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1 
Biomarkers are objective indicators of biological processes that can be measured 
accurately and precisely. They play a fundamental role in medical practice and research.1 
Evaluation of biomarkers in clinical research is aimed at providing evidence for the 
biomarker properties. Once validated—or rather, while constantly being evaluated2—
biomarkers can be used for diagnosis of disease and for prediction of (or as a surrogate 
for) clinical endpoints, for example in risk assessment or treatment response prediction.1‑3 
If these characteristics are extracted from medical images (e.g., CT, MRI, PET, ultrasound, 
etc), we speak of imaging biomarkers. These biomarkers can be qualitative, i.e., semantic 
descriptions of an image; or they can be quantitative, i.e., derived by measurement.   

‘‘A quantitative imaging biomarker is an objective characteristic derived from an in vivo 
image measured on a ratio or interval scale as an indicator of normal biological processes, 
pathogenic processes or a response to a therapeutic intervention.’’4 Tumour volume is an 
example of a quantitative imaging biomarker, generally measured by computed 
tomography (CT) or magnetic resonance imaging (MRI), as these techniques can offer 
detailed, high resolution anatomical data.  

Complementary to such anatomical information, functional imaging biomarkers aim to 
reflect underlying biological processes. Evidence shows that imaging biomarkers 
reflecting for example cell metabolism, cell density, and blood perfusion rate are 
predictive for treatment response and useful in risk assessment. The challenge is to 
reliably measure these characteristics.  

This reliability is assessed by the abovementioned accuracy and precision. The former is 
the closeness to its true value, which is generally not available in clinical research. The 
latter construct is the closeness of replicate measurements and can be divided into two 
aspects: reproducibility and repeatability. Reproducibility represents precision under 
different measurement conditions (different imaging systems with different operators), 
whereas repeatability is precision under the same conditions (the same imaging system 
with the same operators).4 

This work focusses on several imaging biomarkers. In the following sections I’ll introduce 
these biomarkers in light of two relevant clinical challenges, while also providing a brief 
introduction to the underlying theory. 

Cancer 
Cancer is a disease with increasing incidence in our aging societies. According to global 
estimates, currently “1 in 5 men and 1 in 6 women will develop the disease and 1 in 8 men 
and 1 in 10 women will die from it.”5 However, thanks to improvements in medical care, 
the cancer mortality rate continues to decline. There are more than 100 different types of 
cancer, two of which are subject to research in this thesis.  
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Diffuse glioma 
Diffuse gliomas are the most common brain tumours and more common in men than in 
women, with a respective ratio of 3 to 2 in the Netherlands. Named after their resemblance 
to glial cells, gliomas are aggressive, progressive and often diffuse, meaning the tumour 
infiltrates the surrounding tissue. Tumours are classified into four grades. The first grade 
describes non-diffuse tumours. Diffuse gliomas are classified as grade II, III or IV. Lower 
grade gliomas progress over time into higher, more aggressive grades, grade IV 
(glioblastoma) being the most aggressive. Patients with a primary diagnosis of 
glioblastoma are often older than patients with lower grade gliomas, the latter group often 
being younger than 50 years. Median survival ranges from 8 years for grade II to 15 
months for grade IV.   

Infiltration of the tumour into the peritumoral tissue makes it impossible to remove 
completely. On the one hand because the extent of infiltration is impossible to detect 
completely; on the other hand, because vital brain areas may be infiltrated, which cannot 
be removed. However, increased macroscopic resection is associated with better survival. 
If possible, this is the first step in treatment. Surgery also procures tumour tissue 
(otherwise obtained with a biopsy) which is used for further diagnosis through histology 
and molecular classification. Radiotherapy and chemotherapy are given to nearly all 
patients except those with certain low-grade gliomas that are slow growing and associated 
with longer survival.  

MR imaging is currently indicated in the diagnosis and also during and after treatment. 
Standard MRI sequences include T1, T2, post contrast T1, FLAIR and diffusion weighted 
imaging. Contrast enhancement visible in the post contrast T1 image is important for 
classification, because contrast enhancing gliomas are often glioblastoma while non-
enhancing tumours are often lower grade gliomas. Imaging is used primarily for 
estimation of the extent of tumour infiltration. This is used to determine the extent of 
resection in case of surgery and to define target volumes for radiotherapy.  

Alternative imaging methods that measure functional imaging biomarkers are under 
investigation. These methods include dynamic contrast enhanced (DCE) MRI, which can 
measure perfusion related biomarkers, and amino acid PET, which aims to measure cell 
proliferation rates. The amino acid PET tracer, O-(2-[18F]fluoroethyl)-L-tyrosine 
([18F]FET), has shown promising results for detection the tumour extent and its use has 
been recommended as a new standard for glioma delineation.  

Head and neck squamous cell carcinoma 
Advanced stage head and neck squamous cell carcinoma (HNSCC) refers to malignant 
tumours that arise from the mucosal surface of the upper aero-digestive tract including 
oral cavity, oropharynx, nasopharynx, hypopharynx and larynx. Approximately 4% of all 
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1 
cancer cases are HNSCC.5 The disease is more common in men than in women and major 
risk factors include tobacco and alcohol use and infection with the human papillomavirus 
(HPV).6 The latter also provides a clinical distinction between two separate types of 
HNSCC.7 Differences between HPV-positive and HPV-negative disease include survival 
and epidemiology. HPV-positive patients are generally younger and have a favourable 
prognosis. Patients with HPV-negative disease are generally over 50 years of age and five-
year overall survival ranges from 32% to 58% for advanced stage disease.  

About two thirds of the patients present with advanced stage disease and treatment will 
often consist of a combination of radiation and chemotherapy. When treatment fails 
(approx. 50% of the cases8), salvage surgery is often the last option. Due to initial 
treatment, wound healing is slowed and complications of salvage surgery are likely, 
causing high morbidity. With early treatment response prediction, patients can be 
selected for whom surgery is a better option and the side effects of radiation therapy can 
be avoided. Moreover, the response prediction may be used to create personalized 
(chemo)radiotherapy schemes and improve treatment success rate.  

Treatment decisions are based on tumour type and characteristics. Tumour typing and 
prognosis prediction are performed with an array of tools. Imaging by FDG-PET and MRI 
sequences (T1, T2, post contrast T1, ADC) is prominent among those tools. Imaging is 
used not only for tumour localisation, but also for characterizing tumour properties 
through imaging biomarkers. DCE MRI is under investigation as a means to quantify 
tumour permeability characteristics. Extension of the DWI sequence is investigated to be 
able to correct for perfusion related effects by modelling intravoxel incoherent motions 
(IVIM). These biomarkers are potential candidates for early treatment response 
prediction to improve treatment success.  

Quantification of tracer uptake and kinetics 
Tracer kinetic modelling – temporal aspects 
Tracer kinetic modelling is a method to estimate quantitative imaging biomarkers, in this 
case tissue pharmacokinetic properties, by monitoring an injected tracer. Tracer imaging 
is generally performed using PET; however, SPECT, MRI or CT can also be used. The 
premise involves simplifying the human body to a set of compartments: one or more 
blood or plasma compartments and one or more tissue compartments. Each 
compartment undergoes a change in tracer concentration and these changes are coupled 
between compartments. For example, a tracer is injected into the blood. When the blood 
transports the tracer throughout the body, the tracer gets into the tissue, the second 
compartment. The tissue concentration goes up, while the concentration in the blood 
goes down. Kinetic rate constants of transport between the compartments are estimated 
based on the measured tracer signal intensities in the compartments. These rate constants 
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are important, because they can be converted to a functional quantitative biomarker by 
interpretation of the model, e.g., tissue perfusion or receptor density.  

An important aspect for accurate analysis is the measurement of the arterial input 
function, i.e., the concentration curve inside the blood compartment. Deriving this input 
function directly from the image is only possible when a large arterial volume, such as the 
aorta, is within the field of view. Without an alternative, the tracer concentration in the 
blood must be measured by (continuous) arterial blood sampling, which is burdensome 
for the patient.  

Tracer kinetic modelling in human patient trials is focused on defining and applying the 
optimal clinical imaging protocol. This is generally a compromise between parameter 
precision and accuracy against patient burden and cost; a simple imaging protocol, while 
providing little burden to the patient, may provide poor parameter accuracy, i.e., results 
are not trustworthy and of little use. The same is possible for the opposite. For some 
patients the burden of a complicated protocol can be too high.  

Radiomics – spatial aspects 
Sometimes a phenomenon may seem unpredictable, or indeed chaotic, simply because 
we fail to note particularities. If we could, we might be able to predict treatment outcomes 
based on information that is not easy to see. Radiomics aims to extract such information 
from medical images. Whereas kinetic modelling is used to parametrise temporal signals, 
radiomics is used to parametrise spatial patterns. 

Cancerous tissue growth can become so uncontrolled that the tissue structure becomes 
chaotic. Such chaos is then a clear sign that the order imposed by our biological systems 
is lost. This disorder can be quantified as entropy, which has a mathematical definition 
for digital data.9 As such, this potential biomarker is easily derived from medical images.  

Along with entropy, hundreds of other radiomic features can be extracted, ranging from 
shape based- to fractal features. These features are then subjected to statistical analysis. It 
is sometimes stated that radiomics is the combination of radiomic feature extraction and 
machine learning. One could argue, however, that radiomics is a form of machine 
learning, since feature extraction is an integral part of machine learning. 
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1 
Outline 
This thesis covers several studies on methods that quantify biomarkers by image 
processing of time varying signals and by means of radiomics.  

 Chapter two looks into the necessity of arterial input measurement for brain
perfusion measurements with [15O]H2O PET.

 Chapters three and four describe the details of establishing the optimal kinetic
model for [18F]FET PET in glioma.

 Chapter five investigates the precision of image-derived arterial input functions
obtained with DCE-MRI in head and neck cancer patients.

 Chapter six compares several methods for image processing of DWI-MRI data
to estimate IVIM parameters in the head and neck region.

 Chapter seven deals with radiomics and the problem of combining parameters
for prediction of treatment success in head and neck squamous cell carcinoma.
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Abstract 
Quantification of regional cerebral blood flow (CBF) using [15O]H2O positron emission 
tomography (PET) requires the use of an arterial input function. Arterial sampling, 
however, is not always possible, for example in ill-conditioned or paediatric patients. 
Therefore, it is of interest to explore the use of non-invasive methods for the 
quantification of CBF. For validation of non-invasive methods, test–retest normal and 
hypercapnia data from 15 healthy volunteers were used. For each subject, the data 
consisted of up to five dynamic [15O]H2O brain PET studies of 10 min and including 
arterial sampling. A measure of CBF was estimated using several non-invasive methods 
earlier reported in literature. In addition, various parameters were derived from the time 
activity curve (TAC). Performance of these methods was assessed by comparison with full 
kinetic analysis using correlation and agreement analysis. The analysis was repeated with 
normalization to the whole brain grey matter value, providing relative CBF distributions. 
A reliable, absolute quantitative estimate of CBF could not be obtained with the reported 
non-invasive methods. Relative (normalized) CBF was best estimated using the double 
integration method.  
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Introduction 
Regional cerebral blood flow (CBF) represents the amount of blood that perfuses a 
volume of tissue, i.e. mL blood per mL of tissue per min. To date, the accepted unit for 
CBF is mL·cm-3·min-1, where mL·cm-3 is used to indicate the transfer from blood to 
tissue.10 Several modalities can be used to measure perfusion11, but positron emission 
tomography (PET) with oxygen-15 labelled water is considered to be the reference 
standard method.  

Over the years, various methods have been developed for deriving CBF from a dynamic 
[15O]H2O PET scan.12‑23 Ultimately, all these methods are based on Kety’s compartment 
model for (inert) H2O.24 Solving the differential equation leads to a convolution of the 
tissue response with the arterial input function (AIF). Quantitative studies therefore 
require the measurement of the AIF, which is obtained most reliably through continuous 
arterial sampling.25 However, this is a somewhat invasive procedure, which is less suitable 
for routine clinical studies. In some cases, arterial sampling is clinically not feasible, for 
example in ill-conditioned patients or in children with Moyamoya disease. In case arterial 
sampling is not possible, it may be of interest to apply non-invasive methods that can 
estimate CBF or relative CBF distributions across the brain to identify regions with 
reduced perfusion. However, before using non-invasive methods, it is important to 
investigate their accuracy and precision against full-quantitative kinetic approaches. 

One non-invasive approach is the use of an image derived input function (IDIF).26 The 
main challenge for this approach is the limited spatial resolution inherent to PET. This 
affects the quality of the measured input function due to partial volume effects. This 
particularly affects CBF studies because, in contrast to myocardial blood flow studies, 
there are no large vascular structures within the field of view.26 The IDIF approach seems 
very promising, but requires complex and accurate methodology for partial volume 
correction and delineation of the arteries. As a consequence, use of IDIF for CBF 
measurements is not widely used and had limited success so far.  

Instead, this study focuses on validation of simplified methods independent of a measured 
AIF. As far as we know, the methods described below are all that have been reported for 
[15O]H2O PET.19,20,22 We also included the integral count approach from early brain 
activation studies.27 In MR perfusion research often additional parameters describing the 
time intensity curve are reported, such as the time-to-peak (TTP), wash-in slope and the 
peak height. Their equivalents for PET have not been evaluated, because typically in 
dynamic PET studies, frame times are not shorter than 5 seconds and data are noisy, 
making it difficult to estimate these parameters reliably. These parameters were included 
to confirm this hypothesis.  
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The aim of this study was to select the best method based on their performance to estimate 
(relative) CBF, initiated by our interest in studying CBF changes in children suffering 
from Moyamoya disease for whom arterial sampling is clinically not feasible. In a head-
to-head comparison with the reference kinetic method and including a report on the test–
retest variability, this paper should provide clarity on the best non-invasive method for 
obtaining (relative) CBF. 

Material and Methods 
Subjects and study protocol 
PET scans were acquired on a Gemini TF-64 PET/CT system (Philips Healthcare, 
Cleveland, TN, USA). The research participants were 16 healthy volunteers.  All 
participants gave written informed consent for this study prior to inclusion. The study 
has been approved by the medical ethical review committees of both participating centers; 
the Amsterdam Medical Center and the VU University Medical Center. The study was 
conducted in accordance with the Declaration of Helsinki. Characteristics of the 
participants and scanning protocol have been described previously28. In brief, each person 
underwent five [15O]H2O scans in two separate scanning sessions. During the first scan 
session people were scanned twice under baseline cerebrovascular conditions and once 
during hypercapnia. During the second session, planned 28 days later, a single baseline 
scan was followed by a hypercapnia scan. Hypercapnia was induced using 5% CO2 
enriched air. 

Each person received an arterial line for blood sampling and a venous line in the opposite 
arm for administration of [15O]H2O. Scanning sessions started with a 1 minute low-dose 
CT scan, which served for attenuation and scatter correction of the subsequent PET 
acquisitions. Emission scans were acquired in list mode for 10 minutes. A bolus of 800 
MBq [15O]H2O was administered at the start of each scan. Arterial blood was measured 
continuously using an automatic blood sampler.25 The resulting arterial input function 
was calibrated using three manual arterial samples collected at 5.5, 8 and 10 minutes post 
injection. 

The scans were acquired in list mode and reconstructed into 26 frames of 1×10 s, 8×5 s, 
4×10 s, 2×15 s, 3×20 s, 2×30 s, 6×60 s. The row action maximum likelihood algorithm 
(RAMLA) as provided by the scanner manufacturer was used for reconstruction of the 
scans with an isotropic voxel size of 2 mm. Thereafter, the dynamic images were 
smoothed using an isotropic 5 mm FWHM Gaussian kernel.  

Brain region time activity curves 
T1-weighted MR images were acquired on a Philips 3 T Intera System (Philips Healthcare, 
Best, The Netherlands) at the Amsterdam Medical Center. This anatomical reference scan 
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of each subject was co-registered to the emission scans using the SPM12 software package 
(Functional Imaging Laboratory, 2014, London, UK). For this purpose, emission scans 
were summed over all time frames. After co-registration, the anatomical scans were 
segmented using PVELab (Neurobiology Research Unit, 2010, Copenhagen, Denmark) 
into grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) and divided 
into 67 brain regions using the Hammers brain atlas.29,30 Segmentations were then applied 
to the dynamic [15O]H2O images to generate regional GM Time Activity Curves (TACs). 
Furthermore, the union of GM and WM was used as whole brain mask for some methods; 
this will further be referred to as whole brain.  

CBF reference methods 
CBF was calculated using two reference methods: (a) full kinetic analysis of brain region 
TACs using non-linear regression (NLR) and (b) the basis function method (BFM)23 for 
voxel wise (=parametric) calculations. Thus, NLR gives the CBF per region, and BFM 
gives a parametric map of CBF. Both methods used the single tissue compartment model 
with additional arterial blood volume parameter:  

𝐶௧(𝑡) = 𝑉௔ ⋅ 𝐶௔(𝑡) + (1 − 𝑉௔) ⋅ 𝑓 ⋅ 𝑒൫ି௙⋅௧⋅௏೅
షభ൯ ⊗ 𝐶௔(𝑡) (1)

Here 𝐶௧(𝑡) is the tissue concentration of the tracer over time, 𝑉௔  the arterial blood volume 
fraction, 𝐶௔(𝑡) the arterial input function, 𝑓 the cerebral blood flow (𝑓=CBF) and 𝑉  the 
volume of distribution. For NLR the arterial input function is estimated by the measured 
arterial tracer concentration corrected for delay. Dispersion correction was omitted in 
favour of fitting the arterial blood volume parameter. Blood flow estimated with this 
parameter is near equivalent to blood flow estimated with dispersion correction, as noted 
by Bol et al.31 For BFM the measured arterial tracer concentration is corrected for both 
delay and dispersion as described previously.23  

Simplified methods 
Implementation of the methods described in this paper used the following calculations as 
published in the original papers. All methods are based on Kety’s differential equation for 
the one-tissue reversible compartment model, see Equation 2, where 𝐶௧(𝑡) is the tissue 
concentration of the tracer over time, 𝐶௔(𝑡) is the arterial tracer concentration over 
time,𝑓 is the cerebral blood flow and 𝑉  the volume of distribution.  

𝑑𝐶௧(𝑡)

𝑑𝑡
= 𝑓𝐶௔(𝑡) −

𝑓

𝑉
𝐶௧(𝑡) (2)

In 1994 Mejia et al. introduced the double integration method (DIM)19, which eliminates 
the need for the arterial input function by using the whole brain as a reference and 
assuming the global CBF to be the normal average value. The method is based on the 
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double integration of Equation 2, leading to Equation 3, where end time 𝑇 is 3 minutes 
(in accordance with the original method).  

𝑓 =
∫ 𝐶௧(𝑡)𝑑𝑡

்

଴

∫ ∫ 𝐶௔(𝑢)𝑑𝑢
௧

଴
𝑑𝑡

்

଴
−

1
𝑉 ∫ ∫ 𝐶௧(𝑢)𝑑𝑢

௧

଴
𝑑𝑡

்

଴

(3)

The double integration of the arterial tracer concentration is substituted by 𝐴, which is 
estimated using the time activity curve (TAC) of the whole brain 𝐶௧ଵ(𝑡) and an assumed 
global CBF 𝑓ଵ, as described in Equation 4.  

𝐴 = න න 𝐶௔(𝑢)𝑑𝑢
௧

଴

𝑑𝑡
்

଴

=
∫ 𝐶௧ଵ(𝑡)𝑑𝑡

்

଴

𝑓ଵ

+
1

𝑉 ଵ

න න 𝐶௧ଵ(𝑢)𝑑𝑢
௧

଴

𝑑𝑡
்

଴

(4)

𝐴 is calculated with 𝑓ଵ = 0.5 mL·cm-3·min-1 and 𝑉 ଵ = 0.86. With 𝐴 substituted in 
Equation 3 the flow is calculated for every voxel, fixing 𝑉  at 0.86. Note that in the original 
publication 𝑉 ଵ and 𝑉  were fixed at unity, however a later (1992) recommended value is 
used here.32 

In 1996 the DIM was extended by Watabe et al. using a two-step calculation strategy to 
estimate the global CBF and volume of distribution instead of fixing them to the normal 
average value.20 In Watabe’s method the same substitution is performed, and the TAC of 
a second reference region 𝐶௧ଶ(𝑡) is introduced, yielding Equation 5. This second region 
was defined as the 10% of voxels with the highest number of total counts.  

𝑓ଶ =
∫ 𝐶௧ଶ(𝑡)𝑑𝑡

்

଴

1
𝑓ଵ

∫ 𝐶௧ଵ(𝑡)𝑑𝑡
்

଴
+

1
𝑉 ଵ

∫ ∫ 𝐶௧ଵ(𝑢)𝑑𝑢
௧

଴
𝑑𝑡

்

଴
−

1
𝑉 ଶ

∫ ∫ 𝐶௧ଶ(𝑢)𝑑𝑢
௧

଴
𝑑𝑡

்

଴

(5)

Fixing 𝑉 ଶ at 0.86, non-linear regression is performed using a trust-region reflective 
algorithm to fit the values for 𝑓ଵ, 𝑉 ଵ and 𝑓ଶ. 𝐴 is then calculated using the fitted values 
for 𝑓ଵ and 𝑉 ଵ and substituted in Equation 3 to calculate 𝑓 for every voxel, again fixing 𝑉  
at 0.86. 

Another approach was published by Treyer et al. in 2003. It is based on Alpert’s weighted 
integration method33 to estimate both CBF and the washout parameter k2, but uses a 
standard AIF.22 This standard input function is corrected for delay and dispersion 
(Meyer’s method17). Because CBF depends on the amplitude of the AIF, and k2 does not, 
estimated CBF values were then scaled using the estimated k2 by making their averages in 
grey matter equal. However, as Treyer at al. note in their discussion, this causes a bias 

because the washout parameter is defined as 𝑘ଶ =
௙

௏೅
. Therefore, in this study the 

estimated CBF values were scaled by making the estimate grey matter value equal to the 
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average k2 times 𝑉 , fixing 𝑉  at 0.86. Unlike in the original study, we did not use a 
separate set of measured input functions to create a standard input function. Instead, the 
measured input functions of the subjects was used. However, to ensure that the used input 
function was independent of the subject, a ‘standard’ input function was produced per 
subject by averaging the input functions of all other subjects. Before averaging, the 
functions were normalized by their integral and the time of the peaks was aligned, as was 
done in the original study.22  

For the above methods the first 3 minutes of scan data was used; the following TAC 
derived parameters used all or part of the 10 minutes scans. The definitions of the TAC 
derived parameters are illustrated in the supplementary material. These CBF related 
parameters were derived from the TAC: the area under the time activity curve (AUC); the 
AUC for a 60 second interval (AUC60) after the beginning of the wash-in (t0); peak height 
(peak); time between the beginning of the wash-in and the peak, or time-to-peak (TTP); 
the maximum wash-in slope (slope); the wash-out curve fitted with an exponential 
function (washoutEXP) and a power function (washoutpowerlaw). The parameters were 
calculated using Matlab 7.10 (R2010a) (The MathWorks, Inc., Natick, MA, USA).  

Evaluation of simplified methods 
The various parameters associated with CBF were compared with the reference method 
using both correlation and agreement analysis. Firstly, using the simplified CBF estimates 
per brain region and NLR as reference, Pearson correlation coefficients were calculated. 
The five highest correlating simplified parameters were included for further investigation. 

Secondly, Bland-Altman analysis34 was used to investigate agreement. The results are 
reported as the mean difference (an estimate of the bias) and 1.96 times the standard 
deviation of the differences (an estimate of the precision). The results do not focus on 
individual regions, but rather report the average agreement for brain regions. To include 
the parameters with different units, the CBF estimates of each method were converted to 
a percentage of the sample average—the average over all subjects—and the standard 
deviation of the differences were reported in percentage points. Note that the mean 
difference is now zero and hence not reported. In addition, brain region values of all 
methods were normalized to their whole brain value providing relative CBF, and the 
agreement of the parameters relative to whole brain was also investigated. Using BFM as 
the reference, the agreement analyses were repeated using the parametric maps.  

Repeatability of all methods was investigated using the brain region values of the repeated 
baseline measurements. The repeatability performance is reported by the repeatability 
index (RI), the repeatability coefficient34 as percentage of the sample average,28 again 
allowing to compare the repeatability of metrics with different units. The repeatability 
was re-calculated after normalizing each scan to the whole brain value. Intra-session test–
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retest performance was investigated using the two consecutive baseline scans of the first 
scanning session. For inter-session repeatability, the baseline scan of the second session 
was used in combination with the first baseline scan of the first session. The 95% 
confidence interval of the repeatability indices is also reported.  

Finally, agreement analysis was performed on hypercapnia-induced differences estimated 
by each method. The relative changes between the baseline and hypercapnia scans, see 
Equation 6, were calculated with each method for all brain regions. For this, differences 
between scan 3 and scan 1 and between scan 5 and scan 4 were used. These differences 
were compared to the differences found by the reference method (NLR) and the average 
difference between them is reported in percentage points.  

ℎ𝑦𝑝𝑒𝑟𝑐𝑎𝑝𝑛𝑖𝑎 − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
∙ 100% (6)

Simulations 
Simulations were performed in order to better understand the behaviour of the CBF 
methods. TACs were generated without noise to investigate bias as function of simulated 
CBF. The TACs were generated with the single tissue compartment model, as described 
in Equation 1, and a representative input function. The representative input function was 
constructed from all measured input functions after normalization by their integral and 
aligning the peaks temporally. The volume of distribution VT and the arterial blood 
volume fraction Va were kept constant and simulated CBF parameter 𝑓 ranged from 0.2 
to 1.0 in 128 steps. In addition, noise was added to the TACs to investigate the noise 
characteristics of the methods. The noise level ranged from 0% to 16% coefficient of 
variation (COV) and was increased in 128 steps. Details of the noise simulation have been 
described earlier.35 For every combination of noise and CBF 500 noisy TACs were 
generated.  

