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Chapter 19
Does This Suit Me? Validation
of Self-modeling Network Models
by Parameter Tuning

Jan Treur

Abstract In this chapter it is discussed how a personalised temporal-causal network
model can be obtained that fits well to specific characteristics of a person, and his
or her connections and further context. A model is an approximation, but always
a form of abstraction of a real-world phenomenon. Its accuracy and correctness
mainly depend on the chosen abstracting assumptions and the personal and contex-
tual (network) characteristics defining the model. Depending on the complexity of
the model, the number of its characteristics can vary from just a couple to thousands.
These network characteristics usually represent specific features or properties of
the modelled phenomenon, for example, for modelling human processes personality
traits or social interaction properties. No values for such characteristics are given at
forehand. From a more general and abstract view, they can be considered parame-
ters of the model. Estimation of such parameters for a given model is a nontrivial
task. In this chapter, it is discussed how this can be addressed for temporal-causal
network models based on the parameter tuning method of Simulated Annealing and
a specific component within the dedicated modeling environment, thereby making
use of MATLAB’s built-in optimser Optimtool.

Keywords Validation · Self-modeling network models · Parameter tuning ·
Simulated annealing · Root mean square error

19.1 Introduction

For computational models in general, an important issue is how it can be justified
that the model is valid for the real-world situation or phenomenon that is modeled.
A process to answer this question is called validation. This also applies to network
models. One form of validation can be obtained from the way in which a network
model is designed:
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• To model some phenomenon you study, you determine which underlying
mechanisms make the phenomenon happen

• For this you use empirically founded knowledge or theories from relevant
scientific disciplines

• This provides a scientific justification of the structure of the network model
covering these mechanisms

• This can be reported in any form of documentation or presentation of the model.

In addition to this, after the model has been designed further validation can be
performed:

• By simulation of the model it has to be shown that indeed these mechanisms bring
about the studied real-world phenomenon

• For this, settings for the model’s network characteristics are needed that fit well
to the context that is modeled, for example, a specific type of person

• Choosing adequate values for these network characteristics is not always easy
• To support the search for adequate values, automated parameter tuning methods

can be helpful.

The use of such an automated parameter tuning method is the main topic of
the current chapter. The general picture of this is obtained as a typical classical AI
approach involving a search space and a search method; this goes as follows.

Dynamical models such as temporal-causal network models usually have to take
into account a number of situational characteristics of the real-world situation that
is modelled. Such situational characteristics can involve, for example, the mental or
neurological structures of a person, or a person’s connections to others, or contextual
elements of the external world. Within a network model certain network charac-
teristics (such as connection weights, speed factors, combination function weights,
and combination function parameters) are used to represent such situational charac-
teristics. The advantage of having such network characteristics in a network model
description is that they enable to use and tune the network model for different situ-
ations: for example, persons with different mental or neurological structures, for
different social connections, or for different contextual elements in the externalworld.

In fact, the model represents a large (and in theory infinite) space of possibilities
indicated by all combinations of values of the network characteristics. For example,
suppose 10 network characteristics are involved and all of them have values in the
interval [0, 1]. If only values in one digit are considered (i.e., 0, 0.1, …, 0.9, 1.0),
then the number of combinations already is 1110, which is more than 25 billion or
2.5 * 1010. If the values are considered in two digits, this number will be more than
10010, which is 1020. So, a model with a large number of network characteristics is
very generic in the sense that the space of situations that can be represented by the
model can be huge, with many variations.

For one given specific situation at hand the network characteristics have to be
assigned values that represent that situation in particular; values have to be found
that fit to the situation: by finding such values, knowledge of the specific situational
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Fig. 19.1 Parameter estimation for a dynamical model

characteristics of the situation is acquired. However, acquisition of specific charac-
teristics is not always easy, as often a situation that is modelled does not simply show
these characteristics. They have to be acquired or estimated by some process in one
way of the other, and this may turn out to be not so easy and often has to be done
in an indirect manner via a specific search method applied to the search space of
all possibilities. In Fig. 19.1 such an estimation process is sketched. The observed
behaviour from the actual phenomenon is compared to the predicted behaviour from
the dynamical network model at some time points. If there is a significant difference
(the aim is to make this difference minimal), the model’s behaviour has to come
closer to the observed behaviour by changing the values of the model’s network
characteristics.

From a more general perspective, for any type of dynamical model such
(network) model characteristics are called model parameters. Various parameter
tuning methods have been developed that specify how to quantify the deviation of
a model’s outcomes from real-world data and based on that in what way improved
values of the model parameters can be determined that result in smaller deviations
between model outcomes and real-world data.

In the current chapter this issue is discussed in some detail. In Sect. 19.2 it is
discussed how in the many cases that direct measuring is hard or impossible, via
requirements the values of parameters can be determined. In Sect. 19.3 an example
of a temporal-causal network model is shown that is used in this chapter to illustrate
the approach. In Sect. 19.4 parameter tuning based on exhaustive search and in
Sect. 19.5 parameter tuning based on simulated annealing is discussed. Section 19.6
gives a brief overview of pros and cons of exhaustive search, simulated annealing and
a few other approaches from the literature. In Sect. 19.7 it is shown how simulated
annealing can be applied by using a specific component from the dedicated modeling
environment and the optimiser Optimtool within MATLAB.
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19.2 Determining Characteristics and the Use
of Requirements

Without having precise knowledge of the specific characteristics of a real-world
situation that is modelled, it will be difficult to obtain a model that really fits to the
considered situation. A network model is specified by its network characteristics.
The problem to find proper values representing characteristics for a given real-world
situation basically can be addressed in two manners: by direct measuring of the
characteristics in the situation that is modelled, or via requirements. These will be
discussed in some more detail in the current section.

