targets (Ascano) 936 0.65741 0.95070 0.39329 
 

FMRP targets (Ascano Autism overlap) 93 0.51565 0.87120 0.56110 
 

FMRP targets (Darnell) 780 0.00483 0.01380 0.08314 
 

GENE_SET N genes Pcomp Pcorr Pself 
 

Glia astrocytes Duncan 41 0.39517 0.64710 0.55910 
 

Glia oligodendrocytes Duncan 52 0.62103 0.85580 0.71794 
 

Glia Duncan 141 0.57262 0.82130 0.92142 
 

GENE_SET N genes Pcomp Pcorr Pself 
 

Glutamate Duncan 156 0.62348 0.62348 0.86420 
 

GENE_SET N genes Pcomp Pcorr Pself 
 

Mitochondria Duncan 70 0.77749 0.99750 0.31608 
 

Mitochondria: Crista Duncan 6 0.85101 0.99940 0.85093 
 

Mitochondria: Distribution Duncan 7 0.93720 1 0.91592 
 

Mitochondria: Fission  11 0.99575 1 0.22899 
 

Mitochondria: Fission plus 23 0.98723 1 0.33337 
 

Mitochondria: Fusion  9 0.98366 1 0.17705 
 

PSELF= self-contained P-value, PCOMP = competitive P-value   

 

PCORR = multiple testing corrected competitive P-value (comp P*N func. gene-sets per hypothesis)  
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Summary and discussion  

6.1 Summary  

Many psychiatric disorders are already present, or nascent, in childhood and adolescence and 
pose a great burden on these children and their families (Costello et al., 2005). This thesis focuses 
on the common genetic variation that is associated with heritable neurodevelopmental and 
psychiatric disorders (Demontis & Walters, 2017; Grove & et.al., 2017; Polderman et al., 2015) 
occurring during childhood and adolescence such as ASD and ADHD. The underlying assumption 
is that complex disorders are influenced by genetic and environmental variation and by their 
interplay, called gene environment interaction and gene environment correlation. The genetic 
component comprises rare and common variations (Visscher et al., 2017). The focus of this thesis 
is on the common genetic variation (occurring >1% in the general population). Recent GWAS 
discoveries show that each associated common genetic variant has a very small effect size (Wray 
et al., 2020). We assume the effects to be cumulative, located in genetic and molecular networks 
which become impaired if enough local SNP mutations occur (Schadt, 2009). Due to the small 
effect size and assumed accumulation in specific networks it makes sense to not only analyze 
SNPs by themselves but additionally test the larger unit to which SNPs and genes (might) belong 
by means of gene-set analysis (de Leeuw et al., 2015; Duncan et al., 2014; Goudriaan et al., 2013). 
This approach is capable of identifying if common genetic variants grouped in a priori selected 
gene-sets are significantly associated with disorders, compared to genes not in the gene-set. A 
predictive tool based on GWAS discoveries is the PRS analysis. PRS involves calculating a 
weighted sum of SNPs consolidating the effect in a single measure (Wray et al., 2014, 2020) to 
be used in further analyses. Both gene-set analysis and PRS analysis are important tools used in 
this thesis. 

Using the clinical child and adolescent sample (‘Inside-Out’ described in Ch. 2) and 
control samples (NESCOG and BePS, described in Ch. 3, 4 and 5 when included), this thesis aimed 
to provide insights on the overlap of associated SNPs between psychiatric disorders. The first 
main aim of this thesis is to quantify the predictive capacity of common genetic variation of a 
variety of traits, as captured by their PRS. I aim to predict case-control status in a child and 
adolescent psychiatric sample with a variety of psychiatric disorders to reveal which traits are 
associated with the genetic risk contributing to general psychiatric symptoms present in several 
psychiatric disorders (Chapter 3). The second aim was to investigate if the common genetic 
variation related to ASD and ADHD, as captured by their PRS, is capable of predicting case-control 
status in an ASD and/or ADHD sample (Chapter 4). The third aim was to test if SNPs significantly 
associated with ASD occur more often in gene-sets linked to SCZ, which might be genetically 
linked to ASD. This might be a result of a large accumulation of SNPs with a small effect size 
assigned to included genes, or be due to a select group of SNPs with a large effect size (Chapter 
5). In Chapter 3 we quantified the predictive capacity of common genetic variation of a variety 
of traits as captured by their PRS. I aimed to predict diagnostic status (being diagnosed with a 
psychiatric disorder yes/no) in a child and adolescent psychiatric sample to reveal which PRS 
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contribute to the genetic risk underlying psychiatric symptoms shared between disorders. PRS 
of 14 traits were used to predict diagnostic status. Clinical cases, some with multiple diagnoses 
per participant, were compared to controls. An individual with multiple diagnoses can be 
included as they experience disorder specific symptoms and symptoms attributed to both 
disorders. The occurrence of several psychiatric disorders in one individual strengthens the 
assumption that there is a set of underlying common genetic variation being partly responsible 
for the shared symptoms. These 14 PRS were first individually tested. The traits that significantly 
predicted diagnostic status (being diagnosed with a psychiatric disorder yes/no)  were included 
in a multivariable model to investigate the gain in explained variance when leveraging the 
genetic effects of multiple traits simultaneously. In the univariate analyses significant 
associations were observed between diagnostic status and the PRS of educational attainment, 
smoking initiation, intelligence, neuroticism, alcohol dependence, ADHD, major depression and 
anti-social behavior. However, these PRS are correlated to a certain extend making them not 
independent of each other. The PRS of educational attainment and smoking initiation showed 
the highest explained variance in case-control status. In the multivariable model with these eight 
significantly associated trait PRS and covariates, educational attainment and smoking initiation 
remained significant predictors. These results provide more insights into the genetic signal that 
is shared between childhood and adolescent psychiatric disorders. They suggest that a myriad 
of mental health-related traits are genetically associated with psychiatric disorders. General 
psychopathology in children and adolescents is potentially associated with a genetic vulnerability 
for low EA and SI. Hence a genetic vulnerability for low EA and SI might contribute to specific 
comorbidity patterns as observed between psychiatric symptoms and to the broad range of 
psychiatric symptoms. It is important to keep in mind we cannot draw any conclusions regarding 
causality as we have not tested this. The increase of 2% in explained variance when leveraging 
the genetic signal of multiple traits compared to the highest single variable supports a 
multivariable approach to optimize precision accuracy for general psychopathology. To 
conclude, our results indicate that a part of the genetic variance influencing a myriad of mental 
health-related traits also influences psychopathology. A genetic vulnerability for low EA and SI 
might be predictors for general psychopathology in children and adolescents which can be 
considered as some of the potential factors preceding the development of psychiatric symptoms. 
However, causality is not investigated in this thesis and may not be assumed. In addition, a 
genetic vulnerability for low EA and SI might contribute to specific comorbidity patterns as 
observed between psychiatric symptoms. Our findings can guide future studies on psychiatric 
comorbidity, and studies addressing the causal directions between EA, SI and general 
psychopathology. 

