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A B S T R A C T   

Entry in new technological domains is essential for the long-term performance of firms. Therefore, it is important 
to understand the conditions that increase the likelihood that firms enter, and further explore, new technological 
domains. Some recent studies have started to unpack these issues by looking at the environmental conditions in a 
new technological domain that pull firms into it. In this paper, we complement these studies by looking at the 
environmental conditions in the firm’s current technological domain that push firms into new domains. We do it 
from the perspective of technological ecology, by looking at how technological diversity and crowding in the firm’s 
current technological niche, as well as firm’s knowledge generalism, affect the likelihood that the firm enters, and 
further explores, new technological niches. To test our hypotheses, we rely on an empirical setting based on U.S. 
patents by 340 firms in the pharmaceutical industry. We propose a novel and advanced approach that, by 
leveraging a vast set of technological classifications, extracts technological niches from the patent system as they 
evolve over time.   

1. Introduction 

Entry in new technological domains is essential for the long-term 
performance of firms (Leten et al., 2016): it can bring firms a new se-
ries of technological innovations that can serve as new opportunities or 
options, which can be subsequently exploited through further upscaling 
and commercialization activities (Ahuja and Lampert, 2001), and it can 
also expand the repertoire of problem-solving skills (Hargadon and 
Sutton, 1997) that prevent lock-in during times of 
competence-destroying technological change (Tripsas, 1997; Tushman 
and Anderson, 1986). In this way, a firm’s entry into new technological 
domains stimulates corporate rejuvenation and contributes to its future 
growth and long-term survival chances (Katila and Ahuja, 2002; King 
and Tucci, 2002). Entry in new technological domains, therefore, may 
serve as an important source for a firm’s competitive advantage. Despite 
these strategic benefits, however, data suggest that not all firms enter 
new technological domains, and not all of those who enter innovate 

again after such entry (e.g., see Malerba and Orsenigo, 1999).1 2 

Therefore, a better understanding of the entry in new technological 
domains is necessary, to shed light on these paradoxical findings (Leten 
et al., 2016). 

An established perspective on these issues builds on resource argu-
ments (Barney, 1991; Penrose, 1959). In a nutshell, this perspective 
centers on the (firm-level) insight that the resource base of the firm—for 
example, its technologies—determines both the direction and magni-
tude of entry, typically in function of resource synergies between the 
current and the new domain (Breschi et al., 2003; Leten et al., 2007; 
Nesta and Saviotti, 2005; Peteraf, 1993). This perspective has enriched 
our understanding of entry dynamics as the basis of firm’s growth 
leading to competitive advantage. Yet, as argued by Leten et al. (2016), 
this view is fundamentally incomplete, because it overlooks the role 
played by the broader technological environment that surrounds the 
firm and that also influences its innovation initiatives. With the aim of 
unpacking the role of environmental conditions, these scholars have 
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E-mail addresses: juanantonio.candiani@uantwerpen.be (J.A. Candiani), v.a.gilsing@vu.nl (V. Gilsing), mmastrogiorgio@faculty.ie.edu (M. Mastrogiorgio).   

1 In a demographic study on Schumpeterian patterns of innovation, Malerba and Orsenigo (1999) showed that entry in new technological classes tends to be 
common mainly among ‘lateral’ entrants, typically established firms engaged in a process of technological diversification. In addition, they showed that a large 
fraction of entrants is ‘occasional’ rather than ‘persistent’, meaning that only a few of them continue to patent after entry. These results hold across a variety of 
classes.  

2 Moreover, there seems to be a discrepancy between observed levels of product diversification and the extent of technological diversification via the entry in new 
domains. This makes technological diversification, and what drives it in the first place, a phenomenon worth of further studies. 
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thus examined the conditions in the new technological domain, by 
looking at how the richness of opportunities in the new domain pulls 
firms into it (Leten et al., 2016). By analyzing patent data of R&D 
intensive firms, they have found that the richness of opportunities in the 
new domain encourages entry while competition discourages it, and that 
firms are heterogeneously positioned depending on the configuration of 
their knowledge base. 

The combined importance of pull and push factors in technology 
(Dosi, 1982; Mowery and Rosenberg, 1979; Van den Ende and Dolfsma, 
2005) requires us to complement the study of Leten et al. (2016) by 
examining the conditions in the current technological domain that push 
firms into new domains. Given the complexity of inventive problems 
(Baumann et al., 2019; Fleming and Sorenson, 2001; Ganco, 2017) 
combined with bounded rationality (Simon, 1955, 1962), firms tend to 
search ‘locally’ within their current domains (Greve, 1996; Levinthal 
and March 1993; Levinthal, 1997; March, 1991), and this exposes them 
to localized niche pressures. This requires a niche theory, which we 
borrow from the technological ecology literature (Coccia, 2019a; Coccia 
and Watts, 2020), based on which we operationalize current and new 
technological domains with the specific construct of current and new 
technological niches (Podolny and Stuart, 1995; Van den Oord and Van 
Witteloostuijn, 2017). In ecology, the concept of niche was introduced to 
describe a particular configuration of scarce resources and of a popu-
lation of biological entities, and how the population itself responds to 
this configuration (Elton, 1927; Popielarz and Neal, 2007). In innova-
tion, a technological niche refers to a configuration of resources in the 
technological space and of a population of firms that, in different de-
grees, depend on these resources for their viability (Podolny and Stuart, 
1995). More precisely, we define a technological niche as a system 
consisting of several related technological inventions (in the form of 
patents) apportioned into categories (technological subclasses) (Van den 
Oord and Van Witteloostuijn, 2017). 

To unpack push factors under the lens of technological ecology, we 
propose three basic hypotheses. First, we argue that a higher degree of 
technological diversity in the firm’s current niche, by increasing the de-
gree of technological opportunities, positively affects the likelihood that 
the firm enters in a new niche via patenting. Since the niche is new-to- 
the-firm, it takes time for the firm to react to such entry by further 
exploring the niche, as shown by multiple examples from different in-
dustries: that is why we want to understand what the post-entry drivers 
of further exploration are. We thus argue that, conditional on entry in 
the new niche, a higher degree of technological crowding in the firm’s 
current niche, by increasing the degree of technological competition, 
positively affects the likelihood that the firm opts to further explore the 
new niche via subsequent patenting. We then argue that firms are het-
erogeneously positioned depending on the degree of generalim of their 
knowledge base: while generalism increases their ability to take 
advantage of technological opportunities, thus positively moderating 
the effect of technological diversity on the likelihood of entry, it also 
decreases their exposition to competitive niche pressures, thus nega-
tively moderating the effect of technological crowding on the likelihood 
of exploration. To test our hypotheses, we rely on an empirical setting 
based on U.S. patents by 340 firms in the pharmaceutical industry. We 
propose a novel and advanced approach that, by leveraging a vast set of 
technological classifications, extracts technological niches from the 
patent system as they evolve over time. 

The rest of the paper is organized as follows. In Section 2 we develop 
the theoretical framework. In Section 3 we explain the study design. In 
Sections 4 and 5 we present the key findings. In the last section we 
discuss the implications and limitations, and then conclude. 

2. Theoretical framework 

2.1. Evolutionary ecology of technology 

Evolutionary models of technology are well-established in the 

innovation tradition (Arthur, 2009; Basalla, 1988; Nelson and Winter 
1982; Utterback, 1994; Ziman, 2000), thanks to a renewed interest in 
the similarities between biological and technological evolution (Cattani 
and Malerba, 2021; Cattani and Mastrogiorgio, 2021) that have 
prompted some to suggest that evolutionary principles underlie all types 
of complex systems (Coccia, 2017, 2018, 2019b; Hodgson, 2002). A 
central debate in this tradition revolves around the sources of oppor-
tunities in new domains (Kneeland et al., 2020), which according to 
some lie at the micro-level (Gavetti, 2012), while others have stressed 
the role of environmental factors (Andriani et al., 2017; Dosi, 1982; 
Leten et al., 2016; Winter, 2012).3 

An emerging stream of research unpacks environmental factors from 
the perspective of ecology, a field of investigation that studies the in-
teractions between focal entities—biological or technological—in their 
respective environmental niches, and that is being proposed as a plat-
form from which we can better understand evolutionary processes in 
technology (Coccia, 2019a; Coccia and Watts, 2020). This stream of 
research, also known as ‘technological ecology’, centers on the concept 
of ‘technological niche’ and on the dynamics that take place inside it 
(Podolny and Stuart, 1995; Van den Oord and Van Witteloostuijn, 
2017). 

Technological niches: basic concepts. As argued by Schot and Geels 
(2007), “in evolutionary theories, radical technical change is often 
explored […] as a process that proceeds in small steps or as a process 
that is accomplished by a great leap forward which opens new markets 
and creates new branches of industry”, at the expense of a theory that 
explains these radical changes “in a more differentiated and nuanced 
way, working towards a niche theory” (pg. 617, emphasis added). There 
is, nevertheless, an emerging literature that links evolutionary theories 
of innovation with the research on niches (Andriani and Cohen, 2013; 
Schot and Geels, 2007), with the aim of understanding how niches (and 
the dynamics that take place inside them) are conducive to innovations 
and act as “incubation rooms for radical novelties” (Geels, 2005: pg. 
684). An example is the recent work of Coccia, 2019a (see also Coccia 
and Watts, 2020), who examines technological evolution from the 
perspective of ‘technological parasitism’, referring to a taxonomy of 
ecological interactions between technologies in their niches.4 

A key concept in this literature is that of ‘technological niche’ 
(Podolny and Stuart, 1995). The concept of niche is of key importance in 
organizational ecology, where it has been used to analyze how the forces 
of legitimacy and competition give rise to an inverted U-shaped rela-
tionship between density and the entry of organizations in a niche 
(Carroll and Hannan, 2000; Hannan and Freeman, 1977), having 
received a widespread attention from both an empirical (Baum and 
Singh, 1994; Khurshid et al., 2020; Podolny and Stuart, 1995; Podolny 
et al., 1996) and theoretical standpoint (Hannan et al., 2007; McPher-
son, 2004; Van Witteloostuijn and Boone, 2006). Contemporaneously 
with its application to organizational phenomena, but certainly in a less 
extensive way, the niche concept has been applied to technology too. 
The concept of ‘technological niche’ was introduced by Podolny and 
Stuart (1995), with the aim of studying how the structural relationships 
between a set of innovations affect the relevance, and impact, of these. 
More works followed, starting to disentangle how technologies in a 

3 This debate has deep roots in evolutionary biology, where it relates to the 
tension between gene-centric and contextual perspectives on evolution (Gould, 
2007). For a summary, see Cattani and Mastrogiorgio (2021).  