19.2.1 The Choice of Network Characteristics in a Network
Model

In principle, all network characteristics of a given network model can be chosen for
parameter tuning.However, first of all note that in an adaptive networkmodel only the
non-adaptive characteristics can be tuned as parameters; the adaptive characteristics
are not constant and computed at each point in time within the model itself. Within
a temporal-causal network model, in particular the following types of parameters
occur that can be tuned (when they are not adaptive):

• Connection weights ωX,Y for states X and Y
• Speed factors ηY for each state Y
• Combination function weights γi,Y
• Parameters within specific combination functions, such as:

– in a scaled sum combination function the scaling factor λ

– in a logistic sum combination function the parameters σ for steepness and τ

for excitability threshold

• For models with adaptive connections, for example:

– for Hebbian learning the persistence parameter μWX,Y
, where WX,Y is a self-

model state for adaptive connection weight ωX,Y

– for adaptive networks based on the homophily principle the tipping point τWX,Y

and speed factor ηWX,Y
for connected X and Y, where WX,Y is a self-model state

for adaptive connection weight ωX,Y.

Here, for example, in a specific real-world situation the connection weights may
relate to the strengths of certain connections in someone’s brain or to the strengths
of certain connections in social interaction, and speed factors may relate to actual
speed of processing the states. For a given situation it is not clear at forehand how
values of such network characteristics have to be chosen. There are some indications
or heuristics that can be kept in mind, to manage them during the modelling process:
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• Connection weights 1 for maximal effect and lower between 0 and 1 for a smaller
effect

• Connection weights between −1 and 0 for suppressing effects
• Speed factors can be chosen higher for internal, mental processes, and lower for

body changes and execution of actions in the world
• For scaled sum combination function: choose the scaling factor λ equal to or at

most the sum of the weights of the incoming connections
• For logistic sum combination functions

– Choose steepness σ low (e.g., from 2 to 6) for gradual effects and high (e.g.,
10 to 20 or higher) for more all-or-nothing types of effects

– The excitability threshold τ often has a relation with the number of incoming
connections and their weights. For example, for activation values between 0
and 1, the sum of the incoming single impacts can never be more than the sum
of these weights, so an excitability threshold τ higher than that will not lead
to substantial activation of a state; it usually has to be higher if there are more
incoming connections

Such heuristics still will not make it easy to find values for network characteristics
that adequately represent the specific characteristics of a given real-world situation.
This basically can be addressed in two manners: in a direct manner by measuring of
the network characteristics in the situation that is modelled, or in an indirect manner
via requirements. These will be discussed in some more detail in Sects. 19.2.2 and
19.2.3, respectively.

19.2.2 Direct Measuring of Network Characteristics
in a Real-World Situation

From a naïve point of view, the possibility to directly measure values of the network
characteristics of a network model is the most attractive option. For example, if
some physical process is to be modelled, according to some physical laws in which
certain quantities (such as mass or volume) occur as characteristics, then the values
of these quantities can be measured and used for these parameters. This may work
in an idealised physical domain, but for human and social domains this may be less
straight forward. Suppose a connection from one mental state X to another mental
state Y is involved in the network model, then according to the current state of the
art measuring the strength of this connection is quite difficult, if not impossible.

As another example, suppose in a network thatmodels social interaction, a connec-
tion from person X to person Y occurs. How could the strength of this connection
be measured? By the number of Whatsapp messages per minute? By the time dura-
tion of telephone calls? By the time duration of being at the same location? In
the literature it is discussed how connection strength in networks describing social
interaction relates to aspects such as interaction frequency, emotional intensity of
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content, and emotional support and closeness; e.g., (Gilbert and Karahalios 2009;
Granovetter 1983;Marsden andCampbell 1990). In part of this literature, the relation
between connection strength and aspects of actual interaction is used to formulate a
measurable definition of connection strength. However, in other literature not a defi-
nitional but a causal relationship between such measurable aspects and connection
strength is assumed; e.g., (Hove and Risen 2009; Pearce et al. 2015). So also direct
measuring of connection strength in a network describing social interaction is not
without problems.

As another alternative, sometimes questionnaires are used for measurements of
characteristics in human or social domains, where persons can score their character-
istics; for example, is some other person your partner, your best friend, just a friend
or an acquaintance? Or, how close is this contact at a 5-point scale from close to not
close? At first sight this may seem practical and adequate, as such a scoring might be
used to generate numbers, and for numerical simulation numbers are needed. But this
also has some problems. First of all, persons do not necessarily know their own char-
acteristics, and if they believe they do know, there is no guarantee that these beliefs
are correct. And secondly, a score from a questionnaire, or an aggregation of such
scores, may provide a number, but this number is supposed to be measured according
to some scale, and it may not be clear how this scale relates to the scale of a relevant
network characteristic. There may be a nontrivial, unknown relation between such
scales, perhaps at least a monotonic relation, but maybe not proportional or linear.
So to adequately translate such scores into values for network characteristics can be
a problem by itself.