In Chapter 4 we zoom in on neurodevelopmental disorders in the sample by including 
only ASD and ADHD cases and controls. These two disorders are highly comorbid, are genetically 
correlated and share various symptoms, but they are defined as distinct disorders, and also have 
unique psychiatric comorbidity patterns (Solberg et al., 2019). In our clinical sample we aimed 
to explore the association between the PRS for three neurodevelopmental disorders namely 
ADHD, ASD and for schizophrenia (SCZ), and an ADHD and/or ASD diagnostic status. Based on 
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the most recent GWAS of ADHD, ASD and SCZ, PRS for each disorder were calculated for our 
clinical and control sample. We tested for an association with (1) a single diagnosis of ADHD, (2) 
a single diagnosis of ASD, and (3) combining the two diagnoses, thus subjects with either ASD, 
ADHD or both. The results revealed a significant association of the ADHD PRS with ADHD 
diagnostic status (OR 1.6, P = 1.39 × 10−07) and with the combined ADHD/ASD status (OR 1.36, 
P = 1.211 × 10−05), but not with ASD diagnostic status (OR 1.14, P = 1). We did not find 
associations for the ASD and SCZ PRS. Concluding, the PRS of ADHD is significantly associated 
with the combined ADHD/ASD status but this association is likely to be primarily driven by ADHD 
status.   

The objective in Chapter 5 was to identify gene-sets statistically associated with the 
common genetic variation associated with ASD. This is of interest as despite the large heritability 
of ASD the corresponding biological mechanisms and their modifications causing ASD are largely 
unknown.  Showing statistical association of gene-sets can help with the formation of hypotheses 
regarding functional involvement of specific genes or pathways in ASD. To identify ASD 
associated functional biological pathways we conducted gene-set analyses. The selection of 
gene-sets was based on previously reported associations with psychiatric disorders but not yet 
tested in relation to ASD. This resulted in the testing of specific synaptic and glial sets, a 
glutamate pathway gene-set, mitochondrial gene-sets and gene-sets consisting of fragile X 
mental retardation protein (FMRP) targets (N 32 gene-sets). FMRP is expressed by the FMR1 
gene located at Xq27.3. Loss of function of this RNA binding protein expressed in the brain results 
in Fragile X syndrome, a disorder often co-diagnosed with ASD and intellectual disability. We 
based this study on the largest publicly available ASD GWAS sample at that time (N=5305) 
published by the Psychiatric Genomics Consortium. Our tests resulted in one significantly 
associated gene-set consisting of FMRP-targeting transcripts. Our results are in line with the 
literature since FMRP has been linked to ASD and cognitive development in other genetic studies 
such as copy number variant and whole-exome sequencing studies (A. Jansen et al., 2017). This 
gene-set has also been linked to SCZ suggesting that FMRP-targeted transcripts might be 
involved in a general mechanism with a shared genetic etiology between ASD and SCZ.  
Immunocytochemical research shows an FMRP deficit in neurons in the cortical and subcortical 
brain structures and increased expression of FMRP in white and gray matter infiltrating 
astrocytes (Wegiel et al., 2018) in individuals with ASD. The reported shrinkage of FMRP deficient 
neurons might provide an mechanistic explanation of neuronal, structural and functional 
changes reported in ASD (Wegiel et al., 2018).  

 

6.2 General discussion and future directions  

6.2.1 General discussion  

The main aim of the research presented in this thesis was to investigate the shared genetic 
factors between different psychiatric disorders in children and adolescents. We have tested PRS 
of multiple neurodevelopmental and psychiatric disorders and psychological traits (Chapter 3 
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and 4) and ran gene-set analysis using gene-sets previously associated with psychiatric disorders 
(Chapter 5). The results do not conclusively support the claim that common polygenic risk is 
indeed shared across disorders but shows a more delicate picture.  

We did not find evidence for the previously reported (DSM 5, 2013; Grove & et.al., 
2017; Kanner, 1965; Zheng et al., 2018) overlap between ASD and SCZ as most of the gene-sets 
previously associated with SCZ (Duncan et al., 2014; Goudriaan et al., 2013) were not associated 
with ASD and the SCZ PRS (Pardiñas et al., 2018) was not significantly associated with ASD, ADHD 
or diagnostic status in the child and adolescent clinical ‘Inside-Out’ sample. However, we should 
interpret these results with caution as the samples used in this thesis were all relatively small, 
reducing the statistical power to detect these associations. In addition, ASD can differ in 
expression between individuals as the experienced limitations in the social and communication 
domains and the cognitive functions of individuals vary greatly between individuals. A 
phenomenon called heterogeneity. This heterogeneity of the ASD phenotype might reflect small 
genotypic differences in ASD subgroups. Due to selection criteria or institutional biases between 
samples this may lead to subtle underlying genetic variations between samples resulting in our 
null findings.  