4 This literature studies how niche mechanics lead to radical change, like the 
emergence of a new socio-technical regime. It does it within different para-
digms about the evolutionary nature of radical change, like natural selection 
(Saviotti, 1996) and ‘Generalized Darwinism’ (Hodgson, 2002; Coccia, 2019a), 
punctuated equilibrium/speciation (Levinthal, 1998), and niche construction 
(Odling-Smee et al., 2003). Despite these interesting directions, “it is surprising 
that little systematic attention has been given to the topic of niches in evolu-
tionary theories of technological change” (Schot and Geels, 2007: pg. 606). 
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niche are in a relationship of both ‘competition’ and ‘mutualism’ (Pis-
torius and Utterback, 1997), of which there can be different degrees 
(Coccia, 2019a; Coccia and Watts, 2020). For a comprehensive review of 
these approaches, we refer to Van den Oord and Van Witteloostuijn 
(2017). 

What is a technological niche? In biology, a niche refers to a 
configuration of scarce resources (like food) and to a population of 
interacting biological entities (like mammals) competing for these 
(Elton, 1927; Odling-Smee et al., 2003; Popielarz and Neal 2007). A 
technological niche, instead, refers to a configuration of resources in the 
technological space—thus technologies, typically in the form of pat-
ents—and to a population of firms that, in different degrees, depend on 
these for their viability: more precisely, we define a technological niche 
as a system consisting of several related technological inventions (in the form 
of patents) apportioned into categories (technological subclasses) (Van den 
Oord and Van Witteloostuijn, 2017).5 Equating patents with niche-level 
resources is quite established in the literature (Kovacs et al., 2021; 
Podolny and Stuart, 1995; Van den Oord and Van Witteloostuijn, 2017: 
pg. 2), as it acquires relevance in specific industries—like the pharma-
ceutical one, for instance—that heavily rely on patents, which thus 
represent essential resources for firms. The multi-billion monopolies 
afforded by drugs’ patents and the often-recurring patent races (and 
wars) among firms are, in this regard, illustrative.6 

Building on the distinction between environmental factors and firm- 
level factors, we will study what environmental factors, at the level of 
the firm’s current technological niche, affect firm’s trajectories into new 
areas of the technological space, thus increasing the likelihood that the 
firm enters, and further explores, new technological niches. The envi-
ronmental push factors that we explore are technological diversity and 
technological crowding at the niche level. Whereas, at the firm-level, we 
consider the firm’s degree of knowledge generalism. Fig. 1 illustrates our 
framework, whose mechanisms are further explained below.  

• Current niche’s technological diversity and entry in a new niche 

The concept of diversity features a prominent role in a variety of 
disciplines (Dwertmann et al., 2016), including ecology (Coccia, 2018; 
McCann, 2000; Van den Oord and Van Witteloostuijn, 2017) and 
innovation studies at the intersection of science, technology and 
research policy (Cui and O’Connor, 2012; Hao et al., 2020; Haelg, 2020; 
Nowotny et al., 2001). A comprehensive review of diversity, and of the 
possible ways to approach the phenomenon, can be found in Page 
(2011) and Stirling (2007). What seems to be established, across this 
variety of fields, is that the value of a system increases as a function of its 
diversity. Indeed, in the innovation context, it is often claimed that 
technological diversity correlates with creative outcomes, thus leading 
to novelty generation and other advantages, like the ability of the system 
to generate options and ‘hedge bets’ against future changes. This has 
brought attention on the need to ‘open up’ technological systems 
(Chesbrough et al., 2006; Huizingh, 2011), also making them more 
diverse (Stirling, 2007). Building on these arguments, we here argue that 
technological diversity, operating at the level of the current niche of the 
firm, fosters creative outcomes that take the form of a firm’s entry in a 
new niche. That is, higher technological diversity in the firm’s current 
niche increases the likelihood of firm’s entry in a new niche. 

With reference to a system (a technological niche) consisting of 
several related elements (technological inventions, in the form of pat-
ents) apportioned into categories (technological subclasses), we define 
diversity as a system-level property (see Stirling, 2007). More specif-
ically, we define diversity as the disparity of categories of which the 

system is composed. That is, diversity refers to the degree in which 
categories can be distinguished from each other, and the more disparate 
are the categories, the greater is the diversity of the system.7 When the 
technological diversity in a firm’s current niche (that is, the disparity of 
the technological subclasses that compose the niche) increases, the 
novel ways in which underlying technological-knowledge elements can 
be recombined with other ones increase exponentially, through a pro-
cess of ‘combinatorial explosion’ that is exemplified by Kauffman 
(2000)’s Lego blocks: when their disparity goes up, the novel ways in 
which they can be assembled increases exponentially, leading to an 
expansion of the ‘adjacent possible’ into which the assembly could 
advance. This is due to the hierarchical nature of technology: the fact 
that an invention is made of disparate components while at the same 
time is a component of other inventions and, in turn, of larger disparate 
sub-classes that are combinable too (Baldwin and Clark, 2000; Simon, 
1969). In fact, as argued by Fleming (2001), “because every invention 
can be incorporated in further recombinations, the combinatorial po-
tential will grow explosively” and “the set of potential combinations […] 
becomes essentially infinite” (pg. 119; Weitzman, 1996).8 

A specific mechanism through which technological diversity in the 
firm’s current niche leads to firm’s entry in a new niche is that increasing 
technological diversity in the firm’s current niche means that, due to 
increasing disparity, the niche potentially becomes less integrated. 
Therefore, more technological diversity, without any accompanying 
integrative measures (Baldwin and Clark, 2000; Lawrence and Lorsch, 
1967), also means more technological incoherence across the niche 
(Yayavaram and Ahuja, 2008). The result is that increasing technolog-
ical diversity makes it more difficult for those firms that are based in the 
niche to search across all potential new opportunities for recombina-
tion.9 Consequently, when the search space becomes exceedingly scat-
tered, the likelihood that inventors will be swamped by the absence of 
integrative links increases, making it difficult for them to distinguish the 
value of one opportunity from another (Goldenberg et al., 1999). 
Therefore, firms—and their inventors—will “lose the ability to explore 
some parts of the space of designs—in effect, the architects will restrict 
the search, declaring some parts of the design space to be out of bounds” 
(Baldwin and Clark, 2000: pg. 69). 

Yet, whereas technological diversity may impede search and 

5 As explained in the empirical section, we identify niches by clustering 
technological subclasses, based on their ‘co-occurrences’ in patent documents 
(representing ‘distances’ between subclasses).  

6 In fact, our study focuses on the pharmaceutical industry. 

7 Diversity has three main dimensions: variety, disparity, and balance. Vari-
ety is the number of categories, disparity is the difference among them, balance 
is how elements are distributed across the categories. Diversity increases when 
variety and disparity increase and when the elements are evenly distributed 
(Stirling, 2007). Standard approaches to diversity, like the Herfindal index, are 
based on the distribution of elements across categories and thus capture only 
one, specific, dimension of diversity (Stirling, 2007). Moreover, variety and 
balance cannot be properly characterized “without first considering disparity” 
(Stirling, 2007: pg. 710, emphasis added): that is, listing several categories, 
over which elements are distributed, requires an ex-ante assessment of 
disparity, which thus acquires priority in the order of relevance of the different 
dimensions of diversity. That is why we opted for conceptualizing diversity in 
terms of disparity.  

8 We assume that firms can get access to technological knowledge owned by 
other firms in a technologically diverse niche. There are three main reasons. 
First, even if knowledge is partly tacit and protected by patents, it ‘spills’ out of 
firm boundaries, as shown by the research on knowledge spillovers (Jaffe, 
1986; Jaffe et al., 2000). Second, patents are public documents that reveal new, 
codified knowledge and therefore ‘signal’ new opportunities for innovation for 
firms’ inventors (Arundel, 2001; Hsu and Ziedonis, 2013). Third, patent data 
are being used as proxies of a broader theoretical construct (in our case, 
technological diversity). This is in line with the innovation tradition, which 
makes an extensive use of patent data to measure very different aspects of 
technological knowledge that is used by other entities, even if this knowledge is 
protected.  

9 As argued by Yayavaram and Ahuja (2008), while the lack of integration in 
a technological space allows firms to search ‘in depth’ inside a cluster, it limits 
the ‘breadth’ of search across clusters. 
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recombination on the one hand, paradoxically it can also spur the cre-
ation of new inventions on the other hand. As shown by research in 
cognitive psychology, when the search space becomes ill-structured due 
to diversity, adhering to a cognitive frame of reference that limits the 
scope of search also enhances some other crucial dimensions of crea-
tivity, eventually enabling firm’s inventors to achieve distant recombi-
nation and long search paths, or simply recognize the unexpected 
(Goldenberg et al., 1999; Kneeland et al., 2020; Perkins, 1981). For 
example, in studies on causal reasoning in science it is found that those 
experiments with many controls can be crucial for science, as they help 
inventors and scientists to develop a sensitivity for the unusual and to 
obtain novel findings (see Dunbar and Fugelsang, 2005). Some inno-
vation scholars have thus stressed that “only a deep dive can produce 
breakthroughs” (Kaplan and Vakili, 2015: pg. 1435), siding with a 
‘foundational’ view of invention, according to which local search at-
tempts can also be the basis of detecting anomalies, and thus produce 
breakthroughs.10 All this implies that technological diversity in the 
firm’s current niche, producing a less integrated search space that limits 

the scope of search, activates different paths of inventive creativity, 
making a firm’s inventors more prone to notice the unusual, which in-
creases the likelihood of firm’s entries in new niches. This leads to our 
first hypothesis. 

H1. A higher degree of technological diversity in the firm’s current niche 
increases the likelihood of firm’s entry in a new niche.  

• Current niche’s technological crowding and exploration of the new 
niche 

The concept of crowding features a prominent role in ecology 
studies, where it refers to the spatial distribution of organisms inside a 
niche with respect to scarce resources, which in turn affects the dynamic 
of the niche itself (Sun et al., 2012).11 In technological ecology (Podolny 
and Stuart, 1995; Stuart, 1999; Van den Oord and Van Witteloostuijn, 
2017), technological crowding refers to the spatial distribution, or 
‘positioning’ (Barroso et al., 2016), of firms inside a technological niche, 

Fig. 1. Illustration of the theoretical framework.  

10 In line with the argument of Kuhn (1970) that the accumulation of anom-
alies leads to the emergence of novelty, in the form of new paradigms (Dosi, 
1982). 