19.2.3 Using Requirements to Find Characteristics
of a Situation

Another way to find values for network characteristics of a network model is to
identify and explicate what behavioural pattern the network model is expected to
generate: expressed as requirements for the simulation outcomes of the model; see
also (Treur 2016a), Ch. 13. Suppose such requirements have been identified, and
they indeed describe what is expected from the model. Then a number of values of
network characteristics can be tried alternatively until values are found such that the
model shows the behaviour fulfilling the requirements. Usually this is already done
intuitively by a modeller. However, for larger numbers of network characteristics the
huge space of possibilities for a network model now turns into a huge search space.
For models with many network characteristics it is easy to get lost in the large search
space of all combinations of values of these network characteristics. So, eventually
the question how to find proper values for the network characteristics may get an
answer in the form of a search problem that is to be solved. The requirements used
for this search problem can be of different types. In general the requirements can take
the form of any temporal patterns expressed as dynamic properties as addressed in
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(Treur 2016a), Ch. 13. Different combinations of values for network characteristics
can be tried in order to find those combinations of values that lead to fulfilment of the
requirements, or at least to approximate fulfilment. This process can be performed
in a systematic manner, as exhaustive search, or some form of heuristic search. For
heuristic search usually some measure is used to indicate how far from fulfilment the
requirement is; this is often called an error measure or error function. The require-
ments can be of a very specific form when for some states of the model empirical
values are available for some of the time points, and it is considered that the model
is required to generate values at these time points equal or close to these empirical
values.

19.2.4 Using Error Measures for Requirements Based
on Data Points

The search methods discussed below in Sects. 19.4 and 19.5 assume requirements
that indicate that the simulation values should be equal to an obtained set of data
points representing the real-world situation and an error function to measure how far
from fulfilment these requirements are. More specifically, it is assumed that a data
set is available represented by values for certain states and time points, so basically
a collection of values Vi,t (i over some state numbers i1, i2, …, and t over some
time points t1, t2, …). The requirement considered is that a trace generated by the
model shows values for these states at these time points that are equal to the values
indicated by the data points, or at least close to these values. As being equal is usually
not feasible, the question becomes how to define this ‘being close to’ for multiple
states and time points.

An error function expresses in an aggregated manner the overall deviation for
all of the values of the data points in comparison to the simulation values for the
considered states and time points. When there is no deviation for any of the states
and time points, the error function will give the value 0, and if the deviation is small,
the value of the error function will be close to 0. For a parameter tuning method the
aim is to get the value of the error function below some small value (accuracy) or as
close to 0 as possible. An error function usually is based on the absolute values of
the differences Di,t (i over some state numbers i1, i2, …, and t over some time points
t1, t2, …) between corresponding empirical and simulated values. Then a criterion
could be that all of them should be at most a given small positive number D:

∣
∣Di,t

∣
∣ ≤ D

for all considered states Xi and all considered time points t. HereD is a small positive
number, for example 0.05. Yet another way is to aggregate the deviations Di,t into
one number, which is called an error function. One possible way of aggregation is
to take the average absolute deviation:
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Average absolute deviation error =
(
∣
∣Di1,t1

∣
∣ + ∣

∣Di1,t2

∣
∣ + · · · + ∣

∣Di2,t1

∣
∣ + ∣

∣Di2,t2

∣
∣ + · · · + · · · )/N

or in short notation: �i,t |Di,t |/N, where N is the number of data points. However, an
often used form of aggregation for an error function makes use of the sum of squares
of the differences Di,t : �i,t Di,t

2. The sum of squares of residuals as this is called as
a basis for an error function is a generic concept that is used in applications in many
disciplines to measure the deviation of a set of data points relative to a reference.
The word residual refers to the difference between observed versus predicted values
for the considered variable.

Minimizing the sum of squares of residual values is referred as a least square
method (Moler 2004). The history of the least square method goes back to 1795,
when Karl Friedrich Gauss has formulated it as a basic concept and found out that
when it is assumed that for large numbers of data points measurements deviate from
an ideal pattern according to a normal probability distribution, then a least square
method provides an optimal approximation of the ideal pattern; see, for example,
Strejc (1980). Note that this argument concerning a normal distribution of deviations
assumes large data sets and is less valid for smaller data sets. To make the values
obtained by calculating the sum of squares comparable with the actual differences
Di,t it is useful to apply the square root of the avarage of the squares, obtaining what
is called the Root Mean Square error RMSE which is also an often used variant:

RMSE =
√

�i,t D2
i,t/N

whereN is the number of data points, which is often (but not necessarily) the product
of the number of considered states and the number of considered time points. This
makes it much easier and intuitive to verify whether the error makes sense, as the
values of such an error function directly relate to the (linear) vertical differences that
can be seen in the graph that compares simulated curves to empirical data points. For
example, when all deviations Di,t are the same D, then this results in error RMSE =
D.

In this way the RMSE-error function can be used to evaluate the quality of the
selected values of the network characteristics in a given model in comparison to
empirical data. Using any error function, there are different ways how to formulate
a requirement. One most strict requirement would be that the error is 0. Although
sometimes this may be relevant, in many practical situations such a requirement is
too strict. Another option is to express in a requirement that the error is at most a
given small value D, for example, 0.1:

RMSE ≤ D

This can be used in a generate-and-test method that works by generating simula-
tion traces under systematic variations of the settings of a model one by one and for
each trace testing whether this requirement is fulfilled, until one is found that fulfills
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the requirement. When a model has many network characteristics, it may be difficult
to generate traces for the many relevant variations of settings for the characteristics.
In such cases often heuristic search methods are applied, such as the one (simulated
annealing) that will be discussed in Sect. 19.5.

19.3 Description of an Example Model

The example described here is used to illustrate the idea of parameter tuning. This
example networkmodel for the generation of feelings followsDamasio’s idea of as-if
body loop (Damasio 1999; Damasio et al. 2000; Parvizi et al. 2006). A conceptual
representation of the model is shown in Fig. 19.2; the states used in the model are
summarized in Table 19.1. The model uses two inputs: stimulus s, and body state b,
which may occur as a response to the stimulus. The stimulus s is associated to an
emotional response b leading to a detectable body state wsb (e.g., a face expression).
In turn the effect wsb serves as input by sensing it via ssb.