Another major finding is the non-significant association between the ASD PRS and ASD 
status, ADHD status and psychiatric diagnostic status in the ‘Inside-Out’ sample. In general, this 
might be due to different genetic architectures between these disorders. Yet, it remains 
surprising that the ASD PRS is not associated with ASD status in the ‘Inside-Out’ sample. This can 
be a matter of low power in the GWAS with ~ 18,000 cases or point in the direction of a larger 
role for rare variation instead of common variation.  
To summarize the findings regarding ASD:  
1) There is no association between the ASD PRS and (1) ASD status, (2) ADHD status and (3) 
general psychopathology status in the ‘Inside-Out’ sample. 
2) There is no significant association between the ADHD PRS and ASD status in the ‘Inside-Out’ 
sample. 
3) There is no significant association between the SCZ PRS and ASD status in the ‘Inside-Out’ 
sample. 
4) The tested SCZ associated gene-sets are not significantly associated with ASD.  
These four findings point in the direction of a smaller than expected role of common variation in 
ASD. There is a vast body of literature reporting ASD to be robustly associated with rare variants 
(De Rubeis et al., 2014; Iossifov et al., 2014; Sanders et al., 2015; Satterstrom et al., 2020). This 
is in line with the hypothesis that ASD has a genetic architecture that is more dependent on rare 
variants than common variants. However, it is possible that there is a still undetected common 
variant load also contributing to ASD which might be identified with a larger ASD GWAS. We did 
find genes in a FMRP gene-set to be significantly associated with ASD, more deeply establishing 
the genetic and molecular link between ASD and FMRP which is thought to be executed through 
RNA binding and editing (Darnell et al., 2011; Tran et al., 2019).  

Two studies in my thesis showed that the ADHD PRS is associated with ADHD status, 
combined ASD/ADHD status and psychiatric diagnostic status in the ‘Inside-Out’ sample. This is 
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interesting as the GWAS of ADHD is, compared to other GWAS of psychiatric traits, based on a 
rather small sample (20,183 cases, 35,191 controls). The fact that the ADHD PRS is significantly 
associated indicates that in ADHD common genetic variation might play a large role in the 
development of ADHD. In addition, it is possible that the common genetic variation comprising 
the ADHD PRS also plays a role in other disorders such and receiving a psychiatric diagnosis in 
general. This possibility is strengthened by other research with the ADHD PRS also showing 
association with for example externalizing problems (Ronald et al., 2021). However, as we 
cannot draw conclusions concerning causality it remains to be investigated whether observed 
associations are an actual overlap in causal SNPs or if ADHD at a young age is a risk factor for e.g. 
externalizing problems given impulsive behavior of individuals diagnosed with ADHD, thereby 
mimicking genetic overlap. Similar questions can be posed for other disorders associated with 
the ADHD common genetic variation. Regardless, our results implicate a larger overlap in 
common genetic variation between ADHD and other psychiatric disorders compared to the 
overlap in common variation between ASD and other psychiatric disorders.  

Looking at a broader phenotype, general psychopathology measured as psychiatric 
diagnostic status (having a diagnosis yes/no), the results are mixed. The testing of six 
psychological traits (intelligence, neuroticism, smoking initiation, risk taking, insomnia and 
educational attainment) and eight neurodevelopmental or psychiatric disorders (ASD, ADHD, 
SCZ, alcohol dependence, major depression, anti-social behavior, bipolar disorder and anxiety) 
showed that eight PRS (ADHD, educational attainment, smoking initiation, intelligence, 
neuroticism, alcohol dependence, major depression and anti-social behavior) were significantly 
associated with diagnostic status. This does not confirm nor reject the general psychopathology 
factor theory (Smith et al., 2020) described in the introduction of this thesis. The genetic 
vulnerability for low educational attainment and smoking initiation is associated with general 
psychopathology and as such they might play a role in the general psychopathology factor.  
However, before initiating research into this direction the question of causality between 
educational attainment and smoking initiation and general psychopathology needs to be 
answered.  

My main finding was the highly significant association between smoking initiation and 
educational attainment and general psychopathology. One explanation for this finding can be 
the statistical power of these two GWAS. With 1.1 million individuals for educational attainment 
and 1.2 million for smoking initiation they are among the largest datasets used so far. Next to 
this statistical explanation we see that associations between educational attainment and 
psychopathology have been reported before (P. R. Jansen et al., 2017). Additionally, it is 
important to note that educational attainment is a broad construct with a relatively low (20%) 
heritability (Okbay et al., 2016). This leaves ample room for environmental influences. Further, 
it might be beneficial to genetically entangle the most important components this phenotype 
encompasses such as cognitive abilities (intelligence), non-cognitive abilities (patience, self-
control, temperament, motivation, self-discipline, time preference), health endowments and 
family background (Conti et al., 2010). In addition, educational attainment is strongly correlated 
to adolescent cognitive ability which is influenced by early-life socioeconomic status (Zhang et 
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al., 2020). Parental income can be considered as a proxy for socio-economic status with a high 
parental income representing a higher socio-economic status, which is in turn associated with 
fewer mental disorders in children (Kinge et al., 2021). This shows that next to the observed 
genotypic association between educational attainment and childhood psychopathology there is 
also an observed phenotypic association. With these observed phenotypic and genotypic 
associations it is of importance to continue the research on the currently unknown underlying 
mechanisms.  