11 As argued by Sun et al., 2012 (see also Van den Oord and Van Witteloos-
tuijn, 2017), the “distribution of nutrients as well as interactions on a spatial 
scale […] can have important impact on dynamics of ecological populations” 
(pg. 11161). 
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which consists of technologies—in the form of patents—that constitute 
the resources on which firms depend for their process of invention. Since 
invention consists of recombining previous technologies and knowledge 
components, these pieces of prior art represent fundamental building 
blocks for the firms operating in the niche (Van den Oord and Van 
Witteloostuijn, 2017). More precisely, technological crowding refers to 
the extent to which a firm specializes in a technology area that is densely 
populated by other firms, as expressed by the degree of overlap (on the 
prior art) of firms’ knowledge bases (Podolny and Stuart, 1995). 
Building on these arguments, we here argue that technological crowd-
ing, operating at the level of the current niche of the firm, evokes effort 
on the part of the firm to distinguish its activities “from the initiatives of 
technologically adjacent organizations” (Stuart, 1999: pg. 747) through 
the exploration of new niches. That is, higher technological crowding in 
the firm’s current niche increases the likelihood of firm’s exploration of 
the new niche, in which the firm entered previously. 

More specifically, we argue that, when technological crowding in-
creases, competitive pressure from technologically adjacent firms in-
creases (Baum and Singh, 1994; Hannan et al., 2007; Podolny et al., 
1996). A key mechanism through which competitive pressure increases 
is related to knowledge spillovers (Jaffe, 1986; Jaffe et al., 2000) in the 
form of codified and tacit knowledge (Breschi and Malerba, 1997), 
which are not only received and absorbed but increasingly also leak 
away to more and more technologically-adjacent firms in the niche.12 

Whereas trust between a small group of partners may form a key 
mechanism for the exchange of tacit knowledge (Gilsing and Noote-
boom, 2006), a larger and overlapping group of firms will make it 
become more difficult to keep tacit knowledge proprietary and to rely on 
secrecy for its appropriation (Teece, 1986). The implication is that it 
may become more difficult to create valuable and difficult-to-imitate 
technologies, as competing firms may just free-ride on a firm’s inven-
tive efforts. This will potentially erode a firm’s competitive advantage. 
Consequently, firms need to look for new sources of competitive 
advantage that can lead to future growth. This makes them become more 
likely to engage in riskier behavior through a range of organizational 
actions (Afuah, 2001; Aghion et al., 2006; Benner and Tushman, 2003; 
Birkinshaw et al., 2007), including the exploration of new technological 
niches.13 Consequently, when technological crowding increases, a firm’s 
incentive to engage in riskier and distant exploration, beyond its current 
niche, increases too. In sum, when technological crowding increases, the 
firm may opt to further explore the new niches in which it entered 
previously. This suggests that, conditional on entry, technological 
crowding linearly affects the exploration of the new niche. This leads to 
our second hypothesis. 

H2. Conditional on entry in a new niche, a higher degree of technological 
crowding in the firm’s current niche increases the likelihood of firm’s further 
exploration of the new niche.  

• The role of firm’s knowledge generalism 

A variety of firm-level, positional, characteristics may moderate the 

relationship between niche-level drivers and a firm’s entry and explo-
ration of new niches. An important firm-level characteristic is the degree 
of firm’s knowledge generalism. The concept of generalism, central in 
ecology studies (Stuart, 1999; Van Witteloostuijn and Boone, 2006) and 
innovation (Melero and Palomeras, 2015), refers to the scope of inno-
vative competences and to the distinction between “specialist organi-
zations that choose narrow and homogeneous” areas and “generalist 
organizations [that] choose targets composed of heterogeneous” areas of 
the technological space (Carroll et al., 2002, pg. 7). As discussed in the 
literature, being a generalist implies trade-offs (Teodoridis et al., 2019): 
for example, to invest time, resources and capabilities in several areas, 
maybe at the cost of having only a limited understanding of each; or, 
conversely, to invest in a specific area, at the cost of missing the big 
picture and being unable to ‘connect the dots’. 

Therefore, from a conceptual point of view, knowledge generalism is 
likely to positively moderate the entry response to increasing degrees of 
niche-level technological diversity. In fact, knowledge generalism, by 
granting access to a wider set of innovative competences (Fleming et al., 
2007; Hargadon and Sutton, 1997; Taylor and Greve, 2006), helps the 
firm to establish those missing integrative links between the sparse and 
(apparently) incoherent elements of a technologically diverse niche. In 
this way, we expect that knowledge generalism strengthens the effect of 
technological diversity on firm’s entry in a new niche. But, on the other 
side, knowledge generalism is likely to negatively moderate the explo-
ration response to increasing degrees of niche-level technological 
crowding. In fact, a narrow-scope firm, by having all its activities 
concentrated in a single area of its current niche,14 is more likely to 
explore new niches to react to increasing crowding levels in the current 
niche, as a way of spreading the risk of being active in a single area that 
becomes increasingly crowded. On the other hand, the generalist has 
more options to “shift the emphasis across [its current] set of activities 
[…] in response to different conditions” (Stuart, 1999: pg. 755). That is, 
we expect that the generalist is less likely to explore new niches to react 
to increasing crowding levels in the current niche, being such firm active 
in several areas, meaning that the pressure to spread the risk is less 
pronounced. In fact, empirical research has shown that internally 
diversified firms may see less value in external exploration, due to a 
variety of reasons, including weaker incentives to react against 
increasing crowding pressures (Srivastava and Devi, 2011). In this way, 
we hypothesize that knowledge generalism weakens the effect of tech-
nological crowding on firm’s further exploration of the new niche. This 
leads to our third hypothesis: 

H3a. Firm’s knowledge generalism positively moderates the effect of niche- 
level technological diversity on firm’s entry in a new niche. 

H3b. Firm’s knowledge generalism negatively moderates the effect of niche- 
level technological crowding on firm’s further exploration of the new niche. 

3. Study design 

3.1. Data and sources 

Our data come from the Compustat, NBER and USPTO databases. We 
rely on an empirical setting based on the pharmaceutical industry. This 
industry is particularly fit for our study, due to the tendency of phar-
maceutical firms to focus on their current niches, thus being particularly 
subject to niche pressures (Petrova, 2014).15 In order to obtain phar-
maceutical patents, we first identify Compustat firms belonging to the 
pharmaceutical industry and therefore to SIC codes 2833–2836. Second, 
we match Compustat firms to their portfolios of patents obtained from 
the NBER and USPTO databases. Third, we match patents to their 

12 Knowledge spillovers are unobservable, which explains why economists 
quantify them with patent citations (Jaffe et al., 2000). This means that the 
degree of overlap of firms’ knowledge bases on the prior art, consisting of 
backward patent citations (see the crowding measure), captures, at least in part, 
the degree of knowledge spillovers among firms. But knowledge spillovers are 
just one type of competitive pressure to which technologically adjacent firms are 
exposed. Another type is related to appropriability regimes: in a nutshell, re-
gimes of patent protection create pressure to patent more aggressively, to 
establish priority of invention, especially in dense areas of the technological 
space where firms also patent strategically (Stuart, 1999).  
13 Other possible actions are strategic reorientation, market change, product/ 

process/practice innovation, collaboration with new prospective partners, or 
vertical integration. 

14 That is, by ‘having all the eggs in one basket’.  
15 For example, GlaxoSmithKline specializes on infectious diseases, while Eli 

Lilly on psychiatric disorders. 
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technological classifications. In order to build niches, we use techno-
logical classifications at the ‘main-line subclass’ level,16 and thus at a 
more fine-grained level than three-digit classes (despite their coarse 
nature, three-digit classes are heavily used in the patent literature, with 
exceptions: e.g., Fleming and Sorenson, 2001). Overall, we use 61703 
patents, belonging to 3276 main-line subclasses, and our main sample 
consists of 340 firms observed over time in an unbalanced panel. 

3.2. Measures 

Technological niches: a novel approach. Previous studies are based on 
the identification of technological niches with technological classes 
(Van den Oord and Van Witteloostuijn, 2017). We introduce a more 
dynamic, flexible and fine-grained measure of technological niches and 
thus follow an approach that, for the following reasons, is novel: first, 
our measure is still based on technological classes, but it also takes into 
account how firms combine these in their inventions; in other words, our 
measure is based on technological classes but it also takes into account 
how firms use these, therefore providing a more realistic picture of the 
technological space and of the distances that define different niches 
within it. Second, based on how it is calculated (see below), our measure 
allows us to capture how the technological space—and the niches within 
it—changes over time, thus linking with the idea of niches as dynamic 
(rather than stable) entities (see Andriani and Cohen, 2013). More 
specifically, our measure is based on the fact that a patent contains 
multiple technological classes, which means that the patent is based on 
combining the multiple types of knowledge that underlie these techno-
logical classes (Yayavaram and Ahuja, 2008).17 The combination of 
knowledge reveals synergies among technological classes that can be 
translated into distances between them in the technological space: 
technological classes that are close to each other belong to the same 
technological niche, while technological classes that are distant from 
each other belong to different technological niches.18 

To build our measure for a focal year, we follow these steps: we 
consider the universe of pharmaceutical patents granted during the 10 
years preceding the focal year; we consider the universe of technological 
main-line subclasses appearing in these patents; we build the coupling 
network between technological main-line subclasses based on the 
number of co-occurrences in patents: technological main-line subclasses 
with frequent co-occurrences are close to each other and hence belong to 
the same technological niche, while technological subclasses with non- 
frequent (or absent) co-occurrences are distant from each other; 
hence, they belong to different technological niches. In addition, we do 
the following: the shortest distance is assigned between the two main- 
line subclasses with the highest frequency of co-occurrences, and 
larger distances between main-line subclasses are calculated 

proportionately—we label them ‘co-occurrence distances’; a coupling 
network between main-line subclasses is therefore obtained, based on 
co-occurrence distances; the next step consists in calculating geodesics19 

between main-line subclasses weighted with their co-occurrence dis-
tances—we label them ‘distances’ (see endnote).20 

To identify technological niches, we form clusters of main-line sub-
classes using an agglomerative hierarchical procedure. This is a bottom- 
up procedure, as it consists of starting with each main-line subclass in its 
own cluster and in progressively merging pairs of clusters. In this pro-
cedure, a major challenge consists in determining the number of clus-
ters. We realized that many standard clustering procedures are not fit for 
determining this number.21 22 Therefore, we determine this number of 
clusters using the following procedure. The procedure consists in look-
ing at how a fitness function decreases—with respect to a linear 
function—as the number of clusters increases, where the fitness function 
proxies the stability of the clusters (which is, by logic, maximum when 
there is only one cluster and minimum when there are all possible 
clusters). More precisely, we look at the maximum difference between 
the fitness and the linear function and consider the corresponding 
number of clusters as the target one. This is the number in correspon-
dence of which the fitness function starts to decrease more rapidly than 
the linear trend, hence identifying the point after which subsequent 
clustering becomes marginal. 