The simulated data were then analysed with the BFM and simplified methods to estimate 
CBF. The whole brain reference TAC for the DIM was a noise free TAC generated with 
𝑓 = 0.5 mL·cm-3·min-1. Watabe’s extension of the DIM was not investigated. The scale 
factor for Treyer’s method was calculated with the average k2 and K1 of all generated 
TACs.  

The mean observed CBF errors and their standard deviations are reported in error maps. 
The errors as percentage of simulated CBF are reported as relative error maps. Error plots 
are shown for the noise free TACs and the TACs with 8% noise level.  
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Results 
Average time between sessions was 34 days (25-45 days). From the total of 80 scans, 70 
scans were successfully evaluated. Acquisition failed for 10 scans of 5 volunteers: tracer 
production failure twice, inadequate arterial blood sampling twice, and acute nausea 
once. Details were reported elsewhere.28  

The Pearson correlation coefficients per scan between regional CBF values of simplified 
metrics and the reference method (NLR) are presented in Figure 1. Results obtained with 
BFM were added for comparison. Highest correlations were found for DIM, Watabe, 
Treyer, AUC60, and the peak height. The other measures (washoutEXP, washoutpowerlaw, 
AUC, slope and TTP) showed lower correlation and were excluded from further analysis. 

Figure 1: Correlation per scan of the investigated methods with full kinetic analysis using NLR.  
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The results of the agreement analysis using brain regions are summarized in Table 1. The 
mean difference was zero for the DIM and Watabe’s method. Treyer’s method showed a 
mean difference that was significantly different from zero (α<.001), indicating bias. The 
standard deviations of the differences are an estimation of precision and show that for the 
absolute estimation of CBF, the DIM and Treyer’s method are most precise, followed by 
the AUC60 and peak height. For estimation of relative CBF, the DIM and the AUC60 are 
most precise, followed by the Treyer’s method and peak height. Watabe’s method was 
most imprecise for estimation of both absolute and relative CBF. 

Table 2 shows the same results, but for parametric comparison. The standard deviations 
of the differences are larger than for regional comparison. The DIM seems least affected 
by this. 

Table 1: Regional agreement with NLR. 

Relative CBF 

Method Mean 1.96 SD 1.96 SD 
(% of sample average) 

1.96 SD 
(% of global CBF) 

BFM 0.00 (-0.01 – 0.01) 0.08 (0.06 – 0.10) 16.6 (13.1 – 20.1)    5.3 (   5.1 –   5.4) 
DIM 0.01 (-0.01 – 0.03) 0.18 (0.14 – 0.21) 36.6 (28.9 – 44.4) 10.4 (10.2 – 10.7) 
Watabe 0.00 (-0.03 – 0.03) 0.27 (0.22 – 0.33) 56.7 (44.7 – 68.6) 15.4 (15.0 – 15.8) 
Treyer 0.12 ( 0.09 – 0.14) 0.21 (0.17 – 0.25) 37.5 (29.6 – 45.4) 13.0 (12.7 – 13.3) 
AUC60 N/A N/A  44.0 (34.7 – 53.3) 10.2 (10.0 – 10.5) 
peak N/A N/A  45.2 (35.7 – 54.7) 13.2 (12.8 – 13.5) 
Note: Average over all brain regions and 95% confidence interval between brackets. The third column is 
converted to percentages by dividing over the average of all subjects, relative CBF is a percentage of the global 
CBF per scan. 

Table 2: Parametric agreement with BFM. 

Relative CBF 
Method Mean 1.96 SD 1.96 SD 

(% of sample average) 
1.96 SD 
(% of global CBF) 

DIM  0.01 (-0.02 – 0.04) 0.23 (0.19 – 0.27) 45.4 (37.7 –   53.1) 27.0 (22.4 – 31.6) 
Watabe  0.03 (-0.03 – 0.10) 0.52 (0.43 – 0.61) 96.7 (80.3 – 113.1) 29.0 (24.1 – 33.9) 
Treyer  0.10 (  0.06 – 0.13) 0.29 (0.24 – 0.34) 50.7 (42.1 –   59.3) 34.7 (28.8 – 40.6) 
AUC60  N/A  N/A  52.0 (43.2 –   60.8) 28.1 (23.3 – 32.9) 
peak  N/A  N/A  55.0 (45.6 –   64.3) 35.4 (29.4 – 41.4) 
Note: Average over all brain regions and 95% confidence interval between brackets. 

Figure 2 shows voxel wise scatter and Bland-Altman plots of relative CBF calculated with 
the DIM, Treyer’s and AUC60 methods using BFM as reference. Mean differences were 
zero due to normalization to the whole brain average. An example of parametric maps 
calculated with the various methods can be found in the supplementary material. 
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Figure 2: Voxel wise scatter and Bland-Altman plots of the methods vs BFM after normalization to 
whole brain (relative CBF). 
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Repeatability performance is shown in Table 3 for intrasession (n=14 subjects) and Table 
4 for intersession (n=14 subjects). The DIM shows the same results, both with and 
without normalisation to the whole brain. Results of Watabe’s method shows the largest 
RI for intrasession repeatability. The TAC derived parameters (AUC60 and peak height) 
show the best reproducibility indices for relative CBF estimation. The intersession RIs are 
approximately twice as large as the intrasessions RIs for Treyer’s method, AUC60 and peak 
height.  

Table 3: Intrasession test–retest repeatability. 

Relative CBF 
Method  RI (%) RI (%) 
NLR 27.3 (25.7 – 28.9) 14.4 (13.6 – 15.3) 
BFM 26.1 (24.6 – 27.6) 15.2 (14.3 – 16.0) 
DIM 12.8 (12.1 – 13.5) 12.8 (12.1 – 13.5) 
Watabe 37.2 (35.1 – 39.3) 14.4 (13.6 – 15.2) 
Treyer 21.5 (20.2 – 22.7) 15.6 (14.7 – 16.5) 
AUC60 23.5 (22.2 – 24.8) 10.3 (  9.7 – 10.8) 
peak 23.2 (21.9 – 24.5) 12.3 (11.6 – 13.0) 
Note: Data of 14 subjects, average over all brain 
regions and 95% confidence interval between 
brackets.  
 

Table 4: Intersession test–retest repeatability. 

Relative CBF 
Method RI (%) RI (%) 
NLR 29.5 (27.8 – 31.3) 14.4 (13.5 – 15.2) 
BFM 31.8 (30.0 – 33.6) 15.0 (14.1 – 15.8) 
DIM 14.3 (13.5 – 15.2) 14.3 (13.5 – 15.2) 
Watabe 36.9 (34.8 – 39.0) 17.2 (16.2 – 18.2) 
Treyer 43.9 (41.4 – 46.4) 16.6 (15.7 – 17.5) 
AUC60 49.8 (46.9 – 52.6) 11.7 (11.0 – 12.3) 
peak 47.5 (44.8 – 50.1) 12.9 (12.2 – 13.7) 
Note: Data of 14 subjects, average over all brain 
regions and 95% confidence interval between 
brackets. 
 

Agreement on hypercapnia-induced differences is presented in Table 5. Scatter and 
Bland-Altman plots of these differences are shown in the supplementary material. The 
DIM and Watabe’s method show a clear disagreement with the reference method for 
estimating differences between the hypercapnia scans and the baseline scans. Treyer’s 
method shows best performance among the simplified methods. 

Table 5: Regional agreement with NLR of hypercapnia induced differences. 

Method Mean  1.96 SD 
BFM 2.4 (  -1.6 –     6.3) 32.7 (25.8 – 39.6) 
DIM -24.5 (-29.5 – -19.5) 41.1 (32.5 – 49.8) 
Watabe -31.9 (-37.7 – -26.2) 47.2 (37.3 – 57.2) 
Treyer 1.6 (  -3.0 –     6.3) 38.0 (30.0 – 46.1) 
AUC60 -3.7 (-11.0 –     3.6) 59.9 (47.2 – 72.5) 
peak -4.1 (-11.5 –     3.3) 60.9 (48.0 – 73.7) 

Note: Average over all brain regions and 95% confidence interval between brackets. 

The error maps and plots showing the simulation results are available in the 
supplementary material. BFM shows the least bias, only slightly overestimating CBF for 
simulated CBFs >0.8 mL·cm-3·min-1. The sawtooth pattern visible on the BFM error graph 
for the simulation without noise is caused by the use of the limited number of basis 
functions. The DIM shows slight overestimation at low CBF and slight underestimation 
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at high CBF. The AUC60 and Peak methods largely underestimate and overestimate CBF 
at low and high simulated CBF values. The bias of the peak method also shows 
dependence on noise, which is visible in the error maps, whereas the bias of all other 
methods are independent on noise. Treyer’s method shows overestimation of CBF over 
the entire simulated CBF range, but increases with simulated higher CBF values   

The error precision maps show that precision of the AUC60 method is constant at different 
CBF and all other methods show declining precision with increasing CBF. All methods 
show worse precision with increasing noise levels. For BFM and the DIM the precision is 
proportional to CBF, which can be seen in the relative precision maps.  

Discussion 
This study compared a wide range of simplified methods for estimating (absolute and 
relative) cerebral perfusion, independent of measurement of the AIF, in healthy 
volunteers. Their performance was investigated against reference kinetic methods, which 
use an arterial input function. Moreover, our study included assessment of repeatability 
performance of all metrics and methods tested; both intra- and inter-session.  

Most TAC derived parameters (washoutEXP, washoutpowerlaw, AUC, slope and TTP) showed 
poor correlation with NLR derived CBF. As expected, these parameters are thus of little 
value for estimating CBF. Two TAC derived parameters, the peak height and the AUC60, 
do show high correlation (see Figure 1). The AUC60 showed better results than the peak 
height: higher correlation, lower RIs and smaller standard deviation of the differences. 
Peak height does show a linear relationship, yet its performance is worse.  

Relative CBF distributions can be estimated with reasonable precision using the DIM and 
AUC60 methods. However, it is known that the relationship between integral counts and 
CBF is nonlinear. This can also be seen in Figure 2 and this causes the lower contrast, 
which can be seen in the parametric maps (supplementary material). This is probably also 
why the AUC60 has a lower RI for both inter- and intra-session repeatability. Because the 
DIM does not show worse agreement performance, it should be the method of choice for 
estimating relative CBF. However, because the global CBF is always assumed to be the 
normal average, this method cannot estimate absolute CBF and should only be considered 
when studying relative CBF changes between subjects or longitudinally. This is 
exemplified by the disagreement of this method for absolute longitudinal changes, as 
presented in Table 5.  

In our study, we observed that none of the non-invasive methods are able to estimate 
absolute CBF reliably. Watabe’s method estimates global CBF using NLR. However, as 
they clearly explain in the original paper, there exists a very shallow error surface around 
the optimal solution. Hence, the method is very sensitive to getting trapped in local 
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minima, and Treyer et al. indeed report this as well. Furthermore, Watabe et al. mention 
in their discussion that “From the simulation it follows that a 2-min administration period 
performs better than a 1-min period.”20 Perhaps this explains the disparity in the results. 
In this study (and in the study of Treyer et al. too) a bolus injection was used, which had 
an even shorter administration period of 15 seconds (20 s in the study of Treyer et al.). 
Clearly, the method performs worse on bolus injection data and cannot be recommended 
for estimation of CBF for our imaging procedure. 

In comparison with Watabe’s method, Treyer’s method shows better precision for 
estimating absolute CBF. However, Treyer’s method showed overestimations of CBF in 
this dataset. The reason for this is unclear, but could have to do with the presumed volume 
of distribution. If we look at the precision in percentage points, it is clear that the precision 
of Treyer’s method is similar to the DIM’s precision, whereas the TAC derived parameters 
have a worse precision. For the assessment of CBF and relative CBF changes most 
simplified methods show similar RIs the reference methods (NLR or BFM with arterial 
sampling) for intra-session CBF and relative CBF data and somewhat worse RIs for inter-
session CBF values. When short-term longitudinal changes in CBF need to be assessed 
Treyer’s method may be considered.  

The simulations largely confirmed the observations seen in the clinical data. Generally, 
the BFM provided most accurate and robust CBF estimates, while several simplified non-
invasive methods suffer from substantial bias and poor precision. In line with the clinical 
studies the DIM seems to be able to estimate CBF accurately and with high precision over 
a large range of simulated CBF values and noise levels and comparable to those seen with 
BFM. It should be noted that we did not simulate deviations in volume of distribution or 
input functions and some observations for the simplified methods may therefore be more 
optimistic than seen in the clinical data. Yet, in general the simulations show the same 
trends as seen in the clinical studies. 
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Conclusion 
In this study we evaluated the performance of a wide range of non-invasive methods for 
quantifying CBF and/or relative CBF which can be applied in studies were the collection 
of an arterial input function is clinically not feasible (e.g. in children with Moyamoya 
disease). Performance of these methods was compared with quantitative CBF derived 
using a kinetic model including an arterial input function. The double integration method 
showed the best performance for measuring relative cerebral perfusion (and its change) 
without arterial sampling. The main disadvantage of this method is the inability to 
estimate global CBF. Therefore, it is concluded that among the non-invasive methods 
tested the double integration method seems to be most optimal method for measuring 
relative CBF. None of the non-invasive methods were able to measure absolute CBF 
accurately, but Treyer’s method may be considered when studying changes in CBF within 
the same subject in a longitudinal setting. 

Supplementary material 
Supplementary material for this paper is available at: 

doi.org/10.1177/0271678X17730654 
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Abstract 
Background 
This study identified the optimal tracer kinetic model for quantification of dynamic O-
(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) positron emission tomography (PET) studies 
in seven patients with diffuse glioma (four glioblastoma, three lower grade glioma). The 
performance of more simplified approaches was evaluated by comparison with the 
optimal compartment model. Additionally, the relationship with cerebral blood flow—
determined by [15O]H2O PET—was investigated.  

Results 
The optimal tracer kinetic model was the reversible two-tissue compartment model. 
Agreement analysis of binding potential estimates derived from reference tissue input 
models with the distribution volume ratio (DVR)-1 derived from the plasma input model 
showed no significant average difference and limits of agreement of -0.39 and 0.37. Given 
the range of DVR-1 (-0.25 to 1.5) these limits are wide. For the simplified methods, the 
60-90 min tumour-to-blood ratio to parent plasma concentration yielded the highest
correlation with volume of distribution VT as calculated by the plasma input model
(r=0.97). The 60-90 min standardized uptake value (SUV) showed better correlation with
VT (r=0.77) than SUV based on earlier intervals. The 60-90 min SUV ratio to contralateral
healthy brain tissue showed moderate agreement with DVR with no significant average
difference and limits of agreement of -0.24 and 0.30. A significant but low correlation was
found between VT and CBF in the tumour regions (r=0.61, p=0.007).

Conclusion 
Uptake of [18F]FET was best modelled by a reversible two-tissue compartment model. 
Reference tissue input models yielded estimates of binding potential which did not 
correspond well with plasma input derived DVR-1. In comparison, SUV ratio to 
contralateral healthy brain tissue showed slightly better performance, if measured at the 
60-90 minute interval. SUV showed only moderate correlation with VT. VT shows
correlation with CBF in tumour.
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Background 
Since its introduction in 199936 the amino acid tracer O-(2-[18F]fluoroethyl)-L-tyrosine 
([18F]FET) is increasingly used to image glioma.37 Because [18F]FET is not incorporated 
into proteins, it is a tracer for amino acid transport rather than for protein synthesis 
rate.36,38 [18F]FET positron emission tomography (PET) has shown its added value to 
magnetic resonance imaging (MRI) for several clinical problems regarding brain 
tumours, such as prognosis assessment, delineation of tumour extent and glioma 
grading.39  

The most extensive quantitative analysis of a PET tracer is based on dynamic PET scans 
in combination with plasma input based pharmacokinetic modelling.40 For large clinical 
studies, such an extensive analysis is not feasible; tracer uptake needs to be quantified 
using simplified measures. For example, the standardized uptake value (SUV) interval of 
20-40 minutes post injection is currently recommended for clinical reading in European
Association of Nuclear Medicine and German guidelines41,42. Simplified approaches are
not only affected by regulation of specific amino acid transporters—the primary
parameter of interest—but also by the blood flow and plasma concentration, which is in
turn affected by the biodistribution, tracer metabolism, and uptake in blood cells. It is of
interest to quantify these effects to gain a better understanding of the accuracy of a
simplified measure and its reliability.

In the current literature, we identified five studies which used pharmacokinetic modelling 
to quantify uptake of the tracer in the brain; two preclinical studies43,44 and three human 
studies45‑47. The human studies all used an image derived input function. Furthermore, 
we found only one study where metabolite concentration in plasma was measured.48 The 
tracer kinetics of [18F]FET in glioma patients are expected to be in line with preclinical 
research, but validation of kinetic models is needed. The aim of this study was therefore 
to identify the optimal metabolite corrected plasma input model for the quantification of 
[18F]FET kinetics. In addition, reference tissue input models and several simplified 
methods were validated in terms of their agreement with full kinetic analysis results. 
Lastly, the relationship of the methods and parameters with blood flow were investigated 
using [15O]H2O PET data.  

Methods 
Subjects and study protocol 
The study population consisted of seven patients with diffuse glioma from an ongoing 
patient study.49 Each patient gave written informed consent prior to inclusion. This study 
has been performed in accordance with the Declaration of Helsinki, approved by the 
Medical Ethics Committee of the VU University Medical Center and registered in the 
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Netherlands National Trial Register (www.trialregister.nl, unique identifier NTR5354, 
registration date 4th of August 2015). The age of the patients ranged from 22 to 69 years. 
All gliomas were newly diagnosed and selected for resective surgery. Imaging was 
preoperatively performed. Based on histology of biopsies taken before surgery—but after 
imaging—each glioma was classified according to World Health Organization (WHO) 
criteria as lower grade (WHO II-III) or glioblastoma (WHO IV).50 Four patients 
presented with glioblastoma, three with lower grade glioma. See supplemental Table S1 
for more details.  

The patients were required to fast at least 4 hours before undergoing the imaging protocol. 
T1-weighted gadolinium-enhanced (T1G) and FLAIR sequences were acquired on an 
Achieva whole-body 3.0T MR-scanner (Philips Healthcare, Best, the Netherlands). 
Details of the MR sequences are described in the supplemental material. Two dynamic 
PET scans were acquired on either a Gemini TF-64 PET/CT or an Ingenuity TF PET/CT 
(Philips Healthcare, Best, the Netherlands). Each scan started with a low dose computed 
tomography (CT) scan (30 mAs, 120 kVp) for attenuation and scatter correction 
purposes. A bolus of 800 MBq [15O]H2O was administered at the start of the first scan 
with a venous line and emission scans were acquired in list mode for 10 minutes. An 
arterial line in the opposite arm was used for continuous sampling using an on-line blood 
sampler (Comecer Netherlands, Joure, the Netherlands). Manual arterial samples were 
collected at 5, 7 and 9 minutes. A 90 minute dynamic scan was then acquired on the same 
system after a bolus of 200 MBq [18F]FET. [18F]FET was produced following the method 
earlier described.51 The radiochemical purity was >98% and the specific radioactivity 
>18.5 GBq∙µmol-1. Arterial blood was continuously sampled and manual samples were
taken at 5, 10, 20, 40, 60, 75 and 90 minutes. The line-of-response row-action maximum
likelihood algorithm (LOR-RAMLA) algorithm as provided by the scanner manufacturer
was used for reconstruction of the scans into 26 time frames (1 x 10, 8 x 5, 4 x 10, 2 x 15,
3 x 20, 2 x 30, 6 x 60 s) and 22 time frames (1 x 15, 3 x 5, 3 x 10, 4 x 60, 2 x 150, 2 x 300, 7
x 600 s), respectively, both with an isotropic voxel size of 2 mm.

The measured arterial whole blood curve was calibrated using manual arterial samples. 
Then, metabolite-corrected plasma curves were constructed from the whole blood curve 
by correcting for the plasma to whole blood ratio and labelled metabolites concentration. 
The parent fractions were fitted with a Hill function.52 Concentration of both polar and 
non-polar metabolites was determined using solid phase extraction in combination with 
high performance liquid chromatography. More details on the blood measurements can 
be found in the supplemental material.  

Image processing and segmentation 
The reconstructed PET images were checked frame by frame for movement and corrected 
accordingly. Affected time frames were rigidly coregistered to the attenuation scan using 
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the generic multi-modality registration setup from Vinci (version 2.56.0, Max Planck 
Institute for Metabolism Research). However, if patient movement was more than 5 mm 
the affected time frames were reconstructed after re-aligning the attenuation scan. The 
newly reconstructed frames were coregistered to the original attenuation scan.  

Tumour volumes were delineated on the MR images by a resident in neurosurgery with 
ample experience in imaging characteristics of patients with glial tumours. MR sequences 
were selected based on grade. Lower grade glioma was delineated using the FLAIR 
sequence; glioblastoma was delineated on T1G. These delineations were transferred to the 
dynamic PET scan after rigid coregistration—using the same registration setup—of the 
MR scan to the CT scan. Volume of the tumour delineations ranged from 25.2 to 100.8 
cm3. In order to minimize heterogeneity, the MR based delineations were divided into 
three volumes of interest (VOI) based on the 33rd and 67th percentiles of the 20-40 minutes 
[18F]FET uptake value. These VOIs were labelled low, medium or high uptake. For the 
reference region, a spherical VOI with 14 mm radius was placed at the mirror location of 
the tumour on the contralateral side, encompassing white and grey matter tissue. In 
addition, two more spherical VOIs of the same volume were placed at the contralateral 
side, not overlapping the reference region. Together with the reference region, these form 
the VOIs of presumed non-tumour (healthy) brain tissue and were used to investigate the 
pharmacokinetics in healthy tissue.  

Kinetic analysis of [15O]H2O 
Parametric maps of cerebral blood flow (CBF) were constructed from the [15O]H2O PET 
scans and the plasma input functions using the basis function implementation of the 
standard single-tissue compartment model.23. The CBF maps were coregistered to the 
summed [18F]FET image and the average value within each VOI was calculated. CBF was 
normalized to the same reference region to calculate the CBF-ratio.  

Kinetic analysis of [18F]FET 
Time-activity curves (TACs) were generated by projecting the VOIs on the dynamic 
[18F]FET PET images. These TACs were analysed with several pharmacokinetic plasma 
input models: the reversible single-tissue compartment model (1T2kVb), the irreversible 
two-tissue compartment model (2T3kVb) and the reversible two-tissue compartment 
model (2T4kVb).53 All models included an additional fit parameter for fractional blood 
volume (Vb) and therefore included both the whole blood and the metabolite-corrected 
plasma curve as input functions. The input functions were corrected for delay using a 
whole brain TAC. All models were fitted using weighted non-linear regression.35 
Parameter errors were calculated as standard deviation, to estimate the reliability of the 
fitted kinetic parameter. To identify the optimal model, the fits of the pharmacokinetic 
plasma input models were evaluated visually and with the Akaike information criterion54. 
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Main kinetic parameters of interest were the volume of distribution (VT) for the reversible 
models, the influx rate constant (Ki) for the irreversible model and the rate constant from 
plasma to tissue (K1). The relationship of these parameters with CBF was investigated 
using Pearson’s correlation coefficient (r). A p-value less than 0.05 was considered 
significant. K1 was also divided by CBF to calculate the extraction fraction. The 
distribution volume ratio (DVR) was calculated by normalizing the VT using the VT of 
reference region. The nondisplaceable binding potential, BPND

10, was then derived by 
BPND = DVR-1 and used to validate BPND obtained using reference tissue input models 
(next paragraph).  

Performance of both the full reference tissue model (FRTM)55,56 and the simplified 
reference tissue model (SRTM)57 was investigated. The advantage of reference tissue 
input models is that no arterial input function is needed. Instead, a reference region is 
used as indirect input function, in this case the contralateral reference region. In this 
study, we assessed agreement between FRTM or SRTM derived BPND vs plasma input 
model derived DVR-1 and, similarly, R1 vs plasma input model derived K1-ratio (K1 
normalized to reference region) using Bland-Altman58 analysis. The relationship of BPND 
and R1 with the CBF-ratio was also investigated.  

We calculated SUV for intervals 20-40 minutes (SUV20-40), 40-60 minutes (SUV40-60) and 
60-90 minutes (SUV60-90) and calculated correlation with VT. We also calculated tumour-
to-blood ratios (TBlR) to investigate whether this would be a possible surrogate of VT.
Two variants were considered: ratio to whole blood activity (TBlRWB) and ratio to parent
plasma activity (TBlRPP). Furthermore, relationship with CBF for all the above parameters
was investigated. The SUV ratio (SUVR, SUV normalized to reference region; also known
as tumour-to-brain or tumour-to-normal ratio) was also calculated for these three
intervals. Agreement with DVR was evaluated using Bland-Altman analysis and
correlation with CBF-ratio was determined.

