

VU Research Portal

Boron Isotopes in Italian melt inclusions

Luciani, Natascia; Nikogosyan, Igor; de Hoog, J.C.M.; Davies, Gareth R; Koornneef, Janne

published in Goldschmidt 2021 2021

DOI (link to publisher) 10.7185/gold2021.7215

document version Publisher's PDF, also known as Version of record

document license Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA) Luciani, N., Nikogosyan, I., de Hoog, J. C. M., Davies, G. R., & Koornneef, J. (2021). Boron Isotopes in Italian melt inclusions. In *Goldschmidt 2021: [Abstracts]* https://doi.org/10.7185/gold2021.7215

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address: vuresearchportal.ub@vu.nl

Boron Isotopes in Italian melt inclusions

NATASCIA LUCIANI¹, IGOR K. NIKOGOSIAN¹, JAN DE HOOG², GARETH R DAVIES¹ AND JANNE M. KOORNNEEF¹

¹Vrije Universiteit

²The University of Edinburgh

Presenting Author: n.luciani@vu.nl

The composition of δ^{11} B can be used to study the cycling of volatile elements within Earth's interior. Due to its incompatibility and high mobility in aqueous fluids boron provides a powerful tool to better understand fluid-related crustal recycling processes in subduction zones. Across-arc profiles in arc lavas show that the concentration of B decreases with increasing slab depth and decreasing amount of slab-derived fluids. The two stable isotopes ¹⁰B and ¹¹B fractionate in the fluids, leading the heavier ¹¹B to concentrate in the fluid itself [1].

Melt inclusions (MIs) in high-forsterite olivine potentially preserve primary mantle-derived elemental concentrations and isotopic signatures and can record the B isotopic composition of the surrounding melt at the time of trapping. The complex Italian post-collisional subduction setting represents an excellent natural laboratory to study subduction recycling. The magmatic products vary from potassic and ultrapotassic along the Tyrrhenian side in the north to calc-alkaline and Na-alkaline in the south. This diversity reflects the changing geodynamic setting and related major crustal recycling creating a heterogeneous mantle source along the subduction zone. Olivine-hosted MIs from across Italy reveal that primary melts tap this heterogeneous mantle including subducted oceanic and continental components that were introduced during the Alpine, and/or Adriatic and Ionian subduction phases [2-4].

We present boron isotope compositions in 100 selected melt inclusions from a wide range of Italian lavas. The MIs are characterised for major and trace elements and include primary melts representing the different end-members for each of the magmatic Italian provinces as well as within single magmatic series. We will focus on the relation between major- and trace elements and boron isotope compositions to reveal the diversity of subduction-derived metasomatic agents in the Italian mantle that are the sources of the variable K-rich and Na-Ca alkaline melts.

[1] De Hoog & Savov (2018). Boron Isotopes, 217-247.

[2] Nikogosian & van Bergen, M. J. (2010). Journal of Volcanology and Geothermal Research, 197(1-4), 279-302.

[3] Nikogosian et al. (2016). EPSL, 449, 12-19.

[4] Koornneef et al. (2019). *Nature communications*, 10(1), 1-10.