Based on this procedure, the number of clusters/niches varies from 
31 to 51 depending on the year, with an average of 40.6 technological 
niches. For instance, the number of technological niches is 35 in year 
1995, as illustrated in Fig. 2, where each niche has a different colour. 
Interestingly, the average number of technological niches (40.6) 
matches with the number of therapeutic areas mentioned in Nerkar and 
Roberts (2004: pg. 785): based on the IMS (Intercontinental Medical 
Statistics) database, they identify 45 major therapeutic areas, that 
however do not correspond to the 85 therapeutic areas of USPTO class 
514.23 Our matching seems to indicate that our algorithmic procedure 
captures niches that correspond (in number) to the major therapeutic 
areas identified by Nerkar and Roberts (2004). To further investigate 
this issue, we apply the clustering procedure to some specific thera-
peutic areas based on Nerkar and Roberts (2004), such as the ‘menstrual 
disorder’ area (corresponding to technological class 514/899), which is 
clustered by our algorithm together with the related ‘contra conceptive’ 
area (514/841) in the first level of the clustering tree. This cluster is then 
grouped with the ‘blood substitute’ (514/832) and ‘blood plasma 
extender’ (514/833) areas, which are clearly related too. This is an 

16 Technological subclasses have some specific properties. One of these 
properties is the ‘indent level’ of the subclass. Quoting from the US classifica-
tion manual, the indent level “is shown as a series of zero or more dots (periods) 
immediately preceding the title of the subclass in the class schedule. A subclass 
having an indent level of zero (i.e., no dots) is called a mainline subclass. 
[Therefore], a mainline subclass has no parent subclass. A mainline subclass 
directly depends from the class and inherits all the properties of the class”. For more 
details, see: https://www.uspto.gov/sites/default/files/patents/resources/ 
classification/overview.pdf.  
17 As noted by Yayavaram and Ahuja (2008), assuming that the technological 

subclasses assigned to patents are elements of knowledge is quite common in 
the patent literature: as they stress, “the USPTO makes these class assignments. 
Unlike citations, class assignments should be less prone to bias, as identifying 
the technology class is likely to be easier than identifying the patents that 
constitute prior art. Although the USPTO decides which classes are to be 
assigned to a patent, the researcher or the firm decides which technology ele-
ments are to be used in an invention” (Yayavaram and Ahuja, 2008: pg. 346).  
18 Therefore, it is relatively easy for a firm that is patenting in class x to patent 

in classes that, based on co-occurrences, are close to x. 

19 A geodesic is the shortest path between any pair of nodes in a network.  
20 The reason of building a second coupling network based on geodesics is that 

a coupling network based on co-occurrences would not allow us to assign dis-
tances to main-line subclasses that are isolated.  
21 Procedures such as the Calinski-Harabasz evaluation, or those based on 

silhouette analysis, stability of clusters, homogeneity of clusters’ size, within- 
and across-clusters differences, et cetera.  
22 Some procedures reveal unstable patterns, perhaps due to the underlying 

structural characteristics of the patent system that disrupt optimization, such as 
the existence of technological classes that refer to chemical structures and other 
classes that refer to therapeutic functions (or to other sources of intrinsic 
heterogeneity).  
23 Technological subclasses inside a class, like class 514, consist of both 

‘functional areas’ (referring to the molecular and chemical structure of the in-
vention) and ‘application areas’ of technology (referring to therapeutic areas). 
When matching firms’ patents to technological subclasses, we did not distin-
guish between functional areas and application areas, for three main reasons. 
First, because application areas are lower in number than functional areas. 
Second, because functional areas, although indirectly and un-observably, may 
be linked with therapeutic applications, considering that different molecular 
and chemical structures may radiate into different therapeutic applications. 
Third, because our theoretical constructs (niche diversity and crowding) do not 
require us to distinguish between functional areas and application areas. 

J.A. Candiani et al.                                                                                                                                                                                                                             

https://www.uspto.gov/sites/default/files/patents/resources/classification/overview.pdf
https://www.uspto.gov/sites/default/files/patents/resources/classification/overview.pdf


Technovation 116 (2022) 102478

7

indication that our clustering procedure also forms meaningful clusters, 
as it groups therapeutic areas (and their corresponding classes) ac-
cording to their similarity. 

Entry and exploration. We define entry as a firm’s entry in a techno-
logical niche that is new-to-the-firm and, in addition, features a slow, 
post-entry, reaction time. The firm enters in a new niche meaning that it 
patents in the new niche for the first time, which in turn means that the 
patent is fully or partially classified in the new niche. We also consider 
the firm’s reaction time: the underlying logic is that, when the niche in 
which the firm enters is new-to-the-firm, the firm will need time to react 
after the entry, to understand the new niche and analyze its potential 
before allocating additional resources for further exploration. In addi-
tion, as shown in the results and discussion section and related appendix, 

such entries have special features due to a variety of underlying inven-
tive processes that may delay post-entry exploration. An example is that 
of Corning’s entry from specialty glass into fibre optics: after it entered 
the new niche for the first time, it took time for the firm to further 
explore it. Corning’s manufacturing of specialty glass was based on a 
‘vapour deposition’ method that resulted useful in the manufacturing of 
glass fibres. Corning’s glass fibres were embodied in a set of key entry 
patents granted in 1973. After these entry patents, though, Corning had 
to figure out several challenges that slowed down further development 
until the 80s, like the technical challenges related to high production 
temperatures and the reflective index of glass (Cattani, 2006). Other 
examples of time lags in the development of technology come from 
different industries, like the video tape-recorder, Du Pont’s Kevlar, and 

Fig. 2. Niches in the technological space.  

Table 1 (A) 
Descriptive statistics.  

Variable Mean S. Dev Min Max Median Skew. 

Entry 0.429 0.495 0.000 1.000 0.000 0.285 
Exploration 0.444 0.501 0.000 1.000 0.000 0.218 
Technological diversity -1.393 0.645 -2.416 1.064 -1.498 0.855 
Technological crowding -1.480 2.196 -10.033 2.797 -1.218 -0.924 
Generalism 0.156 0.145 0.020 1.000 0.111 3.226 
Firm R&D 0.522 1.018 0.000 19.855 0.267 9.867 
Firm sales 0.978 2.197 0.000 87.500 0.582 31.462 
Firm age 7.698 6.530 1.000 36.000 5.500 1.496 
Firm size 6.364 16.395 0.000 107.517 0.165 3.107 
Number of previous niches 0.204 0.174 0.025 0.903 0.150 2.085 
General speed of patenting 2.443 4.292 0.000 40.333 1.176 4.928 
Number of patents 158.8 516.4 2.000 5805.0 11.000 5.393 
Targeted entries 0.136 0.434 0.000 4.000 0.000 4.012 
Niche centrality 6994.8 762.5 5062.9 8474.8 6936.5 -0.083 
Number of entries 0.679 0.964 0.000 5.000 0.000 1.588 
Scientific references (pull factors) 0.163 1.114 -3.584 3.829 0.140 -0.457 
Number of firms (competition) 22.868 39.776 0.000 266.000 8.000 3.273 
Technological diversity (Herfindal) 1.480 0.372 0.563 2.316 1.488 0.078  
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Intel’s Pentium microprocessor (Garud and Nayyar, 1994). 
Regarding the firm’s reaction time, we measure the time to arrive to 

another patent or not followed by any other patent. If the entry patent is 
followed by another patent, we count the number of months between the 
entry patent and the other patent in the same niche and compare it to the 
average speed of patenting between subsequent patents. That is, we 
measure if the time to arrive to the other patent is considerably longer 
than the average time occurring between subsequent patents of the firm 
in the same niche. More precisely, we measure if the firm’s reaction time 
is more than two standard deviations (and thus significantly) longer 
than the time between subsequent patents in the same niche by the focal 
firm. If the entry patent is not followed by another patent, that means 
that the reaction time becomes indefinitely long. Therefore, entry does 
not imply that the firm patents at least twice in a new niche, because 
there could be a firm that patents only once and never does it again 
(until the end of our observed data). In other words, entry also includes 
instances of single patenting. That is why we analyze what pushes firms 
to further explore the niche, as we do in the second part of that analysis, 
where we look at the effect of crowding.24 

Finally, we measure the firm’s exploration of the new niche by 
looking at whether the firm patents in the new niche, conditional on 
having entered. That is, if the firm enters, it may further (and slowly) 
explore the niche or not. Therefore, we do not model the timing (or 
duration) of exploration, but only whether the firm further explores the 
niche or not. These variables have a dummy structure: the firm’s entry is 
1 if the firm enters in new niches, and 0 otherwise; the firm’s exploration 
is 1 if the firm further explores the new niche, and 0 otherwise. 

Technological diversity. The technological niche is a system consisting 
of several related technological inventions (in the form of patents) 
apportioned into categories (technological subclasses). Technological 
diversity is a niche-level property given by the ‘disparity’ (Stirling, 
2007) of the technological subclasses that compose the niche. Ideally, 
we could measure disparity by calculating distances among subclasses in 
the technological space, but there isn’t a straightforward distance metric 
that is incorporated in the raw patent classification system (Bar and 
Leiponen, 2012). Therefore, we build on Hidalgo and Hausmann (2009), 
who proposed a measure of the diversity of a country’s economy that is 
becoming increasingly common in innovation studies (Morrison et al., 
2017). 

We measure the technological diversity of a niche as the degree to 
which the niche is composed of disparate technological subclasses: that 
is, technological subclasses that differ among each other as the result of 
being singular, or distinctive, which makes them less common. More 
specifically, we measure the technological diversity of a niche as the 
average distinctiveness of the niche’s technological subclasses. The 
distinctiveness of a technological subclass, in turn, is a function of the 
number of firms that specialize into it, whereby ‘firm specializing in a 
subclass’ means that the firm’s proportion of patents in the subclass is 
higher than the industry’s proportion of patents in the subclass. Higher 
distinctiveness of a technological subclass, by requiring distinctive ca-
pabilities to operate into it, makes the subclass less common, as proxied 
by a lower number of firms that specialize into it and by the fact that 

these firms, thanks to their distinctive capabilities, are active in several 
other subclasses (see: Hidalgo and Hausmann., 2009; Hausmann et al., 
2014).25 To give a simple example, we could think about a distinctive 
technological subclass as a distinctive concept, or idea: a concept is 
distinctive when a few people are able to assemble it because they are 
gifted, so these gifted people are also able to assemble several other 
concepts, while other (less gifted) people are not able to do this, which 
means that the focal concept is truly distinctive (Hausmann et al., 2014). 