Results 
One of the lower grade glioma patients, patient two, showed very little uptake in the 
tumour yet could be visually distinguished based on the SUV20-40, see supplemental 
Figure S1. Figure 1 illustrates this and shows the SUV and SUVR over time for the high 
uptake VOIs. All except one tumour, from patient three, show the typical curve pattern 
generally associated with their grade37. During acquisition of the [15O]H2O PET scan of 
patient six there were problems with the measurement of the arterial blood activity. CBF 
could therefore not be quantified for this patient. Two patients had moved during the 
dynamic [18F]FET PET scan, one had moved approximately 3 mm and the other 15 mm, 
both after at least 20 minutes. Both scans were corrected as described above.  
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A B 

Figure 1. SUV (A) and SUVR (B) curves of the high [18F]FET uptake VOI of each patient. Solid lines 
are lower grade gliomas, dashed lines are glioblastoma. 

Figure 2 shows results from the manual blood sample measurements for the [18F]FET 
scans. The plasma to whole blood ratio is stable at an average of 1.22 ± 0.05 (standard 
deviation between patients). The parent fraction of [18F]FET was 79% ± 14% at time of 
the first manual blood sample (5 minutes post injection) and decreased slowly to 68% ± 
13% at 90 minutes post injection.  

A B C 

Figure 2. Data from manual blood samples, showing the whole blood activity concentration over 
time corrected for injected dose and patient weight (A), the ratio of activity concentration in plasma 
over activity concentration in whole blood (B), and the percentage parent compound in the samples 
(C). Solid lines are the average, dashed lines show the average ± SD over all patients. 

Visual assessment of the fits showed that the irreversible model was not able to fit the 
tumour TACs. Figure 3 shows a typical example. The Akaike information criterion 
confirmed this finding and showed a preference for the 2T4kVb model in 95% (20/21) of 
the fitted TACs; for the other 5% (1/21) the 1T2kVb model was preferred. As such, the 
model preference seems independent of both uptake and grade as determined by 
histological assessment. In contralateral (healthy) brain tissue, the 2T4kVb model was 
preferred in 52% (11/21) of the regions and the 1T2kVb model in the other 48% (10/21). 
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Correlation for VT in the tumour regions as derived from 2T4kVb and 1T2kVb was very 
high (r=0.99); however, agreement analysis showed a significant difference for estimated 
VT of 0.08 (9%), as shown in the Bland Altman plot in supplemental Figure S2. The 
two-tissue reversible model was therefore used as reference for further analyses.  

A B 

C D 

Figure 3. Typical example of a TAC with fits of the three models: 1T2kVb dotted line, 2T3kVb dashed 
line, 2T4kVb solid line. The TAC of the high uptake VOI of patient 5, lower grade glioma; the first 
10 minutes of the TAC (A) and the whole 90 minutes (B). The TAC of the high uptake VOI of 
patient 6, glioblastoma; the first 10 minutes of the TAC (C) and the whole 90 minutes (D). 

A significant but low correlation was found between VT and CBF in the tumour regions 
(r=0.61, p=0.007), a scatter plot is shown in supplemental Figure S3. There was no 
correlation between K1 values of [18F]FET and CBF in the tumour regions (r=-0.018, 
p=0.93), supplemental Figure S4. The calculated extraction fractions showed little 
variation in the non-tumour regions with a mean value of 0.071 and a standard deviation 
of 0.024. Extraction fraction in the tumour regions was higher with a mean value of 0.17 
and a standard deviation of 0.13. A scatter plot of extraction fraction against CBF in both 
tumour and healthy regions is shown in supplemental Figure S5.  

Agreement between the estimated BPND from SRTM and DVR-1 from the 2T4kVb is 
shown in Figure 4. Two outliers were identified, the low and medium uptake VOIs of 
patient two. The error of these BPND estimates was very high (standard deviations of 
10.6 and 31.6). If we disregard these outliers the limits of agreement are -0.39 and 0.37 
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(range DVR-1: -0.25 to 1.5). Agreement of R1 with K1-ratio from 2T4kVb was poor with 
an average difference of -0.90 and limits of agreement of -3.23 and 1.44 (range K1-ratio: 
0.85 to 4.8). BPND showed significant correlation with the CBF-ratio (r=0.83, p<0.001), 
R1 showed a significant but low correlation with the CBF-ratio (r=0.52, p=0.039); the 
scatterplots are shown in supplemental Figure S6. FRTM estimates of BPND mostly 
agreed with SRTM, however several additional outliers were seen with high parameter 
error of BPND.  

A 

B 

Figure 4. Agreement between BPND from SRTM and the DVR-1 from the 2T4kVb model. Scatter plot 
(A) and Bland Altman plot (B). Shaded areas are 95% confidence intervals. 

Correlation between SUV20-40 and VT was significant but low (r=0.62, p<0.001); the scatter 
plot is shown in supplemental Figure S7. Correlation with VT was higher for later time 
intervals and this was also seen for TBlRWB and TBlRPP and for the correlations between 
SUVR and DVR. Correlation with K1 was higher for earlier time intervals. Correlation 
coefficients are given in Table 1. The agreement between SUVR and DVR showed a 
similar pattern, where the SUVR for later time intervals show better agreement with DVR 
as calculated with the 2T4kVb model. SUVR60-90 showed limits of agreement of -0.27 and 
0.34, see Figure 5, while limits of agreement for SUVR20-40 were -0.52 and 0.85 (range 
DVR: 0.75 to 2.5).  
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A 

B 

Figure 5. Agreement between SUVR60-90 and the DVR from the 2T4kVb model. Scatter plot (A) and 
Bland Altman plot (B). Shaded areas are 95% confidence intervals. 

Neither SUV nor TBlRWB showed significant correlation with CBF. In contrast, TBlRPP 
did show significant correlation with CBF and the correlation increased at later time 
intervals. For the 60-90 min interval the correlation coefficient was r=0.63, p=0.005. 
TBlRPP also showed agreement with VT with limits of agreement of -0.17 and 0.19 (range 
VT: 0.53 to 2.1) and without significant bias. SUVR showed significant correlation with 
the CBF-ratio, for all time intervals the correlation was higher than 0.85. It was highest 
for the 20-40 minute interval at 0.91, p<0.001.  

Table 1: Pearson correlation r between SUV based measures and kinetic parameters from 2T4kVb. 

Interval 
(min) 

VT DVR K1 0.7 

1.0 

SUV TBlRWB TBlRPP SUVR SUV TBlRWB TBlRPP 
20-40 0.55 0.79 0.85 0.78 0.76 0.48 0.55 
40-60 0.70 0.84 0.94 0.88 0.69 0.41 0.45 
60-90 0.77 0.86 0.97 0.94 0.63 0.39 0.42 
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Discussion 
The aim of this study was to derive the optimal plasma input kinetic model for dynamic 
[18F]FET PET studies and to validate performance of simplified methods. Therefore, 
various metabolite corrected plasma input models were evaluated and the optimal model 
was determined. Next, the optimal model was used to assess the agreement of various 
simplified methods with the optimal model including approaches often used in [18F]FET 
PET studies in glioma.  

The optimal plasma input kinetic model was found to be the reversible two-tissue 
compartment model with fitted blood volume fraction. The model preference based on 
the Akaike criterion was clear for the tumour regions, where only 5% could be better fitted 
with the single-tissue compartment model. These data indicate that the model preference 
is independent of tumour grade or curve pattern, although there are too few data to 
substantiate this in this study. Healthy tissue regions were best fitted by the reversible 
two-tissue compartment model in half of the cases and by a single-tissue compartment 
model in the other half. Use of the single-tissue compartment model resulted in 
systematically lower estimates of VT: in tumour regions with an average difference of -9%, 
in healthy regions with an average difference of -7%. Based on the fits of all target and 
reference tissue TACs, we concluded that the two-tissue compartment model is most 
suitable for the further evaluations.  

Fully quantitative pharmacokinetic models require arterial plasma input functions. In this 
study manual arterial samples were used to correct for the labelled metabolite 
concentration. In an earlier report, results of metabolite measurements showed low 
fractions (5% at 5 minutes post injection, 13% at 120 minutes post injection), suggesting 
rapid excretion of labelled metabolites by the kidneys.48 In our study the results from the 
manual arterial blood samples showed a larger fraction of metabolites in blood (21% at 5 
minutes post injection, 32% at 90 minutes post injection). In an effort to investigate the 
effect of correction for the labelled metabolites, we fitted a 2T4kVb model with a whole 
plasma input function. Estimates of VT were on average 39% lower. Yet, estimates of DVR 
were the same on average. Therefore, the impact of using metabolite corrected input 
functions versus whole plasma input function on the validation of reference region based 
models or simplified methods is minimal.  

The results on the relationship with blood flow showed a significant correlation of VT with 
CBF, but correlation was low. As VT represents a perfusion independent estimate of tracer 
uptake, the observed correlation is likely due to physiological coincidence of both 
increased amino acid utilisation and perfusion. This makes it impossible to draw 
conclusions about perfusion dependence of the simplified methods. The absence of 
correlation between K1 and CBF suggests that the extraction fraction is highly variable 
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between patients. Indeed, the variation in the calculated extraction fractions is relatively 
high in the tumour regions across the patients. This could be the consequence of different 
levels of transporter expression or may be due to differences in blood brain barrier 
breakdown.  

Agreement analysis on the simplified reference tissue model BPND vs plasma input derived 
DVR-1 showed wide limits of agreement. As such, BPND seems a poor surrogate for this 
parameter. Agreement for R1 vs the K1-ratio was poor as well. The full reference tissue 
model showed no different results from the simplified reference tissue model, except for 
a few additional outliers. The poor performance of the reference tissue input model might 
be due to violated assumptions, making the model invalid. One of the assumptions is that 
both reference and target regions can be represented by a single-tissue compartment 
model. For half of these data, both regions are better described by a two-tissue 
compartment model; for the other half the target region is better described by two tissue 
compartments while the normal regions are best described by a single tissue 
compartment. The expected error from the first violation is minor, while the second 
violation can lead to a 10% bias.59 Another possible source of error is non-negligible blood 
volume contribution. Moreover, use of reference tissue input models requires that the 
transport across the blood-brain barrier, represented by K1/k2 ratio, is equivalent between 
target (tumour) and reference regions. In case of gliomas, tracer uptake in the tumour can 
be affected by disruptions of the blood-brain barrier. Consequently, use of reference tissue 
input models may not be valid for dynamic [18F]FET brain studies.  

The TBlRPP
60-90 showed good agreement with VT. A disadvantage of the TBlRWB and 

TBlRPP is the requirement of blood samples and, for TBlRPP, the need for metabolite 
measurements. However, their correlation results suggest that plasma clearance effects 
(and thus variability in input functions between subjects) seem the largest contributor to 
SUV variability. If we convert the correlation results to coefficients of determination we 
see that 94% of the variability in TBlRPP

60-90 can be explained by the variability in VT. This 
is encouraging for the use of SUVR, which largely corrects for variability of the input 
functions between patients.  

For SUV, TBlRWB and TBlRPP uptake intervals later than the currently recommended 20-
40 minutes show better correlation with VT. Correlation was lowest for SUV20-40 and 
highest for TBlRPP

60-90. Furthermore, from the time activity curves it becomes clear that 
the uptake value of the tumours is still changing during the 20-40 minute interval, see 
Figure 1. A possible downside of early static imaging might be that variability in uptake 
time will lead to variability in SUV. In contrast, the SUVR curves of four patients are 
relatively stable during this period. Three patients, however, show a variable SUVR at the 
20-40 minute interval, which becomes more constant at later times. The agreement of
SUVR with DVR also improves at later time intervals. The size of this improvement is
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clearly illustrated by the limits of agreement, which are more than twice as wide for the 
20-40 minute interval. In terms of limits of agreement SUVR60-90 showed a slightly better
agreement with DVR than SRTM. Just like for SRTM, a possible source of error is the
blood-volume fraction, especially in case of blood-brain-barrier disruption. To conclude,
early time point imaging (20-40 min post injection) is usually applied and preferred in a
clinical setting. A downside to static imaging is that the time activity curve pattern cannot
be assessed, which has been shown to be helpful in determining the grade of glioma.
Furthermore, when non-invasive quantification is required, it is recommended to use
SUVR at later time points (60-90 min post injection). When studies are designed to
measure changes (longitudinally or after intervention), use of TBlRWB and TBlRPP would
be recommended, because of the better agreement with plasma input derived VT and the
ability of compensating for inter-subject variability of the input function. Further studies
are needed to investigate whether this improved quantification also improves the clinical
value.

It must be noted that the small sample size of this study requires appropriate caution in 
the interpretation of the results presented here. The complexity of compartmental 
modelling with metabolite corrected plasma input function do not enable large study 
cohorts, yet compartmental modelling is an important step in the evaluation of tracer 
kinetics and its implications for more simplified approaches. The results of this study only 
apply to regional analyses, i.e. based on the mean signal of a VOI. Thus, relationships 
between parameters within a scan cannot be adequately investigated, because the number 
of data points (VOIs) per scan was limited. Voxel-based methods enable such analysis, 
but require further evaluation due to higher noise levels in voxel-based signals.  

Conclusion 
In this study we derived that the two-tissue reversible plasma input model with fitted 
blood volume fraction is the optimal plasma input model to describe the kinetics of 
[18F]FET in glioma patients. Furthermore, use of reference tissue input models and 
simplified methods, such as SUV and SUVR, was validated. BPND results obtained with 
reference tissue input models did not correspond well with plasma input derived DVRs, 
possibly due to violation of the reference tissue model assumptions. SUVR showed 
slightly better agreement with DVR than SRTM derived BPND. SUV only moderately 
correlated with VT with the best correspondence at later uptake time intervals (60-90 min 
post injection). The results of the study suggest that later time point imaging (60-90 min 
post injection) outperforms currently recommended uptake time (20-40 min post 
injection) in terms of quantitative value, i.e. correlation with VT and DVR.  
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Supplementary material 
Supplementary material for this paper is available at: 

doi.org/10.1186/s13550-018-0418-0 
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Abstract 
Quantitative parametric images of O-(2-[18F]fluoroethyl)-L-tyrosine kinetics in diffuse 
gliomas could be used to improve glioma grading, tumour delineation or the assessment 
of the uptake distribution of this positron emission tomography tracer. In this study, 
several parametric images and tumour-to-normal maps were compared in terms of 
accuracy of region averages (when compared to results from nonlinear regression of a 
reversible two-tissue compartment plasma input model) and image noise using 90 min of 
dynamic scan data acquired in seven patients with diffuse glioma. We included plasma 
input methods (the basis function implementation of the single-tissue compartment 
model, spectral analysis and Logan graphical analysis) and reference tissue methods (basis 
function implementations of the simplified reference tissue model, variations of the 
multilinear reference tissue model and non-invasive Logan graphical analysis) as well as 
tumour-to-normal ratio maps at three intervals. (Non-invasive) Logan graphical analysis 
provided volume of distribution maps and distribution volume ratio maps with the lowest 
level of noise, while the basis function implementations provided the best accuracy. 
Tumour-to-normal ratio maps provided better results if later interval times were used, 
i.e. 60–90 min instead of 20–40 min, leading to lower bias (2.9% vs. 10.8%, respectively)
and less noise (12.8% vs. 14.4%).
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Introduction 
Diffuse gliomas exhibit increased uptake and retention of O-(2-[18F]fluoroethyl)-L-
tyrosine ([18F]FET), an amino acid tracer that can be visualised with positron emission 
tomography (PET). In a previous study the optimal plasma input model for describing 
[18F]FET kinetics was identified.60 However, VOIs have to be defined beforehand and 
tracer uptake distributions cannot be assessed. The currently recommended41 [18F]FET 
PET standardized uptake value (SUV) image at 20–40 min shows good contrast between 
lesions and healthy tissue. Interpatient differences are reduced by normalizing tumour 
uptake to that in a contralateral healthy region. Indeed, a tumour-to-normal ratio at 20–
40 min is widely used for tumour delineation.39 At the same time, many other studies 
have used a dynamic scanning protocol, mostly for discriminating different tumour types 
based on uptake patterns.39 Several methods exist for “catching” tracer kinetics into 
parametric images. In theory, parametric images are more accurate than SUV images or 
tumour-to-normal maps, and may be better for glioma grading or delineation. Yet Logan 
graphical analysis has been the only parametric method for quantifying [18F]FET uptake 
so far.43,44,46  

The aim of this study was to determine the accuracy of parametric images and tumour-
to-normal maps for quantifying [18F]FET uptake. Results obtained using the previously 
identified plasma input model were used as reference. In addition, image noise 
characteristics of the maps were taken into account. 

Methods 
Subjects 
Data were derived from a study that has been reported previously.49,60 In short, the study 
population consisted of seven patients with a diffuse glioma (age range, 22 – 69 y; four 
glioma WHO50 grade IV and three grade II). This study has been performed in 
accordance with the Declaration of Helsinki, approved by the Medical Ethics Committee 
of the VU University Medical Center and registered in the Netherlands National Trial 
Register (www.trialregister.nl, unique identifier NTR5354, registration date 4 August 
2015). Written, informed consent was obtained from all subjects prior to inclusion.  

Scanning protocol 
Magnetic resonance (MR) sequences were acquired on an Achieva whole body 3.0T MR 
scanner (Philips Healthcare, Best, the Netherlands), equipped with a standard head coil. 
Each patient was scanned using a sagittal 3D fluid-attenuated inversion recovery (FLAIR) 
sequence (repetition time(TR)/echo time(TE)/inversion time(TI) 4800/279/1650 ms, 
acquired voxel size 1.12×1.12×1.12 mm3, reconstructed voxel size 1.04×1.04×0.56 mm3), 
and a sagittal 3D T1-weighted gadolinium-enhanced (T1G) sequence (TR/TE/TI/flip 
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angle 7/3/950 ms/12°, acquired voxel size 0.98×0.98×1.0 mm3, reconstructed voxel size 
0.87×0.87×1.0 mm3). A dynamic PET scan was acquired on either a Gemini TF-64 or an 
Ingenuity TF PET/computed tomography (CT) scanner (Philips Healthcare, Cleveland, 
Ohio, USA). Each scan started with a 1 min low dose CT scan for attenuation correction 
purposes. Next, a 90 min PET scan was acquired after administration of 200 MBq 
[18F]FET. The tracer was injected using a venous line, while an arterial line in the opposite 
arm was used for continuous sampling using an on-line blood sampler (Comecer 
Netherlands, Joure, the Netherlands). In addition, manual arterial samples were collected 
at 5, 10, 20, 40, 60, 75 and 90 min post injection of [18F]FET. Using the LOR-RAMLA 
algorithm, as provided by the manufacturer, scans were reconstructed into 22 frames (1 
x 15, 3 x 5, 3 x 10, 4 x 60, 2 x 150, 2 x 300, 7 x 600 s), with an isotropic voxel size of 2 mm. 
Reconstructions included all usual corrections, i.e. normalization, decay, dead time, 
attenuation, randoms and scatter correction.  The manual blood samples were used to 
calibrate the on-line blood curve and to correct it for plasma-to-whole blood 
concentration ratios and labelled metabolite fractions, thereby generating a metabolite 
corrected, arterial plasma input function.  

Data analysis 
Glioblastomas were delineated on T1-weighted gadolinium-enhanced MRI images (T1G) 
and lower grade gliomas on FLAIR MRI images. As described elsewhere60, tumour 
segmentations were divided into three equal sized volumes of interest (VOI) using the 
33rd and 67th percentiles of the activity concentrations of [18F]FET at 20 to 40 min. A 
spherical reference region with a radius of 14 mm was placed in the middle of the 
contralateral homologous brain region.60 Time activity curves were extracted from these 
regions, which were fitted to the reversible two-tissue compartment plasma input model 
with additional blood volume fraction using nonlinear regression. In earlier work60 we 
found that reversible models were always preferred over the irreversible model in both 
tumour and reference regions and that the reversible two-tissue compartment model was 
preferred over the reversible single-tissue compartment model in most cases. The total 
volume of distribution (VT) was used as outcome measure. The distribution volume ratio 
(DVR) was calculated by normalizing the VT to the VT of the reference region. Results for 
both parameters served as reference standard for the agreement analysis. 

Parametric VT images were created using a basis function implementation of the 
reversible single-tissue compartment model (BFM)23, plasma input-based Logan 
graphical analysis (Logan)61 and Spectral Analysis (SA)62. Using the contralateral 
reference region, reference input-based Logan analysis (RLogan)63 was used to create a 
DVR map. Non-displaceable binding potential (BPND) maps were generated with basis 
function implementations of the simplified reference tissue model (receptor parametric 
mapping (RPM) and SRTM2)64,65 and using several variations of the multi-linear 
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reference tissue model (MRTMO, MRTM, MRTM2, MRTM3 and MRTM4)66‑68. MRTM2, 
MRTM3, MRTM4 and SRTM2 are all methods using a fixed k2’ (the clearance rate of the 
reference tissue) based on the median value from a first run. They are based on MRTM, 
MRTMO, MRTMO and RPM, respectively. In MRTM4 uses a different model in the first 
run where the fixed k2’ is based on MRTM. The BPND maps were converted to DVR maps 
using DVR = BPND + 1. Each method was applied using only the first 60 min of the 
acquired data to investigate the possibility of shortening scanning times, indicated in the 
results by 60 in superscript. Finally, standardized uptake value ratio (SUVr, also known 
as tumour-to-normal ratio) maps were created for three intervals: 20–40, 40–60 and 60–
90 min with intervals indicated by superscripts. SUVr was calculated by normalizing to 
the average uptake value in the reference region. 

All maps were visually inspected for artefacts. After extracting average regional values 
from the parametric images, Bland-Altman analysis58 was used to determine the accuracy, 
i.e. the agreement with the reference, described above. Relative differences were calculated
by dividing the difference by the reference. Results were summarized by both mean and
standard deviation of these relative differences.

The 3D T1G sequence was used for segmenting grey matter with SPM12.69 The grey 
matter probability map of the whole brain, including cerebellum, was converted to a 
binary mask using an intensity cut-off of 0.9. The tumour VOI was excluded from the 
grey matter mask to obtain a mask with only normal appearing brain tissue. This region 
was used to estimate image noise in the parametric maps by means of the coefficient of 
variation (COV, the standard deviation divided by the mean) of the voxel values within 
the region. These image noise estimates were used to rank the methods with respect to 
image quality.  

Logan, RLogan and MRTM variations are linearization methods and require a start time 
(t*) representing the time beyond which the linear fit can be applied. The other methods 
are basis function implementations and require a range and number of basis functions. 
Settings were optimized for each method in preliminary analysis, selecting the settings 
producing the best accuracy. The settings used for each method are listed in Table 1. 
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Table 1: Parametric methods and settings. 

Method Parameter Start time (min) Basis function range (min-1) Number of basis functions 
BFM VT 0.01 – 0.5 50 
SA VT 0.01 – 4 50 
Logan VT 10 
RLogan DVR 30 
RPM BPND+1 = DVR 0.01 – 4 50 
SRTM2 BPND+1 = DVR 0.01 – 0.1 50 
MRTMO DVR 30 
MRTM DVR 10 
MRTM2 DVR 10 
MRTM3 DVR 30 
MRTM4 DVR 50 

Results 
Typical parametric maps of all methods are shown in Figure 1, using the three intervals 
for the SUVr images and 90 min of data for the other methods. Upon visual inspection, it 
became evident the BFM maps contained an artefact: boundaries appeared due to sudden 
steps in VT values, forming patches throughout the brain. We will refer to this as 
patchiness. The RPM maps showed a similar effect and the SRTM2 maps showed some 
patchiness mostly in white matter. These patches can sometimes be situated near or inside 
the tumour region. MRTM maps suffered from ‘dot artefacts’—isolated voxels showing 
very high or very low values—resulting in high estimated image noise. The SUVr maps 
showed a decreasing contrast between tumour and normal brain for later intervals for 
most glioblastoma patients. The glioblastoma patient where this effect was strongest is 
shown in Figure 1. All results are summarized in Table 2. 
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Table 2: Results. 

Method 
Relative accuracy Noise Tumour-to-normal ratio 
SD (%) Mean (%) COV (%) Mean SD 

BFM 
90 5.7 -4.9 15.9 1.48 0.45 
60 7.9 -9.2 21.1 1.47 0.46 

Logan 
90 7.5 -12.1 13.2 1.51 0.46 
60 10.3 -20.7 16.2 1.52 0.50 

SA 
90 9.4 19.4 14.2 1.45 0.43 
60 12.3 24.8 16.1 1.45 0.45 

RLogan 
90 18.3 7.3 12.1 1.54 0.46 
60 21.8 9.3 13.7 1.57 0.50 

RPM 
90 7.8 0.9 20.8 1.46 0.40 
60 8.2 -0.5 26.5 1.44 0.44 

SRTM2 
90 12.0 6.7 12.7 1.54 0.44 
60 15.2 9.3 14.4 1.58 0.47 

MRTMO 
90 15.6 4.4 12.4 1.50 0.45 
60 19.0 6.0 54.2 1.53 0.48 

MRTM 
90 11.6 4.3 85.7 1.51 0.46 
60 19.0 6.4 74.6 1.53 0.49 

MRTM2 
90 139.9 67.5  229.8 2.37 1.85 
60 44.0 2.8  146.5 1.44 0.89 

MRTM3 
90 16.0 4.8 12.3 1.51 0.44 
60 21.1 3.5 25.7 1.49 0.48 

MRTM4 
90 36.2 3.1 24.1 1.46 0.54 
60 440.7 433.6 34.4 6.76 5.70 

SUVr 
60–90 12.4 2.9 12.8 1.48 0.43 
40–60 17.9 6.0 13.5 1.53 0.47 
20–40 27.1 10.8 14.4 1.59 0.54 
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Figure 1: Typical parametric and SUVr (tumour-to-normal) maps. Left is a patient with an 
oligodendrocytoma, right is a glioblastoma patient. 