Regarding smoking initiation, phenotypic associations between smoking and general 
psychopathology have been observed in the adult psychopathology literature (Gfroerer et al., 
2013). The causality question is not easily answered as smoking initiation is embedded in a 
complex interplay of potentially causal relations (Liu et al., 2019) but several hypotheses can be 
formulated. For example, longitudinal research in a child and adolescent sample points out that 
smoking at age 17 is preceded by early emergent, ongoing externalizing disorder, starting at the 
young age of 5 years (Zubrick et al., 2012), an observation congruent with earlier observations 
showing that psychiatric problems often start earlier than substance disorders (Kessler, 2004). 
This association might point in the direction of a coping mechanism or may be due to correlated 
or common factors that are possibly mediated by shared genetic factors (Zubrick et al., 2012). 
Among individuals with an anxiety or depressive disorder smoking is highly prevalent but the 
results on causality provide no clear direction between smoking (and by extension smoking 
initiation) and anxiety or depressive disorders (Fluharty et al., 2017). The current hypotheses for 
this high concordance rate are 1. the self-medication hypothesis suggesting smoking to come 
forth from depression or anxiety symptoms, 2. a bidirectional effect with smoking alleviating 
depressive or anxiety related symptoms short term but worsening them over time or 3. a shared 
underlying genetic predisposition (Fluharty et al., 2017). Based on animal models, a 
4th hypothesis is that smoking leads to depression or anxiety disorders that are associated with 
increased susceptibility to environmental stressors. These studies indicate dysregulations in the 
hypothalamic-pituitary-adrenal system, due to prolonged nicotine exposure, resulting in cortisol 
hypersecretion and altered activity in the monoamine neurotransmitter system which has a 
main function in regulating reactions to stressors (Fluharty et al., 2017). This alteration seems to 
normalize after nicotine withdrawal. In addition to this hypothesized neurotransmitter circuit, a 
large GWAS on smoking initiation reported evidence for pathways involved in nicotinic, 
dopaminergic and glutamatergic neurotransmission in cortical (inferior temporal pathways, 
dorsolateral and medial prefrontal cortex) and subcortical (hippocampus, caudatus, striatum) 
regions in the brain (Liu et al., 2019). Future research could examine if neurotransmitter 
pathways associated with smoking initiation might partly overlap with pathways associated with 
childhood psychiatric disorders that genetically correlate with smoking initiation. 

Lastly, we found evidence by means of gene-set analyses for a role of FMRP-targeted 
transcripts in ASD. Next to ASD, FMRP is associated with several psychiatric conditions (Fatemi 
& Folsom, 2011) and a mutation in the FMRI gene. The gene, coding for the RNA interacting with 
the FMRP-targeted transcripts, is a causal factor for the Fragile-X disorder (Gross et al., 2015). 
This is a syndrome with a broad range of intellectual disabilities and a high ASD comorbidity rate: 
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up to 30% (Hagerman et al., 2005) of the children with Fragile-X syndrome are diagnosed with 
ASD and 2–8% (Hagerman et al., 2005) of children with ASD will have the responsible FMRI gene 
mutation. Our results show that next to the phenotypic comorbidity a genetic association is 
present. In the overlap between ASD and Fragile-X, FMRP might be an essential component. It is 
a factor in the regulation of the translation of many other messengers involved with, synaptic 
functions (plasticity and maturation), axonal guidance and related synaptic pruning. These 
processes are involved in Fragile-X syndrome, ASD (Hagerman et al., 2005) and general 
intelligence (Crespi, 2016) and a dysregulation in the processes might be at the core of the 
overlap between ASD, Fragile-X and their complex relationship with IQ. 

 

6.2.2 Scientific challenges  

An important issue for this thesis as well as in the more general field of ASD research, revolves 
around the entanglement between ASD and intellectual disability (ID). ASD is often co-diagnosed 
with intellectual disability and a recent study reported percentages as high as 31% of ASD cases 
having an IQ <70, 25% falling within the 71 – 85 IQ range and the remaining 44% having IQ scores 
>85 (Christensen et al., 2018). In this thesis, Chapter 3 takes ID into account. As an additional 
analysis I investigated if the results were driven by the ID subgroup by comparing the diagnostic 
distribution of the whole sample to the ID part of the sample. Additionally, we ran the univariate 
analysis for the intelligence and EA PRS on the part of the ‘Inside-Out’ sample without ID. Both 
analysis did not show the results to be driven by ID. Interestingly, in a well powered IQ GWAS 
paper the genetic association between intelligence and ASD is positive (0.25) where it is negative 
with other psychiatric disorders such as ADHD (-0.36) (Savage et al., 2018).  An explanation for 
the overlap between ASD and IQ alleles may be that ASD can be seen as a disorder involving a 
dysregulation of several systems regulating cognitive development meaning that ASD is 
associated with high but imbalanced enhancement across components of intelligence (Crespi, 
2016). To elaborate on this, it might be that an overgrowth or to little pruning of neurons during 
neurodevelopment in individuals with ASD leads to abnormal connectivity in the brain. The 
genetic correlation in turn might pick up on the neurodevelopmental processes essential for 
normal cognitive function which are over expressed resulting in a positive correlation. Finally, it 
is important to realize that the net genetic correlation between ASD and IQ is positive but that 
the genome-wide correlation is actually a mixture of positive and negative signals. It is likely that 
the neurodevelopmental genes as a whole have a stronger correlation resulting in the overall 
positive genetic correlation between ASD and IQ.  