The measure is constructed as follows: 

ndit =
1
S
∑S

s=1
ds  

where nd stands for niche diversity, i stands for firm i, t stands for time t, 
S stands for the number of main-line technological subclasses in the 
niche, and ds is the distinctiveness of technological subclass s, which is a 
function of the firms that specialize in the technological subclass and of 
the other technological subclasses in which these firms specialize, as 
explained above.26 27 The measure is calculated using previous data 
belonging to a 10-years window preceding t28 and, as is Hausmann et al. 
(2014), is standardized. Summing up, according to the measure, when 
the average distinctiveness of the technological subclasses that compose 
the niche increases, the diversity of the niche increases.29 

Technological crowding. To measure the niche’s technological 
crowding, we follow the approach proposed by Stuart (1999). For a 
given firm in a niche at a given time, we measure crowding in terms of 
the overlap of the firm’s patent portfolio with the patent portfolios of the 

24 Therefore, for the sake of clarity, entry is 1 if the firm enters a new-to-the- 
firm niche with a single patent or with a patent slowly followed by another 
patent, while it is 0 if the firm does not enter or it enters with a patent imme-
diately followed by another patent. Does an increase in diversity increase the 
likelihood that entry takes the value of 1 (according to hypothesis 1)? Condi-
tional on entry equal to 1, does an increase in crowding increase the likelihood 
that the first patent is slowly followed by other patents (according to hypothesis 
2)? 

25 If firms are active in several other subclasses thanks to their distinctive 
capabilities, it is likely that the focal subclass is less populated because it (also) 
requires distinctive capabilities—thus being truly distinctive, instead of being 
less populated for other reasons, like firms’ (dis)abilities or unwillingness to 
populate the subclass.  
26 To get a better grasp of how distinctiveness is calculated, we can think of 

firms and technological subclasses in terms of a matrix whose rows are firms 
and columns are subclasses, in which cell i,j is 1 if firm i specializes in subclass j 
and 0 otherwise. In a nutshell, high subclass distinctiveness means that the 
number of 1s in the respective column would be low (i.e., few firms are 
specialized in the subclass) and the number of 1s in the corresponding rows 
would be high (i.e., these firms specialize in many other subclasses). The matrix 
is the input of an iterative converging procedure, known as ‘method of re-
flections’, that extracts information from the matrix with the aim of improving 
the precision of the distinctiveness metric. For more details, we refer to Haus-
mann et al. (2014, pg. 24), Hidalgo and Hausmann (2009, pg. 10571) and 
related appendix.  
27 When firms are active in more than one niche, technological diversity is 

calculated as the weighted average diversity over all niches in which the firm is 
active, with weights given by the size (number of patents) of the respective 
niches.  
28 We use a 10-years window also for technological crowding and generalism. 

Patent research seems to rely on shorter windows but there is no accepted 
standard: e.g., see Yayavaram and Ahuja (2008) versus Fleming and Sorenson 
(2001). In un-tabulated analyses that were conducted in previous phases, we 
experimented with different time windows. We did not observe changes in the 
main results.  
29 As explained in the results section, we conduct a set of additional analyses, 

in which we replace the technological diversity measure with a standard Her-
findal index. We thank one of the reviewers for this suggestion. The Herfindal 
index, though, captures just one specific dimension of diversity (Stirling, 2007): 
namely, the ‘balance’ of elements across the categories that compose the niche. 
Moreover, in our setting, the Herfindal index is based on unworkable as-
sumptions: namely, that the different categories (subclasses), among which 
elements (patents or firms) are distributed, are ‘equally different’ among each 
other. However, patent subclasses are ‘differently different’ among each other 
because there is no distance metric that is incorporated in the raw patent 
classification system. Therefore, we cannot easily capture technological di-
versity in terms of variety, balance, or classical distances. That is why we opted 
for the Hidalgo and Hausmann (2009)’ approach. 
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other firms in the niche at that time. We measure the overlap of patent 
portfolios in terms of common backward patent citations. Therefore, the 
measure is constructed as follows: 

ncit =
∑N

j=1
aijt  

where nc stands for niche crowding, i stands for firm i, t stands for time t, 
and aijt is the overlap between the patent portfolio of firm i and another 
firm j in the niche at time t. aijt is the ratio between the backward ci-
tations that firm i’s patent portfolio has in common with firm j’s patent 
portfolio at time t and the total number of backward citations of firm i’s 
patent portfolio.30 31 We take a logarithmic transformation of the 
measure that, like the previous ones, is calculated using a window of 10 
years preceding t. Overall, the measure assumes that when a dyad of 
firms builds on common knowledge from the same patents, the spill-
overs and competitive pressure faced by firms increases. 

Generalism. To measure firm’s generalism, we use a Herfindahl index 
approach. For a given firm in a niche at a given time, we measure 
generalism in terms of the dispersion of firm’s patents across the 
different technological subclasses that compose the firm’s patent port-
folio. Therefore, the measure is calculated as follows: 

fgit =
∑S

s=1
p2

s  

where fg stands for firm generalism, i stands for firm i, t stands for time t, 
S stands for the number of main-line subclasses in the portfolio, and p2

s is 
the share of firm’s patents in subclass s. The index is bounded in the [0 1] 
interval and, when it decreases, generalism increases. Like the previous 
two measures, this measure is calculated using a window of 10 years 
preceding t. Overall, the measure assumes that when the dispersion of 
patents across the subclasses of the patent portfolio of the firm increases, 
knowledge generalism goes up. 

Control variables. We introduce several controls in our models, to rule 
out factors that may be correlated with our independent variables and, 
at the same time, with entry and exploration. 

First, we control for standard firm-level characteristics, as in previ-
ous research. We control for firm R&D, defined as research and devel-
opment expenses over total assets. We control for firm performance, 
defined as sales over total assets. We control for firm age, defined as the 
number of years that the firm has been active in patenting. We control 
for firm size, defined as the logarithm of the number of employees. 

Second, we control for more specific firm-level characteristics. We 
control for the number of previous niches, defined as the number of niches 
in which the firm was active before the focal year, because a firm may 
enter in a new niche just because before it was active in few niches, 
compared to a firm that may not enter in a new niche because before it 
was active in many niches (and fewer niches were thus ‘left free’ for 
entry). We control for the general speed of patenting, defined as the firm’s 
average reaction time between patents and measured before the focal 

year, to rule out systematic sources of variation that may affect explo-
ration. We control for the number of patents, defined as the size of the 
firm’s patent portfolio before the focal year. We control for targeted 
entries in the focal year, to capture the firm’s ‘exploratory predisposition’ 
towards niches, and thus control for the fact that entry in a new niche 
might be result from the intentional exploration of the (larger) techno-
logical landscape.32 

Third, we control for niche-level features. We control for niche cen-
trality: we consider a niche to be central when it is near to other niches. 
That is, a niche is near to other niches when there is a short distance—in 
terms of technological combinability—between the niche and the other 
niches. Therefore, when the niche is near to other niches, it should be 
easier for firms in the niche to enter the other niches. We also control, in 
the entry models of hypotheses 1 and 3a, for technological crowding, since 
entry in a new niche could be due to other reasons besides current 
niche’s diversity, like current niche’s crowding, which could push—and, 
broadly speaking, motivate—firms in a highly contested area to diver-
sify into (and thus enter) a new niche. Similarly, we control, in the 
exploration models of hypothesis 2 and 3b, for technological diversity, 
since exploration of the new niche could be due to other reasons besides 
current niche’s crowding, like current niche’s diversity, which could 
enrich the set of available ideas, techniques, problem-solving 
tools—and, broadly speaking, abilities—needed to successfully explore 
the new niche. In addition, in the models of hypotheses 2 and 3b, we 
control for the number of entries, because entering in more than one niche 
may affect how the firm responds to crowding levels. 

Finally, since we aim to complement prior work on environmental 
pull factors (Leten et al., 2016) by examining the effect of environmental 
push factors, we control for pull factors. According to our theory, con-
ditional on entry in a new niche (spurred by the current niche’s tech-
nological diversity), current niche’s technological crowding pushes the 
firm to further explore the new niche. Yet besides being pushed towards 
it, the firm may explore the new niche because it is pulled by it due to its 
attractiveness. We thus control for pull factors, building on Leten et al. 
(2016), who suggest measuring variations between technological niches 
in technological opportunities “by differences in the importance of sci-
ence as a source of relevant knowledge” (pg. 1271). More specifically, 
we approximated the degree of technological opportunities in niches by 
calculating the logged average number of citations to scientific references 
in patent documents (Leten et al., 2016).33 In addition, we control for 
technological competition in the new niche, which could deter further 
exploration of the new niche—as shown in the work of Leten et al. 
(2016), thus offsetting the attractiveness effect. To measure the degree 
of technological competition in the new niche, we opted for a proxy 
given by the number of firms active in the new niche, whereby firm active 
in the new niche means that the firm has patented into the new niche in 
the 10 years preceding the entry event. 

30 To calculate technological crowding, we identify the niche (or niches) in 
which the focal firm is active, then we identify the other firms that are active in 
the niche(s), after which we calculate the overlap—in terms of common 
backward citations—of the focal firm’s patent portfolio with those of the other 
firms that are active in the niche(s), according to the ncit formula.  
31 Since aijt is the ratio between common and total backward citations, and the 

number of total backward citations systematically increases with the number of 
firms’ patents, the crowding measure is scaled. That is, the measure should not 
take higher values for firms that are part of a technological niche in which the 
other members of the niche have lots of patents. An alternative way to scale this 
measure could consist in comparing the observed share of common patent ci-
tations with an expected share of common patent citations based on the size of 
patenting in the niche and random assignment of citations. We leave it to future 
researchers, and we thank one of the reviewers for this suggestion. 