World states wsw (e.g., wss, and wsb) affect sensor states ssw (e.g., sss, and ssb
respectively). The sensor states lead to further internal processes according to the
following causal sequence described by the body loop in Fig. 19.2. Moreover, the
effect prediction loop or as-if body loop goes from preparation for bodily response

body loop

as-if body loop

esb

srsb
fsb

sss srsswss psb

ssbwsb

Fig. 19.2 Example model to illustrate parameter tuning

Table 19.1 States in the
example model shown in
Fig. 19.2

Notation Description

wsW World state forW (W is a stimulus s, or body state b)

ssW Sensor state for W

srsW Sensory representation state forW

psb Preparation state for emotional response b

fsb Feeling state for b

esb Execution state for response b
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Table 19.2 Overview of the
connections and their weights

To state From state Weight

sss wss ω1

wsb esb ω2

ssb wsb ω3

srss sss ω4

psa srss
fsb

ω5
ω6

srsb ssb
psb

ω7
ω8

fsb srsb ω9

esb psb ω10

to sensory representation of the bodily response to feeling the associated emotion
(Damasio 1999; Damasio et al. 2000). The connections between state properties (the
arrows in Fig. 19.2) have weights ωk , as indicated in Table 19.2. In this model it is
assumed that all weights are non-negative and between 0 and 1.

In the example simulations, for the states Y that are affected by only one state,
the combination function cY (…) is taken as the identity function cY (V ) = id(V ) = V,
and for the other states psb and srsb the combination function cY (…) is the advanced
logistic sum function alogisticσ,τ(…).

cY (V1, . . . , Vk) = alogisticσ,τ(V1, . . . , Vk)

=
(

1

1 + e−σ(V1+···+Vk−τ)
− 1

1 + eστ

)
(

1 + e−στ
)

Here τ is the excitability threshold and σ is the steepness. For the speed factor ηX

two values are used: ηslow (slower) for external states X and ηfast (faster) for internal
states X: as sensor states and execution states need more time to change physically,
the speed factor for these external states should be low compared to the ones for
internal states. In the model the states wss, wsb, sss, and ssb are considered to be
external. For the expected feeling when the stimulus has level 1, the data was chosen
as shown in Fig. 19.3. For this case study these were generated by the model, after
which according to a normal distribution some noise was added to make them look
like empirical data.

The characteristics of themodel considered for parameter tuning are 10 connection
weight values (ω1 toω10 in Table 19.2), 2 threshold values (τpsa and τsrsb ), 2 steepness
values (σpsa and σsrsb ). It is assumed that only ηslow = 0.5 and ηfast = 0.9 have
predefined values, and that the step size is �t = 0.25. The values of the remaining
14 characteristics are to be determined by parameter tuning.

As an illustration simulated annealingwill be applied to this example in Sect. 19.5.
By applying some (relative) noise to the values of an example simulation according to
a normal distribution, the data points shown in Fig. 19.3 were obtained. By parameter
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

time

level feeling b

Fig. 19.3 The required behaviour of fsb when the world state for stimulus wss is 1

tuning, values of the considered network characteristics will be determined that make
that the simulated feeling level approximates the data points shown in Fig. 19.3. As
error function, RMSE has been used, and as a stop criterion for the estimation process
an error of 0.03.

Note that no unique solution can be expected. There may be different types
of persons with different characteristics that still generate similar feeling levels.
Different settings and initial values and different random choices on the fly of any
parameter tuning method in principle will generate different solutions. It is often
interesting to explore these different possibilities, and not blindly focus on only one
option for which the error is just a few percentages lower.

19.4 Parameter Tuning by Exhaustive Search

Exhaustive search (also called brute-force search) is a quite elementary method for
parameter tuning. It consists of

• Systematically enumerating all possible assignments of values to the network
characteristics for the model, with a certain grain size or accuracy, for example in
two or three decimals

• For each of these assignments run the model to generate a simulation trace
• For each generated simulation trace check whether (and to which extent) the

generated simulation trace fulfils the requirements.

The option(s) that fulfill the requirements (or fulfill them best) are selected as suitable
options for values of the parameters. If requirements are not fulfilled in a strict sense
but only in an approximate sense, it is assumed that an error function is used, and the
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parameter values which show the lowest value for this error function can be chosen as
the best outcome; here as error function, for example, the square root of the average
of the squares of residuals may be used. For this case, example pseudo-code is shown
in Box 19.1.

Box 19.1 Pseudo-code for

Usually dynamical models have continuous parameters. To use exhaustive search
for such models, the parameter values have to be to be assigned discrete values. The
simplest way to do this is according to a uniform grain size, for example of 0.01;
this grain size is a measure for the accuracy by which the search is performed. For
example, suppose that the model has just one parameter P1, which is continuous
and it varies between 0 and 1. The aim is to find a value for P1 which minimizes
the difference between empirical data and model prediction. For example, for accu-
racy 0.1, parameter P1 can be assigned discrete values 0.0, 0.1, 0.2, 0.3, … 0.9,
1.0, respectively. According to the exhaustive search method, the error (difference
between empirical data and model prediction) for each of these values has to be
determined, and the one which leads to the lowest error can be chosen.

As it is clear in Table 19.3, in this example, the error is minimal when P1 is equal
to 0.1. Thus, for this fictitious example, the exhaustive search method suggests to
choose the value 0.1 for parameter P.