Another important finding regarding ASD concerns the presence of subgroups due to 
the large phenotypical heterogeneity. Distinct ASD subgroups have unique SNP heritabilities 
being respectively 0.097, 0.049 and 0.045 for Asperger’s syndrome, autistic disorder and 
pervasive developmental disorders not otherwise specified (Grove et al., 2019). Additionally, the 
SNP heritabilities between ASD with and without intellectual disability also differ, being 
respectively 0.029 and 0.086 (Grove et al., 2019). And as the association with the IQ PRS differs 
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between ASD subgroups, with the highest IQ PRS load in the subgroup with Asperger’s syndrome 
(Grove et al., 2019), it is even conceivable that the ASD subgroups differ not only in specific 
causal rare variants but that ASD subtypes are also influenced by different common variants. 
These are findings that are important to examine as they may indicate differences in underlying 
etiology. 

In addition to the recent insights through common variant research, it is shown that 
rare de novo mutations play a large role in ASD genetics with most of the mutations playing a 
role in ASD also decreasing IQ (Iossifov et al., 2014; Sullivan & Geschwind, 2019), results in line 
with the comorbidity rate between ASD and intellectual disability. This observed pleiotropy 
needs to be examined further. Follow-up questions might concern the genes with large effect 
sizes affecting both ASD and intellectual disability. For example: do these genes affect biological 
processes differently than genes causing ASD without intellectual disability? Further, gene-
network analysis suggest molecular processes that distinguish ASD from intellectual disability 
(Sullivan & Geschwind, 2019) making it important to carefully report on which phenotype is 
being investigated, intellectual disability and/or ASD. For this issue, in-depth phenotyping can 
provide solutions. This is however not a clear-cut solution as large scale genetic research is 
conducted by combining many cohorts and running meta-analyses on these data (Autism 
Spectrum Disorder Working Group of the Psychiatry Genomics Consortium, Under Review). 
These cohorts might have used different, all correct, ways of diagnosing patients and might have 
collected different phenotypic data (such as absence or presence of IQ measures, behavioral 
measures and comorbid disorders) next to the genetic data. These differences can make it 
difficult to account for certain traits such as IQ scores. However, the most recent ASD GWAS 
reported in-depth analyses on ASD subgroups showing that this information is increasingly 
becoming available and already provides valuable information (Grove et al., 2019). This study 
shows it is desirable that this in-depth phenotyping takes flight for ASD and other heterogenous 
disorders. 

A final point to address is the fact that currently a lot of the genetic research, including 
this thesis, is using diagnostic categories to investigate psychiatric disorders. This is a 
dichotomous measure which likely contains less information than continuous measures. It would 
be a good addition to the field if the nuance of continuous measures is maintained and tapped 
into.   

 

6.2.3  Future directions 

The main aim of this thesis is to advance the research conducted to benefit patients diagnosed 
with psychiatric disorders and their families. I highlight the largest steps towards this goal here. 
The research conducted in this thesis relies heavily on GWAS results based on relatively small 
GWAS sample sizes such as for ASD and ADHD. Enlarging these GWAS sample sizes to identify 
more significantly associated SNPs and provide more accurate effect sizes will be beneficial to 
experiments featuring PRS as conducted in the projects reported here. This will also further the 
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insights into biological pathways involved in psychiatric disorders. From the early beginnings of 
the project described in this thesis until now GWAS have been steadily growing in sample size 
with sample sizes now exceeding the one-million mark for several psychiatric disorders and traits 
such as insomnia (P. R. Jansen et al., 2019) and neuroticism (Nagel et al., 2018). This milestone 
gave rise to the idea we have arrived in the post-GWAS era (Dick et al., 2018; Marjoram et al., 
2014) which is by no means the case for many psychiatric disorders as the still relatively limited 
sample sizes (~20,000 cases for ADHD) and consequently low harvest of new risk loci and limited 
insights in to biological pathways of the most recent GWAS on ASD (Grove et al., 2019) and ADHD 
(Demontis & Walters, 2017) show. In addition to larger sample sizes, more elaborate captures of 
the genome by means of whole exome sequencing studies (WES) and whole genome sequencing 
studies (WGS) are expected to be helpful in elucidating the genetic architecture of disorders of 
which we expect rare variants to be large contributors to the genetic make-up, such as ASD (A. 
Jansen et al., 2017). Next to that, WES and WGS will also improve the accuracy of the estimated 
effect sizes enhancing the value of the PRS for future applications due to improved accuracy. The 
PRS are already helpful for certain common diseases such as cardiovascular disease to facilitate 
risk stratification (Khera et al., 2018; Nikpay et al., 2015) and this is an application that might 
benefit psychiatric disorders in the future as well. These larger WES and WGS datasets do 
however bring up issues regarding  data acquisition, storage, costs and distribution that need to 
be sorted out (Stephens et al., 2015).  