32 The dependent variable deals with entry in a technological niche that is 
new-to-the-firm and features a slow, post-entry, reaction time (due to outlier- 
type processes: see the first paragraph of ‘results and discussion’ and the 
related appendix), while this control deals with entries that do not have such 
features and thus aims to capture firm’s exploratory predispositions (or targeted 
activities) towards new niches, with the aim of filtering out these exploratory 
predispositions from outlier patenting. The fact that a firm enters in a new-to- 
the-firm niche with slow, post-entry, reaction time, does not imply targeted 
entries in other niches; vice versa, targeted entries in other niches do not imply 
that the firm enters in a new-to-the-firm niche with slow, post-entry, reaction 
time. 
33 There are two main ways through which science creates technological op-

portunities: first, it enriches the toolbox of theories, data, and problem-solving 
techniques that industrial R&D can use; second, new scientific insights can open 
radically new trajectories (Leten et al., 2016). 
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3.3. Data analysis: models 

To test hypotheses 1 and 3a, we run the following econometric 
models: 

p (yi,t = 1)=Φ(α+ β1ndi,t + β2Z+ εi,t)

for hypothesis 1, where yi,t is a binary outcome equal to 1 if firm i at time 
t enters in a new niche as explained previously, and 0 otherwise, ndi,t is 
the technological diversity of the firm’s current niche at time t, Z is the 
vector of control variables, εi,t is the error term and ɸ is a probit function. 
For hypothesis 3a we augment the model as follows: 

p (yi,t = 1)=Φ(α+ β1ndi,t + β2fgi,t + β3ndi,tfgi,t + β4Z+ εi,t)

where yi,t, ndi,t and Z are the same as before, fgi,t is the generalism of 
firm i at time t, ndi,tfgi,t is the interaction between technological di-
versity and generalism. 

To test hypothesis 2 and 3b, we run the following econometric 
models: 

p (yi = 1) = Φ(α + β1nci,t + β2Z + ε)

for hypothesis 2, where yi is a binary outcome equal to 1 if firm i, 
conditional on entry, further explores the niche hereafter, and 0 other-
wise, nci,t is the technological crowding of the firm’s current niche 
measured before entry (denoted by t), Z is the vector of control vari-
ables, ε is the error term and ɸ is a probit function. For hypothesis 3b we 
augment the model as follows: 

p(yi = 1)=Φ(α+ β1nci,t + β2fgi,t + β3nci,tfgi,t + β4Z+ ε)

where yi, nci,t and Z are the same as before, fgi,t is the generalism of firm 
i measured before entry (denoted by t), nci,tfgi,t is the interaction be-
tween technological crowding and generalism. 

4. Results and discussion 

Descriptive statistics are reported in Table 1 (A) and correlations in 
Table 1 (B).34 As we can notice in Table 1 (A), the mean value of entry is 
0.42, while the mean value of the number of entries is 0.68. Since entries 
are in technological niches that are new-to-the-firm and feature a slow, 
post-entry, reaction time, we aimed to investigate if such entries have 
special features. To investigate this issue, we correlated our measure of 
entry with a replication of Kneeland et al. (2020)’ measure of outlier 
patents, defined (in their paper) as those patents that differ significantly 
from other patents in the technological space, due to a variety of 
underlying—and special—inventive processes: namely, distant recom-
bination, long search paths, or serendipity. We replicated that measure 
by defining outlier patents as those patents that differ significantly from 
other patents in the firm’s technological knowledge base. The results, 
un-tabulated,35 showed a substantial correlation between entries and 
outlier patents (Kneeland et al., 2020). This seems to indicate that en-
tries are associated to the inventive processes that underlie outlier pat-
enting: namely, distant recombination, long search paths, or serendipity 
(Kneeland et al., 2020). Due to lack of granularity in our data, we are 
certainly unable to identify the exact process, but entries do seem to 

exhibit special features. Entries seem to be associated with (underlying) 
serendipitous processes, thus raising interesting implications that are 
discussed in the final section. For more details, we refer to the Appendix 
contained in the Supplement, where we complement this replication 
exercise with a qualitative example and a text-mining analysis. 

The results of hypotheses 1 and 3a are reported in Table 2, where 
model 4 reports the full specification of a panel probit regression with 
random effects and robust standard errors, based on a sample of 340 
firms and 1954 firm-year observations. Model 5, instead, reports the full 
specification of a negative binomial model in which the dependent 
variable is, rather than a dummy, a count of how many times the firm 
enters in new niches. The binary outcome is equal to 1 if the firm enters 
in a new niche in year t or t+1 or t+2 as explained previously, and 
0 otherwise, with a lag sufficient for the dependent variable to reflect 
eventual delays in the firm’s processing of technological information. In 
robustness analyses (explained later), we vary the length of delays and 
our results do not change substantially. As we can see in model 4, the 
coefficient of technological diversity is positive and significant, which 
means that technological diversity is positively correlated with the 
probability of entering in a new niche with a lagged reaction, in line with 
hypothesis 1. To appraise the magnitude of the predictor, we also 
calculated the marginal effect, and found that the probability of entry 
increases by about 0.18 when technological diversity increases by one 
standard deviation, keeping all the other predictors constant at their 
means. Furthermore, as we can see in the same table, the coefficient of 
technological crowding is also positive and significant, suggesting that 
increasing competitive pressures in the current niche not only affect the 
decision to further explore new niches but also that of entering them. To 
test the moderating influence of generalism, we relied on the framework 
of Ai and Norton (2003) implemented as in Norton et al. (2004), which 
consists in checking the sign and significance of the cross-derivative of 
the conditional mean function with respect to the two interacted vari-
ables. Since generalism is based on a Herfindal index, meaning that 
generalism increases as the index decreases, a negative sign of the 
interaction coefficient is indicative of a positive moderation effect that 
would be consistent with hypothesis 3a. We found that the interaction 
coefficient is always negative (with a mean of about − 0.24), in line with 
hypothesis 3a, and is significant for those firms with a predicted prob-
ability of entering a new niche below 0.3 or above 0.8, suggesting that 
generalism plays a role especially for firms with either a low or high 
likelihood of entry. 

The results of hypotheses 2 and 3b are reported in Table 3, where 
model 5 reports the full specification. We test if, conditional on entry in a 
niche, the firm further explores the niche hereafter or not. The level of 
analysis is the firm-technology level, with one observation per new 
niche entered by a firm, and with the dependent variable measuring if 
the firm further patents in the new niche or not. Since the firm may have 
entered in more than one niche each year, a panel specification is not 
appropriate. We thus run standard probit regressions augmented with 
firm dummies and entry-year dummies.36 Since the analysis is condi-
tional on entry, the sample reduces to 133 firms and 1061 observations. 
Although we cannot draw strong conclusions, due to the different model 
specification and the reduced sample, model 5 shows that the coefficient 
of technological crowding is positive and significant, which means that 
technological crowding is positively correlated with the probability that 
the firm, conditional on entry, further explores the niche, in line with 

34 The matrix reports the correlations among predictors. In previous analyses, 
we computed the ‘variance inflation factor’ (VIF) of each predictor (unre-
ported). VIF are computed to rule out multi-collinearity. In particular, the VIF 
of a predictor measures how much the variance of the estimated coefficient 
increases due to its correlation with the other predictors. In our case, all the VIF 
were below the value of 10 and, with a single exception, they were all ≤ 4. 
Based on VIF analysis, this indicates that multi-collinearity is not a concern.  
35 Available upon request to the authors. 

36 Since the analysis is at the firm-technology level, we could also include 
niche dummies, as suggested by a reviewer. We did not include niche dummies 
due to instances of perfect collinearity of niche dummies with entry-year 
dummies that, by removing observations from the regression model, signifi-
cantly reduce the sample. For example, this happens when two firms enter the 
same niche in the same year and they are the only ones (since entries are rare 
events: see first paragraph of ‘results and discussion’), where this implies that 
dummy vectors are in a deterministic relationship. 
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hypothesis 2. To appraise the magnitude of the predictor, we also 
calculated the marginal effect, and found that the probability of niche 
exploration increases by about 0.10 when technological crowding in-
creases by one unit, keeping all the other predictors constant at their 
means. Furthermore, as we can see in the same table, the coefficient of 
technological diversity is also positive and significant, suggesting that 
increasing technological opportunities in the current niche not only 
affect the ability to enter new niches but also that of further exploring 
them. To test the moderating influence of generalism, we relied on the 
framework of Ai and Norton (2003) implemented as in Norton et al. 
(2004). Again, since generalism is based on a Herfindal index, meaning 
that generalism increases as the index decreases, a negative sign of the 
interaction coefficient is indicative of a positive moderation effect that 
would be inconsistent with hypothesis 3b. We found that the interaction 
coefficient is negative (with a mean of − 0.02) for those firms with a 
predicted probability of exploring the new niche above 0.2 and is sig-
nificant across the full range of variation of predicted probabilities. 
Since the sign is the opposite of the expected one, except for a few ob-
servations, hypothesis 3b is not supported. 

5. Additional findings 

We conducted several additional analyses. A first concern is related 
to the role of strategic patenting. Although we control for several vari-
ables, entry in a new niche (and the time elapsed between the first and 
the second patent in the same niche) can be due to other unobservable 
factors. A firm may pre-emptively—and thus strategically—file a patent 
in a new niche, just to prevent competitors from doing so, by occupying 
certain areas of the technological space. Typically, strategic patenting 
takes place in those areas of the technological space that are ‘dense’ 
(Shapiro, 2000; Von Graevenitz et al., 2011). To rule out strategic pat-
enting, we identified the focal technological subclass of entry within the 
niche; then, we counted the number of firms populating the subclass, 
every year; then, we counted the number of firms populating the other 
subclasses and took the median; therefore, we classified the focal sub-
class as populated if the number of firms inside is higher than the me-
dian; based on this, we ran again the models by excluding entries in 
populated niches, thus ruling out entries that could be due to strategic 
patenting. The results, reported in model 3 of Table S1 in the Supple-
ment, are in line with those of Table 2: technological diversity is positive 
and significant and the interaction between technological diversity and 
generalism is negative and significant, consistent with hypotheses 1 and 
3a. The results also hold when considering the count of entries (rather 
than the entry dummy) as the dependent variable.37 

A second concern is related to niche’s technological diversity, which 
we measured as the disparity of the technological subclasses that 
compose the niche. We ran again the models, replacing technological 
diversity with an alternative measure based on a standard Herfindal 
index, with the aim of capturing another dimension of diversity—the 
balance of elements across technological subclasses—that is less 
important in our theory yet worth exploring.38 More specifically, we 

measured technological diversity as follows: ndt =
∑S

s=1
p2

s , where S 

stands for the number of main-line subclasses in the niche, s denotes a 
subclass and p is the share of firms in the subclass: the higher is the 
dispersion of firms across subclasses, the lower is the Herfindal, the 
higher is technological diversity, meaning that a lower Herfindal leads 
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37 Un-tabulated results. Results did not vary substantially when we considered 
the number of patents—rather than the number of firms—in a subclass, to es-
timate how much it is populated.  
38 We thank one of the reviewers for this suggestion. 
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to an increase of entry—and, by implication, a higher Herfindal leads to 
a decrease of entry, thus implying a negative sign that is consistent with 
hypothesis 1.39 40 The results, reported in model 1 of Table S2 in the 
Supplement, show that the coefficient of the Herfindal index is negative 
and significant, consistently with hypothesis 1. The coefficients of gen-
eralism and of its interaction with technological diversity in models 2 
and 3, though, become insignificant, thus providing mixing results for 
hypothesis 3a. These results show that, while firm’s knowledge gen-
eralism plays a role when dealing with a technologically-diverse niche 
made of disparate subclasses, because it helps the firm to process 
disparate pieces of knowledge and establish integrative links among 
them (in line with hypothesis 3a), it doesn’t when a niche is 
technologically-diverse in terms of balance of elements across sub-
classes: the reason is that this type of technological diversity does not say 
much to what extent these subclasses are close and related, or disparate 
and unrelated. In the end, this underscores that the Herfindal index has 
somewhat less fit with our theory. 