As another fictitious example, suppose that the model has two continuous param-
eters P1, P2, and values of both of them can be between 0 and 1. If the required
accuracy for each of the parameters is taken 0.1, then for each one the values 0.0,
0.1, 0.2, 0.3, …, 0.9, 1.0 can be used, thus 112 = 121 assignments of parameter

Table 19.3 Example error values for different parameter values

P1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Error 0.443 0.170 1.084 2.010 2.731 3.265 3.665 3.972 4.218 4.421 0.443
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Table 19.4 Error of the prediction of the model with different set of parameters

P2\P1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.114 0.083 0.064 0.056 0.061 0.077 0.105 0.145 0.197 0.261 0.337

0.1 0.058 0.022 0.003 0.002 0.02 0.058 0.116 0.193 0.292 0.412 0.553

0.2 0.12 0.086 0.077 0.096 0.144 0.223 0.333 0.476 0.655 0.87 1.124

0.3 0.299 0.278 0.294 0.35 0.449 0.594 0.789 1.037 1.342 1.708 2.139

0.4 0.596 0.603 0.661 0.776 0.953 1.199 1.52 1.923 2.416 3.008 3.706

0.5 1.011 1.062 1.184 1.385 1.675 2.065 2.566 3.191 3.954 4.871 5.958

0.6 1.543 1.659 1.871 2.192 2.638 3.226 3.975 4.907 6.045 7.417 9.052

0.7 2.192 2.398 2.731 3.212 3.865 4.717 5.798 7.143 8.792 10.788 13.181

0.8 2.96 3.282 3.772 4.46 5.382 6.578 8.095 9.987 12.316 15.152 18.574

0.9 3.845 4.314 5.002 5.952 7.216 8.853 10.933 13.537 16.759 20.707 25.508

1.0 4.847 5.498 6.431 7.707 9.399 11.592 14.387 17.904 22.284 27.688 34.309

values have to be evaluated for P1 and P2:

{(0.0, 0.0), (0.0, 0.1), (0.0, 0.2), . . . ,
(0.1, 0.0), (0.1, 0.1), (0.1, 0.2), . . . ,

. . .

(1.0, 0.8), (1.0, 0.9), (1.0, 1.0)}

So, for each of these assignments the error has to be determined (see Table 19.4)
and then the set with least error chosen.

Table 19.4 illustrates the error for each of these 121 assignments of parameter
values. The error is minimal when (P1, P2) is assigned values (0.3, 0.1). Thus, the
exhaustive search method suggests 0.3 and 0.1 as best values for P1 and P2.

A problem with exhaustive search is that for more parameters and smaller grain
size it becomes computationally more complex. Therefore, exhaustive search is typi-
cally used as the best method when the problem size (e.g., the number of parameters
and required accuracy) is limited; in other cases this method may easily become too
inefficient.

19.5 Parameter Tuning by Simulated Annealing

In a purely random approach, the parameter values are randomly changed. Like
exhaustive search such a random method is complete, in the sense that it will always
find a global minimum in the end, but it can be quite inefficient. Simulated annealing
is a slightly more sophisticated method which uses randomness but adds over time
more and more focusing to the randomness. This makes it more efficient but in
principle does not find the global optimum anymore. The most important advantage
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of this method (in comparison to some other methods) is that simulated annealing
can still pull the tuning process out of local minima.

Simulated annealing is inspired by physical annealing in metallurgy, where phys-
ical substances are heated and melted, and then gradually cooled down until some
solid state is reached. In this process, the goal is reaching a state inwhich the substance
has a minimum of energy. In metallurgy, this goal will be attained if the substance
is cooled down in a sufficiently slow manner. The notion of slow cooling down
in physical annealing is implemented in the simulated annealing method as a slow
decrease in the probability of accepting worse solutions while it explores the search
space. This property is controlled by a variable called Temperature (T). Accepting
a worse assignment of parameter values (which leads to higher value of error) is a
fundamental property of simulated annealing because it allows for a more extensive
search for the optimal solution.

Simulated annealing starts from a random assignment of parameter values AP.
At each step, the method considers a neighbouring assignment of parameter values
AP′ of the current set AP, and probabilistically decides between moving to set AP′
or staying in AP. These probabilities ultimately lead the system to move to better
sets of parameter values (with lower error). Inspired from physical annealing, in this
method there is a variable called temperature (indicated by T), which has a value
decreasing (cooling) during the process. The temperature controls the probability of
doing ‘downhill’ actions during the process.When the value of this parameter is high
(at the beginning) the probability of accepting a new set of parameter which leads to
higher error is high. During the progress of the method, this value will decrease, and
when the value of this variable is very low (at the end), the probability of accepting
such a new set is almost zero, which means that the process is now focusing on that
part of the search space only.

Because of the possible jumps to worse solutions when the temperature is still
high, simulated annealing can pull out of local minima and may be able to find
the globally most optimal point, especially if the temperature is cooled down in a
sufficiently slow manner.

More specifically, it starts from a random set of parameter values AP0 and gener-
ates a succession of parameter values sets AP1, AP2, … in order to decrease the
error. New candidate sets are generated around the current set of parameter values
by slightly changing these values in a random way for each parameter. For each iter-
ation i the new values are uniformly distributed in intervals centered around APi. If
the new assignment of parameter values has a decreased the error level error(APi+1),
in comparison to the error level error(APi+1) of the previous assignment, it will be
accepted (i.e., when �E = error(APi+1) − error(APi) ≤ 0). Otherwise, the new set
will be accepted with probability e−�E/T, which depends on the temperature and the
difference between previous error and the new one. So, a new assignment of param-
eter values which generates a higher level of error, will be accepted with probability
of e−�E/T. This probability is only dependent on �E and T. If �E is very small
(the new assignment of parameter values increases the error level only a bit), or if
the temperature is very high, then the new assignment of parameter values will be



19 Does This Suit Me? Validation of Self-modeling Network Models … 551

accepted with a high probability. This probability will decrease by decreasing the
temperature or increasing �E.