The results on accuracy for VT are shown in Figure 2A, which shows the relative 
agreement with the reference standard. The highest accuracy when using 90 min of data 
was observed for BFM with a standard deviation of 5.7% and a small average 
underestimation of −4.9%. Logan shows a larger standard deviation, 7.5%, and a larger 
and consistent underestimation, −12%. SA had the lowest accuracy with a standard 
deviation of 9.4% and an average overestimation of 19%. The measured image noise, i.e. 
COV of every VT map is visualized in Figure 2B. In terms of image noise, BFM was found 
to be the worst of the three, with an average COV of 15.9%. This is in line with visual 
inspection, as described above. Logan showed the lowest level of image noise with an 
average COV of 13.2%. SA showed an average COV of 14.2%. When using 60 min of data, 
the accuracy became worse for all methods, but their ranking remained the same, and the 
average image noise COV rises to more than 16% for all methods.  
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Figure 2: Circles represent the full 90 min dataset, triangles the first 60 min. (A) Accuracy; bars 
represent mean and standard deviation. Please note that the data points are from three regions 
inside the tumour for each subject, thus data can be correlated. (B) Noise estimated in VT maps; 
bars represent mean.  

Results on accuracy and the measured COVs for DVR maps are shown in Figure 3. Using 
90 min of data, RLogan provided the best maps in terms of image noise with a COV of 
12.1%. In terms of agreement with results from the reference standard, however, it 
showed a wide range of differences with a standard deviation of 18.3% and an average 
overestimation of 7.3%. RPM provided the best accuracy with a standard deviation of 
7.8% and a mean overestimation of 0.9%, but showed poor performance in terms of image 
noise. Observed image noise was less for SRTM2 maps. However, the accuracy of SRTM2 
maps was poorer with a standard deviation of 12.0% and an average overestimation of 
6.7%.  

When using 90 min of data, MRTMO showed little noise, yet the standard deviation of the 
differences was higher than for RPM, SRTM2, MRTM and SUVr60–90. MRTM3, where the 
k2’ in MRTMO is fixed, was comparable to MRTMO in terms of noise, but poorer in 
accuracy. MRTM performed better than MRTMO in terms of accuracy, but showed poor 
performance in terms of noise, agreeing with visual inspection described above. Both 
MRTM2 and MRTM4 showed inconsistent results: for most patients the maps showed 
large offsets, negative or positive, resulting in high standard deviations of differences 
(36.3% to 440%). Note that MRTM2 and MRTM4 were not included in Figure 3A to more 
clearly show the differences between the other methods. For the same reason, RPM60, 
MRTMO

60, MRTM, MRTM2, MRTM3
60 and MRTM4 were not included in Figure 3B. 

These data can be found in the supplemental material.  

Amongst the SUVr maps, the 60–90 min interval was the best in terms of accuracy as well 
as image noise. SUVr60–90 showed accuracy comparable with MRTM and SRTM2 and in 
terms of image noise it was comparable to SRTM2, although SRTM2 shows some 
abnormal patches mostly in white matter, which was not included in noise estimation.  
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Figure 3: Filled circles represent the full 90 min dataset, filled triangles the first 60 min, open circles 
the time interval of 60–90 min, open triangles 40–60 min, open squares 20–40 min. (A) Accuracy; 
bars represent mean and standard deviation. Please note that the data points are from three regions 
inside the tumour for each subject, thus data can be correlated. MRTM2 and MRTM4 were excluded 
from this figure. (B) Noise estimated in the DVR or BPND+1 maps; bars represent mean. RPM60, 
MRTMO60, MRTM, MRTM2, MRTM360 and MRTM4 were excluded from this figure to more clearly 
show differences between the remaining methods.  

Discussion 
An important finding of this study is that, in general, less noise in the images (COV of 
voxel values) is associated with poorer accuracy at region level. In other words, the 
optimal parametric method depends on the specific application where it is used for. Some 
methods, however, showed better performance than others and can be recommended for 
further research. For estimation of VT, BFM showed the best accuracy, while in terms of 
noise, Logan plots show the best performance. For estimation of DVR, MRTMO, MRTM3 
and RLogan plots showed good results in terms of image noise, but performed relatively 
poor in terms of accuracy, i.e. these methods showed some larger variance in differences 
with the reference. RPM showed the best accuracy, followed by MRTM, but both methods 
showed relatively high image noise levels. SRTM2 and SUVr60–90 showed comparable 
results both in terms of estimated image noise and accuracy.  

Patchiness in BFM VT maps can be seen especially in areas with low tracer uptake. The 
rate constants are difficult to determine in these areas because k2 reaches the lower limit. 
Although lowering the limit results in fewer and smaller patches, it also results in more 
prominent patches because contrast with surrounding tissue becomes higher. Because 
some of the patches are inside or near the tumour region, BFM is ill-suited for delineation 
purposes. Logan VT maps show an expected systemic underestimation mainly caused by 
noise, as previously reported for other tracers.70 SA does not show patches, but in terms 
of noise and accuracy of VT, it is inferior to the Logan maps in this study. Therefore, Logan 
is the most precise method for measuring VT at the voxel level. This conclusion also holds 
if shorter (60 min) dynamic scans are used.  
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The basis function implementations RPM and SRTM2 showed patchiness similar to BFM. 
Possibly, the patches arise from fit instability due to low tracer uptake or from the violated 
assumption of single tissue compartment models in both target and reference regions. 
SRTM2 is less affected than RPM, which indicates that the effect in RPM is partly caused 
by an unstable k2‘ estimation. Investigating estimated k2 values showed that for most 
voxels RPM chooses either the upper or the lower limit, thus k2’ compensation is needed 
to ensure good fits. When k2’ is fixed to a global brain estimate in SRTM2, most patches 
disappear, although some patches persist in areas with relatively low rate constants. 
Again, these patches can be near or in the tumour region. Therefore, the use of both RPM 
and SRTM2 for delineation is questionable while they perform well for assessing tracer 
uptake within (regions of) the tumour.  

The main purpose of MRTM is not the parametric map itself, but providing a reliable k2’ 
estimate. The noise in the MRTM maps was expected: as described in the original paper 
the variability of the method increases compared to MRTMO, but a better accuracy is 
achieved, which is in line with the results here. Although a better accuracy for DVR is 
achieved, the k2’ estimation is unstable, causing large differences in the MRTM2 and 
MRTM4 maps. Ichise et al. recommend to use regional TACs where k2’ ≠ k2 for MRTM’s 
k2’ estimation because the method is not only sensitive to noise, but also becomes unstable 
when the clearance rates become identical.71 We fixed k2’ for both MRTM2 and MRTM4 
using a threshold on MRTM BPND>0—which has worked well in the past68,72—but, given 
the sensitivity to noise, it might be better to use region based signal(s) for the k2’ 
estimation. The data shows, however, that clearance rates using a single tissue 
compartment model can be very similar in both tumour and reference region, especially 
in the lower grade diffuse gliomas. Thus, finding a suitable reference region is 
problematic. Although some optimization is possible, use of MRTM2 or MRTM4 is not 
promising for FET in glioma.  

RLogan plots showed maps with the lowest noise levels, but also with relatively low 
accuracy. MRTMO showed better accuracy, and only a small increase in noise. MRTM3 is 
comparable to MRTMO. SUVr60–90 shows the best accuracy among the remaining methods 
and is not much poorer in terms of noise. When only 60 min data is available, SUVr40–60 
is the best method in terms of noise and only RPM60 and SRTM2

60 show better accuracy. 
If 60 min data is used, all MRTM variations show more noise than the other methods.  

SUVr is the easiest method to implement and it is used in most studies since it is the 
currently recommended method, although with an earlier tracer uptake interval. The 
present results indicate, however, that a later interval shows better agreement with DVR 
derived using a two-tissue compartment model with blood volume fraction. SUVr also 
showed less noise at later intervals. From visual inspection of the images, it is clear that 
the contrast between grey and white matter also decreases.  Although we have tried to 
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minimize partial volume effects by using a relatively high cut-off value for the grey matter 
mask, the higher contrast for earlier intervals might (partly) explain the higher image 
noise estimates. Although some methods show better results in terms of accuracy or 
image noise, the SUVr maps show relatively good results in both.  

Inherent to SUVr images at later intervals is a decreased tumour-to-normal ratio in high-
grade gliomas; these tumours typically show decreasing activity concentrations after an 
early peak, while the activity concentration in the reference region is constant after 30 
min, approximately. This decreasing contrast over time can make it harder to see and 
delineate the tumour. In case of threshold-based delineation, the decrease can pose a 
problem when the ratio approaches noise levels in the image. An example of this is found 
in Figure 1, where the extent of the tumour is increasingly difficult to determine in the 
later SUVr images compared to the SUVr20-40 image. Although SUVr images at a later 
interval provided better quantitative performance, their application will prove 
problematic in some glioblastoma patients. Future research should investigate whether 
changing the time interval of SUVr images shows improvement in clinical applications, 
such as improved sensitivity or specificity in distinguishing between tumour and normal 
tissue, and whether or not this outweighs the problem of (too) low contrast in some 
patients.  

Conclusion 
In this study, we evaluated the performance of several parametric methods for the analysis 
of dynamic brain 18F-FET PET studies. It was found that the optimal method depends on 
the intended application. If a region-based approach is used, BFM and RPM are 
recommended for most accurate estimation of VT and DVR, respectively, despite patchy 
artefacts in the images. If quantitative maps are required for accurate estimates on voxel 
level, e.g. for assessing the location of tumour boundaries or assessing tracer uptake 
distribution, Logan graphical analysis and SUVr60–90 (tumour-to-normal maps at interval 
60–90 min) are the most suitable methods for deriving VT and DVR, respectively. For 
tumour-to-normal maps, longer or, in case of static imaging, later scans provided better 
quantitative performance. Assessment of the clinical relevance of these findings is needed. 
Because of the good performance of SUVr, future studies could focus on the clinical 
evaluation of SUVr, obtained at several tracer uptake intervals. 

Supplementary material 
Supplementary material for this paper is available at: 

doi.org/10.1177/0271678X19851878 
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Abstract 
Background: Quantification of pharmacokinetic parameters in dynamic contrast 
enhanced (DCE) MRI is heavily dependent on the arterial input function (AIF). In the 
present patient study on advanced stage head and neck squamous cell carcinoma 
(HNSCC) we have acquired DCE-MR images before and during chemo radiotherapy. We 
determined the repeatability of image-derived AIFs and of the obtained kinetic 
parameters in muscle and compared the repeatability of muscle kinetic parameters 
obtained with image-derived AIF’s versus a population-based AIF. 

Materials and methods: We compared image-derived AIFs obtained from the internal 
carotid, external carotid and vertebral arteries. Pharmacokinetic parameters (ve, Ktrans, kep) 
in muscle—located outside the radiation area—were obtained using the Tofts model with 
the image-derived AIFs and a population averaged AIF. Parameter values and 
repeatability were compared. Repeatability was calculated with the pre- and post-
treatment data with the assumption of no DCE-MRI measurable biological changes 
between the scans. 

Results: Several parameters describing magnitude and shape of the image-derived AIFs 
from the different arteries in the head and neck were significantly different. Use of image-
derived AIFs led to higher pharmacokinetic parameters compared to use of a population 
averaged AIF. Median muscle pharmacokinetic parameters values obtained with AIFs in 
external carotids, internal carotids, vertebral arteries and with a population averaged AIF 
were respectively: ve (0.65, 0.74, 0.58, 0.32), Ktrans (0.30, 0.21, 0.13, 0.06), kep (0.41, 0.32, 
0.24, 0.18). Repeatability of pharmacokinetic parameters was highest when a population 
averaged AIF was used; however, this repeatability was not significantly different from 
image-derived AIFs.  

Conclusion: Image-derived AIFs in the neck region showed significant variations in the 
AIFs obtained from different arteries, and did not improve repeatability of the resulting 
pharmacokinetic parameters compared with the use of a population averaged AIF. 
Therefore, use of a population averaged AIF seems to be preferable for pharmacokinetic 
analysis using DCE-MRI in the head and neck area. 
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Introduction 
Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) can be used to 
estimate tissue perfusion and micro vessel permeability. The rate constants estimated 
using Tofts pharmacokinetic analysis of DCE-MR images (i.e. Ktrans and kep) 73 and their 
ratio (ve) reflect physiological parameters such as perfusion, permeability and cellular 
density, and can therefore be used to quantitatively assess these tissue properties. As 
reviewed by Bernstein et al., quantitative DCE-MRI biomarkers are potential predictors 
of prognosis and treatment response in head and neck squamous cell carcinoma 
(HNSCC) 74. The validation of these biomarkers is, however, still ongoing, both in the 
head-and-neck region as well as in other body parts.75  

One essential requirement for the Tofts pharmacokinetic analysis is the knowledge of the 
arterial input function (AIF). Since the obtained rate constants are heavily dependent on 
the AIF76‑80, an accurate and precise measurement is necessary for their absolute and 
reliable quantification. Alternatively, a simplified approach, such as a population 
averaged AIF can be used. However, (large) variabilities in cardiac output—between 
patients and within patients over time—are no longer taken into account with this 
approach. If this variability in cardiac output can be accounted for by precise 
measurement of the AIF, the accuracy and repeatability of the kinetic parameters should 
be superior over use of a population averaged AIF. Some authors have shown that a 
population averaged AIF can result in better repeatability81,82, whereas others report the 
opposite.83,84 It is possible that repeatability depends on the imaged body part and imaging 
sequence parameters, but also on the choice of the artery for AIF measurement.  

As recently indicated by the quantitative imaging biomarkers alliance (QIBA)75, the 
literature lacks studies on repeatability of quantitative (pharmacokinetic model derived) 
DCE-MRI parameters.  This is especially true in the head and neck region. The 
repeatability of the AIF used as input for the model is also only sporadically reported85,86. 
We therefore sought to investigate both the dependence of the AIF repeatability on the 
choice of the artery, as well as the dependence of repeatability of the pharmacokinetic 
parameters on the chosen AIF. 

In the present patient study on advanced stage head and neck squamous cell carcinoma 
(HNSCC) we have acquired DCE-MR images before and during chemo radiotherapy. 
Because the second MRI examination occurs during treatment, while the first occurs 
before, we are not able to report on the repeatability of kinetic parameters in HNSCC 
tumor tissue. Instead, we chose a neck muscle (left semispinalis capitis muscle) outside 
the radiation zone assuming that this muscle would be unaffected by the treatment and 
its pharmacokinetic parameters would remain unchanged between the first and the 
second examination.  
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We assessed the repeatability of the parameters describing the image-derived AIFs, 
measured in the internal carotids, external carotids and vertebral arteries, both on the left 
and right side. At the same time we assessed the repeatability of the pharmacokinetic 
parameters in the muscle using image-derived AIFs obtained from the internal carotids, 
external carotids and vertebral arteries, respectively, and compared it to that obtained 
using a population averaged AIF. 

Methods 
Subjects 
The study population consisted of 29 patients with advanced stage squamous cell 
carcinoma who successfully underwent two MRI examinations in an ongoing prospective 
study. This prospective, single-center study was approved by the Medical Ethics 
Committee of the university and has been performed in accordance with the Declaration 
of Helsinki. Informed consent was acquired from all patients after full explanation of the 
procedures. Previously untreated patients with histologically proven HNSCC, planned for 
curative (chemo) radiotherapy were consecutively included from 2013 until 2018. 
Treatment consisted of radiotherapy (70 Gy in 35 fractions in a seven week period) with 
or without concomitant chemotherapy (cisplatin or cetuximab). Exclusion criteria were: 
nasopharyngeal tumors, age <18 and inadequate image quality.  

Baseline imaging was performed before treatment. Two weeks after start of treatment a 
second imaging session was performed with exactly the same MRI protocol on the same 
MRI scanner. The basic assumption in this study is that between both MRI examinations, 
there was no systematic effect of treatment on the AIF and on the contrast enhancement 
properties of muscle tissue outside the radiation zone. The validity of this assumption 
might seem questionable, because weight and muscle mass loss is a general effect of the 
treatment and of the disease itself.87 However, bodyweight is a factor that is accounted for 
in the administration dose of the contrast agent. Moreover, given the relatively short 
amount of time between scans, measurable changes in healthy muscle tissue were not 
expected. Thus the comparison between baseline and during treatment imaging gives the 
opportunity to assess repeatability of the AIF and the DCE parameters in muscle.  

Imaging protocol 
The DCE MRI acquisition was preceded by a variable flip angle (VFA) measurement for 
T1 map estimation and followed by a B1 mapping acquisition. Sequences were acquired 
on a 3.0T Ingenuity TF PET/MR-scanner (Philips Healthcare, Best, the Netherlands) 
equipped with a 16-channel neuro-vascular coil. Dotarem® (Guerbet, Roissy, France) was 
used as a gadolinium-based contrast agent.  The specifications of the DCE sequence were: 
3D T1-FFE (T1-weighted 3D spoiled gradient echo sequence), TR 3.1 ms, TE 1.48 ms, flip 
angle 12°, acquired matrix size 184×169×17, acquired voxel size 1.30×1.30×4.40 mm3, 
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reconstructed matrix size 320×320×17, reconstructed voxel size 0.75×0.75×4.40 mm3, 75 
time frames, frame duration 4.1 s. A SENSE factor of two was applied in the anterior-
posterior direction. After at least four time frames, the contrast agent (0.2 ml/kg, 
concentration 0.5 mmol/ml) was injected at a speed of 3 ml/s using a Medrad® Spectris 
Solaris® power injector. A flush of 15 ml saline water was injected at 3 ml/s following the 
contrast bolus. The VFA measurement was acquired prior to contrast injection with 
settings nearly identical to the DCE protocol and five flip angles (2°, 5°, 10°, 15° and 20°). 
B1 mapping was performed using the method described by Yarnykh88 (3D T1-FFE, TR1 
20 ms, TR2 100 ms, TE 3.2 ms, flip angle 50°, acquired matrix size 176×177×17, acquired 
voxel size 1.31×1.30×4.40 mm3, reconstructed matrix size 320×320×17, reconstructed 
voxel size 0.72×0.72×4.40 mm3). The B1-map was resliced to the voxel size of the DCE 
image using linear interpolation and used for flip angle correction of both the DCE and 
VFA image. The VFA image was converted to a 𝑇ଵ map using a linear least squares fit of 
Equation 1 as described by Gupta.89 

The signal intensity equation for a spoiled gradient echo sequence, assuming steady state 
and ignoring 𝑇ଶ

∗ effects90, is given by 

𝑆 = 𝑀଴
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where 𝑆 is the signal intensity, 𝑀଴ is the thermal equilibrium magnetization and 𝜃 is the 
flip angle. By assuming a fast exchange regime (i.e. 𝑇ଵ

ିଵ = 𝑇ଵ଴
ିଵ + 𝑟ଵ𝐶) the contrast 

concentration dependent signal intensity expression (Equation 1) becomes 

𝑆(𝑡) = 𝑀଴
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where 𝑇ଵ଴ is the pre-contrast longitudinal relaxation time, 𝑟ଵ is the relaxivity of the 
contrast medium and C is the contrast concentration. Defining the pre-contrast signal 
intensity as 𝑆଴, signal enhancement can be defined as  
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such that the contrast concentration can be expressed as 
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Equation 4 is identical to equation 5 from Heilmann et al. and equivalent to equation 7 
from Schabel and Parker.91,92  

Image-derived arterial input functions 
The delineated neck arteries were: vertebral arteries, internal carotids and external 
carotids (see Figure 1). Each artery was manually delineated on the left and right side 
separately on the third most cranial slice of the image to minimize the effect of in-flow, 
while avoiding inaccuracies at the outer edges of the field of view. Delineation was 
performed using in-house developed software by a single observer in one session. The 
time frame of maximum enhancement in the arteries was used during delineation. The 
later time frames were used to identify veins, as these show a later time of contrast arrival. 
If the identified veins showed overlap with the delineated artery, the delineation was 
edited to exclude the vein from the arterial regions of interest. Images were visually 
inspected for movement and artefacts. Data was excluded for further analysis when 
movement in the arterial regions of interest was >2 mm during the DCE image 
acquisition.  

Figure 1: Volumes of interest 
shown on the last dynamic 
frame of the DCE image. 
Arteries were separately 
delineated on the third most 
cranial slice, currently shown. 
The circular region of interest 
of 6 mm in diameter was 
placed manually in left 
semispinalis capitis muscle 
tissue on all slices except the 
two most cranial and two 
most caudal slices. 

Internal Carotid Left 
Internal Carotid Right 

External Carotid Left 
External Carotid Right 

Vertebral Artery Left 
Vertebral Artery Right 

Muscle
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Signal intensities from the arteries were extracted from the dynamic contrast enhanced 
images by taking the average over the cross-section for each arterial region of interest. 
This was done for left and right regions of interest separately and for both combined, i.e. 
considering left and right regions as one region of interest and taking the average signal 
intensity of all voxels within this combined region. Enhancement of these signals over 
time was converted to tracer concentration using Equation 4, defining 𝑆଴ as the average 
of the first four time frames and assuming a 𝑇ଵ଴ value in blood of 1932 ms taken from 
literature.93 A correction for flip angle 𝜃 was performed by using the average value of the 
B1-map in each arterial region of interest. A fixed hematocrit level of 0.42 was used to 
convert to plasma concentration as described by Parker et al.81  

Similarly to Klawer et al.94, the resulting concentration-time curves were fitted to the 
model of Parker et al.81 to extract parameters describing the magnitude and shape of the 
AIFs. An example of this fit is shown in Figure 2. Several parameters were defined: 
maximal concentration (peak), time to peak, area under the curve (AUC), full width half 
maximum (FWHM), concentration at 180 seconds (C180) and the exponential decay 
constant of the sigmoid modulated exponential in the Parker model, describing the tail of 
the concentration-time curve (washout). To ensure the FWHM only described the width 
of the first peak, the FWHM value was considered invalid if the value was >30 seconds.  

Figure 2: Example of fitting 
the Parker model81 to the 
image-derived AIF. The area 
under the fit curve is filled 
with blue, the area under the 
data is filled with green. The 
identified peak value and the 
value of the fit at 180 seconds 
are circled. The time points 
used for the FWHM are 
indicated by squares. 

Kinetic parameters in muscle 
A circular region of interest of 6 mm diameter (see Figure 1) was placed in the left 
semispinalis capitis muscle on the DCE image on all slices except the two most cranial 
and two most caudal slices, to avoid inaccuracies at the edges of the field of view.  In some 
patients the muscle did not lie completely in the field of view and hence less slices were 
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included in the volume of interest. To minimize spatial mismatch, delineation of the 
muscle region on during treatment scans was performed while also showing the pre-
treatment delineation. Signals of all voxels within the volume of interest were extracted 
from the DCE image and converted to concentration time curves with correction for the 
transmitted radiofrequency field using the B1map and using the 𝑇ଵ଴ values from the 
𝑇ଵmap. Mean concentration was calculated after converting to concentration for each 
voxel independently. Mean concentration time curves were fitted to the standard Tofts 
model73 (without the vascular space) as given by  

𝐶௧(𝑡) = 𝐾௧௥௔௡௦ ⋅ 𝑒ି௞೐೛⋅௧ ⊗ 𝐶௣(𝑡 − Δ𝑇)

= 𝐾௧௥௔௡௦ ⋅ ∫ 𝐶௣(𝜏 − Δ𝑇) ⋅ 𝑒ି௞೐೛⋅(௧ିఛ)𝑑𝜏
௧

ఛୀ଴
, 

(5)

where 𝐶௧ is the tissue concentration time curve, 𝐶௣ is the plasma concentration time curve 
and Δ𝑇 is the time delay between the plasma curve and arrival time in tissue. The kinetic 
parameters Ktrans (rate constant from plasma to the interstitial space), kep (rate constant 
from the interstitial space to plasma) and ve (fractional volume of the interstitial space 
and the ratio of Ktrans and kep) were estimated. The fit was performed using a nonlinear 
least squares fitting procedure, constraining the kinetic parameters to positive values and 
using multiple starting values.95 The model was fitted numerically using each image-
derived AIF, and the population averaged AIF as described by Parker et al.81 All data 
processing was performed in Matlab, version R2017b. 

Statistical analysis 
Before repeatability assessment, we checked if there were significant differences between 
the repeated measurements by calculating the average difference and its 95% confidence 
interval.96 The repeatability of the kinetic parameters was then assessed using the within-
subject coefficient of variation (wCV)97, as calculated by Equation 6 

𝑤𝐶𝑉 = ඨ
ଵ

௡
∑

൫௫೔,భି௫೔,మ൯
మ

ଶൗ

൫൫௫೔,భା௫೔,మ൯ ଶ⁄ ൯
మ

௡
௜ୀଵ , 

(6)

where 𝑛 is the number of patients and 𝑥௜,ଵ and 𝑥௜,ଶ are parameter values for patient i in 
session 1 and 2, respectively. A low value of wCV represents a high repeatability. 
Differences between the AIFs in descriptive parameters of the AIFs and in kinetic 
parameters of the muscle, and differences between wCVs were tested for significance 
using the nonparametric Wilcoxon matched-pairs signed ranks test. These tests were 
performed for left-right comparison of the three arteries, comparison between the 
arteries (left and right region combined of internal carotids, external carotids and 
vertebral arteries were compared to each other) and each artery (left and right region 
combined) with the population averaged AIF. The significance level was set to 0.05, after 
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Bonferroni correction this level was 0.000397. The analyses were performed with 
GraphPad Prism, version 7.04. 