Application of the psychiatric GWAS results to the clinical practice can go beyond PRS 
and their possibilities for risk stratification in large groups. Another important step forward will 
be the use of the GWAS results to find novel pharmacological interventions for psychiatric 
disorders, an area that has not had many recent break-throughs (Breen et al., 2016). However, 
a step before finding novel pharmaceutical interventions is correct interpretation of GWAS 
results. In this context several new tools and methods have been developed such as Functional 
Mapping and Annotation of Genome-Wide Association Studies (FUMA) (Watanabe et al., 2017). 
FUMA can be used to annotate, prioritize, visualize and interpret GWAS results. Variants 
associated to disorders by large GWAS can exert their effect either via the changed structure of 
a protein or it may affect the expression level of a gene (so called expression quantitative trail 
loci/ eQTL). Of these two methods the transcriptional control affecting the expression level of a 
gene is thought to play the largest role in disorders. Additionally, it has been reported that GWAS 
hits are enriched in regulatory sequences (Uffelmann & Posthuma, 2021). A way to gain further 
biological insight is by seeking convergent functions among the identified variants and map these 
to genes and pathways relevant to disorders (Uffelmann & Posthuma, 2021). This process of 
functional annotation of GWAS hits uses information from many different, often publicly 
available resources. For functional annotation the following four resources or methods are 
important. 1) Positional mapping of genes in coding regions linking them to genes directly. 2) 
Transcriptomics which consist of RNA signatures as measured by RNAseq, which integrated with 
genotype data allows for eQTL mapping. 3) Epigenetics which by adding methylation and 
acetylation data to eQTL data can provide insights into how these eQTL variants regulate gene 
expression (Uffelmann & Posthuma, 2021). Using this method, it was observed that 9% of 
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identified eQTL loci mediate their effect through epigenetic modification. 4) Chromatin 
confirmation which refers to the 3D chromatin organization and the resulting interactions 
between regions mega bases away (Uffelmann & Posthuma, 2021). After mapping the most likely 
trait associated variants to genes one can investigate if these variants converge in pre-defined 
gene-sets by running gene-set analyses which test if the association of the genes in the gene-set 
are stronger than the associations of genes not in the gene-set (de Leeuw et al., 2015; Uffelmann 
& Posthuma, 2021).  

Still, several caveats need to be resolved. For instance, many of the available datasets 
used for transcriptomics are not brain specific fine grained single cell data but coarse bulk tissue 
data, let alone have spatial and temporal information and are, in addition, not disorder specific 
(most data is on donors without psychiatric disorders). Even when this information will become 
available in the future, this only allows for hypothesis formulation on specific spatial and 
temporal stages, possibly of certain cell types, which is too broad for functional in vitro follow-
up studies which require specific biomarkers to evaluate (Uffelmann & Posthuma, 2021). Hence, 
after functional annotation of GWAS hits, one can only start to generate but not confirm 
hypotheses regarding involved biological processes. By means of computational approaches 
which take the polygenicity and the effect of the mutations into account these hypotheses can 
be converted into hypotheses which can be validated. With these hypotheses, one can start with 
functional in vivo and in vitro follow-up studies (Uffelmann & Posthuma, 2021), an important 
step which brings new insights into disorder etiologies and new treatment methods a step closer 
to the patients.  

 

6.3 Final conclusion 

This thesis provides insights into genetic comorbidity between psychiatric disorders and 
contributes to the rapidly growing body of genetic evidence generating insights into the 
development of psychiatric disorders.  

Interpreting my results with due consideration of the current state of the scientific field lead me 
to draw three final conclusions. 

1) ASD is a unique disorder in the group of psychiatric disorders as it seems to have a different 
genetic architecture. A conclusion we draw as the ASD PRS is not significantly genetically 
associated to other psychiatric traits and our ASD sample also shows no association with other 
psychiatric PRS. This may point towards a limited role for common variation and a larger role for 
rare variants in the development of ASD. The role for common variation in other 
neurodevelopmental disorders, for example ADHD, seems larger as the ADHD PRS is significantly 
associated with psychiatric case-control status, ADHD and combined ASD/ADHD status. For all 
psychiatric disorders it is important to account for the heterogeneity but for ASD, having this 
unique genetic signature and previously published differing SNP heritabilities between subtypes, 
it is essential that in-depth phenotyping becomes the standard.   
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2) The overlap in common variation between psychiatric disorders is present for certain 
disorders but not for all. Educational attainment and smoking initiation are genetically 
associated with general psychopathology, I cannot elaborate on association with specific 
psychiatric disorders but as the disorders are correlated with each other it is certainly plausible 
that educational attainment and smoking initiation are correlated to at least some psychiatric 
disorders individually. There might be a more sophisticated underlying web of correlations on 
symptom level which needs to be tapped into. Here also, in-depth phenotyping is essential for 
additional insights.  

3) The explained variance of the tested PRS is low but in line with other published data. This 
leaves ample room for other factors to contribute to the origination of these disorders among 
which rare variants, currently undiscovered common variation and environmental factors.  

The scientific community has by no means disentangled the biological mechanisms through 
which psychiatric disorders develop but research done on small samples as investigated in this 
thesis, and the larger collaborations comprising these small samples, is advancing our knowledge 
at a fast rate and will hopefully in the near future get to a point where the patients in the clinics 
can benefit from the insights resulting in better quality of life. 
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Nederlandse samenvatting 

Dit proefschift gaat over de genetische basis van psychiatrische aandoeningen. Eerder 
onderzoek heeft aangetoond dat deze aandoeningen vaak in meer of mindere mate erfelijk 
zijn. Een hoge mate van erfelijkheid betekent dat we aannemen dat de verschillen tussen 
mensen vooral door verschillen in genetische make-up kunnen worden verklaard. Ik heb 
verschillende statistische methoden gebruikt om tot verdere inzichten over de onderliggende 
veel voorkomende genetische varianten te komen, zowel aandoeningsspecifiek als 
overkoepelend tussen aandoeningen. Als wetenschappelijk vakgebied zijn we op het punt dat 
we voor een deel van de aandoeningen een eerste inschatting kunnen maken over welke veel 
voorkomende genetische varianten (ook wel single nucleotide polymorphisms, SNPs in het 
kort, genoemd) een rol spelen bij de ontwikkeling van een aandoening. We hebben echter 
nog geen helder beeld over hoe onderliggende cellulaire en moleculaire processen, waarop 
we eventueel kunnen ingrijpen met medicatie, samenhangen met psychiatrische 
aandoeningen. Met dit proefschrift dragen we bij aan het ontrafelen van de genetische puzzel 
door te kijken naar de effecten van veel voorkomende genetische varianten. We onderzoeken 
de effecten van veel voorkomende genetische variatie op dezelfde aandoening maar ook 
tussen aandoeningen. Door genetische verbanden tussen aandoeningen aan te tonen kunnen 
we paden ontdekken die bij meerdere aandoeningen afwijken van de standaard.  Hierop kan 
na nader onderzoek mogelijk ingegrepen worden om symptomen te verlichten.  