Figure 19.4 shows e−�E/T as a function of �E when T = 1. Figure 19.5 shows
e−�E/T as a function of T when �E = 2.

As it can be seen, the value of the function e−�E/T is close to 1 when �E is
very small or T is large. On the other hand, it is less when �E is large and T is
small. The simulated annealing method starts at a user defined temperature T0 and
the temperature will be decreased in each iteration. The process is terminated when
the temperature is so low that no more significant improvement can be reached. See
Box 19.2 for pseudocode. So, the following happens:

• If the move improves the situation (decreases the error), it is always accepted.
• Otherwise, the algorithm accepts the move to a higher error with some probability

less than 1.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 2 4 6 8 10 12 14 16 18 20

ΔE

exp(-ΔE/1)
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• The probability decreases exponentially with how bad the move is: the amount
�E by which the error is increased.

• The probability also decreases as the temperature T goes down: bad moves are
more likely to be allowed at the start when T is high, and they become more
unlikely as T decreases.

• If the temperature T decreases slowly enough, the method will find the best set of
parameters with probability approximating 1.

Box 19.2 Pseudo-code for simulated annealing

As mentioned, the temperature T is decreased during the progress; the cooling
schedule defined by parameter λ is very important for the performance of simulated
annealing. There is a trade-off between the quality of the final solution and the
execution time, the latter being sensitive to the speed of the temperature decrease.
Here, it is done by multiplying T in each iteration with λ which is a number <1 (and
usually >0.95). If a very high initial temperature T is chosen, there will be a waste
of computational resources. In the case of low initial T, the process could get caught
in assignments of parameter values which are not the best ones (local minima). It is
hard to establish a general rule for determining the ideal initial temperature.

The simulated annealingmethod has been implemented for the example described
in Sect. 19.3. The upper graph in Fig. 19.6 shows the deviations for the found solution.
The lower graph in Fig. 19.6 shows the error for the different iterations.
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Fig. 19.6 The deviations and error for the different iterations in simulated annealing

19.6 Pros and Cons of Different Parameter Tuning Methods

In (Treur 2016a), Ch. 14 two other parameter tuning methods (gradient descent and
random gradient descent) are described as well and also for them it is illustrated
how they work for the example in Sect. 19.3. In the current section, first different
solutions obtained by different methods are shown (in Table 19.5) for the example
model of Sect. 19.3.

As should be expected, different parameter tuning methods and settings found
different solutions for the example model. Below the parameter values are shown as
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Table 19.5 Three different
solutions found by three
different parameter tuning
methods

Gradient
descent

Random gradient
descent

Simulated
annealing

ωesb,wsb 0.64 0.92 0.59

ωwss ,sss 0.82 1.00 0.52

ωwsb,ssb 0.71 0.90 0.97

ωsss ,srss 0.85 1.00 0.55

σsrsb 2.84 2.79 6.94

τsrsb 0.01 0.10 0.01

ωssb,srsb 0.69 0.78 0.73

ωpsb,srsb 1.00 1.00 1.00

σpsb 6.58 6.59 5.00

τpsb 0.10 0.24 0.10

ωfsb,psb 0.89 1.00 0.97

ωsrss ,psb 0.88 1.00 1.00

ωsrsb,fsb 1.00 1.00 0.90

ωpsb,esb 0.66 0.62 0.50

found by three different parameter tuning methods; note that all of these solutions
had error 0.03 or just below that value.

This illustrates that usually there is not one unique best solution (for example,
related to a global optimum) that is the only relevant solution, but multiple solutions
(related to local optima) are possible and relevant. It may depend on the context
which of these solutions are most relevant. In practice, to simply go for some unique
solution related to a global optimum, as sometimes may be suggested, will often
not be recommendable. Instead, better insight will be obtained when an overview
is found of different solutions relating to local optima with their respective errors,
especially when these errors are not that different, as in the above case.

Next, a summarized overview of pros and cons of the different methods can be
found in Table 19.6; see also (Treur 2016a), Ch. 14.

19.7 Applying Parameter Tuning by the Modeling
Environment

Within the dedicated modeling environment used for the network-oriented modeling
for self-modeling adaptive networks approach presented in (Treur 2020) two tuning
templates are available, one for nonadaptive network models and one for adaptive
network models; they can be found here:

https://www.researchgate.net/project/Network-Oriented-Modeling-Software

https://www.researchgate.net/project/Network-Oriented-Modeling-Software
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Table 19.6 Overview of pros and cons for a number of parameter tuning methods

Advantages Disadvantages

Simulated annealing

• Simulated annealing is effective in finding a
good assignment of parameter values for
models with a huge numbers of parameters

• Although the final point is not
deterministically guaranteed to be the best
one, if the temperature decreases in an
appropriate pace, it will find a very good
answer

• In comparison to gradient descent or random
gradient descent, it is slow. This method
needs more iterations to converge to an
optimal answer

Exhaustive search

• Exhaustive search is very simple to
implement

• It will always find the best set of parameters
(global optimum) if all the possible
parameter value combinations are explored