Results 
Data from 10 of 29 patients were excluded because movement in the arterial regions of 
interest was >2 mm. Signal from the right vertebral artery of one patient could not be used 
because the measured enhancement was too high and conversion to concentration was 
not possible for the peak signal because enhancement was higher than the relationship in 
Equation 3 permits. The signal of left and right vertebral artery combined was also 
excluded for this patient. Plots of image-derived AIFs of the internal carotids, of the tissue 
time-concentration curves with model fit and p-values of all tests can be found in the 
supplemental materials.  

Image-derived arterial input functions 
FWHM values were invalid for the AIF from the left internal and external carotids in one 
patient, from the left external carotid in another patient and from all but the left external 
carotid in a third patient. These AIFs showed a relatively low peak and the FWHM 
therefore did not describe the width of the peak. Figure 3 shows boxplots of the 
parameters describing the image-derived AIFs from the pre-treatment datasets. Boxplots 
from the during-treatment data can be found in the supplemental material.  

Left-right differences were small and not significant for any of the arteries. The arterial 
plasma concentrations measured in this study were generally lower than the population 
averaged AIF measured by Parker et al., which gives an approximate plasma 
concentration of 10 mM at the peak and 1 mM at 180 seconds. The concentrations found 
in the current study showed median peak concentrations below 2 mM and median 
concentrations at 180 seconds below 0.5 mM for all image-derived AIFs. The parameters 
describing the magnitude of the AIF (i.e. peak, AUC and C180) were lower in the external 
carotids, higher in the vertebral arteries and intermediate in the internal carotids. These 
differences were significant only between the external carotids and vertebral arteries. 
Differences in TTP and FHWM between the different arteries were not significant. 
Washout was significantly different between the internal and the external carotids.  

Repeatability of image-derived arterial input functions 
Figure 4 shows the repeatability of the AIF describing parameters. The parameters 
describing the internal carotids generally showed the best repeatability, except for the 
peak and TTP. No significant differences were found between arteries.  
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Figure 3: Boxplots with Tukey whiskers of the parameter values describing the image-derived AIFs 
before treatment. Number of subjects for each boxplot is indicated by the number below it. 
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Figure 4: Bar plots of the wCV of the descriptive parameters of the image-derived AIFs. The error 
bars indicate the 95% confidence interval. 
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Kinetic parameters in muscle 
Five out of the 38 fits to the Tofts Model (Equation 5)—three from pre-treatment imaging, 
two from imaging during treatment, none of which referring to the same patient—
provided unrealistic results when the population averaged AIF was used: the fitted ve 
values were above 1 (range 5–160). These data were excluded from the results below. 
When an image-derived AIF was used these same data often—though not always—led to 
ve values above 1 as well. However, because the ve values fitted with the image-derived 
AIFs were in general higher than those fitted with the image-derived AIF, possibly due to 
underestimation of the arterial concentration as result of flow and T2 shortening, the 
results were only excluded if the ve was above 3. This criterion led to exclusion of data of 
three patients for all image-derived AIFs and of one patient for all AIFs except those 
derived from the right vertebral artery and combined vertebral arteries. These four 
patients were also excluded when using the population averaged AIF. One additional 
patient was excluded for the AIF derived from the left vertebral artery.  

Figure 5 shows boxplots of the fitted pharmacokinetic parameters in the muscle before 
treatment. The boxplots from the during-treatment data can be found in the 
supplemental material. No significant differences between pre- and during-treatment 
data were observed. No significant differences arising from using either a left or right 
location of the AIF were observed in any of the parameters for any of the arteries. The 
values of all parameters—but most notably Ktrans—were higher when an image-derived 
AIF was used, compared to those obtained using the population averaged AIF. These 
differences were significant for all comparisons except kep and Ktrans between the vertebral 
arteries and the population averaged AIF. Comparisons between the different arteries 
from which the AIFs were derived showed significant differences between the vertebral 
arteries and the external carotids for Ktrans and kep, but not for ve. Values for Ktrans and kep 
were the largest when using the external carotids, followed by the internal carotids and 
the vertebral arteries. The fitted ve values were sometimes larger than 1 when image-
derived AIFs were used, most often when using the external carotids.  

Repeatability of kinetic parameters in muscle 
Figure 6 shows the repeatability of the pharmacokinetic parameters when using the 
various image-derived AIFs and the population averaged AIF. The wCV for each of the 
three parameters was lowest (i.e. highest repeatability) when a population averaged AIF 
was used, and highest when the AIF was derived from the vertebral arteries. However, no 
significant difference was observed for any of the comparisons.  
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Figure 5: Boxplots with Tukey whiskers of the 
pharmacokinetic parameter values in the 
muscle before treatment. Number of subjects 
for each boxplot is indicated by the number 
below it. 

 

Figure 6: Bar plots of the wCV of the muscle 
pharmacokinetic parameters. The error bars 
indicate the 95% confidence interval. 
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Discussion 
This study shows that image-derived AIFs obtained from different arteries in the head 
and neck region in the same patient differ in both magnitude and shape. Pharmacokinetic 
parameters in muscle, obtained using AIFs originated from different arteries, also showed 
significant differences. Moreover, use of a population averaged AIF led to significantly 
lower values of Ktrans, kep and ve and slightly better repeatability, although differences in 
repeatability between different AIF methods were not significant.  

Image-derived arterial input functions 
The image-derived AIFs from this study seem to underestimate the arterial plasma 
concentration when compared to the population averaged AIF or AIFs obtained by DCE-
CT.98 Keil et al. have observed similar results in the comparison of the internal carotid, 
superior sagittal sinus, arteries closest to brain lesions and Parker’s population averaged 
AIF, where arterial regions provided markedly lower concentration curves.79 This is likely 
caused by blood flow artefacts and partial volume and 𝑇ଶ

∗ effects.99‑101,92 These effects are 
dependent on the arterial region of interest, which may be why Parker’s AIF, measured in 
the descending aorta, provides higher concentrations. Moreover, sensitivity for blood 
flow and other artefacts is dependent on the sequence settings.92 More accurate 
measurements in the head and neck region might be achieved with different settings; 
however, this generally leads to inferior temporal and spatial resolution.92 Additional use 
of phase images has been shown to lead to more repeatable AIFs which are less affected 
by flow.94 In the current study, however, phase images were not available.  

While there are no significant differences in magnitude between left and right measured 
AIFs, the data indicate that the magnitude and shape of an image-derived AIF are 
dependent on the choice of the artery. These differences are larger than what physiological 
differences might suggest. They might be partly explained by differences in artery 
diameter. Smaller arteries, such as the external carotids, are likely to be more influenced 
by partial volume effects, possibly resulting in lower measured concentration. Moreover, 
differences in flow velocities can be responsible for the differences in concentration due 
to the in-flow effect, possibly explaining the higher concentration in the vertebral arteries 
which exhibit lower flow velocity.102  

Also the repeatability of the image-derived AIF seems to be affected by the choice of 
artery. The internal carotids seem to give the most repeatable AIFs, especially in terms of 
washout. The vertebral arteries tend to have higher signal enhancement than the other 
arteries, suggesting that they provide more accurate concentration values. However, this 
may also be the reason for the poorer repeatability of the AIFs from the vertebral arteries: 
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because the relationship between signal enhancement and concentration in Equation 3 is 
nonlinear and flattens at higher concentrations of contrast agent, the value of the 
estimated concentration at low T1 (high concentrations) is more sensitive to noise. This 
results in increased concentration variability. Use of a low dose pre-bolus scan can 
(partially) resolve this saturation effect and may lead to more repeatable AIFs.103‑107 One 
other study measured AIFs in the carotids at multiple time points (to generate a 
population averaged AIF); however, repeatability of the individual measurements was not 
investigated.108 

Kinetic parameters in muscle 
The differences in the parameters describing the image-derived AIFs seemed to propagate 
into the resulting pharmacokinetic parameters. Use of an image-derived AIF leads to 
significantly higher parameter values compared with using a population-based AIF, 
especially for Ktrans. This is caused by the lower amplitude of the image-derived AIFs, as 
discussed above. 

Although the resulting pharmacokinetic values are different, in terms of repeatability no 
significant differences between them were found when using the different AIFs. The 
repeatability of kep and ve was comparable when using either a population averaged AIF 
or an AIF derived from the internal carotids. This result differs from the study of 
Rijpkema et al.83, who found that repeatability of kep was better if individual AIFs were 
used. In their dataset, 6 patients are included with a tumor in the head and neck region; 
however, a different sequence is used (the flip angle is particularly different) and this may 
explain the disparity with our study. Peled et al.77 also found that kep repeatability 
improved by using individual AIFs, although their study covers the prostate. In 
accordance with some literature81,82, but contradicting other84, the repeatability of Ktrans 
seems to improve when a population averaged AIF is used. Ideally, use of an image-
derived AIF corrects for variability in cardiac output within the patients over time, thus 
leading to a better repeatability of the pharmacokinetic parameters. Apparently, however, 
the variability introduced by the AIF measurement counteracts this effect. Variability 
could be caused by partial volume effects, B1 errors and flow enhancement artefacts. 
Because this is different for other acquisition settings, the generalizability of our results is 
limited.  

When the population averaged AIF was used, the tissue curves in five subjects were fitted 
with ve above 1, indicating that the data do not adhere to the theoretical model, either 
because the population averaged AIF cannot lead to the tissue time-concentration curve, 
or the tissue time-concentration curve is incorrect. The latter might be explained by 
inaccurate 𝑇ଵ estimation or errors in B1 that are not accounted for by the B1 correction. 
This would explain why the model also produced outliers when the image-derived AIFs 
were used in four of the five cases. In one case the image-derived AIFs showed a dispersed 
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shape and fitting led to reasonable pharmacokinetic parameter values and a better fit, 
indicating that use of a population averaged AIF was inappropriate in this case.  

Limitations 
More than one third of the data could not be evaluated. Deriving the AIF from the image 
is problematic when the patient moves or swallows during acquisition. Motion correction 
for these, often small and quick, movements is not straightforward and was not performed 
in this study. Use of a population averaged AIF largely overcomes this problem, although 
movement can also affect signals from the tissue.  

Repeatability estimates within tumor and lymph nodes are necessary for biomarker 
validation of DCE-MRI pharmacokinetic parameters in the head and neck cancer, such 
as HNSCC. However, due to the setup of this study such estimates could not be 
investigated, because between baseline and follow-up the patients underwent chemo 
radiotherapy. Moreover, the repeatability estimates reported for muscle cannot be 
extrapolated to, for example, tumor tissue; the different tissue characteristics in tumor (or 
tissues in which they arise) lead to different pharmacokinetic parameter values and their 
repeatability is likely different.109 The semispinalis capitis muscle was chosen as it is 
located outside the radiated area. However, the combination of (chemo) radiotherapy and 
the ongoing disease might have some systemic effects, even within this short period of 
time between scans. As reported, no significant differences were found between pre- and 
during-treatment kinetic parameters in muscle; however, if the effects of disease and 
therapy caused an increased variability, the wCV’s reported here may be overestimated. 
Nonetheless, we believe that the repeatability of the pharmacokinetic parameters in the 
muscle region can still be a useful tool for comparison of the use of different AIFs as input 
of the model. 

Conclusion 
Significant variations were found in the AIFs obtained from different arteries in the head 
and neck region. Image-derived AIFs measured in the internal carotids show a trend to 
better repeatability for both the AIF itself and for the pharmacokinetic parameters 
estimated in muscle tissue. However, the image-derived AIF does not improve 
repeatability of the pharmacokinetic parameters compared to a population averaged AIF. 
Moreover, patient movement during acquisition, which can be common in the head and 
neck region, is likely to disturb AIF measurement. For these reasons, the use of a 
population averaged AIF in this patient population seems to be preferable for 
pharmacokinetic analysis of DCE-MRI when absolute PK parameter values are not of 
major concern. 
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Supplementary information 
Supplementary material for this paper is available at: 

doi.org/10.1016/j.mri.2020.01.010 
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Abstract 
Purpose: The intravoxel incoherent motion (IVIM) model for diffusion-weighted 
imaging might provide useful biomarkers for disease management in head and neck 
cancer. This study compared the repeatability of three IVIM fitting methods to the 
conventional nonlinear least-squares regression: Bayesian probability estimation, a 
recently introduced neural network approach, IVIM-NET, and a version of the neural 
network modified to increase consistency, IVIM-NETmod. 

Methods: Ten healthy volunteers underwent two imaging sessions of the neck, two weeks 
apart, with two DWI acquisitions per session. Model parameters (apparent diffusion 
coefficient 𝐴𝐷𝐶; diffusion coefficient, 𝐷௧ ; perfusion fraction 𝑓

𝑝
; pseudo-diffusion 

coefficient 𝐷௣) from each fit method were determined in the tonsils and in the pterygoid 
muscles. Within-subject coefficients of variation (wCV) were calculated to assess 
repeatability. Training of the neural network was repeated 100 times with random 
initialization to investigate consistency, quantified by the coefficient of variance (CV). 

Results: The Bayesian and neural network approaches outperformed nonlinear regression 
in terms of wCV. Inter-session wCV of 𝐷௧  in the tonsils was 23.4% for nonlinear 
regression, 9.7% for Bayesian estimation, 9.4% for IVIM-NET and 11.2% for IVIM-
NETmod. However, results from repeated training of the neural network on the same 
dataset showed differences in parameter estimates: CV over the 100 repetitions for IVIM-
NET were 15% for both 𝐷௧  and 𝑓௣, and 94% for 𝐷௣; for IVIM-NETmod these values 
improved to 5%, 9% and 62%, respectively. 

Conclusion: Repeatabilities from the Bayesian and neural network approaches are 
superior to that of nonlinear regression for estimating IVIM parameters in the head and 
neck.  
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Introduction 
Magnetic resonance diffusion-weighted imaging (DWI) is used for diagnostic and 
prognostic purposes in head and neck cancer.110‑113 In DWI, signal decreases with 
diffusion-weighting as result of Brownian motion of water molecules and other intravoxel 
incoherent motions (IVIMs), i.e. “microscopic translational motions that occur in each 
image voxel”.114,115 By fitting the DWI signal from different diffusion-weightings to an 
exponential model, its parameters can be estimated. A mono-exponential can be used to 
estimate the apparent diffusion coefficient (ADC). A bi-exponential model (the IVIM 
model115) can be used to additionally model pseudo-diffusion component (𝐷௣) and 
perfusion fraction (𝑓௣)—both related to the microcirculation of blood—resulting in the 
corrected or “true” diffusion coefficient (𝐷௧). Because the restriction of diffusion is related 
to the microstructure of tissue—e.g. cellular density—this can characterize tumors and 
provide early information on changes due to (or despite) treatment occurring before 
detectable tumor growth or shrinkage.116  

The IVIM model is appealing as it allows the assessment of the additional biomarkers 𝐷௣ 
and 𝑓௣. However, IVIM parameter estimation tends to be very sensitive to noise. As a 
result, parametric maps are often noisy and show poor repeatability.117 Poor repeatability 
limits the use of IVIM in practice because precision is required for patient-specific clinical 
use of IVIM. 

Recently, novel fitting methods with a Bayesian probability approach118‑120 and a neural 
network121 have shown promising results in terms of reduced noise in the parameter maps 
based on simulations, and they reduced inter-observer variability in vivo. If these 
techniques also help improve test-retest repeatability in vivo, they could help introduce 
IVIM into clinical workflows. 

Therefore, in this study, we investigate these new methods in terms of test-retest 
repeatability. We compare the intra- and intersession repeatability of the least squares 
fitting method, the Bayesian inference fitting method and two neural network-based 
fitting methods for in vivo IVIM data in the head and neck region in healthy volunteers. 
We hypothesize that the new Bayesian and neural network approaches will outperform 
the conventional least squares fitting approach. 
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Methods 
This study was approved by the local Medical Ethics Committee and written informed 
consent was obtained from all subjects. Ten healthy volunteers were included; 
male/female 7/3, mean age 33 years, range 22–50 years. Each volunteer underwent two 
MR imaging sessions (at least two weeks apart) with two examinations per session. The 
subject was taken out of the MR scanner between examinations. Sequences were acquired 
on a 3.0T Ingenuity TF PET/MR-scanner (Philips Healthcare, Best, the Netherlands) 
equipped with a 16-channel neuro-vascular coil. Each examination consisted of an axial 
stack of 29 T1-weighted turbo-spin-echo images followed by a stack of DWI acquisitions 
in the same 29 imaging planes, covering the neck from the larynx until the base of the 
skull. DWI was acquired with a single-shot spin-echo echo-planar imaging sequence with 
12 b-values (0, 2, 5, 25, 50, 75, 100, 150, 300, 500, 700, and 1000 s/mm2). Only the DWI 
images with b=1000 s/mm2 were averaged over 2 acquisitions. Diffusion-weighting was 
performed in three orthogonal directions with: bipolar gradients, echo time 57 ms, 
repetition time 3242 ms, gradient time interval 28 ms, gradient duration 18 ms. Further 
scan parameters were: acquired matrix size 128×111×29, acquired voxel size 
1.88×1.95×4 mm3, reconstructed voxel size 1×1×4 mm3, Short TI Inversion Recovery 
(STIR) was used for fat suppression, with a 230 ms inversion time. The DWI scan 
duration was 6 minutes. Motion correction of the DWI images was applied by image 
registration, as provided by the scanner software. 

Analysis 
The DWI data were processed voxelwise to generate parametric maps of the ADC and 
IVIM parameters. Parameter estimates were extracted for two tissues: tonsil and medial 
pterygoid muscle. Volumes of interest (VOIs) were defined on the images without 
diffusion weighting (𝑏 = 0 s/mm2) while using the T1-weighted image for anatomical 
reference. The T1 images were not co-registered to the diffusion weighted images. 
Delineation was performed using in-house developed software by a single observer in one 
session. Spherical VOIs of 5 mm radius were placed in each tonsil and spherical VOIs of 
6 mm radius were placed in the medial pterygoid muscle on each side. These VOIs were 
small enough to always fit inside the tissues of interest. The VOIs were projected onto the 
parametric maps, all voxels with (partial) overlap were extracted, and the median values 
of the parameters were then calculated.  

The signal at 𝑏 = 0 s/mm2 was excluded (except for calculating fit boundary of 𝑆଴, see 
below, and for normalization purposes in the neural network) for the parameter 
estimations described below, reducing the number of b-values to 11. The reason for this 
is to reduce attenuation effects of macroscopic flow at small b-values122,123. This additional 
accelerated decay between 𝑏 = 0 s/mm2 and the first non-zero b-value is not accounted 
for in the conventional IVIM and ADC models.124,125  
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The mono-exponential model used to estimate the ADC is given by: 

𝑆(𝑏) = 𝑆଴ ⋅ 𝑒ି௕⋅஺஽஼  , (1)
where 𝑆଴ is the signal intensity without diffusion weighting (𝑏 = 0 s/mm2). 𝐴𝐷𝐶 and 𝑆଴ 
are estimated by performing a linear least squares fit on the log-transformed data, as 
implemented by the scanner manufacturer.  

The IVIM model extends the ADC model with a second exponential. The bi-exponential 
equation of the model is given by:  

𝑆(𝑏) = 𝑆଴൫𝑓௣𝑒ି௕஽೛ + ൫1 − 𝑓௣൯𝑒ି௕஽೟൯  (2)
 

where 𝑓
𝑝
 is the perfusion fraction, 𝐷௣ the pseudo-diffusion coefficient, 𝐷௧  is the diffusion 

coefficient, and 𝑆଴ is the fitted signal intensity for 𝑏 = 0 s/mm2. The IVIM model 
parameters were estimated using four different approaches: a nonlinear least squares fit, 
a Bayesian approach118 and two neural network-based fitting approaches121. The two 
neural network approaches consisted of a network nearly identical to the original 
publication (IVIM-NET)121 and a modified network (IVIM-NETmod), as detailed later.  

Nonlinear least squares 
The nonlinear least squares (NLS) fit was performed using the trust-region reflective 
algorithm as implemented in MATLAB R2019a, with the following fit boundaries: 0 <

𝑓௣ < 1, 0 < 𝐷௧ < 0.005 mm2/s, 0.005 < 𝐷௣ < 1 mm2/s, and 0 < 𝑆଴ < 5 ⋅ max 𝑆(𝑏). 
Starting values were selected randomly in the range [0,1] as provided by Matlab 
functionality. 

Bayesian probability 
The Bayesian approach was also performed in MATLAB R2019a and was based on a 
previous publication.118 In short, the method gives a maximum a-posteriori estimate of 
each parameter by maximizing the marginal posterior probability density functions, 
which are acquired by means of slice sampling126 the joint posterior probability.118,126,127 A 
multiparametric Gaussian likelihood function was used, i.e. 

𝑃൫𝑆ห𝐷௧ , 𝐷௣, 𝑓௣, 𝑆଴൯ ∝ ൭
1

2
෍ ቀ𝑆(𝑏) − 𝑆଴൫𝑓௣𝑒ି௕஽೛ + ൫1 − 𝑓௣൯𝑒ି௕஽೟൯ቁ

ଶ

{௕}

൱

ି௡ ଶ⁄

(3)

where 𝑛 is the number of b-values. The constraint 𝐷௧ < 𝐷௣ was implemented in the joint 
prior distribution.128 Lognormal distribution priors were used for 𝐷௣ and 𝐷௧ , a beta 
distribution prior was used for 𝑓௣ and a uniform distribution prior was used for S଴. The 
priors for 𝐷௣, 𝐷௧  and 𝑓௣ were estimated by fitting these distributions to results of a pre-
run of the same Bayesian approach using bounded uniform priors (0 < 𝑓௣ < 1, 0 < 𝐷௧ <

1 mm2/s, 0 < 𝐷௣ < 1 mm2/s and 0 <  𝑆଴.)  
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IVIM-NET 
The IVIM-NET approach was carried out in Python 3.7.4 and PyTorch 1.3.0 using the 
open access code from the original publication121,129 and code obtained from the 
repository of co-author OGC (currently shared on request, will be public in near future 
and maintained as IVIM-NET evolves). Our source code with the network definitions 
and training methods is available on GitHub.  

The network, depicted in Figure 1, consists of an input layer with a number of neurons 
equal to the number of b-values used to analyze the data, three fully connected hidden 
layers—each with the same number of neurons, each using the exponential linear unit 
activation function—and an output layer with a neuron for each parameter. Background 
voxels were excluded by manually thresholding the 𝑏 = 0 mm2/s images. Training was 
performed on the entire dataset for each epoch, combining and shuffling the voxels from 
all patients. Data normalization, which is standard for neural networks, was performed 
using S(0). The mean squared error between the fitted and actual, normalized, signal 
(𝑆(𝑏) 𝑆(0))⁄  was used as loss function. An early stopping criterium (patience) of 10 bad 
epochs was used: meaning training was stopped when no improvement was found during 
the last 10 epochs. Different from the original publication, we included an output neuron 
for 𝑆଴ 𝑆(0)⁄ , where 𝑆଴ and 𝑆(0) are the estimated and measured signal intensity at 𝑏 =

0 mm2/s, respectively. 

Additional to the above implementation, we made a few modifications in a new 
implementation IVIM-NETmod. IVIM parameters were constrained by g(x). In the 
original network, the predicted IVIM parameters were constraint by taking the absolute: 

𝑔(𝑥) = |𝑥| (4)
 

In the presented modified network, a sigmoid function was applied to the output as 
constraint instead:  

𝑔(𝑥) = min +
1

1 + 𝑒௫
(max − min) (5)

which rescaled the output between the following fit boundaries (min < parameter < max): 
0 < 𝑓௣ < 0.7, 0 < 𝐷௧ < 0.005 mm2/s, 0.005 < 𝐷௣ < 0.5 mm2/s, and 0.8 < 𝑆଴ 𝑆(0)⁄ <

1.2. Second, with the aim of preventing overfitting, we split the dataset into two parts: one 
for training (80%) and one for validation (20%). For the same reason, we reduced the 
patience (early stopping criterion, see above) from 10 to 4. Furthermore, as we had a 
substantially larger dataset than Barbieri et al, we limited the number of iterations during 
each training epoch to 1024, such that we regularly validate how well the network is 
performing even for large datasets. Because the batch size of an iteration is fixed (128 
voxels), each epoch no longer processes the entire dataset but a random selection of the 
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training set, in our case, approximately 1.5%. Each epoch does evaluate on the entire 
validation set.  

Figure 1: Neural network architecture, figure created with NN-SVG.130 The network predicts x1 to 
x4, which are converted to the IVIM parameters by the constrain function g(x) via equations 4 
(original network) and 5 (modified network) to add parameter constraints. 

Network consistency 
To investigate the consistency of the IVIM-NET approaches as a whole—i.e. whether the 
network converges to consistent estimates—we repeated the complete process of training 
100 times. Each time, the network was initialized with new random weights and shuffling 
(and splitting in case of IVIM-NETmod) of the dataset. We compared the runs qualitatively 
by visual inspection of the parametric maps. We investigated consistency by calculating 
the average parameter values for both tissues over all subjects and sessions in each run, 
and then calculating the coefficient of variance (CV) over the 100 runs. 