Om de leesbaarheid ten goede te komen worden de schuingedrukte technische termen in de 
woordenlijst aan het eind van dit hoofdstuk beknopt uitgelegd.  

In hoofdstuk 3 doe ik onderzoek naar het fenotype “psychiatrische diagnostische status”. Ik 
vergelijk een groep kinderen met verschillenden psychiatrische diagnoses (o.a. autisme 
spectrum stoornis (ASS), aandachtstekort en hyperactiviteit stoornis (ADHD), 
angststoornissen, depressie en eetstoornissen) met gezonde controles. Daarbij wil ik 
ontdekken welke polygene risico scores (PRS) het verschil tussen wel of geen psychiatrische 
diagnose kunnen voorspellen.  Ik heb PRS van 14 kenmerken of aandoeningen getest: ASS, 
ADHD, angststoornis, depressie, schizofrenie, bipolaire stoornis, alcoholverslaving, 
neuroticisme, slapeloosheid/slaapproblemen, antisociaal gedrag, risicovol gedrag, beginnen 
met roken, intelligentie en aantal opleidingsjaren. Na het individueel testen van deze PRS heb 
ik de significante PRS in één model getest om te kijken of en zo ja in welke mate de verklaarde 
variantie vergroot. De analyses wijzen uit dat aantal opleidingsjaren, beginnen met roken, 
intelligentie, neuroticisme, alcoholverslaving, ADHD, depressie en antisociaal gedrag 
significante voorspellers zijn. Van deze acht significante eigenschappen zijn aantal 
opleidingsjaren en beginnen met roken de hoofdbevindingen omdat daze verreweg de 
sterkste verbanden hebben met het hebben van een psychiatrische diagnostische status wat 
we zien aan de lage P-waarde. Dit betekent dat genetische varianten die geassocieerd zijn 
met deze twee eigenschappen ook geassocieerd zijn met het al dan niet krijgen van een 
psychiatrische diagnose. Dit kan een aanknopingspunt zijn voor verder onderzoek naar de 
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samenhang tussen aantal opleidingsjaren en/of beginnen met roken en psychiatrische 
aandoeningen. Er kan bijvoorbeeld onderzocht worden of het een het ander veroorzaakt 
(causaliteit), of dat er wellicht een andere onderliggende eigenschap (of genetische variant) 
is die zowel aantal opleidingsjaren, beginnen met roken en het krijgen van een psychiatrische 
diagnose kan verklaren. Ook zou onderzocht kunnen worden of het aantal opleidingsjaren (bij 
kinderen gezien als schooluitval) en/of beginnen met roken een voorspellende rol kunnen 
spelen in het vroeg ontdekken van kinderen die een verhoogd risico lopen op het ontwikkelen 
van psychische klachten. Wat betreft de tweede onderzoeksvraag bleek dat meerdere PRS in 
één model de verklaarde variantie aanzienlijk doet stijgen wat betekent dat het interessant 
kan zijn in vervolgonderzoek te kijken naar welke PRS zinvol bijdragen aan zo’n model en hoe 
je tot de hoogste verklaarde variantie kan komen. Zo’n model zou in de toekomst mogelijk 
nuttig kunnen zijn als onderdeel van een testbatterij bij mensen met milde psychische 
klachten.  

Hoofdstuk 4 gaat over zogeheten ontwikkelingsstoornissen waartoe ASS, ADHD en 
schizofrenie behoren. In het deel van onze testpopulatie wat een ASS en/of ADHD diagnose 
heeft test ik aan de hand van case-control onderzoek of de ASS, ADHD of schizofrenie PRS is 
geassocieerd met de diagnostische status (zijnde het wel of niet hebben van de betreffende 
aandoening) in de groep met alleen ASS, met alleen ADHD en in de gemengde ASS/ADHD 
groep. We zien dat de ASS en schizofrenie PRS niet geassocieerd zijn maar de ADHD PRS wel. 
De resultaten wijzen in de richting van ADHD specifieke genetische variatie en geven geen 
indicatie dat er overlap is in genetische variatie tussen de geteste aandoeningen. Interessant 
is dat de ASS PRS de ASS status ook niet kan voorspellen, dat zou kunnen betekenen dat in 
deze aandoening de veel voorkomende genetische varianten misschien een kleinere rol 
spelen dan in andere aandoeningen en dat ASS in sterkere mate wordt bepaald door zeldzame 
varianten of “de novo” varianten. Het kan ook zo zijn dat de ASS PRS simpelweg nog te weinig 
variantie verklaard, oftewel te weinig statistische power heeft.  

