
Some arguments concerning correct rounding of the

elementary functions

Jean-Michel Muller, Paul Zimmermann

To cite this version:

Jean-Michel Muller, Paul Zimmermann. Some arguments concerning correct rounding of the
elementary functions. 2006. <ensl-00086516>

HAL Id: ensl-00086516

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00086516

Submitted on 18 Jul 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-ENS-LYON

https://core.ac.uk/display/52330252?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-ens-lyon.archives-ouvertes.fr/ensl-00086516


en
sl

-0
00

86
51

6,
 v

er
si

on
 1

 -
 1

8 
Ju

l 2
00

6

Some arguments concerning correct

rounding of the elementary functions

Jean-Michel Muller and Paul Zimmermann

August 17, 2006

1 why standardizing correct rounding ?

• to improve portability: for instance, when strict portability is needed,
as was recently the case for the LHC@Home project. This project dis-
tributes a very large computation on a wide, heterogeneous network of
computers, and requires strict floating-point determinism when checking
the consistency of this distribution, due to the chaotic nature of the phe-
nomenon being simulated. Default libraries on different systems would
sometimes return slightly different results.

• with the directed roundings, for implementing interval arithmetic in a
trustable yet accurate way: in round-to-nearest mode, correct rounding
provides an accuracy improvement over usual libms of only a fraction
of a unit in the last place (ulp), since the values difficult to round were
close to the middle of two consecutive floating-point numbers. This may
be felt of little practical significance. However, the three other rounding
modes are needed to guarantee intervals in interval arithmetic. Without
correct rounding in these directed rounding modes, interval arithmetic
may loose up to two ulps of precision in each computation. Actually,
current interval elementary function libraries are even less accurate than
that, because they sacrifice accuracy to a very strict proof;

• because – at least for some functions – it can be done without a signifi-
cant loss in performance. See
http://lipforge.ens-lyon.fr/frs/download.php/58/crlibm-0.11beta1.pdf

as well as our forthcoming paper on the log function:
http://perso.ens-lyon.fr/jean-michel.muller/log.pdf. Hence, anyway,
several libraries that provide correct rounding will be available in the
near future: it would be a pity to miss the opportunity of specifying at
least what these functions should return in special cases.

• because we feel that a standard must show the goal and not merely ac-
knowledge the existing.

1

http://lipforge.ens-lyon.fr/frs/download.php/58/crlibm-0.11beta1.pdf
http://perso.ens-lyon.fr/jean-michel.muller/log.pdf


2 Current status of CRLIBM

The functions that are provided, with correct rounding, in the current version1

of CRLIBM so far are:

• exp, log, log2, log10, cosh, sinh, arcsin of all double precision numbers;

• sin in [−π/2, +π/2], cos in [−π/2, +π/2], tan in [−1/8, +1/8] (this will
quickly improve since we have the hardest to round cases between 0 and
π/2), arctan in [− tan(1/8), + tan(1/8)];

Will soon be provided (the worst cases for correct rounding have been
computed, and the alpha versions of the programs are written and are being
checked): exp(x) − 1 and log(1 + x) for all double precision numbers. For ex-
ample, the hardest to round case with exponent −4 of exp(x) − 1 is

x = (1.1110100100100011110000011000100011101010011110011011)2 × 2−4

with

e
x

−1 = (1.00000011110001011010010000100000100001010111110011110 0000 · · · 000
︸ ︷︷ ︸

56 zeros

1111...)2×2−3

Also, we are getting worst cases for the decimal64 format, as well as (this
was not a big challenge) for the binary32 and decimal32 formats, and we now
have hardest to round cases for the trigs in larger domains.

What is special about CRLIBM is the fact that we provide proofs of the
functions we implement. To be able to generate more functions, more quickly,
we are partially automating the process:

• using our gappa tool2, we compute error bounds and generate formal
proofs for these bounds. Examples can be found in the paper by Dinechin
et al:
http://perso.ens-lyon.fr/guillaume.melquiond/doc/06-mcms-article.pdf;

• we are developing methodologies for getting very good approximations
under constraints3

A new technique suggested by Hanrot, Lefèvre and Zimmermann might
soon allow us to find the hardest to round cases for the trig functions in the full
range, and, therefore, to derive programs for these functions.

1see: http://lipforge.ens-lyon.fr/frs/download.php/58/crlibm-0.11beta1.
pdf

2see: http://lipforge.ens-lyon.fr/www/gappa/
3see: http://www.ens-lyon.fr/LIP/Pub/Rapports/DEA/DEA2006/DEA2006-03.

ps.gz, unfortunately in French for the moment.

2

http://perso.ens-lyon.fr/guillaume.melquiond/doc/06-mcms-article.pdf
http://lipforge.ens-lyon.fr/frs/download.php/58/crlibm-0.11beta1.pdf
http://lipforge.ens-lyon.fr/www/gappa/
http://www.ens-lyon.fr/LIP/Pub/Rapports/DEA/DEA2006/DEA2006-03.ps.gz