Statistics 
The intrasession repeatability was calculated by considering the two measurements 
within a session as paired measurements. Conversely, the intersession repeatability was 
calculated by considering the first measurements in each session as one pair, and the 
second measurements in each session as another pair. Moreover, the left and right 
measured values were considered measurements for the same tissue of interest, i.e. tonsil 
and pterygoid muscle. Thus, each subject had four pairs of observations for the 
calculation of repeatability and pairs were either between sessions or within sessions. 

Output 
Layer 

Hidden 
Layers 

Input 
Layer 

𝑥ଵ  → 𝐷௣ = 𝑔(𝑥ଵ) 

𝑆(𝑏ଶ) 𝑆(0)⁄  
𝑆(𝑏ଵ) 𝑆(0)⁄  

𝑆(𝑏௡) 𝑆(0)⁄  
𝑆(𝑏௡ିଵ) 𝑆(0)⁄

⋮

⋮

𝑥ଶ  → 𝐷௧ = 𝑔(𝑥ଶ) 

𝑥ଷ  → 𝑓௣ = 𝑔(𝑥ଷ) 

𝑥ସ  → 𝑆଴ 𝑆(0)⁄ = 𝑔(𝑥ସ) 

Predicted 
Parameters 



Chapter 6: IVIM repeatability – Bayesian vs neural network 

88 

We used 95% confidence intervals of the mean difference between paired measurements 
over all subjects (for both intra- and intersession pairing) to verify that the repeated 
measurements were not systematically different.96 We then calculated the within-subject 
coefficient of variation (wCV), which is a relative measure of repeatability.97 An overview 
of the concepts repeatability and consistency can be found in Table 1. 

We compared the repeatability of the four methods with paired Wilcoxon signed rank 
tests of the wCV estimates. For the IVIM-NET methods we calculated the median wCV 
of the 100 runs for each subject, and used these wCV estimates in the paired tests between 
the four methods. A p-value below 0.05 was considered significant.  

Table 1: Explanation of analysis concepts used in this study. 

Concept Description Quantification Applicable for 
Repeatability Variation between repeated 

measurements 
Within-subject coefficient of 
variation, wCV 

All methods 

Consistency Variation between training runs of IVIM-
NET on same measurements 

Coefficient of variance, CV IVIM-NET 
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Results 
Figure 2 shows examples of the parametric maps calculated with the different methods. 
Parametric maps calculated by nonlinear regression were most noisy, followed by the 
Bayesian probability approach. IVIM-NET showed the least noise and most anatomical 
detail and was in these terms comparable to the ADC map. The 𝑓௣ maps estimated with 
nonlinear regression showed systematically higher values than the other methods, as can 
be seen in Figure 2. The 𝐷௣ maps of nonlinear regression and IVIM-NETmod showed many 
regions with very high values.  

None of the methods showed a systematic difference between the repeated measurements 
for any of the parameters. The calculated wCV estimates are shown in Figure 3. Notably, 
intra- and intersession wCV was comparable and both VOIs show the same patterns 
when comparing the IVIM methods. The methods differ in terms of repeatability and, in 
general, wCV was highest (worst) when parameters were estimated using NLS (except for 
𝑓௣ in the pterygoid).  

This difference was often significant, especially for 𝐷௣. Significance is indicated in Figure 
3, comparing the wCV values of each of the methods for each of the parameters. Tables 
of the p-values are available in the supplemental materials. The median repeatability 
results of IVIM-NET and IVIM-NETmod were mostly comparable to the repeatability of 
the Bayesian approach, except for 𝑓௣ where the wCV of IVIM-NET was significantly 
better; IVIM-NETmod was only significantly better for 𝑓௣ in the tonsils. The median 
repeatability of IVIM-NET was better than for IVIM-NETmod, although the difference was 
rarely significant.  

Network consistency 
Visual comparison of the parametric maps of the repeated network instances showed 
inconsistencies for both IVIM-NET and IVIM-NETmod, examples of this can be found in 
supplemental figures 2S, 3S and 4S. 100 figures of the maps of each method are included 
in the supplemental material as illustration. The network instances generally produced 𝐷௧  
maps with a similar distribution but different offset/scaling values. Comparing the 
average parameter values for IVIM-NET, the instances showed a CV of 15% for 𝐷௧  and 
𝑓௣, and 94% for 𝐷௣. The CV for the pterygoids and tonsils were equal. The 𝐷௣ maps 
sometimes showed a visually different distribution. The wCV values for the IVIM-NET 
instances were also inconsistent, as shown by the boxplots in Figure 4. For IVIM-NETmod, 
the average parameter values were more consistent, with CV of 5%, 9% and 62% for 𝐷௧ , 
𝑓௣ and 𝐷௣ respectively (again equal for pterygoids and tonsils). The wCV values for 𝐷௧  
and 𝐷௣ were also more stable for IVIM-NETmod, as reflected by the smaller intervals of the 
boxplots in Figure 4. 
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Linear 

Least Squares 

IVIM 
Nonlinear 

Least Squares 

IVIM 
Bayesian 

IVIM 
IVIM-NET 

IVIM 
IVIM-NETmod 

𝑆଴ (arbitrary 
units) 

 

0.002 

𝐷௧ or ADC 
(mm2/s) 

0.000 

 

0.7 

𝑓௣ 
(unitless) 

0.0 

 

0.150 

𝐷௣ 
(mm2/s) 

0.000 
Figure 2: Typical parametric maps of the estimated S0, apparent diffusion coefficient ADC, true 
diffusion coefficient 𝐷௧. pseudo diffusion coefficient 𝐷௣ and perfusion fraction 𝑓௣. Regions of 
interest delineating the tonsils are shown in the ADC map. The pterygoids are not situated at this 
level, examples of regions of interest can be found in the supplemental material. Parametric maps 
of other IVIM-NET instances can be found in the supplemental material.  
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Figure 3: wCV of the parameters for each method. The median value of 100 training runs is 
displayed for the neural network methods. * p ≤ 0.05, ** p ≤ 0.01 

Figure 4: Boxplots (with Tukey type whiskers) of wCV values for 100 runs of the neural networks. 
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Discussion 
In this study, we quantified the test-retest repeatability of nonlinear regression, neural 
network-based and Bayesian IVIM in the head-and-neck region. Our results show that 
these latter two fit approaches substantially outperform the conventional nonlinear 
regression approaches commonly used for IVIM fitting. Furthermore, although IVIM-
NET has an improved test-retest repeatability, it has an additional uncertainty in that 
repeated training of networks gives inconsistent results on identical data. 

Repeatability estimates of ADC in the tonsils using linear regression fit reported in this 
study are similar to those reported by Kang et al.131 (also in the tonsils). Two other studies 
mainly focused on the primary lymph nodes, which makes it hard to compare results 
directly. Hoang et al. report a repeatability coefficient in percentages (15%), which is 
equivalent to a wCV of 5.3%.132 The wCV reported by Paudyal et al. is 2.38% and much 
lower than repeatability values found in this study.133 The generally larger volumes of 
metastatic lymph nodes might partly explain why the reported estimates are lower. In case 
of the study of Paudyal et al., no repositioning of the subject in the magnet seems to have 
occurred between scans, which could be a major source of measurement variability. This 
might also explain the difference in reported wCV between the two studies. In our present 
study, the subject was taken out of the scanner between scans for the intra-session 
repeatability estimates. No differences were seen between intra- and intersession 
repeatability. This indicates that long-term (order of weeks) physiological variability over 
time was secondary to the measurement error and short-term (~30 minutes) 
physiological variability.  

The neural network approach for calculating IVIM maps was introduced only recently. 
Visual interpretation of the images suggests that more realistic parametric maps are 
produced by both neural networks compared to the other methods; these maps do not 
show isolated high or low pixels and thus seem to be least affected by noise in the 
acquisitions. This is in line with earlier observations from Barbieri et al.121 Our study now 
has quantified the test-retest repeatability and shows that the network also outperforms 
linear regression regarding this aspect.  

Network training for the entire dataset took up to one hour for IVIM-NET and up to 5 
minutes for IVIM-NETmod. Application of the network took only a couple of seconds for 
the entire dataset. Barbieri et al. had substantially less training data and hence had training 
times of 5 minutes using the unmodified network. The large difference in training time 
in our data was mainly the result of decreasing the amount of data seen each epoch in the 
IVIM-NETmod. This major advantage of analysis speed, compared to the other methods 
investigated in this study (around half an hour per scan with nonlinear regression, and 
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multiple hours per scan using Bayesian probability fitting), makes it viable for use in 
clinical practice.  

Although IVIM-NET showed promising test-retest repeatability, consistency of the 
neural network approach is currently still an issue. Our results show that, after renewed 
training, the parameter values and repeatability estimates vary. IVIM-NETmod showed 
more consistent results, although the method is still unstable for 𝐷௣. Consistency of the 
approach might be improved by optimizing the starting point of the network, for instance 
by choosing different weight initialization or by training on a set of simulated data first. 
Avoiding to fit 𝐷௣—fixing it instead to an a priori estimate—has been shown to improve 
repeatability117,119 and might also improve network consistency. 

A challenge for further research is to identify an acceptable neural network that does not 
only give estimates with good repeatability, but is also consistent after retraining. Until 
such consistency is achieved it is imperative that a single network instance is used for 
comparative applications, for example in longitudinal studies. Use of separately trained 
networks will otherwise lead to biased results. 

Although other DWI models134‑136 are available, this study has been limited to the ADC 
and the IVIM model. Another limitation of our study is that we could not compare the 
methods in terms of accuracy, because a ground truth was unavailable in our study. We 
hope, therefore, that these methods will be included in future phantom studies. Lastly, the 
choice of b-values was probably not optimal; b-value optimization may improve IVIM 
estimates.137,138 

Conclusion 
The processing speed of the neural network makes it viable for use in clinical practice. 
However, the inconsistency of training results is challenging. Our presented 
modifications in the neural network make this approach more consistent, although the 
output still shows some inconsistency between different training runs on the same 
dataset. Thus, the neural network approach needs to be further improved to identify 
neural networks that are both consistent and precise. Nonetheless, repeatability from the 
Bayesian and neural network approaches are superior to that of nonlinear regression for 
estimating IVIM model parameters. 
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Abstract 
Background: Radiomics is aimed at image-based tumour phenotyping, enabling 
application within clinical-decision-support-systems to improve diagnostic accuracy 
and allow for personalized treatment. The purpose was to identify predictive 18-fluor-
fluoro-2-deoxyglucose ([18F]FDG) positron-emission tomography (PET) radiomic 
features to predict recurrence, distant metastasis, and overall survival in patients with 
head and neck squamous cell carcinoma treated with chemoradiotherapy.  

Methods: Between 2012 and 2018, 103 retrospectively (training cohort) and 71 
consecutively included patients (validation cohort) underwent [18F]FDG-PET/CT 
imaging. The 434 extracted radiomic features were subjected, after redundancy filtering, 
to a projection resulting in outcome-independent meta-features (factors). Correlations 
between clinical, first-order [18F]FDG-PET parameters (e.g., SUVmean), and factors 
were assessed. Factors were combined with [18F]FDG-PET and clinical parameters in a 
multivariable survival regression and validated. A clinically applicable risk-stratification 
was constructed for patients’ outcome.  

Results: Based on 124 retained radiomic features from 103 patients, 8 factors were 
constructed. Recurrence prediction was significantly most accurate by combining HPV-
status, SUVmean, SUVpeak, factor 3 (histogram gradient and long-run-low-grey-level-
emphasis), factor 4 (volume-difference, coarseness, and grey-level-nonuniformity), and 
factor 6 (histogram variation coefficient) (CI = 0.645). Distant metastasis prediction was 
most accurate assessing metabolic-active tumour volume (MATV) (CI = 0.627). Overall 
survival prediction was most accurate using HPV-status, SUVmean, SUVmax, factor 1 
(least-axis-length, non-uniformity, high-dependence-of-high grey levels), and factor 5 
(asphericity, major-axis-length, inversed-compactness and, inversed-flatness) (CI = 
0.764).  

Conclusions: Combining HPV-status, first-order [18F]FDG-PET parameters, and 
complementary radiomic factors was most accurate for time-to-event prediction. 
Predictive phenotype-specific tumour characteristics and interactions might be captured 
and retained using radiomic factors, which allows for personalized risk stratification and 
optimizing personalized cancer care. 
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Introduction 
Personalized cancer care of locally advanced head and neck squamous cell carcinoma 
(HNSCC) implies customization of therapy to the individual patient. This might 
improve the current overall 5-year survival rate of 50% (35–65%).8 Radiotherapy with or 
without chemotherapy is frequently applied but fails in 50% of the cases. In the vast 
majority (about 90%), the locoregional failure occurs within the first 2 years after 
treatment.139,140 The consequence of recurrent cancer is that surgical salvage therapy is 
generally the only option with curative intent, but this is associated with high 
morbidity.141 More efficient pre-treatment response prediction may result in patient-
tailored escalation or toxicity-reducing de-escalation (e.g., in radiosensitive HPV-
positive patients) of (chemo)radiotherapy or a switch to different treatment options 
(e.g., surgery). Imaging is crucial in management because of its value on fast and non-
invasive tumour staging, response monitoring, and prognosis prediction.142 Exploration 
of quantitative imaging features might reflect underlying phenotype and response and 
thus may maximize the success of tailored treatments.143  

Radiomics focuses on the methodology of extensive image-based tumour 
phenotyping.144 With radiomics, it may be possible to characterize phenotypic 
differences providing information on the whole-lesion microenvironment and 
surrounding area accounting for spatial and temporal heterogeneity, such as cellular 
morphology, proliferative capacity, metabolism, motility, angiogenic and oxygenation 
status, gene expression (including expression of cell surface markers, growth factor, and 
hormonal receptors), proliferative, immunogenic, and metastatic potential.142,143,145 
These characteristics might be captured by radiomics-derived tumour features (i.e., 
intensity, shape, or texture) and might be of complementary value to other clinical 
parameters to predict their effect on the chemo-radiosensitivity (i.e., quantity of tumoral 
radiosensitive cancer stem cells, the hypoxic fraction, reoxygenation of the tumour 
vicinity, and/or repopulation capacity throughout the course of therapy).144,146‑148  

Radiomic features of functional imaging may provide additional information to 
anatomical imaging, because it provides information on pathophysiologic tumour 
characteristics.149,150 Positron-emission tomography (PET)/computed tomography (CT) 
using 18F-fluoro-deoxy-glucose ( [18F]FDG) measures tumoral metabolic activity and 
can be quantified with [18F]FDG-PET/CT by the standard uptake value (SUV). Pre-
treatment [18F]FDG-PET/CT was reported to be useful for detection, treatment decision 
support151, planning152,153, and the prediction and detection of recurrences and long-
term outcome139. PET-radiomics was superior over a CT-based model (CIPET = 0.77 
versus CICT = 0.72)154 and might improve lesion characterization and patient outcome 
prediction compared to first-order PET parameters in daily clinical routine.155‑158  
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Identified radiomic associations give insight in the biological basis of imaging 
appearance and could aid targeted treatment decision-making and predict prognosis 
non-invasively. Radiomics was mainly analysed in CT159, or PET-CT separately145,147, 
but when combined with clinical features, it resulted in higher predictive and prognostic 
value154,160. To our knowledge, a comparison of prediction models in head and neck 
with [18F]FDG-PET radiomic factors, SUV measurements (e.g., maximum or peak 
SUV), and clinical parameters, associated with patient’s outcome has not yet been 
described.  

The aim of this study was to construct a model based on [18F]FDG-PET radiomics 
features to predict locoregional recurrence, distant metastasis, and overall survival (OS) 
in patients with locally advanced head and neck squamous cell carcinoma treated with 
chemoradiotherapy.  

Methods 
Data selection 
Between 2012 and 2014, 103 patients were included retrospectively in our training 
cohort. Between 2014 and 2018, 81 consecutive patients were included independently 
from the training cohort in a validation cohort. These training and validation single-
centre cohorts were approved by the local institutional ethics committee (Amsterdam 
UMC Medisch Ethische Toetsing Commissie (METC), reference: 2013.191). A written 
informed consent was waived for the training cohort (reference: 2016.498), whereas for 
the validation cohort a written informed consent was obtained from all patients. 
Previously untreated patients with histologically proven HNSCC were included who 
were planned for chemoradiotherapy with curative intent (see Table 1). Exclusion 
criteria were nasopharyngeal tumours, age < 18 and pregnancy, previous locoregional 
treatment of HNSCC, or insufficient image quality. Within 5 weeks after baseline 
imaging, treatment was initiated consisting of a predetermined regimen of 
chemoradiotherapy (CRT) during a period of 7 weeks; 70 Gy in 35 fractions with 
concomitant cisplatin (100 mg/m2 on days 1, 22, and 43 of radiotherapy)) or cetuximab 
(400 mg/m2 loading dose followed by seven weekly infusions of 250 mg/m2). Tobacco 
use was defined as a smoking history of ≥ 10 pack years. Alcohol use was defined as 
drinking 3 or more alcoholic drinks per day.161,162 Locoregional recurrence was defined 
as the location of primary tumour (PT) and/ or lymph node metastases (LN). 
Locoregional failure was measured from the end of CRT to the date of local or regional 
histological proven relapse. Metastasis was defined as a distant location from the 
locoregional PT and LN. Overall survival time was measured from the end of CRT until 
a HNSCC-related death. These patient outcomes concerned locoregional recurrence, 
metastasis or death within 2 years of follow-up time or a minimal follow-up time of 2 
years after the end of treatment. 
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Table 1: Patient characteristics. 
Training cohort Validation cohort 

Patients total 103 71 
No of male patients 76 (73.8%) 53 (75.7%) 
Age, years (IQR) 62.3 (57.3–67.8) 63.3 (57.8–69.3) 
Mean radiation dose, Gy 70 70 
Chemotherapy 

Cisplatin 88 (85.4%) 57 (80.3%) 
Cetuximab 15 (14.6%) 14 (19.7%) 

T-stage 
2 46 (44.7%) 25 (35.2%) 
3 24 (23.3%) 19 (26.8%) 
4 33 (32.0%) 27 (38.0%) 

N-stage 
0 14 (13.6%) 11 (15.5%) 
1 13 (12.6%) 15 (21.1%) 
2 75 (72.8%) 45 (63.4%) 
3 1 (1.0%) 0 (0%) 

HPV-status 
Positive 39 (37.9%) 26 (36.6%) 
Negative 64 (62.1%) 45 (63.4%) 

Tumour site 
Oropharynx 74 (71.8%) 51 (71.8%) 
Hypopharynx 29 (28.2%) 20 (28.2%) 

Overall alcohol history score (SD) 1.91 (1.19) 1.72 (1.24) 
Smoking pack years, (IQR) 22.7 (18.2–38.9) 23.5 (19.3–41.3) 
Follow-up time, months (IQR) 31.5 (20.7–44.5) 26.4 (19.8–34.1) 
Recurrence 27 (26.2%) 19 (27.1%) 
Metastasis 10 (9.7%) 18 (25.7%) 
Death 37 (35.9%) 22 (31.4%) 
IQR: Interquartile range 

[18F]FDG-PET/CT acquisition 
[18F]FDG-PET/low-dose-CT was performed according to the EANM guidelines 1.0 and 
since 2015 using version 2.0 on a Gemini-TF or Ingenuity TF PET/CT (Philips Medical 
Systems, Best, The Netherlands) with EARL accreditation.163 The examination was 
performed after a 6-h fasting period and adequate hydration. Scans with arms down 
were acquired; from mid-thigh to skull vertex, 60 min after intravenous administration 
of 2.5 MBq/ kg [18F]FDG (3 min per bed position). The [18F]FDG-PET/CT images were 
reconstructed using time of flight iterative ordered subsets expectation maximization (3 
iterations and 21 subsets) with photon attenuation correction using a low dose CT.164 
Reconstructed images of both PET scanners were acquired with similar settings and had 
an image matrix size of 144 × 144, voxel size of 4 × 4 × 4 mm, FWHM of 6.75 mm. Low-
dose-CT was collected using a beam current of 50 mAs at 120 kV for anatomical 
correlation of [18F]FDG uptake and attenuation correction. CT-scans were 
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reconstructed using an image matrix size of 512 × 512 resulting in pixel sizes of 1.17 × 
1.17 mm and a slice thickness of 5 mm. 

Whole-lesion delineation  
Whole-lesion delineation was performed, as previously described165, by an experienced 
nuclear medicine physician with 5 years of experience (BZ) supervised by another 
nuclear medicine physician with 30 years of experience (OH) in head and neck nuclear 
medicine, respectively, with knowledge of the HNSCC diagnosis, TNM-stage (7th 
edition)166, and primary tumour location for delineation of proven malignant lesions. 
Delineation of primary tumours (PT) was performed semi-automatically on [18F]FDG-
PET/CT using a 50% isocontour of the SUVpeak of the tumour volume adapted for the 
local background, providing low variability, low number of outliers, and high 
repeatability.167,168 SUV was normalized to body weight. Within the volume of interest 
(VOI), the maximum and mean SUV were defined (SUVmax and SUVmean). SUVpeak 
was defined as the uptake in a 1-mL spherical VOI with the highest value across all 
tumour voxel locations. Partial volume effects were minimized by taking lesion only 
with a minimum volume of 4.2 mL into account (i.e., 3 times the PET system’s spatial 
resolution of 6.75 mm FWHM).169 

Feature extraction 
Radiomic features were extracted from the [18F]FDG-PET images using the in-house 
built Accurate tool (for making vois) in combination with the RadCat tool for feature 
calculation (Supplement 10), as described previously.170‑172 It provides 3D 
implementation of feature extraction methods for four types of features: shape, 
intensity, texture based on co-occurrence, and run-length matrices (description of 
tumour voxels with homogeneous/heterogeneous high or low grey-levels) according to 
the International biomarker standardization initiative (IBSI) standard.173 For each 
patient, 434 [18F]FDG-PET radiomics features were extracted. For the texture analysis, 
PET images were discretized to a fixed bin size of 0.25 SUV.171 The radiomic features 
were not normalized and only raw values were used that were directly computed from 
the DICOM images. The radiomic data processing consisted of dimension reduction to 
arrive at a limited number of latent features that retain most of the information 
contained in the original feature-space (see the next subsection and Supplement 1). 

Radiomic data processing  
Redundancy filtering  
First, the marginal associations between the retained radiomic features of the patient in 
the retrospective training cohort were assessed in a heat map. As radiomic data are 
inherently multicollinear, some redundancy was expected: that is, there were pairs of 
features whose marginal correlation neared (negative) unity. Hence, redundancy 
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filtering was performed, using a custom redundancy-filtering algorithm.174 This 
algorithm removes the minimal number of features under a marginal correlation 
threshold, which we set at 0.95. 

Correlation matrix regularization  
The correlation matrix between the remaining features after redundancy filtering was 
ill-conditioned.175 The remaining correlation matrix was subjected to ridge 
regularization.175 The optimal value of the penalty parameter was determined by 5-fold 
cross-validation of the log-likelihood. We considered the scaled features (centered 
around 0 and variance 1) to avoid a situation where the features with the largest scale 
dominate the analysis. 

Factor analytic data compression  
Then, we performed a maximum likelihood factor analysis on the regularized feature-
correlation matrix.175 The goal was to reduce the dimension of the data without losing 
(much) information. When the features naturally clustered into latent factors (meta-
features), it was desirable to extract these factors, as it allowed us to build a 
parsimonious model that retained (as much as possible) the information of the full 
feature set. A latent radiomic meta-feature represents a projection of the shared 
information in a collection of observed features. It represents a latent domain 
underlying a cluster of observables. The dimension of the latent space was determined 
by Guttman bounds.176 The factor-solution was rotated to a simple (i.e., sparse) 
orthogonal structure. 

Obtaining factor scores  
After projection of the original variable-space onto the lower-dimensional factor-space, 
we desired factor scores: the score each individual obtains on each of the latent factors. 
These were obtained by regressing the latent features on the observed data by way of the 
obtained factor solution. The resulting factor scores of the retrospective training set 
were used as predictors in further modelling. 

Validation  
Previously described four steps were then performed separately in the prospective 
validation cohort in order to validate similar radiomic factors in the prediction analysis. 

Statistical analysis 
The correlation between clinical parameters, standard [18F]FDG-PET/CT parameters 
(SUVmax, SUVmean, SUVpeak), and radiomic factors was determined in the training 
and validation set with Spearman’s correlation coefficient. Corresponding p values were 
multiplicity corrected using Bonferroni’s method. The difference in outcome was 
assessed between patients who received cisplatin and cetuximab (log rank test). The 



Chapter 7: Predictive value of [18F]FDG-PET radiomics in head and neck 

104 

difference in outcome was assessed for patients with an oropharyngeal and 
hypopharyngeal tumour location between HPV-positive and HPV-negative status (log 
rank test). 

The prognostic performance of clinical parameters, [18F]FDG-PET/CT parameters, and 
radiomic factors was firstly assessed in the training set separately for the patient 
outcomes (locoregional recurrence, distant metastases, and death) by performing a Cox 
regression analysis. Thereafter, significant clinical, [18F]FDG-PET/CT parameters, and 
radiomic factors were combined in a multivariable analysis. Multivariable regression 
analysis was performed according to the TRIPOD-statement (Supplement 9), accepting 
p values up to 0.157 to enhance the model applicability to other patient groups.177,178 
Predictive performance of the models was assessed by a 5-fold cross-validation179 and by 
using the incident area under the receiver operating curves (ROC) and concordance 
index (CI). 

The predictive accuracy of the constructed prediction models in the training set was 
validated in a separate validation set. The prognostic performance was assessed by the 
incident area under the receiver operating curves (ROC) and concordance index (CI). 
Finally, the prediction models were compared in the validation set using the 
loglikelihood chi-square test and area under the curve (AUC). 