In a third, additional, analysis we tried to capture the impact of entry 
through a study of forward citations. We measured and compared the 
Alpha centrality (Corredoira and Banerjee, 2015) of entries with that of 
more regular types of entries (that is, entries that are not characterized 
by a slow reaction time). Alpha-centrality measures the influence of a 

patent on future inventions by looking at both the direct and indirect 
forward citations (that is, citations of citations, citations of citations of 
citations, and so on). Interestingly, as we can see in Fig. S1, in the 
Supplement, entries are more influential than regular types of entries on 
future inventions, as reflected in a higher Alpha centrality for different 
levels of the α parameter, which weights the importance of indirect ci-
tations (the higher is the α, the higher is the weight assigned to indirect 
citations). 

We also conducted a series of robustness checks. First, we ran again 
the models using different econometric specifications. In un-tabulated 
models, we tried with a logit specification (instead of the probit), and 
the main results did not change. Additionally, since the models of hy-
potheses 1 and 3a are based on a panel probit specification with random 
effects, we also ran a panel linear-probability specification with firm and 
time fixed effects. The results, reported in models 1 and 2 of Table S3 in 
The Supplement, are robust under this alternative specification, and 
remain robust under a panel logit specification with fixed effects, as 
reported in models 3 and 4 of the same table.41 In another set of un- 
tabulated models, we tried to impose a series of conditions on our 
main dependent variable. More specifically, we measured entry by 
imposing longer and shorter lags on the dependent variable, to even-
tually reflect longer or shorter delays in the firm’s processing of tech-
nological information. Interestingly, we noted stronger effects of 
technological diversity and of its interaction for longer lags, while for 
shorter lags the effect of technological diversity was significant only 
when we removed the interaction. This suggests that technological di-
versity relates to entry when longer time lags are considered, so that 

Table 2 
Main results (first and third hypothesis).Probit regression (models 1 to 4) and negative binomial regression (model 5).  

Variables Model 1 Model 2 Model 3 Model 4 Model 5 

Technological diversity   0.239*** 0.420*** 0.403***    
(0.090) (0.119) (0.101) 

Generalism  0.546 0.356 -0.694 -0.516   
(0.420) (0.429) (0.619) (0.544) 

Interaction diversity X generalism    -0.855** -0.745**     
(0.367) (0.339) 

Technological crowding 0.130*** 0.139*** 0.145*** 0.150*** 0.132***  
(0.028) (0.029) (0.029) (0.029) (0.027) 

Firm R&D -0.011 -0.013 -0.012 -0.002 0.017  
(0.041) (0.041) (0.041) (0.041) (0.037) 

Firm sales -0.033 -0.034 -0.048 -0.047 -0.022  
(0.058) (0.058) (0.059) (0.060) (0.043) 

Firm age -0.026* -0.024* -0.024* -0.021 -0.017  
(0.014) (0.014) (0.014) (0.015) (0.013) 

Firm size 0.025*** 0.025*** 0.025*** 0.024*** 0.021***  
(0.005) (0.005) (0.005) (0.005) (0.004) 

Number of previous niches -3.385*** -3.254*** -3.562*** -3.787*** -3.294***  
(0.742) (0.751) (0.764) (0.770) (0.611) 

General speed of patenting -0.034** -0.038*** -0.039*** -0.045*** -0.043***  
(0.014) (0.014) (0.014) (0.015) (0.016) 

Number of patents 0.000*** 0.000*** 0.000*** 0.001*** 0.000**  
(0.000) (0.000) (0.000) (0.000) (0.000) 

Targeted entries 0.332*** 0.324*** 0.326*** 0.321*** 0.130**  
(0.089) (0.089) (0.090) (0.090) (0.058) 

Niche centrality 0.000*** 0.000*** 0.000*** 0.000*** 0.000**  
(0.000) (0.000) (0.000) (0.000) (0.000) 

Constant -1.402*** -1.566*** -0.402 -0.149 15.363  
(0.433) (0.456) (0.628) (0.636) (324.506)       

Observations 1,954 1,954 1,954 1,954 1,954 
Log likelihood -1171 -1170 -1166 -1163 -2011 

***p < 0.01, **p < 0.05, *p < 0.1 (standard errors in parenthesis). 

39 Alternatively, we could consider the dispersion of patents, rather than firms, 
across niche’s subclasses. Anyway, patents belong to firms, so the dispersion of 
patents across subclasses is also captured by the dispersion of firms across 
subclasses. Moreover, by considering firms, we remove the effect due to uneven 
sizes of patent portfolios (e.g., one big subclass with many patents belonging to 
the same large firm that would artificially decrease diversity although there 
could be many other firms scattered across the remaining subclasses).  
40 The calculated measure is a linear transformation of the Herfindal index 

(Berrebi and Silber, 1985), given by 10*HHI. Without linear transformation, 
results remain significant and are stronger in magnitude. 

41 There isn’t a command for a conditional fixed-effects model in probit, since 
there isn’t a sufficient statistic allowing fixed effects to be conditioned out of 
the likelihood. In general, the interpretation of fixed effects in non-linear 
models faces several practical and methodological challenges (Greene, 2002). 
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technological information can be processed. Second, as mentioned 
above, we measured entry in terms of a count of how many times the 
firm enters in a new niche. Again, we did not see changes in our results. 
We further tested the threshold of entry using one or three standard 
deviations rather than two and noted a stronger effect of technological 
diversity when using three standard deviations, a result that is also in 
line with our theory. For space purposes, all these robustness analyses 
are not reported here. 

6. Conclusions, implications and limitations 

Drawing from the technological ecology literature (Coccia, 2019a; 
Coccia and Watts, 2020; Van den Oord and Van Witteloostuijn, 2017), 
we developed hypotheses on how two conditions of a firm’s current 
technological niche affect both the firm’s entry in a new niche and its 
further exploration. We found that current niche’s technological di-
versity has a positive effect on firm’s entry in a new niche and that, 
conditional on entry, current niche’s technological crowding has a 
positive effect on firm’s further exploration of the new niche. These core 
findings from our study show that the conditions in a firm’s current 
domain ‘push’ it into new domains. As we also control for ‘pull’ factors 
from the new domain, this indicates that not only the lure and attrac-
tiveness of the new domain shapes entry but that also a firm’s current 
domain forms an important entry factor. 

Moreover, we found that firm-level knowledge generalism positively 
moderates the effect of technological diversity on entry, especially for 
those firms with a predicted probability of entering a new niche that is 

either low or high. However, firm-level knowledge generalism does not 
negatively moderate the effect of technological crowding on explora-
tion, as we hypothesized. This result is puzzling yet interesting, as it 
suggests that alternative mechanisms may play a role. A possible 
explanation is that, contrary to what we hypothesized, firms with a more 
generalist knowledge base are in reality more willing (and able) to 
explore new niches, thanks to their diversified knowledge base: this 
could explain why the observed effect is the opposite of the expected 
one. Taken together, these results suggest that generalist firms are more 
advantaged in front of the opportunities offered by an increasingly 
technologically diverse niche but not necessarily disadvantaged when 
responding to increasing crowding pressures in the niche. This may 
suggest that generalists, even if they spread their activities across 
different areas of the technological space (instead of having ‘all the eggs 
in one basket’), aren’t less likely to buffer, against increasing crowding 
levels, by further exploring new niches. That is, generalist firms seem to 
be more advantaged when both entering and exploring new technolog-
ical niches. 

Our paper offers several contributions. First, our study contributes to 
several streams of the innovation literature and to the debate on the 
evolution of technology (Arthur, 2009; Basalla, 1988; Nelson and Winter 
1982; Ziman, 2000), which is receiving increasing attention (Cattani 
and Mastrogiorgio, 2021) due to the many similarities between biolog-
ical and technological systems (Coccia, 2017, 2018, 2019b; Hodgson, 
2002). As argued by some scholars (Schot and Geels, 2007), though, 
several processes underlying the evolution of technology remain 
understudied, whereas the notion of technological niche could represent 

Table 3 
Main results (second and third hypothesis).Probit regression.  