In hoofdstuk 5 zoom ik verder in op ASS.  ASS wordt al decennia lang geassocieerd met, of een 
kind-vorm van schizofrenie genoemd. Recent genetisch onderzoek laat een gemengd beeld 
zien. Sommige onderzoeken ondersteunen de hypothese dat ASS en schizofrenie verwant 
zijn, andere niet. Aan de hand van openbare genetische datasets onderzoek ik of ASS 
beïnvloed wordt door genetische varianten die zich in genetische paden bevinden die in 
eerder onderzoek met schizofrenie zijn geassocieerd. Gensets zijn groepen met genen die een 
rol spelen in hetzelfde biologische  proces. De genset analyses die ik hiervoor heb uitgevoerd 
wijzen globaal niet in die richting. Van de 32 geteste gensets is er één die geassocieerd blijkt 
met ASS, de ‘FMRP targeted transcripts’ genset. Deze bevinding is in overeenstemming met 
de literatuur waarin FMRP, veroorzaker van het Fragiele X syndroom, eerder met ASS is 
geassocieerd. Onze resultaten tonen aan dat de FMRP targeted transcripts, welke in Fragile X 
syndroom ontregeld zijn, mogelijk ook een rol spelen in het ontwikkelen van ASS.  
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De onderzoeken in dit proefschrift geven een tweeledig beeld van de overlap in 
onderliggende genetische variatie. Er wordt aangetoond dat de overlap in onderliggende 
genetische variatie voor specifieke psychiatrische aandoeningen geldt. Voor de eerder in de 
literatuur gerapporteerde overlap tussen ASS en schizofrenie worden geen aanwijzingen 
gevonden. De gensets die eerder met schizofrenie geassocieerd zijn geven geen significante 
resultaten en de schizofrenie en ASS PRS kunnen in de gebruikte onderzoekspopulatie geen 
cases van controles onderscheiden. Buiten dat de overlap tussen ASS en schizofrenie niet 
aangetoond wordt, zijn ASS cases niet door de ADHD PRS van controles te onderscheiden. Dit, 
terwijl eerder onderzoek wel een genetische samenhang tussen beide aandoeningen 
aantoonde. De rol van veel voorkomende genetische varianten lijkt hierdoor in ADHD groter 
dan in ASS. ASS zou sterker kunnen afhangen van zeldzame varianten of “de novo” varianten. 
ASS wordt wel geassocieerd met de FMRP targeted genes wat de aanname dat er een 
genetische overlap tussen deze twee aandoeningen is ondersteunt. De twee belangrijkste 
eigenschappen die geassocieerd zijn met het al dan niet krijgen van een psychiatrische 
diagnose zijn schoolopleiding in jaren en beginnen met roken. Omdat de gedane testen geen 
uitspraak kunnen doen over causaliteit is het verder onderzoeken hiervan een belangrijke 
vervolgstap. Ook het verder uitpluizen van welke componenten van de veelzijdige eigenschap 
schoolopleiding in jaren verantwoordelijk zijn voor de associatie met psychiatrische diagnose 
is belangrijk.  

Als kanttekening bij dit proefschrift wil ik de beperkte grootte van de data set noemen. We 
hebben een voor de genetica als klein bestempelde data set gebruikt (N < 2.000). De 
resultaten kunnen hierdoor beïnvloed worden, wat in de praktijk betekent dat we verbanden 
die er wel zijn over het hoofd kunnen zien. De kans dat we verbanden noemen die er in 
werkelijkheid niet zijn is kleiner. Het blijft dus van groot belang om (inter)nationaal samen te 
werken om data sets samen te voegen tot grote data sets met voldoende slagkracht om meer 
geassocieerde SNPs te vinden en de huidige kennis optimaal te benutten en te vergroten. 
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Alfabetische woordenlijst 

Veel voorkomende genetische varianten:  Variatie in het DNA van een individu welke in 
meer dan 1% van de bevolking voorkomt. 

De novo varianten:  Variatie in het DNA van een individu welke de ouders niet met 
zich meedragen en dus “nieuw” is in het kind, niet doorgegeven 
door de ouders. 

Fenotype:    Uiterlijke verschijning van het onderliggende genotype. 

Genetische varianten:  Het genetische materiaal van de mens, het DNA, bestaat uit een 
hele lange reeks nucleotiden, afgekort met de letters A, C, T en 
G. De nucleotiden die tussen mensen kunnen verschillen 
noemen we een genetische variant ook wel een single 
nucleotide polymorphisme (SNP) genoemd. 

Genset:  Samngestelde set van genen welke een onderlinge samenhang 
hebben met biologie relevantie.  

Genset analyses: Statistische test welke bepaald of de genen in een genset meer 
met de aandoening samen hangen dan genen niet in de genset. 

Genotype:    De genetische opmaak, het DNA, van een individu. 

Ontwikkelingsstoornissen :  Aandoeningen welke zich in een vroeg levensstadium 
openbaren door verschillen in de ontwikkeling van hersenen en 
zenuwstelsel. 

Polygene risico score (PRS):  Optelsom van alle genetische risico factoren die een individu in 
zijn DNA met zich meedraagt.  

P-waarde: Grens waartegen de uitslag van een statistische toets wordt 
gelegd. Deze is in regulier onderzoek 0.05. Een P-waarde onder 
0.05 is significant (er is een verband aangetoond), een P-waarde 
boven 0.05 niet (er is geen verband aangetoond). In genetisch 
onderzoek is de P-waarde grens lager, namelijk 5x10-8 , omdat 
er veel meer tests worden uitgevoerd wat de kans op toevallige 
of onjuiste toetsuitslagen vergroot. 

Zeldzame varianten:  Variatie in het DNA van een individu welke in minder dan 1% 
van de bevolking voorkomt. 
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Significantie:  Bij een significante voorspeller is het aannemelijk dat de 
bevinding niet op toeval berust. De 0.05 grens is de algemeen 
aanvaarde wetenschappelijke grens welke zegt dat de kans dat 
het gevonden effect op toeval berust kleiner is dan 5%.  

Statistische power: Mate van accuratesse waarmee statistische toetsen 
geinterpreteerd kunnen worden. Hoge power wil zeggen dat er 
weinig kan is dat er een effect gevonden wordt wat er niet is of 
een effect wat er wel is over het hoofd wordt gezien.  

Verklaarde variantie:  Het deel van de verschillen tussen individuen wat door de 
geteste variabele verklaard kan worden. 
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