A risk calculator for all outcomes was constructed, based on the normalized standard 
hazard and the coefficient of each parameter or radiomic factor of the predictive model. 
This risk stratification was divided into a high (≥ 66%), medium (≥ 33–66%), and low 
risk (< 33%) for a patient outcome using the most accurate prediction model. The 
correlation assessment was performed on IBM SPSS Statistics for Windows. Analyses 
regarding the factor-analytical data-compression and prognostic modelling were 
performed with R. 
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Figure 1: An overview of the radiomics workflow. A, delineation; B, extraction of intensity, texture, 
morphologic, and shape radiomics features; C, removal of redundancy of highly correlated features 
(Pearson r > 0.95) and the construction of factors; D, construction of prediction models with 
clinical, first-order PET-features, and/or radiomic factors and the risk-stratification into a 
high/medium/low risk for developing an event based on the constructed prediction models. 
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Results 
Patient characteristics 
Overall, 184 patients were included, of which 103 retrospectively (training set) and 71 
consecutive independent patients (validation set) (see Table 1 for patient 
characteristics). The mean age of the training cohort was 62.3 years (inter-quartile range 
(IQR): 57.3–67.8). The mean age of the validation cohort was 63.3 (IQR 57.8–69.3). 
Treatment of all included patients consisted of pre-determined regimens: in 88 patients, 
radiotherapy was combined with a cisplatin dose, 15 patients received radiotherapy with 
cetuximab. The mean follow-up time in the training set was 31.5 months (IQR: 20.7-
44.5) and in the validation set 26.4 months (IQR 19.8–34.1). In the training cohort, 27 
recurrences, 10 metastases, and 37 deaths occurred. In the validation cohort, 19 
recurrences, 18 metastases, and 22 deaths occurred. The outcome was not significantly 
different between patients who received cisplatin and those who received cetuximab in 
the training set and test set; for recurrence (p = 0.071, p = 0.877, respectively), metastasis 
(p = 0.60, p = 0.295, respectively), and OS (p = 0.053, p = 0.276, respectively). The 
median OS in the training set for patients with cisplatin 32.1 months and for cetuximab 
27.6 months and in the validation set for cisplatin 23.2 months and for cetuximab 18.1 
months. A significantly better OS was found for HPV-positive cancers with both 
oropharyngeal and hypopharyngeal primary tumour location (both p < 0.05). 

Radiomic factors 
Redundancy filtering showed many strong (absolute) associations, which was echoed in 
the heatmap on the thresholded correlation matrix (Figure 1C), including all 
correlations whose absolute value equals or exceeds 0.95. After redundancy 
thresholding, 124 radiomic features were retained (Figure 1D). The remaining 
correlation matrix was subjected to ridge-regularization with the optimal regularization 
parameter value determined by 5- fold cross-validation of the log-likelihood. The 
resulting regularized matrix was well-conditioned. 

The factor analytic data compression of the regularized correlation matrix resulted in 
eight latent meta features (factors). These retained 80% of the covariation between the 
original 124 features. Hence, the factor solution was deemed to sufficiently represent the 
original feature-space (Supplement 1).  
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Representation of original features in the radiomic factors 
Factor 1 consisted mainly of (I) least axis length (morphology) and (II) non-uniformity 
(GLRLM; grey-level-run-length matrix and GLDZM; grey-level-distance zone-matrix 
(counts the number of groups of linked voxels, which share a specific discretized grey-
level and possess the same distance to ROI edge), and (III) high dependence of high grey 
levels (NGLDM; neighbourhood grey-level difference matrix, which aims to capture the 
coarseness of the overall texture172).  

Factor 2 consisted mainly of (I) histogram range (intensity), (II) (A) contrast, 
dissimilarity, cluster prominence (GLCM; grey-level-co-occurrence matrix), (B) zone 
size non-uniformity (GLSZM; grey-level-size-zone matrix) (C) complexity, contrast, 
and strength (NTGDM; neighbourhood-grey-tone-difference matrices), and (D) small 
distance high grey level emphasis (GLDZM).  

Factor 3 consisted mainly of (I) maximum histogram gradient and inversed minimum 
histogram gradient (Intensity), (II) (A) long run low grey-level emphasis and run-length 
variance (GLRLM), (B) zone size variance (GLSZM) (C) busyness (NGTDM), and (D) 
high dependence emphasis and dependence count variance (NGLDM).  

Factor 4 consisted mainly of (I) volume difference (intensity), (II) (A) inversed 3D 
coarseness, grey-level nonuniformity, large distance low grey-level (NGTDM), and (B) 
inversed low grey-level count and energy count (NGLDM).  

Factor 5 consisted mainly of (I) asphericity, major axis length, inversed compactness, 
and flatness (morphology).  

Factor 6 consisted mainly of (I) histogram coefficient of variation (intensity) (II) second 
measure of information correlation (GLCM) and (III) Morans I (Morphology).  

Factor 7 consisted mainly of (I) inversed small zone low grey-level emphasis (GLSZM). 

Factor 8 consisted mainly of inversed difference features (GLCM), but scored lower than 
the overlapping factor 1 features. 

Associations between clinical and [18F]FDG-PET parameters with 
radiomic factors  
The significant associations after Bonferroni’s correction of each of the 8 factors with T-
stage, N-stage, HPV-status, and smoking in the training set (Table 2) showed that factor 
1 had a significant positive correlation with T-stage (r = 0.454), SUVmax (r = 0.440), 
SUVpeak (r = 0.521), SUVmean (r = 0.468), TLG (r = 0.807), and MATV (r = 0.947). 
Factor 2 correlated significantly with SUVmax, SUVpeak, and SUVmean (r = 0.704–
0.740). Furthermore, T-stage correlated significantly with SUVmax (r = 0.412), 
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SUVpeak (r = 0.438), SUVmean (r = 0.422), and MATV (r = 0.405). HPV-status 
correlated negatively with SUVmean (r = − 0.338). In the validation set, associations 
between factor 1 and TLG and MATV (r = 0.812, 0.887), factor 2 and SUVmax, 
SUVpeak and TLG (r = 0.838–0.876), and factor 3 and TLG and MATV (r = 0.494, 
0.815, respectively) remained significant (Supplement 2). Low association was found 
between factors (Supplement 3). 

Table 2: Correlations of radiomic factors with clinical parameters and FDG-PET parameters in the 
training set. 

Factor 
1 

Factor 
2 

Factor 
3 

Factor 
4 

Factor 
5 

Factor 
6 

Factor 
7 

Factor 
8 

SUV-
max 

SUV-
peak 

SUV-
mean TLG MATV 

T-stage 0.45 0.23 -0.10 0.11 0.11 -0.10 0.12 0.04 0.41 0.44 0.42 0.32 0.41
p-value 0.00 0.02 0.31 0.27 0.26 0.31 0.21 0.73 0.00 0.00 0.00 0.00 0.00

N-stage 0.08 -0.08 0.09 0.14 0.07 0.04 -0.05 0.05 0.06 0.05 0.04 0.06 0.07
p-value 0.45 0.41 0.39 0.15 0.49 0.67 0.60 0.64 0.57 0.65 0.68 0.54 0.52

HPV -0.26 -0.27 0.13 0.01 -0.15 0.06 0.01 0.04 -0.33 -0.33 -0.34 -0.20 -0.25
p-value 0.01 0.01 0.21 0.95 0.13 0.58 0.93 0.72 0.00 0.00 0.00 0.05 0.01

Smoking 0.02 0.05 -0.12 0.08 0.27 0.01 -0.04 0.08 0.14 0.10 0.10 -0.03 0.03
p-value 0.84 0.61 0.23 0.44 0.01 0.89 0.70 0.44 0.16 0.34 0.32 0.75 0.77

SUV-max 0.44 0.72 -0.09 0.31 0.08 0.04 0.17 0.17
p-value 0.00 0.00 0.35 0.00 0.43 0.66 0.10 0.09

SUV-peak 0.52 0.70 -0.03 0.28 0.04 0.02 0.15 0.18
p-value 0.00 0.00 0.73 0.00 0.68 0.84 0.14 0.07

SUV-mean 0.47 0.74 -0.07 0.29 0.01 -0.02 0.15 0.16
p-value 0.00 0.00 0.46 0.00 0.92 0.87 0.13 0.11

TLG 0.81 0.17 0.40 0.08 0.04 0.01 0.07 -0.11
p-value 0.00 0.08 0.00 0.43 0.69 0.92 0.48 0.25

MATV 0.95 0.02 0.03 0.04 0.10 0.00 0.02 -0.23
p-value 0.00 0.82 0.73 0.66 0.30 1.00 0.82 0.02

Bold numbers were significantly correlated (p < 0.001), after the Bonferroni multiple testing correction. 

Prognostic value of clinical, [18F]FDG-PET parameters, and 
radiomic factors in the training set  
The significant predictors of recurrence were in the training set per clinical, PET 
parameter of radiomic factors separately; HPV-status; MATV; and factors 1 and 4 
(Supplement 4). 

The combination of clinical and [18F]FDG-PET parameters resulted in N-stage, HPV-
status; and SUVmean as significant predictors (Supplement 5). The combination of 
clinical and radiomics parameters resulted in HPV-status; and factors 1, 4, 5 as 
significant predictors. The combination of clinical, [18F]FDG-PET, and radiomics 
parameters resulted in HPV-status, SUVmean, SUVpeak, factor 3, 4, and 6 as significant 
predictors (Supplement 4) and was significantly (p = 0.041; Supplement 5) most 
accurate to predict recurrences (CI = 0.796, SE = 0.045) as compared with other 
combinations (Table 3). 
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The significant predictors for distant metastasis were in the training set per clinical, PET 
parameter of radiomic factors separately; only MATV (Supplement 3). 

The combination of clinical and [18F]FDG-PET parameters resulted in N-stage and 
SUVmean as significant predictors (Supplement 4). The combination of clinical 
parameters, [18F]FDG-PET parameters, and radiomics resulted in only MATV as 
significant predictor (Supplement 4). 

The significant predictors for overall survival were in the training set per clinical, PET 
parameter of radiomic factors separately; T-stage, HPV-status; MATV; factors 1 and 5 
(Supplement 4). 

The combination of clinical and [18F]FDG-PET parameters resulted in HPV-status and 
MATV as significant predictors (Supplement 4). The combination of clinical parameters 
and radiomics resulted in factors 1 and 5 as significant predictors. 

The combination of clinical parameters, [18F]FDG-PET parameters, and radiomics 
resulted in HPV-status, SUVmax, SUVmean, factors 1 and 5 as significant predictors 
(Supplement 5) and was non-significantly (p > 0.05; Supplement 6) most predictive (CI 
= 0.750, SE = 0.046) as compared with other combinations (Table 3). 

Table 3: Predictive accuracy of clinical parameters, PET-parameters, and radiomics factors 
separately and combined for the prediction of locoregional recurrence, metastasis, and death. 
n=103 Recurrence (27) 

CI (SE)  
Metastasis (10) 
CI (SE) 

Death (37) 
CI (SE) 

Clinical parameters 
T-stage, N-stage, HPV-status, Smoking 

0.70 (0.05) 0.69 (0.10) 0.69 (0.04) 

PET parameters 
SUVmax, SUVmean, SUVpeak, TLG, MATV 

0.62 (0.07) 0.76 (0.06) 0.71 (0.04) 

Radiomics parameters 
Factor 1 to 8 

0.72 (0.06) 0.75 (0.08) 0.71 (0.05) 

Combined
clinical + PET 

0.76 (0.05) 0.82 (0.05) 0.74 (0.04) 

Combined
clinical + radiomics 

0.77 (0.04) 0.83 (0.07) 0.75 (0.05) 

Combined
clinical + PET + radiomics 

0.80 (0.05) 0.95 (0.03) 0.75 (0.05) 

CI: concordance index. SE: standard error. 

Validation of the prognostic models 
In the validation set, the prognostic accuracy of each trained model predicting the risk 
for recurrence, metastasis, and overall survival was validated (Table 4). This resulted in a 
validated CI = 0.645 (SE = 0.071) for recurrence, CI = 0.627 (SE = 0.094) for metastasis, 
and CI = 0.764 (SE = 0.062) for overall survival (Table 4 and Figure 3). 
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The risk stratification into a high, medium, and low risk for adverse outcome was 
constructed; for recurrence (p = 7E−5), metastasis (p = 0.002) and overall survival (p = 
4E−7) (Figure 2, Supplement 7 and 8). A clinical applicable patient-specific risk 
calculator was constructed for a single patient to predict recurrence, metastasis, or death 
(Table 5). 

Table 4: The accuracy of the prediction models for recurrence, metastasis, and overall survival in 
the training set and validated in the validation set. For the recurrence prediction, the combination 
of HPV, SUVmean, SUVpeak, factors 3, 4, and 6 was most accurate. For the metastasis prediction, 
the use of only MATV was most accurate. For overall survival prediction, the combination of HPV,
SUVmax, SUVmean, factors 1 and 5 was most accurate. 
Final prediction models Training set (n=103) Validation set (n=71) 

Events CI (SE) Events CI (SE) 
Recurrence prediction 
HPV, SUVmean, SUVpeak, factor 3, factor 4, factor 6 

27 0.78 (0.05) 19 0.65 (0.07) 

Metastasis prediction 
MATV 

10 0.66 (0.09) 18 0.63 (0.09) 

Overall survival prediction 
HPV, SUVmax, SUVmean, factor 1, factor 5 

37 0.75 (0.05) 22 0.76 (0.05) 

Events: number of recurrences in the recurrence prediction model; number of distant metastases in the 
metastasis prediction model; number of deaths in the overall survival prediction model.  
CI: concordance index. SE: standard error. 

Figure 2: Accuracy of the combined prediction of locoregional recurrence (left), 
metastasis (middle), and overall survival (right) in the validation cohort. The curve of 
the relatively small medium risk group for metastasis is short; this is due to the short 
follow-up time until the metastasis occurred. A significant predictive risk stratification 
(p < 0.05) was shown, divided in low (0–33%), medium (33–66%), and high (66–100%) 
risk for an unfavourable prognosis. 
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7Figure 3: ROC curves in the training and validation set per patient outcome prediction. 
AUC: area under the incident receiver operating characteristic curve (ROC) for each 
final model in the training set as well as in the validation set for the prediction of 
recurrence, metastasis, and death within 2 years of follow-up after end of treatment. SE: 
standard error.  
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Table 5: Risk calculators 
Recurrence Metastasis Death 
Predictor Result Predictor Result  Predictor Result 
HPV*   0 × -1.45 = 0.00 MATV 51.7 × .064 = 3.33 HPV*   0 × -0.98 = 0.00 
SUVmean   6.74 × -2.48 = -16.76 SUVmax   8.38 × -0.58 = -4.89 
SUVpeak   8.55 ×   1.89 = 16.15 SUVmean   4.85 ×   0.95 = 3.64 
Factor 3 -1.29 × -1.27 = 1.65 Factor 1 -0.81 ×   0.52 = -0.43 
Factor 4 -0.26 × -0.36 = 0.09 Factor 5   1.23 ×   0.54 = 0.67 
Factor 6 -0.55 × -0.60 = 0.33

Sum 1.46 Sum 3.33 Sum -1.01 
1 − 𝑒ି଴.ଵଷ௘ೄೠ೘శభ.యవ=  0.90 1 − 𝑒ି଴.ଵ଴௘ೄೠ೘షబ.లల=  0.75 1 − 𝑒ି଴.ଶଵ௘ೄೠ೘శబ.మల=  0.09 

Risk 90.1% Risk 75.2% Risk 9.5% 

The risk calculators can be used in clinical practice to calculate the risk per specific patient for locoregional 
recurrence, metastasis or death during the follow-up time of 2 years. The yellow boxes could be filled-in with 
the single patient data in order to calculate the risks.  
* HPV-status: 0 = negative, 1 = positive

Discussion 
In this study, the examination of the prognostic value of pre-treatment [18F]FDG-PET 
radiomics in locally advanced HNSCC showed that the discriminatory performance of 
the combination of latent radiomics factors of [18F]FDG-PET was of additional value in 
predicting recurrence, metastasis, and overall survival and that the combination of 
clinical, PET, and radiomics parameters was most predictive.  

Radiomics process 
The primary goal of radiomics is to build clinical models using machine learning 
techniques180 in order to predict patient outcome, thereby allowing for better 
personalized treatment management. These multivariable prediction models might be 
unintelligible for clinicians, because they combine a large number of high-order 
multimodality image features.181,182 However, they may outperform visual analysis in 
terms of accuracy.  

Aerts et al. selected only the single best predictive features on CT from each of their four 
main feature categories (statistical features (e.g., mean, maximum, peak, mode), shape, 
grey-level-non-uniformity, and wavelet grey-level-non-uniformity HLH (i.e., describing 
intratumoral heterogeneity after decomposing the image in mid-frequencies).159 
Bogowicz et al. reported that performing PET, the combination of principle component 
analysis (PCA; a statistical procedure that converts a large set of observations of possibly 
correlated variables into a smaller projection of the most informative linearly 
uncorrelated variables) and univariate feature selection using the Cox regression with 
backward selection, resulted in the least complicated model with best discriminative 
power.154 However, their final PET model consisted of only 2 single radiomic features, 
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and no clinical variables were considered. Vallières et al. trained predictive models for 
each radiomic feature combined with clinical variables and patient outcome by 
performing random forests and made adjustments to model imbalance.145 Finally, only 
one PET-radiomics (GLNGLSZM) and two CT-radiomics features were included in the 
model. These methods manually excluded all other possible prognostic features.  

In this study, a dimension reduction was performed of the feature space by removing 
redundant features (retaining 124 features). Based on these features, a factor analysis 
was performed, which consisted of a feature subset (i.e., factor) and contains a part of 
the predictive feature spectrum on a scale of importance. This allowed the preservation 
of the multiple predictive features and assess possible interactions or associations. This 
might provide insight in the underlying concepts of the heterogeneous whole-lesion 
PET data, as a basis for identification and targeting tumoral subvolumes which are 
predictive for adverse outcome.183 Moreover, this factor analysis was done separately 
from the patient outcome, which might allow for the improvement of the tumour 
specific classification, as basis for prognosis prediction. However, in other studies which 
selected single features, this inter-correlation of feature was lost.154,159 Thirdly, it 
overcomes the risk of data overfitting, which arises when the number of features is large 
and the number of training data is comparatively small.184  

Tumour characteristics by radiomic factors 
The spectrum of known predictive clinical and first order PET parameters might be 
extended with noncorrelated PET-radiomic features we found in this study, capturing 
complementary characteristics of the complex heterogeneous tumoral 
microenvironment.  

Low values of factor 3, 4, and 6 were predictive of recurrence, complementary to 
negative HPV-status, low SUVmean, and high SUVpeak. Factor 3 correlated in the 
validation set with MATV and measured mainly maximum histogram gradient and long 
low grey-level lengths with a variance of lengths and zones, and high busyness, which 
might indicate tumoral intensity heterogeneity in tumoral zones of varying size, with 
long rows of low grey-level voxels (i.e., low [18F]FDG uptake). These features might 
capture the presence of necrotic regions within the core of tumours. Previously, this 
correlation between heterogeneity and volume in PET-data was reported by Hatt et 
al.157 Also Cheng et al. found that besides TLG, uniformity (local scale texture 
parameter) and zone-size non-uniformity (ZSNU) were usable as prognostic 
stratifiers.185 This was confirmed by Vallières et al., who also reported that GLSZMGLN 
(grey-level size zone matrix with grey-level non-uniformity) was predictive for 
locoregional recurrence.145 Also Bogowicz et al. found that GLSZMZSLGE (grey-level 
size zone matrix; with zone size low grey-level emphasis) was predictive for favorable 
prognosis (CI 0.71).154 However, in their study, different scanners were used between 
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training and validation cohorts, which reduced data quality. Factor 4 measured slightly 
different characteristics such as intensity differences with high grey-level counts 
(inversed low grey-level count) and grey-level non-uniformity (inversed coarseness). 
This factor might capture the heterogeneity of tumoral sub-areas with a mainly high 
[18F]FDG-tracer uptake. Factor 6 measured the histogram variety of intensity and 
quantifies the complexity of the texture (second measure of information correlation), 
which might capture the tumoral range of [18F]FDG-uptake and differences of uptake 
between sub-areas. These radiomics features, bundled in factors, were not previously 
described in literature and might provide insights in the extent of tumoral clonal 
heterogeneity and interactions, which might help us to control tumours.143  

For distant metastasis prediction, we found in this study the use of MATV only was 
most accurate and outperformed all other clinical and radiomic parameters. This was 
partly confirmed by Vallières et al., who also found tumoral volume, as well as age, 
tumour type, and N-stage as well as CT-radiomic heterogeneity features as predictive 
parameter.145 The large metabolic active tumour volume might enable large numbers of 
cell divisions, tumour progression into genetic instability, which might lead to 
metastatic ability.143  

High values of factors 1 and 5 were most predictive of adverse overall survival, 
complementary to negative HPV-status, SUVmax, and SUVmean. Factor 1 correlated 
significantly with T-stage and all PET parameters, with the highest correlation of those 
which were volume-related. This was in line with Vallières et al. [8], who found that 
volume outperformed each radiomic models. However, factor 1 consisted also of mainly 
morphologic and non-uniformity texture features and was dependent on high intensity, 
which might correlate with large heterogeneous tumoral entities. This factor might 
capture the voluminous extent of the tumour, combined with areas of high [18F]FDG-
tracer uptake. El Naqa et al. also reported that intensity histogram and shape features 
were predictive of survival.160 Factor 5 measured also morphological tumour 
characteristics, such as asphericity, major axis length, and inversed compactness and 
inversed flatness. This was found complementary to the volume-related features in 
factor 1, and in line with Bogowicz et al., who reported that besides GLSZMZSLGE, 
sphericity was most predictive for favourable prognosis (CI = 0.71).154 Also, Aerts et al. 
reported similar results in CT-data, showing that patients with more compact/ spherical 
tumours had better survival probability.159 Factors 1 and 2 both correlated with PET 
parameters and reflected particular heterogeneous distribution of [18F]FDG-PET 
uptake. Factor 1 correlated with volume-related TLG and MATV in the validation set. 
Factor 2 measured the histogram range, contrast, and small high grey emphasis, and 
correlated with SUVmax, SUVpeak, and SUVmean, and did not remain predictive.  
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Discriminative power of prediction models 
In order to improve predictive accuracy, patient-specific tumoral characteristics were 
captured by radiomics features and such as low grey-level zone sizes, heterogeneous 
busyness and morphologic tumour volume, and bundled by factors. Prediction models 
including these factors are hypothesized to be more patient-specific, because of more 
unique characteristics, than models which do not investigate underlying feature 
correlations and include only the single most predictive feature. Vallières et al. 
combined clinical parameters, without HPV-status, with only one PET- and CT-
radiomic feature; however, the prediction accuracy was similar for locoregional 
recurrences (AUC = 0.69) and overall survival (CI = 0.74).145 Aerts et al. used the top 4 
performing CT-features of each radiomics feature category, where inclusion of TNM-
stage improved performance and showed a survival prediction of CI = 0.69.159 Bogowicz 
et al. reported a CI of 0.71 using PET-radiomics; however, data was influenced by 
artifacts, scanner, and protocol heterogeneity.154 Also, current study showed that for 
metastasis prediction, the use of only MATV was most accurate. The accuracy of the 
prediction model combining all clinical (T-stage), first-order PET (SUVmean), and 
radiomic factors was found to be higher than the final model, consisting of only MATV. 
This might be due to the fact that the other features still hold some predictive power. 
Although this might provide insights in metastatic tumour characteristics, it should be 
validated in future studies. This was partly in line with Vallières et al., who also found 
volume-parameter was most predictive, but they found additional value for CT-
radiomics features.145  

Clinical applicability 
The efficacy of a treatment plan, nowadays based on information from clinical 
examination (under anaesthesia), visual interpretation of imaging, and invasive biopsies, 
could be optimized by taking the patient-specific pathophysiologic phenotype into 
account186 using quantitative imaging assessment. The underlying tumour biology could 
be heterogeneous with different sub-clonal populations, continuously changing and 
associated with resistance to treatment, recurrence, and overall survival.145,159 Many 
studies145,154,159,160 constructed predictive models based on the selection of a few 
radiomic features excluding clinical parameters (e.g., HPV status) and interactions with 
radiomic features, in order to reduce the risk for overfitting.145,154,159  

In this study, we showed an advanced factor analysis using three-dimensional whole-
lesion radiomic features as well as retaining feature interactions captured in radiomic 
factors. These complementary factors improved predictive accuracy to the basis of 
clinical factors, including HPV-status and first-order PET parameters, and remained 
accurate after validation. Although we found a correlation between MATV and T-stage 
(mainly based on tumour volume), volume-related parameters were more predictive. 
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Furthermore, we presented a patient-specific clinical-applicable risk stratification for 
patients with head and neck cancer treated with (chemo)radiotherapy. Low-risk patients 
could be candidates for treatment de-escalation studies187,188, whereas high-risk patients 
could benefit from treatment escalation189, immunotherapy190, or surgical treatment. 
This optimization of treatment efficacy might also result in a beneficial reduction of 
costs. Identification and validation of optimal machine-learning methods for radiomic 
applications using standardized EANM guidelines163 is crucial towards reproducible 
biomarkers in clinical practice, complementary to the clinical and first-order PET 
parameters.  