• Exhaustive search is useful as ‘baseline’
method when benchmarking other algorithms

• The main disadvantage of the exhaustive
search is that for many real-world problems
the set of candidate value assignments is
prohibitively large. Its computational cost is
proportional to the number of value
assignments, which in many practical
problems tends to grow very quickly as the
size of the problem increases, in particular
when the number of parameters is large
and/or a high accuracy is needed

Gradient descent

• Gradient descent is relatively simple
• It is a fast method; in a few iterations, it can
find a local minimum

• With certain assumptions, convergence to a
local minimum can be guaranteed

• The outcome of gradient descent method
may depend on the initial point

• This method can get stuck in local minima
• Many calculations have to be done in each
iteration

• There are situations in which gradient
descent can be slow and inefficient. To
overcome such problems, a number of
variations on gradient descent have been
developed, such as conjugate gradient
descent (Chong and Zak 2013)

Random gradient descent

• Random gradient descent is relatively simple
• Not many calculations have to be done in
each iteration; no sensitivities have to be
determined

• With certain assumptions, convergence to a
local minimum can be guaranteed

• Many iterations may be needed before it
reaches a small error

• The outcome of gradient descent method
may depend on the initial point

• This method can get stuck in local minima

In this section the use of them for validation by parameter tuning is discussed.



556 J. Treur

19.7.1 Basic Elements Needed for Parameter Tuning

The following basic elements are needed for parameter tuning of network models.

19.7.1.1 Empirically Justified Data Points

Empirical data for one or more of the states in the model is assumed to be gathered
from real world observations and experiments, or based on requirements formulated
for the model, which usually also are based on empirical literature. Usually this is
only for a small subset of the set of all states in the model, as for many of the states
it may be difficult to get data. And the data usually also will only concern a small
subset of the time points that the model uses. Various case studies can be used to
develop empirical data, and it can play an important part to get models closer to
reality. Some of the options to obtain data points are:

• Different scientific methods like fMRI, body state measuring (heart rate, skin
conductance,…) can be used.

• Data can be obtained from social media, such as emotion levels extracted from
sentiment analysis applied to posts.

• If numerical data are not available also qualitative empirical information can be
useful to get data points. For example, if qualitative information indicates that at
some point in time some activation level is low or high, you might map such a
linguistic score, for example, on numbers 0.2 or 0.3, or 0.7 or 0.8, respectively
(assuming the use of the [0, 1] interval).

These data are assumed to relate to one or some of the states of the model, and to
some of the time points; thus you will have:

• The time points for which you can obtain data.
These time points are usually given to the simulation environment in the form of
a list or row (a one-dimensional matrix) of some length N. For example,

Timepoints = [11.5 16]

of length N = 2 indicates that data is available (only) for the indicated time points
11.5 and 16.

• The specific states for which you can obtain data
These selected states are given to the software environment in the form of a list
or row (a one-dimensional matrix) of some length M. For example,

Stateselection = [X2 X4 X5]

of lengthM = 3 expresses that the data relate to the three indicated states X2, X4,
and X5.
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• The data points themselves
They have the form of a 2-D matrix with dimensions M × N, where M (the

number of rows) refers to the length of the state selection list above, and N (the
number of columns) refers to the length the time points list above. For example,
here the data will have the form of a 3 × 2 matrix.

19.7.1.2 Choice of Network Characteristics Serving as Parameters
to Be Tuned

You also have to indicate the network characteristics from the value matrices or
initial values list which you want to use as parameters to be tuned. For example,
a choice to address tuning of (some) speed factors and (some) connection weights.
Note that adaptive characteristics cannot be chosen for tuning as they change within
a simulation.

19.7.1.3 Choice of Parameter Intervals

For each of the chosen parameters you have to specify the interval indicating the
lower and upper bound of the range for the considered values for that parameter. For
example, the interval [0, 1] or a smaller or bigger interval.

19.7.2 Preparation for the Tuning Process

Using one of the tuning templates, the actual preparation goes as follows.

19.7.2.1 Specifying the Table of Data Points

At forehand specify the information on the data points used by a data matrix and two
lists (see also Sect. 19.7.1); then copy them to MATLAB:

(a) The time points list (5 elements here)
(b) The state selection list (3 elements here)
(c) The table of data points (a 3 × 5 matrix here).

Pasting them between the proper [] in MATLAB results in (here the X is left out
from the state selection list):

timepoints=[2 5.9 14.3 21.1 29.2];
stateselection=[1 6 12];
empirical_data = [0.90 0.82 0.72 0.67 0.63
0.54 0.52 0.49 0.47 0.46
0.03 0.13 0.24 0.29 0.33
];
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Here the rows correspond to the state selection and the columns to the selected
time points. Recall that such data points can be based on, e.g.:

• A questionnaire or scores of an individual at a certain scale
• Posts in Social Media
• Requirements on the expected outcome acquired from qualitative empirical

literature.

19.7.2.2 Specifying the Tuning Matrices

Next, specify the tuning matrices mcwtuning, mstuning, mcfwtuning, and mcfp-
tuning and also ivtuning.

• All values for network characteristics in the valuematricesmcwv,mcfwv,mcfpv,
msv and in iv can be candidates for tuning, but not values inmb and the adaptation
matrices mcwa, mcfwa, mcfpa, ms.

• Specify which of these characteristics are picked to be tuned and associate them
to numbered parameters P(1), P(2),…

• This association is specified in mcwtuning, mstuning, mcfwtuning, and mcfp-
tuning and also ivtunin by writing in these matrices P1, P2, … (for P(1), P(2),
…) in the cells corresponding to the characteristics you picked

This will result, for example, in the tuning matrices shown in Fig. 19.7.