Variables Model 1 Model 2 Model 3 Model 4 Model 5 

Technological crowding    0.169** 0.201*     
(0.079) (0.111) 

Interaction crowding X generalism     -0.170      
(0.411) 

Generalism 0.558 1.132 1.882 2.697* 2.210  
(1.302) (1.307) (1.334) (1.409) (1.835) 

Technological diversity 0.492* 0.467* 0.502* 0.524* 0.521*  
(0.258) (0.260) (0.272) (0.274) (0.274) 

Firm R&D 0.011 -0.006 -0.002 -0.039 -0.030  
(0.125) (0.124) (0.124) (0.132) (0.133) 

Firm sales -0.112 -0.107 -0.153 -0.111 -0.118  
(0.176) (0.179) (0.183) (0.185) (0.185) 

Firm age 0.042 0.057 0.037 0.024 0.021  
(0.056) (0.056) (0.058) (0.058) (0.058) 

Firm size -0.038** -0.036** -0.036** -0.040** -0.040**  
(0.015) (0.016) (0.016) (0.016) (0.016) 

Number of previous niches -2.204 -1.660 -0.237 -0.601 -0.704  
(1.470) (1.496) (1.529) (1.542) (1.563) 

General speed of patenting -0.095 -0.123* -0.120* -0.140** -0.140*  
(0.067) (0.069) (0.069) (0.071) (0.072) 

Number of patents 0.001*** 0.001*** 0.001*** 0.001*** 0.001***  
(0.000) (0.000) (0.000) (0.000) (0.000) 

Targeted entries 0.202* 0.209* 0.251** 0.242** 0.244**  
(0.109) (0.111) (0.114) (0.115) (0.115) 

Niche centrality -0.002*** -0.002*** -0.002*** -0.002*** -0.002***  
(0.001) (0.001) (0.001) (0.001) (0.001) 

Number of entries -0.086 -0.082 -0.061 -0.061 -0.062  
(0.063) (0.064) (0.065) (0.065) (0.065) 

Scientific references (pull factors)  0.269*** 0.019 0.018 0.018   
(0.062) (0.070) (0.071) (0.071) 

Number of firms (competition)   0.012*** 0.012*** 0.012***    
(0.002) (0.002) (0.002) 

Constant 15.667*** 16.172*** 18.612*** 17.886*** 18.032***  
(4.810) (4.829) (4.945) (5.000) (5.016)       

Year dummies Yes Yes Yes Yes Yes 
Firm dummies Yes Yes Yes Yes Yes       

Observations 1,061 1,061 1,061 1,061 1,061 
Log likelihood -544 -534.1 -505.5 -503.2 -503.1 

***p < 0.01, **p < 0.05, *p < 0.1 (standard errors in parenthesis). 
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a ‘platform’ for a better understanding (Coccia, 2019a; Coccia and 
Watts, 2020; Van den Oord and Van Witteloostuijn, 2017). Schumpeter, 
who has inspired the evolutionary tradition since the beginning, once 
famously coined the term ‘recombination’ as the search process that 
leads to new combinations (Schumpeter, 1939, 1942). A dominant 
stream in the innovation literature has adopted this definition when 
studying the creation of new innovations and their impact on firms, 
markets, and industries (Hargadon and Sutton, 1997; Phene et al., 
2006). This literature assumes that, when recombining, firms act based 
on some degree of foresight. In other words, recombination is seen as 
formed by technological search activities that are conducted in antici-
pation of an existing opportunity domain. However, in Schumpeter’s 
view and as recently shown by Kneeland et al. (2020), recombination 
can also consist in the creation of a new combination or application of an 
existing one in an entirely new technological domain, in ways that are 
not always foresighted or anticipated. Whereas the dominant focus in 
the literature has mainly been on the creation of new technologies 
through mostly targeted activities, much less emphasis has been placed 
on Schumpeter’s third type of innovation, formed by the creation of new 
technologies in entirely new technological domains, in ways that are not 
always foresighted or anticipated (Schumpeter, 1942). Such processes 
suggest, though, that a firm’s recombination activities may not be sim-
ply pulled by the new technological domain, because another type of 
mechanism also plays a role. Instead of the ‘pull’ by the new techno-
logical domain, as emphasized in the literature thus far (Leten et al., 
2016), we have argued and shown that ‘push’ factors in the firm’s cur-
rent technological domain also matter. We have done it under the lens of 
technological ecology. 

Related to the arguments above, our paper also contributes to the 
emerging literature on serendipitous innovation (Andriani et al., 2017; 
Cunha et al., 2010; Merton and Barber, 2004; Meyers, 2007; Murayama 
et al., 2015) and on the role of accidentality and un-intendedness in the 
innovation process (Austin et al., 2012; Seo et al., 2017). As shown in the 
Appendix contained in the Supplement, our measure of entry in new 
niches correlates with a replication of outlier patenting (Kneeland et al., 
2020). This seems to indicate that entries in new niches are associated to 
the inventive processes that underlie outlier patenting: namely, distant 
recombination, long search paths, or serendipity, as also confirmed by 
the qualitative example and the text mining analysis. Based on this ev-
idence, we believe that our paper contributes to the serendipity litera-
ture by showing how specific niche-level drivers (technological 
diversity), in combination with firm’s knowledge generalism, are 
conducive to possibly serendipitous accesses in new niches, which could 
be seen as ‘growth options’ in new domains (Bowman and Hurry, 1993; 
Sakhartov and Folta, 2014) whose activation—via further niche 
exploration—is a function of crowding levels in the current niche. In this 
way, we unpack and shed light on some poorly understood mechanisms 
through which firms expand into new areas of the technological space. 
This, in turn, raises implications, like the need to abandon the linear 
model of R&D targeted towards restrictive goals and to substitute it with 
increasing freedom of experimentation in organizations. Another key 
implication is the adoption of research policies that foster technological 
diversity—and, consequently, serendipity—in niches, regions, and 
broader innovation ecosystems (Granstrand and Holgersson, 2020), thus 
unlocking the power of contextual drivers in the generation of novelty 
(Andriani et al., 2017). As noted by Morescalchi and Hardeman (2015), 
“technological diversity potentially offers the seeds for turning existing 
technologies into new and unexpected directions and therewith renders 
major opportunities to un-lock prevailing technological trajectories” 
(pg. 4). Despite the potential of diversity and the increasing adoption of 
research policies that specifically aim to cross-fertilize technologies 
(OECD, 2013), research on how diversity effects propagate across niches 
is still limited. 

Our study has several managerial implications as well as policy im-
plications. Regarding managerial implications, our study shows the 
importance of awareness that firms should have of the technological 

opportunities in their current niche as well as of the strategic behaviour 
that (some of) their competitors, operating in the same niche, can 
exhibit. To the extent that the current niche becomes more technologi-
cally diverse as well as crowded and hence competitive, more and more 
firms will start to pursue opportunities elsewhere. This implies for 
managers that when they tend to ignore other niches, they are likely to 
find out that others may have already entered one or more of these new 
niches (well) before them, and possibly have also built up a position 
herein through its further exploration. By the time they come to realize 
this, they may find out that they are already late in the game. This means 
that also when a firm’s current niche is technologically diverse but still 
relatively uncrowded, managers should avoid to overly focus on this 
current niche, yet also spend enough time and attention on looking for 
new opportunities elsewhere and consider the potential entry, and 
subsequent exploration, of new niches, even though they may not feel 
the pressure at the current moment. Accomplishing such strategies is 
supported to the extent that a firm has a higher degree of knowledge 
generalism and related organizational arrangements, which contributes 
to seeing new opportunities, whereas it does also suppress the ‘reflex’ to 
stay only focused on a firm’s current niche, as the results show. 

Although our study relies on patent data from the U.S. pharmaceu-
tical industry, it also informs technology and innovation policy in other 
countries. Innovation in the pharmaceutical industry follows largely a 
so-called ‘science-based’ innovation pattern (Marsili, 2001; Pavitt, 
1984). This is a pattern that is characterized by a relatively strong de-
pendency on external sources of knowledge for innovation such as 
universities, public research institutes and research-intensive firms 
(Coriat and Weinstein, 2001; Marsili, 2001; Nikulainen and Palmberg, 
2010; Pavitt, 1984). This contribution of academic research is large and 
entails (highly) scientific, basic knowledge, often in highly codified form 
(Cohen et al., 2002; McMillan et al., 2000). This is a key sectoral char-
acteristic that has a structure and life of its own in this industry (Coriat 
and Weinstein, 2001), making it also exceed the role of (some) national 
institutions that characterize a country’s national system of innovation 
(Mowery and Nelson, 1999). This applies the more so for a science-based 
pattern like pharmaceuticals, as this is also (heavily) influenced by 
knowledge inflows from outside the national territory, and vice versa. 
This implies that our theoretical logic and the empirical regularities we 
have identified based on our dataset may also hold for other countries. 
Yet, a generic difference between the U.S. national system of innovation 
and most other countries’ is that both the degree of technological op-
portunities and of competition among firms might be more pronounced 
in the U.S. (Mowery and Rosenberg, 1993). The consequence may be 
that our sample shows both higher degrees of technological diversity as 
well as higher degrees of technological crowding. Overall, this suggests 
that our findings and conclusions on the U.S. context may be like other 
countries in terms of kind, but not necessarily in degree. In other words, 
given some of the more generic similarities in pharmaceuticals across 
different countries, we expect our findings and conclusions to hold in 
terms of their underlying logic, yet we also expect differences as far the 
size of the pronounced effects of niche’s technological diversity and 
crowding are concerned. We expect these effects to be generally some-
what less pronounced in most other countries than the U.S. because we 
expect the average levels of both niche diversity and crowding to be 
somewhat lower, due to a generally lower degree of technological op-
portunities and competition among firms. For other countries and their 
standing technology and innovation policy, this does offer an interesting 
and useful insight though, namely that an important way to stimulate 
more distant and larger types of innovations in their national system of 
innovation can be formed by increasing and stimulating technological 
opportunities and competition, as this can stimulate diversity and 
crowding in a domain. Whereas stimulating competition is generally not 
considered by innovation policy makers as a key instrument in their 
toolbox to boost innovation (e.g., Borras and Edquist, 2017), our study 
shows that it may be worthwhile to reconsider this assumption. 

Our paper also has several limitations. First, from a theoretical 
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viewpoint, we argue for an effect of technological diversity on entry and, 
conditional on entry, an effect of technological crowding on exploration. 
However, our results show that entry and exploration are also, respec-
tively, affected by technological crowding and diversity, suggesting that 
a more comprehensive framework of how push factors interact among 
each other (and how push factors interact with pull factors) is highly 
needed, in order to better understand how firms grow in the techno-
logical space that surrounds them.42 43 From an empirical viewpoint, a 
first limitation is that we only rely on patent data. Although patent data 
are being used in very innovative ways (Caviggioli, 2016; Huang and Su, 
2019; Lee et al., 2020), they are also characterized by several short-
comings, like the fact that not all firm’s inventions are patented, or that 
the assignment of technological classes to patents—based on which we 
build niches—can be imperfect. A second empirical limitation is that our 
sample is small, and our measures lack the granularity that is necessary 
to capture the underlying processes of invention. Although our entry 
measure correlates with that of Kneeland et al. (2020), we are not able to 
associate an entry to a specific underlying inventor-level process, like 
distant recombination, long search paths, or serendipity. This links to 
our third empirical limitation: the fact that we only focus on the macro-, 
meso- and firm-level aspects of entry in new niches and their explora-
tion: a fine-grained analysis of the role played by inventors is a missing 
piece in our paper, and thus a possible starting point for future exten-
sions based on our work. 
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