Limitations 
At the assessment of multiple clinical, first-order, and radiomic features, there is a risk 
for overfitting bias. In the current study, we used a relatively large patient sample size 
and performed a multicollinearity filtering to exclude highly correlated features. 
Moreover, the factor analysis projects the large and collinear radiomic feature-space 
onto an orthogonal latent-feature-space of smaller dimension (8 factors) while retaining 
the bulk of the information contained in the full data. This projection is thus geared 
towards the avoidance of overfitting. Finally, a limited amount of clinical, first-order 
PET and PET-radiomic factors was combined in a multivariable model. However, it is 
still possible that the number of events was not enough to construct a statistically robust 
prediction model. In this study, validation was performed internally by 5-fold cross-
validation of the prognostic models. Moreover, we used an independent validation 
cohort of similar institute to estimate the performance of a prediction model. In Table 4 
and Figure 3, we present the results obtained for the training set as well as the 
independent validation set. We can see that for the recurrence prediction model, the 
concordance index for the independent validation set is somewhat lower, while for the 
other 2 models, a similar performance was found between the training and 
(independent) validation dataset. However, in future studies, validation in a larger 
cohort from an external institute is still needed.  

The prognostic model performance might be optimized by a stricter redundancy 
filtering to retain only complementary factors; however, in this study, we saved the 
inclusion of possible predictive underlying relationships of features. This model should 
be constructed using a limited number of factors separate from patient’s outcome, in 
order to solely include predictive tumoral processes and to minimize cohort-dependent 
prognostic influences. Another improvement of the prognostic model performance 
might be the implementation of complementary predictive CT-radiomic 
features159,191,192, which would require similar acquisition parameters, artifacts reduction 
techniques, and a larger patient population to overcome the risk of overfitting and 
should be evaluated in future studies.  
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This study was hypothesis generating and the feasibility was tested. However, in the next 
step to clinical translation, more extensive validation and refinement on larger and 
external datasets as well as evaluation of the clinical applicable calculators, is needed. 
Moreover, it is of interest to perform further technical validation, such as by the use of 
voxel randomization.193,194 Our study suggests that adding radiomics to the [18F]FDG-
PET image analysis can improve prognostication as a step towards personalized 
treatment of HNSCC patients.  

Conclusion 
The combination of HPV-status, first-order [18F]FDG-PET parameters, and 
complementary radiomic phenotype specific factors improved time-to-event prediction 
most accurately. Predictive tumour-specific characteristics and interactions might be 
captured and retained using radiomic factors, which allows for personalized risk 
stratification and optimizing personalized cancer care.  

Supplementary material 
Supplementary material for this paper is available at: 

doi.org/10. 1186/s13550-020-00686-2 
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Biomarkers are the measures used to perform clinical assessment and therefore need to 
be validated before they can be used to make well-founded medical decisions. The studies 
included in this thesis have mainly addressed some technical aspects of imaging 
biomarker validation and investigated simplifications that would facilitate clinical use. 
This chapter provides a summarizing discussion of the implications and describes the 
future perspectives.  

Technical validation and method simplification are two important elements on the 
biomarker roadmap towards clinical translation.195 Technical validation looks into the 
accuracy and precision of measurement of a potential biomarker. Parallel tracks on the 
roadmap look into biological validation (whether the biomarker is actually related to 
underlying biology) and clinical validation (whether the biomarker is clinically useful in, 
for example, diagnosis, prognosis or treatment response prediction). Method 
simplification is an important aspect for translation into clinical practice, because 
complicated methods that can be studied in research may not be feasible in clinical 
practice. This simplification must always be balanced against validity—in our case, 
technical validity—of the biomarker.  

The study in chapter 2 studied the possibility of omitting the invasive arterial input 
function measurement to simplify the clinical protocol for estimating brain perfusion 
with [15O]H2O PET. In earlier research it has already been indicated that absolute 
quantification of CBF using [15O]H2O PET without an arterial input function is unlikely 
to be accurate. This proved to be especially true for the short bolus imaging protocol that 
we used in our study. Nevertheless, one of the methods (from Treyer et al.) estimated 
perfusion with reasonable precision, which could allow for assessment of short-term 
longitudinal changes. Obtaining accurate relative perfusion estimates—relative to the 
global brain perfusion—is possible, as the study confirmed. The double integration 
method proved to be best method for measuring relative perfusion in terms of both 
accuracy and repeatability. Our study also included several simplified parameters that are 
derived directly from the time activity curve. These simplified parameters are popular in 
perfusion research using other techniques, for example in MR perfusion imaging. The 
problem with these simplified parameters is that they are often derived from a small part 
of the time activity curve. Therefore, they are sensitive to noise. This problem occurs 
especially in PET, where the level of noise for a signal from a single voxel is quite high. 
However, as the study’s simulations show, even without noise, many of these parameters 
from the time-activity curve tend to be biased or nonlinearly related to the parameter of 
interest: perfusion. Perhaps unsurprisingly, the area under the curve is one of the better 
parameters that can still cross the first translational gap and can be used as a reliable 
biomarker in clinical research, such as in perfusion ultrasound.196 As a result of the 
integration, the parameter is relatively insensitive to noise. However, the parameter is still 
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nonlinearly related to perfusion. The double integration method removes this 
nonlinearity and is still equally insensitive to noise. The method shows that it is possible 
to develop biomarkers that are easily obtained and still provide robust and biologically 
relevant estimations.  

Tracer kinetic modelling is a fundamental step in validation of PET tracer biomarkers. 
The chapters 3 and 4 address the validation of simplified methods through kinetic 
modelling of the tracer FET in glioma. First, in chapter 3, the optimal plasma input kinetic 
model was identified (the reversible two-tissue compartment model with fitted blood 
volume fraction). Although the size of our dataset is small, the data indicates that the 
model preference is independent of tumour grade. Based on [15O]H2O PET CBF 
measurements we concluded that extraction fractions were highly variable between 
patients, which could be caused by differences in transporter expression and/or blood 
brain barrier breakdown. This disabled the investigation of perfusion dependence of the 
simplified methods. The model was therefore only used to assess agreement and 
correlation between full kinetic parameters and simplified methods. The results show that 
a possible downside of early static imaging might be that variability in uptake time will 
lead to variability in SUV. Better correlation was found at later uptake time intervals (60-
90 min post injection). Reference tissue input compartment models did not correspond 
well with plasma input derived distribution volume ratios (DVR). This may be possibly 
explained by the violation of the reference tissue model assumptions, i.e., the measured 
signals are not represented by a single-tissue compartment model and the ratio K1 over k2 
is not constant between the reference and target tissue. Consequently, use of reference 
tissue input models may not be valid for dynamic [18F]FET brain studies. The SUV-ratio, 
however, showed slightly better results. The results of the study suggest that for both SUV 
and SUV-ratio later time point imaging (60-90 min post injection) outperforms currently 
recommended uptake time (20-40 min post injection) in terms of correspondence with 
the kinetic model. 

In chapter 4, we evaluated the performance of several methods of parametric mapping for 
the analysis of dynamic brain 18F-FET PET studies. Parametric maps provide parameter 
values for each voxel, and can therefore be used to assess the location of tumour 
boundaries or assessing tracer uptake distribution within the tumour. The results indicate 
that Logan graphical analysis is best suited for deriving the volume of distribution (VT) 
and that SUVr60–90 (tumour-to-normal maps at interval 60–90 min) is a good substitute 
for the distribution volume ratio (DVR). In line with chapter 3, SUV-ratio images at a 
later interval provided better quantitative performance; however, their use to estimate the 
tumour extent may prove problematic in some glioblastoma patients: the contrast 
between tumour and surrounding tissue decreases over time, which can make it harder 
to see and locate the boundaries of the tumour. 
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In our study in chapter 5, we investigated the measurement of AIFs in DCE-MR images 
from head and neck cancer patients and found that we were not able to accurately 
estimate arterial concentrations from the images. Concentration was measured in several 
arteries in the neck and the concentration differences between the arteries, and the 
difference with concentrations from literature, all point to this conclusion. This 
inaccuracy is likely due to blood flow and partial volume and 𝑇ଶ

∗ effects. Additionally, the 
accuracy is further decreased by the nonlinearity of the MR signal to concentration. This 
nonlinearity is more pronounced at higher concentrations, which makes it hard to 
estimate high concentrations. The high concentration peak is an important part of the 
arterial input function. The poor accuracy of AIF measurement is probably the reason 
why the repeatability of estimated kinetic parameters does not improve when an image-
derived AIF is used instead of a population averaged AIF. Therefore, the use of the latter 
is recommended. However, by definition, the population averaged AIF does not correct 
for variability in cardiac output between patients. The image-derived AIF does not 
provide an improvement in this regard and can therefore be omitted.  

The intravoxel incoherent motion (IVIM) model estimates diffusion and perfusion 
related parameters from diffusion-weighted imaging. These biomarkers can be useful for 
disease management in head and neck cancer. Chapter 6 describes the head-to-head 
comparison of IVIM fitting methods in terms of test-retest repeatability. The investigated 
methods were nonlinear least-squares regression, Bayesian probability estimation, and 
two implementations of a neural network. Use of a neural network is appealing for clinical 
practice because its application is very quick (calculation time is in the order of seconds). 
Clinical translation of the neural network approach is, however, still hampered by the lack 
of consistency because even a repeated training on the same dataset already yields 
different results. If the model is retrained, for example by another medical centre, the 
precision of the new model is not the same as the old model. A challenging task for further 
research is therefore to develop a way to make model training more robust.  

In chapter 7 we investigated the clinical value of [18F]FDG PET radiomics for patients 
with locally advanced head and neck squamous cell carcinoma. These patients undergo 
pre-treatment [18F]FDG PET imaging which can be useful for detection, treatment 
decision support151, planning152,153, and the prediction and detection of recurrences and 
long-term outcome139. Lesions can be characterized further using radiomics features. Our 
study shows that analysis of these features in addition to clinical and first-order [18F]FDG 
PET parameters improves the prediction of recurrence, metastasis, and overall survival.  

A distinct step in our methodology, compared to other radiomics studies, is the 
dimension reduction, which consists of first removing the redundant (highly correlated) 
features and then combining the remaining features into a smaller number of factors. The 
factors are still subjected to parameter selection in the final model definition, further 
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reducing the number of parameters to avoid overfitting the data. The idea is that 
combining the features into factors better retains the information than when parameter 
selection is performed on the feature level directly. Our results indicate that this approach 
is indeed feasible and provides additional value to clinical information and first order 
image parameters. However, a downside to this factor conversion is that the factors 
themselves are hard to interpret. Because they form a combination of radiomic features it 
is difficult to intuitively relate them to the disease. This would make it hard for a clinician 
to apply in routine care, because there is no clear understanding of why a certain outcome 
is predicted. 
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Future perspectives 
Development of quantification methods for imaging biomarkers is a scientific process of 
technical, biological and clinical evaluation. The continuous development is an indication 
of our confidence: we can improve those methods and, with them, we can make better 
clinical decisions for patients. Here we discuss the potential improvements.  

PET pharmacokinetic modelling 
Part of this thesis has worked on the evaluation of methods which do not rely on the 
arterial input function. Elimination of its use has been a widely used strategy towards 
simplification of quantitative PET biomarkers. The main reason for this is that 
continuous arterial sampling used to acquire the input function is technically challenging 
and invasive and burdensome for the patient. With the introduction of new PET scanners 
with a long axial field of view (total body PET), continuous arterial sampling may no 
longer be required. Most scanners today have an axial length of up to 30 cm. Total body 
scanners on the other hand have an axial field of view of more than 70 cm. This enables 
the use of an image derived input function in both brain and lower body scanning, where 
the aorta would otherwise be outside of the field of view. For most tracers, it is likely that 
one or more blood samples will still be required to account for the fraction of radioactive 
metabolites, which is a crucial step to acquire reliable biomarker estimates from 
pharmacokinetic modelling. Potentially, whole body distributions of the tracer and 
uptake in the liver can be used to replace these samples, making the imaging process 
completely non-invasive.  

In our studies regarding the pharmacokinetic modelling of FET in glioma (chapters 3 and 
4), we evaluated simplified parametric methods that can for example be used for 
delineation of the tumour extent. In our data we could see that when an image is created 
in the interval of 20-40 minutes post injection of FET, the contrast between tumour and 
healthy tissue is larger than when the image is acquired at 60-90 minutes post injection. 
Hence, it would seem obvious that the image with better contrast is the better interval for 
measurement. This early interval is also currently recommended in RANO guidelines. 
However, from our technical validation study we conclude that images taken at the later 
interval are more accurate when compared to the results of kinetic modelling. The 
standardized uptake value ratio provides a composite measurement and it seems that this 
composition is more variable during early interval imaging. From a technical 
investigation we cannot estimate the potential clinical implications: changing the imaging 
interval could be of negligible importance to the clinical endpoint. For instance, it cannot 
be concluded that later imaging will lead to better tumour delineation. However, results 
from a subsequent clinical study on the accuracy of FET to detect glioma infiltration 
(using the same data) showed that the later interval estimates achieved higher accuracy.197 



Future perspectives  

125 

8 

The potential for improvement justifies further investigation and clinical comparison of 
a simplified parameter from static images measured at different intervals is feasible.  

MR quantification 
MR based quantification is mainly challenging because of the inherent complexity of the 
imaging technique. For example, in the case of DCE MRI, the concentration estimation 
requires a number of measurements, each associated with its own uncertainty or error. 
The measured signal intensity is not only related to the concentration, but also to other 
tissue parameters, and instrument settings.  This is why not only the signal enhancement 
needs to be measured, but also the pre-contrast relaxation time T1, and B1 
inhomogeneity. Moreover, the T1 value in blood cannot be easily measured and is usually 
assumed. Hence, future studies may improve DCE quantification—and MRI 
quantification in general—by optimizing and standardizing the measurement and 
estimation techniques (such as improved T1 and B1 mapping). Sequence standardization 
and harmonization will also accelerate biomarker validation. Efforts in this area are 
ongoing, for example by the Quantitative Imaging Biomarkers Alliance (QIBA), which 
collects biomarker evaluation studies to create guidelines and standards for future 
research. Using these standards in future studies will decrease the variability of acquisition 
parameters, and thus make it easier to compare results. This is important because the 
variability in methods extends to clinical studies. For example, literature shows a large 
variability in results regarding the clinical value of MR diffusion parameters, e.g. to 
predict local recurrences or the overall survival of patients with head and neck squamous 
cell carcinoma. The differences between clinical reports are attributed to various factors, 
such as study design, statistical methods and image acquisition. Thus, standardisation of 
image acquisition will reduce disparities between clinical studies.  

Technological advancement of MR systems may improve the measurements accuracy 
itself (for example with improved B1 homogeneity). Note, however, that technological 
improvements do not necessarily lead to improvement in quantitative performance. The 
imaging industry is generally driven by image quality measures, such as image resolution 
and signal-to-noise ratio, which do not always go hand in hand with quantification 
accuracy and precision. MR based imaging biomarker development will therefore benefit 
greatly from quality control intended specifically for quantification.  

The complexity of the MR imaging technique makes (vendor) differences larger and the 
challenge of acquisition and analysis standardisation harder. Moreover, this complexity 
also naturally leads to differences in terminology: identical techniques can have different 
names. A common lexicon can help in recognising true differences between vendors and 
will also clarify technique descriptions in literature. However, even identical models and 
sequences can exhibit systematic differences, which is why reported system models and 
acquisition parameters ultimately have limited value. It may be worthwhile to develop 
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formats to summarize relevant performance metrics of the system and to include that 
information in publications. Most importantly, however, there is a need for more test-
retest studies on MR quantification methods.  

Deep learning 
A general concern with the application of deep or machine learning in biomarker 
estimation is the interpretability of these models and the explainability of parameter 
estimates, such as we see with the factor analysis of radiomic features. Advanced and 
complex models may be able to very reliably predict for example treatment response; 
however, if it is unclear what the prediction is based on, any physician will be hesitant to 
use this information. Hence, future studies could either focus on models that provide 
explainable outcomes, or work to provide insight into why a models output has been 
generated. 

With technological advancements the amount of imaging data is growing, for example 
due to increased spatial or temporal resolution. Processing of these data for parameter 
estimation can be challenging due to the time it takes to process the images. As 
demonstrated by the neural network for IVIM biomarker estimation, deep learning 
methods can provide quick calculation of imaging biomarkers. It is therefore likely that 
the number of deep learning applications will increase, especially for the processing of 
dynamic imaging data that are often slower to process with more conventional 
parameter estimation techniques. Conventional techniques for image analysis may be 
useful in the development of deep learning models. Such techniques could provide 
supervision during training and validation. This would not produce new or improved 
imaging biomarkers—after all, in this case the model will have learned to copy the 
conventional technique—however, it could considerably reduce the processing time 
and/or required resources in the clinic, which is where deep learning methods can 
provide the most benefit. 
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Summary 
This thesis describes various technical aspects of validation of quantitative imaging 
biomarkers derived from different imaging studies (PET, PET-CT, MRI) for various 
targets (perfusion, diffusion, cell metabolism). For the quantification of each of these 
biomarkers a combination of system modelling, signal processing and parameter 
estimation is required. Several aspects hereof (such as model selection, fitting routines 
and signal extraction methods) have been investigated in this PhD project.  

A recurring theme in these studies is the accuracy and precision of a quantitative imaging 
biomarker. Precision or repeatability can be assessed using test-retest studies. With poor 
precision, the clinical value of a biomarker is limited. Moreover, clinical applicability of a 
method is important for implementation in routine care. The research described in this 
thesis therefore focused on optimization as well as simplification of quantification 
methods.  

The first quantification method under study concerns tracer kinetic modelling: the 
application of the radiolabelled water tracer [15O]H2O to measure tissue perfusion. 
[15O]H2O is an ideal perfusion tracer, because extraction of water (from the blood 
compartment) is 100%. The kinetic model to quantify perfusion consists of only one tissue 
compartment and the arterial blood compartment.  

While the model is relatively simple, the downside of the method is the need for 
measurement of the arterial input function, i.e., the tracer concentration in arterial blood. 
Deriving this input function directly from the image is only possible when a large arterial 
vessel, such as the aorta, is within the field of view of the PET system. Without such an 
alternative, the tracer concentration in blood must be measured by (continuous) arterial 
blood sampling, which is invasive and burdensome for the patient. 

The study in chapter two investigated the possibility of simplifying the clinical protocol 
in tracer kinetic modelling of brain perfusion with [15O]H2O PET. In brain PET 
measurements, the aorta is not in the field of view of the scanner and PET resolution is 
not high enough to accurately measure concentration in the small arteries of the neck.1 
The study therefore looked into the possibility of calculating perfusion without knowing 
the arterial input function. A number of simplified methods for estimating (absolute and 
relative) cerebral perfusion, independent of measurement of the AIF, were compared in 
healthy volunteers. Their performance was investigated against a reference kinetic 

1 Due to partial volume effects, accurate quantification is not possible, although there 
are partial volume correction techniques to overcome this. However, a great challenge 
for these techniques is accurate segmentation of the arteries.  
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method, which did use the arterial input function. Moreover, the study included 
assessment of repeatability performance.  

The study confirmed observations from earlier work that without the AIF relative 
quantification is still possible. The double integration method turned out to be best 
method for measuring relative CBF in terms of both agreement with the reference method 
and in terms of repeatability. Although none of the methods was able to provide an 
accurate estimate of absolute perfusion, the method proposed by Treyer et al. did provide 
a reasonable precision and could therefore be used to study changes in absolute CBF 
within the same subject over time.  

The aim of the study in chapter three was, firstly, to derive the optimal plasma input 
kinetic model for dynamic O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) PET studies and, 
secondly, to use that model as a reference to evaluate simplified methods. [18F]FET is a 
PET tracer used in cancer imaging, in particular for brain tumours. The tracer kinetics 
reflect uptake of amino acids necessary for cell membrane synthesis and thus indirectly 
reflect tissue growth. Although the transport mechanisms of the tracer are still not entirely 
understood, the tracer has been shown to be very sensitive in detecting neoplasia in the 
brain and is therefore useful in determining the tumour extent in glioma.  

In seven patients with diffuse glioma, three well-known metabolite corrected plasma 
input models were evaluated and the optimal model was determined to be the reversible 
two-tissue compartment model. Agreement with the optimal model was assessed for 
various simplified methods, including approaches already often used in [18F]FET PET 
studies in glioma: the standardized uptake value (SUV) and SUV ratio. An important 
finding in the study is that, in terms of this agreement, later time point imaging (60-90 
min post injection) outperforms currently recommended uptake time (20-40 min post 
injection).  

In chapter four, the data from chapter three was processed at the voxel level (as opposed 
to region level). This process is called parametric mapping and is useful for evaluation of 
tracer uptake distribution within a tumour or to be able to delineate the tumour extent. 
In the study, several parametric methods and SUV ratio maps were compared in terms of 
accuracy (when compared to results from chapter 3) and map noise level. Both plasma 
input methods and reference tissue methods were included. (Non-invasive) Logan 
graphical analysis provided volume of distribution (ratio) maps with the lowest level of 
noise, but poor accuracy, while the basis function implementations provided the best 
accuracy, but also high noise levels. SUV ratio maps provided better results if later interval 
times were used, i.e., 60–90 min instead of 20–40 min, leading to lower bias (2.9% vs. 
10.8%, respectively) and less noise in the map (12.8% vs. 14.4%). 



Summary  

145 

Chapter five investigated the precision of image-derived arterial input functions obtained 
with dynamic contrast enhanced MRI in head and neck cancer patients. The arterial input 
function (AIF) is necessary to estimate pharmacokinetic parameters with dynamic 
contrast enhanced MRI. The AIF can be measured within the image (image-derived), or 
a population averaged AIF can be used. An accurate patient-specific measurement is 
preferred over the population average AIF, because it can account for the variability in 
cardiac output between patients.  

However, the results show that accurate measurement of an image-derived AIF is unlikely 
in the head and neck region. AIFs obtained from different arteries in the head and neck 
region in the same patient differ in both magnitude and shape. This in turn affects the 
estimation of pharmacokinetic parameters, which differed significantly from those 
estimated using of a population averaged AIF. Usage of the population averaged AIF is 
therefore recommended.  

The intravoxel incoherent motion (IVIM) model for diffusion-weighted imaging may 
provide useful biomarkers for disease management in head and neck cancer. Using data 
from healthy volunteers, chapter six compared the repeatability of three IVIM fitting 
methods to the conventional nonlinear least-squares regression: Bayesian probability 
estimation, a recently introduced neural network approach, and a modified version of the 
neural network.  

The Bayesian and neural network approaches substantially outperformed conventional 
nonlinear regression in terms of test-retest repeatability. The processing speed of the 
neural network makes it viable for use in clinical practice. However, repeated training of 
networks on the same imaging data gives inconsistent results. Our presented 
modifications improve the neural network approach in this regard; however, the 
approach needs to be further improved to identify neural networks that are both 
consistent and precise.  

Finally, Chapter seven shows that [18F]FDG PET radiomics provides additional 
prognostic value when combined with clinical information and first-order [18F]FDG PET 
imaging biomarkers. After extraction, 434 radiomics features were filtered for 
redundancy and combined into 8 latent factors. The results show that these factors can 
improve prediction of recurrence, distant metastasis and overall survival. Moreover, the 
study shows how this information can be used for personalized risk-stratification of 
patients’ outcome. Better prognosis prediction in locally advanced head and neck 
squamous cell carcinoma can thus optimize personalized cancer care. 
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Portfolio of education 
Date achieved ECTS

Courses 
Radiation Safety level 5B 13-11-2015 2.00

PET tracer pharmacokinetics and data analysis procedures 18-11-2015 2.00

Research Integrity 02-12-2015 2.00

institute QuantiVision Winter school 2016 – Quantitative Analysis of Medical Images 26-02-2016 1.50

Machine Learning 01-04-2016 6.00

CCA neXt – 2nd tri-annual meeting 21-06-2016 0.05

Imaging Technology Summer Workshop – TOPIM-TECH 2016 – Multiscale & 
Multiparametric Imaging 15-07-2016 2.00

Basiscursus oncologie – Introductie tot de Klinische en Fundamentele Oncologie 24-03-2017 2.00

PET Pharmacokinetics Course 2017 31-03-2017 2.00

Organisation of institute QuantiVision Conference 2017 21-08-2017 2.00

institute QuantiVision Winter school 2018 – Machine Learning Applied to 
Quantitative Analysis of Medical Images 09-03-2018 1.50

Research group meetings 01-01-2019 2.50

Writing scientific articles under supervision of a senior scientist 01-01-2019 2.00

Meetings department Imaging methodology group 01-01-2019 2.50

Statistics exemption 07-02-2019 0.00

Research related 
European Molecular Imaging Meeting 10-03-2016 0.85

Hands-On MRI course on Head & Neck Imaging 19-03-2016 0.45

EANM'16 19-10-2016 2.00

institute QuantiVision Conference 2017 24-02-2017 0.30

Brain & Brain PET 2017 04-04-2017 2.00

Medical Imaging Symposium for PhD students 2017 19-05-2017 0.30

Medical Imaging Symposium for PhD Students 2018 24-05-2018 0.30

Teaching/Student supervision 
Radiation safety level 5B 15-11-2017 3.25

Advanced Medical Technology – Tracer Kinetic Modelling 25-05-2018 0.25

Master thesis Daniëlle de Jong: Optimisation of Arterial Input Function extraction in 
Dynamic Contrast Enhanced MRI 16-08-2018 1.50

41.25
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