Fig. 19.7 Examples of tuning matrices
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19.7.2.3 Copying the Tuning Matrices into the Software Template

The tuning matrices obtained in Sect. 19.7.2.2 can be copied into the tuning template
after leaving out the P and fill the empty cells withNaN; for example, for mcwtuning.
See Fig. 19.8. This paste results in the following Tuning Matrix in MATLAB

mcwtuning = [NaN NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
3 NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN
];

mcwtuning connection 
weights 1 2 3 4

X1 sss NaN NaN NaN NaN
X2 srss 1 NaN NaN NaN
X3 bss 2 NaN NaN NaN
X4 psa NaN NaN NaN NaN
X5

Wsrss,psa NaN NaN NaN NaN

X6
Tsrss 3 NaN NaN NaN

X7
Tpsa NaN 4 NaN NaN

X8
HWsrss,psa NaN NaN NaN NaN

X9
MWsrss,psa NaN NaN NaN NaN

mcwtuning = [                       ]

NaN NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN

NaN NaN NaN NaN
NaN NaN NaN NaN

3 NaN NaN NaN
NaN 4 NaN NaN
NaN NaN NaN NaN
NaN NaN NaN NaN

Fig. 19.8 Tuning matrix prepared for copying to MATLAB (upper) and pasting it in the tuning
template: the right hand part is pasted between the [] of mcwtuning in MATLAB
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Important hint:

• a Tuning Template does include all values matrices (and adaptation matrices) but
cannot directly be used ‘by hand’ to generate a simulation by itself; it can only
be used automatically in an indirect manner by running the optimiser Optimtool
(via function calls within Optimtool).

19.7.3 Running the Tuning Process

After the above preparations, the parameter tuning process can be started. This goes
as follows.

19.7.3.1 Enter Input in Optimtool

To run the optimization tool write ‘optimtool’ in the command window of MATLAB
and press Enter; this opens Optimtool. Under Solver select the Simulated Annealing
algorithm as shown in Fig. 19.9. You have to provide options in the window (see
Fig. 19.10) such as

(a) starting point, and intervals for the parameter values
(b) lower and
(c) upper bound for values of the parameters

For example:

• Objective function = @NOMEtuningnonadaptivev02
• Start point: which parameter values you want to start with
• Lower Bounds = [0 0 0 0 0 0 0 0 0 0 0 0]
• Upper Bounds [1 1 1 1 1 1 1 1 1 1 1 1].

Note that depending on the parameters chosen, the 0 and 1 values can be different,
for example for steepness parameters they might be chosen 3 (lower bound) and 15
(upper bound) instead. Make sure your parameters setting look like as shown in the
image below.

Fig. 19.9 Optimtool interface for solver and algorithm selection
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Fig. 19.10 Optimtool interface for start point, lower bounds and upper bounds for the parameters
used

Important hint:

• Always make the name of the file for the tuning template and the name of the
function in the first line within that file the same; MATLAB wants the file names
of functions to be equal to the function names

19.7.3.2 Running Optimtool

After the above preparations, just press Start

Important hint:

• If you already did a run with a number of iterations and you changed something,
for example, the number of parameters addressed, then before starting again better
apply

>> clear P

in the Command Window; otherwise old and new values and format for P may
be confused by MATLAB. Especially do this when you get a concatenation
error message.
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19.7.4 How It Works

This section explains some remaining parts of the tuning templates.

19.7.4.1 Integrating the Parameter Values in the Values Matrices

After receiving the values of P(1), P(2), … from the optimizer Optimtool, based on
the tuning matrices, the value matrices are updated by the software by inserting these
values of P(1), P(2), … in the indicated cells mcwv, msv, mcfwv and mcfpv; for
example:

19.7.4.2 Determining the RMSE Error

To determine the RMSE, first the right portion of the model output is extracted to
get specific data from the simulation corresponding to the chosen data points:

Then RMSE is calculated as

• the sum of the squares of the deviations for all data points
• dividing this sum by the product of row and column length of the data table
• applying the square root:

[e_row,e_col] = size(empirical_data);
RMSE = sqrt(nansum(nansum((model_data - empir-
ical_data).ˆ2))/(e_col * e_row))

The resulting value for this RMSE goes to the optimiser Optimtool, so that it can
analyse the result and start a new iteration.
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19.8 Discussion

This chapter is partly based on work with Fakhra Jabeen, Nimat Ullah, Amin
Tabatabaei and Dilhan Thilakarathne. For example, the data and figures used were
generated byAmin andDilhan. In this chapter the focus was on Simulated Annealing
as parameter tuning method. Some other methods can be found in (Treur 2016a), Ch.
14; sometimes variants of these methods or other methods are used; for example, see
(Van den Bos 2007; Chong and Zak 2013; Thilakarathne 2015).

These methods use a specific simple type of requirements concerning equality
to some data points. In general more complex temporal patterns can be relevant
as requirements to be used, such as described as dynamic properties in a temporal
language in (Treur 2016a), Ch. 13. In (Treur 2016b) an approach is introduced in
which an error function is defined for any such amore complex requirement expressed
as a dynamic property in the temporal language as discussed in (Treur 2016a), Ch. 13.
This error function is based on the notion of ‘approximate satisfaction’ introduced
in the mentioned reference, which provides a measure for how close to satisfaction
an arbitrary temporal requirement is. It generalises the error function based on least
squares of residuals when simulated values are compared to empirical values to the
case of requirements for arbitrary temporal patterns.
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